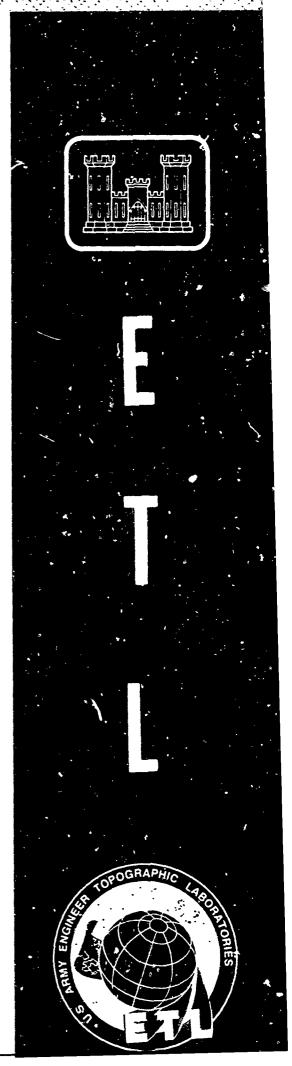
ETL-0316

An extension of Kendall's concordance test where ties are allowed


FEBRUARY 1983

DTIC FILE COPY

U.S. ARMY CORPS OF ENGINEERS
ENGINEER TOPOGRAPHIC LABORATORIES
FORT BELVOIR, VIRGINIA 22060

Approved For Public Release. Distribution and acid. 05 20 046

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
ETL-0316	AD-A128401	
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED
An Extension of Kendall's Concorda	ance Test	Research Note
Where Ties Are Allowed		o. PERFORMING ONG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
Michael A. Crombie		
Jean M. Benson		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Engineer Topographic Labor	ratories	AREA & WORK ONLY NUMBERS
Fort Belvoir, Virginia 22060		4A752707A855-B- 0026
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
US Army Engineer Topographic Labor	ratories	February 1983
Fort Belvoir, Virginia 22066		13. NUMBER OF PAGES
		37
14. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
		30120022
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for Public Release	e: Distributio	n Unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different from	m Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary an	nd identify by block number)	
Kendall's Concordance Test		
J-Statistic		
Monte Carlo		
20. ABSTRACT (Continue on reverse side if necessary and	* *	year to took the hypothesis
Probability tables are given that of random ranking of M items by N		
number of values of N and M and,		
allowed.		• • • • • • • • • • • • • • • •

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)	
,	
į	
1	
i	
l	
1	
1	
i	
i	

THE PARTY OF THE PROPERTY OF T

PREFACE

This study was conducted under DA Project 4A762707A855, Task B, Work Unit 0026, "Topographic Mapping Technology".

The study was done during the summer of 1982 under the supervision of Mr. D.E. Howell, Chief, Information Sciences Division; and Mr. L. A. Gambino, Director, Computer Sciences Laboratory.

COL Edward K. Wintz, CE, was Commander and Director and Mr. Robert P. Macchia was Technical Director of the Engineer Topographic Laboratories during the study and report preparation.

Accession For	
STYS GRAAT IE'T TAB I WOM MERCED	

Averiler to 1 mg	े व्यक्त
A	

CONTENTS

TIT	TR .	PAGE
PREFACE		1
TABLES		2
INTRODUC	IFUN	3
BACKGROU	ND	3
NUMERICA	L TESTS	Ŀ
DISCUSSI	NC	9
CONCLUSI	ons	11
APPENDIX	2S	
A • B •	Random Ranking of M Items by N Judges Probability Tables	12 14
	TABLES	
NUMBER	TITLE	PAGE
1	Score Matrix	5
2	Expert Results	10
3	Non-Expert Results	10
В1		15
	M = 3; TIES NOT ALLOWED	13
В2	M = 3; TIES NOT ALLOWED M = 3; TIES ALLOWED	16
B2 B3		
	M = 3; TIES ALLOWED	16
В3	M = 3; TIES ALLOWED M = 4; N ODD: TIES NOT ALLOWED	16 17
B3 B4	<pre>M = 3; TIES ALLOWED M = 4; N ODD: TIES NOT ALLOWED M = 4; N EVEN: TIES NOT ALLOWED</pre>	16 17 20
B3 B4 B5	<pre>M = 3; TIES ALLOWED M = 4; N ODD: TIES NOT ALLOWED M = 4; N EVEN: TIES NOT ALLOWED M = 4; N ODD: TIES ALLOWED</pre>	16 17 20 24

AN EXTENSION OF KENDALY'S CONCORDANCE TEST WHERE TIES ARE ALLOWED

INTRODUCTION

Kendall's measure of concordance and associated probability tables establishes critical regions for testing the null hypothesis of random rankings of M items by N judges. The M items are ranked according to an agreed upon criterian, such as beauty and cost effectiveness, or to the efficacy of a compression scheme, which was the basis for this Research Note. The concordance probability values are approximated by the F-distribution and the tests require that each judge produce a valid ranking of the M item, i.e. ties mong the items are not allowed. The purpose of this work was to develop exact probability tables for a limited number of values of the parameters N and M where, in fact, ties were allowed.

BACKGROUND

The purpose of the original study² was to determine which of several compression techniques was best in the sense that it produced the most acceptable digital image when the compressed image was decoded and displayed on a TV at 8 bits. Five compression techniques labeled C2 through C6 were evaluated along with the uncompressed image labeled C1. The compression techniques as well as the image types are not relevant to this study. In the original study, the null hypothesis of no difference in the effects of compression was tested by the chi-square test.

Each test image was compressed, then decompressed, and finally stored in DIAL as an 8-bit image. Six compressions of each image were stored in DIAL for subsequent viewing and comparison. There were 45 such images used in the experiment. Each interpreter (there were 12) was required to choose either the right or the left image when a pair was displayed side by side on a TV display. Thus, each interpreter made $C_{6,2}=15$ comparisons of the six processing schemes (five compressions and one original) for each of the 45 images. The pairs to be compared as well as the image type were presented in a random manner to the interpreter. The

¹M. Hammerton, <u>Statistics for the Human Sciences</u>, London and New York; Longman, 1975.

²SPIRIT II: Special Imagery Recognition and Interpretation Tests, Final Technical Emport, Prepared for U.S. Army Engineer Topographic Laboratories, Fort Belvoir, VA. Prepared by Autometric, Incorporated, Falls Church, VA, June 1982.

rank score for each processing scheme was the totality of the choices over image and over interpreter. Thus, there were $15 \pm 45 \pm 12 = 8100$ choices made, and under the null hypothesis, the expected value for each processing scheme was 8100/6 = 1350. The chi-square test is valid for this experiment since the expected value of each of the six cells is well above 5.

Today, because of relatively low cost CPU time, there is little reason why experimental results should be tested with approximate probability distributions. It would appear that although the chi-square test was a valid test, it provided very little information, especially when the large number of tests is considered. Kendall's concordance test, which is more nearly appropriate, enables the null hypothesis of random ranking of the six processing schemes by the 12 interpreters to be tested. However, Kendall's measure of concordance cannot be used since the theory does not allow ties, and the like ihood of ties is high in the experimental procedure described above (see appendix A). The purpose of this study is to demonstrate how exact probability values that pertain to the experiment at hand can be calculated and used. It should be noted that the derived probability tables (see appendix B) are general, and they can be applied to a variety of similar experiments.

