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1. Introduction

In this work the full wave approach is used to determine the
scattering cross sections for composite models of non-Gaussian rough
surfaces. In particular, it is assumed here that the rough surface is

characterized by a family of joint height probability densities that

have been developed by Beckmann (1973a,b) for non-Gaussian surfaces.

! These joint height probability densities are expressed as an infinite
sum of powersof the correlation coefficient and it is assumed that
decorrelation of surface heights implies statistical independence.
Using these joint probability density functions, Beckmann (1973a,b)
derives physical optics and geometrical optics approximations for the

scattering cross sections. Recently, Brown considered rough surfaces

——

with exponential joint height probability densities (Brown, 1982).

In his work Brown concludes that the appearance of a delta function type

i specular term in his results 'suggests that decorrelation does indeed

imply statistical independence for real surfaces."

! In Section 2 the principal elements of the full wave approach are

summarized. In Sections 3 and 4, the expressions for the marginal slope

densities and the shadow functions for the non-Gaussian surfaces are

0 derived. In Section 5 illustrative examples are presented. By considering

a very broad family of non-Gaussian rough surfaces that include in the

’: limits the exponential and the Gaussian surfaces, it is possible to

. derive the full wave solutions for the backscatter cross sections for

more realistic models of rough surfaces. Since it is assumed in this

] . ‘ work that decorrelation of the surface heights implies statistical

[ 1
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independence, no delta function type specular terms are obtained in
these results. It is found that for angles of incidence 6: > 25°, the
backscatter cross section for the horizontally polarized waves are

more sensitive to the specific form of the joint height probability
density assumed. The reason for. this is given in Section 5. For near
normal incidence both the backscatter cross sections for vertically and
horizontally polarized waves, exhibit the same dependence on the special
form of the joint height probability density agsumed. The depolarized
backscatter cross sections are ;ensitive to the special form of the
surface statistics only near normal incidence.

It is interesting to note that for the mean square slopes considered
in the illustrative examples, the shadow functions for the non-Gaussian
surfaces are practically indistinguishable from the shadow function
for the Gaussian surface, nevertheless the backscatter cross sections

are sensitive to the precise form of the surface height statistics

assumed (see Section 5).
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2. Formulation of the Problem
The full wave solutions for the scattering cross sections are summarized
in this section for a two scale model of random rough surfaces h(x,z) (See
Fig. 1) (Bahar et al 1982). To this end consider the Fourier transform of
the surface height autocorrelation function <h(x,z)h'(x',z')> which is the

surface height spectral density function (Rice 1951)

" Viat ot
W(vx,vz) ﬂz I exp(ivxxd+ ivzzd)<h(x,z)h (x',z )>dxddzd (2.1)
-l

In (2.1) the symbol < >denotes statistical average and

- -f -1 - - - -

vek (n-n) =va+ vyay+ v,a, [v] = v (2.2a)
in which Ei and af are unit vectors in the directions of the incident and

scattered waves

-1 i 1 - - 1 1- =i

n = sineo cosd a - coseo ay+ sineo sing a, k /ko (2.2b)

ﬁf = sinef cos¢f a + cosef a + s:lnef sin¢f a = Ef/k (2.2¢)
o x o'y ) z o

and ko - w(souo) is the free space wavenumber characterized by the permittivity
€ and permeability My An exp(iwt) time dependence is assumed in this work.
The distance between two'points in the reference (x,z) plane is

r, = l;d] - de;x+ zd;zl - I(x—x');x+ (z-z')Ezl (2.3)

d
For convenience the rough surface height h(x,z) is decomposed into two parts

h(x,z) = hz(x,z) + hs(x,z) 2.4)

the first term hz congists of the large scale spectral components

2 _ 2 2 2
0<k” = Ve + v, < kd (2.5)
where kd is the wavenumber where spectral splitting is assumed to occur

(Brown 1978, 1980). 1In this work the wavenumber kd is chosen such that




the surface hz meets the radii of curvature criteria (associated with the
Kirchhoff approximations for the surface fields). It is also assumed here
that the surface hl meets the condition for deep phase modulation (Bahar
et al 1982). The second term in (2.4), hs' consists of the small scale
spectral components

k, <k <k (2.6)
where kc is the spectral cutoff wavenumber (Brown 1978). The full wave
scattering cross section for the composite surface (2.4) which accounts for
both specular scatter and Bragg scatter in a self-consistent manner is given

by the weighted sum of two cross sections (Bahar et al 1982)

