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THE TRANSVERSE CURRENT ON A STRIP DIPOLE ANTENNA

A.D. Wunsch

RADC Postdoctoral Fellow

Abstract

The magnitude and distribution of the current flow
transverse to the axis of a small strip dipole antenna
is evaluated numerically by means of the moment method.
This current is found to be small compared to the axial
current and to be a sensitive function of the dipole
width.
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THE TRANSVERSE CURRENT ON A STRIP DIPOLE ANTFNNA

All analyses of the current on thin wire dipole antennas

presuppose that this current is directed parallel to the antenna axis.

This assumption is made irrespective of the shape of the cross-section

of the wire. If the wire antenna has a circular cross-section and is

fed in a symmetric manner, no approximation is made in assuming a

purely axial current. For antennas having a non-circular cross-

section, a component of current transverse to the antenna axis can

exist. The strip dipole, which is now increasingly used in arrays of

microwave antennas, can possess such a transverse component; we have

investigated its magnitude and distribution when the antenna is

electrically small.

The antenna, of width 2b and length 2h, driven at its center by a

delta function generator of potential V, is shown in Figure 1. We

seek both surface current density components Kx (x,z) and Kz (x,z). The

antenna current creates a magnetic vector potential A(x,y,z) = Az az -

Ax ax from which we can derive the components of the electric field

generated by the antenna. Thus:

__ 2 2 A21aE jw [!2Az + a2Ax + 2 (I)

xz 822 2 xaz A ]
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Here:

h b

A xJOz =- f I K (' ,z"' ('(R ' z' (4)f2
-h -b

where G(R) = e-JBR/R, B =  wVF, w is the radian frequency in use

and

R I x-x') 2 + y2 + (z-z) 2 (5)

is the distance between a source point x',O,z', on the antenna and a

general observation point at x,y,z.

On the antenna, Ex and Ez must fulfill these boundary conditinns:

Ez (x,O,z) = - V 6(z), (6)

-b<x<b,-h<z<h

Ex (x,O,z) = 0 (7)

Equation (6) is a rpsult of the assumed delta function driving

generator while (7) follows if we assume a perfectly conducting metal

strip.

Using (1) and (2) to find Ex and Ez in the rectangle occupied by

the antenna, using.(6) and (7) on the left in (1) and (2), and using
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(3) and (4) to describe Ax and Az in (1) and (2) we arrive at a

coupled pair of integral equations valid for -h<z<h, -b<x<b, y=O:

2 0 K(x' ,z')G(R)dx'dz' + - f f Kx(x' ,z'r,(P)dx'dz'2 4nT 7 z 3z 3x jj
= --b Z h -b

-h -b

+ 62 f f KK(x'Zz)Cd (R)dxdz (9)

-h -b

Note than R in (8) and (9) is now'' x-x') + (z-z')2.

The preceding equations are coupled versions of Pocklington's integral

equation.

To solve (8) and (9) by an iterative procedure we first assume

that the lonqitudinal surface current density Kz is considerably

stronger than the transverse surface current density K . We neglect

K in (8) and then solve this equation to obtain a first approximation
x

to Kz(x,z). With this Kz, (9) is now solved for Kx,Z). An improved

h b

KN(xz) can now be obtained if we again solve (8) for K using the

recently derived K (xz). In theory the procedure can be continued

indefinitely.

The solution of (8) with K =O is a standard problem in antenna

z z x

theory: the problem of obtaining the axial current on a dipole antenna

3
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on which there is no transverse current. There is a large literature

on this subject and much numerical data which we can use.

To simplify this still rather complicated problem we have

restricted ourselves to the electrically short, electrically narrow,

strip dipole, i.e.: Kh<<l, Kb<<l. The antenna is assumed sufficiently

small to render valid a quasi-stationary (low frequency) solution for

Kx and Kz . In this approach w is small enough so that we can take

e- R = 1 where it appears in G(R) in (8) and (9). We also set a = 0

where it appears within the brackets on the right sides of (8) and

(9).

With these approximations and with Kx = 0 we solve (8) to obtain

a first approximation to Kz (x,z). Here we are aided by the writings

of King (1)(2) on the electrically short cylindrical dipole and on the

equivalent radius of dipoles with non-cylindrical cross-section. From

reference (1) we find that in the quasi-stationary limit the

distribution of current varies with z as (l-(IzI/h)). For the strip

dipole Kz is also a function of the transverse coordinate x (see Fiq.

1). This variation of K can be determined from reference () to bez

I/0l-(xV2/b?)). Thus, on the strip dipole

K0 (l-(Izl/h))
K (x,z) = K ( 1 zl 

(1)

This result is limited to rather narrow antennas, i.e., b<h. Note

that K is the axial surface current density at x=O, z=O+, i.e., at

the center of the antenna. Observe that the surface current density
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-® as the edge of the antenna is approached (x - b). This behavior

(3)conforms to well known edge conditions

Substituting (10) into (9) we now seek a solution for Kx(x,z).

