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Abstract

The problem of estimating signal delay in signal-plus-noise models is
considered. A technique is developed for approximating likelihood in such
a way that a dynamic programming algorithm may be used to efficiently and
recursively estimate delay. The approximation provides an alternative to
the implementation of a growing bank of matched filters for exhaustive
maximization of likelihood. Simulation results indicate acceptable per-
formance at output SNRs in excess of 15 dB for deterministic signals and

in excess of 20 dB for stochastic signals.,
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INTRODUCTION

The estimation of arrival time or event time in sonar and radar applica-
tions is such a commonly encountered problem that it has acquired its own
acronym: TDE (for time delay estimation)[ 1. There are however other
applications where an estimate of event time is relevant. These include
highway traffic controll 2]and fault detection[3].

Solutions to the TDE problem vary in sophistication from threshold
detection as used by Iyer[ 4], totests of whiteness, means and covariances
employed by Mehra and Peschon[5], to application of the generalized likeli-
hood ratio by Willsky and Jones[6] . Iyer derives a threshold detection
algorithm which detects the rising edge of satellite broadened laser pulses.
He models the arrival time of the pulse as a Poisson process. Based on this he
derives the probability that the threshold value is exceeded at some time j.
He then maximizes this probability with respect to the arrival time to
obtain the detection time.

Mehra and Peschon outline an innovations approach to fault detection.
They propose hypothesis tests on whiteness, means, and covariances of the
innovations sequence of a Kalman predictor. This approach is applicable in
those applications which allow batch or fixed lag processing of the observa-
tions.

Willsky and Jones use a generalized likelihood ratio test to detect
and estimate jumps in the state variables in autoregressive moving average
(ARMA) systems driven by white noise. They model a jump in the state of the
system as a single pulse whose amplitude and occurrence time are unknown para-
meters. They note that implementation of their algorithm requires a growing
bank of matched filters. This is due to the fact that likelihood must be com-

puted for a jump occurrence at each time from time O to the present. They
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suggest an approximation in which likelihood is computed only for the current

)

and previous M-] occurrence times.
The problem of growing banks of filters to implement TDE algorithms is

common. Another method that is often used to avoid this problem in multi-

sensor applications is that empolyed by Kennefic[7]. He uses the N scan
approximatibn first developed by Singer et al.L871to efficiently implement
an algorithm which generates the a-posteriori density function of a Markov
delay. 1In this case all the filters with an identical history for the past
N steps are replaced by a single filter.

In this paper we present another method of approximation for avoiding
the use of a growing bank of filters. The method used is to compute the
likelihood of delay on a subset of the interval from the initial time to the
present, The subset is defined recursively, in a forward dynamic programming
algorithm,

The TDE algorithm presented here is dynamic and the formalism in which

we present it is much the same as that normally associated with dynamic pro-
gramming. The algorithm does not yield the optimum solution to the TDE

problem. The algorithm is however recursive in nature, and storage require-

e

ments are constant in time. There is no need for a growing bank of filters.
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TIME DELAY ESTIMATION IN DETERMINISTIC AND

STOCHASTIC SIGNAL MODELS

In single sensor time delay estimation problems, we are interested in
estimating the arrival time of a signal. The signal may be deterministic
or stochastic. Here we introduce an observation model and two signal models.
We give several equivalent characterizations of the TDE problem and derive
the joint distribution of the observations for both the deterministic and

stochastic signal models.

Observation Mode)

Consider the discrete~-time sequence {yt: t = 0,1,...,T-l} . A noisy,

delayed version of the sequence is observed:
z, = ut(d) Yeug * P 0 T " 0,)y:00,T=1

Here d is the delay and {nt: t = 0,1,...,T-1} is a sequence of independent
identically distributed (iid) normal random variables with mean zero and

variance oi. The sequence{ ut(d)}g_1 is an indicator sequence:

“t(d) - 0 0<tx<d
1 d<t

IA

The indicator sequence characterizes the delay.