PQ . . PQ PQ
<0 Dp= <0 > + <g >r 2.7)
in which the first and second superscripts (P and Q, V for vertical, H for
horizontal) denote the polarization of the scattered and incident waves

respectively. The first term in (2.7) is the scattering cross section

associated with the surface hl' Thus

<oPQ>o - |xs(v)]2 <o:9> (2.8)
where
2
4 P -f —iy= ,=
<o;b - —-i—"k°[—‘3 2| Gt .n‘|n>p<n>]_ ) (2.9)
v U'nea n+n '
y y 8

In (2.8) the characteristic function for the surface hs’ xs(v), has the effect

of decreasing the contribution of the physical optics scattering cross
section <o:9>. As <h§>,the mean square of the small scale surface height
(that rides on the large scale surface hz). approaches zero, |x8|2 -1,
It is assumed in this work that the small scale surface height, hs’ has a

2
Gaussian distribution and in this case the coefficient Ix'l in (2.8) is

4
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IX*n) |2 = [<exp tv b >|? = exp(4k2<nd>) = exp(-8) (2.10)

Thus the effective weighting function, |xs|2. decreases monotonically as

B = 4k§<h§> increases. The shadow function Pz(ﬁf,ﬁi|ﬁ) is the probability
that a point on the rough surface is both illuminated by the source and
visible at the observation point given the value of the slopes hx,hz at

that point (Smith 1967, Sancer 1969). The unit vector normal to the rough

surface is

n = V(y-h (x,2))/(V(y-h (x,2)} | = V(y-h(x,2))/|9( y-h(x,2)} |

- (hada-ha )/ + 1+ ) (2.11a)
where
hx = 3h/9x , hz = 3h/3z (2.11b)
and
;s =-v/v (2.11c)

is the value of n at the épecular points of the rough surface. Furthermore,
p(ﬁ) = p(hx,hz) is the joint probability density function for the slopes of
the large scale surface hh' In this work the joint probability density func-
tion for the large scale surface height hz(x,z) and its associated slope
distribution function are assumed to be either Gaussian or non-Gaussian
(Beckmann 1973a,b, see Section 3).

The coefficient DPQ in (2.9) depends on the polarization of the scattered
and incident waves, the unit vectors Ei.ﬂf and n and the permittivity ¢ and
permeability u of the media above and below the rough surface h(x,z)

(Bahar 198la,b).
The second term in (2.7) is the scattering cross section associated

with the small scale surface hs (that rides on the large scale surface).

5
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Thus (Bahar et al, 1982)

rQ 2 IDPst(v-)l 2m W (v*,vi)
<g > = 4k [v] (2.13)
R o
n=1
£ -1 T __PQ
“P,(a ,n ln)p(n)dhxdhz - J <o > (2.13)
m=
In (2.13) Wm is the two dimensional Fourier transform
W (v_,v.)
m X Z 1 I <
= h, h!>" exp(iv_x + iv- )dx .4
,2m Pt s B d 2g)axydzy
—%—-J (v_.v-)w (v v_,v_ -)dv_dv_
1
;5*- (V_.v ) (:) Wy (V-.V ) (2.14)

where the symbol (:) denotes the two dimensional convolution of wm—l with
wl, the surface height spectral density function for the small scale surface

hs' Thus
W(vi,vi) for k > lc.d
W, (vgovg) =

0 for k < k (2.15)

d
and Vs and vy are the orthogonal components of the vector v (2.2) tangent
to the surface hz(x,z) while v; is the component of v normal to the surface hl'

Thus v in the local coordinate system assoclated with the rough surface h2 can

be expressed as (gee Fig. 2)

v =vna + vyn2 + v, D, (2.16a)
where
n) = (nx a)/|n x Ezl, n, = a, n, = Elx n (2.16b)
and
Vg " veny vy = ven, , vz = ven, (2.16¢)




Using the full wave approach it is shown that a suitable value for k,d (the

wavenumber where spectral splitting is assumed to occur) is obtained by

’ setting B = 4k§<h§>- 1.0 since for this value of B the assumed condition

for deep phase modulation is satisfied. For B > 1.0 the total scattering

cross section (2.7) is insensitive to variations in the value of k.d (Bahar

!
} 1 et al 1982). However, since kd decreases as B increases, it is necessary

to evaluate more terms in (2.13) for larger values of 8.