NUMERICAL TESTS

The history of the comparison tests was reorganized into a 3-dimensional array and stored on disc for subsequent analysis. The first dimension of the array specified the L=1, 45 images; the second dimension specified the K=1,12 interpreters; and the third dimension defined the I=1,36 values associated with the $(L,K)^{\mbox{th}}$ image-interpreter event. The values that pertain to the 6-x 6-score matrix are given in table 10.

³B. Efron, "Computers and the Theory of Statistics: Thinking the Unthinkable," <u>SIAM Review</u>, Vol. 21, No. 4, October 1979.

TABLE 1. SCORE MATRIX

1	v ₁₂	^v 13	v ₁₄	^v 15	^v 16
^v 21	1	^v 23	^v 24	v ₂₅	v ₂₆
^v 31	v ₃₂	1	v ₃₄	v ₃₅	^v 36
v ₄₁	v ₄₂	^v 43	1	v ₄₅	^v 46
^v 51	v ₅₂	^v 53	v ₅₄	1	^v 56
^v 61	^v 62	^v 63	^v 64	^v 65	1

If V_{IJ} = 1, then the I^{th} compression was judged to be superior to the J^{th} compression. Note that if V_{IJ} = 1, then V_{JI} = 0. The ones along the diagonals are added to each score so that scores will range from 1 to 6. The I^{th} sccre is determined by summing the values in the I^{th} row.

Two statistical tests were conducted using the image comparison histories described above. The first test was organized to determine whether the rankings of the compression schemes were random. The second experiment was developed to test whether there was a difference between the rankings as determined by beginners when compared to the rankings as determined by experts. Six of the 12 interpreters were regarded as experts, and 6 were regarded as beginners, or non-experts. The non-experts were given the same background information as the experts.

Forty-five independent rank tests were performed by 12 image interpreters. The 45 tests percain to the 45 images that were subjected to six (one baseline and five compression schemes) digital processing exercises. When all six compressions were evaluated, the average ranking over all 45 images by the 12 interpreters turned out to be the following:

C1 : 1.49 C2 : 4.18 C3 : 5.96 C4 : 3.02 C5 : 3.21 C6 : 3.12

The smallest J-statistic was 1206 (image #21), which is beyond all of the entries for N = 12 in table B8. The hypothesis of a random ranking of the six compression schemes by the 12 observers is totally unacceptable.

The interpreters were extremely consistent in ranking C3 last, and to a lesser degree, they were consistent in ranking C1 (baseline) first, and C2 fourth. Note that C4, C5, and C6 seem to be tied. The comparison data

was then processed to determine whether the hypothesis of random ranking was tenable when five compression schemes were evaluated. This was done three times, where in turn, Cl, C2, and C3 were eliminated from consideration. The averaged rankings turned out to be the following:

	Cl out	C2 out	C3 out
C1 :		1.40	1.49
C2 :	3.27		4.16
C3 :	4.96	4.99	
C4 :	2.16	2.78	3.01
C5 :	2.35	2.96	3.22
C6 :	2.25	2.87	3.12

The smallest J-statistic when C1 was removed was 364 (image #11), and when C2 was removed, the smallest J-statistic was 774 (image #21). Both of these values are beyond all of the entries for N = 12 in table B7. The smallest J-statistic when C3 was removed was 126 (image #21), and from table B7 the statistic is significant at the 0.926 probability level. Although this calculation does not demonstrate randomness in the rankings, it does indicate a trend toward randomness when the highly consistent ranking of C3 being last is removed from consideration. Several other image comparisons provided J-statistics that were not beyond the tabulated entries. For example, the next smallest J-statistic was 238 (images #33 and #36), where from table B7 the significance level is 0.998.

The next step was to remove the three possible pairs of Cl, C2, and C3 to determine whether the hypothesis of random ranking was tenable when four compression schemes were evaluated. The averaged rankings turned out to be the following:

		Cl and C2 out	Cl and C3 out	C2 and C3 out
C1	:			1.40
C2			3.25	
C3	:	3.99		
C4	:	1.92	2.15	2.78
C5	:	2.09	2.35	2.95
C6	:	2.00	2.25	2.87

The smallest J-statistic when C1 and C2 were removed was 350 (image #13). This value is beyond all of the entries for N = 12 in table B6. The smallest J-statistic when C1 and C3 were removed was 6, which is at the 0.107 significance level. In fact, 20 of the J-statistics were at or below 90, which is at the 0.950 significance level. The smallest J-statistic when C2 and C3 were removed was 54, which is at the 0.804 significance level. All other J-statistics were well beyond the 0.950 significance level. The hypothesis of a random element or a lack of

concordance among the 12 interpreters was evident when the consistently bad compression C3 and the consistently good compression C1 were removed from consideration.

The next step was to remove C1, C2, and C3 to determine whether the hypothesis of random ranking was tenable when the three compression schemes C4, C5, and C6 were evaluated. The averaged ranking over the 12 interpreters and 45 images turned out to be the following:

C4: 1.91 C5: 2.08 C6: 2.00

The largest J-statistic was 56, which from table B2 is at the 0.967 significance level. All other J-statistics are less than or equal to 54, which is at the 0.950 significance level. The hypothesis of a lack of concordance is definitely in evidence here. Finally, C4, C5, and C6 were removed from consideration and the averaged rankings over the 12 interpreters and 45 images turned out to be the following:

C1 : 1.09 C2 : 1.94 C3 : 2.97

The smallest J-statistic was 206, which is beyond all of the entries for N = 12 in table B2. The hypothesis of a random ranking must be rejected in this case.

The second test utilized existing theory to test whether the six experts were in agreement with the six non-experts. statistic was used to test the equality of averaged rankings between the The abandonment of the mathematical purity proclaimed in the two groups. Background Section is in this case only a minor accommodation to Except for the assumptions of expediency. multivariate distributions and equal covariance matrices, the conditions associated with the experiment are identical to the requirements of the two sample T^2 The tests on the equality of the average rankings between and non-experts were performed over the same experimental conditions described above in the ranking tests. When the null hypothesis of equal means is true, then the quantity F given below has the Fdistribution with stated degrees of freedom.

CONTROL OF CONTROL OF

⁴D. Morrison, <u>Multivariate Statistical Methods</u>, McGraw Hill Book Company, New York, 1967.

$$F = \frac{11-M}{10} \quad T^2$$
 with degrees of freedom M and 11-M
$$T^2 = 3D^T S^{-1} D$$

D = Mean Vector Difference

Pooled Covariance Matrix

When the mean differences associated with all six compression schemes were tested, none of the 45 test statistics exceeded the F_{6} , $_{5}$ = 3.11, 90 percent significance level. In the case where Cl was removed from consideration, none of the 45 test statistics exceeded the F_{5} , $_{6}$ = 3.40, 90 percent significance level. When C2 was removed, the test statistic associated with image #42 was significant, and when C3 was removed, the test statistic associated with images #36 and #42 was significant. In the case where Cl and C2 were removed from consideration, the test statistic associated with image #27 exceeded the F_{4} , $_{7}$ = 3.98, 90 percent significance level. When Cl and C2 were removed, the test statistic associated with image #36 was excessive, and when C2 and C3 were removed, the test statistic associated with image #42 exceeded the 95 percent level of significance (F_{4} , $_{7}$ =6.09). When Cl, C2, and C3 were removed from consideration, none of the 45 test statistics exceeded the F_{3} , $_{8}$ = 5.25, 90 percent significance level.

