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SECTION I

Introduction

In Ref [1) and [2] the stability of the lower branch solution of the

Falkner-Skan similar boundary layer equations was investigated. These

velocity profiles possess one inflection point and give rise to the "Rayleigh

Instability". The analysis of this instability proved extremely useful in

interpreting self excited oscillation occuring in cavities, over spike tipped

bodies and in inlets (Ref. [3, 4, 5, 6, 7, 8, 9]).

Other classes of self-excited oscillations have been observed in jets

(e.g. edge tones) and in the wakes of bluff bodies (e.g. periodic shedding

of vortices behind cylinders). The velocity profile for this class of flows

possess two inflection points which give rise to two different modes of

instability (Ref. [10, 11]). To assist in the interpretation of these

j observed instabilites it was felt useful to further investigate the stability

features of compressible wake and jet profiles. For this reason eigenvalue

solutions for a series of typical profiles were computed for the following

types,

(a) Symmetric jet U =sech2 y

(b). Symmetric wake U = sech 2 y

r, 2(c) Anit-symmetric U =- 3 sech y tanhy
(Combined wake and jet) 2

(d) Asymmetric jet 0 -<y<-2.5

.23529(y+2.5)2  -2.5<y<-.8

U= 1- .5 y2  -.8<y<1.25

1.7857(y-1.6)2  1.25 <y<l.6

0 1.6 <y<-

(e) Asymmetric wake U -U (of case d)

The results of the stability analysis are compiled and catologed to

permit our conclusions regarding the behavior of these flows.



Objective

The objective was to determine the amplification factor, disturbance

propagation speed and wave number for typical velocity profiles with two

or three Inflection points at various Mach numbers. It was anticipated that

some overall characteristics for wake/jet flows could be deduced from these

series of calculations.
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SECTION II

Coverning E(quations

In this report we sLudy the stability of compressible wakes and jets

in two dimensional flows. Let u represent the velocity component in the

x direction and v the velocity component in the y direction. p, p and T

are pressure, density and temperature respectively.

The basic equaitons are

1 [ + u + v P] + + aV) 0  (2.1)

au au au _ 1U u + v a... (2.2)

at ax ay p ax

av av av _ __1 (2.3)-+ u -x+ v a a
at ax ay p ay

2k + Uat R + v IRay - iR [ i-+ up - + V 2-y ](2.4)

at ax ay P at ax ayI
Eliminating p between equations (2.1) and (2.4) we obtain

.p k+v - .U+_V (2.5)
at ax ay

Equations (2.2), (2.3) and (2.5) have a steady state solution

u = u(y), v = 0, p = p = constant (2.6)

we assume the time depndent perturbed flow as [12,13]

. u = u(y) + u'(x,y,t) (2.7)

v = v'(x,y,t) (2.8)

p - p + p'(x,y,t) (2.9)

Substituting these values of u, v and p in equations (2.2), (2.3) and (2.5);

and retaining only linear terms in u', v' and p' we obtain



au' - au' , u 1 p'
+ u T + v' L = 0 (2.10)

i _I+ - av'+ I apI= 0 (2.11)
at x - ay

p

a-n' -. au' iv'

+ + 'y'- + -y) 0 (2.12)
at uax pax ay

f We seek the periodic solutions of the form

u' = u(y) ein(xct) (2.13)
v ia (x-ct)

vI= v(y) e (2.14)

p' = p(y) e a (x-ct) (2.15)

where u, v, p are complex, c is a complex constant and a is a real constant.

Substituting (2.13), (2.14) and (2.15) into equations (2.10), (2.11)

and (2.12) we obtain

icz(u c) u + u v -in (2.16)
y- p

oia(u -c) v p-- (2.17)~p PY

ia(u - c) p - yp (tau + v y) (2.18)

We.eliminate p and u from the above equations, use the relation

p - p RT and obtain

S(u - c) v -u v^ 2
[.y y 2 a (u - c) u (2.19)

' L R T -U 0) y y R

Now using 2
l .2 M (1-u2)

y R c 2 (2.20)
M 

2

and doing some calculations we obtain



(-c) Vy -u v 2 2
Y 2 a (1 + .2M 2 ) (u - c) v (2.21)

(l+.2M) (u c) 2 y

O where 2
2 c

1 2  (2.22)

and 2
2 -2

= 2 (2.23)
1+. 2 M(l-u )2

If we write

2-1 2(1 + .2M2) - M (u - c) g, and replace v by 4 and u by U in equation
0

(2.21) we obtain

g y

y Fy a2 (1 + .2M 2 ) (U - c) (2.24)

For boundary conditions we assume that for unbounded flows the initial

disturbances die down at far from the disturbances. Therefore we get

) (- 0.) = =, (a) 0 (2.25)

For fined wave numbers (a - constant) equations (2.24) and (2.25) is

an eigenvalue problem. is eigenfunction and c is eigenvalue.