Non-Gaussian Joint Probability Density Functions for the
Large Scale Surface Heights and the Associated Slope

3.

Distribution Function

¥,

The principal purpose of this work is to apply the full wave appr ..

to scattering from rough surfaces to surfaces with non-Gaussian surfa

height distribution functions and to compare the results with these fo

Gaussian surfaces. In his recent work, Brown (1982) investigates scattering

by surfaces for which decorrelation does not imply statistical independence.

In this work Brown concludes that the appearance of a specular term coupled

with the lack of any experimental scattering data supporting this result

"suggests that decorrelation does indeed imply statistical independence for

surfaces."

real

Thus, even though from a mathematical point of view, statistical

independence is not, in general, implied by a lack of correlation (Papoulis

1965), it is assumed in this work that the joint surface height distribution

function becomes statistically independent as the surface height decorrelates.

Beckmann (1973a,b) derives a method for finding the joint distribution

function for the surface height, f(h,h';td), from a given marginal p(h)

that is not necessarily normal and a given correlation coefficient R(rd).

7
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Thus following Beckmnnn+ (1973a,b) f(h.h';rd) is expressed as follows

n
o R (rd)
v, = ' '
£(h,h';ry) = p(h)p(h )nzo —5— Q,(hQ, (h") (3.1)
%
where the identical functions p(h) and p(h') are the marginals satisfying
jf(h.h‘;rd)dh' = p(h) , Jf(h.h';rd)dh = p(h') 3.2)
From (3.2) it also follows that
Jf(h,h';rd)dhdh' =1 (3.3)
In (3.1) it is assumed that the given surface height density function is
transformed into a density p(h) which is proportional to the weighting

function of a classical set of orthogonal polynomials Qn(h), i.e.,

0 n¥m
Jp(h)Qn(h)Qm(h)dh -4, (3.4)
q n=m
n
where all q are positive and
Q =1 (3.5)

(o]

thus q, = 1. Beckmann (1973a) shows that

 Rp(ry)
£(h,h'iry) = ] 5 Q () (1) > 0 (3.6)
n=0 9,
thus
£(h,M5x,) > 0 (3.7

throughout the domain a < h,h' <b (where the orthogonality interval of

the polynomials Qn is a,b (3.4)).Furthermore, it can be shown that

.f

here. Since there are several errors in the published results, corrected
equations are denoted here by the symbol * next to the equation number.

8
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n
R (td)

o - 2
<hh'> -thh'f(h,h';rd)dhdh' ) 3 ljhp(h)qn(h)dé]
n=0 q,

- R(rd)(<h2> - <h>?) + <n>?

(3.8)
in agreement with the condition f(h,h';rd) must fulfill 1f it is to be a
two dimensional density of a random process with given correlation coefficient

R(rd). In addition (3.1) clearly satisfies

riig £(h,h';r ) + p(h)p(h’) (3.9

Finally express the function g(h) as follows in an infinite series of

orthogonal polynomials

gh) = ] a Q (h) (3.10)
n=0

where on using (3.4) the constant an is

2
= ' ' ' '
ol I g(h")p(h')Q (h')dh'/q_ (3.11)
On interchanging integration on summation (3.10) can be written as

g(h) = J g)pr') } —; Q,(h)Q, (h')]dh’ (3.12)
n=0 qn

thus the quantity in square brackets is the Dirac delta function §(h-h').

Thus from (3.1) it follows that

2im f(h,h';rd) = p(h)6(h-h') = p(h')6(h-h") *(3.13)

r .»o
d

On integrating (3.13) with respect to h and h' it is readily shown to satisfy
(3.3). (Contrary to the statements by Beckmann (1973a,b), the Dirac delta
function does not remain unchanged when multiplied by p(h) andrlig f(h.h';td)
¢ G(h—h')). In Beckmann's work (1973a,b), the orthogonal polynomials Qn(h)

can be the Hermite polynomials, the generalized Laguerre polynomials or the

9




Jacobi polynomials. However, in this work it is assumed for convenience
that Qn are the generalized Laguerre polynomials (Abramowitz and Stegun
(1964))
Q m = 1V m) (3.14)

Since the weighting functions associated with the Laguerre polynomials are
| proportional to the gamma functions, the marginals for the large scale
surface height probability density functions are the gamma distributions

Vk hk-l e-Vh
p(h) = ——W , h>0 (3.15)

for which the mean is <h> = k/v, the variance isoz- k/\)2 and the normalization

constant qi (3.4) is

, qi = (k + n-1)!/(k-1) !n! *(3.16)
( For k = 1 (3.15) reduces to the exponential distribution
-vh
p(h) = ve y (k=1) 3.17)

and for the limiting case k + = (3.15) reduces to the Gaussian distribution
i by virtue of the Central Limit Theorem. (For most practical purposes

k > 25 1is sufficiently close to the limiting case).