DISCUSSION

The mathematician will recognize that much of the work here is a fishing expedition rather than executing a previously designed statistical experiment. It must be recalled, however, that the main purpose of the work was to demonstrate that the analyst need not, in this day of relatively inexpensive computer CPU time, resort to a procrustean method when analyzing experimental results. In fact, exact cumulative probability tables were developed for the experiment at hand. That a great deal of searching through the data and, in a few cases, resorting to procrustean methods to obtain certain results is readily admitted.

The various tests for random ranking among the 12 interpreters showed that a strong consistency among the interpreters for several of the compressions masked a randomness or lack of concordance among remaining compressions. When all six compression schemes were considered, the null hypothesis of random ranking among the 12 interpreters was Whereas, when C1, C2, and C3 were removed from decidely rejected. consideration, only 1 of the 45 J-statistics exceeded the 95 percent significance level. This result cannot be used to Note that the probability of getting at least ! value out of hypothesis. 45 beyond the 95 percent significance point is 0.900 when the null hypothesis is true. This result is derived from the cumulative binomial distribution since under the null hypothesis the J-statistic values are independent and there is a five percent chance for each to fall in the The tests for random ranking among the 12 interpreters critical region. also showed that a definite lack of concordance among the interpreters for several of the compressions tended to mask a strong consistency among the remaining compressions. This was shown when C4, C5, and C6, were removed from consideration.

The several tests to determine if there were any differences between expert interpreters and non-expert interpreters did not reject the hypothesis of no difference. When C2 was removed from consideration, two sample F statistics exceeded the 90 percent significance level. Note that in this case the probability of getting at least 2 values out of 45 beyond the 90 percent significance level is 0.948 when the null hypothesis of equal means is true. When C1, C2, and C3 were removed from consideration, none of the 45 values were beyond the 90 percent critical point. Under the null hypothesis of equal means, the likelihood of this result is only 0.009. Either an unlikely occurrence has taken place or the assumption of a multivariate normal distribution is exaggerated.

The inconsistency noted in the last paragraph is another reason for using exact probability distributions wherever possible. In order for us to get an idea about the random (or non-random) nature of the C4, C5, and C6 ranking results, the $12 \times 45 = 540$ 3-component ranks were extracted from the comparison history and summarized in tables 2 and 3.

TABLE 2. EXPERT RESULTS

EANKINGS

Interpreter	(222)	(123)	(132)	(213)	(231)	(312)	(321)
1	10	7	11	4	4	5	4
2	15	2	5	5	12	2	4
3	13	6	6	7	4	4	5
4	9	8	8	5	7	6	2
5	7	10	3	7	6	6	6
6	10	6	5	8	6	3	7
Totals	64	39	38	36	39	26	2.8
Prob. Est.	0.237	C.144	0.141	0.133	0.144	0.696	0.104

TABLE 3. NON EXPERT-RESULTS

RANKINGS

Interpreter	(222)	(123)	(132)	(213)	(231)	(312)	(321)
1	9	6	6	6	7	8	3
2	12	4	5	10	8	2	4
3	11	4	10	4	10	4	2
4	12	7	5	7	6	5	3
5	9	4	8	3	8	6	7
6	11	2	15	4	4	3	6
Totals	64	27	49	34	43	28	25
Prob. Est.	0.237	0.100	6.181	C.126	0.159	0.104	0.095

If the rankings were entirely random, then from appendix A the inconsistent rankings (2,2,2) should occur with a probability of 0.250; whereas, the six consistent rankings should each occur with a probability of 0.125. If random ranking is assumed, as described in appendix A, then the observed counts of the several rankings when compared to the expected count can be tested by using the chi-square goodness of fit test. The expert's X^2 estimate was 5.3, which is not significant; whereas, the non-expert's value is 15.1, which is significant at the 99 percent level. The expert's results demonstrate more consistency than the non-expert's results. Both sets of results appear to show a reluctance in allowing compression C4 to be ranked third.

It can be concluded that C4, C5, and C4 are, for all practical purposes, equivalent under the experimental conditions and that C1 > (C4, C5, and C6) > C2 > C3. The strong relationship (C1 > C2 > C3) tended to deny a lack of concordance when the original null hypothesis of the six

schemes being random was tested. The sub-hypothesis of C4, C5, and C6 producing a lack of concordance was supported by the data when C1, C2, and C3 were excluded from the analysis. Other, unrelated, multivariate analysis work at ETL has also produced uncertain or ambiguous results. In the referenced work, it was determined that a simple 2-component signature did just as well, and in some cases better, than a large component descriptor in segmenting an aerial image. There is a suspicion here that the linear models used in multivariate analysis do not adequately represent the unknown structure relating variables of interest.

CONCLUSIONS

- 1. Experimental tests should use an exact statistical design and develop relevant probability data when needed.
- 2. An extension of Kendall's probability of concordance was developed for a limited number of parameters and shown to be useful.
- 3. There is a growing concern over the validity of many multivariate analyses using large numbers of components, where unknown internal relationships tend to contaminate results.

⁵M. Crombie, N. Friend, and R. Rand, <u>Feature Component Reduction Through Divergence Analysis</u>, U.S. Army Engineer Topographic Laboratories, Fort Belvoir, VA, ETL-0305, October 1982.

APPENDIX A. RANDOM RANKING OF M ITEMS BY N'JUDGES

The numerical ranking of M items is determined by making choices over the C_{M,2} possible binary comparisons of the M items. The rank of a specific item is determined by adding 1 to the number of times the item was chosen. Since a specific item is compared (M-1) times, the rank values will range from 1 to M. Note that this type of ranking procedure can produce ties. The purpose here is to describe the development of statistical tables for testing the null hypothesis of random rankings among N judges.

The density function and associated distribution function were developed using Monte Carlo methods. The two functins, p(J) and P(J) respectively, are characterized by two parameters, namely N, the number of judges and M, the number of items to be ranked. If the experimental results are organized into N rows and M columns, and if $R_{\rm j}$ is the expected sum of the J $^{\rm th}$ column, then the random variable J is defined as follows:

$$J = \int_{j=1}^{M} (R'_{j} - R_{j})^{2}$$

 R'_{i} : observed sum of the J^{th} column

Assuming that the rankings are random, then each of the N judges' rankings will sum to M(M+1)/2 for a total of NM (M+1)/2. Since no one of the items is favored, the expected value for each of the M columns is $R_j = N(M+1)/2$.