We solve this eigenvalue problem for the following velocity profiles

2U(y) = sech y, symmetric jet (2.26)

U(y) = -sech 2y, symmetric wake (2.27)

U(y) = - sech2y tanhy, anti-symmetric2 (combined wake and jet) (2.28)

C 0 2 -= < y < -2.5
.235 29(y+ 2 .5) - 2.5 < y < - .8

U(y ) - 2 - .8 < y < 1.25

* 1.7857(y-1.6)2  1.25 < y < 1.6
0 1.5 < y <

asymetric jet (2.29)



U(y) =-il~y) of (2.29)

Asymunetric wake (2.30)
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SECTION III

Numerical Procedure

Elgenvalues of $ were determined by a shooting mL-thod [11: starting

with boundary conditions at y Integrating over the range of y, and

comparing the result with the outer boundary condition, namely $ 0 at

Ymax" The process involved minimization of the error caused by the

deviation. This was chosen to he the square of the norm of t, j 12= 2+ .

The integration was done using a fourth-order Runge-Kutta method.

Boundary conditions at y min were determined by observing the behavior

of (2.24) as y -- w* The equation reduces to

yy (3.1)

Since we desire ,(_o0) = 0, we choose
I alYmi n  lalYmi

(Ymin) = e n I ' (Ymin = Hle (3.2)

as our boundary conditions.

The method of finding eigenvalues utilized the same minimization

routine as in previous investigations [1,2]. The user provides a storing

guess, for c in the case, and the routine begins by searching along a con-

stant line of c. with increasing steps until the error begins to increase.1

It then uses the last three calculated values to determine a parabola, with

the c value at the vertex used as the new approximation. Then this value of

c r is held constant and a search along a line of changing ci is carried out.

After a new relative minimum is found, the quadratic approximation is used

to determine a new value for ci. The third step involves searching the line

cennecting the original guess and the new point in the same manner. If the

-6
error is not less than a preset limit, here 10 , the routine starts again

with the latest value used in place of the original guess.

- .I - -7. -



SECTION IV

RESULTS

The eigen value problem represented by (2.24) and (2.25) was solved

numerically for the velocity profiles given by (2.26), (2.27), (2.28), (2.29)

and (2.30). The results are tabulated for a wide range of wave numbers (a)

and Mach numbers (M). The instability characteristics for a qy -tric jet,

asymmetric jet and anti-symmetric jet are given in tables (la) (3h). For

0 there values agree with those given in [10 and 111.

The velocity profiles are plotted in Figures (1 - 3). Tt tes of

a, versus c., and a versus c and c. versus c are plotted in Figures (4 - 19).' l r ' r"

, and 0 are plotted for some special values of Mc and c in Figures 20 a to

21 c, and mangitudes and phases of , 0 and ^ are plotted in Figures 22a to

22 c, and 28 a to 28 c.

Solutions were obtained with convergence error criteria of at least

10 for all cases.

- I.



SECTION V

Summary

The stability of compressible inviscid jets and wakes has been

investigated by utilizing the linearized equations resulting from a small

perturbation analysis. The resulting eigenvalue problems were solved

numerically for various wave numbers (2) and Mach numbers (M.) for differ-

ent velocity profiles. In the cases of symmetric jets and wakes and that

of asymmetric jets and wakes we found two propagation modes corresponding

to two inflection points. The sinuous mode for even eigenfunctions and

varicose mode for odd eigenfunctions.

In varicose modes the magnitude of amplification decreased as Mach

number (M) increased and the flow became completely stable at M. = 2.

In sinuous modes the amplification did decrease a little with the increase of

Mach number but we did not find any upper limit in Mach number above which

the flow was completely stable.