2
(h~<h>)
p(h) = exp -[—5—],(k*») (3.18)
ovZT 202

where 02 is the variance and <h> is the mean height.

Thus using the gamma distribution (3.15), it is sufficient to vary one
parameter k to examine the effects of changing the marginal height distribu-

tion from exponential to normal in gradual steps.

Following the procedures outlined above, the joint distribution for
the surface heights whose marginals are p(h) (3.15) (with v = 1 and variance

3 ‘ k can be shown to be given by (Beckmann 1973b))

10
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T . ke 2 Koa wrony S

' . n '
e-(h+h ) R (rd)n. k-1

Khh')F-l
kn-1) 7 In

[(k-1)!] n=0

£(h,h'5x,) = (h)L:'l(h') (3.19)

in which L:.l(h) are Laguerre orthogonal polynomials (Abramowitz and Stegun
1964). The corresponding (one dimensional) slope distribution function

p(hx) can be obtained from the inverse Fourier transform

r © Rn(r ) 2
ph) = 2im 55| § d° | pmL* L (h)exp(iuh) |* exp(-ir h w)dw (3.20)
X r.*o 2 2 n P P d'x .
d n=0 q_
where
[ n - o0 - ' 2n n
By Jp(h)L: l(h)exp(iwh)dhl-z (nthol):v R
n=o q_ o ni(l+w7) (k-1)?
" % *(3.21)
[1+ Q-R)v"]
Thus o
Ty exp(-iwhx)dw
p(h ) = Lim — X (3.22a)
X rqe 2m 1+ wzlwz)
-00
th
where the k order poles are at points
w,=+1//1-R = ¢t { LA (3.22v)

Using standard procedures for integration in the complex w plane, the path
along the real axis is closed by an infinite semicircle in the lower or
upper half plane depending on whether z > 0 or z < 0. Thus the pole
enclosed by the contour is at

w_="1 L for 2z > 0
W= *(3.23)
v, " i Vo for 2 < 0

and (3.22) reduces to

11
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'Y“‘xl k=1 (2k-j-2)!(27|hxl)'1

p(h ) = L2 ST *(3.24)
TS PRETER N M 0L
where .
Y -rjig Ty v, -r:ig rd/¢1-k (3.25)

For a stationary random process, the correlation function is an even function

of T, (Beckmann 1968) and for small L

o’ 2 4
R(ry) = 1 - 5 xy +0(r)) (3.26)
20

where oi is the mean square slope

oi = g% R'' (0) (3.27)

Therefore (3.25) reduces to

y - __'/g" . @ . (wel) *(3.28)
X X

and the slope distritition function corresponding to the two dimensional
gamma (surface height) distribution (3.19) is

2/2k exp(~/2k|b |/0,) ¥l (o s oy
L, 31G-3-1)!

p(h ) = (/7| h_| /0, ) *(3.29)

2k .
ox 277 (k-1)! 3

The above result can be shown to hold for arbitrary values of v and not just
Vv = 1 (Beckmann 1973a). It is assumed in this work that the probability
density for the slopes hx and hz are independent (as for the Gaussian case
Barrick 1970, Brown 1978, Bahar 198la,b), thus the two dimensional slope
distribution for the large scale surface is
p(a) = p(h b)) = p(h )p(h) (3.30)
in which p(hx) and p(hz) are the same functions as in (3.29). The corresponding .

slope distribution function is

1
2n o
x

2
p(h) = exp(-h2/202) (3.31)

12
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4, The Explicit Expression for the Shadow Functions Associated
with the Non-Gaussian Surface Height Distri hition Functions

In this section explici- *assions are derived for the shadow functions
related to the non-Gaussian surface height distribution functions considered
in Section 3. Brown (1980) recently developed a very convenient procedure
to evaluate the shadow functions for surfaces with non-Gaussian height distrib-
ution. Following Smith's work (1967), Brown (1980) assumes that the surface
heights h and slopes hx at points separated by the distance ry are uncorrelated.
In addition Brown assumes that decorrelation implies statistical independence.
Thus keeping the notation used in this paper, the shadow function for back-
scatter (ﬁf- —Ei). Pz(-ﬁi,ﬁilﬁ), is the probability that a point on the
rough surface 1s illuminated by the source (and visible at the observation
point) given the value of the slope at that point.