For example, let M=3 and consider the following matrix that represents results from the $I^{\mbox{th}}$ judge:

$$v_{1} = v_{12} v_{13}$$
 $v_{21} 1 v_{23}$
 $v_{31} v_{32} 1$

If $v_{LK}=1$, then item L was judged to be superior to item K. Note that if $v_{LK}=1$, then $v_{KL}=0$. The ones along the diagonal pertain to the ones added to each score. The Jth rank is determined by summing the Jth row of V. There are 2^3 ways that ones can be distributed over V. In general, there are 2^{QM} ways where QM = M(M-1)/2. There are 3! ways that consistent rankings may occur, and in general, there are M! ways that consistent rankings may occur. The eight possible V_T are listed as follows:

1	1	1 3	1	0	0 1	1	1	1 3
0	1	1 = >2	1	1	0 = >2	0	1	0 = >1
0	0	1 1	1	1	1 3	0	1	1 2
1	0	0 1	1	1	0 2	1	0	1 2
1	1	1 = >3	0	1	0 = >1	1	1	1 = >3
1	0	1 2	1	1	1 3	0	0	1 1
		0 2						
Ü	1	1 = >2	1	1	0 = >2			
1	0	1 2	0	1	1 2			

Note that the latter two arrays are transposes of one another and in fact are logically inconsistent. The first array implies that the first item was judged superior to the second item, which in turn was judged superior to the third item. The array also implies that the third item was judged superior to the first item.

The distribution of J under the null hypothesis was developed by generating pseudo random numbers from one to eight and then selecting one of the eight possible rankings. This exercise was performed N times to produce one value of J. A large number of J-values were generated in this manner to estimate the distribution function.

When there are M=4 items, there are $2^6=64$ possible rankings of which 4!=24 are consistent. The 24 consistent rankings and 40 possible ties were organized into a $(64\ X\ 4)$ array and sampled by generating a random number between 1 and 64. As before, the exercise was performed N times to produce one value of J.

的时候,一个人的时候是一个一个时候的时候,一个时候就是一个时候的时候,一个时候的时候,一个时候的时候,一个时候的时候,一个时候的时候,一个时候的时候,一个时候的

Two sets of distribution values were generated for M = 3 and for M = 4. In the first case, ties were not allowed, and in the second case, they were allowed. When there are M = 5 items, there are 2^{10} = 1024 possible rankings, of which 5! = 120 are consistent. The simple enumeration of all possible cases was discarded in favor of the sampling procedure described next. If M = 5, then M(M-1)/2 = 10 random values, either one or zero, were developed and inserted into $V_{\rm I}$ according to the rules defined above for M = 3. This procedure was repeated N times to produce one value of J. This procedure was used for M = 5 and for M = 6. In these cases, distribution values, where ties were allowed, were calculated, but not values where ties were not allowed.

It should be noted that rankings are equivalent to scores in this exercise. Thus, a higher score implies a higher rank. If an ordinal ranking is desired, then the scores should be modified by the relation (M-S+1). For example, if M=5 and a particular scoring was (1,3,5,4,2), then the equivalent ordinal ranking is (5,3,1,2,4).

APPENDIX B. PROBABILITY TABLES

Monte Carlo methods were used to generate the cumulative probability values given in tables Bl through B8. Tables Bl and B2 pertain to N=1 to 12 judges and M=3 items. The eight possible rankings were organized and stored in the same order as described in appendix A. The results in table Bl, where ties were not allowed, were developed by random sampling among the first six scores; whereas, all eight scores were sampled for table B2. The same general procedure was used to generate tables B3 through B6. The 64 possible rankings were organized so that the first 24 scores were valid scores, and the last 40 scores were the possible ties.

When M = 5, there are 120 consistent scores and 904 possible ties, and when M = 6, there are 720 consistent scores and 32,048 possible ties. The method described above was discarded in favor of the second method described in appendix A for these cases. In both cases, ties were allowed; however, only even values of N (up to N = 12) were calculated for M = 6.

In all cases, 400,000 J-values, as described in appendix A, were computed to develop the sample density functions and finally the sample cumulative functions. The results are presented to three decimal digits. Several of the probability tables were generated using 100,000 J-values, and the vast majority of these values differed by no more than one in the third decimal place from those generated from 400,000 J-values. The largest discrepancy was three digits in the third decimal place.

Table	e B 1		1	11 = 3 :	TIES NO	T ALLOWED	<u>)</u>			
					N	-				
<u>J</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9	10	11	12
0	.056	.069	.046	.044	.036	.032	.029	.026	.024	.022
2	72	. 347	. 309	. 261	.231	.206	- 187	.170	.156	.145
6	.639	.570	.479	-430	.381	. 347	.314	. 290	.268	.249
. 8	.807	.727	. 633	.570	-514	.470	.431	.399	.371	.346
14	.972	.875	.818	. 748	.696	-646	.603	.564	.531	.499
18	1.000	.930	. 876	.816	. 764	.715	.672	.632	. 597	.565
24		. 958	- 907	- 858	.810	. 765	.722	.684	.649	.617
26		.995	.960	.928	- 889	.851	.813	. 77,7	.744	.713
32		1.000	.976	. 948	.915	.881	.846	-813	.780	.750
38			.992	.971	.949	.921	.893	.865	.836	.809
42			. 999	. 988	.973	.953	.931	.907	.883	.859
50			1.000	. 992	. 979	- 962	.943	.922	.899	.877
54				. 994	.984	. 970	. 952	.933	.913	.892
56				. 998	.992	-982	. 969	.954	.938	. 920
62				1.000	.996	.990	.981	.969	.956	.942
72					.997	. 992	. 984	.974	.962	. 949
74					.999	.995	.990	.982	.973	.962
78					1.000	.998	. 994	. 988	.981	.973
36						. 999	. 996	.993	. 987	. 980
96						. 599	.997	.994	. 989	.983
98						1.000	.999	. 997	.993	.989
104							.999	.998	.996	.993
114							1.000	.999	. 997	. 995
122								.999	.998	.996
126								1.000	.999	.997
128									.999	.998
134									.999	.999
146									1.000	.999
150										.999
152										.999
158										1.000

Tabl	e B 2			M = 3	: TIES	ALLOWED				
					<u>N</u>					
<u>J</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	8	9	10	11	12
0 2 6 8 14 18 24 26 32 38 42 50 54 56 62	.109 .566 .777 .918 .988 1.000	.085 .465 .675 .830 .948 .978 .987 .998	.068 .395 .595 .753 .900 .943 .962 .989 .995 .998	.058 .344 .534 .687 .850 .903 .929 .972 .983 .992 .998 .999	.050 .302 .480 .628 .801 .861 .895 .950 .965 .982 .993 .995	.044 .270 .437 .579 .755 .819 .858 .924 .944 .968 .984 .988	.039 .244 .400 .536 .713 .779 .822 .897 .921 .951 .973 .979 .984	.036 .224 .370 .500 .674 .743 .789 .869 .897 .933 .960 .968 .974	.032 .206 .345 .467 .640 .709 .756 .842 .872 .914 .945 .955 .963	.030 .191 .321 .438 .607 .676 .725 .814 .846 .891 .929 .940 .950
72 74 78 86 96 98 104 114 122 126					1.000	.998 .999 .999 1.000	.995 .996 .998 .999 1.000	.991 .993 .995 .997 .999 .999	. 985 . 988 . 992 . 995 . 997 . 998 . 999 . 999	.978 .982 .988 .992 .995 .996 .998 .999 .999

