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1. Introduction

In this work the full wave approach is used to determine the

scattering cross sections for composite models of non-Gaussian rough

surfaces. In particular, it is assumed here that the rough surface is

J characterized by a family of joint height probability densities that

have been developed by Beckmann (1973a,b) for non-Gaussian surfaces.

These joint height probability densities are expressed as an infinite

sum of powersof the correlation coefficient and it is assumed that

decorrelation of surface heights implies statistical independence.

Using these joint probability density functions, Beckmann(1973a,b)

derives physical optics and geometrical optics approximations for the

scattering cross sections. Recently, Brown considered rough surfaces

with exponential joint height probability densities (Brown, 1982).

In his work Brown concludes that the appearance of a delta function type

specular term in his results "suggests that decorrelation does indeed

imply statistical independence for real surfaces."

In Section 2 the principal elements of the full wave approach are

summarized. In Sections 3 and 4, the expressions for the marginal slope

*densities and the shadow functions for the non-Gaussian surfaces are

derived. In Section 5 illustrative examples are presented. By considering

a very broad family of non-Gaussian rough surfaces that include in the

limits the exponential and the Gaussian surfaces, it is possible to

derive the full wave solutions for the backscatter cross sections for

more realistic models of rough surfaces. Since it is assumed in this

work that decorrelation of the surface heights implies statistical
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independence, no delta function type specular terms are obtained in

these results. It is found that for angles of incidence ei > 250, the

backscatter cross section for the horizontally polarized waves are

more sensitive to the specific form of the joint height probability

density assumed. The reason for. this is given in Section 5. For near

normal incidence both the backscatter cross sections for vertically and

horizontally polarized waves, exhibit the same dependence on the special

form of the joint height probability density assumed. The depolarized

backscatter cross sections are sensitive to the special form of the

surface statistics only near normal incidence.

It is interesting to note that for the mean square slopes considered( in the illustrative examples, the shadow functions for the non-Gaussian

surfaces are practically indistinguishable from the shadow function

for the Gaussian surface, nevertheless the backscatter cross sections

are sensitive to the precise form of the surface height statistics

assumed (see Section 5).
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2. Formulation of the Problem

The full wave solutions for the scattering cross sections are summarized

in this section for a two scale model of random rough surfaces h(x,z) (See

Fig. 1) (Bahar et al 1982). To this end consider the Fourier transform of

the surface height autocorrelation function <h(x,z)h'(x',z')> which is the

surface height spectral density function (Rice 1951)

W(v ,v) -I exp(iv x + iv z )h(x,z)h'(x',z')>dxddz (2.1)

In (2.1) the symbol < >denotes statistical average and

v k nf i mv va v , v (2.2a)

in which n and nf are unit vectors in the directions of the incident and

scattered waves

-i i -I - i
gn - sine coO a - cose' a + sine' sin ' a /k0  (2.2b)

0 X 0 y 0Z 0

-f , f f- f - f f- -fn -sine coso ax+ cose 0ay+ sine 0sino az k/k 0(2.2c)

Iand k w(e 1 ) is the free space wavenumber characterized by the permittivity
0 0 0

0 and permeability ly,. An exp(iwt) time dependence is assumed in this work.

The distance between two points in the reference (xz) plane is

r d - I rdl - xda+ zd:zl -I(xx)'X+ (zz') ajv (2.3)

For convenience the rough surface height h(xz) is decomposed into two parts

-~~)-hi xz h 8(x,z)(24

the first term h L consists of the large scale spectral components

0 2 =..,2 + v2 <IC2 (25

* where kd is the vavenumber where spectral splitting is assumed to occur

(Brown 1978, 1980). In this work the wavenumber k d is chosen such that

3
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the surface h meets the radii of curvature criteria (associated with the

Kirchhoff approximations for the surface fields). It is also assumed here

that the surface h X meets the condition for deep phase modulation (Bahar

et al 1982). The second term in (2.4), hs, consists of the small scale

spectral components

kd < k <k (2.6)

where kc is the spectral cutoff wavenumber (Brown 1978). The full wave

scattering cross section for the composite surface (2.4) which accounts for

both specular scatter and Bragg scatter in a self-consistent manner is given

by the weighted sum of two cross sections (Bahar et al 1982)

