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I. INTRODUCTION AND MOTIVATION

A well-documented module ETBFCT for scolving generalized continuity
equations was presented in NRL Memorandum Report 3237, dated March 1976.

The module PRBFCT was also included to treat the case of periodic boundary
conditions. In these modules, the cell centers are specified while the
cell boundaries are located midway between the centers. In August 1980,
JPBFCT, in which the cell boundaries are tracked, was documented.

The above\hodules are based on the Flux-Corrected Transport (FCT)
technique introduced first by Boris and Book.1 FCT, instead of adhering
to an asymptotic ordering, requires positivity, a pnysical and mathematical
property of continuity equations. To assure positivity, the convective
stage includes or is supplemented by a large diffusive flux of zeroth
order (in ¢ = %%E). Consequently, an antidiffusive or corrective step has
to follow. The two stages together are able to tre . steep gradients
without generating dispersive ripples. Antidiffusion being a physically
(and numerically) unstable process, the corrective flux is limited acccrding
to a criterion which may be stated, "The antidiffusicn stage shculd generate
no new maxima or minima in the solution, nor should it accentuate already
existing extrema."

FCT was shown to be applicable to any finite difference transport
scheme and able to improve it.2 Phoenical FCT, a refinement which minimizes
residual diffusive errors, was iatroduced. Clipping and terracing, two
nonlinear processes resulting from the flux limiter were discussed.

Finally, splitting techniques were recommended to extend FCT to multi-

dimensions.




2

The most detailed error analysis of FCT algorithms was performed in
Ref. 3. Low-residual-diffusion and lcw-phase-error algorithms were derived.
An optimal algorithm, Fourier FCT, was introduced.

The requirements for positivity of a general three-point scheme and
the antidiffusion flux for a minimum residuvual diffusion were derived in Ref. 4.

Zalesak5 provided a general mathematical interpretation of the anti-
diffusion flux as the difference between a high-~order transport scheme and
a low-crder one. He also described a generalized fully multidimensional
flux limiter guaranteeing that the antidiffusion fluxes on all sides of the
control volume, acting in concert, d¢ not create anv ripples. It was shown that
by proper selection of the flux limiter parameters the clipping and
terracing phenomena can be reduced.

The goal of the present work is to extend JPBFCT to a fully two-
dimensional algorithm, without time splitting, and inccrporate the Zalesak
f£lux limiter while still keeping the implementation of the convective,

diffusion and antidiffusion processes as physical fluxes.

w e - - g e




1II. FOURIER ANALYSIS; DEFINITIONS

A generalized conservation equation can be written in the form:
- - >
- u.Vp = pV.u + s(xltIOl"')l (1)

where U is the velocity vector, P is the generalized density or the trans-
ported quantity whose positivity is to be conserved, and s is a source term
including all the remaining terms, i.e., gradients, divergences, body forces,
etc.

In the analysis we assume s = 0 and U = constant. We shall : -t with

the one-dimensional case. Eg. (1) reduces to

3 +, 3o _
3t Yax 0 O (2)

whose analytic solution is

pix,t) = px - uot.O), (3)

a rightward-propagating wave with velocity ug- Let us Fourier analyze

2 (x,t) in space, assuming periodic boundary conditions. Assuming an initial

distribution of density p(x,0) = F(x),
a x
o .
F(x) = > + Z (ak cos kx + bk sin kx), (da)
k=1

Do
<77

where k is assumed to be normalized, i.e., k replaces In complex

&

form
L

F (x) =Z 5kelkx (4b)

=0

where i = \}—l. From the reality of p(x,0), the a, and bk are real. The

k

guantity ékis related to these by
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Notice that we could have started the summation in Eq.

sin 0 = 0 a

{4z) 1s pre

tion of

P
LasS

)
t‘li-‘

shoewing that each harmonic independently advances uniformly in
changing its magnitude (see Fig.

Suppose

Z.; on disc

N-1), since

wave numbers

respectively, where we note that the shortest wave length

fyx) =

-_ N,

for x < 0;

0 for k = 0.

nd cos 0 = 1.
ferred, however,

. (&b) (5).

