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1.0 INTRODUCTION

The recent impetus to produce rigorous solutions to more realistic
models of pertinent propagation problems over a very wide frequency
range has generated the need to derive full wave solutions to problems
of radio wave propagation in dispersive, inhomogeneous, anisotropic and
dissipative media with irregular boundaries. The considerable growth in
civil and military interest in the development of more reliable systems
for communication, detection, navigation and positioning, the potential
for developing radio wave methods for remote sensing and the need to
develop secure hardened communication systems have contributed much to
this renewed interest. These developments have been paralleled by
remarkable advances that have been made in the availability of high
powered, very low frequency electromagnetic sources as well as the
availability of transmitters operating at optical frequencies. The
ready access to large, versatile digital computers has made it
possible to employ the full wave approach to obtain numerical solutions
to a wide class of important problems which have hitherto been either
ignored or over-idealized in order to reduce them to tractable problems.

To perform the full wave analyses, it is necessary to develop
generalized field transforms that provide the basis for the complete
expansions for the electromagnetic fields in irregular multilayered
structures with varying thickness and electromagnetic parameters.

These complete expansions consist of the vertically and horisontally
polarized radiation fields, lateral waves and guided surface vaves. The
generalized field transforms are used to reduce Maxwell's equations,

in conjunction with the associated exact boundary conditions for the
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electromagnetic fields, into sets of first order coupled differential
equations for the forward and backward traveling wave amplitudes.

The full wave solutions, that have been derived for the scattered
radiation fields from rough surfaces with arbitrary slope and electro-
magnetic parameters, bridge the wide gap that exists between the
perturbational solutions for rough surfaces with small slopes and the
Physical Optics solutions.

Computer programs are being developed to numerically evaluate
the scattering cross sectivns. Thus the solutions obtained using the
full wave approach can also bg used by engineers who are not necessarily

familiar with the analytical techniques used in the analysis.

1.1 Summary of Research

In his comprehensive review of theoretical treatments of
scattering of electromagnetic waves by rough surfaces, Valenz:ela (1968)

states that scattering models have been developed "that make it possible

to apply available theories Lo surfaces that cannot be treated purely

by perturbation and Physical Optics..." However, Valenzuela notes that,

"thege composite models are mostly based on physical considerations

and are able to explain features in radar cross-section data from the

sea that no theory can."

For instance, these composite models are used to show that bdback-
scatter at near normal incidence is primarily due to specular point
scattering while backscatter st near grazing angles is primarily due
to Bragg scaottering. Thus, for perfectly conducting rough surfaces
the backscatter cross section for near normal incidence is independent -
of frequency and polarization vhile at near grazing angles it is

dependent on both frequency and polarizationm.




e

e

Brown (1978, 1980) recently employed a combination of Burrows
perturbation theory (1967) and Physical Optics theory (Beckmann and
Spizzichino, 1963; Beckmann, 1968) to obtain a solution for the back-
scatter cross sectio;s for perfectly conducting rough curface; in
terms of a sum of two cross sections. The first term in his solution
is the specular point backscatter cross section associated with the
large scale (filtered) surface height and the second term is the Bragg
scatter cross section assoclated with the small scale surface height.
Thus in his work it is necessary to decompose (i.e., spectrally filter)
the rough surface. To this end, Browﬁ's specification of the wavenumber
ka, where spectral splitting is assumed to occur, is based entirely
upon the characteristics of the small scale structure (1978). However,
in the approaches of Hagfors (1966) and Tyler (1976), the specification
of kd is assumed to be based on the characteristics of the large scale
surface. Furthermore Brown's results for the total backscatter cross
gsections are critically dependentbon the specific value chosen for ka
(Brown, 1978).

In this work the full wave approach, which accounts for both Bragg
scattering and specular point scattering in a self-consistent manner,
is employed to evaluate the scattering cross sections for composite
models of rough surfaces (Bahar, 198la,b). It is shown that the full
wave solutions for the scattering cross sections can be expressed as
a veighted sum of two cross sections. The like polarized cross sections

which are associated with the large scale surface are independent of

frequency and polarization. The cross section which is associated

with the small scale surface is dependent on frequency and polarization.
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Furthermore the specification of ka is not based entirely on the
characteristics of the small scale structure. To determine the versatility 1
of the full wave approach, it is necessary to examine the sensitivity -1
of the total scattering cross section to variations in the value of ka
where spectral splitting is assumed to occur.
The purpose of the research reported in Section 2 1is to resolve
the apparent discrepancies between different Physical Optics solutions 4
for rough surface léattering. It is also shown in this section that
the appearance of the so-called "edge effect" in Beckmann's results
(Beclmann and Spizzichino, 1963), is due to premature truncation of a
closed surface integral.

In Section 3, full wave solutions are developed for the depolar-

ization of the scattered radiation fields by conducting objects of
irregular shape above rough land and sea. The research reported in
this section deals primarily with the deterministic problem. In
Section 4 these solutions are applied to random rough surfaces. It
is shown that the full wave solution bridges the wide gap between the
Physical Optics approach and the perturbation solutioms.

We conclude this section witﬁ a sumnary of the principal elements
of the full wave approach. The principal properties of the full wave
solution and its relationships to earlier solutions of scattering
problems are also summarized (Bahar, 198lc). This summary is also
presented schematically in Figs. 1.1 and 1.2. The reader of this
report who is not familiar with the full wave approach will find this

summary useful even though the details of the full wave method have

been reported esarlier (Bahar, 1973a,b, 1974, 1981).
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(a) The electromagnetic fields are expressed in terms of complete

expansions of vertically and horizontally polarized waves. These include
the radiation fields, the lateral waves and the surface waves (Bahar,
1973a,b; 1974).

(b) Exact boundary conditions are imposed at the irregular surface.

(c) Using the orthogonal properties of the basis functions appearing
in the complete expansions of the fields , Maxwell's equations are
integrated over the transverse plane (y,z) (Bahar, 1973a,b; 1974).
Green's theorems are used to avoid term-by-term differentiation of the
field expansions.

(d) Maxwell's equations for the electromagnetic fields are con-
verted into coupled first order ordinary differential equations for
the forward and backwaré traveling wave amplitudes which are only
functions of the variable x (Bahar, 1973a,b; 1974). ( In view of the
integration in the transverse plane (y,z) the telegraphists' equations
are only functions of x). The coupled equations for the wave amplitudes
are referred to the generalized telegraphists' equations (Bahar, 198lc).

(e) Second order iterative solutions for the radiation fields are
obtained from the telegraphists' equations on neglecting multiple
scattering from the rough surface.®

(f) A variable coordinate system that conforms with the local
features of the irregular boundary is introduced and the resulting
solutions for the scattered fields are shown to be invariant to
coordinate transformations.

(g) The full wave solutions ar® algo shown to satisfy the reciprocity
realizability and duality relationships in electromagnetic theory.

*These second order iterative solutions account for wave scattering in

arbitrary directions.




(h) The full wave approach not only accounts for scattering and
depolarization of the radiation fields but also accounts for coupling
between the surface waves , the lateral waves ani the radiation fields.

The versatility of the full wave approach is demonstrated by
determining its relationship to earlier solutions. Thus on using a
stationary phase approach to evaluate the integrals for the scattered
fields, the full wave approach is shown to reduce to the geometric
optics solutions (Bahar,198lc). On the other hand, if the vector n
normal to the rough surface is replaced by its value at the specular
points Es, the full wave expressions for the scattered fields are showm
to reduce to the Physical Optics solutions. Thus the Physical Optics
approach is valid only if the contributions to the scattered fields
come primarily from specular points on the rough surface. Details
of this aspect of the research are given in Section 3.6.

In a survey of the technical literature one finds several different
forms of Physical Optics solutions. The discrepancies between the
different Physical Optics solutions and the appearance of the so-called
"edge effect' have been shown to be the result of premature truncation
of the closed surface integrals. Details of this research are reported
in Section 2.

If one assumes that the scale and the slopes of the rough surface
are small, it is shown that the full wave solutiona reduce to the
perturbation solutions. Details of this aspect of the research are
given in Section 3.

The Physical Optics solutions for the bsckscatterad fields become
singular for near grazing angles. Thus in this cace,‘even if the rough
surface satisfies the radii of curvature criteria (associated with

the Kirchhoff approximations of the surface fields), the Physical Optics




solutions cannot be used. This is because of near grazing angles,
the principal contributions to the backscattered fields do not come
from specular points of the rough surface. (In this case specular
points, if they existed, would be on vertical portions of the rough
: surface). It is shown that the full wave solutions for the back-
scattered fields remain valid as one approaches grazing angles

! ’ (Bahar, 1982).

1.2 Interim Technical Reports

Preprints of the following manuscripts were submitted to the
Contract Monitor and published as a U.S. Air Force Interim Technical
Report, RADC-TR-81-204, August 198l1.

Full Wave Analysis for Scattering Cross Sections

Part 1 Random Rough Surfaces
Part 2 Composite Surfaces

——
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2.0 RESOLUTION OF THE DISCREPANCIES BETWEEN DIFFERENT PHYSICAL OPTICS
SOLUTIONS POR ROUGH SURFACE SCATTERING

2.1 Background

The purpose of the analysis presented in this section is to resolve
the discrepancies between the different high frequency, Physical Optics
expressions for the scattered field derived by several researchers in
the field. The analysis also resolves the questions associated with the
"edge effect" that appears in some of the earlier solutions. It is
shown that the Physical Optics approach is only applicable for specular
point scattering and that the so-called "edge effect” which appears in
earlier derivations of the Physical Optics solution for rough surface
scattering is a result of premature truncation of the closed surface
integral expression for the scattered fields. Therefore, this term must
be suppressed even when it is not very small comparéd to the scattered
field in the off specular direction. Since the Kirchhoff approximations
for the surface fields are used in the Physical Optics approach, it
cannot account for wave diffraction by edges.

The Physical Optics solution derived here for arbitrary source
excitation is shown to satisfy reciprocity and realizability relation-
ships in electromagnetic theory. The integrand in the integral expression
for the scattered field is identified with the specific reflectance (per
unit area) of the rough surface. Although the scalar acoustic problem

is considered here in detail, the results are also applicable to

electromagnet ic scattering.

——
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The high frequency approximation of the full wave solution for
the scattered field 1s in agreement with the Physical Optics solution

derived here.

2.2 Discussion

Applying Green's theorem to problems of rough surface scattering
and using the Kirchhoff approximations for the fields on the surface,
: Physical Optics (high frequency) solutions for the scattered fields have
been derived in terms of an integral over the rough surface (Beckmann and

Spizzichino, 1963). On performing integration by parts, a boundary term

which does not depend upon the shape of the rough surface appears in the
solution. When the scattering surface is large (in terms of wavelengths), 1

this term which is identified by Beckmann as an "edge effect” is considered

\ to be very small compared to the remaining surface integral and therefore
negligible.
* Several researchers in the field have clearly demonstrated however,

that in general the so-called "edge effect" is not necessarily very
small in comparison with the remaining surface integral. It has been
suggested that the 'edge effect” . . . . "may become important when
considering scattering in directions off specular” (Fung, Moore and
Parkins 1965). Wetzel (1966) states that Beckmann's argument that the
integrated terms (edge effect) can be discarded "leads to an incorrect
Q. result for the flat surface limit and suggests a scheme to rectify the

' Furthermore, Valenzuela

. discrepancy by retaining the integrated terms.'
(1968) finds "that Beckmann's approximation in which he neglected the

'Edge effect' leads to incorrect predictions at angles away from normal ]

e ey
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incidence” and derives solutions "without neglecting the 'edge effect'

terms.” However, it is shown (Section 2.4) that when the term identified

with the "edge effect" is included, the Physical Optics solution (Beck~

mann and Spizzichino, 1963) does not satisfy the reciprocity relationship
i in electromagnetic theory.
4 In addition, a peculiar non-vanishing term appears in the expression

! ! for the scattered field even as the reflection coefficient for the rough j

: surface 18 set equal to zero. This unacceptable result becomes more
pronounced in the off specular direction.

To compound the problems one encounters with the so-called "edge

effect," Wetzel (1975) points out that the three formulations for the

scattered field derived by Eckhart (1953), Parkins (1967), Boyd-Deaven-

. port (1973) "give three different results for the scattered field." What

is not so obvious (according to Wetzel) is "why this should be.” Wetzel

goes on to suggest that "These inconsistent results, . . . must somehow
be associated with the use of the Kirchhoff approximation in the scalar

’ Helemholtz integral." All three formulations cited above are based on
the Kirchhoff approximations and the discrepancies are obvious even
before the integration by parts and the appearance of the term agsociated
with the "edge effect."

Several questions therefore need to be answered. Should the so-
called "edge effect" be included in the solution if it is not very small
compared to the scattered field? If the "edge effect" does "become
important" and is included in the solution, how can one account for the
fact that the resulting Physical Optics solution does not satisfy
reciprocity and does not vanish as the reflection coefficient becomes
! vanishingly small? How can one resolve the discrepancies in the formu-

lations by Eckart (1953), Parkins (1967) and Boyd-Deavenport (1973)
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even though all apply Kirchhoff approximations and none involve the so-
called "edge effect"?

