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1.0 INTRODUCTION

The recent Impetus to produce rigorous solutions to more realistic

models of pertinent propagation problems over a very wide frequency

range has generated the need to derive full wave solutions to problem

of radio wave propagation in dispersive, inhomogeneous, anisotropic and

dissipative media with irregular boundaries. The considerable growth in

civil and military interest in the development of more reliable systems

for commujnication, detection, navigation and positioning, the potential

for developing radio wave methods for remote sensing and the need to

develop secure hardened comunication systems have contributed much to

this renewed interest. These developments have been paralleled by

remarkable advances that have been made in the availability of high

powered, very low frequency electromagnetic sources as well as the

availability of transmitters operating at optical frequencies. The

ready access to large, versatile digital computers has made it

possible to employ the full wave approach to obtain numerical solutions

to a wide class of important problems which have hitherto been either

ignored or over-idealized in order to reduce them to tractable problems.

To perform the full wave analyses, it is necessary to develop

f generalized field transforms that provide the basis for the complete

expansions for the electromagnetic fields in irregular multilayered

structures with varying thickness and electromagnetic parameters.

These complete expansions consist of the vertically and horizontally

polarized radiation fields, lateral waves and guided surface waves. The

generalized field transforms are used to reduce Maxwell's equations,

in conjunction with the associated exact boundary conditions for the
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electromagnetic fields, into sets of first order coupled differential

equations for the forward and backward traveling wave amplitudes.

The full wave solutions that have been derived for the scattered

radiation fields from rough surfaces with arbitrary slope and electro-

magnetic parametere bridge the wide gap that exists between the

perturbational solutions for rough surfaces with small slopes and the

Physical Optics solutions.

Computer programs are being developed to numerically evaluate

the scattering cross sectiuns. Thus the solutions obtained using the

full wave approach can also be used by engineers who are not necessarily

familiar with the analytical techniques used in the analysis.

1.1 Summary of Research

(In his comprehensive review of theoretical treatments of

scattering of electromagnetic waves by rough surfaces, Valenzela (1968)

states that scattering models have been developed "that make it possible

to apply available theories to surfaces that cannot be treated purely

by perturbation and Physical Optics..." However, Valenzuela notes that,

"these composite models are mostly based on physical considerations

and are able to explain features in radar cross-section data from the

sea that no theory can."

For instance, these composite models are used to show that back-

scatter at near normal incidence is primarily due to specular point

scattering while bckscatter at near grazing angles is primarily due

to Bragg scattering. Thus, for perfectly conducting rough surfaces

the backcatter cross section for near normal incidence is independent

of frequency and polarizatton while at near grazing angles it is

dependent on both frequency and polarization.

j

"3- -
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Brown (1978, 1980) recently employed a combination of Burrows

perturbation theory (1967) and Physical Optics theory (Beckmann and

Spizzichino, 1963; Beckmann, 1968) to obtain a solution for the back-

scatter cross sections for perfectly conducting rough surfaces in

terms of a sum of two cross sections. The first term in his solution

is the specular point backacatter cross section associated with the

large scale (filtered) surface height and the second term is the Bragg

scatter cross section associated with the small scale surface height.

Thus in his work it is necessary to decompose (i.e., spectrally filter)

the rough surface. To this end, Brown's specification of the wavenumber

kd, where spectral splitting is assumed to occur, is based entirely

upon the characteristics of the small scale structure (1978). However,

in the approaches of Hagfors (1966) and Tyler (1976), the specification

of kd is assumed to be based on the characteristics of the large scale

surface. Furthermore Brown's results for the total backscatter cross

sections are critically dependent on the specific value chosen for kd

(Brown, 1978).

In this work the full wave approach, which accounts for both Bragg

scattering and specular point scattering in a self-consistent manner,

is employed to evaluate the scattering cross sections for composite

models of rough surfaces (Bahar, 1981a,b). It is shown that the full

wave solutions for the scattering cross sections can be expressed as

a weighted sum of two cross sections. The like polarized cross sections

*i which are associated with the large scale surface we independent of

frequency and polarization. The cross section which is associated

*with the small scale surface is dependent on frequency and polarization.

I__ ;_
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Furthermore the specification of kdis not based entirely on the

characteristics of the small scale structure. To determine the versatility

of the full wave approach, it is necessary to examine the sensitivity

of the total scattering cross section to variations in the value of kd

where spectral splitting is assumed to occur.

The purpose of the research reported in Section 2 is to resolve

the apparent discrepancies between different Physical Optics solutions

for rough surface scattering. It is also shown in this section that

the appearance of the so-called "edge effect" in Beckmann's results

(Beckamann and Spizzichino, 1963), is due to premature truncation of a

closed surface integral.

In Section 3, full wave solutions are developed for the depolar-

ization of the scattered radiation fields by conducting objects of

irregular shape above rough land and sa". The research reported in

this section deals primarily with the deterministic problem. In

Section 4 these solutions are applied to random rough surfaces. It

is shown that the full wave solution bridges the wide gap between the

Physical Optics approach and the perturbation solutions.

We conclude this section with a summary of the principal elements

of the full wave approach. The principal properties of the full wave

solution and its relationships to earlier solutions of scattering

problems are also sunimarized (Behar, Me81). This suimary is also

* presented schematically in Figs. 1.1 and 1.2. The reader of this

report who is not familiar with the full wave approach will find this

summary useful even though the details of the full wave method have

been reported earlier (Behar, 1973a,b, 1974, 1981).
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(a) The electromagnetic fields are expressed in terms of complete

expansions of vertically and horizontally polarized waves. These include

the radiation fields, the lateral waves and the surface waves (Bahar,

1973a,b; 1974).

(b) Exact boundary conditions are imposed at the irregular surface.

(c) Using the orthogonal properties of the basis functions appearing

in the complete expansions of the fields, Maxwell's equations are

integrated over the transverse plane (y,z) (Bahar, 1973a,b; 1974).

Green's theorems are used to avoid term-by-term differentiation of the

field expansions.

(d) Maxwell's equations for the electromagnetic fields are con-

verted into coupled first order ordinary differential equations for

the forward and backward traveling wave amplitudes which are only

functions of the variable x (Bahar, 1973a,b; 1974). ( In view of the

integration in the transverse plane (y,z) the telegraphists' equations
I

are only functions of x). The coupled equations for the wave amplitudes

are referred to the generalized telegraphists' equations (Bahar, 1981c).

(e) Second order iterative solutions for the radiation fields are

obtained from the telegraphists' equations on neglecting multiple

scattering from the rough surface.*

(f) A variable coordinate system that conforms with the local

features of the irregular boundary is introduced and the resulting

solutions for the scattered fields are shown to be invariant to

coordinate transformations.

(g) The full wave solutions ari also shown to satisfy the reciprocity

realizability and duality relationships in electromagnetic theory.

*These second order iterative solutions account for wave scattering in

arbitrary directions.

-p
. ... ~. . .#" ,-,: - ',.
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(h) The full wave approach not only accounts for scattering and

depolarization of the radiation fields but also accounts for coupling

between the surface waves , the lateral waves anc the radiation fields.

The versatility of the full wave approach is demonstrated by

determining Its relationship to earlier solutions. Thus on using a

stationary phase approach to evaluate the integrals for the scattered

fields, the full wave approach is shown to reduce to the geometric

optics solutions (Rahar, 1981k). On the other hand, if the vector n

normal to the rough surface is replaced by its value at the specular

points nsthe full wave expressions for the scattered fields are shown

to reduce to the Physical Optics solutions. Thus the Physical Optics

approach is valid only if the contributions to the scattered fields

come primarily from specular points on the rough surface. Details

of this aspect of the research are given in Section 3.6.

In a survey of the technical literature one finds several different

j forms of Physical Optics solutions. The discrepancies between the

different Physical Optics solutions and the appearance of the so-called

"redge ef fect" have been shown to be the result of premature truncation

of the closed surface integrals. Details of this research are reported

in Section 2.

If one assumes that the scale and the slopes of the rough surface

are small, it is shown that the full wave solutions reduce to the

perturbation solutions. Details of this aspect of the research are

given in Section 3.

The Physical Optics solutions for the backscattered fields become

singular for near grazing angles. Thus in this case, even if the rough

surface satisfies the radii of curvature criteria (associated with

the Kirchhoff approximations of the surface fields), the Physical Optics
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solutions cannot be used. This is because of near grazing angles,

the principal contributions to the backscattered fields do not come

from specular points of the rough surface. (In this case specular

points, if they existed, would be on vertical portions of the rough

surface). It is shown that the full wave solutions for the back-

scattered fields remain valid as one approaches grazing angles

(Bahar, 1982).

1.2 Interim Technical Reports

Preprints of the following manuscripts were submitted to the

Contract Monitor and published as a U.S. Air Force Interim Technical

Report, RADC-TR-81-204, August 1981.

Full Wave Analysis for Scattering Cross Sections

Part 1 Random Rough Surfaces
Part 2 Composite Surfaces
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2.0 RESOLUTION OF THE DISCREPANCIES BETWEEN DIFF.DhT PHYSICAL OPTICS

SOLUTIONS FOR ROUGH SURFACE SCATTERING

2.1 Back&round

The purpose of the analysis presented in this section is to resolve

the discrepancies between the different high frequency, Physical Optics

expressions for the scattered field derived by several researchers in

the field. The analysis also resolves the questions associated with the

"edge effect" that appears in some of the earlier solutions. It is

shown that the Physical Optics approach is only applicable for specular

point scattering and that the so-called "edge effect" which appears in

earlier derivations of the Physical Optics solution for rough surface

scattering is a result of premature truncation of the closed surface

integral expression for the scattered fields. Therefore, this term must

be suppressed even when it is not very small compared to the scattered

field in the off specular direction. Since the Kirchhoff approximations

for the surface fields are used in the Physical Optics approach, it

cannot account for wave diffraction by edges.

The Physical Optics sqlution derived here for arbitrary source

excitation is shown to satisfy reciprocity and realizability relation-

ships in electromagnetic theory. The integrand in the integral expression

for the scattered field is identified with the specific reflectance (per

unit ares) of the rough surface. Although the scalar acoustic problem

is considered here in detail, the results are also applicable to

electromagnetic scattering.

I _ _ _ _I _________________

_+ _ + + +. = .. . ... ... ... . .... .... . .. , .. .
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The high frequency approximation of the full wave solution for

the scattered field is in agreement with the Physical Optics solution

derived here.

2.2 Discussion

Applying Green's theorem to problems of rough surface scattering

and using the Xirchhoff approximations for the fields on the surface,

Physical Optics (high frequency) solutions for the scattered fields have

been derived in terms of an integral over the rough surface (Beckmann and

Spizzichino, 1963). On performing integration by parts, a boundary term

which does not depend upon the shape of the rough surface appears in the

solution. When the scattering surface is large (in terms of wavelengths),

this term which is identified by Beckmann as an "edge effect" is considered

to be very small compared to the remaining surface integral and therefore

negligible.

Several researchers in' the field have clearly demonstrated however,

g that in general the so-called "edge effect" is not necessarily very

small in comparison with the remaining surface integral. It has been

suggested that the "edge effect" .... "may become important when

considering scattering in directions off specular" (Fung, Moore and

Parkins,1965). Wetzel (1966) states that Beckmann's argument that the

* :integrated terms (edge effect) can be discarded "leads to an incorrect

result for the flat surface limit and suggests a scheme to rectify the

discrepancy by retaining the integrated terms." Furthermore, Valenzuela

*(1968) finds "that Beckmann's approximation in which he neglected the

'Edge effect' leads to incorrect predictions at angles away from normal
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incidence" and derives solutions "without neglecting the 'edge affect'

terms." However, it is shown (Section 2.4) that when the term identified

with the "edge effect" is included, the Physical Optics solution (Beck-

mann and Spizzichino, 1963) does not satisfy the reciprocity relationship

in electromagnetic theory.

In addition, a peculiar non-vanishing term appears in the expression

for the scattered field even as the reflection coefficient for the rough

surface is set equal to zero. This unacceptable result becomes more

pronounced in the off specular direction.

To compound the problems one encounters with the so-called "edge

effect," Wetzel (1975) points out that the three formulations for the

scattered field derived by Eckhart (1953), Parkins (1967), Boyd-Deaven-

port (1973) "give three different results for the scattered field." What

is not so obvious (according to Wetzel) is "why this should be." Wetzel

goes on to suggest that "These inconsistent results, . . . must somehow

be associated with the use of the Kirchhoff approximation in the scalar

Helemholtz integral." All three formulations cited above are based on

the Kirchhoff approximations and the discrepancies are obvious even

before the integration by parts and the appearance of the term associated

with the "edge effect."