L —ixx
j- F(x)e ~~dx.

Q

and

rete grid

A
=

g v N.

A
L
2

2

.+§:: N/2

k=1

The zeroth order term would then be ao.

is kxnown at all times only as a set of
points with separation fx 7
we can have only

(0,1,...,N/2) ard wave lengths (o =

(Ak cos kx + B

(4a) Zrom k = O

The

since it is compatible with the symmetric IZormula-

Then >, is given by

kK

, ikx
(t)e ,
X

¥
[

1.

;X =

Z|
(o)

N . . .
— + 1 different harmonics.

-

L

t
L L
1 Ny

L/O ’

tje

is 28x. Let

K sin kx),

e

since

Sorm

(e

N + 1 guantities
jdx (3 = 0,1,...,

Namelvy,

(9a)

3
/

vhase without




k=-N/2

2“(2/4) :SX J

(see Fig. 2). We notice in Eg. (S%a) that at k N/2, sin kxj =

= sin 73 = 0; hence only cos kx is needed at k N/2. There are then

N coefficients, Ak (k = 0,...,N/2) and Bk (k 1,2,...,N/2= 1), which can

be determined using f(xj) = p? (j = 0,...,N-1), where superscript O denctes
time t = 0. Similarly, since for all j, exp [i %;(%?)jéx] = exp (i%?(g)jix],
Eg. (9b) is rewritten as
N/2 = eikx
£ (x) =Z " (9c)
k=-=N/2+1

Again, we get N ccefficients 5k(k = -N/2+1,...,0,...,N/2). The relation
between the Sk and Ak' Bk are given by equaticns similar to Eq. (53).
Formally,

- 1 N-1 .

= — ikx .
5k N :?e 3 (10)
j=o
Eg. (3) predicts the density at time t as
N/2 & _ik(x - u_t) N/2 . ikx
sty =) S o) Aee
k=~N/2+1 k=-N/2+1
~ 2 =-iku t , .
where pk(t) = oke o0 . Since we are only concerned with D(xj,t),
substituting x = xj = 1dx, we get
, N 2 “ . .
pix ) =§: / pk(t)elkjdx (11)

=-N/2+1
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6
. ) . . n _ n _ n. ~-n _ . n
If the time is alsoc discretized, let t = ndt, o, = c{x.,t ),ok = ;k(t ).
J v
then
/2 ~n iki3é
N =§ N/2 °n ikiex (12)
3 k
K==-N/2+1
where
n 2+ =iku nét
& =3 e uo N (13)
k k

If we space-discretize only, after we Fourier analyze the initial density
- o - , A \ . <
profile Dj, i.e., after getting the ﬁk in Eg. (Sc), the problem is reduced
. _ . . ikx N
to that of propagation of the complex harmonics e (k = 0,...,N/2}). In
a nonlinear problem, each harmcnic can couple into components of the cther

harmonics. In the linear problem of Eg. (2), however, each harmonic propagates

independently (this is also true if u = u(t)). Since the number of spatial
points does not change, we can always express the density at any time as
a Fourier expansion of the form Eq. (9c). In a nonlinear problem BK(t)

yeessb..,.)at time t = 0. But in the linear
(@] N/&.

. . 2 R
is a function of (3 .0

-N/2+1'°

~
2

pfoblem Sk(t) is only a function of K 28 is obvicus from Eq. (13). I

=
e

the time is also discretized, we can then define a transfer function

Ak) T S (14)

which is independent of n if u = ug as is okvious from Eg. (13) (analytic
solution), yielding

- &
Ak) = o FKUSE (15)

Eg. (12) may be rewritten then as

N/2 a ik3
o‘j‘ =z / 6k[A(k)]n eiIbx, (16)
Kk==N/2+1
e - vy -
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u st
Denoting the constant gx by ¢ and the dimensionless wave number kix by £,