<PQ>T <aPQ>° + <oPQ> (2.7)

in which the first and second superscripts (P and Q, V for vertical, H for

horizontal) denote the polarization of the scattered and incident waves

respectively. The first term in (2.7) is the scattering cross section

associated with the surface h .. Thus

< - x (v) 2 <oQ> (2.8)

where

4rk2  1

2c -2-

y y

In (2.8) the characteristic function for the surface ha, XS(v), has the effect

- of decreasing the contribution of the physical optics scattering cross

section < PQ>. As <h2>9the mean square of the small scale surface height
62

(that rides on the large scale surface h approaches zero, Ix 1.

It is assumed in this work that the small scale surface height, h5 , has a

Gaussian distribution and in this case the coefficient IX'I in (2.8) is

4
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IX9(v) 12 ><exp iv ha> 2 exp(-4k2<h2>) - exp(-O) (2.10)

* Thus the effective weighting function, Ixs1 2 decreases monotonically as

2 2 -f-i-
- 4k <h28 > increases. The shadow function P2 (n ,n ln) is the probability

that a point on the rough surface is both illuminated by the source and

visible at the observation point given the value of the slopes h ,h at

that point (Smith 1967, Sancer 1969). The unit vector normal to the rough

surface is

n = V&-h I(x, z))IV y-h k(x,z))l -- (y-h(x~z))/jV~y-h(x,z)) I

W (-hxax + ay- hz a z)/(h 2x + 1 + h
2) (2.11a)

where

h - ah/x , h - ah/az (2.11b)

and

n. v-/v (2.11c)

is the value of n at the specular points of the rough surface. Furthermore,

p(n) - p(h ,h z ) is the joint probability density function for the slopes of

the large scale surface h . In this work the joint probability density func-

tion for the large scale surface height h£(xz) and its associated slope

distribution function are assumed to be either Gaussian or non-Gaussian

(Beckmann 1973a,b, see Section 3).

The coefficient DPQ in (2.9) depends on the polarization of the scattered

-i -f
and incident waves, the unit vectors n ,n and n and the permittivity E and

permeability V of the media above and below the rough surface h(x,z)

(Bahar 1981ab).

* The second term in (2.7) is the scattering cross section associated

with the small scale surface h (that rides on the large scale surface).

5
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Thus (Bahar et al, 1982)

o ID QX (vI) 2 - m
- 4k2 2 2 WZ... (2.13)

rn-1 no;
y o

OP2 (nfnil)p(n)dh
xdhz =I <oPQ>Rm (2.13)

M-I

In (2.13) W is the two dimensional Fourier transform

W (vYv)
2m  = f 1 <h ht>m exp(iv- + iv zd)d dz

2 2m 271.2 1 11 xxd Z d'd d

1 ( i ,

- 2. Win_1 (v )W1 (vx-vv -v.)dvidv'
2 2m X R E SX z1 xz

1 w l(V.,vE) (i W (V,V) (2.14)
22m in-l x 2W 1 '

where the symbol ( denotes the two dimensional convolution of Wm-, with

W1, the surface height spectral density function for the small scale surface

h . Thus
s

W(v-,v) for k > k

W (Vv..v xz d

andIvVandl0 z for k < kd (2.15)

and v- and v are the orthogonal components of the vector v (2.2) tangent

to the surface hR(xz) while v- is the component of v normal to the surface h V

Thus v in the local coordinate system associated with the rough surface h can

be expressed as (see Fig. 2)

v- xn1 + vyn2 +V n 3  (2.16a)

where

(n x a)/I, x n, 2 " fl' 13 " n1 x a (2.16b)

and

*v~ v~n, von2  V. so von (2.16c)

6



Using the full wave approach it is shown that a suitable value for kd (the

wavenumber where spectral splitting is assumed to occur) is obtained by

setting 8 " 4k2<h2 >- 1.0 since for this value of B the assumed condition
o 8

for deep phase modulation is satisfied. For $ > 1.0 the total scattering

cross section (2.7) is insensitive to variations in the value of kd (Bahar

et al 1982). However, since kd decreases as B increases, it is necessary

to evaluate more terms in (2.13) for larger values of 8.