Several questions therefore need to be answered. Should the so-

called "edge effect" be included in the solution if it is not very small

compared to the scattered field? If the "edge effect" does "become

important" and is included in the solution, how can one account for the

fact that the resulting Physical Optics solution does not satisfy

reciprocity and does not vanish as the reflection coefficient becomes

vanishingly small? How can one resolve the discrepancies in the formu-

lations by Eckart (1953), Parkins (1967) and Boyd-Deavenport (1973)

o. i.
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even though all apply Kirchhoff approximat ions and none Involve the so-

called "edge effect"?

To this end, in Section 2.3, the general form of the Physical Optics

solution for the scattered fields is presented In terms of a closed sur-

face integral and an arbitrary source distribution (spherical waves

rather than plane wave excitation) is assumed. In Section 2.4 the limit-

in& forms of the Physical Optics solutions with and without the "edge

effect" are derived f or plane wave excitations. Realizability and reci-

procity relationships in electromagnetic theory are examined and the limiting

case in which the reflection coefficient vanishes is also considered.

In Section 2.5 it is shown that the discrepancies between the different

formulations for the scattered field and the problems that arise with the

so-called "edge effect" in the Physical Optics solution is due to the pre-

mature truncation of the closed surface integral encountered in the appli-

cation of Green's theorem. On applying the divergence theorem (in two

dimensions), the term associated with the "edge effect" is shown to vanish

identically for all scatter directions. The integrand in the final expres-

sion derived here for the Physical Optics scattered field is identified

with the specific reflectance (per unit area) of the rough surface.

Furthermore, the integrand is not proportional to the gradient of the

tough surface and is therefore not undefined at edges. The integration

can be performed only over those portions of the rough surface with a

non-vanishing reflection coefficient. Shadowing effects are considered

and the distinction between the scattered field, the reflected field and

the shadow forming field are taken into account (M~orse and Feshbach,

1953).
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The final form for the Physical Optics scattered field satisfies

the reciprocity and realizability relationships. It vanishes as the

reflection coefficient vanishes at the rough surface for all incident

and scatter angles. Using the Physical Optics approach, the term asso-

ciated with the "edge effect" aust be suppressed even for scattering

far off the specular direction. The Physical Optics solution which employs

a Kirchhoff approximation for the surface fields cannot account for wave

diffraction by edges.

In Appendix (2.A), it is shown that on following the analytical

procedures of Section 2.5, the Eckart, Parkins and Boyd-Deavenport solu-

tions are in agreement provided the integration is over the closed sur-

face A 0 . Furthermore, the integrand in all the above Physical Optics

solutions (which employ the Kirchhoff approximations) are shown to be

equal at the specular (stationary phase) points.

While the "Helmholtz Integral Equation" (2.10) (associated with

the scalar problem) is considered here in detail, it is interesting to

note that similar difficulties arise when the "Stratton-Chu Integral

Equation" (associated with the corresponding vector problem) is applied

to surfaces that are not closed (Barrick, 1965).

2.3 Formulation of the Problem

Consider the solution to the scalar acoustic potential *() that

satisfies the inhomogeneous wave (Helmholtz) equation

(V 2+ k2)4(r) 2 -4f s(i) (2.1)

in which s(;) is proportional to the acoustic source density and the

acoustic wave number is

k -w/c (2.2)

I _
. . . 4'.
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in which c, the acoustic velocity, Is related to the medium density p

and elasticity X and acoustic impedance Z through the equations

(Brekhovskikh, 1960)

c =Z - pc - r (2.3)

The acoustic pressure P and particle velocity V are

V--grad , Pi---i0fo (2.4)

and the boundary conditions at an interface between two media charac-

terized by c,p and cl,P1 respectively are

P(rs) PIG) and V( ) =- n-V1 (r8) (2.5)

in which n is the unit vector normal to the interface. Thus at r -

P- Pl I (2.6a)

and

n an - or (2.6b)

To facilitate the solution to (2.1) consider also the Green's func-
Stion G(rji 0) that satisfies the equation

2  2 -1- ) - -06G-ro) (2.7)

in which ( is the Dirac delta function. For an infinite medium

characterized by parameters p,c (Morse and Feshbach,1953)

G(rflr 0 G(i i - e (2.8)

in which an exp(-iwt) time dependence is assumed. Applying Green's

second theorem to the volume V0 bounded by the closed surface Ao

separating the two media, p,c and pl,cl one gets

I4# ~ 2 G-GV2 *)dV0 - 1V G-GV * 29

ji _
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Thus (Worse and Fashbach,1953).

1)- a(;r ( +)dV0  4 ( ) O --G(;l ;a)%.o:)1'; "o (2.10)

in which both the source and observation point are In the volume V° and

Vo - -ndAo where ; is the unit normal to the surface A0 pointing towards

the medium in which the source and observation points are located (see

Fig. 2.1). If medium p,c is infinite (p-p 1 , c-c 1 ) the surface integral

vanishes and *(i) reduces to the incident umperturbed field ()

(Morse and Feshbach,1953). Thus

r *iklR-rol

SI6() e s(r ) - dV o  (2.11)
6) f 

0

If the source s(i ) is in the vicinity of the origin

o;-;o0 = r o-;o';r rr (2.12)

the far field expression for *:4 is
e ikri ( -ikr °i ikr (

GI *() - i is(;o0)a dV 0 . (;')-1 - (2.13)
r r

in which the gain function g(;') depends upon the direction of the unit

vector ni (O,) pointing from the source (in the vicinity of the origin)

to the point at ; (Jordan and Ramain,1968). Since g(n ) is not a function

of ri, the distance from the source to the field point, the far field
approximation for the incident velocity vector WIG), (2.4), is given by

-V# () - -(.k -( 1k '(;) (2.14a)r I
Thus for the far field

Vi - ik ai Pl/ 0 - V?1lz (2.14b)

in which Z is the acoustic Impedance (2.3). Uxpreosing the total acoustic

potential * as the m of the Incident (unperturbed) and scattered
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(SOURCE)

/f

0

POINT ON SURFACE~ A0

Figure 2.1 Source point, observation point and the boundary surface.
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potential e and a respectively

0 M' +s (2.15)

equation (2.10) reduces to (Morse and Feshbach 1953)

8i)- -L I[* (:)V0 G(~ij:) - G(;Ii:)V0**(;)dA 0  (2.16a)

and

0 - .(sv(I:-G(r)oI(;:)]ndAo (2.16b)-s S- ,41 0 0 0

The Kirchhoff (Physical Optics) approximations for P( ) and V ol(re) are
0 0 0

-r is
* - (1 + R)*J (r) 0 J~ 5  ikn (1 - R)*J (r ) (2.17)

-i -
in which R(-n 'n) is the acoustic reflection coefficient at a flat inter-

face between medium P,c (where the incident wave originates) and medium

PlcI (Brekhovskikh,1960; Ishimaru,1978). Substituting the far field

approximation for V G(rjr) in (2.10) the Kirchhoff approximation for
00

the scattered acoustic potential is

5,- ~ ik fr -f-i )G(rjis) GdA
W ,is[ [(l+R);f - (l-R);,'](r 0) 0o.

g(;') exp[ik(ri +rf)]Mi i. G ) s s dA0  (2.18)

4 r

in which ri and rf are distances from a point on the surface A and the
a 5 0

source and observation points respectively,

and R - R; p pj k(nl+ nf) p xx + p y a
xx y(2.19)

v - k(ni-n Vxa xf) -
xx. yy zz

The results of the analysis for the non-depolarized scattered electro-

magnetic field is the same as (2.18) with the exception that the acoustic

reflection coefficient is replaced by the Freanal reflection coefficients

for horizonatally and vertically polarized waves (Beckmann and Spizzi-

chino,1963).

_- --- _ . . _ . . , --
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2.4 The Physical Optics Solution and the So-Called "Edge Effect"

In order to apply Green's theorem (2.9) to surfaces that are not

closed, Beckmann and Spizzichino (1963) suggest that "one may regard

the rough surface S as part of any closed surface S' of which only S

has a non-vanishing reflection coefficient, the remaining integral

over S'-S is then easily shown to vanish so that there is no need to

introduce the surface S"'.

Furthermore Beckmann assumes that the surface S is such that the

distances ri and rf from the source and the observation points to points
s s

on the surface S are much larger than distances between two points on

the rough surface. In this case it is convenient to define a new coordinate

system rs(Xsyszs) associated with the surface S whose origin is shifted

from the original coordinate system r(x,y,z) such that

r(x,y,z) - r0+ s (Xs'YsyZs) (2.20a)

The surface S is defined by

f(xsYsZs) - Z - (xsys) - 0, -X < x < X,-Y < y < Y (2.20b)

In (2.20) ri is the constant vector joining the origins of the two0

coordinate systems and z 0 is the mean plane of the surface S, thus

j (XsYs )dxs dYs = 0 (.1

s -i -f
In this case for points on the surface Sn and n are constant and

i i -i - f f -f -r - r + n *r r = r - n "r (2.22)

The distances from the source and observation point to the origin of

the new coordinate system are ri and rf respectively. (see Fig. 2.2).
0 -

Thus for points on the surface S, the incident field Wi(r ) is
0

ikr i ik;i ikii.:
i(6 )  g6i) _ 0 E e (2.23)

r i 0r 0

*
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Ilf
(TO OBSERVATION POINT)

(FROM SOURCE)
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lp.C

POINT ON SURFACE

f(XY~Z) - ;- (xy. 0

Figure 2.2 The scattered field from a rough surface.
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For a uniform plane wave excitation assumed by Beckmann and Spizzichino

(1963) g(i) is assumed to be constant and
i
E 0 1 (2.24)

The unit vector a normal to S is
a W + )/[ (21)2 + (4j)2+

n Vf/IVf I a 2, ; + (2.25)

and

dA - dx dy /a -dx d , 5 ,, (2.26)

Thus subject to all the assumptions made by Beckmnann the scattered field

(2.18) reduces to (Beckmnann and Spizzichino,1963; Ishimaru, 1978)

ikr f

, (r) - ef m-Vfe ivrsdx 8dy s(2.27)

Or S

where the integration is over the open surface S which has a non-vanishing

reflection coefficient. For a flat surface normal to the unit vector

n , n a +rn a + n a (2.28a)
0 oxx Oy y oz z

0~ n ox +no y
n 0*r, M 0 , f(z a n z + nX - - (2.28b)

oz oz

the scattered wave is given by

ikr f

' M Or ie RVf4XY sinc[(v x- v z n /n oz)Xlsincli(vy- z n Iy no )YJ

0 (2.29)

in which sincci - (sincafct, and

-n

R-Vf - (R _ p) __a (2.30)

For rough surfaces Beckmann obtains on assuming R -const. and on integrating

by partsik [ ivrJei afd

*86) ie o e ivradxidy,+ i M ~'.'y

47rr 1vzz-

+ i -1 J[e~~J dyl(31

- -. (2.31)i
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Using the full wave approach (Bahar ,1981a), it can be shown that

for high frequencies R in (2.31) must be evaluated at the specular point

where n - ;/v.

The last two terms in (2.31) which do not depend on the shape of the

surface are identified by Beckmann as an "edge effect." These terms are

considered to be very small compared to the first term in (2.31) and

therefore negligible (Beckmann and Spizzichino,1963). Since

2  R(v +v 2+v)2
Ry x y z

v V v (2.32)

the scattered field without the "edge effect" is given by

ikr f

z ie 0 v2 e v; r s dxsdY (2.33)47r f  v z a

0 S

On applying (2.33) to flat surfaces (2.28) one gets

ikrfS i- e. o [,Rv Z
4Sri -- 4XYsincC(vx-vznox/noz)X]sinc[(vy-vmnoy/nz )Y] (2.34)

0( ~4 7rr f vZ xo yo
0

The results for scattering by flat surfaces of area A (2.29)(which con-

tains the "edge effect") and (2.34) (which does not contain the "edge

effect") are now compared in detail. For scattering in the specular

direction with respect to the plane n - 0 (2.28).

-f -i
n0  0 n -D - /v , v- (2.35a)

M'Vf - -(l;-).;/vno - -Rv2/vnos Rv2/V (2.35b)

0 09 z

Thus for the specular case the "edge effect" vanishes and the two solu-

tions (2.29) and (2.34) are dentical. The specularly scattered field

from the flat surface ; ,. - 0 (2.28) is
o s

i _ _ __
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ikr 

f

r e cosk e A (2.36)2 rf  oe

o

in which R is the reflection coefficient for a wave incident at the

angle 6 upon the surface no " - 0. Since 4 XY is the projection of
8 5

the surface n r - 0 on the xy plane, the area of this surface is

4XY 4XY
A M 4 . 4 . (2.37)n.a noz

and 
z

v- 2k cose , v vn (2.38)5 z

in which 8 is the angle of incidence and scatter for a specularly5

oriented surface, n - ;oso (2.35a). Thus, the Physical Optics solu-

tions (2.29) and (2.34) for specular scattering by a plane of arbitrary

slope satisfy the realizability relationship in electromagnetic theory.