A(3) = e ** Tne amplification is |A(B)] = 1 and the phase shift is -Z:.
) 2m N c:
Notice that the smallest 2 = 0 and largest B = T E-fx = 7. For a finite-

difference scheme applied to the linear problem, each harmonic propagates

independently. Consequently, a method equivalent to Fourier-analyzing
n+1
3

propagation of only one harmonic by assuming o? =0

[#]

and p?(j =0,...,N-1) and evaluating Ak from Eq. (14) is to study the

o ikjdx o .
e J , where o is

constant. Then

n+l

A(k) = Jn (17)
Q.
J

By writing A(k) as

a = |ale?, (18)

we define the amplitude (or diffusion) error and the relative phase error
as
a=lal -1 (19a)

‘ and

n

R = (=8) ~ 8¢ _ ~(5/8) _ 1, (19b)
! 8¢ €

respectively. We define a scheme as stable if A < 1 (see Fig. 3).

Example:

Assuming u = const = uo, the original explicit SHASTA Algorithm can be

written as

2
3 n

TD n £, n n 1 n n
= - = - + (= + = - +
5Py 2(9j+1 °j-1) 3 +3 )(pj+l 20j oj_l)
n+1 T 1,6 TD TD TD
0. =p. = =(p, - 20, + 0. ) (20)
3 J 8 " j+1 B i-1




8

in which we identify = %(p?+l - O?-l) as the net transportive flux, denoted
by a superscript T, and (i + £ ) n - 20 4 on ) as the net diffusiv
y @ superscript &, and (g * 5 ) W0y4 7 Py j-1" 2 e

flux, denoted by a superscript D, from which we have the notation o

. TD . .
Expressing p as a three-point formula we can write

€2 €, n 1
3T oyy Y -2

2
€
o, = [ 3

n 1 £ g, N
)]oj - [§+-;- + 3o

|+~

N cs . . 1 .
Each of the quantities in square brackets is > 0 for lel< =, assuring the
q Z 18123

e . .TD . s ; . ,
positivity of ij if o, > 0. The positivity requirement will be discussed

o ikjéx
= »% ,

. . . n
later in detail. Assuming Qj =P

TD o ikjdx £, o ik(j+1)éx o ik (j-1)8x
=0 e - e - o e )

Dj E(D
2 . " rg . -5 . . -~
+(1_+ £ )(ooeLx(J+l)~x _ 20oelxj‘x + ;oelk(]-l)ox)'
8 2
giving
Q 1 2
TD . < g -i € i -]
L - P R e R T S P
3 3 2 2
etf - o713 i3 -i3
Dencting the operator s = 1sin B by t and e -2 +e
= O 2 ,\TD n _ 1 Sé .
= 2(cos £~ 1) by d, we have o. = (1 - gt + vd) cj where = s + s - Then if
1+
w = %, si 1. (1 - ¢t + vd) o? - ud(l - et + ud)c?, whence
3
n+l
Py
A = —‘;— = (1L - et + vd) (1 - ud). (21)
0,
]

We notice that at ¢ = 0, A # 1. 1In fact, A = (1 + gd)(l - éd) , a
deficiency that led to the introduction of a phoenical algorithm in Ref. 2,

in which the antidiffusion operates on a transported density which is free

from any zeroth-order diffusion. Phoenical SHASTA is written as

| S




2
n €, n £ n n
= = 5\, = . + = v T o < H
Py =Py 2(0J+l 3—1) > (oj+- 2 ; + J_l)
0 l . n n
+ = - + ;
Py =9 8(°j+1 2p oj_l)
n+l TD 1, T
- = - + .
j P 8(03+1 20, +p._4) (22)
thus yielding
A= (1 - ct + Kezd)(l - ud) + v4, (23)
1 1 . .
where \ = S0V = ous= gy satisfying A = 1 at ¢ = 0.

The importance of phoenicity lies in the fact that the total diffu-
sion through a surface is proportional to the time of diffusion and there-
fore should vanish as 6t - 0, i.e., ¢ + 0.