Table	В 3	M = 4; N ODD.	TIES NOT ALLOWED		
			N		
			-		
J	<u>3</u>	5	1	<u>9</u>	11
J Î	. 042	. 226	.017	.012	.009
3	.030	.05€	.037	.027	.020
5	.271	. 143	. 383	.068	.052
9	. 391	.229	.155	.114	.090
11	.475	.292	.200	. 149	.11,
13	.554	.348	. 242	.181	.143
17	.659	.439	- 3 (5	.239	.190
19	. 700	480	. 349	.267	.213
21	. 794	.556	.411	.318	.256
25	.825	. 593	.443	.346	.280
27	.853	.629	.477	.375	. 305
29	.925	. 702	.544	.435	.358
33	.946	.740	. 583	.470	. 389
35	.967	.774	.618	.503	.419
37	.982	.790	. 635	.519	.433
41	.998	.838	.691	.574	.484
43	.999	.848	. 704	. 587	.496
45	1.000	.877	.739	.624	.531
49		.893	.761	.647	. 554
51		.906	. 780	.668	.574
53		. 924	.806	.695	.602
57		.933	.820	.712	.618
59		. 945	.840	.735	.642
61		.955	.858	.756	. 665
65		. 966	.878	.782	.693
67		. 968	.883	.787	.699
69		.977	.900	.809	. /24
73		.930	.907	.819	.735
75		.983	915	.830	. 747
77		. 988	.927	.847	.766
81		.991	.937	.863	. 785
83		.903	944	.873	-798
85		.99/	.948	.880	.806
89		. 197	. 959	.897	.828
91		.998	.962	. 902	.835
93		.998	. 965	. 907	.841
97		. 998	.967	.912	.347
99		.999	.970	.918	.855
101		.999	.977	.931	.873
105		1.000	.980	.938	.882
107			. 982	.942	.889
109			. 984	.946	.895
113			.987	. 351	.902
115			. 988	. 954	.906
-					

Table B 3 (Continued) M = 4, N ODD: TIES NOT ALLOWED

AND THE PROPERTY OF THE PROPER

			<u>N</u>		
<u>J</u> 117	3	<u>5</u>	.9 <u>7</u> .9 9 0	.9 <u>5</u> 9	. <u>11</u> .914
121			.991	.959	.914
123			.992	.962 .964	.919 .922
125			.993	.968	.922
129			.995	.973	.937
131			.996	.976	.943
133			.996	.977	.945
137			.997	.979	.949
139			.997	.981	.951
141			.998	.982	.955
145			.998	.984	.958
147			.998	.985	.959
149			. 999	.987	.964
153			.999	. 989	.967
155 157			.999	.996	.970
161			.999	- 990	.971
163			.999	.992	.975
165			.999	. 992	.975
169			1.000	. 3 93	.977
171				.993	.978
173				. 994	.980
177				- 995	.982
179				. 195	.983
181				.996	.984
185				.995	.985
187				.997	.987
199				. 997	.987
193				.998	.989
195				.998	.989
197				. 998 . 9 98	.990
201				.998	.991 .992
203				.999	.992
205				.999	.992
209				.999	.994
211				. 999	.994
213				200	.995
217				.999	.995
219				.999	.995
221				- 999	.996
225				1.000	.996
227					.997
229					.997
233					.997
					.,,,

Table B 3 (Continued) M = 4, N ODD: TIES NOT ALLOWED N <u>J</u> 235 237 3 <u>5</u> <u>7</u> <u>11</u> .997 .998 <u>9</u> 241 .998 243 245 .998 .998 249 .998 .998 251 253 257 259 261 .999 .999 .999 265 267 269 .999 .999 .999 273 275 277 .999 .999 281

1.000

Table B 4	M =	4.	N EVEN:	TIES NOT ALLOWED
Table b -		.,		

			<u>N</u>		
J	4	6	<u>8</u>	10	12
$\frac{0}{1}$.008	. 004	.002	. 002	.002
2	.071	.042	.029	.022	.017
4	.093	.060	.042	.031	.024
6	.199	.125	.088	.066	.052
8	.245	.156	.109	.083	.065
10	.323	.211	. 150	.115	.091
12	.351	. 228	.163	. 125	.099
14	.476	. 321	.235	.181	.145
16	.492	.332	.243	.188	. 150
18	. 568	. 390	. 289	.226	.182
20	.610	.426	.319	. 249	.202
22	.645	.458	.346	.272	.222
24	. 676	.487	.372	.294	.240
26	. 759	. 569	.443	. 355	.293
30	.800	.614	.485	.391	.325
32	.810	.625	.494	. 399	.333
34	.842	.662	.530	.431	.362
36	.859	.683	,551	.450	.379
38	.895	.730	.597	.494	.418
40	. 906	.745	.612	.508	.431
42	. 923	.770	.639	.534	.454
44	.932	. 782	.652	.546	.466
46	. 946	. 804	.675	.569	.488
48	. 948	.807	.679	.573	.492
50	.964	.837	.714	.608	.527
52	.967	.845	. 723	.618	.536
54	.981	.873	.758	.655	.572
56	.986	.886	.775	.672	.58,
52	. 988	.892	.782	.681	.597
52	.993	.911	.808	. 709	.627
64	.994	.912	.810	.711	.628 .655
66	.997	.927	.932	.737	.663
68	- 998	.934	.843	,750	.680
70	. 999	. 940	.852	. 761 . 769	.689
72	.999	. 944	.859	.795	.717
74	1.000	. 957	.880	.800	.722
76		.957	.884	.809	.732
78		.963	.891		.736
80		. 965	.894	.814 .822	.746
82		.968	.900	.822 .829	.754
84		. 971	.906 .919	.847	.775
86		.9 ⁷ 7		.851	.779
88		- 978	.921	.866	.798
90		.983	.933	.877	.811
94		. 986	.940 .942	.880	.815
96		. 987	,742	.000	.015

Table B	4 (Continued)	M = 4, N EV		LOWED	
			<u>N</u>		
9 <u>8</u>	<u>4</u>	<u>-6</u>	8	10	12
100		. 990	. 949	. 89 1	.828
102		. 991	.951	.894	.832
104		.992	.954	.899	-837
106		.993	.958	. 905	.845
108		. 994	.961	.911	.853
110		.995	.963	.911	.856
114		. 996	. 969	. 924	.869
116		- 997	.972	.930	.878
118		. 997	.975	.934	.883
129		. 998	.977	.938	.883
122		. 998	.978	.941	.893
126		.999	.981	.947	.901
128		.999	. 985	.953	.910
130		.999	.985	54° .	.911
132		.999	.986	.955	. 914
134		.999	. 986	.957	.917
136		1.000	.989	.963	.925
138			.990	.964	.927
140			.991	.967	. 932
142			.991	. 968	. 934
144			.992	.570	.936
146			. 992	.970	.937
148			. 994	.975	.944
150			.994	.975	. 945
152			.995	.978	.949
154			-995	.979	.951
158			.996	.981	. 954
160			.996	. 982	. 957
162			.997	. 982	.958
164			.997	. 984	. 960
166			.997	. 985	.963
168			.998 .998	. 986	- 965
170				.987	.966
172			.998 .998	. 988	. 969
174			.999	.989	. 969
176			.999	.990	.972
178			.999	. 990	.973
180			.999	.991	.974
182			.999	.991	.975
184			.999	.993	.977
186			.999	.993	- 978
190			.999	.994	.980
192			.999	.994	.980
194			1.000	.994 .995	.980
196			1.000	.995 .995	.983
				. 773	. 983