In the case of anti-symmetric profile there are three modes correspond-

ing to the three inflection points. Two propagating modes, one propagating to

the right and the other propagating to the left; and one standing mode. The

magnitude of amplification for propagating modes decreased as the Mach number

increased, and completely died down at Mach number of 1.5. On the other hand,

we could not find an upper limit of Mach number for the standing mode above

which the flow was completely stable. The authors believe that these results

will be useful for analyzing aerodynamic instabilities encountered in wakes

and jets.
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INSTABILITY C1IARC'rUtiSTICS FOiR Till; SYWIET{HIC JET u=scch2 y

TABLE I.

la) M C -0.0, SINUOUS MODE

.061256 .119380
.1 .137549 .205118
2 .207237 .241188

.4 .266554 .249623

. .316088 .244302

S .357248 .231763
6

.392290 .215421

.' .422860 .197142

.9 .450120 .177992

1.0 .474924 .158612

1.1 .497882 .139405

1.2 .519408 .120635

.539851 .102479
1.4 .559444 -. 085063
1.5 .578370 .065476

1.6 .596770 .052789
1.7 .614738 .038056
1.7 .632352 .024322
1.8

1.9 .649655 .011026
2.0 .666667 .282007(10)
2.0



ib) &=1.o, SINUOUS momE .

C C.

.1 .067994 .128268

.2 .156481 .216384

.3 .233560 .245433

.4 .296861 .246748

.5 .346972 .236112

.6 .387995 .219914

.7 .422773 .201173

.8 .453158 .181434

.9 .480444 .161569

1.0 .505465 .142098

1.1 .528781 .123328

1.2 .550770 .105484

1.3 .571686 .088689

1.4 .591693 .073020

1.5 .610908 .058512

1.6 .629391 .045172

-1.7 .647185 .032987

-1.8.664327 .021922

1.9 .680823 .011935

2.0 .696684 .022972

I

"I

!



1c: M.=20 SINUOUS MODEi

'ci If

.1 .086251 .149243

.2 .203675 .235800

.3 .293797 .247300

.4 .359668 .234900

.5 .410110 .214300

.6 .451142 .191700

.7 .486228 .169100

.8 .517361 .147500

K.9 .545685 .127500

1.0 .571836 .109323

1.1 .596155 .093041

1.2 .618823 .078622

1.3 .639958 .065944

1.4 .659655 .054849

1.5 .678011 .045186

*1.6 .695111 .036856
1.7 .710884 .029902

1.8 .724660 .023967

1.9 .737094 .017381
2.0 .749815 .011191

2.1 .761940 .006051



id) M.=3.0, SIN:UOUS M:ODE
C r

.1 .112176 .172854

.2 .259379 .247000

.3 .355744 .237003

.4 .422588 .214158

.5 .474158 .186233

.6 .517294 .159762

.7.555257 .136500
.8 .589379 .117193
.9 .619734 .102317

1.0 .645257 .091204
1.1 .665674 .081286
1.2 .683340 .070539

1.3 .700638 .059729
1.4 .717718 .050427
1.5 .733757 .042849

1.6 .748628 .036578
1.7 .762489 .031398

*1.8 .775722 .027867

1.9 .785647 .027098
2.0 .791696 .022900

ge



l)M.=4.0, SINUOUS MODE

ur1

.1.143092 .193015

.2 .311005 .249100

.3.409095 .225500

.4.477423 .191509

.5.532312 .159900
.6 .579928 .135133

.7 .620580 .119050
.8 .650447 .109428

.9.671343 .098700

1.0 .689858 .085042
1.1 .709335 .071677
1.2 .728751 .061123

1.3 .746833 .053174
1.4 .763496 .047336
1.5 .778596 .044463

1.6 .788371 .043617
1.7 .795081 .038781
1.8 .804006 .032273

1.9 .813824 .027343
2.0 .823122 .023604



If) Mc.=0Op VARICOSE NODE
c 

C.

.05 .862061 .030296

.10 .867554 .108700

.20 .796327 .121800

.30 .759672 .114815

.40 .733435 -. 102812

.50 .713113 .088200

.60 .697180 .071556

.70 .684964 .053968

.80 .676071 .035862

*.90 .670036 .017700
1.00 .666667 .000000



ig) M,,=I.o, VARICOSE MODE
C C.