Later, in Ref. 6, ETBFCT and JPBFCT, based on the scheme

T _ E( n n
P73 T P53 T 2541 7 Pye
TD n
oy =yt V(°j+1 20, + pj_l)
n+l TD T T T
0. =p. =~ ulp, - 20, + 0. ), (24)
] J i+l J j-1
were introduced, yielding
A= (1 -¢€et)(1 - pd) + vd, (2%)
1 €2 1 52
where v = 3 + 3 and u = 5 8" Notice that the zeroth order term is the

same in both v and v, thus yielding a residual diffusion 0(52), which

vanishes as §t -~ O.




III. AMPLITUDE AND PHASE ANALYSIS
If in Eg. (18) A is expressed as A = AR + iAI, where R stands for
real and I for imaginary, then

5

2

|al© = A+ AL, (31a)
3 = tan T(A_/A) (31b)
- "R :
Equations (31) yield numerical values of [Ai and 8 for a given 8. These

should be expanded, however, in a power series in § and plugged into Egs.

(19) to get an estimate of the order of a given scheme. Expanding Egs. (31)

in power series is a huge task. Instead, we use a scheme based on successive

differentiation, as follows:

PHASE ERRORS

As seen from Egs. (21), (23), and (25), three-pcint schemes can be

2]

expressed in terms of a transport operator t Z i sin B and a diffusion

A(t,d) where t t(8) and

operator d = 2{(cos B- 1). In other words, A

d = d(8). Taking the logarithm of Eq. (18), we obtain log A = log |A| + i3,
yielding
9 = Im{log A]. (33)

Expanding 9 in a power series of B, near &8 = 0, we have

2
1] B [£] B
= 2 = - Ve
® 90 * o 1! + 9o 21! *
where ( )' = dée) and the subscript 0 denotes the value at 8 = 0. Since,
from Eq. (33),

10

. -




11
n n
: d
4.3y = In {— (log A)IB O}
dg dg
all we need are the derivatives of (log A} with respect to 8, at 8 =
First, by direct differentiation we get (log A)' = A'/A,

(log A)'" =Aa"/A ~ (A'/A)2 and so on. Noticing that the "consistency" of

any scheme requires A(f = 0) = 1, we can write

]
(log A)O = Ao; (35a)
1 (R} ) I2
(log A)O = Ao - Ab ; (35b)
e ey ? " l3
(log A) = A - 3A A +2A7; (35¢)
e} o} o o e}
[ 4 ("4 [N} o ty g
(log A) = A - 4A A ~ 32 + 12A A - /A (354)
o o o0 o o}
LI I V4 e e ] " ]
(log &)Y =a’ -saan - 10a A + 208 2A + 308 _ 2A
o o) o o o
] n L}
- 60A 3A + 24A 5. (35e)
o o o
. 3() 3 d . . .
Next denoting T by ( ) and 3q () by ()7, we get by direct differentia-
1 ] ) ”" L2 1 ) 1 1
tion A =t At + d Ad, A =t At + d Ad + t 2Att + 2t 4 Atd + 4 2Add, and
so on. Confiring our scope to schemes of first degree in t (composite
transport excluded) and of second degree in d, we have
At = 0, a9 . constant, anda 2394 - o, (36)
We obtain then
A = 1;
o
] ) 1)
A =tab +aad; (37a)
o o o
" [ X} L}
A =t At+dAd+"tdA +c121\dd {(37p)
o o'o
- - -
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ne "ne [XX] (2] 1 ] 1 1] " H L] -
A =t At+d Ad+3(t d +tad )Atd+3ddAdd+3td2A“dd;
(] o} (o] o] o] (el o} [« INe} o] Q C O o Q ]
t [N 'V A tre hon o
A2t At e a A% s ar a + et a. +ara yate
o Q Q o) Q Q Q Q O © lo]
] mne " ) [ ] " "t 1] 3
+ @dda +3a 9Ha% s 2t ad + et 4 4atdd,
[eNNe] (o} [0} O ©C O Qo O Q
o nr e TEELT
AV = VAt + @%a% - (5e 4 + 10t 4. + 10t 4
O Q [o e} (@) (o] (@] (o) o 0
vy vy w1 frot 1
+5ca Naf 4+ saa 4104 a 1% 4 (0t a4
o 0O o) O 0O Q C QO o © 0
L] " ¥ L] (1] " %
+5cd %+ 20tdd + 10t a%ardd
o O o O QO o} (o] o}
Going back to the definition of t and d
] " (A1) 1] ‘V'
t =0, t =i, t =0, t =-i, t =0, and t' = i,
Q [e] (@] Q
1] " (N R] 'V V
4 =0,d4 =0,d =-2,d =0,4 =2, and & = 0.
o} (o} o} [e] < o}
Substituting in Egs. (37), we get
A = 1;
(e
]
A = iAt;
o) Q
A = -ZAd;
Q Q
s -
A = -i(A" + 6Atd);
Q Q (o)
]
a V= 29 4+ eaddy,
o] O C
A’ = i@ab + 308t + 60at?Y) .
(o] o] (] Q
Finally, with Egs. (30}, Egs. (35) yield