Here we employ the moment method (4 ). The unknown transverse current

density Kx is represented in (9) by a "complete domain expansion",

i.e., a series expansion is used which represents Kx over the entire

antenna. Such expansions have been used by Richmond(5 ) to find the

current excited on a wire by an incident plane wave. He has employed,

with success, Fourier, Maclaurin, Legendre polynomial, and other

series. The double series we will use for Kx(X,Z) is:

N
A sin(n -) O<z'<h

K x(x' ,z')= l m=l n,m b m 1 h -<x'<b (x -b m'<l hl}

n sin( nX A) P (2z_ l -1) -h<z'<nI m~l n,m b Pm-1

where Pm-l is the Legendre polynomial of order m-l.

Using the physical symmetries of this problem we can show that Kx

is an odd function of both x and z. These symmetries are accounted

for in the form assumed for Kx in (11). The requirement that Kx

vanish at the edges of the antenna is also satisfied by this

expansion.

A polynomial representation of the z variation of Kx (x,z) is

advantageous since it allows the z' integration of Kx in (9) to be

done analytically when Kx is represented by (11). Only the

integrations on x' in (9) must be done numerically; these require a

modest amount of computer time.



We have chosen both 9 and 16 term series in (11) (i.e., N=3 and

N=4). By enforcing Ex =0, i.e., (9), at a uniform grid of N? points on

the antenna we can obtain N2 equations in the N2 unknowns an.

Because ot tne symmetry present in (I) these grid points can be

confined entirely to , of the antenna, say O<x<b, O<z<h. The

simultaneous equations are easily solved on a computer. The

coefficients an,m are then substituted into (11) from which the

transverse surface current density is then constructed.

Our results are shown in Figures 2 and 3 where we h plotted

Kx(x,z)/K o, i.e., the transverse current density normali to the

axial surface current density at the center of the anter Je can

make several conclusions: Over most of the antenna the results for the

9 and 16 term series are noct very different; this should assure us

that we are using series with a sufficiently large number of terms.

The transverse component of the surface current density is generally

much smaller than the axial component, e.g., for b/h = .1 the ratio

Kx/K 0 is of the order of .001, for b/h = .2 it is of the order of .01.

We see that K x/K0 is a sensitive function of the normalized antenna

width b/h. increasing rapidly as b/h increases.

Studying Kx as it changes with the axial variable z we notice

that it is strongest at the ends of the antenna and near the

generator. From symmetry, we can argue that Kx(z=O+)=O=Kx (z=O-).

Thus, starting at z=O+, K rises steeply with increasing z and

achieves a peak near the generator. We have not plotted Kx in the

immediate vicinity of the generator since the polynomial series

employed is not capable of representing this rapidly changing

behavior. Moreover, the formula for the axial component of current

6
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density (11) used in this analysis is itself of questionable validity

so near to the generator because of the infinite susceptance

theoretically "seen" by the delta function driving source. In a

physically realizable situation this portion of the antenna, say

O<z<.O5h would be absent anyway, having been replaced by a feed

structure.

Starting at x=O, and examining the variation of K with x, we seex

that the transverse current density increases at first almost linearly

with x and reaches a peak somewhere between .65b and .7b. From this

peak the current declines rapidly to zero at the edge of the antenna.

This qualitative behavior is more or less independent of the axial

location z and insensitive to the ratio b/h.

In an interesting paper, Denlinger(6) has analyzed the behavior

of the current density on an infinite microstrip line located above a

substrate. His graphical picture of the transverse current density on

the strip is qualitatively very similar to ours and displays a peak at

x=.7b.

If we choose to make another iteration in our solution of (8) and

(9) and thereby improve our representations of K and Kz we must

substitute our most recently obtained series representation of Kx into

(8) and again solve this equation for K z . The difference between this

new Kz and the one given by (10) is thc same order of magnitude as Kx

Since K is so vastly smaller than Kz this next iteration was deemed

unnecessary.

One interesting numerical result which we have found is the 180

degree phase shift existing between K and Kz. Thus Kz, the dominant

component of the surface current density, is maximum near the edges of

7
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the antenna (x=±b) and causes a transverse flow of current directed

inward toward the z axis.

The transverse current has negligible effect on the radiation

pattern of the antenna for two reasons: (a) Kx is small compared to K'

and (b) the symmetry condition Kx (xz)=-Kx(x,z) guarantees that the

radiation field contributed by the transverse currents on the two

halves -b<x<O and O<x<b will cancel. For strip dipoles belonging to

arrays this symmetry can be lost and there would be a greater tendency

for the transverse current to contribute to the radiation field of the

array.

8
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LEGEND TO ILLUSTRATIONS

Fioure 1 Strip Dipole

Fiqure , Normalized Transverse Surface Current Density
Kx/Ko at x=.65b

Figure 3 Normalized Transverse Surface Current Density
Kx/K 0 at Various Values of z/h for b/h=.l
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