To this end, in Section 2.3, the general form of the Physical Optics
solutién for the scattered fields is presented in terms of a closed sur-
i : face integral and an arbitrary source distribution (spherical waves
rather than plane wave excitation) is assumed. In Section 2.4 the limit-
ing forms of the Physical Optics solutions with and without the "edge

effect" are derived for plane wave excitations. Realizability and reci-

© aB e

j procity relationships in electromagnetic theory are examined and the limiting

case in which the reflection coefficient vanishes is also considered.
In Section 2.5 it is shown that the discrepancies between the different
formulations for the scattered field and the problems that arise with the

so-called "edge effect” in the Physical Optics solution is due to the pre-

—

mature truncation of the closed surface integral encountered in the appli-
cation of Green's theorem. On applying the divergence theorem (in two
dimensions), the term associated with the "edge effect" is shown to vanish

identically for all scatter directions. The integrand in the final expres-

sion derived here for the Physical Optics scattered field is identified
with the specific reflectance (per unit area) of the rough surface.
Furthermore, the integrand is not proportional to the gradient of the

! rough surface and is therefore not undefined at edges. The integration
-{f can be performed oniy over those portions of the rough surface with a
non-vanishing reflection coefficient. Shadowing effects are considered
and the distinction between the scattered field, the reflected field and

the shadow forming field are taken into account (Morse and Feshbach,

: a 1953).
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The final form for the Physical Optics scattered fisld satisfies

the reciprocity and realizability relationships. It vanishes as the
reflection coefficient vanishes at the rough surface for all incident

and scatter angles. Using the Physical Optics approach, the term asso-
ciated with the "edge effect" must be suppressed even for scattering

far off the specular direction. The Physical Optics solution which employs
a Kirchhoff approximation for the surface fields cannot account for wave
diffraction by edges.

In Appendix (2.A), it is shown that on following the analytical
procedures of Section 2.5, the Eckart, Parkins and Boyd-Deavenport solu-
tions are in agreement provided the integration is over the closed sur-
face Ab‘ Furthermore, the integrand in all the above Physical Optics
solutions (which employ the Kirchhoff approximations) are shown to be
equal at the specular (stationary phase) points.

While the '"Helmholtz Integral Equation" (2.10) (associated with
the scalar problem) is considered here ir: detail, it is interesting to
note that similar difficulties arise when the "Stratton-Chu Integral
Equation" (associated with tﬁe corresponding vector problem) is applied

to surfaces that are not closed (Barrick, 1965).

2.3 Formulation of the Problem

Consider the solution,to the scalar acoustic potential ¥(r) that
satisfies the inhomogeneous wave (Helwholtz) equation
@234 k(@) = 41 8 (D) (2.1)
in which s(r) is proportional to the acoustic source density and the

acoustic wave number is

k= we , 2.2)

i) e
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in which c, the acoustic velocity, is related to the medium density p
and elasticity A and acoustic impedance Z through the equations
(Brekhovskikh, 1960)
c = dﬁéf » 2= pc = /pX 2.3)
The acoustic pressure P and particle velocity V are
Vem-gradyp , P=~wpy (2.4)
and the boundary conditions at an interface between two media charac-
terized by c,p and S respectively are
P(r)) = P (r)) and 0'V(r) = 0¥, (r) (2.5)
in which n is the unit vector normal to the interface. Thus at r = ;s
oY = Py (2.6a)
and
0% = W, or %%-- 3;%- (2.6b)
To facilitate the solution to (2.1) considef also the Green's func-
tion G(;|;°) that satisfies the equation
@ + P)6EIF) = <4msET ) 2.7)
in which 6(;-;0) is the Dirac delta function. For an infinite medium
characterized by parameters p,c (Morse and Feshbach,1953)
ik|r-r,}] 1 (2.8)

G(EIEO) - G(EOIE) -e ==
[+)

in which an exp(-iwt) time dependence is assumed. Applying Green's
second theorem to the volume Vo bounded by the closed surface Ao

separating the two media, p,c and p,sc, one gets

J(wvzc-cvzw)dvo - § [WW 6-G¥ ¥1+3K_ (2.9)
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Thus (Morse and Feshbach,1953),
V@ =[0G )6 Jav, + & fLv D oG 1D -
AT IR TS (2.10)

in which both the source and observation point are in the volume vo and
: IK_ = -idA_ where @ is the unit normal to the surface A pointing towards
the medium in which the source and observation points are located (see
v Fig. 2.1). If medium p,c is infinite (p=p,, c-cl) the surface integral

vanishes and P(r) reduces to the incident umperturbed field wi(;)

. (Morse and Feshbach,1953). Thus

ik|r-r,|

vl - Js(Fo)-‘-—_—_—-— av_ (2.11)
r-r_|
= | ’
) 1f the source s('r'o) 1s in the vicinity of the origin
’ - - - - - - -
‘f& lr-rol = ri-ro'nr »a_ =T/r= al , |t] = et (2.12)
) the far field expression for wi is
Lo ket -nd ewl o At
i vE) = 8(7 De av_ = g@h (2.13)
, i o ) i
{ . r r
' in which the gain function g(ﬁi) depends upon the direction of the unit

! ; vector 51(6,40 pointing from the source (in the vicinity of the origin)

| to the point at r (Jordan and Balmain,1968). Since ;(51) is not a function

I of ri. the distance from the source to the field point, the far field

approximation for the incident velocity vector (), (2.4), 1s given by

- 7 e i@ o otk - DatiE Vi@ (2.16a)
T

’ - Thus for the far field

7 = 1k 2! Pi/aup = nlplsz (2.14b)

in which Z is the acoustic impedance (2.3). Expressing tha total acoustic

potential ¥ as the sum of the incident (unperturbed) and scattered
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potential Wi and w. respectively
v+t (2.15)

equation (2.10) reduces to (Morse and Feshbach 1953)

V@ - §[¢°(¥:)VOG(E %) - GEIEDV Y G I -ndA, (2.16a)
and
0= z%-§f¢‘(F:>V°G<FIE;> - GEIEDV Y EDH ) ndA (2.16b)

The Kirchhoff (Physical Optics) approximations for w(;:) and Vow(r:) are
VED = @+ RWHED L T NED = uata - vt ED (2.17)

in which R(.-x.xi'a) is the acoustic reflection coefficient at a flat inter-
face between medium p,c (where the incident wave originates) and medium
Dl,cl (Brekhovskikh,1960; Ishimaru,1978). Substituting the far field
approximation for VOG(;|;§) in (2.10) the Kirchhoff approximation for

the scattered acoustic potential is

Vi@ = - 7"‘-:% §[ a+a! - (1-n)ﬁi]wi(1?:)c(¥ ]Ez)-EdAo

-

4 (=~ g explik(r +r§)]
= ZF'§ Men g(n™) ‘ri 3 dAo (2.18)

s}

8 8
in which r: and ri are distances from a point on the surface Ao and the
source and observation points respectively,
- - = = =i -f - - -
and M=Rv-p, prk(n™+n) = P 3, + pyay + P8,

-4 -f _ - _ (2.19)
vek(n™-n ) *»va +va +va
x x Yy 2z
The results of the analysis for the non-depolarized scattered electro-
magnetic field is the same as (2.18) with the exception that the acoustic
reflection coefficient is replaced by the Fresnel reflection coefficients
for horizonatally and vertically polarized waves (Beckmann and Spizzi-

chino,1963).
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2.4 The Physical Optics Solution and the So-Called "Edge Effect"

In order to apply Green's theorem (2.9) to surfaces that are not
closed, Beclkmann and Spizzichino (1963) suggest that "ome may regard
the rough surface S as part of any closed surface S' of which only §
has a non-vanishing reflection coefficient, the remaining integral

over S'~S is then easily shown to vanish so that there is no need to

introduce the surface S'".

Furthermore Beckmann assumes that the surface § is such that the
distances r: and r§ from the source and the observation points to points
on the surface S are much larger than distances between two points on
the rough surface. In this case it is convenient to define a new coordinate
system ;s(xs,ys,zs) associated with the surface S whose origin is shifted

X from the original coordinate system r(x,y,z) such that

- - -
r(x,y,z) = r + r (x.,y,,2,) (2.20a)
The surface S is defined by
f(xs,ys,zs) =z - C(xs,ys) =0, =X < x, < X,-Y < Vg < Y (2.20b)
’ In (2.20) t: i1s the constant vector joining the origins of the two

coordinate systems and z = 0 is the mean plane of the surface S, thus

J;(xs,ys)dxsdy8 =0 (2.21)
In this case for pgints on the surface S,Ei and Ef are constant and
ri = ri + Si'; rf = rf -ner (2.22)
8 o 8 8 o s

The distances from the source and observation point to the origin of
the new coordinate system are r: and rg respectively. (see Fig. 2.2).

Thus for points on the surface S, the incident field wi(;:) is

i
{ -g -1 eikro 1k51°;3 i 1kn1'rB
! V() = gln?) e =E e (2.23)
. o ri ()
o
i b
T T/ h o - i TR TS REYXE =% Nk
" R~ ¢ W ———m e e = --—.-—-—-3——”12 : N
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Figure 2.2 The scattered field from a rough surface.
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For a uniform plane wave excitation assumed by Beclkmann and Spizzichino
(1963) g(ﬁi) is assumed to be constant and
i
E = 1 (2.24)

The unit vector E normal to S is

nave/lvel - - 32E a4 08D% ¢ 87 41T @25

and
dA_ = dx dy_/n°a = dxsdys]VfI (2.26)
Thus subject to all the assumptions made by Beckmann the scattered field

(2.18) reduces to (Beckmann and Spizzichino,1963; Ishimaru, 1978)

ikrf - =
8 - te ° (- 1v.rs
Vv (r) = 7 MVfe dx dy (2.27)
4n s
4
o §
where the integration is over the open surface S which has a non-vanishing

reflection coefficient. For a flat surface normal to the unit vector

n =n.8& + noyay + n .8, (2.28a)
- - Ho-rs Pox’s + nqx?s
n °x = o, f(zs) - -~z + - (2.28b)
oz 0z

the scattered wave is given by

st
8 - ie =, _ -
wc_o(r) = 4nrf MeVE4XY sinc[(vx v, nox/noz)x]sinc[(vy v, noylnoz)Y]
° (2.29)

in which sinca = (sina)/a, and

n
MeVf = (RV - 5)-—;;3
[¢} 1

(2.30)

For rough surfaces Beckmann obtains on assuming R = const. and on integrating

by parts

tkr == ==Y

o - - iver M iver

Vo) = 28 . [ile e ° dx dy + 1 %J[e ’] dx
4nr z z
=Y
M 1'v'-'s X

i le dy (2.31)

z -X

. --;-».é»i"-ﬂ-"uéf,’ﬂt"’?iﬂ-‘ ¥

—— . —
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Using the full wave approach (Bahar,198la), it can be shown that
for high frequencies R in (2.31) must be evaluated st the specular point
where n = v/v.

The last two terms in (2.31) which do not depend on the shape of the
surface are identified by Beckmann as an "edge effect." These terms are
considered to be very small compared to the first term in (2.31) and

therefore negligible (Beckmann and Spizzichino,1963). Since

= = 2 R(v2+ v2+ vz)
X y 2z

Mey - Rv - (2.32)
: v v v
i z z z
the scattered field without the "edge effect" is given by
£
8 ,= ieikro sz i‘-"Es
P (r) = 5 V| clx’clys (2.33)
4nr
° s

On applying (2.33) to flat surfaces (2.28) one gets

’ 1kr§ 2
s - ie Rv -
w;_o(r) - *‘z;:f [ vz] 4XYsinc[(vx-vznox/noz)xjsincL(vy-vznoy/noz)Y] (2.34)

i The results for scattering by flat surfaces of area A (2.29)(which con-
tains the "edge effect") and (2.34) (which does not contain the "edge
effect") are now compared in detail. For scattering in the specular

direction with respect to the plane ao‘;s = 0 (2.28).

