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Abstract

The problem of estimating signal delay in signal-plus-noise models is

.. considered. A technique is developed for approximating likelihood in such

* a way that a dynamic programming algorithm may be used to efficiently and

recursively estimate delay. The approximation provides an alternative to

the implementation of a growing bank of matched filters for exhaustive

maximization of likelihood. Simulation results indicate acceptable per-

formance at output SNRs in excess of 15 dB for deterministic signals and

in excess of 20 dB for stochastic signals.
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INTRODUCTION

The estimation of arrival time or event time in sonar and radar applica-

tions is such a commonly encountered problem that it has acquired its own

acronym: TDE (for time delay estimation)Ill. There are however other

applications where an estimate of event time is relevant. These includeS
highway traffic control[21and fault detection[3].

Solutions to the TDE problem vary in sophistication from threshold

detection as used by Iyer[4I, to tests of whiteness, means and covariances

employed by Mehra and Peschon [5], to application of the generalized likeli-

-* hood ratio by Willsky and Jones[61 . Iyer derives a threshold detection

algorithm which detects the rising edge of satellite broadened laser pulses.

He models the arrival time of the pulse as a Poisson process. Based on this he

derives the probability that the threshold value is exceeded at some time j.

He then maximizes this probability with respect to the arrival time to

obtain the detection time.

Mehra and Peschon outline an innovations approach to fault detection.

They propose hypothesis tests on whiteness, means, and covariances of the

innovations sequence of a Kalman predictor. This approach is applicable in

those applications which allow batch or fixed lag processing of the observa-

tions.

Wiilsky and Jones use a generalized likelihood ratio test to detect

and estimate jumps in the state variables in autoregressive moving average

(ARMA) systems driven by white noise. They model a jump in the state of the

system as a single pulse whose amplitude and occurrence time are unknown para-

meters. They note that implementation of their algorithm requires a growing

bank of matched filters. This is due to the fact that likelihood must be com-

puted for a jump occurrence at each time from time 0 to the present. They
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suggest an approximation in which likelihood is computed only for the current

and previous M-1 occurrence times.

The problem of growing banks of filters to implement TDE algorithms is

common. Another method that is often used to avoid this problem in multi-

sensor applications is that empolyed by Kennefic[71 . He uses the N scan

approximation first developed by Singer et al.[82 to efficiently implement

an algorithm which generates the a-posteriori density function of a Markov

delay. In this case all the filters with an identical history for the past

N steps are replaced by a single filter.

In this paper we present another method of approximation for avoiding

the use of a growing bank of filters. The method used is to compute the

likelihood of delay on a subset of the interval from the initial time to the

present. The subset is defined recursively, in a forward dynamic programming

algorithm.

The TDE algorithm presented here is dynamic and the formalism in which

we present it is much the same as that normally associated with dynamic pro-

gramming. The algorithm does not yield the optimum solution to the TDE

problem. The algorithm is however recursive in nature, and storage require-

ments are constant in time. There is no need for a growing bank of filters.
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TIME DELAY ESTIMATION IN DETERMINISTIC AND

STOCHASTIC SIGNAL MODELS

In single sensor time delay estimation problems, we are interested in

estimating the arrival time of a signal. The signal may be deterministic

or stochastic. Here we introduce an observation model and two signal models.

We give several equivalent characterizations of the TDE problem and derive

the joint distribution of the observations for both the deterministic and

*stochastic signal models.

Observation Mode)

Consider the discrete-time sequence jYt: t = 0, 1,...,T-I . A noisy,

delayed version of the sequence is observed:

zt u(d) yt-d + nt , t''"

Here d is the delay and Int: t - 0,1,...,T-11 is a sequence of independent

identically distributed Cid) normal random variables with mean zero and

2 IT-1variance n  The sequence { ut(d)l- is an indicator sequence:

0 0 < t < d ;

ut(d) = -I d < <T-

The indicator sequence characterizes the delay.