Time Delay Estimation Problem

Let It denote the discrete set It = {o,1,...,:+1}, and let Yt denote the
observations to time t: Yt = {yk}t. Call at an estimator of d that maps
0
observations Y _ into the set I :
t t+]

d _: Yt------It+

t 1

When at = t+]l, we say the delay is estimated to be greater than t, indicating

that the observations Yt are noise only. Typically we construct a sequence
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of estimators 30, 31,...,&t that terminates at time t = T-1 in an estimate
dT—l based on the complete observation set YT-]' A typical sequence would

look like this:

T-1
t: 01 2 3 4 5 6 7

d : 1 2 3 4 5 5 5 5

~

In this case we would say d 5. Note that for t < 4, the data is judged to

T-1 "
be purely noise.
With this formalism we may give three equivalent statements of the time
delay estimation problem: given the observations Yt’
(1) find the maximum likelihood estimate of d, denoted 3t, under
the constraint that &t lie in Ic+l

t

(2) find the most likely indicator sequence {uk(at)}
0

(3) find the minimum probability of error test of HO Vs, H] VE. ... VS,

Ht vSs. Ht+)’ with Hk denoting the hypothesis that d = k, kgIt+1;
the understanding is that d = t+] corresponds to the noise-only
hypothesis.

Here's the sense of the equivalence. Fix t. Let ﬂ(Hk) = 1/(t+l])

denote the prior distribution over the H'k As the sequence{ uk(at);

k = 1,2;...,t} maximizes likelihood it follows that Ha is the choice that
t

minimizes the probability of error in selecting an hypothesis. And, as
there is a 1:1 correspondence between dt and the sequence {uk(éé)}it

follows that 3t is also the maximum likelihood estimate of d under the
constraint that dt lie in the set Ic+l'

Deterministic Signal

I1f the signel sequence {yt}T-l is known, then the distribution of the noisy

sequence {z }t is
kfo

e e o
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t n 2 -k 1 ,2] T 2.-%
{{ zk} = =0 (2non) expz-—2 2 f kemin(d,t) (2 'non) .
0 20n k

exp i- _li (zk -

2
> uk(d)yk-d) §
n

It is assumed that only the delay parameter d is unknown.

Stochastic Signal

Many physical processes may be effectively modeled as stationary autore-

gressive moving average (ARMA) systems driven by white noise, The Markovian

state space model for such a process is

+
x = Axt hwt

t+]

1
= C'X + W
Ve t t

where {wt} is a sequence of iid normal random variables with mean zero and

variance o:, and the matrix triple (c',A,h) 1is characterized as follows:

0 10 . . . 0 | —hl—
010 . . .

e | -
) 1 h

P

L-ap e« s e e e -al | L _[

¢'=[1,0...,0]

The impulse response vector h is determined by

-

T

JOVRA ST VRN EEN EY TPy h

_ . ~ . .



T r.-.,_

-1—i.¢n.

i:!,-w p——

M aCRRRE AR A0 am mn o0 4
‘.

ﬁhere{ai; i=1,2, «u4y p} and {bi; i=1,2, ..., p} are respectively
the AR and MA coefficients of the ARMA model.

The innovations representation (see[ 9 and [107] for descriptive
accounts) is equivalent to the Markovian representation in the sense that
output means and correlation sequences are the same. The state space

equations for the innovations representation are

=y +
Ye " Ve T Ve
o []
= C'X
Ye t
Ax <« k
Xeel = 2% Ve

-1

0
variables with mean zero and variance v

Here kt is a Kalman gain vector,{vt} is a sequence of iid normal r. m

e and §t is the one-step Kalm

prediction based on Yor Yyseeer ¥ . The Kalman gain satisfies the _ .ations

t-1

ra _ 2 '
ktvt ALQO Pt]C + Ou h1 h1

where

v =1 -¢c'Pc
t (o] t

= ' ' : =
P,y =APA" +kklv:P =0,
- ' 2 '
Qo AQoA * Oy hl hl

The matrix Qo is the steady-state value of the variance matrix Pt for the

state vector x_, and L is the zero-lag value of the correlation sequence for

the process {yt} :

2
= L ] 1] L
O c A Qo A' ¢ + o, ¢ hl hl c

The only difference between the innovations model for the signal sequence

{ yt} and the innovations model for the noisy sequence {zt}, with z, =Y, *n,

is in the specification of initial conditions on r:

L =1 +
o [o] Un 60
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With this representation we may write the joint density function of the

. observations {zk}t as

' 0 max(d-1,0)

' fg - o e )
i 0 k=0 26 ;
. n 5
N j (21v, ) -l (g - u (@) (@2 |
i S R T TN e
. kemin(d,t)

Here ;k(d) is the Kalman prediction of Y given that (really, assumed that)

1
the ARMA sequence has arrived time d < k:

9, (D) = c'x () h -

X, (@) = Ax (d) + kv (d) i

V(@) =z, = ¥ (@) 7

x,(d) = 0, k < d
Of course kt follows the recursion previously given.