In the general case however, they could differ very significantly. To

test these solutions for reciprocity interchange the location of trans-

mitter and receiver. This amounts to the following substitutions in

(2.27) and (2.33)

S-i -f -f -i

-n , n + -n , v , , p , -p (2.39)
Clearly therefore (2.33) satisfies reciprocity while (2.27) does not.

Furthermore on setting R - 0 solution (2.33) vanishes, as must be the

case for a non-reflecting surface. However, on setting R - 0 the solu-

tion (2.27) which includes the so-called "edge effect" reduces to

ikr 
f

f r p'Vf e dxsdy (2.40)
47rr s

On integrating over the surface n0 -r8 0 (2.40) becomes

ikrf
a - -ie 0 -i-;f -4 () - (n +)n nA sinc[(vx-vz no,/noz)Xsinc[(Vy-Vznoy/noz Y]

(2.41)
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The above expression vanishes only for backscatter (n - ) or the

specular case in which ; 0 no0 (2.35&) and

.-i -f--(n+n)-n .'" .o0 (2.42)

Thus while the "edge effect" is not neglected in (2.27), this Physical

Optics solution for the scattered field does not satisfy reciprocity nor

does it vanish for the non-specular case as the reflection coefficient

becomes vanishingly small. On the other hand the Physical Optics solution

(2.33) without the term associated with the "edge effect" satisfies the

reciprocity relationship (2.39) and vanishes as R - 0. It also satisfies

the realizability relationship (2.36). However, it has been shown that

in general the so-called "edge term" is not necessarily very small in

comparison to the first term in (2.31) which corresponds to the solution

(2.33) (Fung, Moore and Parkins,1965). In these cases it has been suggested

that "the 'edge effect' . . may become important when considering

scattering in directions far off specular". Yet it has been shown here

that on retaining the "edge effect", the Physical Optics solution does

not satisfy reciprocity and results in a peculiar non-vanishing scattered

field for the non-specular direction (2.41).

The questions that need to be resolved therefore, are whether the

"edge effect" should be suppressed only when it can be demonstrated that

it is relatively small compared to the scattered field and if it needs

to be included in the solution when it is not relatively small, how does

one account for the fact that the resulting solution (2.27) does not

satisfy reciprocity and does not vanish as the reflection coefficient

becomes vanishingly small?

FI
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2.5 Evaluation of the Closed Surface Integral for the Scattered Field

In order to resolve the questions raised in Section 2.4, we examine

the suggestion that "one may regard the rough surface S as part of any

'closed surface S' of which only S has a non-vanishing reflection

coefficient, the remaining integral over S'-S is then easily shown to

vanish so that there is no need to introduce the surface S"'. To this

end, the starting point of our present analysis is the "closed surface"

integral (2.18) in which the vectors M,v and p as well as the distances

ri and rf are functions of position on the surface A (spherical waves).8 s 0

Divide the closed surface A into two parts S and S2 and let the

equation for the surfaces S1 and S2 be (see Fig. 2.1)

f1 (v,y,z) - z - 11(x,y) - 0 (2.43)

and

f2 (x,yz) - z - -2(x) = 0 (2.44)

respectively, such that on S., n.a z  0 and on S29 na <0 and on the

coon closed line boundary C, na z  0.

Thus IVfI 1 n- > 0

ndA dx ady avfI
A -Vf2 nea z  < 0 (2.45)

where n is the inward normal to the closed surface A and
0

f1 (xY,Z) - f2 (xyz) on C (;a z - 0) (2.46)

Assume that the reflection coefficient R does not vary rapidly over the

surface A (i.e., ignore scattering due to changes in the reflection
0

coefficient) and assume that the surface A is not excited by the source

at grazing angles such that

Ig(n )zv < K , K positive real const. (2.47)

Thus retaining only the far field terms it can be shown that

__ _ _ -------.--.,6--, - - - - -- - - - ~ -- - - - -.
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V *(RG( )exp ik(r + f )/r rf v V
r a a s )  a

- . I.(; -v Vf) (2.48)

in which
r. 62 + y.+ '(,y)) (2.49a)

and r f - [(x x) 2 + (y- y)2 + (.z) 2 (2.49b)

and f and are defined in (2.43). Denoting the value of 7 (2.48) on S1

and S2 by F1 and F2 respectively and using the divergence theorem in

two dimensions, it follows that since F1 = F2 on C

Jv'(1 - 1 2 )dxsdys (Ii- F2 )'(aXdY,-a x a 0

sm if[iFl';-v-Vf)i - 2 .( -v zVf)2]dxsdya (2.50)

In view of (2.45), (2.50) reduces to

J [l.Vzlvyf-P 2 .vz 2 Vf2 ]dxsdy v f z.) -

-(7v-)2Jdxsdy s  (2.51)

and since M-v - (R; -p).v - Rv 2 , (2.18) reduces to

B- F%2 ± f 1kr+ r) ~1

S(r) _v g(nl)exp r f dx dy5  (2.52)
~ 'z r ar~ 12

Thus the above expression does not contain the term associated with the

"edge effect." The integrand in (2.52) corresponds to the specularly

reflected wave from an elementary surface of area

dAo W dxadys/no';z (2.53)

Thus the integrand of (2.52) is the contribution to the scattered field

from an elementary surface and may be regarded as proportional to the

"specific reflectance." In (2.52) instead of integrating over the closed

surface A° one my integrate only over the surface S for which R 0 0.

Furthermore, if the distances from the source and observation points

to points on the surface are very large compared to distances between

i-any two points on the surface S, and nfcan be assumed to be constant

...... ..............
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(see Section 2.4) and (2.52) reduces to
2  Eik(r i + ro f

a() ". g(ni)exp [ikr 0 r 0) r f exp(iv.s)dxsdy. (2.54)
z r 0

Thus the terms identified with the "edge effect" (2.31) should be

suppressed even when they are not relatively small. (Beckmann and

Spizzichino,1963).

It should be noted that the above expression was derived under

the assumption that lg(ni)/vz I < K (2.47). Thus (2.53) cannot be used

for excitation at grazing angles. For grazing angles, the Physical Optics

approach is not valid and a spectral approach must be used (Bahar,1981a).

To account for shadowing in the high frequency limit one should note

that 4s -4' on the shadow boundary since the total field 4 - 4'+ 4f

vanishes. Furthermore, when the observation point is in the shadow region,

the scattered field consists of the "reflected wave" 4 and the "shadow-

forming" wave (Morse and Feshbach,1953).

2.6 Concluding Remarks

It is shown here that the discrepancies between the different

formulations for the scattered field and the problems associated with

the so-called "edge effect" in the Physical Optics solution are due to

the premature truncation of the closed surface integral expression for

the scattered fields. On applying the divergence theorem (in two dimensions)

to the closed surface integral (Section 2.5), the term identified as the

"edge effect" is shown to vanish identically for all scatter directions.

Thus using the Physical Optics approach (which cannot account for wave

diffraction by edges), the so-called "edge effect" term must be Bur-

pressed even when it is not very small compared to the scattered field.

!I
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As a result the final form for the Physical Optics solution (2.52)

satisfies reciprocity and the realizability relationships and it can be

used for arbitrary excitation. The integrand in (2.52) is Identified

with the "specific reflectance" (per unit area) and it vanishes as the

reflection coefficient for the rough surface vanishes.
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2.A Appendix

For the convenience of the reader, the formulations for the scattered

fields derived by Eckart (1953), Parkins (1967) and Boyd-Deavenport (1973)

are suxmarized here for the Direchlet condition and point source excita-

tion (s(r) - 6(r) (2.1)). Thus on substituting

i ikral } ( (r< ' ) l" ' +,t'' (r 0. *i< o' " , . (R" -1-) (2A.1)
0 0 0 0 r

S

and the Kirchhoff approximation

L+A! =n 3 2 2 ik n- (r (2A.2)
0

into (2.10), and on replacing the closed surface A by the open surface S

one obtains Parkins formulation

ikr
f

(- - -ik i i-s dS (2A.3)

s

If on the other hand (2A.1) and (2A.2) are substituted into (2.16a), one

obtains Eckart's formulation

ikr
f

0s(f) -f (2A.4)

Boyd and Deavenport assume that the Green's function G(rr ) satisfies
10

(2.7) as well as the boundary conditions (2A.1) and (2A.2) at S. Thus

using (2.16a) as the starting point and substituting G(rijr) - 0,
0

aG(r :)/n = -2ik ;f-;*n G(;I) one obtains the Boyd-Deavenport formulation:

ikrf

nak f- r '(;: adS (2A.5)

The three formulations (2A.3), (2A.4) and (2A.5) will obviously give

different results except for backscatter ;f- N ote also that in all

I_
i.
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the above formulations the integrands are equal at the specular (stationary

phase) points where n - n (2.35a) and

-f -I-
-n -n - (2A.6)

08 -f n -n
2 0a os n n0 1f _ i I  (A6

Thus the above three physical optics formulations (2A.3), (2A.4) and

(2A.5) can be shown to be in agreement, provided that the respective

integrals are evaluated using the stationary phase method (Bahar,1981a).

However, the discrepancies between the above three formulations increases

as non-specular scattering becomes more important. When the most signifi-

cant contributions to the scattered fields do not come from specular

points (as in the case of backscatter near grazing incidence) the Physical

Optics or Kirchhoff approximations are not valid and other methods must

(be used to determine the scattered fields (Bahar,1981a).

In Section 2.5, it is shown that either (2.10) or (2.16a) can be used

for the starting point of the analysis provided that integration is over

the closed surface A . Thus on following the analytical procedures of
0

ISection 2.4 and noting that
k~i.-2i -f -

-_Gf.-_ k(n- . v-2 -f*v - -2 k (1-n .n ) (2A.7)

all the above three formulations can be shown to reduce to (2.5) with

R - -1 and g(n) - I prov'ded that in (2A.3), (2A.4) and (2A.5), the

integration is over the closed surface A0.

]0

- - - - - - - '
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3.0 DEPOLARIZATION OF THE SCATTERED RADIATION FIELDS BY CONDUCTING

OBJECTS OF IRREGULAR SHAPE ABOVE ROUGH LAND AMD SEA-FULL WAVE

SOLUTIONS

3.1 Background

In this section the full wave approach to problems of scattering

by rough surfaces has been applied to the problem of depolarization of

the scattered radiation fields by objects of finite conductivity and

irregular shape. In the analysis complete expansions are employed,

exact boundary conditions are imposed and a variable coordinate system

that conforms with the local features of the irregular surface is used.

The full wave solutions are expressed in forms that can be readily com-

pared with earlier solutions and they can be used to reconcile the

differences and bridge the wide gap between these solutions. Thus, the

full wave solutions for the backscatter cross-section are shown to

reduce to the Physical Optics solutions when the high frequency,

statijonary phase approximations are used. Similarly, for slightly

rough surfaces the full wave expressions reduce to the perturbational

solutions for the backscatter cross-section.

The full wave solutions are shown to be consistent with the duality

reciprocity and realizability relationships in electromagnetic theory.

These solutions are invariant to coordinate transformations. Since

upward and downward scattering are considered in the analysis, multiple

scattering and shadowing affects can be taken into account in a self-

consistent manner. Thus, the total scattered field, varies continuously

as the observer moves across a shadow boundary and there is no need to

- - - -~- ---- ---- -- - -1-a
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introduce transition terms derived from other theories. The full wave

approach can be applied to deterministic, periodic rough surfaces. It

can also be used to determine the scattering by finite scatterers in

the presence of rough land or sea.

Scattering by random rough surfaces id dealt with in detail in Sec-

* tion 3.5. The determin'istic scattering problem considered here in

detail provides the basis for such an analysis.

3.2 Discussion

In this paper, the full wave approach has been applied to the

problem of depolarization of the scattered radiation fields by objects

of finite conductivity and irregular shape. Since the full wave approach

(Bahar,1981a) can account for multiple scattering, the irregularly shaped

objects may be in the vicinity of rough land and sea. Thus these solutions

could also be used to distinguish between the radar returns from the

irregularly shaped object and the clutter from rough surfaces in the

background.

