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Abstract

A canonical transformation method previously applied to

positron-hydrogen scattering has been used to derive the Fock-

Tani Hamiltonian for electron-hydrogen scattering. The

transformed Hamiltonian exhibits the H bound and resonance

channels as explicit terms in the second-quantized

interaction. This representation is expected to be useful for

inclusion of these channels as intermediate states in the

many-body Green's function approach to evaluation of S-matrix

elements.
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Quantum field theoretic Green's functions are a useful tool

for calculation of elastic and inelastic electron-atom, atom-

1-5
atom, and atom-molecule scattering cross sections . The S-

matrices for such processes are expressible in terms of

single-particle Green's functions2. The extension to reactive

scattering cross sections normally requires more complicated

Bethe-Salpeter transition amplitudes , which are harder to

determine accurately. This difficulty can be circumvented in

some cases by an appropriate change of representation, such

that the new field operators for the appropriate composite

states satisfy elementary particle commutation relations. The

contributions of these composite states to reactive scattering

cross sections are then already manifested in certain new

single-particle Green's functions in the new representation.

The application of such a representation, the Fock-Tani

representation7 ,8 to positron-hydrogen scattering has recently

9-11
been described - The same approach can be applied to

electron-hydrogen scattering, for the purpose of incorporating

the contributions of the bound H channel and the H resonance

channels into the field-theoretic calculation of cross

sections. In this note we shall exhibit and discuss the Fock-

Tani representation Hamiltonian for this problem. The

derivation is almost the same as that given previously for

positron-hydrogen scattering and will not be included here.

The application to calculation of H bound and resonance

channel contributions to electron-hydrogen scattering cross

3



sections is in progress.

The previously-used canonical transformation method 9yields

the following expression for the Hamiltonian:

H-H 0 + V

HO a eat; + Jdx et(x)H(x)e(x)

V Z ^ t (a D4 ^

+ 2 ~dx dx2 [t 1 et~ Cxx 2 Hja)a + h.c.J

1'Z 1 2Ftx)tx-xx a

+-L'dxdxdxdx' e(xl)*e(x MCx xlx'x' )e(xl e(x')
2 x212 1 2 1x2 Hx 2 2 1

Here e(x) and et (x) are Fock annihilation and creation

operators for electrons, satisfying Fermi anticommutation

relations. The argument x stands for ( r, ff ) with r the

electron position, a (=t~ orj ) its spin z-component variable,

and {dx 4d The a and a are Bose annihilation and

creation operators for the H- bound state (two electrons bound

to the proton) and H- resonances (two electrons in an

initially localized decaying state). They commute with e(x)

and N C), as is the case for the positronium and electron

operators*-s. The corresponding wave functions are denoted

by ,,IX
2  ndte e can be chosen orthonormal;

the quantum numbers a range over both the bound and resonance

channels. The canonical transformation to the representation

4



5 S

(1) Is effected by the unitary operator U,

U mex p(F) F, a -aA

A t 2-fdx 1dx 24 (Xx2 ) et(x 1)e (x 2 (2)

which should be compared with the operator UPs, Eq. (16) of the

9
posi troni urn-hydrogen case .

The H bound and resonance energies (diagonal matrix elements)

are

I- f*xlX2)H(x x)* (x) dx dx (3)

a fo 1 2 1 2 1x2 1 2

with H(x 1x2 ) the SchrEdinger Hamiltonian of two electrons in

the field of the proton, assumed fixed at the origin:

H(x Ix) = H(x ) + H(x 2 ) + 1

12

1G _ 1
H(x) 1

2 ar2 r (4)

The corresponding off-diagonal matrix elements describing

transitions between different resonance channels are

(lHl) - (x X2 ) H(x lx 2 )0 X x 2 ) dxldx2  . (5)