Table B 4 (Continued) M = 4, N EVEN: TIES NOT ALLOWED

			<u>N</u>		
J 198 200 202 204 206 208 210 212 214 216 218 222 224 226 228 230 232 234 236 238 242 244 246 248 250 254 256 258 260 262 264 266 270 272 274	4	<u>6</u>	<u>8</u>	10 .995 .996 .996 .997 .997 .997 .998 .998 .998 .998 .998	12 .985 .985 .986 .986 .988 .988 .990 .990 .991 .991 .992 .993 .993 .994 .995 .995 .995 .996 .996 .996 .997 .997 .997 .997 .997
276 278					.998 .998 .999
280 282 286 288					.999 .999 .999 .999
290 292					.999 .999

Table E	4 (Continued)	M = 4, N EVE	N: TIES NOT ALLOW	ED	
			й		
J 294 296 298 300 302 304 306 308 310 312 314	<u>4</u>	<u>6</u>	<u>8</u>	10	12 .999 .999 .999 .999 .999 .999 .999

Table	<u>B 5</u>	M = 4, N CA	D: TIES ALLOWED		
			a		
Ĩ	<u>3</u>	5	7	9	11
3	.112	058	. 0 3 6	$.0\overline{2}6$.019
3	- 224	.122	.079	.057	.043
5 9	.475	. 282	.190	.141	.109
11	.647	.420	. 296	.224	.177
*3	-747	.512	.372	. 285	.227
17	.821 .397	. 587	.436	. 339	.273
19	.924	. 691	.836	.426	.350
21	.962	.733 .903	.579	.466	. 384
25	.973	.833	.655	.536	.449
27	.981	.858	.690	.571	.483
29	.993	.906	. 723 . 788	.60s	.515
33	.996	.927	.820	.674	.582
35	.998	.944	.848	.711 .744	.620
37	.999	.951	.860	.759	.655
41	1.000	. 969	.896	.807	.670
43		.973	.904	.817	.723 .73 <i>5</i>
45		. 981	- 924	.840	.768
49		. 98ი	.936	.863	.789
51		. 989	.945	.877	.806
53		. 9 92	- 956	.896	.829
57		.994	.9€2	.906	.842
59		. 296	.969	.919	.859
61		.997	.975	.930	.875
υ\$ 67		- 998	.981	.943	.893
67 69		. 998	- 982	.945	.897
73		.999	- 987	.956	-512
75		- 999	.989	.959	.913
7.7 7.7		.999	.950	. 964	.925
81		1.000	-952	-970	.935
83			.994	.975	-944
85			. 995 . 995	. 575	.950
69			.99,	-980	.953
91			.998	. 985 . 987	.962
93			.998	.987 .988	.965
97			.998	. 989	.967
99			.998	.990	.969
101			.999	.993	.972
105			999	.994	.978 .981
107			.699	.995	.982
109			1.000	.995	.984
113				.996	.986
115				.95	.987
117				.997	.989
					.,,,

<u>N</u>		
N J 3 5 7 121 123 125 129 131 133 137 139 141 145 147 149 153 155 157 161 163 165 169 171 173 177	9 . 997 . 998 . 998 . 999 . 999 . 999 . 999 . 999 . 999	11 .990 .991 .992 .993 .994 .995 .996 .997 .998 .998 .998 .998 .999 .999
177 179 181		.999 .999 1.000

Tabl	e B 6	M = 4, N. EVE	N: TIES ALLOWED		
			<u>N</u>		
<u>0</u>	4	<u>6</u>	8	10	12
	. 015	.008	.005	. 004	.003
2 4	.153	.093	.062	.046	.036
6	. 209	. 129	.088	.065	.051
8	.387	.250	.178	.135	.107
10	.457 .568	. 302	.218	.167	.133
12	.597	. 392	. 289	.225	.181
14	.736	.417	.310	. 242	.196
16	.750	. 548	.422	. 337	.277
18	.815	.561	.435	÷348	.286
20	.849	.633	. 500	.406	.338
22	.874	.673 .707	. 540	.442	.370
24	.894	.736	.574	.474	.400
26	.941	.810	.604	. 503	.427
30	.960	.846	.686	.583	.502
32	.963	.854	.723	. 627	. 544
34	.973	.379	.737	.637	.554
36	.978	.893	. 770 780	.672	. 590
38	.987	.920	. 789	.693	.610
40	.990	.928	-828	. 737	.655
42	.993	.941	.839	- 750	.669
44	. 994	.946	.859	.775	.695
46	.996	.955	. 868 . 884	. 785	.707
48	. 996	. 957	.886	.805	.728
50	.998	.968	.907	.808	.732
52	.998	.970	.913	.837	.764
54	. 999	.980	.932	.844 .870	.773
56	1.000	. 983	. 940		.804
58		. 985	.944	.883 .883	.818
62		.939	.955	.906	.825
64		- 989	.956	.907	.848
66		.992	. 964	.921	.849
68		. 994	.968	.928	.868 .877
70		. 994	.972	.934	.885
72		. 995	.974	.938	.891
74		. 997	. 980	.950	.908
76		. 997	-982	.952	.911
78		. 998	. 984	.956	.917
80		. 998	. 984	.957	.919
82		.998	.986	.960	.924
84		.998	.987	.964	.929
86		.999	.990	.970	.939
88		.999	s 99 1	-971	.941
90		. 999	.993	.976	.950
					.,,,

Table E	6 (Continued)	M = 4, N EV	EN: TIES ALLOWED		
			<u>N</u>		
<u>J</u> 94	<u>4</u>	$\frac{6}{1.000}$. 9 <u>8</u>	10	12
96		1.000		. 980	.956
98			.995	.981	.957
100			.996 .996	.984	.962
102			.996	.995	.964
104				.986	.966
106			.997 .997	.987 .989	.969 .971
108			.998	.989	.973
110			.998	.991	.977
114			.999	.993	.979
116			.999	.993	.981
113			.999	.994	.983
120			.999	.995	.984
122			.999	.996	.986
126			1.000	.996	.988
128				.996	.989
130				.997	.989
132				.997	.990
134				.998	.992
136				.998	.992
138				.998	.993
140				.998	.993
142				.098	.994
144				-998	.994
146				.999	.995
148				.999	.995
150				.999	.996
152				.999	.996
154				.999	.996
158				.999	.997
160				.999	.997
162				.999	.997
164				1.000	.998
166					.998
168					.998
170					.998
172					.998
174					.998
176					.998
178 180					.999 .999
182					.999
184					.999
186					.999
190					.999
192					.999
. / -					. 777