Time Delay Estimation Problem

Let I denote the discrete set I 10,1,...,t+11, and let Yt denote the

tt
observations to time t: Yt - ly t. Call d an estimator of d that maps

observations Yt into the set It+:

Ad: Y -- t+t t+I*

When at - t+1, we say the delay is estimated to be greater than t, indicating

that the observations Yt are noise only. Typically we construct a sequence

4



of estimators d, d9 ... dt that terminates at time t - T-1 in an estimate

SdT-I based on the complete observation set YT-I" A typical sequence would

look like this:

T-1
t: 0 1 2 3 4 5 6 7

d: 1 2 3 4 5 5 5 5

In this case we would say dT-I 5. Note that for t < 4, the data is judged to

be purely noise.

With this formalism we may give three equivalent statements of the time

delay estimation problem: given the observations YtP

(1) find the maximum likelihood estimate of d, denoted dr, under

the constraint that d lie in I
t t+'

(2) find the most likely indicator sequence {uk(dt 1 t
~0

(3) find the minimum probability of error test of H0 vs. .vs... vs.

H vs. H with Hk denoting the hypothesis that d - k, kcIt+l;
t t+)' 1

the understanding is that d - t+I corresponds to the noise-only

hypothesis.

Here's the sense of the equivalence. Fix t. Let 7(H ) = I/(t+l)
k

denote the prior distribution over the Hk. As the sequence{ uk(dt);is~~~ t ch i e t a

km 192.1...,t maximizes likelihood it follows that HA is the choice that

minimizes the probability of error in selecting an hypothesis. And, as

there is a 1:1 correspondence between dt and the sequence {uk(dt)}it

follows that d is also the maximum likelihood estimate of d under the
t

constraint that d lie in the set I
tt]

Deterministic Signal

If the signal sequence {YtT- is known, then the distribution of the noisy

sequence {zk}t is

5



max(d-1,0) t

t =22 II ( 2
""0 i 1 kj 0  k (2rra) exp -22 k-min(d,t) (2 n

nn

2cy2

i It is assumed that only the delay parameter d is unknown.

Stochastic Signal

Many physical processes may be effectively modeled as stationary autore-

gressive moving average (ARMA) systems driven by white noise. The Markovian

state space model for such a process is

x+ 1  Ax + hw

" ~Yt = C Xt + Wtt

where Iwt is a sequence of iid normal random variables with mean zero and

variance aw , and the matrix triple (c',A,h) is characterized as follows:

0 1 0 . . . 0 h
" •0 0 1 0 0

A h

p p
-a . . . . . -a 1

c' -[I,O...O3

The impulse response vector h is determined by

I h 1
a1 ba* . b

a a I h b
p p p

6



* '-- Sr . . ..-- - - r -- ' . .. . .. . ... .. . .

wherelai; i 1 1, 2, ... , pI and lbi i 1 , 2, ... , are respectively

the AR and MA coefficients of the ARMA model.

The innovations representation (see [9] and [10] for descriptive

accounts) is equivalent to the Markovian representation in the sense that

output means and correlation sequences are the same. The state space

equations for the innovations representation are

yt - Yt +v t

Yt ' t

x t+1 , Ax t  + k t t

Here kt is a Kalman gain vector,{vti01 is a sequence of id normal r. .

variables with mean zero and variance vt, and yt is the one-step Kalm

prediction based on Yo' YI '..' Yt-I" The Kalman gain satisfies the ations

k.v 2 h'

t t Q- Pt]c+ h 1

where

v r - c'P c
t 0 t

P A P A' + k k'v P - 0,t+1 t t t t 0

Q0 AQ A' + a2 h ht
0 w I I

The matrix Q is the steady-state value of the variance matrix Pt for the

state vector xt, and r is the zero-lag value of the correlation sequence for

the process l yt t

S00 c' A Q A' c + a w c' h I h I c

The only difference between the innovations model for the signal sequence

I {yt and the innovations model for the noisy sequence Iztj, with zt  Yt + nt,

* is in the specification of initial conditions on r 0' 0

- r +02 6
O O n 0

I
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With this representation we may write the joint density function of the

observations Jzk t as
0 kmax(d-1,O)

z f(27TC 2 exp z 2 k
k=O n 22 k

(27rv 0 exp - (z u (d) (d))

11 'k-d' 2v kd k- k Yk
kwmin(d,t)

Here yk(d) is the Kalman prediction of Yk' given that (really, assumed that)

the ARMA sequence has arrived time d < k:

Yk(d) - c'xk(d)

x k+(d) =Ax k(d) + kk-d Vk(d)

Vk (d) = Ek - Yk(d)

xk(d) = 0, k < d

Of course k follows the recursion previously given.t .