P, (-nt,a [R) = s(-a1+m/01 + Tl (4.1)

where S(-El-ﬁ) is the unit step function. The argument -ﬁi°5 vanishes when
the incident (or backscattered) wave normal is tangent to the surface.
Thus, when the plane of incidence is the x,y plane (see Fig. 1), the argument
(-51-5) vanishes for

TRE -
u- = coteo oh/3x h (4.2)

in which G: is the angle of incidence (2.26) with respect to the reference

surface (the x,z plane). Furthermore, in (4.1)

rzral) - J (hx~ui)p(hx)dhx (4.3)
i
V]

in which p(hx) is the one dimensional slope distribution function. On

substituting the non-Gaussian slope distribution function (3.29) (associated

13
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with the gamma surface height distribution) it can be shown that

i1 exp(-JiE'd9ox) k-1 (2k-1-2) ! 3 34l  (V2k ﬁ’ax)j-r .
r(u )/u - Zk“l (k'j-li' (j"'i"r) ' (4 -4)
2 (k-1)! §=0 N L) § '
The shadow function for the bistatic case, Ef# -ﬁi, is (Brown 1980)
4 ‘i -
s(-ril rix) v9229§-¢f-¢1-“
14T /u
-f -
Py Eat R = {ZBSR o> el of - ¢t - n
1+T" /u e
-f - -1 -
S(n 1n)i(-n fnlf , elsewhere 4.5)
1+ /u) (I /u)
In (4.5)
r* = r(uf) ana uf = cotof (4.6)

where eg is the scatter angle (2.2c) with respect to the reference plane.
The above expressions (4.5) are also in agreement with Sancer's (1969)
results for Gaussian surface height distributions. (In Sancer's published

results (1969), the inequality symbols should be reversed, Brown (1980)).

5. Illustrative Examples

In this section the like and depolarized backscatter cross sections
are evaluated for several composite models of perfectly conducting rough
surfaces with different surface height distribution functions. The surface
hl consisting of the large scale spectral components, 0 < k < kd’ is assumed
to be characterized by the gamma surface height distribution function (3.15)
and the associated non-Gaussian slope distribution function (3.29). For
the illustrative examples presented here the parameter k is set equal to
1,2,5 and 25 and the limiting case (k -+ =) is represented by the Gaussian

distribution (3.18). Two different total mean square slopes are considered

14
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(a) cit = 0.0171 and (D) ait = 0,0564. The surface hs consisting of the

small scale spectral components, k > kd’ is characterized by Gaussian

surface height distribution functions. The wavenumber k.d vhere spectral
splitting is assumed to occur is determined by setting B = 4k§<h§> =]
(Bahar et al 1982) and the specific form assumed for the surface height

spectral density function (2.1) is (Brown 1978)

w(k) -3 S(k) = 4w (k2+ Kz)a ’ - ¢
0 , k> kc (5.1) .L

In (5.1) w(k) is the spectral density function employed by Rice (1951)

and
B = .0046 (case a) ; B =0,0133 (case b)
2 2 2 -
k2 =vo + v (cm) 3 kc = 12 (cm) 1
K e (335.2 V)% (em)™ V= 4.3 (n/s) (5.2)

The wavelength for the electromagnetic wave is

Ay =2 (em) (k= 3.1416 (cm) ™) (5.3)

The mean square height for the small scale surface hs is

c

<h2> Hihl kdkd¢ = 2. _l.- _l. (5.4)
s 4 2 k2 2
d kc

o k.d

and the total mean square slope for the large scale surface hl is (Brown

1978)
LI 2, 2
2 _ 2 2 _ W(k) .3 Y d
O = Oy * O; J ] 7k dkd¢ = T+ n ) (5.5)
0o 0

in which 02 = 02.
x z

15




In Fig. 3, O times the one dimensional gamma surface height distribu-

| tions (3.15) are plotted as functions of h/o for k = 1,2,5,25 together with ,
the Gaussian surface height distribution (vith <h>/o = /k = 5). 1In Fig. 4,

the corresponding one dimensional slope distributions times Ope = vz Oy aTe
plotted as functions of hxlozt' In Fig. 5 the corresponding shadow

! functions (4.5) are plotted as functions of B: for backscatter (ﬁf- —51)

2
L

smaller for the larger mean slopes. The shadow functions are insensitive

(a) oit = 00,0171, (b) o e = 0.0564. As expected the shadow function is
to the particular form of the slope density functions considered.