Table B	$\underline{6}$ (Continued)	M = 4, N EVEN	TIES ALLOWED		
			<u>N</u>		
J 194 196 198 200	4	<u>6</u>	<u>8</u>	<u>10</u>	12 .999 .999 .999

Tabl	e B 7			M = 5:	TIES A	LLOVED				
<u>N</u>										
<u>J</u> 0 2	$\frac{3}{.004}$.002 .036	.001 .025	$.0\overline{01}$.018	$.0\overline{01}$ $.013$	$\frac{8}{.001}$. 0 <u>0</u> 0 . 003	$\frac{10}{000}$ 0.007	$\frac{11}{.000}$ 0.006	$\frac{12}{.000}$
4 6	.124 .228	.079 .151	.055 .106	.040 .078	.031 .061	.024 .048	.019 .039	.016 .032	.013 .027	.011
8 10	.310	.210	.150 .227	.113	.088	.071	. 057	.047	.040	.034
12	.471	.336	.249	.173	.151	.110	.091 .101	.076 .084	.065 .072	.056 .063
14	.587	.436	.333	.261	.210	.172	.144	.121	.104	.091
16	.664	. 505	. 394	.312	.254	-210	.176	.149	-129	.113
18 20	.713 .757	.559 .600	.442 .481	. 354 . 388	.291	.242 .269	.204	.173	.151	.132
22	.312	.663	. 542	. 300	. 372	.314	.228 .268	.194	.170 .201	.149 .177
24	.844	.701	. 581	.481	.406	. 345	.296	.255	.224	.197
26	.892	.765	.648	. 547	.466	.400	. 346	.300	. 265	.234
28	. 904	.782	.667	. 566	.484	.416	. 362	.314	.278	.246
30 32	.925 .938	.814 .836	.702 .728	.602 .629	.519 .545	.450 .475	.393 .416	.342 .365	.304	.271
34	.959	.874	.776	.681	. 597	.526	.464	.409	.325 .367	.289 .328
36	.965	.887	.793	.701	.617	.546	483	.427	. 384	.344
38	.975	. 908	.822	.733	-651	.580	.516	.459	.414	.372
40	. 982	. 924	.844	.759	-678	.608	. 544	.486	.439	. 396
42 44	.985 .988	.932 .942	.857	.774	. 695	-625	.561	.502	.455	.411
46	.993	.942	.873 .898	. 795 . 827	.717 .754	.648 .686	.584 .623	. 525 . 563	.477 .514	.432 .468
48	.994	.961	.905	.836	.763	.696	.633	.574	.525	.478
50	. 996	.970	.922	.858	- 791	.725	.064	.605	. 555	.508
52	. 997	.973	.927	.866	.800	.736	.675	.616	.566	.518
54	.998	.979	.939	.883	.821	. 759	.629	.642	.592	.544
56 58	. 999 . 999	.983 .987	.948 .957	.897 .910	. 837 . 854	.778	.721	.663	.613	.565
60	.999	.988	.960	.915	.860	. 797 . 804	.741 .749	.685 .693	-635 -644	.588 .596
62	1.000	.991	.966	.925	.874	.821	.767	.713	.664	.616
64		.993	.971	. 934	.887	.836	. 784	.731	.683	.635
66		. 994	.976	. 943	. 899	.851	.902	.750	.702	.655
68		. 995	.978	- 947	.905	-857	. 309	.757	.711	.664
70 72		. 996 . 997	.982 .984	. 954 . 957	-916	.871	.825	.775	.729	.683
74		.998	.987	.957	. 921 . 932	.878 .893	.832 .851	. 784 . 805	. 738 . 761	.693 .716
76		. 998	.989	.969	.938	.901	.861	.816	.773	.728
78		. 999	.990	.971	.942	.907	.868	.824	. 781	.737
89		. 999	.992	. 974	.948	.913	.875	.833	.792	.749
82		.999	- 993	.978	.953	- 921	.886	.845	.805	.762
84 86		-999	.994	.979	.956	-925	.890	.849	.810	.768
88		1.000	.995 .996	. 983 . 985	. 962 . 966	.934 .940	.902 .908	.864 .872	.827 .836	.787 .796
										.,,,

Table	<u>B 7</u> (Co	ntinued)	1. = 5:	TIES A	LLOWED				
					<u>N</u>					
9 <u>0</u>	3	4	. 9 9 7	. 9 <u>6</u> . 987	. 9 <u>7</u>	. 945	. 9 . 916	. <u>10</u> . <u>28</u> 1	$\frac{11}{846}$	12 .307
92			.997	.988	.971	.947	.919	.885	.850	.812
94 96			.998	. 990	.976	. 954	.928	.897	.864	.828
96 98			. 998	. 991	.978	.957	.932	.902	.870	.835
100			.998	. 992	.980	.961	.937	.908	.878	.844
102			.998	. 993	. 982	. 964	.941	.912	.883	.349
104			. 999	. 994	.983	. 966	.944	.916	. 383	-855
106			.999	994	.985	.969	.949	.922	.395	.863
100			.999	. 996	.987	.974	.955	.931	.905	.875
110			.999	.996	. 988	.975	.956	.933	.907	.877
112			.999	- 997	.990	.978	.961	.939	.915	.887
114			1.000	. 997	. 990	.979	. 963	.942	.918	.891
116				.997	.991	.981	.966	.946	.924	.898
118				.998	. 992	.983	.969	.949	.928	.902
120				- 998	.993	.984	.971	.953	.933	. 908
122				. 998 . 998	. 994	.985	.973	- 956	.936	.912
124				.999	.994	.987	.975	.959	.940	.917
126				.999	.995	-938	.977	.962	.943	.921
128				.999	- 996	.989	.979	-964	.947	.926
130				.999	. 9 <u>96</u> . 996	.990 .991	.980	.966	.950	.929
132				.999	.997	.991	.982	.970	. 954	. 934
134				.999	.997	.993	.933	.970	.955	.936
136				.999	.998	.994	.985	.974	.959	.942
138				1.000	.988	.994	.987 .987	.276	.962	.945
140					- 998	.994	-987 -988	.977 .978	.964	-948
142					. 998	.995	.989	.978	.965	.949
144					- 998	.995	.990	.981	-968	.953
146					.999	.996	.991	.983	.969	.955
148					.999	.996	.992	.984	.973 .974	.959 .960
150					.999	.997	.992	.985	.975	.963
152					.999	.997	.993	.986	.977	.964
154					.999	.997	.994	. 987	.979	.968
156					-999	.998	.994	.988	.980	.969
158					.999	.998	.995	.989	.981	.971
160					.999	.998	.995	.989	.982	.972
162					1.000	.938	-995	.990	.983	.973
164						. 998	.996	.991	.984	.975
166						.999	. 996	.992	. 986	.977
168						.999	- 996	.992	.986	.978
170 172						.999	.997	.993	.987	.980
						. 999	. 997	.993	.988	.980
174 176						.999	.997	. 994	.989	.981
176						.999	.998	.994	.990	.983
170						- 999	. 998	- 995	.990	. 984