—f -1
no=n C ot viv , vm= lvl (2.35a)
n -n

- — 2 2
MeVf = ~(Rv-p) v/vnoz = -Rv /vnoz RV /vz (2.35b)

Thus for the specular case the "edge effect” vanigshes and the two solu-

tions (2.29) and (2.34) are identical. The specularly scattered field

from the flat surface Eo-i‘ e 0 (2.28) is




[,

ikrg
8 - ike
wspec(r) Z rf R cosﬁs A (2.36)
o

in which R is the reflection coefficient for a wave incident at the
angle 68 upon the surface ;o.;a = 0. Since 4 XY 1is the projection of

the surface E°°fs = 0 on the xy plane, the area of this surface is

a-X X (2.37)
nea oz
and z
v+*2kcos8 , v +vn (2.38)
s z z

in which es is the angle of incidence and scatter for a specularly
oriented surface, ;o - Hos’ (2.35a). Thus, the Physical Optics solu-
tions (2.29) and (2.34) for specular scattering by a plane of arbitrary
slope satisfy the realizability relationship in electromagnetic theory.
In the general case however, they could differ very significantly. To
test these solutions for reciprocity interchange the location of trans-—
mitter and receiver. This amounts to the following substitutions in
(2.27) and (2.33)

R O A (2.39)
Clearly therefore (2.33) satisfies reciprocity while (2.27) does not.
Furthermore on setting R + 0 solution (2.33) vanishes, as mst be the

case for a non-reflecting surface. However, on setting R + 0 the solu-

tion (2.27) which includes the so-called "edge effect” reduces to

tkef - -
..~ -ie o - iv'rs
Y (r) = p*Vf e dxsdy’ (2.40)
bﬂro
S
On integrating over the surface ;o';s = 0 (2.40) becomes
thef
] - -ie ° -] -f - / x] [ )Y]
wc_o(r) - bnrf (n"4n") n A sinc[(vx—vznox “oz) sinc (vy-vznoy,“oz
° ' (2.41)
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The above expression vanishes only for backscatter (i = -nl) or the

specular case in which Eo - 503 (2.35a) and

-l ﬁf)-;m3 =k¥.o (2.42)

Thus while the "edge effect" is not neglected in (2.27), this Physical

1 Optics solution for the scattered field does not satisfy reciprocity nor
does it vanish for the non-specular case as the reflection coefficient

| becomes vanishingly small. On the other hand the Physical Optics solution

} (2.33) without the term associated with the "edge effect" satisfies the

i reciprocity relationship (2.39) and vanishes as R + 0. It also satisfies
the realizability relationship (2.36). However, it has been shown that i
in general the so-called "edge term" is not necessarily very small in

comparison to the first term in (2.31) which corresponds to the solution

(2.33) (Fung, Moore and Parkins,1965). In these cases it has been suggested

that "the 'edge effect' . . . may become important when considering
scattering in directions far off specular". Yet it has been shown here
a that on retaining the "edge effect", the Physical Optics solution does

! not satisfy reciprocity and results in a peculiar non-vanishing scattered

} field for the non-specular direction (2.41).
The questions that need to be resolved therefore, are whether the ﬁ
"edge effect" should be suppressed only when it can be demonstrated that
it is relatively small compared to the scattered field and if i: needs
to be included in the solution when it is not relatively small, how does
one account for the fact that the resulting solution (2.27) does not |

asatisfy reciprocity and does not vanish as the reflection coefficient

Y

becomes vanishingly small?
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2.5 Evaluation of the Closed Surface Integral for the Scattered Field

In order to resolve the questions raised in Section 2.4, we examine
3 _ the suggestion that '"one may regard the rough surface S as part of any
'closed surface S' of which only S has a non-vanishing reflection
coefficient, the remaining integral over S'-S is then easily shown to
vanish 8o that there is no need to introduce the surface S'". To this
end, the starting point of our present analysis is the "closed surface"
integral (2.18) in which the vectors M,v and 5 a8 well as the distances
ri and ri are functions of position on the surface Ao (spherical waves).

Divide the closed surface Ao into two parts S1 and 82 and let the

equation for the surfaces 5 and 52 be (see Fig. 2.1)

fl(v,y,z) -z - Cl(x,y) =0 (2.43)
) and
y £,(x,y,2) =z - g,(x,y) = 0 (2.44)
respectively, such that on Sl, ;';z > 0 and on 82, E'Ez < 0 and on the
' common closed line boundary C, a-;z = 0.

Thus -
i [Vfl n*a_ > 0
ndAo - dxedys

I-sz na, < 0 (2.45)
where n is the inward normal to the closed surface Ab and

£, (x,y,2) = £,(x,y,2) on C (n-a, = 0) (2.46)
Assume that the reflection coefficient R does not vary rapidly over the
surface Ao (1.e., ignore scattering due to changes in the reflection
coefficient) and assume that the surface Ao is not excited by the source

at grazing angles such that

[g(ﬁi)vzl < K, K positive real const. (2.47)

Thus retaining only the far field terms it can be shown that
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i v. (Hg(n )exp 1k(r 1y r )lr. s V,) = v F

=i Fe(v -Vsz) (2.48)
in which
:- [x + y + Cz(x Y, )Jl’ (2.49a)
and
R L R LR N (R (2.49b)

and f and [ are defined in (2.43). Denoting the value of ¥ (2.48) on 5,
and S, by il and fz respectively and using the divergence theorem in

two dimensions, it follows that since il - fz on C

JV'(FI— Fz)dxady. - § (Fl- F2)°(a‘dy'- aydx') = 0

- iJ[Fl-(v-szf)l - F2°(v -szf)Z]dx.dys (2.50)
In view of (2.45), (2.50) reduces to

-- _—o = -.- - 8=
j[Fl szVfl F2 vz2V£2]dxsdys E § v, F ndAo ¥ (r)

= J[ (f-;)l - (F'°§7)2:)dx’dya (2.51)
and since Mev = (Rv -;)-; - sz, {2.18) reduces to
2 [tk(r +r )]
Ws(;) = J l:::: g(ni)exp —-————i——f———-]dx dy (2.52)
z r . 2

Thus the above expression does not contain the term associated with the
"edge effect." The integrand in (2.52) corresponds to the specularly
reflected wave from an elementary surface of area

= dx dys/no az (2.53)
Thus the integrand of (2.52) is the contribution to the scattered field
from an elementary surface and may be regarded as proportional to the
"specific reflectance."” 1In (2.52) instead of integrating over the closed
surface Ab one may integrate only over the surface S for which R ¢ 0.
Furthermore, if the distances from the source and observation points

to points on the surface are very large compared to distances between

any two points on the surface S, n> and n' can be assumed to be constant

R M AR %

.
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(gee Section 2.4) and (2.52) reduces to

_ 2 - [ik(ri+ rf)J
v - tfnv, g(ni)exp—-—ﬁi’—- exp(iver Jdx dy  (2.54)
z r’r
o o s

Thus the terms identified with the "edge effect" (2.31) should be
suppressed even when they are not relatively small. (Beckmann and
Spizzichino,1963).
It should be noted that the above expression was derived under
the assumption that Ig(ﬁi)/vzl < K (2.47). Thus (2.53) cannot be used
for excitation at grazing angles. For grazing angles, the Physical Optics
approach is not valid and a spectral approach must be used (Bahar,1981a).
To account for shadowing in the high frequency limit one should note
that ws = -wi on the shadow boundary since the total field ¢ = wi+ wf
vanishes. Furthermore, when the observation point is in the shadow region,
the scattered field consists of the "reflected wave" wR and the "shadow-

forming" wave (Morse and Feshbach,1953).

2.6 Concluding Remarks

It is shown here that the discrepancies between the different
formulations for the scattered field and the problems associated with
the so-called "edge effect” in the Physical Optics solution are due to
the premature truncation of the closed surface integral expression for
the scattered fields. On applying the divergence theorem (in two dimensions)
to the closed surface integral (Section 2.5), the term identified as the
"edge effect”" is shown to vanish identically for all scatter directioms.
Thus using the Physical Optics approach (which cannot account for wave
diffraction by edges), the so-called "edge effect" term must be sur-

pressed even when it is not very small compared tc the scattered field.
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As a result the final form for the Physical Optics solutiomn (2.52)

satisfies reciprocity and the realizability relationships and it can be

used for arbitrary excitation. The integrand in (2.52) is identified

with the "specific reflectance” (per unit area) and it vanishes as the

reflection coefficient for the rough surface vanishes.
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2,A Appendix

For the convenience of the reader, the formulations for the scattered
fields derived by Eckart (1953), Parkins (1967) and Boyd-Deavenport (1973) .
are summarized here for the Direchlet condition and point source excita-

tion (s(r) = §(r) (2.1)). Thus on substituting

} sl
| VED = v ED + VR ED = 0, VIS - & . ®+ 1) (24.1)
8
and the Kirchhoff approximation
o . 20, %° ., 3—“’—1-] * 21k aten pLED) (24.2)
an ;s = n'n ro .

| 1
i {3n = on an
. [¢]
|

into (2.10), and on replacing the closed surface A.o by the open surface S

j one obtains Parkins formulation

ikr:
8§~y ik | ~1 - {1.,-8 e
V) =3 j nen U(r ) - ds (24.3)
s
i If on the other hand (2A.1) and (2A.2) are substituted into (2.16a), one
i » obtains Eckart's formulation
it
s,- ~-ik =i -f - 1=
v (r) = '—l;ij (n"-n" )*n Y (r:) 'e—r-f— ds (2A.4)

Boyd and Deavenport assume that the Green's function G(;l;o) satisfies

(2.7) as well as the boundary conditions (2A.1) and (2A.2) at S. Thus
using (2.16a) as the starting point and substituting G(;];:) =0,
accil;:)/an » 21k Bt em G(;l;:) one obtains the Boyd-Deavenport formulation:

Vo) = ik J' afen ti(?:) -‘—-?- ds (2A.5)

X
8

The three formulations (2A.3), (2A.4) and (2A.5) will obviously give

' ‘ different results except for backscatter Ef- -51. Note also that in all
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the above formulations the integrands are equal at the specular (stationary

phase) points where n = aos (2.35a) and

- -, =
(n"-n")'n -f -1
o8 _ ~1- _=f~ _1-n-n

3 n nos n LI _l',_'f-_—_;i— (2A.6)

: Thus the above three physical optics formulations (2A.3), (2A.4) and
(2A.5) can be shown to be in agreement, provided that the respective
integrals are evaluated using the stationary phase method (Bahar,K 198la).
However, the discrepancies between the above three formulations increases
as non-specular scattering becomes more important. When the most signifi- 4
cant contributions to the scattered fields do not come from specular i
points (as in the case of backscatter near grazing incidence) the Physical ¢
Optics or Kirchhoff approximations are not valid and other methods must

[ be used to determine the scattered fields (Bahar,198la).

In Section 2.5, it is shown that either (2.10) or (2.16a) can be used

i for the starting point of the analysis provided that integration is over

’ the closed surface Ao. Thus on following the analytical procedures of

i Section 2.4 and noting that %
§

-1 -f = 2 '

lmi-; - _k;f.; - ES._E_“_.LX - ."7 - kz(l_;f_.ni) (2A.7) &

all the above three formulations can be shown to reduce to (2.5) with

R = -1 and g(a’) = 1 prov'ded that in (2A.3), (2A.4) and (2A.5), the

integration is over the closed surface Ao.
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3.0 DEPOLARIZATION OF THE SCATTERED RADIATION FIELDS BY CONDUCTING
OBJECTS OF IRREGULAR SHAPE ABOVE ROUGH LAND AND SEA-—FULL WAVE .
SOLUTIONS

3.1 Background E

In this section the full wave approach to problems of scattering
by rough surfaces has been applied to the problem of depolarization of
the scattered radiation fields by objects of finite conductivity and
irregular shape. In the analysis complete expansions are employed,
exact boundary conditions are imposed and a variable coordinate system

that conforms with the local features of the irregular surface is used.

The full wave solutions are expressed in forms that can be readily com-
pared with earlier solutions and they can be used to reconcile the
differences and bridge the wide gap between these solutions. Thus, the
full wave solutions for the backscatter cross-section are shown to
reduce to the Physical Optics solutions when the high frequency,
stationary phase approximations are used, Similarly, for slightly
rough surfaces the full wave expressions reduce to the perturbational
solutions for the backscatter cross~section,

The full wave solutions are shown to be consistent with the duality
reciprocity and realizability relationships in electromagnetic theory.
These solutions are invariant to coordinate transformations. Since
upward and downward scattering are considered in the analysis, multiple
scattering and shadowing effects can be taken into account in a self-
consistent manner. Thus, the total scattered field, varies continuously

as the observer moves acruss a shadow boundary and there is no need to
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introduce transition terms derived from other theories. The full wave

approach can be applied to deterministic, periodic rough surfaces. It
can also be used to determine the scattering by finite scatterers in
the presence of rough land or sea.

Scattering by random rough surfaces is dealt with in detail in Sec-
tion 3.5. The determfristic scattering problem considered here in

detail provides the basis for such an analysis.