(37¢)

(374)

(37e)

{38a)

(38b)

(39a)

(39b)

(39¢)

(39d)

(3%e)
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|

(log A)o = 0;

(log A) = ia%; "40a)

El o o’
"o a £ 2
(log A) _ = -2a0 + (A0)%; (40b)
”ne
(log &) . = -iat(1 - 6a%) - 1 (6a%® + 2(a5) 3y, (40¢)
o] Q (@) [e] Q

d d

'y
(log &)« =12a%% 4 21 - ea) 2% - 2aH)?) - eatiaat
Q Q o] (o] (o] o] (o)

+ (A§)31; (204)

(log &)Y = 60ia"%¢ + ia%11-30a2 - 60a%? + 120a%) %
Q Q o o @) [o]

d

+ 20 a5 311 - 6a%) + 30ia%9(1 - 4a
o] o o] @]

+ 4@
o]

+ 24i(A§)5. (40e)

Egs. (40) invoke the fact that cnly the odd derivatives of log A

are imaginary. Therefcre, with the use of Egs. (33) and (34), we get

? mne
- {log A)o ., (log A)O Ei
i ~ i 3!

E .. (41)

Example:

Let us phase-analyze the scheme described by Egs. (22}, i.e., the

transfer function of Eg. (23)

A= (1 -c¢t + Aszd)(l - ud) + vd
where v = y=+=and X == .
First we notice that it is phoenical: A =1 at ¢ = 0. By direct
. s t a 2 2
differentiation, A~ = -~ €(1 - pd) and A~ = Ae" (1 - ud) = u(l - ¢t + g"d) + v;

Atd = €U, Add = - 2Ae2p, and Atdd = 0.
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d , .2

At B =0, t =0 and d = 0, yielding Ag =-c,andal =t e v - =5
2 2 a
A s ou =8, A% D el f, ana 2t s 5. supstituting in Eqs. (40),
[o) 8 o) 8 o}
(41) , we get
11 3..3
= - €8+ =(>¢ - + ...
] €3 6(4 € €7)8

Using Eg. (19b), the relative phase error is found to be

- %82+ osY),

a

]
[ 120
=

showing that the scheme is second order in phase.
Alternatively, let us derive an expression for v which renders the
| scheme of Egs. (24) fourth-order in phase. Upon differentiating the trans-

fer function A = (1l - zt) (1l - ud) + vd we get, when we substitute 3 = O,

At = - ¢g; and Ad = = u;
o] o]
s .
at = o4, 2% < 0, ana a9 - o, (42)
(o} o (o]

which with Egs. (39a) through (39¢c) gives

A == 2(v - u)
o]

A == i(-e + 6cu). (43)

Substituting in Eg. (35c), we obtain

Im (log A)O =e(l - 6y) ~ 6(V -u) + 2e3 = g(l - 6V + 252).