3. Non-Gaussian Joint Probability Density Functions for the

Large Scale Surface Heights and the Associated Slope

Distribution Function

The principal purpose of this work is to apply the full wave appi

to scattering from rough surfaces to surfaces with non-Gaussian surfa,

height distribution functions and to compare the results with these fox

Gaussian surfaces. In his recent work, Brown (1982) investigates scattering

by surfaces for which decorrelation does not imply statistical independence.

In this work Brown concludes that the appearance of a specular term coupled

with the lack of any experimental scattering data supporting this result

"suggests that decorrelation does indeed imply statistical independence for

real surfaces."

Thus, even though from a mathematical point of view, statistical

independence is not, in general, implied by a lack of correlation (Papoulis

1965), it is assumed in this work that the joint surface height distribution

function becomes statistically independent as the surface height decorrelates.

* Beckmann (1973a,b) derives a method for finding the joint distribution

function for the surface height, f(h,h';rd), from a given marginal p(h)

that is not necessarily normal and a given correlation coefficient R(rd).

7

2sly.



"i

Thus following Beckmann (1973a,b) f(hbh';rd) is expressed as follows

00 Rn(rd)
f(h,h';rd) , p(h)p(h') d Q -Q(h)Qn(h') (3.1)

n- q

where the identical functions p(h) and p(h') are the marginals satisfying

f(hh';rd)dh' - p(h) , Jf(hsh';r d)dh- p(h') (3.2)

From (3.2) it also follows that

f(h,h';rd)dhdh' - 1 (3.3)

In (3.1) it is assumed that the given surface height density function is

transformed into a density p(h) which is proportional to the weighting

function of a classical set of orthogonal polynomials %(h), i.e.,

0 n m

p(h)Qn (h)Qm(h)dh = (3.4)Iq nm

where all qn are positive and

Qo 0 (3.5)

I thus qo f 1. Beckmann (1973a) shows that

R: (rd)
nd

f(hh';rd) = 2 (h)Qn(h') > 0 (3.6)
n0 q

thus

f(h,hW;rd) > 0 (3.7)

throughout the domain a < h,h' < b (where the orthogonality interval of

the polynomials Qn is a,b (3.4)).Furthermore, it can be shown that

t For the convenience of the reader, Beckmann's principal results are summarized

here. Since there are several errors in the published results, corrected
equations are denoted here by the symbol * next to the equation number.

8
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R r) - 2hQnhdh
<hh'> =Jfhh'f(hh';rd)dhdh' - n 2 0 q hp(h)(h)d

n- n

= R(rd)(<h 2> - <h>2) + <h>2  (3.8)

in agreement with the condition f(h,h';rd) must fulfill if it is to be a

two dimensional density of a random process with given correlation coefficient

R(rd). In addition (3.1) clearly satisfies

Lim f(h,h';rd) p(h)p(h') (3.9)
r -4 O

Finally express the function g(h) as follows in an infinite series of

orthogonal polynomials
00

g(h) - I an Qn(h) (3.10)
n0O

where on using (3.4) the constant a is
n

C n f g(h')p(h')Q (h')dh'/q2  (3.11)n jn n

On interchanging integration on summation (3.10) can be written as

g(h) - g(h')[p(h' (h)L(h,) ]dh, (3.12)
n-Oq

thus the quantity in square brackets is the Dirac delta function 6(h-h').

Thus from (3.1) it follows that

Lim f(hh';rd) p(h)6(h-h') - p(h')6(h-h') *(3.13)
r d )od. r~d°

On integrating (3.13) with respect to h and h' it is readily shown to satisfy

(3.3). (Contrary to the statements by Beckmann (1973a,b), the Dirac delta

function does not remain unchanged when multiplied by p(h) and Lim f(h,h';rd)
rd o

6(h-h')). In Beckmann's work (1973ab), the orthogonal polynomials Q(h)

can be the Hermite polynomials, the generalized Laguerre polynomials or the

9
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Jacobi polynomials. However, in this work it is assumed for convenience

that n are the generalized Laguerre polynomials (Abramowitz and Stegun

(1964))