3.2 Discussion

In this paper, the full wave approach has been applied to the
problem of depolarization of the scattered radiation fields by objects
of finite conductivity and irregular shape. Since the full wave approach
(Bahar ,1981a) can account for multiple scattering, the irregularly shaped
objects may be in the vicinity of rough land and sea. Thus these solutions
could also be used to distinguish between the radar returns from the
: irregularly shaped object and the clutter from rough surfaces in the
background.
i The principal elements of the full wave approach are as follows:
(Bahar /198la) Complete expansions of the electromagnetic fields are
employed. Thus, the electric and magnetic fields are expressed in terms
of the radiation term as well as the lateral wave and the surface wave
terms. Since in general the irregularly shaped objects and rough surfaces
depolarize the incident waves, the complete expansions include both
vertically and horizontally polarized waves (Bahar,1973a). Exact boundary
conditions for the total fields are imposed at the irregularly shaped
surfaces. Furthermore, the medium is characterized by the electromagnetic

parameters, € and ¥ (which may vary along the propagation path) and it
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is not necessary to employ approximate impedance boundary conditions
(Bahar and Rajan,1979). Precise mathematical procedures are used in
the analysis. Since the characteristic functions used in the complete
field expansions do not individually satisfy the boundary conditions at
the irregular surfaces, in general the field expansions do not converge
uniformly on the boundaries. Thus, for example in order to avoid term-
by-term differentiation of the field expansions, use is made of Green's
theorems (Bahar,1973b). Maxwell's equations for the transverse compon-
ents of the electric and magnetic fields are converted into a rigorous
set of generalized telegraphists' equations for the forward and back-
ward traveling wave amplitudes. These first order, ordinary, coupled
differential equations can be solved using numerical or analytical
techniques (Bahar,1973b). The solutions for the coupled wave amplitudes
are substituted into the complete field expansions and the steepest
descent method is used to obtain the expressions for the scattered
radiation fields (Bahar,198la). A variable coordinate system that
conforms with the local features of the irregular boundary is used to
remove the restrictions on the gradient of the irregular boundary (Bahar,
1980). (See Appendix 3.A)

The principal advantages of the full wave approach are as follows:
The full wave solutions are valid for all incident and scatter angles
including grazing angles, Brewster angles, scattering in the specular
direction and backscatter. Since upward and downward scattering are
considered in the full wave analysis, multiple scattering and shadowing
effects can be taken into account in a self-consistent manner. Moreover,

the total scattered fields vary continuously as the observer moves across

a shadow boundary and there is no need to introducea transition terms
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derived from other theories. Since exact boundary conditions are imposed
in the analysis and there are no restrictions on the gradient of the rough
surface, it is not necessary to characterize the rough surface by an
approximate impedance boundary. Furthermore, since precise mathematical
procedures are followed in the derivation of the generalized telegraphists’
equations, the full wave approach can be used even when the characteristic

functions, used in the complete expansions, do not individually satisfy

the boundary conditions at the irregular surfaces. The full wave solutions
are shown to be consistent with duality, reciprocity and realizability
relations in electromagnetic theory. They account for coupling between
the radiation fields, the lateral waves and the surface wave terms of

the complete field expansiens (Bahar, 1977). The full wave solutions

are valid from low frequencies up to optical frequencies provided that

the illuminated surface is at least several wavelengths wide. They can
be expressed in a form that can be readily compared with earlier solutions
that have limited applications. Thus these solutions can be used by

the engineer who is not necessarily familiar with the analytical tech-
niques used in the derivations. Furthermore, the full wave approach

can be used to resolve the discrepanéiea that exist between earlier solu-
tions. Thus the perturbations solutions (Rice, 1951; Barrick, 1970),

can be reconciled with the corresponding Physical Optics solutions
(Beclmann and Spizzichino, 1963; Beckmann, 1968). The full wave approach
can be applied to deterministic, periodic and random rough surfaces.

These solutions are invariant to coordinate transformations and they

can be applied to problems of scattering by irregularly shape. sbjects

of finite conductivity as well as to problems of scattering by rough

land and sea.
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In Section 3.3, the problem is formulated and the principal
elements of the full wave approach are summarized. In Section 3.4, the
full wave solutions are presented for the scattered radiation fields by
irregular objects in the vicinity of rough land‘or sea. In this section
the effects of shadowing and multiple séattering are aécoﬁnted for. In
Section 3.5 the invariance properties of the full wave solutions as
well as the duality and reciprocity relationships are examined in detail.
In Section 3.6 the stationary phase approach is used to obtain the high
frequency approximations of the full wave solutions. These solutions
are compared with earlier Physical Optics solutions that are based on
the Kirchhoff approach. In Section 3.7 realizability is examined and
energy conservation 1s shown to be satisfied. The full wave expressions
for the backscatter cross—sections are derived and they are shown to
be in agreement with the corresponding perturbational solutions if the
gradient of the rough surface is assumed to be small. Thus, the
discrepancies between the perturbational and the Physical Optics solu-
tions are resolved and the wide gap that exists between them is bridged
by the full wave solutions. In Section 3.8 the full wave solutions are
applied to grazing, specular and Brewster angles. Thus, if at grazing
angles, stationary phase points do not exist on the rough surface, the
Physical Optics solutions fail even at very high frequencies. Special

forms of the full wave solutions are given for good conducting boundaries.

3.3 Formulation of the Problem

To determine the reflection and transmission of electromagnetic
waves at the interface between two isotropic media characterized by
different permittivities, €, and permeabilities, L, it is necessary to

decompose the incident (unperturbed) electromagnetic radiation (far)
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fields into vertically and horizontally polarized waves. When the

interface is a plane normal to the unit vector ;y for instance, the
plane of incidence for a wave traveling in the direction Ei is defined

as the plane normal to the unit vector ;Hi’ where

[ ]

L S -1 =
Hi (n"x ay)/]n x ay' (3.1
Since the radiation fields are normal to Hi, the incident electric

fields can be expressed in terms of the orthogonal pairs of unit

vectors aui and aVi as follows:
=i Vi - Hi -
E E 8y, + E ayy 3.2)
where _ - -
ay, = anix n (3.3)

The corresponding magnetic field components for the vertically and
horizontally polarized waves are

HVi EVi

1
#) T [

in which n = (p/E)k is the intrinsic impedance. Thus

z ¢l/n (3.4)

S oVi- | Hi - -1
H (¢: av1+ H aHi) xn (3.5)

When the boundary between the two media is irregular, as in the case
of a rough surface f(x,y,z) = 0, it is convenient to decompose the
radiation fields into vertically and horizontally polarized components
Ezi and Egi with respect to the "local tangent plane."” This plane is
perpendicular to the varying unit vector n which is the outward normal
from the scattering object (see Fig. 3.1). Thus in this case the
incident radiation fields are expressed as

=1 Vi =n Hi -n
E = En ay, + En ay, (3.6)
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where

o, = @ a/|EkR| (3.7)

The relationship between the respective components of the vertically

? and horizontally polarized waves is

Vi i \") :
y in _ {™n 1/ S, S |
) G = - = T G 'y (3.9)
: EHi i . ij{_Hi
; n -Sw Cw E
i where Gi is defined in (3.4) and C$ and S$ are the cosine and sine of

-n
Hi and ayy” Thus

C$ and S$ are expressed in terms of the dot and scalar triple products,

the angle between the planes of incidence normal to a

i 1 _=- .-n 1_ 1 _[z -n o
Cw cosy” = ayyaug and Sw siny [‘_Bl‘lialli n] (3.10)
Since the matrix Ti in (3.9) is Hermetian
T -
‘ ahHT = @hH? (3.11)

The invariance of the vector E in (3.2) and (3.7) requires that

-n -
i vy 4| 7vi
1 o | T - (3.12)
' Hi Hi

In a similar manner the radiation field if, scattered in the direction
ﬁf can be expressed in terms of vertically and horizontally polarized
components with respect to the reference plane normal to ;y or with
respect to the plane normal to n. Thus

l =f VE = - VE -n -n
- E = E ay + Eaf aye = En aye + ng aye (3.13)

The relation-aip between the respective components of the vertically

and horizontally polarized waves is

vE £ £) (. ve
E C =S E
. of = - | ¥ W n ]z of i (3.14)
Eﬂf Sf Cf Enf
¥ n

T T S T [ .. 3 ~a g
Sl e N s T .
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in which Ci and S; are the cosines and sines of the angles between the

planes of scatter normal to 2Hf and.;;f. The expressions for the unit

vectors EV£’ ;Hf’ ;3f and i;f as well as for c; and ﬁ; are obtained

from the above expressions for ;Vi' ;Hi’ :31. :;1. C$ and si on

replacing ﬁi with Ef.
The full wave expression for the radiation field acattered by an
elementary area dA normal to the unit vector m can be expressed in matrix

form as follows, (see Fig. 3.1, Bahar, 198la).

dct ¢ cihrfr @™, 211! explax G- 7). 14k 5 6

G, dc@f,abyel (3.15)

The constant G is given by
f f
G, -iko exp[-ikor 1/27r (3.16)

in which ko - w(uoeo)li is the free space wave number, Y, and €, are the
free space permeability and permittivity respectively, and rf is the
distance from the origin to the observation point. The assumed exp(iwt)
time dependence is factored throughout this work. The transformation

£

matrices '1‘i and T® are defined in (3.10) and (3.14). The elementary

area dA is given by

dA = n dx az/<a-;y> (3.17)
and the matrix Gi for the incident fields (3.4) depends upon the
excitation. Thus for electric and magnetic dipoles oriented in the ;y
direction (Bahar and Rajan, 1979)
Pe py 3k sinei exp[-ikb r1] NgJds PV

= B = n H =
° amet

Pi

G
M, P=H (3.18)

in which r1 is the distance from the dipoles to the origin and J (Amp-
meters) and M (Volt-meters) are the electric and magnetic dipole moments.

The angle 9: is the angle of incidence in medium O with respect to the

—
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reference plane normal to Ey. Thus, (see Fig. 3.1)
cosB: = C: = -Ei‘zy (3.19)
The angle ei“ is the angle of incidence with respect to local tangent
plane normal to n. Thus (see Fig. 3.1 and Appendix 3.A)
cos6.® = ¢ = 713 (3.20)

In (3.15), ;s is the position vector from the origin to the elementary

area dA on the boundary of the scatterer. The surface of the scatterer

is given by - -
y—hl(x,z) » n~ay >0
f(x’y,z) =0 = - -
y-hz(x,z) , nra <0 (3.21a)
y -
Thus
ro=xa + h(x,z)ay +tza =1+ f(x,y,z)ay (3.21b)

The unit vector n is the outward normal from the scatterer. Thus

n =+ V£/|Vf| = siny cosé ;x + cosy ;y + siny siné a,
- - - 2 2. %

[ hoa + 8y - h, az]/(hx +1+h) (3.22a)
in which the upper and lower signs are used for surfaces yshl or y-h2
respectively and

hx = 3h/3x and h = oh/oz (3.22b)

The scatterer is characterized by the complex permittivity and
permeability € and ul respectively. For simplicity in this paper the
scatterer is assumed to be opaque, therefore transmission through the
scattering object is neglected. The unit vectors 51 and Ef in the
directions of the incident and scattered waves respectively, can be

expressed as follows in terms of the reference coordinate system

=1 a1 i- i- i i-
n sind cosp” a - cosb a, + sin@  sind” a, (3.23)

poe e REd »é(df;é-aﬁ:"g —
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and

~f f f - f - f f -
n = sineo cosd a + coseo ay + .1ne° sing a, (3.24)

The elements FPQ of the 2x2 scattering matrix F(Efn,ﬁin). (3.15) are

given by (Bahar, 1981a).

in_fn in_£fn
C1 C1 S

) (1-1/e )+ 1-u cos (674" ]

in in, ,.fn fn, ,.in .fn
(Co *nrcl )(co +nrcl )(Co +C° )

co.(¢fn_¢1n)_s

in _fn
2T ¢ [u
c:nFVV_ o o T [

(3.25a)

2627 eI cos (47°-41™)-51"1™) (1-1/m )+ (1-¢_)cos (677-41)]

inFHH
C -
£
° (e ) (cfP4elm ) (ciPcl®)
(3.25b)
oy sin(¢f“-¢1“)2c:“c§“n [(1-1/er)c;“-(1-1/ur)cf“]
¢ F - n n 'f : — (3.25¢)
o] n n n n n n
c2%n 1) (cfPac/m ) (ciPact)
£ 1 £
10 E sin(é “-¢1“)2co“c§“nr[(1-1/ur)c§“-(1-1/er)cl“]
C Pr—
o in _in fn fn in . fn (3.25d)
(Co +Cl /nr)(co +nrcl )(Co +Co )

- X
In which the dimensionless quantities D, N €, and M, are n, (elulleouo) s

Ny = M/n,s €, =g /e and u~ oy fu .

The sines of the angles ei“ and ef“ for medium 1 are given by Snell's law
in in _ .in fn _ fn _ fn
S1 sinel S° /nr, S1 sinel So /nt (3.26)

Thus

fn

. cosef“ - [1_(an)2]k (3.27)

in _ in _ ry_¢cin,2 )

Furthermore, the angle between the local plane of incidence and the

local scatter plane is given by

con (¢ 4" = ayeay = C:nczn-:§2i2j§83 con 45 (3.28)
.nd [+ o
sin(p™"™™ = (B, 30 3] - tsiny(c:siain(¢f-6)-c§s:sin(¢i-a)}
+ cosy s° s sin(e®41) /st (3.29)

S LY e
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3.4 Full Wave Solutions for the Scattered Radiation Fields—-Effects of

Shadowing and Multiple Scatter

The total scattered radiation fields are obtained by integrating
the expression for the differential scattered field (3.15) over the
surface of the scatterer which is both illuminated and viasible at the
observation point. All four elements of the scattering matrix Czn F,

in (3.25) vanish as

ci“ - -nlnap . 93“ + % /2 (3.30a)
or fn

carfi-0 L0t (3.30b)
Thus, the scattered radiation fields vanish in a continuous manner
as the obseryer moves across the shadow boundary. In the shadow regions
however, the total electromagnetic fields do not vanish since the complete
expansions of the fields constitute the radiation term as well as the
lateral and surface wave terms (Bahar, 1973a,b, 1977, 1978).
The nonilluminated (shadow) boundary is determined by points on

the scatterer ;s - ;:l that satisfy (see Fig. 3.1)

Ei-ﬁ(iil) - gi(xil,zil) -0 (3.31a)

Thus substituting (3.22) and (3.23) into (3.31a), the boundary of the

nonilluminated region is given by

tand[n} cosp? + hy sing') = -1 (3.31b)
where
i -1 i -1
h.x hx(rsl) and hz hz(ryl) (3.31c¢)

This nonilluminated region extends to points on the scatterer, Fs - ;tZ

that satisfy

R B
(r’2 - r.l)-n(ral) =0 (3.32a)
Thus
i i i i i i i i
h2 - h1 - (x.2 - xal)hx + (zsz - z‘l)hz (3.32b)

- — o ‘c""'_fﬁﬁ?‘,&"i}’g“}u‘,g .
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where

1, =1 1_ ..z
hy = h(F,;) » by = h(r,,) (3.32¢)