. . 2 . .
To reduce the coefficient of § in the R expansicn to zero we require

(log A)o = 0, yielding

(44)




..—l
W

AMPLITUDE ANALYSIS

Denote the complex conjugate by a bar on top:

- _
|al” = aa. (45)
&t — a0
Since — ( = = , we get by successive differentiation of Eg. (45)
dg dg
2
(alsy _ =1; z
© !
) 2 t r__ ~—|.
(IAI ) =A A + A A ; (46a)
: o oo oo
2t o y 1 e
(laly _ =a A +2aA +AA ; (46b)
o oo oo oo
2 ter "o oy TR
(lal]*y =aAa A +3A A +3AA +AA ; (46¢)
o o ‘o oo o o c o
5 oty ty— T T o v
(Jal]°Y)  =A A +4A A +6A A +4AA +AA . (46d)
o) oo o "o oo o o oo

Noticing from Eqs. (39) that the odd derivatives of A are pure

imaginary while the even ones are pure real.

] o]
' v

A =-A 3
o] o]
" "

A =+ A ;
o] Q
" KT

A =-A ; (47)
O (o}

and

vV "V

A = + A .
(o] o]

- e - - 1 T
# .. A ,v_ - “m:m,“ .




Substituting in Egs. (46), we get

(iA[z)O = 1; (48z)
dal®_ = o (48b)
2 LA " AO 2
(aly =2+ ()71 (48¢c)
"t
(EA!2>O = 0; (48d)
A A
LAY v [ X}
(Jal®)y =20, + 4(—i°-) (—i—) +3m)7, (48e)

2
where we notice that the odd derivatives vanish. Accordingly, !A{“ can be

expanded as

v

g

4
Y %T + ... (49)

2 _ ' 2 " 2 1]
jal® =1+ (ja]%) + (]a[h

Example:

Let us derive an expression for u to render the diffusicn error of

ETBFCT fourth order. Substituting Egs. (42) into Eg. (39d), we find

tv

Ao = 2(w=-u), (50)

2 2
Using Egs. (43) with (48), we obtain (fAE~)C = 2[-2(v = u) + ¢7], which has

to vanish for a fourth-order diffusion, yielding
3

. (51)

A
o _ - -
, whence Ef- - g, A =-3:7,

Vo=-y=

[SH1y]

2

Solving Egs. (44) and (51), we have u = -e

1
Ao 3 ‘v 2 ,
= (1l - 6u) = <7, and Ao = ¢ . We can then write

(|Ai2)ov = 2[62 + 4 (-¢) (::3) + 354] = 252(1 - 52)'

i
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which when substituted into Egq. (49) gives

o

2, .4 o

IA]2=1 (1 - ¢)g” + 08, (52)

£
12
showing a slight instability near 8 = O (the coefficient of 84 is positive).
A warning is in order at this point. Although a positive cocefficient
of the leading term in the expansion imp'ies unstable behavior, a negative
one djoes not guarantee a stable scheme, since the expansion is valid only
near 8 = 0.

Figure 4 shows the amplification [A[ versus 3.

We notice a maximum

value of |A] =1.0018 at 3 = 53.668° * 0.001 for ¢ = We can get rid of

[SA
.

the potential instakility by using a slightly different expression for y,

(53)

Bv trial and error, a was found to be > 1.056. The dashed line in Fig. 4

shows the resulting amplification for a1 = 1.056. The maximum value of EAE

becomes 0.999998 at 2 = 45.775° * 0.001. Since the phase error depends on

v only, the resulting scheme is still fourth-order in phase error. The

zeroth-order antidiffusion being kept at phoenicity is preserved, i.e.,

gl
. . . . 2 e - . .

the residual diffusion is O(c”). Later, a modified algorithm which is

stable and has sixth-order diffusion and fourth-order phase errcr is

described.
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IV. POSITIVITY AND ANTIDIFFUSION

