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Abstract

A canaonical transformation method previbusly applied to
positron-hydrogen scattering has been used to derive the Fock-
Tani Hamiltonian for electron—hydrogen scattering. The

transformed Hamiltonian exhibits the H bound and resonance
channels as explicit terms in the second—quantized
interaction. This representation is expected to be useful for
inclusion of these channels as intermediéte' states in the
many—-body Green’s fuﬁction approach to evaluation of S-matrix

elements.
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Quantum field theoretic Green’s functions are a useful tool
for calculation of elastic and inelastic electron—atom, atom-
atom, and atom—molecule scattering cross sectionsl—s. The S-
matrices for such processes are expressible in terms of
single—-particle Green’s functionsz. The extension to reactive
scattering cross sections normally requires more complicated
Bethe-Salpeter transition amplitudesb, which are harder to
determine accurately. This difficulty can be circumvented in
some cases by an appropriate change of representation,. such
that the new field operators for the appropriate composite
states satisfy elementary particle commutation relations. The
contributions of these composite states to reactive scattering
cross sections are then already manifested in certain new
single—particle Green’s functions in the new representation.
The application of such a representation, the Fock-Tani

7,8

representation to positron-hydrogen scattering has recently

been describedq_II. The same approach can be applied tao

electron-hydrogen scattering, *o? the purpose of incorporating
the contributions of the bound H channel and the H resonance
channels into the +field-theoretic calculation of cross
sections. In this note we shall exhibit and discuss the Fock-
Tani representation Hamiltonian for this problem. The
derivation is almost the same as that given previously for
positron-hydrogen scattering and will not be included here.

The application to calculation of H bound and resonance

channil contributions to olncfron—hydrognn scattering cross




sections is in progress.

The previously-used canonical transformation method9 yields
the following expression for the Hamiltonian:

H= Ho +V

H, = E € &a a + jdx e (xIH{x)elx)
0 a o o

= 7 4 At P
v 2' alw@misa,
8
+ 2 "'Z!_[dx dx [e (x )e () (¢ % IHIu)a + h.c. ]

l ’ ’ 1 f ”
+ 2Idx1dx2dx1dx2 e (xl)e (xz)(xlx lHlxlxz)e(xzﬁe(x ) .

{1)
Here ;(x) and ;t(x) are Fock annihilation and creation
operators for electrons, satisfying Fermi anticommutation
relations. The argument x stands for ( :, o ) with : the
electron position, ¢ (=1 orJ') its spin z-—~component variable,
and fdx =éﬁ r. The /a\ and ;t are Bose annihilation and
creation operators for the H™ hound state (two electrons bound
to the 'proton) and H~ resonances (two electrons in an
initially localized decaying state). They commute with g(x)
and‘CT}x), as is the case for the positronium and electron
operators®—**_, The corresponding wave fun;tions are denoted
by Q£(x;x=) and the set {qx} can be chosen orthonormaljs

the quantum numbers o range over both the bound and resonance

channels. The canonical transformation to the representation
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”~
(1) is effected by the unitary operator U,

- n il W /‘f/\ i B4 .

U= exp( E-F) F - E;( Aa ) »

At _ % o~ P |

Al = 2 Idxldxz o, x xelx velxy) (2)

Pa
which should be compared with the operator UPs’ Eg. (16) of the

positronium-hydrogen caseq.

The H bound and resonance energies (diagonal matrix elements)

are
»

« - j¢¢(x1x2)ch1x2)¢¢(x1x2> dx  dx,, 3

with H(x1 2) the Schrodinger Hamiltonian of two electrons in

the field of the proton, assumed fixed at the origin:

1
H(xlxz) = H(xl) + H(x2) +
12
2
19 1
Hix) = - = =5 - = _
arl T . . (3)

The corresponding off-diagonal matrix elements describing

transitions between different resonance channels are

»
(alHI8) = Id“(xixz)H(x X By lx %) dx dx, .