The principal elements of the full wave approach are as follows:

(Bahar,1981a) Complete expansions of the electromagnetic fields are

employed. Thus, the electric and magnetic fields are expressed in terms

of the radiation term as well as the lateral wave and the surface wave

terms. Since in general the irregularly shaped objetts and rough surfaces

* depolarize the incident waves, the complete expansions include both

vertically and horizontally polarized waves (Bahar, 1973a). Exact boundary

conditions for the total fields are imposed at the irregularly shaped

surfaces. Furthermore, the medium is characterized by the electromagnetic

parameters, c and Vi (which may vary along the propagation path) and it
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is not necessary to employ approximate impedance boundary conditions

(Bahar and Rajan, 1979). Precise mathematical procedures are used in

the analysis. Since the characteristic functions used in the complete

field expansions do not individually satisfy the boundary conditions at

the irregular surfaces, in general the field expansions do not converge

uniformly on the boundaries. Thus, for example in order to avoid term-

by-term differentiation of the field expansions, use is made of Green's

theorems (Bahar,1973b). Maxwell's equations for the transverse compon-

ents of the electric and magnetic fields are converted into a rigorous

set of generalized telegraphists' equations for the forward and back-

ward traveling wave amplitudes. These first order, ordinary, coupled

differential equations can be solved using numerical or analytical

techniques (Bahar,1973b). The solutions for the coupled wave amplitudes

are substituted into the complete field expansions and the steepest

descent method is used to obtain the expressions for the scattered

radiation fields (Bahar,1981a). A variable coordinate system that

conforms with the local features of the irregular boundary is used to

remove the restrictions on the gradient of the irregular boundary (Bahar,

1980). (See Appendix 3.A)

The principal advantages of the full wave approach are as follows:

The full wave solutions are valid for all incident and scatter angles

including grazing angles, Brewster angles, scattering in the specular

direction and backcatter. Since upward and downward scattering are

considered in the full wave analysis, multiple scattering and shadowing

effects can be taken into account in a self-consistent manner. Moreover,

the total scattered fields vary continuously as the observer moves across

a shadow boundary and there is no need to introduce transition terms
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derived from other theories. Since exact boundary conditions are imposed

in the analysis and there are no restrictions on the gradient of the rough

surface, it is not necessary to characterize the rough surface by an

approximate impedance boundary. Furthermore, since precise mathematical

procedures are followed in the derivation of the generalized telegraphists'

equations, the full wave approach can be used even when the characteristic

functions, used in the complete expansions, do not individually satisfy

the boundary conditions at the irregular surfaces. The full wave solutions

are shown to be consistent with duality, reciprocity and realizability

relations in electromagnetic theory. They account for coupling between

the radiation fields, the lateral waves and the surface wave terms of

the complete field expansions (Bahar, 1977). The full wave solutions

are valid from low frequjencies up to optical frequencies provided that

the illuminated surface is at least several wavelengths wide. They can

be expressed in a form that can be readily compared with earlier solutions

that have limited applications. Thus these solutions can be used by

the engineer who is not necessarily familiar with the analytical tech-

niques used in the derivations. Furthermore, the full wave approach

can be used to resolve the discrepancies that exist between earlier solu-

tions. Thus the perturbations solutions (Rice, 1951; Barrick, 1970),

can be reconciled with the corresponding Physical Optics solutions

(Beckmaann and Spizzichino, 1963; Beckmann, 1968). The full wave approach

* can be applied to deterministic, periodic and random rough surfaces.

* These solutions are invariant to coordinate transformations and they

can be applied to problems of scattering by irregularly shapti )bjects

of finite conductivity as well as to problems of scattering by rough

land and sea.
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In Section 3.3, the problem is formulated and the principal

elements of the full wave approach are summarized. In Section 3.4, the

full wave solutions are presented for the scattered radiation fields by

irregular objects in the vicinity of rough land or sea. In this section

the effects of shadowing and multiple scattering are accounted for. In

Section 3.5 the invariance properties of the full wave solutions as

well as the duality and reciprocity relationships are examined in detail.

In Section 3.6 the stationary phase approach is used to obtain the high

frequency approximations of the full wave solutions. These solutions

are compared with earlier Physical Optics solutions that are based on

the Kirchhoff approach. In Section 3.7 realizability is examined and

energy conservation is shown to be satisfied. The full wave expressions

for the backscatter cross-sections are derived and they are shown to

be in agreement with the corresponding perturbational solutions if the

gradient of the rough surface is assumed to be small. Thus, the

discrepancies between the perturbational and the Physical Optics solu-

tions are resolved and the wide gap that exists between them is bridged

by the full wave solutions. In Section 3.8 the full wave solutions are

applied to grazing, specular and Brewster angles. Thus, if at grazing

angles, stationary phase points do not exist on the rough surface, the

Physical Optics solutions fail even at very high frequencies. Special

forms of the full wave solutions are given for good conducting boundaries.

3.3 Formulation of the Problem

To determine the reflection and transmission of electromagnetic

waves at the interface between two isotropic media characterized by

different permitivities, c, and permebilities, pa, It is necessary to

decompose the incident (unperturbed) electromagnetic radiation (far)
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fields into vertically and horizontally polarized waves. When the

interface is a plane normal to the unit vector a for instance, the

plane of incidence for a wave traveling in the direction ;' is defined

as the plane normal to the unit vector aHi' where

ai"(n x ; y )l]I x a y (3.1)

Since the radiation fields are normal to n , the incident electric

fields can be expressed in terms of the orthogonal pairs of unit

vectors aHi and avi as follows:Hi i Ei- + i

E E avi +E a (3.2)

where -i
avi ,-H,, n (3.3)

The corresponding magnetic field components for the vertically and

horizontally polarized waves are1] IE'
H~i Y1 EvHi

in which ri - (/e) is the intrinsic impedance. Thus

i (vi - Hi - -i

H aHi) x n (3.5)

When the boundary between the two media is irregular, as in the case

of a rough surface f(x,y,z) - 0, it is convenient to decompose the

radiation fields into vertically and horizontally polarized components

EVi and Ei with respect to the "local tangent plane." This plane is
n n

perpendicular to the varying unit vector n which is the outward normal

from the scattering object (see Fig. 3.1). Thus in this case the

incident radiation fields are expressed as

-i Vi -n EHi-n (3.6)
E... a"i +1 Hi (3.6)

J



40

- x

0

a-a

0
w -4

LL.

4A5

00 di
9- 0

__

00

0

.0

-4
0

0.

PA



41

where

aHi (n x n)/I;jx n (3.7)

The relationship between the respective components of the vertically

and horizontally polarized waves is

G (3[
i n  n -i i] TG i  (3.9)i [ Eij i_ c,ij Hi.,

where G is defined in (3.4) and Ci and S are the cosine and sine of

the angle between the planes of incidence normal to aHi and a Hi. Thus

and Si are expressed in terms of the dot and scalar triple products,

- Ru and S1 - sin* Hii (3.10)

Since the matrix T in (3.9) is Hermetian

i(TiT i) - I (3.11)

The invariance of the vector E in (3.2) and (3.7) requires that

i T i 
(3.12)

-nf

In a similar manner the radiation field Ef, scattered in the direction

-f
n can be expressed in terms of vertically and horizontally polarized

components with respect to the reference plane normal to a or withy

respect to the plane normal to n. Thus

-f - Vf- +R - Vf -n + E~f -n (3.13)
EV -E n- aVf n '1

The relation,.kLip between the respective components of the vertically

and horizontally polarized waves is

G f -- - J Tf Gfn  (3.14)

:i n
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in which C and S are the cosines and sines of the angles between the

planes of scatter normal to aU and .a;n. The expressions for the unit
- - -n -

vectors aVf .a, f and Sif as well as for C* and 4 are obtained

from the above expressions for U aiU avIC and Si on

-i -f
replacing n' with n

The full wave expression for the radiation field scattered by an

elementary area dA normal to the unit vector ; can be expressed in matrix

form as follows, (see Fig. 3.1, Bahar, 1981a).

dGf  G Ci TfF(fn, in)Ti exp[ik (;f- ni). s]dA.G Ci
0 0 0 a

E G 0 dC(n ,n)G (3.15)

The constant G° is given by

G - -ik exp-ik or f/27rrf 3.16)

In which k - w(1i £) is the free space wave number, '0 and c are the

free space permeability and permittivity respectively, and rf is the

distance from the origin to the observation point. The assumed exp(iwt)

time dependence is factored throughout this work. The transformation

I matrices T and Tf are defined in (3.10) and (3.14). The elementary

area dA is given by

dA - n dx dz/(na) (3.17)

and the matrix Gt for the incident fields (3.4) depends upon the

excitation. Thus for electric and magnetic dipoles oriented in the aY

direction (Bahar and Rajan, 1979)

I nJ P-V

G~ P Ei -. zp r i 0 ik6 sineo exp[-iko r i)f 0J PV
4rI i-4 , P=H (3.18)

in which r is the distance from the dipoles to the origin and J (Amp-

meters) and N (Volt-meters) are the electric and magnetic dipole moments.

The angle e0 is the angle of incidence in medium 0 with respect to the0

___
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reference plane normal to a . Thus, (see Fig. 3.1)

coseo n *a (3.19)

The angle ein is the angle of incidence with respect to local tangent
0

plane normal to n. Thus (see Fig. 3.1 and Appendix 3.A)

in in -I- (3.20)
cosO - C 0- -n *n (.00 0

In (3.15), rs is the position vector from the origin to the elementary

area dA on the boundary of the scatterer. The surface of the scatterer

is given by
y-h1 (x,z) , na y> 0

f(xyz) - 0 - {y-h 2 (xz) .;;y < 0 (3.21a)

Thus

r - x a + h(x,z)ay + z az- z + f(x,y,z)ay (3.21b)

The unit vector n is the outward normal from the scatterer. Thus

n ± Vf/JVfJ= siiiy c06 a- + cosy a + sny sin6 a,, f}f ivcs x y z

h + - ha]/(h2 +1+h 2 "  (3.22a)
x y z  z( x  z

in which the upper and lower signs are used for surfaces y-h1 or y-h2

I respectively and

h - 3h/ax and h - Dh/az (3.22b)x z

The scatterer is characterized by the complex permittivity and

permeability c1 and UI respectively. For simplicity in this paper the

scatterer is assumed to be opaque, therefore transmission through the

scattering object is neglected. The unit vectors n and nf in the

directions of the incident and scattered waves respectively, can be

expressed as follows in terms of the reference coordinate system

n- .sinG i coa 41 - cose a + nine' sin, a (3.23)
0 x 0 y o z
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and

*i= o cs a + cas a + 0 sait a (3.24)0y oz

The elements FPq of the 2x2 scattering matrix F( fnUihn), (3.15) are

given by (Babar, 1981a).

in fn in.fn fn in infn fn in
2C O  r C o C C cos(O4 )r )(1o k )

inV 00 r1 1 00 ) rllC+lj oC F n - o n fn. (

o (Cn+fCin ) +YnCfn)(infn.

n in f in f n f fn
FH s( - )2C° +- r(C-S S )C -(l-iCI +C

inH 0 0 r 1 0 r 1 r

r -(3.25a)

fn in in fn in n

CinFV~ =_ sin( -* )2C Co nr[(1-i/ r)C1 -(1-1/pr)C ISCin in n c fn.- in fn (3.25)(C Ir or 1 /(c o +C )
C ~ ~ i( in F)WC 0 C0 rn 32c

0 (ci +1C in )( nfnr En in E n

inVH 7I 0h fn +r~l<;0 1~j'C o ,r

In which the dimensionless quantities nr, r' * r and p r are nr  ( (111/c0o)

1r 
= Th°' Er f I /C°0 and p r  i on d  fo Sel

in fn
The sines of the angles 81 and for medium 1 are given by Snell's law

sin in sin, 5 fn fn fn.2

1 sine, = S 0nro i sine 1 = (3.26)

Thus

in in [ i(Sin)2]h , fn OSfn . fn2 (3.27)
c1 [ 1 c1 1 [(3.27)

Furthermore, the angle between the local plane of incidence and the

local scatter plane is given by

cfncin -Cfci +fSi f i

C-8% fn in n 0 C0  0 0 0 0 (3.28)
colHn-f n  -fHi = Sfn S 

in

and 0 0
in(- ....-n- ff f i iin an Ea aHin] Esinyj 2 CSsin( -6)-C.Sosin(o 6

+cosy 00f sifl(,f i )]SfnSin (3.29)

~7
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3.4 Full Wave Solutions for the Scattered Radiation Fields-Effects of

Shadowing and Multiple Scatter

The total scattered radiation fields are obtained by integrating

the expression for the differential scattered field (3.15) over the

surface of the scatterer which is both illuminated and visible at the

observation point. All four elements of the scattering matrix Cin F,0

in (3.25) vanish as

in -i - in
C 0 - nn =0 , 0 -* + v/2 (3.30a)o 0

or fn -f - fn
C m n *n0 - 7r/o2 (3.30b)

Thus, the scattered radiation fields vanish in a continuous manner

as the observer moves across the shadow boundary. In the shadow regions

however, the total electromagnetic fields do not vanish since the complete

expansions of the fields constitute the radiation term as well as the

lateral and surface wave terms (Bahar, 1973ab, 1977, 1978).