Similarly the region of the scatterer which is nonvisible to the observer

extends from points on the scatterer where ;. - ;il to points where

-f = =f
r, " Tae The loci of L, =Ty is given by

-f - -f £,f ¢
‘ n ~n(r'1) 8 (xsl.zsl) = 0 (3.33a)
Thus )
:.nei[h: cospt + h: sing’] = 1 (3.33b)
where
£, (f £ f -f
hx hx(ral) R hz- hz(rsl) (3.33c)
- -f
The loci of L Te2 is given by
~f  =f  =-f
(r82 - tsl) n(rsl) 0 (3.34a)
Thus :
f f f f £ £ £ f
h2 - h1 (xs2 - xsl)hx + (zsz - zal)hz (3.34b)
where
h{ - h(ril) , h§ - h(riz) (3.34¢)

Define the shadow function D(fs) such that
- 1 , illuminated and visible region
D(rs) ) 10 , nonilluminated or nonvisible region (3.35)
where the nonilluminated region is defined by (3.31) and (3.32) while
the nonvisible region is defined by (3.33) and (3.34). Thus using (3.15)
total scattered radiation field is given in matrix form by
of - coj ci”rfy Tt exy(iko(if - ah 1, oG Dak 5 ¢t
A .
= 6, ¢’ ,ahet (3.36)
in which the matrix T'F T s given by

ci(rvvci-rv“si)-s;(r”vc;-rnns;) Cf (¢ Vst e ) -5 (P s 4 s,)

£ o v Sy WSy
“lf,vwi Vi i f 1 WH 41, £, VV. i VH 1 .f 1 i
5, (F' G ¥ sw)+c¢(r“vcw-r 8) Sp(F Sy cw)+cw(ruvsw+r““cw{
(3.37)
e ‘ 1?’ - ' N "1;‘3i§£:;;£a%w§5* . o
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For elements of the scattering surface where n, Ei and Ef are coplanar

-f =1 - VH

([a® ' n] = 0), the cross-polarization terms F'® and F'V vanish. If in

addition Ef,ﬁi,ﬁ and ;y are coplanar and S; = S$ = 0, the matrix Tf F '1‘i

becomes diagonal and the cross-polarization terms CVH and CHv vanish

(Bahar, 1980). Note however, that FPQ#O and CPQ#O for P#Q even if

sin(T-¢1) = 0. :

The integrand in (3.36) is finite as long as the area of the scattering
surface (A = sz-ﬁ) is finite. Thus the expression (3.36) is valid even as
(E-Ey) = cosy > 0 in (3.17).

Since the full wave analysis accounts for upward and downward
scattering with respect to the reference plane, it can also be used to ;
determine the radiation fields due to multiple scattering. Thus, if the
distance between regions of the scatterer (or scatterers) that contribute
to multiple scattering is sufficiently large to justify far field
techniques (steepest descent or stationary phase methods), the radiation

field initially scattered in the direction ﬁf is regarded as the incident

field in the evaluation of the multiply scattered field (see Fig. 3.2). 5
Note that while the shadow function Ds(;s) = Q or 1 (3.35), the ;

elements of the scattering matrix F vanish in a continuous manner as

the observer enters the shadow region (3.31) and the total radiation

field Gf, (3.36) ,varies continuously as observer moves across the shadow

boundary.

3.5 Invariance Properties of the Full Wave Solutions and the Duality and

Reciprocity Relationships

In order to show that the full wave solution for the scattered
radiation field is invariant to coordinate transformation, the different

coefficients appearing in (3.36) are examined in groups. The incremental 4
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surface area of the scatterer is dA = dA.n, (3.17). It is obviously
invariant to coordinate transformation.
In the far field the distance from the source to points on the
surface of the scatterer is
Iri-i + ;sl - ri + ;s-ﬁ

1 (3.38a)

iG1 exp[-iko 51-58] is the expression for the incident

Thus T
(unperturbed) far field at the surface of the scatterer decomposed into
vertically and horizontally polarized components with respect to the
local tangent plane. (See Appendix 3.A) It 1is invariant to coordinate
transformation in view of (3.12).

Similarly, the distance from points on the surface of the scatterer
to the observation point in the far field is

£ 5f - )= - Ry (3.38b)
Thus the expression G_ exp[iko af-;s] is also invariant to coordinate
transformation.

Since the expressions for C;n FPQ (3.25) depend upon the angles of
incidence and scatter with respect to the local tangent plane only,
it is also invariant to coordinate transformation. Finally, in view
of the invariance of the transformation (3.14), the expression for the
total scattered radiation field (3.36) is invariant under coordinate
transformation.

Corresponding to the transformations

E+H H+-E, J+M, M+ -J, u+c¢ (3.39)
the full wave solutions (3.36) can be shown to satisfy the following

duality relationships:
Ve, = FlG,e) , Fl(e,m) = LTS (3.39b)

4
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To examine the reciprocity relationships the locations of the source
and observation points are interchanged. Thus, under the transformation

al e af e 5t (3.40)

the following relationships can be shown to be satisfied

o ialy « M@l - tf@hH™ (3.41a)
; il - el - ah™ (3.41b)
F(-al,-af) « r@af,ah)™ (3.41¢)

in which the superscript T denotes the transpose of the matrix and the
symbol * denotes that the nondiagonal elements of the matrix are
multiplied by -1. Thus on noting that for any 2x2 matrices X and Y

2y - on® (3.42)

the following relationship for C(Ef,ﬁi). (3.36) is obtained (Bahar, 198la),
c(-a,-af) = et Ay ™ (3.43)
and the total scattered radiation fields Gf, (3.36) satisfy the reciprocity

relationships in electromagnetic theory.

, 3.6 High Frequency Approximations of the Full Wave Solution--

Comparison with Physical Optics Solutions

At very high frequencies the major contributions to the scattered
‘~ radiation fields (3.36) come only from regions of the rough surface where
the phase of the expression exp[iROFS-(Ef-Ei)] is stationary. This phase
is constant when
vz GE-ah] - VG F fzy)-(af-;1>]
- wfah 7 @f-ah)-a, v = 0 (3.44)
Thus at the stationary phase points, the unit vector 5' (normal to the

1 and

surface £(x,y,z) = 0 (3.22a), is in the direction af-a
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- _ - _afgt - - -
nean = ;f_’il = siny, cosCs a_ + cosy, 8, + siny sinés a,
= g(-hxs a + ay - hzs ay)coeys (3.45)

The incident and scatter angles e: with respect to the tangent plane

at the stationary points are

s P 1£ A f £ 143
coseins- -(Ei'ﬁ ) = l—nf-n - l-nf-ﬁi - 1+C°C° soso cos(¢" - )] (3.46a) *
o s -f -i, 2 2 ] *
n-
and
coseins- (5f~§s) - cosei'ns = coses = Cs,-nf-ni = cosze: (3.46Db)
The corresponding angles eins and eins for medium €, sH;» are obtained
through Snell's law. Thus _
8 _ o8 s _ 5,243 i
$; = §,/n, and ¢, [1—(51) ] (3.47)

Furthermore at the stationary points

(afx 55)-(Eix a)

; cos (477910 - ——E__ 2" (3.48a)
! ln X n Iln X n |
s s
7 &t wl)
oin(9 -1 - 2 -0 (3.48b)
In Xn |ln X n l
s s
- - i f 8
cosy, = n, ay (C° + Co)/2 C° ) (3.49a)
sf sin@f- Si sin¢i Sf cos¢f- si cos¢1
sinés = os 3 i 3% c036s - : 3 T 9k (3.49b)
[@c)™- c+c)”] (@ c) (c+c 7]
The angles wis and wfs are given by
i f 1 8 f f 1
C +C -C (1+cos 20)) S sin(¢ -97)
i cis_ coawis- 0o oi o ~ 0 , ;s_ ainwi'- o . (3.50a)
- v st e1n 20 sin 20
° o [
£ 1 £ 8 i £ 1
C +C ~C (l+cos 267) S” sin($ ~97)
cfe- coawf‘- o of 0 . 0 , S;'--sinwf'- o . (3.50b)
v st ain 20 sin 20
o ° o
Thus for the stationary points on the scatterer
1 PG AIM 4 0 peg (3.51a)
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and
S bl it W R ' 2c0820°RF (6%
0 0lo' o o lo' o 1RPs -f -1
- =C F (n ,n) (3.51b)
- - cosy £ i olo o
n-a s c +C
y o o

where Ri: - Rio(G:) is the Fresnel reflection coefficient for vertically or
horizontally polarized waves (P=V,H) incident at an angle 9: upon the

plane normal to Es. The function

coszes 1+Cin-Sisfcos(¢f-¢1)
F G ah) - £ .1 : o : 01 ofo (3.52)
° 1 6°+G°] eo'eo] CO(C°+CO)
Co cos 3 )cos 3 J

i .f £

is exactly equal to the function F3(9 6°.¢ -¢i) derived by Beckmann and

o’
Spizzichino (1963) using a Physical Optics approach for perfectly conducting
rough surfaces. Thus if there are points on the illuminated portion

of the surface of the scatterer for which n = Es’ the Physical Optics limit

for the scattered radiation field can be obtained from the full wave

solutions by replacing the expression for Cin Tf F Tiin (3.36) by its value

at the stationary points and by replacing the shadow function D(r) by

unity. Thus in the Physical Optics limit ci“rf F T' can be factored out

of the integral (3.36) and the expression for C reduces to
“fs Vs .is . fs Hs is _fs Vs is _fs Hs is
ORGSR GRS Ry
C=CFI1
oo
fs Vs is .fs Hs_is fs_Vs_is, .fs_Hs is
Sy R1o%y _c¢ Ry SW Rio%y +c¢ R oS (3.33a)
in which the integral I is given by
1Gf e ) - J expl1x_(af-sly.t Jai-a (3.53b)
8 A © 8 y
For scatterers that are very good conductors, assuming C: ¢ n/2;

Va Hs
Rlo -+ 1 and 210

+ =1, (3.53a) reduced to

co.(wfl+¢il) ain(wf'+¢1')

c=ciF1 - ciroxu' (3.54)
s1a (W *'%)  -cos v w'%)




53
Thus the matrix U® in (3.54) 1is unitary.

3.7 Realizability and the Backscatter Cross-Sections

For a perfectly conducting plane of area A centered at the origin
and normal to the vector n = Es, the shadow function D(;s) reduces to

unity and (Hf-ﬁi)';s = 0. Thus

-f = = - -
I(n ,n .rs,A) = A ns'ay - Ay (3.55a)

in which Ay is the projection of the area A on the reference plane. From

(3.51b) it follows that

8 - -
C° -n ‘ns
Co > " cosY - — (3.55b)
8 n°
8 Yy

For this case the scattering matrix C (3.54) is therefore given by
c',al) = A coso® U° (3.56)

Since U® is a unitary matrix (3.54), energy is conserved independent of
the angle of incidence and the polarization of the waves incident upon
the conducting plane. This realizability relationship is not satisfied
by the iterative or perturbational solutions (Bahar, 198la).

The backscattered radiation fields are given by (3.36) with Ef- -Ei.
This quantity is maximum for a perfectly conducting plane of area A
centered at the origin and normal to n = ;sv. -Ei - ;f. For this case the
backscattered fields are obtained from (3.56) on substituting 6: = 0,
Since in addition wfa + wis = 0, the unitary matrix reduces to a
diagonal matrix. Thus

A

PQ, -1 -1 - Ly
(€200 ] |= Adpg zos0, Spq (3.57)
vhere GPQ is the Kronecker delta. Thus the maximum backscattered power

density is proportional to Az. the square of the area of the perfectly
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conducting plane which is perpendicular to the incident wave normal
al. In .57 8, is the angle of incidence or scatter with respect
to the reference plane (y = 0).

The normalized backscatter cross section for a scatterer of
arbitrary shape is defined here as

of® = [|cP-at ity l/jn F,)dk-a]? (3.58)

The quantity in the denominator of (3.58) is the area of the illuminated
surface of the scatterer. Thus the maximum value of the normalized,

dimensionless quantity oPQ defined in (3.58) is unity.

When the Illuminated portion of the surface of the scatterer is
slightly rough such that n = ;y the perturbational approach is valid.
Thus the full wave solutions for the backscattered cross sections reduce

to the perturbational solutions on replacing n by Sy in the expressions

(3.25) and on ignoring the shadow function D(;s) (Barrick, 1970). 1In

this case the expression for C (3.36) simplifies considerably since

f

C;nT F Ti becomes independent of the variable of integration and

£

i i -f 1 -
Cc =+ (COT FT );-;y’I(n %] ,ts,A)

_ —f - -
= ¢, 1@ ,ni,rs,A) (3.59)

vhere the integral I is defined by (3.53b) and the matrix Co is defined
by (3.59). Similarly, if there are points on the illuminated portion

of the surface of the scatterer for which n = ;‘. at high frequencies
one can use the Physical Optics approximations derived in Section 3.6.