.050 .814895 .011590

.100 .834826 .151395

.200 .765617 .075559

.300 .737390 .056628

.400 .721227 .039567

.500 .710643 .022751

I .525 .708624 .018530
.550 .706811 .014300
.575 .705210 .010064

.600 .703712 .005774

.625 .702614 .001584

.650 .701492 .000049

(

I

i0



lh) %,=2.0, VARCICOSE MODE

C C.c r 1

,54 .988650 .000784
• 55 .980628 .001722
.56 .973019 .002772

.57 .965803 .003849

.58 .958940 .004919

.59 .952416 .005956

.60 .946200 .006928

.61 .940272 .007830

.62 .934607 .008647

.63 .929187 .009374

.64 .923988 .010011

.65 .918995 .010557

.66 .914191 .011011

.67 .909559 .011378

.68 .905084 ..011660

!0



INSTABILITY cIIARAC'rER1STICS FOR C)

THE ANTISYNETRIC JET U - - /3 sch 2 yt.nly

TAkLE 2.

2a) M.=O.O, PIOPAGATING MODE
ci Cp C.

I. 1

.05 .920689 .090656

.10 .879349 .116531

.20 .820211 .136200

.30 .771224 .138417

.40 .730500 .130034

.50 .699088 .115459

.60 .675954 .098057

.70 .659475 .079866

.80 .648131 .061943

.90 .640730 .044786
1.00 .636391 .028606
1.10 .634469 .013483

,



2b) M-1.0, PROPAGATING MODE

cr  ci

.10 .824508 .095961

.15 .790995 .094567

.20 .766441 .090119

.25 .746227 .083887

.30 .728650 .075980

.35 -.713325 .066800

.40 .700178 .056500

.45 .689115 .045423

.50 .680052 .034040

.60 .667009 .011367

.65 .662642 .000350



2c) M=1.2, PROPAGATING MODE

C 
ci

.10 
.808530 

.007919

.15 
.768575 

.067700

.20 
.746423 

.060019

.25 
.728869 

.051536

.30 
.713971 

.041967

.35 
.701157 

.031200

.6.0315 
.019372

.40 .681388 .006778

.45 .678352 .001596

.47



2d) M=0, STANDING MODE

C

.1 0.0 .231871

.2 0.0 .351572

.3 0.0 .421749

.4 0.0 .467320

.5 0.0 .495630

.6 0.0 .509976

.7 0.0 .512729

.8 0.0 .506042

.9 0.0 .491820

1.0 0.0 .471650

1.1 0.0 .446790

1.2 0.0 .418208

i30.0 .386635

1.4 0.0 .352607

1.5 0.0 .316510

1.6 0.0 .278608

1.7 0.0 .239067

1.8 0.0 .197972

1.9 0.0 .155345

2.0 0.0 .111149

2.1 0.0 .065246



* 2e) M.I., STANi)ING MODE

c cr

.15 0.0 .325303

.20 0.0 .376416

.30 0.0 .434305

.40 0.0 .454416

.50 0.0 .450267

.60 0.0 .429563

.70 0.0 368
*I.80 0.0 .355153

.90 0.0 .305120

1.00 0.0 .246296
1.10 0.0 .175520
1.20 0.0 .081841

1.23 0.0 .043534

IL



2f) N =1.4, STANDING MODE

ri

.10.0 .26,/99J
.2 0.0 .395734
.3 0.0 .441200

.4 0.0 .441578

.5 0.0 .414618

.6 0.0 .368707

.7 0.0 .306499

.8 0.0 .224023

.9 0.0 .093603



2g) M =2.0, STANDING MODE 26
c r c

15 0.0 .381035
.20 0.0 .425659
.30 0.0 .444403

.40 0.0 .409147

.50 0.0 .339340

.60 0.0 .229747

.65 0.0 .137767

I

I



21

INSTABILITY CRACTERIS1iCS FOR THE ASY, ETRIC JET

TABLE 3.