The nonilluminated (shadow) boundary is determined by points on

the scatterer ra - ral that satisfy (see Fig. 3.1)
Sn *n(r5 l)= - g (x 1 1

n issl) - 0 (3.31a)

Thus substituting (3.22) and (3.23) into 0.31a), the boundary of the

nonilluminated region is given by

tanOiEh' cosO' i h' sin -- (3.31b)

where

h = h and h - h( l (3.31c)""X X S Z

-i
This nonilluminated region extends to points on the scatterer, rs r 2

that satisfy

- -i -
s2 - r8 ).n(r -O (3.32a)

Thus i I _ I .. I _ i..
h 1 = (xs2 al AX + (zs2 e1)n z  (3.32b)

L
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where

91  - h(r 2 ) (3.32c)

Similarly the region of the scatterer which is nonvisible to the observerjexted, fra poit, on-fs

extends from points on the scatterer where i if to points where

r "r s2" The loci ofr ar81 is given by

f - -f f f f
nn(r51) Mg (z ( ,zl1 ) a 0 (3.33a)

Thus

tane f[h f €04
f + h; sin j - 1 (3.33b)

where
f -f f f -f
h- - h (r 1) -h(r ) (3.33c)S x si z z

The loci ofr s r &2 is given by

('! -f l).;(f) - 0  
(3.34a)

Thus hf h f f f f f f f
whs2 -slx + - (3.34b)

fhr f f f -f
bi h(r.) si -2 s2 ) (3.34c)

Define the shadow function D(F) such that

1 , illuminated and visible region
D(r 0, nonilluminated or nonvisible region (3.35)

where the nonilluminated region is defined by (3.31) and (3.32) while

the nonvisible region is defined by (3.33) and (3.34). Thus using (3.15)

total scattered radiation field is given in matrix form by

"Go CinTf F T exp[ik G f - -' ).]D(;)dln- G'

A

E G c(;f,;:)G± (3.36)

in which the matrix TfF Ti is given by

L f ( F VS C i f i i f WI Vi f i i

' fi (I W C. i ,F Hs i. )4C "C-MSi , S f (F V, i +FV i)+ f (Wi Mi)

(3.37)

1... ." .. ---'. --- :- ---- .. .- .
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For elements of the scattering surface where n-, n and n-f are coplanar

([nf ni n] - 0). the cross-polarization terms F l and F vanish. If in

addition n ,nin and ay are coplanar and S - S F T

becomes diagonal and the cross-polarization terms CVH and CHV vanish

(Bahar, 1980). Note however, that FPQ0 and cPo0 for P#Q even if

sin( 0-, ) 0.

The integrand in (3.36) is finite as long as the area of the scattering

surface (A - JdA.n) is finite. Thus the expression (3.36) is valid even as

('a) - cosy 0 in (3.17).

Since the full wave analysis accounts for upward and downward

scattering with respect to the reference plane, it can also be used to t

determine the radiation fields due to multiple scattering. Thus, if the

distance between regions of the scatterer (or scatterers) that contribute

to multiple scattering is sufficiently large to justify far field

techniques (steepest descent or stationary phase methods), the radiation

-ffield initially scattered in the direction n is regarded as the incident

field in the evaluation of the multiply scattered field (see Fig. 3.2).

Note that while the shadow function D (rs) 0 or 1 (3.35), the
a s

elements of the scattering matrix F vanish in a continuous manner as

the observer enters the shadow region (3.31) and the total radiation

ffield G , (3.36),varies continuously as observer moves across the shadow

", boundary.

3.5 Invariance Properties of the Full Wave Solutions and the Duality and

Reciprocity Relationships

In order to show that the full wave solution for the scattered

radiation field is invariant to coordinate transformation, the different

coefficients appearing in (3.36) are examined in groups. The incremental
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surface area of the scatterer is 
dA - dA.n, (3.17). It is obviously

invariant to coordinate transformation.

In the far field the distance from the source to points on the

surface of the scatterer is

Irini + " ri + r *n (3.38a)Ss i

Thus T i I exp[-ik0 ni.s 1 is the expression for the incidentThus

(unperturbed) far field at the surface of the scatterer decomposed into

vertically and horizontally polarized components with respect to the

local tangent plane. (See Appendix 3.A) It is invariant to coordinate

transformation in view of (3.12).

Similarly, the distance from points on the surface of the scatterer

to the observation point in the far field is

Jr n -  r s  -rf - - .nf (3.38b)

hp n- ] is also invariant to coordinate

transformation.

Since the expressions for Cin FPQ (3.25) depend upon the angles of
0

incidence and scatter with respect to the local tangent plane only,

it is also invariant to coordinate transformation. Finally, in view

of the invariance of the transformation (3.14), the expression for the

total scattered radiation field (3.36) is invariant under coordinate

transformation.

Corresponding to the transformations

E(3.39a)

the full wave solutions (3.36) can be shown to satisfy the following

duality relationships:

F (c,) - K(U.,c) , TF(,li) , -F (i,C) (3.39b)

+J .. . . . '. . . . "_ _ _ _ ". .. . . . .. .. ... r_. _ ,:- • - , _ _ , -- . . J 
+

' +
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To examine the reciprocity relationships the locations of the source

and observation points are interchanged. Thus, under the transformation

-i -f - -f (3.40)

n 4 -h-n ,r r (3.40)

the following relationships can be shown to be satisfied

Ti -f ff ;f)T (.4
T(-f) - T (nf) ( Tf  (3.41a)

f -i i -i i -T*
T (-n i ) - T (n) T T(n) (3.41b)

I-i -f - i T*F(-n ,-n f ) F(fn ,n) (3.41c)

in which the superscript T denotes the transpose of the matrix and the

symbol * denotes that the nondiagonal elements of the matrix are

multiplied by -1. Thus on noting that for any 2x2 matrices X and Y

X Y*= (XY)* (3.42)

the following relationship for C(nf,;i), (3.36) is obtained (Bahar, 1981a),

C(-ni-nf) - EC(nfni)]T* (3.43)

and the total scattered radiation fields G , (3.36) satisfy the reciprocity

relationships in electromagnetic theory.

3.6 High Frequency Approximations of the Full Wave Solution-

Comparison with Physical Optics Solutions

At very high frequencies the major contributions to the scattered

radiation fields (3.36) come only from regions of the rough surface where

the phase of the expression exp[ikor0s . (fii)) is stationary. This phase

is constant when

-f-i -i-.-() ;().a Vf a 0 (3.44)Y

Thus at the stationary phase points, the unit vector na (normal to the

surface f(x,yz) = 0 (3.22a), is in the direction ;f-;n and

.... ,



51

-f -n.:' ~ nn .n- . si-n snys cos6sx +c°s y + sinys sin6sa

-±(-hs ax +a y - h zs y)cosy a (3.45)

The incident and scatter angles 60 with respect to the tangent plane

at the stationary points are

.- if if0
0 os I - -ins. -os(* f 822 (3.46a)

n~..i L 2L2
and

fns. -f.- ins.. s f ficoseon  (n fn) coseo cose C ,-n 'n - cos2ee (3.46b)

Tins and 0fns for medium €i,11, are obtained
The corresponding angles 81 1

through Snell's law. Thus

S! - S:/n and C7 - [1-(s)] (3.47)

Furthermore at the stationary points

( -fx -i
cos(Ofns-ins) n 1 (3.48a)

Infx n- s Tx sl

sin(f ins) - - 0 (3.48b)

cosy8  ns*a " (C' + C )/2 C (3.49a)a naay 0o

Sf sin f- Si sinei  Sf COsOf S-i cosO i

sn - o8 o ) ( 0 f 2P (3.49b)

0[(2 C0 c00) [(2 C0) (C0 + C 0)

The angles is and *fs are given by
C i +cf-ci (l+cos 28:) Sf s in(O (3fi)

",is stS o o o 0 sis si 0 35

S sin 28 sin 28
o o 0

C f+C I-C f(l+cos 280) f S I sin((

C CoB - sin* 8' - ~ ~~ -- o sin 28 o (3.50b)C cst s"  S£ sin 288 S - sin 20s

o o 0

Thus for the stationary points on the scatterer

PQ(;fn, in ) - 0 POQ (3.51a)

10f.
rO
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and

Cin '(nf0 n CR(Cs) -2cos 6 R~ (6) fi

n*a ossC 0+ C0
ys 0 0

where R 1 Rjo 06) is the Fresnel reflection coefficient for vertically or

horizontally polarized waves (PVH) incident at an angle e: upon the

plane normal to n5 . The function

coos2e+ 1 i Cf -S i Sf cos(* f
F-f -i 0 - 00 -00 (3.52)
F (n , n ef o+e'i fei1  c0(C04Cf)

0 10 0 0 00
C cc)S- Cos--L-

is exactly equal to the function F (e',6f,of-oi) derived by Beckmann and

Spizzichino (1963) using a Physical optics approach for perfectly conducting

rough surfaces. Thus if there are points on the illuminated portion

of the surface of the scatterer for which ni xi , the Physical Optics limit

for the scattered radiation field can be obtained from the full wave

solutions by replacing the expression for Cmi T f F T~ i n (3.36) by its value
0

at the stationary points and by replacing the shadow function D(r) by

unity. Thus in the Physical Optics limit C inT fF T can be factored outI 0
of the integral (3.36) and the expression for C reduces to

fS Vs is fa Hs is R i
C* ig +S~qoS C~SRVs a-fsH

VaIs is fa Hs is fa Vts is fs R s (5

In which the integral I is given by

- lA )~~dl~y(3.53b)~

For scatterers that are very good conductors, assung Ca i /2;

~It HSisfe i

* cos(* 44i g) sin(* +J
C C - CFIlug (3.54)

si( * -Cs(
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Thus the matrix Ua in (3.54) is unitary.

3.7 Realizability and the Backscatter Cross-Sections

For a perfectly conducting plane of area A centered at the origin

and noral to the vector n - , the shadow function D(r ) reduces to

unity and (nf-n ) 0. Thus

n-n .,A) -An a -A (3.55a)s y y
in which A is the projection of the area A on the reference plane. From

y
(3.51b) it follows that

C _n -n
C-F 0 8 (3.55b)

0 0 cosy --s n a
s y

For this case the scattering matrix C (3.54) is therefore given by

-f-;i s 8C(n ,n ) - A cosO0 U (3.56)o0

Since Us is a unitary matrix (3.54), energy is conserved independent of

the angle of incidence and the polarization of the waves incident upon

the conducting plane. This realizability relationship is not satisfied

by the iterative or perturbational solutions (Bahar, 1981a).
-f -

The backscattered radiation fields are given by (3.36) with n - -n

This quantity is maximum for a perfectly conducting plane of area A

centered at the origin and normal to n - n 8, - - nf . For this case the

backscattered fields are obtained from (3.56) on substituting 0: - 0.
fa i

Since in addition *fs + 'is - 0, the unitary matrix reduces to a

diagonal matrix. Thus

1[C Q(.-a n i)]="I- MN6 cas 6 Q (3.57)•cose °  P

where 6PQ is the Kronecker delta. Thus the maximum backscattered power

2
density is proportional to A, the square of the area of the perfectly

_______________- -________- I ---
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conducting plane which is perpendicular to the incident wave normal

n-i. In (3.57) O° is the angle of incidence or scatter with respect

to the reference plane (y - 0).

The normalized backscatter cross section for a scatterer of

arbitrary shape is defined here as

fPQ - -)dX']2 (3.58)

The quantity in the denominator of (3.58) is the area of the illuminated

surface of the scatterer. Thus the maximum value of the normalized,

dimensionless quantity aPQ defined in (3.58) is unity.

When the illuminated portion of the surface of the scatterer is

slightly rough such that n = a the perturbational approach is valid.Y

Thus the full wave solutions for the backscattered cross sections reduce

to the perturbational solutions on replacing n by a in the expressions
Y

(3.25) and on ignoring the shadow function D(ra) (Barrick, 1970). In

this case the expression for C (3.36) simplifies considerably since
in

CinTf F T becomes independent of the variable of integration and
0

C (C T f  F Ti) (,nrA)
o n-a

y

C 0 (nf,;'rrA) (3.59)

where the integral I is defined by (3.53b) and the matrix C is defined
0

by (3.59). Similarly, if there are points on the illuminated portion

of the surface of the scatterer for which a - ns, at high frequencies

one can use the Physical Optics approximations derived in Section 3.6.