In Figs. 6a,b,c and 7a,b,c, the corresponding like polarized and
depolarized total backscatter cross sections (2.7) are plotted as functions
of 81 (a) Vs ) <o™> (c) <a'B> = <ofV> in Figs. 6a,b,c oit- 0.0171

and in Figs. 7a,b,c oit = 0.0564. The like backscatter cross section

[H

near normal incidence (90 0) is largest for the case k = 1. This is
expected since the case k = 1 corresponds to a surface with a slope
distribution which has the largest zero slope probability. On the other

hand consistent with the above results, the depolarized backscatter cross

sections near normal incidence are smallest for the case k = 1. The back-

scatter cross section for k = 25 is practically indistinguishable from
! the backscatter for Gaussian random surfaces. Furthermore, as one may
expect, the spread in the values for the backscatter cross sections as k
varies from 1 through ® increases as the mean square slope oft increases.
At large angles of incidence Gi. the spread in the values of the like
backscatter cross sections is more pronounced for the horizontally polarized .

waves than for the vertically polarized waves. The reason for this is found

! 16
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by examining the expression for the dominant term at large angles 6:. i.e.,
<0PQ>lu (first order Bragg). In this term lvybunlz is proportional to

|51'3|4 while |V§DVV|2 is proportional to |2—(Ei'ﬁ)2|2. The latter term is
both larger and less sensitive to slope variations E(hx,hz). In Figs. 8a,b,c,d
and 9a,b,c.d,<ovvzrthetotal backscatter cross sectiona,<cv!z’the large scale
backscatter cross section<ov¥§rthe leading term of the small scale cross
section (which corresponds to first order Bragg scatter) and the remainder

term<0v%a+<ovv are plotted as functions of 02, case (a) k = 1, case (b)

>
R3
k = 2, case (c) k = 5, case (d) Gaussian surface heights. The results for

k = 25 are not shown since they are indistinguishable from the results for

the Gaussian surface). In Figs. 8a,b,c,d, Git = 00,0171 and in Figs.
9a,b,c,d oit = 0,0564. The corresponding results for OHH and UHV = OVH

are presented in Figs. 10a,b,c,d and 11la,b,c,d, 1l2a,b,c,d and 13a,b,c,d.
From the above plots of the backscatter cross section it is seen that not
only is the total backscatter cross section<CPQ>T sensitive to changes in
values of k, but the individual terms in the weighted sum (2.7) are also
sensitive to changes in k. Furthermore, except for near grazing angles

the backscatter cross section for the small scale surface <0PQ>R cannot

be approximated by the leading term in the series (2.13) which corresponds
to first order Bragg scatter. It has been shown using the full wave
approach, Bahar et al. (1982), that the total backscatter cross section
<OPQ>T is independent of the specific choice of kd for B > 1 provided none
of the significant terms in (2.13) are neglected. The terms <t ,for m > 4,
can be neglected for all Bo when kd is chosen such that 8§ = 1.

On the basis of the above results, several schemes can be devised to

distinguish between the backscatter cross sections for different values of k.

17
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.1

The behavior of <OPP>T (P=V,H) near normal incidence is of particular

i is largest
60-0

for k = 1 and decreases gradually as k increases. Since <OHH>T is

interest in this respect. Thus one notices thnt|d<apg¥d6:

more sensitive to variations in k for 6o > 25°, the backscatter cross

sections for horizontally polarized waves are more indicative of the
particular form of the rough surfaces height distribution than the backscatter
cross sections for the vertically polarized waves. The depolarized
backscatter cross sections <0PQ>(P#Q) are rather insensitive to the particular
form of the rough surface height distribution except near normal incidence

where|d<quVde is largest for k = 1.