O%(h) - L (k- 1 ) (h) (3.14)
n

Since the weighting functions associated with the Laguerre polynomials are

proportional to the gamma functions, the marginals for the large scale

surface height probability density functions are the gamma distributions

k hk-i -vh

p(h) (k-i e , h > 0 (3.15)= (k-1) ' -

for which the mean is <h> - k/v, the variance is o 2 = k/v2 and the normalization

2
constant qn (3.4) is

q (k + n-l)./(k-l):n *(3.16)

For k 1 (3.15) reduces to the exponential distribution

p(h) ve-vh 9 (k-1) (3.17)

and for the limiting case k -o (3.15) reduces to the Gaussian distribution

J by virtue of the Central Limit Theorem. (For most practical purposes

k > 25 is sufficiently close to the limiting case).

p(h) - exp -[ (h-<h>) 2  (k- )  (3.18)
a2F 2a2

2
where a is the variance and <h> is the mean height.

Thus using the gamma distribution (3.15), it is sufficient to vary one

parameter k to examine the effects of changing the marginal height distribu-

tion from exponential to normal in gradual steps.

Following the procedures outlined above, the joint distribution for

the surface heights whose marginals are p(h) (3.15) (with v - 1 and variance

k can be shown to be given by (Beckmann 1973b))

10



f~h~h'-1 - (bh')' e R(r)n W k~)L ('

k-i' e(h k-1 k-i13.9
f~h~h d [(k-i)!] n-0 -(k+n-i)! Ln WLn h)(.9

in which Lk1(h) are Laguerre orthogonal polynomials (Abramsowitz and Stegun

1964). The corresponding (one dimensional) slope distribution function

p(h x) can be obtained from the inverse Fourier transform

r d Go~~ J ~)k-1 2
x~ Lim 2I~n) 0  (h)exp(iwh) I exp(-irdh w)dw (3.20)

n 2 nn

ao R Inp(h)L k-l(h)exp(iwh)dh 2. (n+k-li!w 2

1 2 (3.21
-2 2k

[l + (l-R)w]

Thus G

p~ Limr d exp(-iwh x)dw(32a
px r Li3.0 21 ( 2 /w2 )k(32

d 0

where the k thorder poles are at points

W+ - ti/V- ±i w 0(3.22b)

Using standard procedures for integration in the complex w plane, the path

* along the real axis is closed by an infinite semicircle in the lower or

upper half plane depending on whether z > 0 or z < 0. Thus the pole

enclosed by the contour is at

w- -i .. for z > 0

w { *(3.23)

W+ iw 0 for z< 0

and (3.22) reduces to

A13.
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e k- (2k-J-2)!(2ylh) *(3.24)

Psx) 2 2k- (k-l)! j-0 j!(k-j-17T.

where

y -Lm rd W0  'm rd /(lv-R (3.25)
r + d rd -

For a stationary random process, the correlation function is an even function

of rd (Beckmann 1968) and for small rd

0~2

a-2 2 4
R(rd) - 2 rd + O(rd) (3.26)d 2 dd

2a

where a2 is the mean square slope
x

a 2 2 R"(o) (3.27)
x

Therefore (3.25) reduces to

- o ra (V-) *(3.28)Y" = - -

x x

and the slope distribution function corresponding to the two dimensional

gamma (surface height) distribution (3.19) is

p(h 24'5k exp(- 2k1hx1/0 x) k-i 1 (2r2"klhx1/x *(3.29)
a 2 2k(k-1) ! Jo J !(k-J_1) :

The above result can be shown to hold for arbitrary values of V and not just

v - 1 (Beckmann 1973a). It is assumed in this work that the probability

density for the slopes h and h are independent (as for the Gaussian case
x z

Barrick 1970, Brown 1978, Behar 1981ab), thus the two dimensional slope

distribution for the large scale surface is

p(;) - p(h xh 3 ) - p(hx)p(h ) (3.30)

in which p(h ) and p(h ) are the same functions as in (3.29). The corresponding
x z

slope distribution function is

p(h) 1 exp(-h 2/2o 2 (3.31)

x

12
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4. The Eplicit Epression for the Shadow Functions Associated

with the Non-Gaussian Surface Height Distribution Functions

In this section explici- -*salons are derived for the shadow functions

related to the non-Gaussian surface height distribution functions considered

in Section 3. Brown (1980) recently developed a very convenient procedure

to evaluate the shadow functions for surfaces with non-Gaussian height distrib-

ution. Following Smith's work (1967), Brown (1980) assumes that the surface

heights h and slopes hx at points separated by the distance rd are uncorrelated.