This brings up a curious question: does it make sense to speak of time
delay estimation in stationary models? In such models the notion of a
time origin is irrelevant. It is, however, possible to imagine a

§tat1onary.f1e1d which i{s fully developed (i.e. stationary), but
is only switched into the environment at time d.

; ¢ This is the case we
are considering.
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EXACT AND APPROXIMATE LIKELIHOOD AND DYNAMIC PROGRAMMING

We now introduce a two state machine representation of the TDE problem.

We then derive the log likelihood functions which must be maximized to
obtain the estimate of the indicator sequence. Exact computation of the
likelihood function is shown to be computationally unattractive because it

involves computation of the likelihood for each d in the set It+ As an

e
alternative we compute approximate likelihood on a subset of It+! which we
denote It+l'
Log Likelihood

In the deterministic case the log-likelihood function for d, based on

. t .
observations {Z } is
0

k
2. -(t+1)/2 1 ¢ 2
2,(d) = log (270 ) -—5 I (z = u (d) yk-d)
20 k=0
n
In the stochastic case the log-likelihood is
t 2 AL
L. (d) =% log (2n(g” + u (d)(v, (d)-g))
t k=1 n k k n
t (z, -u, (d)y(d))?2
kK kTR
-2
k=|

2(c§ . uk(d)(vk(d)—oi))

Note that in both cases we may define the log-likelihood in a recursive
fashion:

R (d) = 2. _,(d) + p (d)

The term pt(d) is called the path metric.
Because of the nature of the indicator sequence it is clear that for
both the deterministic and stochastic signal models the log-likelihood must

be evaluated for two separate regions: k < d and k > d.




This observation suggests a two state machine representation of the TDE

problem.

! The Two State Structure of the TDE Prob .-

Let 0 and | denote the states of the two state machine. See Figure |,
Associate the indicator sequence with a sequence of visits to these states.
For k < d state 0 is visited. For k > d state | is visited. An example
for t = 8 and d = 4 is illustrated on a two state trellis in Figure 2.

Note that transitions from state 1 to state 0 are forbidden because once
the indicator is on.it stays on (i.e., the signal persists). Thus the
TDE problem is that of estimating the time when the transition from

state 0 to state ] occurs.

Exact Likelihood

At each time interval associate the log-likelihood lt(d>t) with state 0.

lt(d>t) is the likelihood that d is greater than t. Likewise, associate with
state | the log-likelihood function 2 (d<t).
The computation of lt(d>t) is easy. It is dependent only on its most

recent value and the path metric pt(d>t) where

p (d>t) = log -z .
2 t
210 20
n n

PR S

The log-likelihood corresponding to state ] is more complex. Qt(dst)
must be evaluated for every d in It' This means that computation of the

exact likelihood zt(d) requires a bank of t + 2 filters: (t + 1) filters

. . © o
PR I A A P e

to compute lt(dst) for d = 0,1,...,t, and one filter to compute kt(d>t).

We compute Rt(d) for d<t as
Rt(d) = lt_l(d) + pt(d)

where

10
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- e - o e o Lo
D R -t e




L _DURAEatin #~ Ntadataratit & Driros

r b At B St B gl S APu e

State O

State 1 k>d

FIGURE 1. TWO STATE MACHINE.

t=0

1 2 3 4 5 6
Oe e \ ° °
1e ® ® ® -— - —

FIGURE 2 . TWO STATE TRELLIS.
d=4, t=-8
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(@) =1 ‘ o (z, - )
p ld) = log 2 7 ‘% T Ved
2n0 20
n n

in the deterministic case and

~ 2
_ z_-y (d)
pt(d) = log (Zﬂvt(d)) L Q—t——l

th(d)

for the stochastic signal model. Here yt(d) is obtained from a one step
Kalman predictor initialized at time d. For the case d = t, we compute
Qt(d) as