"1

~1
This brings up a curious question: does it make sense to speak of time
delay estimation in stationary models? In such models the notion of a

time origin is irrelevant. It is, however, possible to imagine a
stationary field which is fully developed (i.e. stationary), but
is only switched into the environment at time d. This is the case we
are considering.
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EXACT AND APPROXIMATE LIKELIHOOD AND DYNAMIC PROGRAMMING

We now introduce a two state machine representation of the TDE problem.

We then derive the log likelihood functions which must be maximized to

obtain the estimate of the indicator sequence. Exact computation of the

likelihood function is shown to be computationally unattractive because it

involves computation of the likelihood for each d in the set I t+] As an

* alternative we compute approximate likelihood on a subset of It+! which we

denote I

Log Likelihood

In the deterministic case the log-likelihood function for d, based on

observations Zk t is

2 -(t+ l)/2 I t 2
9. (d log (27a )--.X(zk u (d) 2n 2a k2

n

In the stochastic case the log-likelihood is

t22
i t (d) = E log (2(a + u k(d)(v k(d)-o

k-1

t (zkuk(d)^(d))
2

i - k

k=I 2 2
2(a + u k(d)(k (d)-y ))

: Note that in both cases we may define the log-likelihood in a recursive

fashion:

.t(d) ( t d) + pt(d)

The term Pt(d) is called the path metric.

Because of the nature of the indicator sequence it is clear that for

both the deterministic and stochastic signal models the log-likelihood must

be evaluated for two separate regions: k < d and k > d.

0

Q

• • h • ... • - • -, • . ... .:



This observation suggests a two state machine representation of the TDE

problem.

The Two State Structure of the TDE Prob -n

Let 0 and I denote the states of the two state machine. See Figure 1.

Associate the indicator sequence with a sequence of visits to these states.

For k < d state 0 is visited. For k > d state I is visited. An example

*. for t - 8 and d - 4 is illustrated on a two state trellis in Figure 2.

Note that transitions from state I to state 0 are forbidden because once

the indicator is on it stays on (i.e., the signal persists). Thus the

TDE problem is that of estimating the time when the transition from

state 0 to state I occurs.

Exact Likelihood

At each time interval associate the log-likelihood k (d>t) with state 0.
t

it(d>t) is the likelihood that d is greater than t. Likewise, associate with

state I the log-likelihood function Zt(dt).

ttThe computation of t (d>t) is easy. It is dependent only on its most

recent value and the path metric pt(d>t) where

pt(d>t) - log (zt 2
Pt g\ 22 22 t

n ni

The log-likelihood corresponding to state I is more complex. X (dct)

must be evaluated for every d in It . This means that computation of the

exact likelihood M(d) requires a bank of t + 2 filters: (t + I) filters
t

to compute it(d<t) for d Ol,..,,t, and one filter to compute Zt(d>t).

We compute Zt (d) for d<t as

Pt(d) - t_l(d) + pt(d)

where

10



k~.4k<d

State 0 :

k d

S ttat. I k >d

FIGURE I. TWO STATE MACHINE.

t=O 1 2 3 4 5 6 7 8
0-

4 FIGURE 2. TWO STATE TRELLIS.
d=4, t=8



(d) log /2 (zt -2Yt,2 2to 2  2a2
"n n

in the deterministic case and

Pt (d) = log (2vtd -. i "2vt(d)

for the stochastic signal model. Here yt(d) is obtained from a one step

Kalman predictor initialized at time d. For the case d - t, we compute

2t (d) as

Zt (d-t) - Zt(d>t-1) + pt(d=t)

where the path metric depends on which sigLldl model is being used. Having

computed the likelihood, 2t (d), the delay estimate is chosen as

t

It is clear that, for long data records, computing the likelihood Zt (d)

becomes burdensome and impractical. We offer an alternative approach, first

introduced inl I].