In addition Brown assumes that decorrelation implies statistical independence.

Thus keeping the notation used in this paper, the shadow function for back-

scatter (nf= - P 2 (-nni,iln), is the probability that a point on the

rough surface is illuminated by the source (and visible at the observation

point) given the value of the slope at that point.

P2 (-n ,n n) - S(-nt'n)/[1 + r / ) (4.1)

where S(-n 'n) is the unit step function. The argument -n *n vanishes when

the incident (or backscattered) wave normal is tangent to the surface.

Thus, when the plane of incidence is the x,y plane (see Fig. 1), the argument

(-nl*n) vanishes for

t -= cote i . Bh/3x E h (4.2)
0 x

in which e is the angle of incidence (2.26) with respect to the reference

surface (the x,z plane). Furthermore, in (4.1)

or
ii oio

r i =- roui ) . (h x -V')p(h )dh (4.3)

in which p(h x ) is the one dimensional slope distribution function. On

substituting the non-Gaussian slope distribution function (3.29) (associated

13
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with the gamma surface height distribution) it can be shown that

r(w~~ VUM--J~l'x (4.4)

22k - l 0 (1)k-j-l)! rl (J+-r)

The shadow function for the bistatic case, n -n , is (Brown 1980)

s(-i') e > ef ,o -, i

i+ri/Ii '0- i

S(n -n) f  i  f i

.... n s -.) elsew h er e (4 .5 )
1+(r i/I i )+(r f / f)

In (4.5)

r= F(j f ) and pf = coto (4.6)
f 

0

where f is the scatter angle (2.2c) with respect to the reference plane.
0

The above expressions (4.5) are also in agreement with Sancer's (1969)

results for Gaussian surface height distributions. (In Sancer's published

results (1969), the inequality symbols should be reversed, Brown(1980)).

5. Illustrative Examples

In this section the like and depolarized backscatter cross sections

are evaluated for several composite models of perfectly conducting rough

surfaces with different surface height distribution functions. The surface

h£ consisting of the large scale spectral components, 0 < k < kd, is assumed

to be characterized by the gamma surface height distribution function (3.15)

and the associated non-Gaussian slope distribution function (3.29). For

the illustrative examples presented here the parameter k is set equal to

1,2,5 and 25 and the limiting case (k a) is represented by the Gaussian

distribution (3.18). Two different total mean square slopes are considered

14
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(a) a 2, 0.0171 and (b) a 0.0564. The surface h5 consisting of the

small scale spectral components, k > k d is characterized by Gaussian

surface height distribution functions. The wavenumber k dwhere seta

splitting is assumed to occur is determined by setting 8 4k 2 h2 >-M 1
0 s

(Bahar et al 1982) and the specific form assumed for the surface height

spectral density function (2.1) is (Brown 1978)

W(k) - S M) - ill (k2+ K2 ) 4  ,k

I. 0 k k> k (51

In (5.1) w(k) is the spectral density function employed by Rice (1951)

and

B - .0046 (case a) ;B - 0.0133 (case b)

k2_v2 +v2 (cm) -2 k -=12 (cm)1l
Sx z C

KC - (335.2 V 4 ) (cm) 1  ;V - 4.3 (m/s) (5.2)

The wavelength for the electromagnetic wave is

X0- 2 (cm) ,(ko - 3.1416 (cm) lj (5.3)

The mean square height for the small scale surface h is

21r k

<h > JJW k kkd~ (5.4)

0 kd

and the total mean square slope for the large scale surface hL is (Brown

1978)

~2 ~2 +2 W-k dkdO = 1 ~ +C1(5

in which~ cT ~ k 0 3 25L~ [~ 1

x .r -



In Fig. 3, a times the one dimensional gamma surface height distribu-

tions (3.15) are plotted as functions of h/a for k - 1,2,5,25 together with

the Gaussian surface height distribution (Wth <h>/O - v1 - 5). In Fig. 4,

the corresponding one dimensional slope distributions times a / yx are

plotted as functions of h/ot. In Fig. 5 the corresponding shadow

I-f. --i
functions (4.5) are plotted as functions of 6 for backscatter (n n

0

(a) 2 0.0171, (b) a t2 0.0564. As expected the shadow function is

smaller for the larger mean slopes. The shadow functions are insensitive

to the particular form of the slope density functions considered.