L (d=t) = 2 _,(d>t-1) + p,(d=t)

where the path metric depends on which sigual model is being used. Having

computed the likelihood, lt(d), the delay estimate is chosen as

~

dc = arg[max [Qt(d>t), R,t(d-O), Rt(d-l),..., Qt(d=t)]]

It is clear that, for long data records, computing the likelihood Qt(d)
becomes burdensome and impractical, We offer an alternative approach, first

introduced in[}l].

Approximate Maximum Likelihood

In order to avoid the computational problems of simultaneously running
a growing bank of filters we compute the likelihood associated with state

1 on a subset of It+l which we denote It+l’ The result is that the number of

filters required at any time interval is reduced to 3.

Let us examine how the subset, I » i5 defined. Fix t at 2. At time

t+]

2 for state | we must consider two possibilities: the signal is just arriving

which implies
22(d-2) - ll(d>l) + pz(d-Z);

or the signal arrived at time | which implies

2,(d<2) = £ (d<1) + p,(d=1)
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Thus we choose

2,(d<2) = max[g,(d>1) + p,(d=2), 2 (d<1) + p,(d=D)].

If 11(d>1) + pz(d=2) is chosen, then at t = 3, we ignore the possibility that
the signal arrived at time 1, and do not compute the likelihood for d=1].
If l](dgl) + pz(d=l) is chosen at t = 2, then at t = 3 we ignore likelihood

for d = 2. 1In general the likelihood associated with state 1 is computed as

g, (dge) = max[lt_l(d>t-l) + p (d=t), £ _, (dgt-1) + pt(dadt_l)J

where dt is a running time variable defined as

t Ro_y(d>t=1) + p (d=t) > _ (dgt-1) + p (d=d _,)

d R,_,(dst-1) + p (d=d__

e-1 % )>% _l(d>t-l) + pt(d=t)

="t
Thus at any time interval we calculate the likelihood of only three of t + 2
possible delays in the set It+1' The variable dt recursively defines it+l’

the subset of It+ on which we compute likelihood. At any time t we may

!

terminate the procedure and compute the final delay estimate by

A tel, £ (d>t) > g (dgt)
d., 2,.(d<t) > g (d>t)

Figure 3 illustrates log-likelihoods computed on the set It+l and likelihoods

computed on the set 1 for t = 7. In the example illustrated, no error

t+1’
would have been made by discarding likelihoods 27(0), Q7(l). 27(2). 27(4).
27(5),and27(6),and saving only 17(4), 17(7), and 17(8). Such is not always

the case.

A Note on the Implementation of the TDE Algorithm

The generél algorithm is summarized in Table 1. It requires the

implementation of three filters at each time interval. Filter | computes

13
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Compute Path Metrics

P, (d=t) P (d=d ;) p (d>t)

Compute Log-Likelihoods

lt(d>c) = Lt_l(d>t-1) + pt(d>t)
tt(dgp) = max [1t_1(d>:L1) + pt(d-t).

zt_l(dgp-l) + pt(d-dt-l)]

(- %)

Decision

t, Ly (d>t-1)4p (d=t) > £, (dt-1)+p (d=d _,)

dt-l’ 2t_1(d>:-1)+pt(d-t) < Lt_l(d§;-1)+pt(d-dt_1)
e+l , £ (d>t) > ¢ (d<t)

d. 5 2.(d>t) <2 (dct)

t
Storage Injitial Conditions
dt lo(d>0) =0
2t(d>t) lo(dgp) =0
£ (d<e) dy = 0

Table 1: Summary of TDE Algorithm
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Et(d>t), Filter 2 computes Qt_l(d>t—l) + pt(d-t), and Filter 3 computes

L., (dst=1) + p (d=d _,).

t t-1

For the deterministic signal models these filters are gtraightforward
and require no comment.

For the stochastic signal however filter 2 and filter 3 require as
part of their structure the Kalman predictor.