In this case n is replaced by E' in (3.36) and assuming that the specular
points are in the visible portion of the surface of the scatterer, D(Es)
is set equal to unity. Thus for the high frequency limit the expression
for C (3.36) also simplifies significantly. The expression for

Cian F ‘1‘1 becomes independent of the variable of integration and
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i f i -f -1 - - -
Cc ~+ (C° T FT )E_as'l(n ,n ,rs,A)/:ray

= ¢, 1@5,aLE,,4) (3.60)
where C_ is defined by (3.60).
Thus for these special cases (small slope or high frequency) the expression

for the normalized backscatter cross section (3.58) reduced to

Q- ICPQI2 J exp[-Ziﬁi-;s3dxdz|2/[JD(;s)dx-n]2

& 3
A
- ICZ?IZ JJ exp[-ZiHi'(;s- ;;)]dx'dz'dxdz/[JD(;s)dK'ﬁjz (3.61)
AA' A
in which ;; - x';x + h(x'.y');y + zv;z (3.62)

Since the full wave solutions for the backscatter cross section OPQ (3.58)
reduce to the perturbational form O:Q for slightly rough surfaces
(Barrick, 1970) and to the Physical Optics form o:Q when the stationary
phase approximations are used, the full wave solutions provide a direct
connection between these special forms for the backscatter cross section
and reconcile the significant differences between them. Moreover, the

full wave method can be applied to a wide class of problems that cannot

be solved by either the perturbational or the Physical Optics approach.

3.8 Properties of the Full Wave Solutions at Grazing, Specular and

Brewster Angles and Applications to Random and Periodic Rough Surfaces

For grazing incident or scatter angles, with respect to the local
tangent planes, (normal to the vector n) all the full wave expressions
for C:nFPQ(Sf,Ei) (3.25) vanish. The corresponding expressions in the
perturbational solutions vanish only for grazing incident angles with
respect to the reference plane (normal to ;y)' On the other hand, the

Physical Optics expression for (3.25) vaniehs only for grazing angles

with respect to the stationary phase plane where n = ;s' The property
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of full wave solutions at grazing angles with respect to the local
tangent plane is responsible for the fact that the full wave solutions
for the scattered radiation fields vanish in a continuous wmanner as
the observer moves across a shadow boundary. For points on the irregular
boundary where the local tangent plane coincides with the stationary
phase plane normal ton = Es (locally specular scatter), the full wave
expressions for FPQ reduce to

FrE™,a) « k7P, v,

pPOGER Siny L o paq [P " n (3.63)
The corresponding perturbational solutions for FPP reduce to RPP(B:)
only for specular angles with respect to the reference plane normal to
Ey. Similarly, the perturbational solutions for FPQ(P#Q) vanish only
for specular angles with respect to the fixed reference plane.

For the specular case with respect to the reference plane the

| 4

Physical Optics solution for F P reduces to RPP(Gz) for the entire rough
surface including those portions that are not specularly oriented with
respect to transmitter and receiver. Furthermore, while the Physical Optics
approach does not provide any expression corresponding to FPQ(P#Q), the
full wave expression for FPQ vanishes only at the specular points on the
irregular boundary. It is interesting to note that if 9: (the incident

or scatter angle with respect to the stationary phase plane) is equal

to the Brewster angle 9:, the Physical Optics solution for the

e st

scattered radiation field vanishes. Similarly, if the incident omn
scatter angles with respect to the reference plane (normal to ;y) equals

the Brewstar angle, the perturbational solution also vanishes. The #
{

full wave solution on the other hand does not vanish. The integrand
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in the expression for the full wave solutions (3.36) vanishes only at

the stationary phase points where Gi - 65 - 92. Thus, the full wave
solutions for scattering by rough surfaces does not vanish even if
the incident and scatter angles with respect to the stationary phase
plane (normal to 5‘) or with respect to the reference plane (normal
to Ey) are equal to the Brewster angle.

For very good conducting boundaries with ]er] >> 1 and

ut =1 (Int] << 1), the expressions for C:nFPQ (3.25) simplify considerably.

eV - 2[cos(6™-4'™) - 52755/ (it (3.64a)
cnp™ . _2cInet® cog (4T0- ¢1“)/(c +Ci™) (3.64b)
¢IF = 2510 (™41l (€Mue? (3. 64c)
"M = 2a1n(e-91")c2 (LMl (3.64d)

With the exception of FHH the above expressions cannot be used for grazing
angles if the boundary is highly conducting. In general, the approximate
formulas for C FPQ (3.64) must be restricted not only to good conducting
boundaries but also to angles of incidence or scatter that are less

than the pseudo-Brewster angles 0:. For vertically polarized waves

B _ B _ B _ 2_ 2 % <X X
€, * C, = cosg_ =nC; [(nr 1)/er 1]% » (er+1) e (3.65)

Thus (3.64) can be used only if C " and Cf are greater than (er)-k.

For perfectly conducting boudaries, the steepest descent method,
used in evaluating the radiation fields at grazing angles, needs to
account for the poles in the vicinity of the saddle points. Thus the
apparent singularity in the expression for the fields at grazing angles
over perfectly conducting surfaces is removed (Bahar, 1981b).

The full wave solutions (3.36) can be applied to periodic structures

by multiplying the expressions for the scattered radiation fields due
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to a single element of the periodic rough surface by two dimensional
array factors (Bahar, 1980). Implicit in these array factors are the
expressions for the grating angles.

The expressions for the full wave solutions depend upon the profile
L ' h(x,z) of the rough surface and upon its gradient. Thus in order to
determine the statigtical average of CPQ (3.36) and its variance,

«c?% and p{cPY respectively, it is necessary in general to know the

statistics of the random variables h, hx and hz' For two special
cases (the small slope--perturbational solution and the stationary
phase-~geometrical optics solution) considered in this work, the
statistical average and the variance of the scattered radiation fields i
can be expressed in terms of the one and two dimensional characteristic

functions respectively (Bahar, 198l1a).

3.9 Concluding Remarks

The full wave approach is applied in this paper to the problem of
depolarization of the scattered radiation field by an object of
irregular shape and finite conductivity. The principal elements of

the full wave approach are outlined in the introduction (Section 3.3).

The full wave solutions are presented in a form that can be readily
compared with earlier solutions (Section 3.4) They are used to resolve
the discrepancies between the earlier solutions and to bridge the wide

gap that exists between them. Realizability, reciprocity and duality

o relationships in electromagnetic theory are examined and the full wave

et

solutions are shown to be invariant to coordinate transformations.
The full wave approach can also be used to determine the scattered

radiation fields due to lateral variations in the permittivity € and




59

permeability u (Bahar, 1973a,b). Thus they can be applied to mixed path
propagation problems.

Since the full wave approach has been generalized to inhomogeneous
multilayered structures of arbitrarily varying thickness, it can also
be applied to problems in which irregularly shaped objects are imbedded
in the earth's crust. If the medium of the scatterer is nondissipative,
transmission through the scatterer can also be accounted for in the
analysis.

When the transmitter or receiver are near the scatterer, the lateral
wave or surface wave terms of the full wave expansions could be
significant especially near a shadow region. In these cases the full
wave approach can be used to determine the coupling between the radiation

term and the lateral and surface wave terms (Bahar, 1977).
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3.A Appendix

The relationship between the reference coordinate system X(x,y,z) and

the variable local coordinate system i(§,§,;) agssoclated with the local

tangent plane normal to n (3.22) can be expressed as follows:

-1 1
X X

%= |%2] =a [x? (3A.1)
-3 3
X X

Thus, x = aijxj (sum on j = 1,2,3)

where x1 = X, x2 =y, x3 = 2z, etc. The elements a,, of the 3x3 trans-

i]
formation matrix A are
agy = 51'33 1,j = 1,2,3. (3A.2)
where 51 = ;x’ ;2 = ;y and 33 = ;z are the unit vectors of the reference
coordinate system and ;i are unit vectors normal to the coordinate surfaces

of the local coordinate system. Thus

n, = A x (ax a>/|;1x n| (3A.3)
52 = n (3A.4)
8, = @,x n)/|a x (3A.5)

3 are orthogonal. The vector 52 is

normal to the local tangent plane (3.22) while ;l and 53 lie in the local

Thus the unit vectors ;1’ 52 and n

tangent plane. For a horizontal surface h(x,z) = const., the unit vectors

n, are equal to a, and A reduces to the identity matrix. In general the

i i

transformation matrix A is hermetian, thus the determinant of A is equal

to unity and
A7l e AT (3A.6)
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4.0 SCATTERING CROSS SECTIONS FOR COMPOSITE RANDOM ROUGH SURFACES

--FULL WAVE ANALYSIS

4.1 Background T

In this work the full wave approach to rough surface scattering is
applied to composite models of rough surfaces. It is shown that both i
specular point scattering as well as Bragg scattering are accounted for
in the analysis in a self-consistent manner. The results are compared
with earlier solutions based on a combination of Physical Optics and
| perturbation theories. Using the full wave approach it is not essential

to decompose the rough surface into individual surfaces with different

roughness scales unless it is desired to separate the specular point

contribution from the Bragg contribution to the scattering cross sections.

The decomposition of the rodgh surface not only enhances one's physical
ingight but also facilitates the numerical evaluation of the scattering

cross sections. Shadowing 1s also accounted for in the analysis.

4.2 Discussion

Physical Optics and perturbation theories have been applied to
problems of scattering of electromagnetic waves from rough surfaces
f(x,y,z)=y ~h(x,2)=0 (Valenzuela, 1968). However, these theories can
only be applied to a limited class of rough surfaces. Thus perturbation
theory (Rice, 1951; Barrick, 1970) can be applied to problems in which
it 1s usually asssumed that

k:<h2> << 1, oh/dx = h, << 1, 9h/9z = h, «<1 (4.1)

in which <h2> is the mean square of the rough surface height and ko is

the wave number of the electromagnetic wave. Physical Optics, which is

bagsed on the Kirchhoff approximations of the surface fields (Beckmann,

1968), is applicable to surface for which the radii of curvature of the




63

rough surface are large compared to the electromagnetic wavelength A.
Wright (1966) and Semyonov (1966) apply the above theories to

composite surfaces made up of irregularities that are both small as well
as large compared to the wavelength A. More recently Brown (1978, 1980)
applied Physical Optics as well as Burrow's perturbation theory (1967)
to derive the expression for the backscatter cross section from perfectly
conducting rough surfaces in terms of a sum of two backscatterer cross
sections. The first is the backscatter cross section for the surface
with the large scale roughness hz, while the second is the backscatter
cross section associated with the small scale roughness hs' In his work,
B;own (1978, 1980) assumes that the radil of curvature of the surface, hl’
is larger than the wavelength A and k§<h§> >> 1. In addition, he assumes
that hs satisfies the conditions (4.1). Thus in his work the specifica-
tion of the wavenumber k.d (where spectral splitting is assumed to occur),
is based upon the characteristics of the small scale structure (k:<h§> << 1)
rather than upon the characteristics of the large scale surface (Browm,

1978; Hagfors, 1966; Tyler, 1978). In Byown's analysis the backscatter

cross section associated with the surface with the small scale rough-

ness 1s expressed in terms of a two dimensional convolution of transforms.
In the composite models of Wright (1968), Semyonov (1966), and Valen-
zuela (1968) which are "mostly based on physical considerations' the
rough surface is approximated by "patches" of slightly rough surfaces
that ride the large waves. Thus in their work the scattering cross
section assoclated with the surface with the small scale roughness is
obtained by averaging over the distribution of slopes of the large
scale surface roughness.
In this work the full wave approach to rough surface scattering

is extended to composite models of the rough surface with mclzrate
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mean square slopes (Bahar, 198l$,c). Since the full wave approach
accounts for both specular point scattering as well as Bragg scattering
in a self-consistent manner (Bahar, 1981b,c) without introducing
perturbation and Physical Optics theories, it is not necessary to
decompose the rough surface 1ﬂto two surfaces with large and small
roughness scales, hl and hs respectively. Thus the need to specify k.,
the wavenumber where spectral splitting is assumed to occur, does not
necessarily arise when the full wave approach is used. However, the
decomposition of the rough surface enhances one's physical insight

and also facilitates the numerical evaluation of the scattering cross
sections.

In Section 4.3 the problem is formulated in terms of the full
waye approach and the principal results from earlier analysis are
summarized. In order to compare the full wave solutions for the
scattering cross sections with earlier solutions (Valenzuela, 1968;
Brown, 1378, 1980) it is also assumed in.Section 4.4 that the
composite surface can be decomposed into two statistically independent
surfaces with large and small roughness scales hz and hs' It 1is shown
that the total scattering cross section can be written as a weighted
sum of individual cross sections. The cross section associated with
specular point scattering is multiplied by I)(RI2 the magni ude squared
of the characteristic function for the small scale surface height hR
(4.30a). The cross section associated with Bragg scattering 1s expressed
in terms of an integral over the slopes of the rough surface (4.44) as
predicted on the basis of physical considerations (Valenzuela, 1968).

This term is shown to be in agreement with perturbatlon theory (Rice,

1951; Barrick, 1970). The integrand in this term is proportional to
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the surface height spectral density W(vx,vz) whose arguments are the

two components vi and vE of the fector v = ko(;f-ﬁi) in the local tangent
plane (ﬁf and ﬁi are unit vectors in the direction of the scattered and
incident wave normals). The full wave solution can also be expressed

in terms of the rough surface tilts "in" and "perpendicular" to the
plane of incidence and thereby compared with the results of Valenzuela,
et al. (Valenzuela, Lang and Daley, 1971). It is also shown that since
Brown (1978, 1980) assumes that the small scale surface height correla-
tion function is a function of distance in the reference (mean) plane
and not distances along the large scale surface as in this work and
implicitly in Valenzuela's work, the full wave results are in agreement
with Brown's results only if the large scale surface roughness has small
mean square slopes. Shadowing is accounted for explicitly in this work

as in the work by Brown (1978, 1980).