(5)
Note that there are no matrix elements connecting the H bound
state ‘O with the resonance channels d¢, x # 0, since the set

{0.) is orthonormal and d¢ satisfies the eigenvalue equation

e e g
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Hix 1 % )oo(xlxz) = g d (x x2 o (&)

The resonance wave functions éu do not satisfy an eigenvalue
equation with the same Hamiltonian H(x1x2). They can be
determined, for example, by the complex stabilizatién method12
or as discrete eigenstates, with complex eigenvalues, of a
nonhermitian Hamiltonian derived by a related variational

principle!® or by the complex rotation method %716,

The matrix elements describing decay of the resonances are

found to be

(xlleﬂlu) = H(xlxz)ﬁutxlxz)

4
- jb(xlxz,x1 2)H(x1 2" (xle) dx dx2 (7

wheré & is the bound state and resonance kernel

A();lxz,x1 2 = 2;‘ (xlxz)é (xlxz) - (8)
The term involving A (which comes directly from the canonical
transformation as in the positron-hydrogen caseq) exactly
cancels the term Hau in the case @ = 0 (H bound state) when
one takes account of (6) and orthonormality17 of the ‘n' This
corresponds to the physical property Fhat the bound state ‘0
is stable (does not decay either into two free electrons or
one free electron plus the bound hydroganic electron). One
expects a partial cancellation betwesen the two terms in (7)

also in the case o ¥ 0 (resonance channels), an advantage in

3




numerical calculations.

The electron-electron scattering matrix elements in (1) are

found to be

4 4 1 L4 ’ , .
(xlleﬂlxlxz) = 12 8(x1 x1)8(x2 x2)
' 4 ' 4 ' 4 r
- [H(xlxz) + H(xlxz)]A(xlxz,xixz)
¢ 2 ’
+ IA(xlxz,xy)H(xy)A(xy,xlxz) dxdy . (9}

As in the case of the matrix element (7), the “"renormalization

terms” in (9) are expected to partially cancel the leading”

bare Coulomb term, facilitating numerical calculations. Such

10,11

an effect has been noted in calculations of positron-

hydrogen scattering cross sections.

Eqs. (1)-(9) of the present work should be compared with Eqs.
(1) -(30) for the positron—-hydrogen casaq. The physical

interpretation is almost the same, but there are two important

differences: (a) the wave functions du here are localized
about the proton whereas the positonium wave functions used in
the previous work have wave vector labels as well as internal
quantum numbersi (b) electron exchange effects are included in
the Hamiltonian (1) whereas no such exchange effect occurs in

positron-hydrogen scattering.

We conclude with a brief discussion of the subsidiary




condition necessary and sufficient for unitary equivalence of
the Fock-representation Hamiltonian (1) and the standard Fock
Hamiltonian, which has no explicit reference to tﬁe bound and
resonance H channels. By a derivation paralleling that for
the positron-hydrogen case18 one finds that the required
subsidary condition takes the form

Ni)=o0 - - (10)

.Y 4

where | ) is the Fock-Tani state vector and the operator N_ is

~

4 & A
N_= %-dxidxzdxldx2 )

t At L4 4 A [ 4 ~ ’
(xl)e (xz)A(xlxz,xlxz)e(xz)e(xl) (11)

with N_ the number operator for H bound or resonance states
in Fock-Tani representation:

P A'A
N = Zxa a . (12)
- [- S+ &

AN

The expression (11) for N_ is exact on the two-electron

subspace, as is the expression (1) for the Hamiltonian. The
proof that (10) is satisfied by the asymptotic initial and
final states for electron-hydrogen scattering proceeds as in
the positron-hydrogen caseia. The essential properties used
are that (a) one electron in the initial or final state is
bound to the proton whereas the other is free, and (b) the
kernel 4 of Eq. (8) is laocalized about the proton, decaying to
zero as any o¥ its éosition arguments recede to infinity. This

latter property is satisfied provided that all resonance wave
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functions included in the sum (8) are localized 1linear
combinations of scattering states, the usual physical

interpretation of a resonance.

We are grateful to E. Ficocelli Varrachio for suggesting
application of the Fock-Tani representation to problems of
this type and for numerous stimulating conversations. This
work was supported by the U.S. Office of Naval Research and by

the M.J. Murdock Charitable Trust.
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Actually, the only properties of the ‘u that need to be

used in this argument are that ) is an energy

0
eigenstate [Eq. (S)] and is norma:ized, and that the ‘u
with ¢ # O are orthogonal to do. The latter property can
be regarded as a consequence of the fact that resonance
wave functions are localized superpositions of scattering

states, which are orthogonal to the bound state 60.

See Sec. & and Appendix E of reference 9.
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