THE REPORT OF THE PROPERTY OF

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

Table B 7 (Continued)				<u>M = 5:</u>	TIES AL	LOWED				
					<u>N</u>					
270 272 274 276 278 280 282 284	3	4	<u>5</u>	<u>6</u>	7	8	<u>9</u>	<u>10</u>	11	12 .999 .999 .999 .999 .999

Table B 8		M = 6, N EV	EN: TIES ALLOWED		
			N		
$\frac{0}{1}$	<u>4</u>	<u>6</u>	8	10	12
0	.000	.000	$.0\overline{0}0$.000	. 12 000
2	.007	٠003	.001	-001	.001
4	.024	.009	.005	.003	.002
6	.046	.019	.010	.006	.004
3	.083	.036	.019	.012	.008
10 12	.125	- 056	.031	.019	.012
14	.158	.072	.040	.025	.017
16	.214	.102	.058	-037	.024
13	.273	.135	- 078	.050	.034
20	. 308 . 362	. 156	.091	.058	.040
22		.190	.112	.073	.050
24	.419	. 227	.13/	.090	.062
26	.461	. 257	. 157	.104	.072
28	.512	- 294	. 183	.123	.086
30	. 557	- 329	. 208	.140	.099
32	. 592	. 357	. 228	.155	.110
34	.636	. 395	. 257	.177	.126
36	.676	.431	.285	.198	.142
38	-700	-455	. 304	.212	.154
40	. 737	. 493	.333	.236	.172
42	.771 .788	.529	. 364	.269	.191
44	.813	. 548	- 380	.273	.201
46	.839	. 578	-407	.295	.219
48	.854	.610	-436	.319	.239
50	.872	.631	.457	- 336	.253
52	.888	.657	-481	<i>-</i> 357	.270
54	.901	.681	. 505	.378	.288
55	.916	. 701	.526	- 396	. 304
58	.926	.727	. 552	-420	. 325
69	.933	.746	.573	-439	. 341
62	.943	.758	. 587	.452	.353
64	.952	.778 .798	.610	-474	.372
66	- 957		.632	.496	.392
68	.963	.810 .825	-647	.511	.405
70	.969	.841	.666	. 528	.422
72	.972	.851	.687	. 550	.442
74	.976	.863	. 700	. 563	.454
76	.980	.875	.717	- 580	.471
78	.982	.883	. 734	- 598	.489
30	.985		. 744	.609	.500
82	.987	.894 .903	.761	.627	.518
84	.989	. 909	.775	.643	.533
\$6	.991		.785	.654	.545
88	.992	.918 .926	.799	.672	.562
-		.720	.812	.687	. 578

Table	B 3 (Continued)	M = 6, N EVE	N: TIES ALLOWED		
			<u>N</u>		
9 <u>0</u>	4 -	6	. <u>8</u>	10	<u>12</u>
	.993	. 931	.820	. 697	.588
92	. 994	.936	.830	.709	.60i
94	. 995	.943	.842	. 724	.617
96	. 996	.947	.850	.735	.628
98	.997	. 952	.859	.746	.641
100	.997	.956	-867	. 758	.653
102	. 998	.959	.874	. 766	.663
104	. 998	. 964	.883	.779	.677
106	. 998	.967	.891	. 790	. 690
108	.99¢	.969	.896	.797	.697
110	. 999	.973	.903	.808	.710
112	.999	.975	.910	-813	.722
114	. 999	.977	.914	.823	.729
116	. 999	.979	.920	.832	.739
118	1.000	. 982	.926	.841	.751
120 122		.983	.930	-348	.758
124		.985	.934	.855	. 768
126		.986	.939	.863	.777
128		. 987	.942	.868	.784
130		. 989	.946	.875	.793
132		. 990 . 990	.950	.881	.801
134		.992	.952	.885	.806
136		.992	.956	.892	.815
138		.993	.960	.898	.823
140		.994	.962	.902	.829
142		.994	.965	.907	.836
144		.995	.967	.912	.843
146		.995	.969 .971	.916 .920	.848 .854
148		.996	.973	. 924	
150		.996	.975	.928	.860 .865
152		.997	.977	.932	
154		.997	.979	.936	.871 .876
156		.997	.980	.938	.880
158		.998	.981	.942	.885
160		. 998	.983	. 945	.891
162		. 998	. 984	.948	.894
164		. 998	. 985	.950	.899
166		.998	. 986	. 954	.904
168		.999	.987	.956	.907
170		.999	.988	.958	.911
172		. 999	. 989	.960	.914
174		.999	.990	.962	.918
176		.999	.991	.964	.922
178		.999	.991	.966	.925
186		.999	.992	- 968	.927
182		.999	.992	.970	.931
					-,31

Table	8 8 (Continued)	M = 6, N EVEN:	TIES ALLOWED		
		N			
<u>J</u> 184	4		8	<u>1</u> 0	12
		. 9 9 9	. 9 <u>8</u> . 9 9 3	. <u>10</u>	$\frac{12}{934}$
186		1.000	.993	.973	.936
188			.994	.975	.939
190			. 994	.976	.942
192			.995	.977	.944
194 196			.995	.979	.947
198			.995	.980	.949
200			. 996	.981	.951
202			.996	.982	.953
204			.997	.983	.955
206			.997	.984	.957
208			.997	.985	. 959
210			.997	.986	.961
212			.997 .998	-987	. 963
214			.998	.987	.964
216			.998	.988 .989	.966
218			.998	.989	.968
220			.998	.990	.969
222			.998	.990	.970 .971
224			.999	.991	.973
226			.999	.992	.974
228			.999	.992	.975
230			.999	.992	.976
232			.999	.993	.978
234			.999	.993	.978
236			.999	.994	. 980
238 240			. 999	.994	.981
240			.999	. 994	.981
244			.999	. 995	. 982
246			.999	- 995	.983
248			.999	.995	. 984
250			.999	.996	- 985
252			1.000	.996	.985
254				.996	.986
256				.996	.987
258				.997	.987
260				.997 .997	.988
262				.997	.988
264				.997	. 989 . 989
266				. 997	.999
268				.998	.990
270				.998	.991
272				.998	.991
274				.998	.992
				• • • =	

Table B	8 (Continued)	M = 6, N EVEN:	TIES ALLOWED		
J-276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 330 332 334 336 338 330 332 334 336 338 336 337 338 338 339 338 338 339 338 338 338 338	4	<u>6</u>	<u>N</u> 8	10 .998 .998 .998 .999 .999 .999 .999 .99	12 .992 .993 .993 .993 .994 .994 .995 .995 .996 .996 .996 .996 .997 .997 .997 .997
368					. 999 . 999

Table B	8 (Continued)	M = 6, N EVEN:	TIES ALLOWED							
	<u>N</u>									
J 370 372 374 376 378 380 382	4	<u>6</u>	<u>8</u>	<u>10</u>	12 .999 .999 .999 .999 .999					