In this case n is replaced by n in (3.36) and assuming that the specular

points are in the visible portion of the surface of the scatterer, D( 8)

is set equal to unity. Thus for the high frequency limit the expression

for C (3.36) also simplifies significantly. The expression for

!Cn~ F Ti becomes independent of the variable of integration and
0

'-Ky.-A
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C (C0 T F T 1(n n A)/iva

C- I(n ,n r a5A) (3.60)

where C. is defined by (3.60).

Thus for these special cases (small slope or high frequency) the expression

for the normalized backscatter cross section (3.58) reduced to

a PQ.iCP~i2 jexp[-21;nr *]dxdzl 2/[JDGr-)dl-nJ2

A A

- CPQ 12 J'exp[-21;i *(r- ri;)]dxtdz'dxdz/[JD(r )dl-n]I2 (3.61)

AA' A
in which ' X'ax + h(x',y')ay + z'az (3.62)

Since the full wave solutions for the backscatter cross section aP Q (3.58)

reduce to the perturbational form aP Q for slightly rough surfaces
0

(Barrick, 1970) and to the Physical Optics form aPQ when the stationary

phase approximations are used, the full wave solutions provide a direct

connection between these special forms for the backscatter cross section

and reconcile the significant differences between them. Moreover, the

full wave method can be applied to a wide class of problems that cannot

be solved by either the perturbational or the Physical Optics approach.

3.8 Properties of the Full Wave Solutions at Grazing, Specular and

Brewster Angles and Applications to Random and Periodic Rough Surfaces

For grazing incident or scatter angles, with respect to the local

tangent planes, (normal to the vector n) all the full wave expressions

for Co0nF (nfn ) (3.25) vanish. The corresponding expressions in the

perturbational solutions vanish only for grazing incident angles with

respect to the reference plane (normal to a y). On the other hand, the

Physical Optics expression for (3.25) vaniehs only for grazing angles

with respect to the stationary phase plane where n - n.. The property
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of full wave solutions at grazing angles with respect to the local

tangent plane is responsible for the fact that the full wave solutions

for the scattered radiation fields vanish in a continuous manner as

the observer moves across a shadow boundary. For points on the irregular

boundary where the local tangent plane coincides with the stationary

phase plane normal to n n (locally specular scatter), the full wave

expressions for FPQ reduce to

PP (fn,-in )  RPP sF (i n ) R (e0) P-VH~

FPQ(nfn,nin) 0 , n-n (3.63)

The corresponding perturbational solutions for F reduce to RPP (0)

only for specular angles with respect to the reference plane normal to

a . Similarly, the perturbational solutions for FPQ(P#Q) vanish only
Yfor specular angles with respect to the fixed reference plane.

For the specular case with respect to the reference plane the

Physical Optics solution for FPP reduces to R PP(80) for the entire rough

surface including those portions that are not specularly oriented with

respect to transmitter and receiver. Furthermore, while the Physical Optics

approach does not provide any expression corresponding to F PQ(P#Q), the

full wave expression for FPQ vanishes only at the specular points on the

irregular boundary. It is interesting to note that if 08 (the incident
0

or scatter angle with respect to the stationary phase plane) is equal

to the Brewster angle the Physical Optics solution for the
0'

scattered radiation field vanishes. Similarly, if the incident on

scatter angles with respect to the reference plane (normal to a ) equals
y

the Brewster angle, the perturbational solution also vanishes. The

full wave solution on the other hand does not vanish. The integrand

... .M19
L.. __ . -' ". . " . ,,-. .
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in the expression for the full wave solutions (3.36) vanishes only at

the stationary phase points where 8 - 6f - 8 B. Thus, the full wave
0 0 0

solutions for scattering by rough surfaces does not vanish even if

the incident and scatter angles with respect to the stationary phase

plane (normal to ) or with respect to the reference plane (normal

to a ) are equal to the Brewster angle.~Y

For very good conducting boundaries with IrI >> 1 and

11 r = 1(r] << 1), the expressions for CinFPQ (3.25) simplify considerably.

CinFVV 2 [cos(,fn_,in) _ SinSfn/(C in 4fn (3.64a)o 0 0 0 0

inF C in fn fn in in fnCo cncfno o cos( -0 )/(Co +Co ) (3.64b)

C inFmV ~ 2 ~(fn 4 in fn in fn
o -2sin(f -i )C /(CO 4C ) (3.64c)

cinVHfnin in in fn
CnF = -2sin(O- )CO /(Cin Co ) (3.64d)

With the exception of FHH the above expressions cannot be used for grazing

angles if the boundary is highly conducting. In general, the approximate

formulas for CinFPQ (3.64) must be restricted not only to good conducting
0

boundaries but also to angles of incidence or scatter that are less

B
than the pseudo-Brewster angles e0. For vertically polarized waves

B oB B 2 2 (r)- -
C C B cose -B nrCB 0[(2-l)/Cl] -P (C+ r . (3.65)o 0 0 rl1 r r r r

Thus (3.64) can be used only if C 0 and Cfn are greater than (cr) " .
0 0

For perfectly conducting boudaries, the steepest descent method,

used in evaluating the radiation fields at grazing angles, needs to

account for the poles in the vicinity of the saddle points. Thus the

apparent singularity in the expression for the fields at grazing angles

over perfectly conducting surfaces is removed (Bahar, 1981b).

The full wave solutions (3.36) can be applied to periodic structures

by multiplying the expressions for the scattered radiation fields due

* II _ _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _
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to a single element of the periodic rough surface by tvo dimensional

array factors (Bahar, 1980). Implicit in these array factors are the

expressions for the grating angles.

The expressions for the full wave solutions depend upon the profile

h(x,z) of the rough surface and upon its gradient. Thus in order to

determine the statistical average of CP Q (3.36) and its variance,

<cPQ> and D{C P Q } respectively, it is necessary in general to know the

statistics of the random variables h, h and h . For two specialI Z

cases (the small slope--perturbational solution and the stationary

phase-geometrical optics solution) considered in this work, the

statistical average and the variance of the scattered radiation fields

can be expressed in terms of the one and two dimensional characteristic

functions respectively (Bahar, 1981a).

3.9 Concluding Remarks

The full wave approach is applied in this paper to the problem of

depolarization of the scattered radiation field by an object of

irregular shape and finite conductivity. The principal elements of

the full wave approach are outlined in the introduction (Section 3.3).

The full wave solutions are presented in a form that can be readily

compared with earlier solutions (Section 3.4 They are used to resolve

the discrepancies between the earlier solutions and to bridge the wide

gap that exists between them. Realizability, reciprocity and duality

relationships in electromagnetic theory are examined and the full wave

solutions are shown to be Invariant to coordinate transformations.

The full wave approach can also be used to determine the scattered

radiation fields due to lateral variations in the permittivity c and

- -- .
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permeability 1. (Bahar, 1973a,b). Thus they can be applied to mixed path

propagation problems.

Since the full wave approach has been generalized to inhomogeneous

multilayered structures of arbitrarily varying thickness, it can also

be applied to problems in which irregularly shaped objects are imbedded

in the earth's crust. If the medium of the scatterer is nondissipative,

transmission through the scatterer can also be accounted for in the

analysis.

When the transmitter or receiver are near the scatterer, the lateral

wave or surface wave terms of the full wave expansions could be

significant especially near a shadow region. In these cases the full

wave approach can be used to determine the coupling between the radiation

term and the lateral and surface wave terms (Bahar, 1977).
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3.A Appendix

The relationship between the reference coordinate system X(xy,z) and

the variable local coordinate system X(xy,z) associated with the local

tangent plane normal to n (3.22) can be expressed as follows:

- .-A x2 (3A.l)

-3  x3

Thus, x - aijxj (sum on j - 1,2,3)
1 2 3

where x 1 x, x 2 y, x - z, etc. The elements aij of the 3x3 trans-

formation matrix A are

a - n'a ij - 1,2,3. (3A.2)

where a, = ax a2 =ay and a3 - az are the unit vectors of the reference

coordinate system and n i are unit vectors normal to the coordinate surfaces

of the local coordinate system. Thus

Ul M n x (alx ;)/jaix ni (3A.3)

n2 - n (3A.4)

'3 = (aIx n)/Ia x I (3A.5)

Thus the unit vectors n., n2 and n3 are orthogonal. The vector n2 is

normal to the local tangent plane (3.22) while nI and n3 lie in the local

tangent plane. For a horizontal surface h(xz) - const., the unit vectors

ni are equal to ai and A reduces to the identity matrix. In general the

transformation matrix A is hermetian, thus the determinant of A is equal

to unity and

A - AT  (3A.6)

-A
,, . ".% ,j ,. .A - MIAM,,
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4.0 SCATTERING CROSS SECTIONS FOR COMPOSITE RANDOM ROUGH SURFACES

--FULL WAVE ANALYSIS

4.1 Background

In this work the full wave approach to rough surface scattering is

applied to composite models of rough surfaces. It is shown that both

specular point scattering as well as Bragg scattering are accounted for

in the analysis in a self-consistent manner. The results are compared

with earlier solutions based on a combination of Physical Optics and

perturbation theories. Using the full wave approach it is not essential

to decompose the rough surface into individual surfaces with different

roughness scales unless it is desired to separate the specular point

contribution from the Bragg contribution to the scattering cross sections.

The decomposition of the rough surface not only enhances one's physical

f insight but also facilitates the numerical evaluation of the scattering

cross sections. Shadowing is also accounted for in the analysis.

4.2 Discussion

Physical Optics and perturbation theories have been applied to

problems of scattering of electromagnetic waves from rough surfaces

f(xy,z)-y -h(x,z)-0 (Valenzuela,1968). However, these theories can

only be applied to a limited class of rough surfaces. Thus perturbation

theory (Rice, 1951; Barrick, 1970) can be applied to problems in which

it is usually assumed that

k2<h2> < < 1, Bh/3x - h << 1, Bh/z - h5 " 1 (4.1)
0 x

in which <h2 > is the mean square of the rough surface height and k0 is

the wave number of the electromagnetic wave. Physical Optics, which is

based on the Kirchhoff approximations of the surface fields (Beckmann,

1968), in applicable to surface for which the radii of curvature of the

- . - -- - - %
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rough surface are large compared to the electromagnetic wavelength A.

Wright (1966) and Semyonov (1966) apply the above theories to

composite surfaces made up of irregularities that are both small as well

as large compared to the wavelength A. More recently Brown (1978, 1980)

applied Physical Optics as well as Burrow's perturbation theory (1967)

to derive the expression for the backscatter cross section from perfectly

conducting rough surfaces in terms of a sum of two backscatterer cross

sections. The first is the backscatter cross section for the surface

with the large scale roughness h. while the second is the backscatter

cross section associated with the small scale roughness h . In his work,s

Brown (1978, 1980) assumes that the radii of curvature of the surface, hi,

is larger than the wavelength A and k 2<h > 1. In addition, he assumes

that h satisfies the conditions (4.1). Thus in his work the specifica-
S

tion of the wavenumber kd (where spectral splitting is assumed to occur),

is based upon the characteristics of the small scale structure (k 2<h 2> << 1)
0 5

rather than upon the characteristics of the large scale surface (Brown,

1978; Hagfors, 1966; Tyler, 1978). In Brown's analysis the backscatter

cross section associated with the surface with the small scale rough-

ness is expressed in terms of a two dimensional convolution of transforms.

In the composite models of Wright (1968), Semyonov (1966), and Valen-

zuela (1968) which are "mostly based on physical considerations" the

rough surface is approximated by "patches" of slightly rough surfaces

that ride the large waves. Thus in their work the scattering cross

section associated with the surface with the small scale roughness is

obtained by averaging over the distribution of slopes of the large

scale surface roughness.

In this work the full wave approach to rough surface scattering

is extended to composite models of the rough surface with mearate

- ~ -.. -
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mean square slopes (Bahar, 1981b,c). Since the full wave approach

accounts for both specular point scattering as well as Bragg scattering

in a self-consistent manner (Bahar, 1981b,c) without introducing

perturbation and Physical Optics theories, it is not necessary to

decompose the rough surface into two surfaces with large and small

roughness scales, hI and h respectively. Thus the need to specify kd,

the wavenumber where spectral splitting is assumed to occur, does not

necessarily arise when the full wave approach is used. However, the

decomposition of the rough surface enhances one's physical insight

and also facilitates the numerical evaluation of the scattering cross

sections.