3a) L=0.0, SINUOUS MODE
c rc iC

.1 .022716 .034685

.2 .057622 .075168

.3 .096191 .106869

.4 .134367 .126540

.5 .169211 .135130

.6 .199485 .134785

.7 .223771 .127902

.8 .241919 .116944

.9 .254235 .104212

1.0 .261494 .091611

1.1 .265033 .080302

1.2 .266183 .070682

1.3 .265879 .062672

1.4 .264760 .056016

1.5 .263194 .050437

1.6 .261399 .045706

1.7 .259499 .041642

1.8 .257556 .038108

I 1.9 .255643 .035004

2.0 .253755 .032250

2.5 .245207 .022082

3.0 .238341 .015553

3.5 .233025 .011077

4.0 .229011 .007910

-- 3



3b) Mc.=1. 0 SlNUOUS MODE

r i

.1.025250 .038126

.2 .066401 .083135

.3 .114810 .116629

.4 .163526 .132723

.5 .206953 .132538

.6 .240919 .119500

.7 .263146 .098537

.8 .271909 .076103
7.9 .271495 .059204

1.0 .268354 .048282
1.1 .264800 .041100
1.2 .261773 .036078

1.3 .259106 .032331
1.4 .256705 .029392
1.5 .254633 .026992

1.6 .252696 .024966
1.7 .250912 .023213
1.8 .249280 -. .021664

1.9 .247718 .020275
2.0 .246241 .019014
2.5 .239841 .014013

3.0 .234696 .010404

4.0 .227434 .005654



3c) NMw2.O, SINUOUS MODE

.2 .092437 .102199

.3 .169565 .130870

.4 .242842 .123709

.5 .315747 .081390

.6 .405591 .064530

.7 .470175 .050658

.8 .525611 .040951

.9 .571746 .036654

1.0 .607611 .035926
1.1 .633812 .035146
1.2 .652273 .035042

1.3 .665219 .031993
1.4 .674078 .027458
1.5 .679530 .022257

1.6 .682270 .017361
1.7 .683250 .013417
1.8 .683357 .010509

1.9 .683125 .008409
2.0 .682793 .006866
2.5 .681431 .003002



3d) M.,=3.0, SINUOUS MODE 36

.1.041923 .058484

.2 .134351 .120942

.3 .250400 .125258

.4 .364384 .112313

.5 .441116 .093284

.6 .508862 .070646

.7 .568281 .057581

.8 .613491 .053023

.9 .645471 .049900

1.0 .668287 .045140
1.1 .684931 .037703
1.2 .696740 .026809

1.3 .700800 .010626
1.4 .692436 .002767
1.5 .688292 .001691

1.6 .686144 .001325
1.7 .684820 .001130
1.8 .683920 .001000

1.9 .683265 .000899
2.0 .682766 .000814



3e) M =4.0, SINUOUS MODE

C r

.1.054213 .071056
.2 .185692 :129058
.3 .343024 .122561

.4 .440501 .105400

.5 .523520 .078015

.6 .590604 .067213

.7 .636500 .061840

.8 .668800 .055668

.9 .692983 .046829

1.0 .713555 .034536
1.1 .736208 .020525
1.2 .760259 .011891

1.3 .780733 .007100
1.4 .798010 .003777
1.5 .812881 .001170



3f) M =0, VARICOSE MODE 2
c r ci

.1.791496 .176117
.2 .694068 .187158
.3 .634863 .173131

.4 .596700 .152443

.5 .572033 .130738

.6 .556473 .110405

.7 .548758 .092825

.8 .548309 .078848

.9 .553977 .068563

1.0 .564245 .061258
1.1 .577329 .055838
1.2 .591419 .051351

1.3 .605205 .047201
1.4 .617916 .043095
1.5 .629175 .038880

1.6 .638852 .034763
1.7 .646961 .030638
1.8 .653605 .026674

1.9 .658945 .022975
2.0 .663174 .019621

2.5 .673978 .008493

3.0 .677488 .003768
3,.5 .678856 .001753I4.0 .679452 .000846



3g) M =1.0, VARICOSE MODE

c r c

.000 .999458 .000934

.050 .823680 .124270

.100 .749102 .137267

.200 .666039 .122735

.300 .621290 .093539

.400 .596116 .060028

.500 .583795 .024059

.525 .582989 .014683

.550 .582512 .005117

.575 .583089 .602216(10)-5

.1 _



3h) Mer =1. 3, VARICOSE MOD)E

cr c

.01 .888249 .045163

.05 .793824 .096293

.10 .727671 .103920

.15 .685409 .095711

.20 .656887 .080776

.30 .628048 .041152

.35 .628602 .016927

.40 .634545 .005976
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