Let us examine the use of the Kalman predictor within the structure
of the TDE algorithm. The Kalman predictor associated with filter 2 is
reset to initial conditions at each time interval in order to compute the
path metric pt(d-t). The predictor in filter 3 was initialized at time

).

d and has been running since to give the path metric pt(d-d

t-1 t-1

If the decision dt-t is made then we have to reinitialize filter 3 to
compute the next path metric pt+l(d-dt-t). Rather than doing this, we can
take advantage of the fact that filter 2 has already computed the gain

ko, and the error variance v By transferring these variables from filter

Oa

2 to filter 3 we save the time required to compute the Kalman gain vector.

16
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EXPERIMENTAL RESULTS

The thesis of GSF [12] contains simulated examples that show how the
trellis evolves and how it+l' dt’ and lt(d) are computed for individual
data realizations. The examples are instructive. Here we present only

results of Monte Carlo tests

For the deterministic signal model we have defined the SNR as

N 2,2
SNR = 10 log I y /o
10 t n
t=0
where N = T-d is the number of samples of the signal in the observation inter-
val. The signal model is simply Yo = Y, (the unit step sequence).
To demonstrate algorithm performance when the underlying signal may be

modeled as an ARMA structure driven by white noise, an ARMA (3,2) model was

chosen. The z-transfer function of the system is

1 2

] - 1.7502 ' + .800z

H(z) =

1 2 3

1 - 1.5002 ' + 1.2102 © =~ .455z

For the stochastic signal we have defined the SNR as

Nro
SNR = 10 10810 3 ’

(o]
n

where N'is the number of samples of the signal in the observation interval:
N = T-d,

The Monte Carlo tests consisted of running the algorithm 1000 times.
Each time the delay was fixed at 14 and the length of the simulation'was 30

(t = 0,1,..., 29). The final delay estimate from each simulation is stored.

These results are then averaged to compute the sample statistics of the delay

estimator.

17
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A typical relative frequency of delay estimates is illustrated in

figure 4. The signal is a unit pulse sequence and the output SNR is 15 db.
Table 2 summarizes the results of the Monte Carlo tests for the

deterministic signal model. Figure 5 is a plot of the MSE vs. SNR obtained

from the Monte Carlo tests using the deterministic unit pulse sequence.

Figure 6 shows relative frequency of delay estimates for the stochastic case

when output SNR = 21.7. Table 3 summarizes the results of the Monte Carlo

tests using the stochastic signal model. Figure 7 is a plot of the MSE vs. SNR

for the stochastic signal model. Figure 8 is a plot of the miss probability

P

vs. SNR for both the deterministic and stochastic model. The miss probability :
is defined to be the probability that the delay is estimated to be greater
than or equal to T-1, when in fact the signal was present at delay d<T-] (in
this case d=14).

The use of "scft'" decision would offer an attractive method for improving

- e -, X o ,
alidadeeded LLJA_“ Y

the algorithm performance. At present each time the decision dt = t is made

we reinitialize the filter associated with state | and eliminate past values

bbbl

of d from consideration. Instead, if the decision dt = k is made and this

SOV

value persists for n steps, then a filter should be maintained for computing

lt(d-k). This increases the size of the subset of It+ on which we compute

1

Et(d). The value of n is chosen to get a reasonable trade off between compu-

D

Lp- L

tation time and estimation accuracy. -
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Unit Pulse

SNR MSE Bias

l’ 20 1.65 .02
17 2.44 .04

15 4,82 .07

12 18.12 .29

10 22.74 .38

l 6 46.15 .89

Table 2. Summary of Monte Carlo Tests for the Unit
Pulse and Modulated Pulse Signals

.85
.94 b
L .e3¢
W
(1))
r ez} X
‘al L
a - -
® n (uv] W o
- o= N
SNR(db)
Figure 5. MSE/T vs. SNR for Unit Pulse Signal.
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Figure 7. MSE/T vs. SNR for Stochastic ARMA Signal.
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Table 3 Summary of Monte
Carlo Tests for the
Stochastic Signal
SNR MSE Bias
31.70 .49 .20
28.70 .84 .28
26.70 1.47 .37
23.70 5.20 .85
21.70 9.36 1.14
17.70 39.05 3.31
\n
1 1 b= x
n ® Tp) o
—— —— N
SNR(db)
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