In Section 4.3 the problem is formulated in terms of the full

wave approach and the principal results from earlier analysis are

summarized. In order to compare the full wave solutions for the

scattering cross sections with earlier solutions (Valenzuela, 1968;

Brown, 178, 1980) it is also assumed in Section 4.4 that the

composite surface can be decomposed into two statistically independent

surfaces with large and small roughness scales hk and ha. It is shown

that the total scattering cross section can be written as a weighted

sum of individual cross sections. The cross section associated with

specular point scattering is multiplied by 1R 211 the magni ude squared

of the characteristic function for the small scale surface height hR

(4.30a). The cross section associated with Bragg scattering is expressed

in terms of an integral over the slopes of the rough surface (4.44) as

predicted on the basis of physical considerations (Valenzuela, 1968).

This term is shown to be in agreement with perturbation theory (Rice,

1951; Barrick, 1970). The integrand in this term is proportional to
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the surface height spectral density W(v,,,v,) whose arguments are the

two components v. and v- of the fector v - k (n -n ) in the local tangent
x z o

-f -i
plane (n and n are unit vectors in the direction of the scattered and

incident wave normals). The full wave solution can also be expressed

in terms of the rough surface tilts "in" and "perpendicular" to the

plane of incidence and thereby compared with the results of Valenzuela,

et al. (Valenzuela, Lang and Daley, 1971). It is also shown that since

Brown (1978, 1980) assumes that the small scale surface height correla-

tion function is a function of distance in the reference (mean) plane

and not distances along the large scale surface as in this work and

implicitly in Valenzuela's work, the full wave results are in agreement

with Brown's results only if the large scale surface roughness has small

mean square slopes. Shadowing is accounted for explicitly in this work

as in the work by Brown (1978, 1980).

Throughout this work an exp(iwt) time dependence is assumed.

4.3 Formulation of the Problem

For the incoherent, diffuse field, the scattering cross section per

unit area is defined as (Ishimaru, 1978),

<OPQ - 47r(rf) 2<E pf- <Epf>12>/A yEQi12 , P,Q-V,H (4.2)
y

in which the first superscript P-V,H indicates the polarization (vertical

or horizontal) of the scattered field, Epf and the second superscript

Q-V,H indicates the polarization of the incident field, EQ i. The

projection of the area of the rough surface A on the reference plane

f
normal to a is A and r is the distance from the origin (associatedY Y

with the rough surface) and the observation point in the far field (see

Fig. 4.1). Using the full wave solutions for the scattered radiation

fields (Bahar, 1981a), the expression for the scattering cross section
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for random rough surfaces is given by (Bahar. 1981b)

k 2 ,Q .x,,v;>>

y n-ay

exp[ivx(x-x')+iv z(z-z')dxdz dx'dz'> (4.3)

in which k is the free space wavenumber. The vector v in the cartesian

coordinate system is

v ko (nf-n vx ax +V y + v a (4.4)

-f
in which n and n are unit vectors in the direction of the incident

and scattered waves respectively.

The characteristic function X(v y) is given by
CO

X(vy) - f exp(ivyh)p(h)dh (4.5)

in which p(h) is the surface height probability density function.

The coefficient SP Q is

SPQ . DPQ(r)U(r) D _ (r')U(r) DPQ(r)U(r) (4.6)

P (--y G'.ay5 y

in which D (r) depends upon the polarization (P,Q-V,H) and directions

(W and ;f ) of the incident and scattered waves, the unit vector n

normal to the rough surface and the electromagnetic parameters of the

medium of propagation and the scatterer (Bahar, 1981b). The shadow

function U(i) is unity when the surface is both illuminated by the source

and visible at the observation point and zero otherwise (Sancer, 1969).

The symbol < > denotes the statistical average. Thus assuming that either

the rough surface radii of curvature are large compared to a wavelength

or the rough surface slope is small and that the rough surface heights

and slopes are statistically independent (Bahar, 1981c),
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<sQ[exp ivy(h-h') - IX(vy)I 2] ->

fJ n's()U) 1 2[expfiv (h-h'))-IX(Vy)123p(nU)W(hh')dhdh'dh dhdU

y (4.7)

The joint rough surface height probability density function is W(hh')

and the joint probability density function p(n,U) can be expressed in terms

of the conditional density p(Uln) (Sancer, 1969)

p(nU) - p(n)p(Un) (4.8)

in which p(n) is the density function of the gradient of the rough surface

Vf - V(y-h(xz)) - (-h xa y+ y- h az ) z nIVf (4.9)

and

h - 3h/Dx and h - ah/z . (4.10)
I 2

The conditional density can be expressed as

p(Uj n) - P2 (nf 'n 1 46(U-1)+[l-P2(n
f ,hiIn)1 6 (U) (4.11)

in which 6(U) is the Dirac delta function and P2(nf ni n) is the

probability that a point on the rough surface will be both illuminated

by the source and visible at the observation point, given the value of

the gradient n(hx ,hz).

On assuming that

2 2 2 2- i
k0<h2>o k20o o << 1, n-ay 1, P 2n n) - 1 (4.12)

the full wave solutions for the scattering cross section (Bahar, 1981b)

can be shown to reduce to the perturbation solution <oPQ> (Rice, 1951;

Barrick, 1970)
<,,,'Q>.-4 , 4, ,,ov, ,,, )io.0o cose0( "Q12 (,4.13)
o 0 0

in which 1 and e° fare the angles of incidence and scatter with respect

to the reference plane (y-0),

_ .Z -- i . .. . . .. " : '" -i i :wo ,-
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W(v v exp(iVxd+ VzZd) h(xz)h'(x',z') dxddzd (4.14)

is the spectral density of the rough surface height (Barrick, 1970;

Ishimnaru, 1978). It is assumed, in this work, that the rough surface

is statistically homogeneous and isotropic, thus, the surface height

correlation function <h(x,z)h'(x',z')> depends only on distances in

the mean plane where <h> - 0

r - (x-x')a + (z-z')a -xda + zda (4.15)

Furthermore,

12 cosef cose i CPQI 2 - (cosef+ cosei)DPQJ2 (4.16)
n-a

y

Thus to obtain the perturbation solution the unit vector n (normal to

the rough surface) is replaced by a in the full wave expression for theY

scattering coefficient DPQ (Bahar, 1981b).

The Physical Optics solution for the scattering cross section

<aPQ> can also be derived directly from the full wave solutions. Thus
Co

(Bahar, 1981c) for P-V or H and Q=H,V (POQ)

k = 2° 2 cos* s cos* is cos 2 e 2

-- cosefo + cosei J
Ps Qs fs is 2  -f-;i-

aR10 + Rio tan*f tan* 1 P2 (n, n In)Y (4.17a)
and.s 2^2

Q k 2 -2 COS* 
f s COS* isCos 2 :o

< > -2w-
"r c°Sef + o

Pe is Q is 291

"JR10tan* -Ri tan*f I P2 (n fn I)1 (4.17b)

in which * is is the angle between the plane of incidence associated with

the reference plane (y-0) and the local plane of incidence (associated

with the local tangent plane) evaluated at the specular points where
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- - ;/v (4.18)

Similarly ifs is the angle between the reference and local scatter plane

evaluated at the specular point. In (4.17) the Fremnel reflection

Ps
coefficients R and P2 , , (4.12) are evaluated at es the angle of
incidence at the specular points. The integral - is given by

t -.

1v J Ex2( '-vy) - IX(vy) ']expivxd+ivzzd dxddzd (4.19)

in which X(v) is the characteristic function (4.5) and X2 (Vy,-Vy) is the

joint characteristic function (transform of the height probability density p(h,h,))

X2(VyVY) - J exp[ivy(h-h'))p(hh')dhdh' • (4.20)

The full wave approach has also been applied to rough surfaces with

two or more roughness scales. Thus, if it is assumed that the composite

surface can be represented by the superposition of N uncorrelated

surface heights h (n-1,2...N) and that the principal feature that dis-

j tinguishes the individual surface heights from each other is their

respective correlation distances '-n such that

I .<< I << 2 << t << " (4.21)
1 12 2 23 3 ... %l " '-lN «(.1

the scattering cross section can be expressed as a weighted sum of the

individual scattering cross sections <PQ>A (Behar, 1981c)
N

<Ga)> =E w <apQ>, (4.22)
:"n-1 n n

in which <amI> is given by (4.3) with h,h' and X replaced by h nh' and X
n

n n

(the characteristic function for surface h.). The weighting function is given

by the product n 12
w. -mel (4.23)

FMal

4 1 .



71

in which X 0 1. Since Jxnl< 1 the weighting function is in general less

than unity.

For a two scale composite surface such that

k « h2>< 1, k 2<h2> >>1 (4 .24a)

n= , 1 
< <  

1 2 
< < 12  (4.24b)

the scattering cross section is given by (Bahar, 1981c)

<GPQ >  <OPQ> + <oPQ> (4.25)

In (4.25) <a PQ> is given by the perturbation solution (4.13) which accounts

PQfor Bragg scntter. Furthermore, <aY >2 is given by the Physical Optics

solution (4.17). For a surface with a Gaussian distribution 0 in (4.17) is

given by
2

' [k(cos8f+ c 0 o )  P(hxsp hzs) (4.26)

in which the joint probability density function for the slopes at the

specular points is p(h ,hp) (Bahar, 1981c). Thus the full waves solution
xsp zsp

(4.3) accounts for both Bragg scatter as well as specular-point scatter.

In Section 4.4 the full wave approach is applied to composite rough

surfaces with moderate slopes (hx  1, hz = 1).

4.4 Scattering Cross Sections for Composite Rough Surfaces with Moderate Slopes

Consider here a composite surface with two statistically independent

roughness scales such that the radius vector to the surface is

r - r F(x. hF.,z) + rR(hR) (4.27a)

in which

2 2 h~ hF,=(42b

r~(h~) -(4.27c)

I~ ~ ~ ~ ~; V______ SR_________________
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and

<h2 -2 ax << J~ , 3zI .I << 1 (4.27d)

In view of (4.27) and (4.9) the normal to the surface is

V(y-h) V(y-h7 ) -n y - !l" (Y 7  (4.28)

However, unlike the composite surface considered in Section 4.3, the

variances of the slopes are not assumed to be small. In addition, it is

assumed that the radii of curvature of the surface h (and therefore b)

is large compared to the electromagnetic wavelength X. Thus the full

wave expression for the scattering cross section for the composite sur-

face is (4.3)

<a > o f [SPexp[ ivy h 1 h 1Kl > -<~~ X XjJfA ["y(.F-I. - .
y

exp[ivx(x-x') + ivz (z-z'))dxdz dx'dz' (4.29)

In (4.29) XF and X are the characteristic functions for surfaces hF and h.

respectively and X2 is the joint characteristic function for the surface h2

In view of the above assumptions for the small scale surface*

(v12 < > 1, v - n.v (4.30a)

R<exp iv >R-) 1 - 2 2 L, 2N2vF-v)- <exp iv (h-hj)> -= I -v (<hj> + >) + v<

-iX'
2 + Vy <h Y (4.30b)

and

<2  < 1 (4.31)
" IXF(vy)

Following the analytical (hysical Optics) procedures presented by

Sancer (1969) for the large scale surface hF

*The surface h which consists of the small scale spectral components cannot

be treated as the large scale surface h. since it does not satisfy the radii

of curvature criteria.
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S P Q-W e 2 ( 4 .3 2 )

and exp iVy( h-) ) exp ivy(hxxd + hzzd) (4.33)

Thus (4.29) can be expressed as follows:

2

"exp[ iv xd+iVzzd]dXddZd dxdz

•<OPQ> o+ < PQ 1

- + 1  (4.34)

in which

<oPQ> u o < exp[ iv (hxd+h zd)]iXRi2>
o 7J-- exp v x d z d~ ~

y

exp[iv xXd+ ivzd]dx ddZd - IxRI2<oQ> (4.35)

Thus <0PQ>  is the Physical Optics solution <0PQ> (4.17) multiplied by

IxR(.n)1 2 < 1, the characteristic function for the small scale rough

surface evaluated at v.ns the projection of v on the normal at the specular

point. Furthermore,

PQ> <fD PUv 2
<'P >1 - <J NZ i exp[i(v v vyhx)xd+i(vz+vyh)zd]dddzd> (4.36)

Thus <a PQ> reduces to the perturbation solution (4.13) when the surface

slopes are small (Bahar, 1981b). For the case considered in this section the

distribution of the large scale surface slopes has an effect on the component

of the scattering cross section due to the small scale roughness

Note that the small scale roughness h is a perturbation about the large

scale roughness and F is the perpendicular distance from the unperturbed

(filtered) surface y - h.(x,thz) to the perturbed surface (4.27)

(Burrows, 1973). Thus the expectation of 'xz)I(x',z')
RR~x'z) z')'a func-

tion of distances measured along the plane tangent to the

__ __ _ __ _ __ _
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surface y - hF(xz) - 0 (Wright, 1966; Valenzuela,1968) and not dis-

tances measured along the mean plane Irm (4.15). To facilitate the

evaluation of (4.36) the integrand is expressed in terms of the unit

vectors n 1 2 and n3 and variables x,y,z of the local coordinate system

associated with the local tangent plane (Bahar, 1981a; Bahar, 1981b).