Throughout this work an exp(iwt) time dependence is assumed.

4.3 Formulation of the Problem

For the incoherent, diffuse field, the scattering cross section per

unit area is defined as (Ishimaru, 1978),

<ot - 4n(rf)2<lnpf- <Epf>|2>/Ay|EQi]2 , P,Q=V,H (4.2)
in which the first superscript P=V,H indicates the polarization (vertical
or horizontal) of the scattered field, Epf and the second superscript
Q=V,H indicates the polarization of the incident field, EQi. The
projection of the area of the rough surface A on the reference plane
normal to ;y is Ay and rf is the distance from the origin (associated
with the rough surface) and the observation point in the far field (see

Fig. 4.1). Using the full wave solutions for the scattered radiation

fields (Bahar, 198la), the expression for the scattering cross section

ibinn o
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for random rough surfaces is given by (Bahar, 1981b)
k "wPQ
<0PQ> -2 < SPQ expliv (h~h')]-|< DU exp(iv_y)> 2
mA y aa Y
b4 n-a
. exp[ivx(x-x')+ivz(z-z')]dxdz dx'dz"'> (4.3)

in which ko is the free space wavenumber. The vector v in the cartesian

coordinate system is

- -f -1 - - -
v ko(n -n") v, a, + vy ay + v, 8, 4.4)

in which ﬁi and Ef are unit vectors in the direction of the incident
and scattered waves respectively.

The characteristic function x(vy) is given by

-]

x(vy) = j exp(ivyh)p(h)dh (4.5)

-0

in which p(h) is the surface height probability density function.
PQ
The coefficient § ° is

rq _ 0P P GEHuEn |, R

(n'ay) (n -ay) n

_ 12
JU(r) | 4.6)

S

oy ire}

Yy

in which DPQ(;) depends upon the polarization (P,Q=V,H) and directions
(51 and Ef) of the incident and scattered waves, the unit vector n

normal to the rough surface and the electromagnetic parameters of the
medium of propagation and the scatterer (Bahar, 1981b). The shadow
function U(r) is unity when the surface is both illuminated by the source
and visible at the observation point and zero otherwise (Sancer, 1969).
The symbol < > denotes the statistical average. Thus assuming that either
the rough surface radii of curvature are large compared to a wavelength
or the rough surface slope is small and that the rough surface heights

and slopes are statistically independent (Bahar, 198lc),

TR AN N
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<5 exp v (h-n) - [x(v, )|21> -

J! PQ(rzugrz

[exp{iv (h-h")}- |x(v )] Jp(@,U)W(h,b')dndb'dh dh dU
(4.7)

The joint rough surface height probability density function is W(h,h')
and the joint probability density function p(n,U) can be expressed in terms

of the conditional density p(U|n) (Sancer, 1969)

p(a,U) = p(n)p(U|n) (4.8)

in which p(n) is the density function of the gradient of the rough surface

Vf = V(y-h(x,z)) = (-hx;y+ ;y- ha ) = n|vf (4.9)

and
hx = 3h/3x and hz = 3h/3z . 4.10)

The conditional density can be expressed as

p(Ujn) = Pz(ﬁf,ﬁilasu»4)+[1-P2(5f.Eilﬁ)]a(U) (4.11)
in which 8§(U) is the Dirac delta function and Pz(af,ail;) is the
probability that a point on the rough surface will be both illuminated
by the source and visible at the observation point, givean the value of
the gradient E(hx,hz).

On assuming that
il = lo? << 1, A a, = 1, p,@L,a5 (8 = 1 (4.12)
the full wave solutions for the scattering cross section (Babhar, 1981b)
can be shown to reduce to the perturbation solution <O:Q> (Rice, 1951;
Barrick, 1970)
<o:Q> = 47 kgw(vx,vz)lcoseg cosG: aPle (4.13)
in which e: and 6: are the angles of incidence and scatter with respect

to the reference plane (y=0),
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w(vx.vz) - ;%-J exp(ivxxd+ 1vzzd) h(x,z)h'(x',2') dxddzd (4.14)
is the spectral density of the rough surface height (Barrick, 1970;
Ishimaru, 1978). 1t is assumed, in this work, that the rough surface
is statistically homogeneous and isotropic, thus, the surface height
correlation function <h(x,z)h'(x’',z')> depends only on distances in
the mean plane where <h> = 0

;m - (x—x');x+ (z-z');z - xd; + zd;z (4.15)

Furthermore,

|2 costf cosel aPQIZ = |(cost’+ coso?)p*Y|? (4.16)
o o o [+) ;;_’;

Thus to obtain the perturbation solution the unit vector n (normal to
the rough surface) is replaced by ;y in the full wave expression for the
scattering coefficient DPQ (Bahar, 1981b).

The Physical Optics solution for the scattering cross section
<0:9> can also be derived directly from the full wave solutions. Thus
(Bahar, 1981c) for P=V or H and Q=H,V (P#Q)

2 fs is 2,812
ko 2 cosy " cosy cos eo]

(0:P> »— 7 1
cosb  + cosb
o o
2
. |gF8 Qs fs is -f -1~
i lRlO + Ry, tany = tany | P,(n ,n |ns)3/ (4.17a)
k2 [2 coswfs cosw18 coszes]2
<oPQ> o~ 2 T 0
(-] T £
l cose° + coeeo J
P i fg,2 - -
.lnlgtcmp "‘Rg; tany °|" P, (0,07 |n )7 (4.17b)

in which wis is the angle between the plane of incidence associated with
the reference plane (y=0) and the local plane of incidence (associated

with the local tangent plane) evaluated at the specular points where
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- .- _ af-at - |
n-n

Similarly wfs is the angle between the reference and local scatter plane

evaluated at the specular point. In (4.17) the Fresnel reflection

coefficients R;; and Pz(a,ﬁilﬁ), (4.12) are evaluated at 6: the angle of

1pcidence at the specular points. The integral ¥ is given by
-]
2
7 J [Xz(Vy.-vy) - |x(vy)| ]exp[ivxxdﬂvzzd]dxddzd (4.19)
00 I

in which x(vy) is the characteristic function (4.5) and Xz(vy,-vy) is the

joint characteristic function (transform of the height brobability density p(h,ht))

xz(vy,-vy) - I exp[ivy(h—h')]p(h.h')dhdh' . (4.20)

el

The full wave approach has also been applied to rough surfaces with

two or more roughness scales. Thus, if it is assumed that the composite

surface can be represented by the superposition of N uncorrelated
surface heights hn(n-1.2...N) and that the principal feature that dis-
tinguishes the individual surface heights from each other is their

respective correlation distances ln such that

By << 212 << Ly << Byg << zs ees zn_l << zu_l,u << IN (4.21)

the scattering cross section can be expressed as a weighted sum of the

individual scattering cross sections <0PQ>n (Bahar, 1981c)

N
<oPQ> - ¥ v <GPQ)n (4.22)

n=1

in which <cr"°>n is given by (4.3) with h,h' and X replaced by h ,h! and X"
(the characteristic function for surface hn)' The weighting function is given
by the product

n
v =2 (6.23)
=1
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' in which x° = 1. Since lxnl < 1 the weighting function is in general less

than unity.

For a two scale composite surface such that

k2<h§> << 1], k <h >> 1 (4.24a)
2

| ' n= ay . 2,1 << 2,12 << & (4.24b)
. the scattering cross section is given by (Bahar, 198lc)

<0PQ> = <0PQ>1 + <0PQ>2 (4.25)

In (4.25) <0PQ>1 is given by the perturbation solution (4.13) which accounts
for Bragg scatter. Furthermore, <0PQ>2 is given by the Physical Optics
» solution (4.17). For a surface with a Gaussian distribution # in (4.17) is

iven by
& 2

( 21 )
- p(h ) (4.26)
: 7 lk (cost+ cosei)J st zap
[+ o] o]

in which the joint probability density function for the slopes at the

\, specular points is p(hxsp ) {(Bahar, 1981c). Thus the full waves solution

(4.3) accounts for both Bragg scatter as well as specular-point scatter.

T .

' In Section 4.4 the full wave approach is applied to composite rough

1]

surfaces with moderate slopes (hx = 1, hz 1).

4.4 Scattering Cross Sections for Composite Rough Surfaces with Moderate Slopes

5 Consider here a composite surface with two statistically independent
roughness scales such that the radius vector to the surface is
r = rp(x, hpz) + rp(hy) : (4.27a)

in which

Shy ‘“‘p '
k <hP> >> 1, -5 " hFx = x hF: - (4.27b)

;R(ER) - ER n (4.27¢)

N | o
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and o -
3 ‘
2_-2 "Rl - PRl o
dabcn, [ - gl won Pl cr. e
In view of (4.27) and (4.9) the normal to the surface is
a YG-h) Vir-hy) - (4.28)
Vo-0 [ [TORy)| CF '
However, unlike the composite surface considered in Section 4.3, the
variances of the slopes are not assumed to be small. In addition, it is
assumed that the radii of curvature of the surface hp (and therefore h)
is large compared to the electromagnetic wavelength A. Thus the full
wave expression for the scattering cross section for the composite sur-
face is (4.3)
2
k PQ 2
P PQ U. F R
'S = ..__“x I [<s exp[iv (hF hl_,)}x2 > - <—-> X X , J
y n'a 1
y
-exp[ivx(x-x') + ivz(z-z')]dxdz dx'dz' 4.29)

In (4.29) xF and xR are the characteristic functions for surfaces hF and ER
respectively and Xg is the joint characteristic function for the surface ER'

In view of the above assumptions for the small scale surface*

R T - 1 . - o
X (v;) = <exp[ivyhk]> ® 1 - 7 v <hR> =1, vg = BV (4.30a)
R h ~h' ~ 1.2, =2 T2 2 & &
x2(v§,-v§) = <exp 1v-(hR-hR)> =1 - 2 v-(<hR> + <hR >) + v§<b'nhk> ﬂ
= N2+ vi <hehe> (4.30D) ]
and
1?2 (4.31)

Following the analytical (Physical Optics) procedures presented by

Sancer (1969) for the large scale surface hF

*The surface ER which consists of the small scale spectral components cannot

be treated as the large scale surface hF since it does not satisfy the radii

of curvature criteria.
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PQ =\, p=
$PQ , D 2Eu) |2
na (4.32)
y
and
~h!
exp ivy(hF hF) + exp ivy(hxxd + hzzd) (4.33)
Thus (4.29) can be expressed as follows:
2
K PQ,, 12
PQ o J' pF Y Rj2, .2 ¢
<ot o <
ﬁ; - exp[ivy(hxxd+hzzd)](|x | “+ v hphg)>
y
‘exp[1vxxd+1vzzd]dxddzddxdz
P
= <o Q>° + <0PQ>1 (4.34)
in which 2
<oPQ> - rﬂ < DPQU ’ exp[iv_(h_x . +h_ z )JI R|2>
o n a3 P y xd zd X
y
-exp[ivxxd+ ivzzd]dxddzd = IxR|2<o:?> (4.35)

Thus <o:9>o is the Physical Optics solution <0:9>, (4.17) multiplied by
[xR(;-Es)Iz < 1, the characteristic function for the small scale rough
surface evaluated at ;-58 the projection of v on the normal at the specular

point. Furthermore,

k2 DPQU 2
PQ> 9o < Yy R R [ h 1¢ dx d 4
<g 1= -E:E—z thR exp i(vx+vy x)xd+ gvz+vyhz)zd] x,dz > (4.36)
y

Thus <OPQ>1 reduces to the perturbation solution (4.13) when the surface
slopes are small (Bahar, 1981b). For the case considered in this section the
distribution of the large scale surface slopes has an effect on the component

of the scattering cross section due to the small scale roughness <0PQ>1.

Note that the small scale roughness ih is ; perturbation about the large
scale roughness and ER is the perpendicular distance from the unperturbed
(filtered) surface y = hF(x,hF,z) to the perturbed surface (4.27)
(Burrows, 1973). Thus the expectation of ER(x.z)ﬁ;(x',z') is a func-

tion of distances measured along the plane tangent to the

.
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RN P B ~w*ﬁiﬁ§iﬂd&aéﬂﬁahh<~’ o Gt - -
;
o . . T———
. i el p - N Yy - . 2 1 - RIS -
R &) ot aas



eSee———

74

surface y ~ hF(x,z) = 0 (Wright, 1966; Valenzuela,1968) and not dis-
tances measured along the mean plane l;ml (4.15). To facilitate the
evaluation of (4.36) the integrand is expressed in terms of the unit
vectors 51 52 and 53 and variables x,y,z of the local coordinate system
associated with the local tangent plane (Bahar, 198la; Bahar, 1981b).