In Figs. 6a,b,c and 7a,b,c, the corresponding like polarized and

depolarized total backscatter cross sections (2.7) are plotted as functions

of ei  (a) <a W> (b) <a H > (c) <GVH> M < HV > in Figs. 6a,b,c a t 0.0171
0 I

2
and in Figs. 7a,b,c a£t f 0.0564. The like backscatter cross section

near normal incidence (60°  0) is largest for the case k - 1. This is

expected since the case k = 1 corresponds to a surface with a slope

distribution which has the largest zero slope probability. On the other

hand consistent with the above results, the depolarized backscatter cross

sections near normal incidence are smallest for the case k - 1. The back-

scatter cross section for k - 25 is practically indistinguishable from

the backscatter for Gaussian random surfaces. Furthermore, as one may

expect, the spread in the values for the backscatter cross sections as k

varies from 1 through - increases as the mean square slope 2 increases.

At large angles of incidence e0, the spread In the values of the like

backscatter cross sections is more pronounced for the horizontally polarized

waves than for the vertically polarized waves. The reason for this is found
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by examining the expression for the dominant term at large angles 0, i.e.,

<OPQ> Rl(first order Bragg). In this term jv HH12 is proportional to

while Jv-WD 2 is proportional to 12-(;i)2j2 . The latter term is

both larger and less sensitive to slope variations n(h ,hz). In Figs. 8a,b,c,d

and 9ab,c,d,<o VV>Tthetotal backscatter cross sections,<^ > the large scale

backscatter cross section<a the leading term of the small scale cross

section (which corresponds to first order Bragg scatter) and the remainder

terma R+ >3 as of case (a) k - 1, case (b)

k - 2, case (c) k - 5, case (d) Gaussian surface heights. The results for

k - 25 are not shown since they are indistinguishable from the results for

the Gaussian surface). In Figs. 8a,b,c,d, a t - 0.0171 and in Figs.

9a,b,c,d a9t2 0.0564. The corresponding results for a HV a a VH

are presented in Figs. 10a,bc,d and lla,b,c,d, 12a,b,c,d and 13a,b,c,d.

From the above plots of the backscatter cross section it is seen that not

only is the total backscatter cross section< Q>T sensitive to changes in

values of k, but the individual terms in the weighted sum (2.7) are also

sensitive to changes in k. Furthermore, except for near grazing angles

the backscatter cross section for the small scale surface <aPQ>R cannot

be approximated by the leading term in the series (2.13) which corresponds

to first order Bragg scatter. Ic has been shown using the full wave

approach, Bahar et al. (1982), that the total backscatter cross section

<PQ> T is independent of the specific choice of kd for a > I provided none

* iof the significant terms in (2.13) are neglected. The terms <m for m > 4,
Rm'

can be neglected for all e0 when kd is chosen such that 0 - 1.

On the basis of the above results, several schemes can be devised to

distinguish between the backscatter cross sections for different values of k.

17



The behavior of <OpP>T (P-V,H) near normal incidence is of particular

interest in this respect. Thus one notices that d< /d6ji' is largest
o Hi

for k - 1 and decreases gradually as k increases. Since <O >T is

0
more sensitive to variations in k for e > 25° , the backscatter cross

sections for horizontally polarized waves are more indicative of the

particular form of the rough surfaces height distribution than the backscatter

cross sections for the vertically polarized waves. The depolarized

backscatter cross sections < PQ>(P#Q) are rather insensitive to the particular

form of the rough surface height distribution except near normal incidence

where Id<oa/dO is largest for k - 1.
0 0o

6. Concluding Remarks

Full wave expressions for the like polarized and the depolarized

scattering cross sections are derived for a broad family of non-Gaussian

rough surfaces. It is assumed that when the surface heights decorrelate

p they become statistically independent. For the cases considered in the

illustrative examples, it is shown that while the shadow functions are not

very sensitive to the parameter k(-1,2,3...) of the surface height

probability density assumed, the backscatter cross sections are sensitive

to the parameter k. The like polarized back-

scatter cross sections <0 >T and <aHH>T have the same dependence on kTk

i i
for small angles of incidence e0, however for large angles eo, the cross

section <0 is much more sensitive to k than <a An examination of

the expression for the dominant term corresponding to first order Bragg

scatter <a PP>Rl provides an explanation to this phenomenon. The depolarized
<o~PQ>