Approximate Maximum Likelihood

In order to avoid the computational problems of simultaneously running

a growing bank of filters we compute the likelihood associated with state

SI on a subset of I which we denote It+ I  The result is that the number of

filters required at any time interval is reduced to 3.

Let us examine how the subset, It+,, is defined. Fix t at 2. At time

2 for state I we must consider two possibilities: the signal is just arriving

which implies

Z2(d-2) Z 2l(d>l) + p2(d-2);

or the signal arrived at time I which implies

2. (d<2) k dl) + p(d-)

12



I

Thus we choose

Z 2 (d<2) = max[iI(d>l) + p2(d-2), II(d) + p2 (d-)].

If Z (d>l) + P2(d-2) is chosen, then at t - 3, we ignore the possibility that

the signal arrived at time I, and do not compute the likelihood for dwi.

If , (d<l) + p2(d-1) is chosen at t - 2, then at t - 3 we ignore likelihood

for d - 2. In general the likelihood associated with state I is computed as

, t(d't) = max[Zt- (d>t-I) + pt(d-t), Zt-I (dct-l) + pt(d=dtl)j

where d is a running time variable defined as
r

i t t(d>t-l) + p (d=t)>i t-(dt-l) + p t(dd
*d t t - t t---1~di

dt_1, Zt1 (d
t - l) + p t(dfd t-l)nti (d>t-1) + p t(d-t)

Thus at any time interval we calculate the likelihood of only three of t + 2

possible delays in the set I t+. The variable dt recursively defines It+l'

the subset of I t+ on which we compute likelihood. At any time t we may

terminate the procedure and compute the final. delay estimate by

t+], kt(d>t) > it(d~t)=dt
t t t -

Figure 3 illustrates log-likelihoods computed on the set It+1 and likelihoods't+I

computed on the set It+,, for t - 7. In the example illustrated, no error

would have been made by discarding likelihoods Z7 (0), i7 (I), Z7(2), i7 (4),

9 7 (5), and9 7(6),and saving only Z7(4) 9,7 (7), and 97(8). Such is not always

the case.

A Note on the Implementation of the TDE Algorithm

The general algorithm is summarized in Table I. It requires the

implementation of three filters at each time interval. Filter I computes

13



It+1

01 2 3 4 5 6 78

It+1

o 1 2 3 4 5 6 7 a

FIGURE 3 . LOG LIKELIHOOD COMPUTED ON I AND I
t~l t+1
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Compute Path Metrics

C d-0 Pt (d-d t Pt (d>t)

Compute Log-Likelihoods

L9. (d>t) L tl (dnt-l) + p t(d>t)

L(dct) -max (Pt- (d>t:-1) + p td-0,.

zt1 (dt-1) + p t(d-t1)

Decision

t-~dt1)+pt(d-t) > Lt

t, tt,(it(dce-l)+,pt(ddt,

d-1 tI (dt-l)+p(d-t) S.L (dct-1)+p t(d-di

d t t ~ Lt(d>t) > Lt(dt)

Storage Initial Conditions

d t L 0 (d>O) -o0

L(d>0) L dO)
L9 (d<0) d 0

Table 1: Summary of TDE Algorithm

15



St(d>t), Filter 2 computes it 1l(d>t-1) + Pt (d-t), and Filter 3 computes

I t-l(d t -1) + pt(dmdtl).

For the deterministic signal models these filters are straightforward

and require no comment.

For the stochastic signal however filter 2 and filter 3 require as

part of their structure the Kalman predictor.