Note that there are no matrix elements connecting the H bound

state 0 with the resonance channels 0 # O, since the set

o a) Is orthanormal and a satisfies the eigenvalue equation

5



H(x 1x 2 )# 0N(X 2 )  a 0 0(Nx x2) 6

The resonance wave functions 0 do not satisfy an eigenvalue

equation with the same Hamiltonian H(x 2x 2 They can be
12

determined, for example, by the complex stabilization method

or as discrete eigenstates, with complex eigenvalues, of a

nonhermitian Hamiltonian derived by a related variational

principle 13 or by the complex rotation method
14 - 1 6

The matrix elements describing decay of the resonances are

found to be

(x 21HMl) H(x 1 x 2 )0a 1 X 2

- IhCxx,x'x2')H(xlx 2)# (xx2) dx Idx 2(7)j1 12 2m 12 1

where a is the bound state and resonance kernel

1x2Ixlx2) 1 2 a 1 2

The term involving A (which comes directly from the canonical

transformation as in the positron-hydrogen case ) exactly

cancels the term HO in the case a - 0 (H bound state) when

one takes account of (6) and orthonormality 17 of the a. This

corresponds to the physical property that the bound state #

is stable (does not decay either into two free electrons or

one free electron plus the bound hydrogenic electron). One

expects a partial cancellation between the two terms in (7)

also in the case a 0 0 (resonance channels), an advantage in

&
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numerical calculations.

The electron-electron scattering matrix elements in (1) are

found to be

(XIX 21HIx x 2) r I_ S(X I _ XlI)8(X 2 _ x 212

-[H(xlx 2 ) + H(x 1x2 )1&( JC 1 x2 'xlx2)

+ fa(X1 X2 ,xy)H(xy)&(xysxlx 2 ) dxdy . (9)

As in the case of the matrix element (7), the "renormalization

terms" in (9) are expected to partially cancel the leading-

bare Coulomb term, facilitating numerical calculations. Such

an effect has been noted in calculations10'11 of positron-

hydrogen scattering cross sections.

Eqs. (1)-(9) of the present work should be compared with Eqs.

(1) -(30) for the positron-hydrogen case 9 .  The physical

interpretation is almost the same, but there are two important

differences: (a) the wave functions 0 a here are localized

about the proton whereas the positonium wave functions used in

the previous work have wave vector labels as well as internal

quantum numbers; (b) electron exchange effects are included in

the Hamiltonian (1) whereas no such exchange effect occurs in

positron-hydrogn scattering.

We conclude with a brief discussion of the subsidiary

7V
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condition necessary and sufficient for unitary equivalence of

the Fock-representation Hamiltonian (1) and the standard Fock

Hamiltonian, which has no explicit reference to the bound and

resonance H channels. By a derivation paralleling that for

16
the positron-hydrogen case one finds that the required

subsidary condition takes the form

NI)- 0 (10)

where I ) is the Fock-Tani state vector and the operator N is

N -dx dx dx'dx' e()et(x )A(x )e31x )e~x)(- f_ 1 2 1 2 1 2 1xl'2 2 1

with N the number operator for H bound or resonance states

in Fock-Tani representation:

N - a'a .(12)

The expression (11) for N is exact on the two-electron

subspace, as is the expression (1) for the Hamiltonian. The

proof that (10) is satisfied by the asymptotic initial and

final states for electron-hydrogen scattering proceeds as in

the positron-hydrogen case 1 8 . The essential properties used

are that (a) one electron in the initial or final state is

bound to the proton whereas the other is free, and (b) the

kernel A of Eq. (8) is localized about the proton, decaying to

zero as any of its position arguments recede to infinity. This

latter property is satisfied provided that all resonance wave

8



functions included in the sum (8) are localized linear

combinations of scattering states, the usual physical

interpretation of a resonance.

We are grateful to E. Ficocelli Varrachio for suggesting

application of the Fock-Tani representation to problems of

this type and for numerous stimulating conversations. This

work was supported by the U.S. Office of Naval Research and by

the M.J. Murdock Charitable Trust.
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