The unit vectors n1 3n2 ,n3 can be chosen as follows (see Fig. 4.2)

n I (n x ;3)/In x a31, n2 " n 3 = nl x n (4.37a)

in which

a, a2 Aa,.a3  a (4 .37b)

and the relationship between the local coordinate system X(x xx -yx -z)

and the reference coordinate system X(x -xx 2y,x3 -z) is

Xi . ax (sum on J-1,2,3) (4.38a)

in which

aij ni' a j ij1,2,3 (4.38b)

Thus in (4.36)

x y x d z yz d x zd (4.39a)

in which % , v are the components of v (4.4) in the local

coordinate system

v.R- vnl, V v"n2 9 v I vn 3  (4.39b)

Furthermore (see Fig. 4.3)

X X ,Z i Z ' (4.40a)

and

dx ddz d
-d dddzd (4.40b)
naa
y

Therefore (4.36) can be expressed as

k~ 2 ID %QVI 12 )PQ

-< J- 4RR axpL1vfjz 4  ad d d> (4.41)Ir us
'in s

t t , • ,, -- -- -
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Furthermore assuming that the statistics of the small scale surface hR

are independent of the slopes of the large scale surface hF* (Valen-

zuela, 1968, Brown, 1978) (see Fig. 4.3)

_ F I(xz)R(xz')>exp(ivxd+iv z )dxd dZ " W(v,v) (4.42)

in which the dependent variables of the spectral density of the small

scale roughness v. and v- are the orthogonal components of v in the local
x z

tangent plane. Thus W(v, 1,v) depends not only on the direction of the

incident and scattered waves but also on the normal, ni, to the rough

surface. Substitute (4.42) into (4.41) to get

<oQ1  kID IPQ uv 1 2

- tk 2 ' W(V..v )P(n)P(UIn)dh dh dU (4.43)
01 -xz x Z

n a
y

and substitute (4.11) for P(U~n) unto (4.43) and integrate with respect to U

i 1 to get

)PQ 1 j ID )P(12n ,n jn)p(n)dh dh (4.44)

Note that the conditional probability P2 (n ,n jn) for arbitrary slope

n(h ,hz) can be expressed in terms of the conditional probability

P 2(nfni s ) for the specular points (n- ns) as follows (Smith, 1967;

Brown, 1980)
(;f il n ) . S(n.f )S(-n.n )P2 (nnn

)  (4.45)

in which S(c) is the unit step function. The arguments of S,-nn and n'nf

vanish at points of the rough surface where the incident and scatter wave
-i -f

normals, n and n are tangent to the surface.

In order to interpret the results (4.44) assume that , durfas!,

hF is normal to the constant vector n°

"This assumption of statistical independence of the small scale R.. fi

and slopes restricts the class of rough surfaces assumed in this work.
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n-n 0 n a +n a +n a (4.46a)o ox x oy y oz z

The equation for this surface is

n.r - n x + n y + n z -0 (4.46b)
o x oy oz

thus for y - hF(xa)

hF -- (nox x + noz z)/noy (4.46c)

Furthermore

p(n) = 6(hx+ n noy)6(hz+ niny 6(n-n (4.47)

Assuming that n-nf > 0 and -n-n' > 0 (the plane n *r 0 is visible and• 0

illuminated), the normalized scattering cross section <aPQ> (4.45) is

given

<[PQ>I " k2 W (vR
-

v E ) DP yi2 (4.48)

L n "a J
o y n o

Thus the scattering cross section (4.48) for the inclined plane (4.46) is

in complete agreement with the perturbation result (4.13) for arbitrary

n . It is equal to it for n 0 a (Rice, 1951; Barrick, 1970). The termoo y.

n .a appearing in the denominator of (4.48) is a consequence ofo y

normalization (4.2) (since A is the projection of the surface A on the

reference plane).

The integrand in (4.44) is therefore the contribution to the scatteriig

cross section <aP> I from "patches" of the rough surface that are normal

to the vector n (Wright, 1968; Valenzuela, 1968).

In his review of theoretical treatments of the scattering of

electromagnetic waves by rough surfaces, Valenzuela (1968) states that

scattering models have been developed "that make it possible to apply

available theories to surfaces that cannot be treated purely by

perturbation and Physical Optics .... in these models composite surface

approximate the rough surface by 'patches' of slightly rough surfaces

- I
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that ride the large waves .... the total scattered power from this composite

surface is obtained by averaging over the distribution of slopes of the

large waves." Valenzuela notes however, that "these composite models

are mostly based on physical considerations and are able to explain

features in radar cross-section data from the sea that no theory can."

It is shown in this section that using the full wave approach, one can

provide a self-consistent theoretical basis for scattering by composite

surfaces without using a combination of Physical Optics and perturbation

theories.

To compare this work with earlier analysis of the backscatter cross

section (Valenzuela, 1968; Valenzuela, Laing and Daley, 1971) in which

the integral (4.44) is expressed in terms of tilt angles p and 6 "in"

and "perpendicular" to the reference plane of incidence (normal to

ni x ay ) rather than in terms of the slopes h and h , the normal n

to the rough surface is expressed as follows for n in the (x,y) plane

n sinP cos6 a + cos cos6 a + sin6 a
x y z

= (- - -2 2 (49
h a + a h az)/(I + h + hZ) (4.49)

x x y z zx z

In the work by Valenzuela, et al. (1971), shadowing had been ignored,

however the arguments of W(v,,v ) in their work is in agreement with (4.44).

The result (4.44) is also in agreement with the expression derived

recently by Brown (1978) (as corrected in Brown, 1980) provided that the

slope of the large scale rough surface is very small. The differences

between these two solutions are primarily due io the assumption in Brown's

work that R (Cs in Brown's notation) is the distance from the unperturbed

(filtered) surface to the perturbed surface, measured along a line per-

pendicular to the reference plane (y-0) rather than perpendicular to the

unperturbed surface. This is contrary to the original analysis of Burrows

(1973) upon which Brown's analysis (1978) is based. Furthermore in this work,

the expectation of hRN is considered to be dependent on distances rd measured

_ _! A



along the plane tangent to the surface y-h1 (x,z), (i.e., the surface

normal to n) where rd xd n1 + Zd n3 , instead of distances measured

along the mean (reference) plane r- x + z (4.15) as assumed
m "dax d z

by Brown (see Fig.4.3).This feature makes the full wave solutions

invariant to coordinate transformations (4.48). In his analysis,

Brown (1978, 1980) accounts for shadowing and uses both Physical Optics

and Burrows (1973) perturbation theories to derive his results in

terms of a two dimensional convolution of transforms.

4.5 Concluding Remarks

Composite models of random rough surfaces with moderate mean square

slopes are analyzed using the full wave approach. The full wave approach

is shown to account for specular point scattering and Bragg scattering

in a self-consistent manner without introducing Physical Optics and

perturbation theories. Thus using the full wave approach, it is not

necessary to specify the wavenumber k where the rough surface spectral

splitting is assumed to occur (Brown, 1978, 1980). However, decomposi-

tion of the surface into a large scale surface hZ and small scale

surface h enhances one's physical insight and facilitates the numericalS

evaluation of te scattering cross sections. The wavenumber kd is used

to distinguish between the large scale rough surface, h., and the small

scale rough surface, hR. The solutions derived in this paper are

compared with solutions derived earlier "mostly based on physical

considerations" (Vaienzuela, 1968). They are also shown to be in

agreement with Brown's solution provided that the mean square slope

of the rough surface is very small (Brown, 1978, 1980). Brown uses a

combination of Physical Optics (Beckmann, 1968) and Burrows (1967)

- -.
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perturbation theories to develop his solution. The differences between

Brown's solution and the full wave solution (4.44) are primarily due to the

assumption in Brown's work that % is the distance, from the unperturbed

surface to the perturbed surface, measured along a line perpendicular to the

reference plane (y-0) rather than perpendicular to the unperturbed (filtered)

surface. This is contrary to the original analysis of Burrows (1973) upon

which Brown's (1978) analysis is based. Furthermore, Brown assumes that the

autocorrelation function for the small scale surface height depends upon

distances measured in the mean plane rather than distances along the plane

tangent to the large scale surface as assumed here and implicitly by

Valenzuela (1968).

The contribution to the scattering cross section due to Bragg

scattering (associated with the small scale surface) is given by an

integral over the slopes of the rough surface. This contribution is

proportional to k4 and depends on the polarization (4.44). It is shown

to be in complete agreement with perturbation theory (Rice, 1951;

Barrick, 1970; Barrick and Peake, 1968). The integrand in this expressioni
is proportional to the small scale surface height spectral density

W(v ,v Z ) whose arguments are the components of v - k o(nfn ) in the local

tangent plane. Thus W(v,,v ) is also a function of slopes. The contribu-

tion to the scattering cross section due to specular point scattering

(associated with the large scale surface) is independent of k and

polarization.

Using the full wave approach the specification of kd (where spectral

splitting is assumed to occur is not restricted by the perturbation

condition, 0 - 4k 2<h 2> << 1. Thus it can be applied to more general
o s

models of rough surfaces for which a combination of solutions based on

perturbation and Physical Optics are not suitable. The specifications of

kd and the sensitivity of the cross sections <oPQ > to variations in

kd are subjects of future investigations.id

_ _ _ _ _ _

__ _ _ _ __ _
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5.0 SU?(ARY OF RESEARCH TO BE CONDUCTED DURING SECOND YEAR OF CONTRACT

5.1 Analysis

In order to account for both specular point scattering as well as

Bragg scattering, a two scale--composite model-of the rough surface

is generally used. The specular point scattering is accounted for

through the use of Physical Optics theory, while perturbation theory

is used to account for Bragg scattering. The principal difficulty

with this perturbed-Physical Optics approach to analyze composite models

of rough surfaces lies in the specification of the wavenumber kd where

the surface height spectral splitting is assumed to occur. On one hand k
d

must be sufficiently small such that the radii of curvature of the large

scale (filtered) surface is large enough to justify the application of

Physical Optics theory to the filtered surface. On the other hand kd

must be sufficiently large such that the mean square height of the small

scale surface is small enough to justify the application of perturba-

Jtion theory to this small scale surface. In general these two restrictions

on the specification of k may not be satisfied simultaneously. It is

found using this perturbed-Physical Optics approach, that the computed

value of the rough surface scattering cross section will critically depend

upon the specified value of kd. Using the Full Wave approach (which

accounts for both specular point scattering as well as Bragg scattering

in a self-consistent manner), the specification of the wavenumber kd

(at which spectral splitting is assumed to occur), is not restricted

by the conflicting considerations of Physical Optics and perturbation

theories. Rather in this case kd is determined only by analytical and

computational considerations. Thus, if kd is chosen judiciously the
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computed value for the resulting scattering cross section should not depend

upon the specific value of k dchosen for these computations. Instead k dis

determined solely by the need to minimize the numerical computations.

This aspect of the problem is being investigated in detail.

During the next year, the Full Wave approach will also be applied to

non-Gaussian rough surfaces. Thus the following topics will be investi-

gated in detail:

a. Statistical description of classes of non-Gaussian rough surfaces.

b. Shadow functions for non-Gaussian rough surfaces.

c. Like and cross polarized scattering cross sections for non-
Gaussian rough surfaces.

Rough surfaces for which decorrelation implies statistical independence

are of particular interest in our investigations.

5.2 Computer Program

The computer programs used to evaluate the scattering cross sections

for composite rough surfaces are being modified to reflect the recent

advances made in the analytical approach to this problem. The effect of

the choice of k on the numerical computations is being investigated.
d

From the preliminary results it is shown that the numerical value for the

scattering cross sections as determined by the recently modified computer

programs, are not dependent on k and that the most suitable choice for
d

2 -2k d is such that 4ko<hi> =1 (k 0is the electromagnetic wavenumber and

h-2 is the mean square of the small scale surface height). More work

needs to be done to complete this phase of the investigation.
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