°le =0
6. Concluding Remarks
Full wave expressions for the like polarized and the depolarized
scattering cross sections are derived for a broad family of non-Gaussian
rough surfaces. It is assumed that when the surface heights decorrelate
they become statistically independent. For the cases considered in the
illustrative examples, it is shown that while the shadow functions are not
very sensitive to the parameter k(=1,2,3...) of the surface height
probability density assumed, the backscatter cross sections are sensitive
to the parameter k. The like polarized back-
scatter cross sections <ovv>T and <0HH>T have the same dependence on k
for small angles of incidence 9:, however for large angles Oi, the cross
section <0HH>T is much more sensitive to k than <0vv>T. An examination of
the expression for the dominant term corresponding to first order Bragg
PP

scatter <g >Rl provides an explanation to this phenomenon. The depolarized

backscatter cross sections <0PQ>,r (P#Q) are sensitive to k only near normal

18




incidence. For 9: = 0, the like polarized cross section <OP?>T is largest
for the smallest value of k (k = 1). This is because the slope probability
density for zero slope is largest when k = 1. Thus consistent with energy
conservation as the like polarized cross section increases with decreasing
k values, the depolarized cross section decreases with decreasing k values.
Both the total backscatter cross sections and the components of the weighted
sum of cross sections are presented in Section 5. The terms corresponding
to <OPQ>Rm m > 2 cannot be neglected in this work and a perturbed physical

optics approach 1s not suitable for determining the total backscatter

cross section (Bahar et al. 1982).
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Figure 1.

Figure 2.

- Figure 3.

Figure 4.

Figure 5.

Figure 6.

’ ‘ Figure 7.

Figure 8.

Figure 9.

Figure Captions

Plane of incidence, scattering plane, and reference (x,z) plane.

Local plane of incidence and scatter and local coordinate system

with unit vectors ;1,32,53.

The one dimensional gamma surface height distributions times ¢
as functions of h/c for k = 1,2,5,25 together with the Gaussian
surface height distribution with <h>/g = 5.

O) k=1, (A) k=2, () k=5, (X) k = 25, (O) Gaussian.

The one dimensional slope distributions times olt = /2 ox as
functions of hxlolt’ MO)Yk=1, (A) k=2, (+) k=5, (X) k = 25,
(<> Gaussian.

The shadow functions of functions of ei for backscatter.

of, = 0.0171 and  of, = 0.0566 () k=1, (&) k = 2,

+) k=5, (X) k =25, () Gaussian.

The total backscatter cross sections (2.7) as functions of Bi

2
for Opp = 0.0171

(a) <OVV> (b) <0HH> (c) <ovH> = <0Hv>.

CH k=1, (A) k=2, (+) k=5, (X) k = 25, ({) Gaussian.

The total backscatter cross sections (2.7) as functions of 3: for
2

czt- 0.0564

(a) <ovv> (b) <q“n> {c) <0VH> - <OHV>

O k=1, Q) k=2, (¥ k=5, (X) k=25, () Gaussian.

Backscatter cross sections (-)(a'w?.ri (x)<3"’>o A0 )<ovv§l ()] <°VVE2+<0VV>

1 2
as functions of 90 for olt = 0.0171

(a) k=1, (b) k = 2, (c) k=5, (d) Gaussian

vV Vv \'AY vV \'A'A
Backscatter cross sections (~)<o ar(X)<o %.(C])<c ﬁr(A)<a i5+<a >R5u
as functions of 6: for Oit = 0,0564

(a) k = 1, (b) k = 2, (c) k=5, (d) Gaussian.




Figure 10. Backscatter cross sections (-)<0§m>,r, (X)<om{>° ,(U)<0HH>

Figure 11. Backscatter cross sections (-)X omgr (x)<clm>d (CH<o™s

Rl,

Q<o o0 3as functions of 6: for oit = 0.0171
(a) k=1, (b) k=2, (c) k=35, (d) Gaussian

HH
Rl.

(A)<0HHE§<UH%S functions of 61‘ for oit = 0.0564

(a) k= 1, (b) k = 2, (c) k=5, (d) Gaussian.

Figure 12. Backscatter cross sections (=)< cv}g,r, (X)X ov‘to, ()< OW&RI’

'/ i 2
(M) cw}q«o %“ functions of eo for Oe 0.0171
(a) k=1, (b) k = 2, (c) k = 5, (d) Gaussian.

Figure 13. Backscatter cross sections (-X ov*%. (X)<ovx%, (m )<ov}gm,

— .
S e e g —————— e T

Lt
(a) k =1, () k=2, (c) k =5, (d) Gaussian.

v VH, 1 2
(A)<01k2+<0 mas functions of eo for o 0.0564.
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