The unit vectors 51.52,;3 can be chosen as follows (see Fig. 4.2)

n, = (mx 8/ |n x 23]. m, =0, 0y *mn X n (4.37a)
in which

a1 - ax, ‘2 - ay, a3 -a, (4.37b)

and the relationship between the local coordinate system X(§1-§,§2-§,§3-;)

and the reference coordinate system x(xl-x,xz-y,xs-z) is

X = aijxj (sum on §=1,2,3) (4.38a)
X in which
\ o = B8, 1,3%1,2.3 (4.38b)
. l Thus in (4.36)
? (vx+vyhx)xd+(vz-rvyhz)zd = Ve X, Vo 2y (4.39a)
. in which Ve vy, vy are the couponents of v (4.4) in the local
f coordinate system
Ve = Ve, vy = vy, Vy = V'n, (4.39b)

Furthermore (see Fig. 4.3)

» Ry e Xex', 3 w2 (4.40a)
L and
s dx dzd . -
— = dx,; dz, (4.40b)
n-s

Therefore (4.36) can be expressed as

H PQ k: 'quuvi l 2 - - - - -
f <0 > - —F-<I - hkﬁi exp[ivixd+ 1vi'd]dxd dz ;> (4.41)

n'a




.mm pue Nm .Hm S10309A ITUN YITM WIISLS
33BUTPICOD TBD0T 3AYl PuU®B 1331318I8 PUR AJUIPIOUT Jo saue(d (edo7 74 2an8pg
[7a)
™~
D // L
x
1 He
wt = yyé
\ ] .
\ ouejd J9)jedg
4 ‘ tu ,i/ €y (eooq
r aue(d juabue; |eo0] ,
uo 8y tu‘ly

aoejuns ybnol o} jewlou
U= Nm

ut sue|d Juepjou|
/ {e20q

Eu 2y ‘hy) / \
$9]2U|p100) |B207 / n_.w_

A




76

*gadejins ITeOS [IBWS pue a8aeT ojuy pasodwodap adejans y3noy ¢°'y 2indyy

30V3HNS 3VIS 3OHVT ONOTV G3UNSVIW 3ONVLSIQ =P

0=A‘3NVId FONIWIdI— 2u(dyHy) 4+ P =

%u(¥y-Hy) +u(2-2) + 'u( X-X) =
’D(,2-2)+*D(Y-Y) +70(X-X) =,4-4

¥yaty=y = K
30v3HNs
31ISOdW0D

(2'x)3y=£ 3ov4uNns
31vIS 394V ‘g3y3L Y

2\
INVId LNIONVL V07 W

Il




e — — : _ 3 §
c-—— T T T T et .. o A e . ~— e — e —

77

Furthermore assuming that the statistics of the small scale surface ER
are independent of the slopes of the large scale surface hF* (Valen-

zuela, 1968, Brown, 1978) (see Fig. 4.3)
__l_ P 2N ot N ek el | < - - --
2 J<hR(X,2)hR(x 2 )>exp(ivixd+ivzzd)dxd dz, W(v_,vy) (4.42)

in which the dependent variables of the spectral density of the small

scale roughness v_ and v; are the orthogonal components of v in the local
x

tangent plane. Thus w(vi,vi) depends not only on the direction of the

incident and scattered waves but also on the normal, n, to the rough

surface. Substitute (4.42) into (4.41) to get

PQ 2
PQ 5 D77 Uv] - -
<o >y o= Tk ——J W(v_,v-)p(n)p(U|n)dh dh_dU (4.43)
o ;'; X z X 2
y
and substitute (4.11) for P(Ul;) unto (4.43) and integrate with respect to U

to get
PQ 2 IDPQ”"Z —f ~ij-. -
<0 >, = nkoj ——E—-Y-— W(vz,vz)P,y(a ,n |n)p(n)dh dh, (&.4%)

[+ ]

y
Note that the conditional probability Pz(ﬂf,ﬁilﬁ) for arbitrary slope

E(hx,hz) can be expressed in terms of the conditional probability
Pz(ﬁf,ﬁilﬁs) for the specular points (n + Es) as follows (Smith, 1967;
Brown, 1980)

P, 510 = s@E-EDSCR-ANP, A1 A)) (4.45)
in which S(a) is the unit step function. The arguments of S,—E'Ei and n°n
vanish at points of the rough surface where the incident and scatter wave
normals, Ei and ;f are tangent to the surface.

In order to interpret the results (4.44) assume that *t. gurfacc

hF is normal to the constant vector Eo

- e e e e e o o e e

wThis assumption of statistical independence of the small scale lit ER

and slopes restricts the class of rough surfaces assumed in this work.

- oy
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n+*n =n a +n _a +n_a (4.46a)
o ox x oy y 0z z
The equation for this surface is

nr=n X + noy y + n,z*= 0 (4.46b)
thus for y = hF(x,a)
hF - -(nox x + . z)/noy (4.46¢c)
Furthermore
p(n) = G(hx+ noxlnoy)d(hz+ noz'noy) - 6(n-n°) (4.47)

Assuming that E'ﬁf > 0 and -5-51 > 0 (the plane Eo.; = 0 is visible and

illuminated), the normalized scattering cross section <OPQ>1 (4.45) is

given
P 2
W(vg,v.)|D Qv_l
<0PQ>l - nkg = 2_ - (4.48)
n_*a - -
o'y n=n_

Thus the scattering cross section (4.48) for the inclined plane (4.46) is
in complete agreement with the perturbation result (4.13) for arbitrary
Eo. It is equal to it for ﬁo = ;y ‘Rice, 1951; Barrick, 1970). The term
Eo.;y appearing in the denominator of (4.48) is a consequence of
normalization (4.2) (since Ay is the projection of the surface A on the
reference plane).

The integrand in (4.44) 1is therefore the contribution to the scattering
cross section <0PQ>1 from "patches” of the rough surface that are normal
to the vector n (Wright, 1968; Valenzuela, 1968).

In his review of theoretical treatments of the scattering of
electromagnet ic waves by rough surfaces, Valenzuela (1968) states that
scattering models have been developed ''that make it possible to apply
available theories to surfaces that cannot be treated purely by

perturbation and Physical Optics....in these models composite surface

approximate the rough surface by 'patches’ of slightly rough surfaces
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that ride the large waves....the total scattered power from this composite

surface is obtained by averaging over the distribution of slopes of the
large waves.'" Valenzuela notes however, that 'these composite models
are mostly based on physical considerations and are able to explain
features in radar cross-section data from the sea that no theory can."
It is shown in this section that using the full wave approach, one can
provide a self-consistent theoretical basis for scattering by composite
surfaces without using a combination of Physical Optics and perturbation
theories.

To compare this work with earlier analysis of the backscatter cross
section (Valenzuela, 1968; Valenzuela, Laing and Daley, 1971) in which ;

the integral (4.44) is expressed in terms of tilt angles Y and & "in"

and "perpendicular" to the reference plane of incidence (normal to

51 X ;y) rather than in terms of the slopes hx and hz, the normal n

to the rough surface 1s expressed as follows for ;i in the (x,y) plane
n = siny cosé ;x + cosy cosé Ey + sind ;z

2

+ nd)" (4.49)
xX z

=- (- h a_+ a, - h az)/(l +h
In the work by Valenzuela, et al. (1971), shadowing had been ignored,

however the arguments of W(Vi’vi) in their work is in agreement with (4.44).

The result (4.44) is also in agreement with the expression derived
recently by Brown (1978) (as corrected in Brown, 1980) provided that the
slope of the large scale rough surface is very small. The differences
between these two solutions are primarily due to the assumption in Brown's
work that ER (Cs in Brown's notation) is the distance from the unperturbed
(filtered) surface to the perturbed surface, measured along a line per-
pendicular to the reference plane (y=0) rather than perpendicular to the
unperturbed surface. This is contrary to the original analysis of Burrows
(1973) upon which Brown's analysis (1978) 1s based. Furthermore in this work,

the expectation of Enﬁﬁ is considered to be dependent on distances ;d measured

Y i
e R Y
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along the plane tangent to the surface y-hl(x,z), (i.e., the surface
normal to n) where ;d = ;d n, + ;d 53, inatead of distances measured
along the mean (reference) plane ;m - xy ;x + 24 ;z (4.15) as assumed
by Brown (see Fig.4.3).This feature makes the full wave solutions
invariant to coordinate transformations (4.48). In his analysis,

Brown (1978, 1980) accounts for shadowing and uses both Physical Optics

and Burrowg (1973) perturbation theories to derive his results in

terms of a two dimensional convolution of transforms.

4.5 Concluding Remarks

Composite models of random rough surfaces with moderate mean square
slopes are analyzed using the full wave approach. The full wave approach
is shown to account for specular point scattering and Bragg scattering
in a self-consistent manner without introducing Physical Optics and
perturbation theories. Thus using the full wave approach, it is not
necessary to specify the wavenumber kd where the rough surface spectral
splitting is assumed to occur (Brown, 1978, 1980). However, decomposi-
tion of the surface into a large scale surface hz and small scale
surface hs enhances one's physical insight and facilitates the numerical
evaluation of the scattering cross sections. The wavenumber kd is used
to distinguish between the large scale rough surface, hF’ and the small
scale rough surface, ER' The solutions derived in this paper are
compared with solutions derived earlier "mostly based on physical
considerations" (Vaienzuela, 1968). They are also shown to be in
agreement with Brown's solution provided that the mean square slope

of the rough surface is very small (Brown, 1978, 1980). Brown uses a

combination of Physical Optics (Beckmann, 1968) and Burrowsa (1967)
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perturbation theories to develop his solution. The differences between

Brown's solution and the full wave solution (4.44) areprimarily due to the
assumption in Brown's work that ER is the distance, from the unperturbed

surface to the perturbed surface, measured along a line perpendicular to the
reference plane (y=0) rather than perpendicular to the unperturbed (filtered)
surface. This is contrary to the original analysis of Burrows (1973) upon
which Brown's (1978) analysis is based. Furthermore, Brown assumes that the
autocorrelation function for the small scale surface height depends upon
distances measured in the mean plane rather than distances along the plane
tangent to the large scale surface as assumed here and implicitly by
Valenzuela (1968).

The contribution to the scattering cross section due to Bragg
scattering (associated with the small scale surface) is given by an
integral over the slopes of the rough surface. This contribution is
proportional to kz and depends on the polarization (4.44). It is shown
to be in complete agreement with perturbation theory (Rice, 1951;

Barrick, 1970; Barrick and Peake, 1968). The integrand in this expression
is proportional to the small scale surface height spectral density
W(vx,vi) whose arguments are the components of vV e ko(ﬁf—ﬁi) in the local
tangent plane. Thus H(vi,vi) is also a function of slopes. The contribu-
tion to the scattering cross section due to specular point scattering
(associated with the large scale surface) is independent of ko and
polarization.

Using the full wave approach the specification of kd (where spectral
splitting is assumed to occur is not restricted by the perturbation
condition, B = 4k§<h§> << 1. Thus it can be applied to more general
models of rough surfaces for which a combination of solutions based on
perturbation and Physical Optics are not suitable. The specifications of
PQ,

to variations in

k, and the sensitivity of the cross sections <O

d

kd are subjects of future investigations.
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5.0 SUMMARY OF RESEARCH TO BE CONDUCTED DURING SECOND YEAR OF CONTRACT

5.1 Analysis

In order to account for both specular point scattering as well as
Bragg scattering, a two scale--composite model-—of the rough surface
is generally used. The specular point scattering is accounted for
through the use of Physical Optics theory, while perturbation theory
is used to account for Bragg scattering. The principal difficulty
with this perturbed-~Physical Optics approach to analyze composite models
of rough surfaces lies in the specification of the wavenumber k.d where
the surface height spectral splitting is assumed to occur. On one hand ka
must be sufficiently small such that the radii of curvature of the large
scale (filtered) surface 1s large enough to justify the application of

Physical Optics theory to the filtered surface. On the other hand kd

must be sufficiently large such that the mean square height of the small

scale surface is small enough to justify the application of perturba-

tion theory to this small scale surface. In general these two restrictions
on the specification of lc.d may not be satisfied simultaneously. It is
found using this perturbed-Physical Optics approach, that the computed
value of the rough surface scattering cross section will critically depend
upon the specified value of kd. Using the Full Wave approach (which
accounts for both specular point scattering as well as Bragg scattering

in a self-consistent manner), the specification of the wavenumber ka

(at which spectral splitting is assumed to occur), is not restricted

by the conflicting considerations of Physical Optics and perturbation
theories. Rather in this case k, i3 determined only by analytical and

d
computational considerations. Thus, if k.d is chosen judiciously the
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computed value for the resulting scattering cross section should not depend
upon the specific value of kd chosen for these computations. Instead kd is
determined solely by the need to minimize the numerical computations.

This aspect of the problem is being investigated in detail.

During the next year, the Full Wave approach will also be applied to
non-Gaussian rough surfaces. Thus the following topics will be investi-
gated in detail:

a. Statistical description of classes of non-Gaussian rough surfaces.
b. Shadow functions for non-Gaussian rough surfaces.

c. Like and cross polarized scattering cross sections for non-
Gaussian rough surfaces.

Rough surfaces for which decorrelation implies statistical independence

are of particular interest in our investigations.

5.2 Computer Program

The computer programs used to evaluate the scattering cross sections
for composite rough surfaces are being modified to reflect the recent
advances made in the analytical approach to this problem. The effect of
the choice of kd on the numerical computations is being investigated.
From the preliminary results it is shown that the numerical value for the
scattering cross sections as determined by the recently modified computer
programs, are not dependent on k, and that the most suitable choice for

d

k, 1is such that 4k§<ﬂ§> =1 (ko is the electromagnetic wavenumber and

d
<ﬂ§> is the mean square of the small scale surface height). More work

needs to be done to complete this phase of the investigation.