Let us examine the use of the Kalman predictor within the structure

of the TDE algorithm. The Kalman predictor associated with filter 2 is

reset to initial conditions at each time interval in order to compute the

path metric pt(d-t). The predictor in filter 3 was initialized at time

dtI and has been running since to give the path metric pt(ddtl).

If the decision dt-t is made then we have to reinitialize filter 3 to

compute the next path metric p (d-dt-t). Rather than doing this, we can
t+

take advantage of the fact that filter 2 has already computed the gain

ko, and the error variance v0. By transferring these variables from filter

2 to filter 3 we save the time required to compute the Kalman gain vector.

16



EXPERIMENTAL RESULTS

The thesis of GSF [121 contains simulated examples that show how the

trellis evolves and how It.,, dt, and it(d) are computed for individual

data realizations. The examples are instructive. Here we present only

results of Monte Carlo tests

For the deterministic signal model we have defined the SNR as

SNR - 10 log 0  y y2 /a2)!10 t n0

where N - T-d is the number of samples of the signal in the observation inter-

val. The signal model is simply yt f ut (the unit step sequence).

To demonstrate algorithm performance when the underlying signal may be

modeled as an ARMA structure driven by white noise, anARMA (3,2) model was

chosen. The z-transfer function of the system is

-! -2

H(z) I - 1.750z + .800z
."-1 -2 -3

- 1.500z + 1.210z - .455z

For the stochastic signalwehave defined the SNR as

SNR - 10 log1 0

where N is the number of samples of the signal in the observation interval:

N -T-d.

The Monte Carlo tests consisted of running the algorithm 1000 times.

Each time the delay was fixed at 14 and the length of the simulation was 30

(t - 0,1,..., 29). The final delay estimate from each simulation is stored.

These results are then averaged to compute the sample statistics of the delay

estimator.

17



A typical relative frequency of delay estimates is illustrated in

* Figure 4. The signal is a unit pulse sequence and the output SNR is 15 db.

Table 2 summarizes the results of the Monte Carlo tests for the

* deterministic signal model. Figure 5 is a plot of the MSE vs. SNR obtained

from the Monte Carlo tests using the deterministic unit pulse sequence.

Figure 6 shows relative frequency of delay estimates for the stochastic case

when output SNR - 21.7. Table 3 summarizes the results of the Monte Carlo

tests using the stochastic signal model. Figure 7 is a plot of the MSE vs. SNR

for the stochastic signal model. Figure 8 is a plot of the miss probability

vs. SNR for both the deterministic and stochastic model. The miss probability

is defined to be the probability that the delay is estimated to be greater

than or equal to T-1, when in fact the signal was present at delay d<T-I (in

this case d-14).

The use of "soft" decision would offer an attractive method for improving

the algorithm performance. At present each time the decision d - t is madet

we reinitialize the filter associated with state I and eliminate past values

of d from consideration. Instead, if the decision dt - k is made and this

value persists for n steps, then a filter should be maintained for computing

9.(d-k). This increases the size of the subset of It+] on which we compute

9t1dW. The value of n is chosen to get a reasonable trade off between compu-

tation time and estimation accuracy.

~18
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Unit Pulse

SNR HSE Bias

20 1.65 .02

17 2.44 .04

15 4.82 .07

12 18.12 .29

10 22.74 .38

* 6 46.15 .89

, Table 2. Summary of Monte Carlo Tests for the Unit
Pulse and Modulated Pulse Signals

.09.

.94

\ .03
Lna
E .2 x2

.8]

Inin

SNR(db)
oO

Figure 5. MSE/T vs. SNR for Unit Pulse Signal.
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*11

Table 3 Sumary of Monte
Carlo Tests for the
Stochastic Signal

SNR MSE Bias

31.70 .49 .20

28.70 .84 .28

26.70 1.47 .37

23.70 5.20 .85

21.70 9.36 1.14

17.70 39.05 3.31

.04

.03
1-4

En .02

.01

SNR(db)

Figure 7. MSE/T vs. SNR for Stochastic ARMA Signal.
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FIGURE 8 .MISS PROBABILITY VS. SNR.
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