backscatter cross sections <0r >T (P#Q) are sensitive to k only near normal

18



-. .PPincidence. For e 0 0, the like polarized cross section <oPP>T is largest

for the smallest value of k (k m 1). This is because the slope probability

density for zero slope is largest when k - 1. Thus consistent with energy

conservation as the like polarized cross section increases with decreasing

*k values, the depolarized cross section decreases with decreasing k values.

Both the total backscatter cross sections and the components of the weighted

sum of cross sections are presented in Section 5. The terms corresponding

to <oPQ> m > 2 cannot be neglected in this work and a perturbed physicalRm -

optics approach is not suitable for determining the total backscatter

cross section (Bahar et al. 1982).
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Figure Captions

Figure 1. Plane of incidence, scattering plane, and reference (x,z) plane.

Figure 2. Local plane of Incidence and scatter and local coordinate system

with unit vectors n1 ,n2 ,n 3 .

Figure 3. The one dimensional gamma surface height distributions times a

as functions of h/a for k - 1,2,5,25 together with the Gaussian

surface height distribution with <h>/a - 5.

(Q) k - 1. (A) k - 2, (+) k - 5, (X) k - 25, (0) Gaussian.

Figure 4. The one dimensional slope distributions times at a x as

functions of hx/at. (0) k 1 1, (A) k - 2, (+) k - 5, (X) k - 25,

(C%) Gaussian.

Figure 5. The shadow functions of functions of 6 for backscatter.

a M 0.0171 and a - 0.0564 0 i,) k- 1, (A) k 2,ot k .11ad £

(+) k - 5, (X) k - 25, ( ) Gaussian.

Figure 6. The total backscatter cross sections (2.7) as functions of t

for a 2 . 0.0171

(a) <aW> (b) <a > (c) <av> - <a >.

(C) k - 1, (A) k - 2, (+) k - 5, (X) k - 25, (,>) Gaussian.

Figure 7. The total backscatter cross sections (2.7) as functions of 6 for
2 0

a t -0.0564

(a) <0VW> (b) <,UH> (c) < 'VH> . <oHV>

(0) k -I , (A) k - 2, (+) k - 5, (X) k - 25, (C9 Gaussian.

Figure 8. Backscatter cross sections (- w> ,.X)<V>o(U)< a )<VVV w.

as functions of 0 for 0  - 0.0171

(a) k - 1, (b) k - 2, (C) k - 5, (d) Gaussian

Figure 9. Backscatter cross sections ( ) '

i 2as functions of e0 for 0 I 0.0564

(a) k - 1, (b) k - 2, (c) k - 5, (d) Gaussian.
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Figure 10. Dackacatter cross sections (-)<a~~ (X)< "CY ,(1)<oIII>,

as functions of 0for a t 0.0171

(a) k - 1, (b) k - 2, (c) k - 5, (d) Gaussian

Figure 11. Backscatter cross sections (-)<cH> (X)<aH eC-D<0HH .

a 0)<o "0 s functions of 0f or 2 00564

(a) k- 1, (b) k - 2, (c) k- 5, (d) Gaussian.

Figure 12. Backscatter cross sections (-)<a">, (X)<R' , j)<OV l,

(Y0 VH, o %osV functions of 0f or 2t 0.0171
o O.0t

(a) k - 1, (b) k - 2, (c) k - 5, (d) Gaussian.

Figure 13. Backscatter cross sections (-)<aoVI, (X)<oV o , ([])<OV>R1,

(W<ao'+<OVas functions of 0 i for a 2 0.0564.
o it

(a) k- 1, (b) k - 2, (c) k 5, (d) Gaussian.
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