The concept underlying FCT is "positivity." This means that the
sign of the dependent variable must be preserved under the influence of

convection alone. Source terms can alter the sign. Positivity is particu-

larly important near steep gradients where the convective fluxes tend

to make the transported guantity undershoct or overshcot. Positivity is
ensured by supplementing the convective step with a large diffusive flux
of zervth corder in Jt. For example, in the scheme of Eg. (24), consider

the transpcrt step alcne,

T _. .7 _ i(on _.n )
3 775 T I T P
applied tc the discontinuities of Fig. 5(a) and (b), where =z = + 1/2. The

negative density in Fig. 5(a) and overshoot in Fig. 5(b) are obviously major

errcrs. Ry supplying encugh diffusion,
2

< n n n

+300 - 20, + o

T I

we see the negative density in Fig. 5(a) disappear, as does the overshcot

in Fig. 5(b}). Formally, in the expression

2

2 n 1 ¢2 €. n
Yl o, + L(g + 3 ) - E]Cj+l + [

TD 1
0,0 = 11 - 262
;T -2

[ ke

+

w

the guantities in square brackets are all > 0 for ia] < 1/2, therefore
. P TD n
ensuring positivity of Dj as long as o, > 0.
j -
A side benefit of the zeroth-order term is more accurate propagatiocn
i.e., high-crder phase preservation. As seen from Eg. (44), selecting

~

+

<
[]
o |+

e - ;
3 assures a fourth-order phase error.
A byprciuct of this large added diffusion is antidiffusion, which

is needed to extract at least the zeroth order part. This leaves a residual

2
diffusion 0(c”) near almest uniform distributions. Near steep gradients,

e e ~ S e r«-‘w;mo» e et
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antidiffusion fluxes have to be reduced enough to maintain the positivity
of DTD. This process is called correction of fluxes, and gives rise to

the name "flux-corrected transport.”" In the case of a discontinuity, the
local antidiffusion flux is cancelled completely. This trimming means

that the amplitude no longer has the order of accuracy derived above.

But near steep gradients the concept of order is meaningless anyway. Cn
the other hand, Eg. (44) is independent of p. The fourth order phase error
is therefore assured regardless of the antidiffusion fluxes. Specifically,
"the antidiffusion stage should generate no new maxima or minima in the
solution, nor should it accentuate already existing extrema" (Ref. 1).

The first mathematical formulaticn of the above statement was giwven

. . . .. 1
in cconnection with explicit SHASTA,

P SO WP S S W O S PL L (61a)
%5 T3 T 2%l T Pm R RS TS B T B
n+l TD c c
. =po. = (£, - £ ) (61k)
°3 3 i+ i-4
The corrected antidiffusion flux,
c
£ ign 4, - max {0, min {.. - sign 1.
J+i  STER 244y ! [ i-4 T =jey
"L,  sign : :
) ‘L_j+§l, A]+3/2 sign ._]+§]} (6-—)
is the corrected form of the raw flux
_ 1 _ 1, TD D
£i41 T8 %543 % 8P441 TPy )0 (63)

which in this scheme is always in the same direction as the gradient in

T . . . . .
o) D. There are eight different possible cases, shown schematically in

Fig. 6. Cases 5-8 are mirror images of 1-4, respectively.

4

eyt ey e - - .
S os At P - e

AR N . ST

o

e
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Equation (62) will cancel an antidiffusion flux whenever it would
lead to accentuate a maximum or a minimum, as illustrated in Fig. 6, and
will trim it encugh not to generate a new maximum or minimum whenever
it is not cancelled.

-

Later in Ref. 2 the raw antidirfusion fluxes were evaluated using

:; in the raw flux f. = l(oqf‘ - o?), where

DT : o7 - E{pn -~ cé ) + £ (pg - 20, + ¢ ).
j "3 27 3+1 j~1 2 j+1 =1
The corrected flux is expressed as
c . .
£ = sign f. - max {0, min {%,_., - sign £. _,
i+ I Fyey [j‘s EEEREES:
I £ b i £ ,
:rj+§_, 34372 sign ]+§]} (64)

where we get sixteen possible cases (twice as many as befcre, depending

v -

whether f;+§ is parallel to e or copposite to it). In Fig. 7 we ccnsider
J

only those cases when fa+§ is positive, since the other cases are their

mirror images.

Again, the flux is cancelled whenever it would accentuate a maximum
or minimum. But it is also cancelled in cases 6-8 where it would nct in
general cause any problems, an unnecessary acticn. This is due fo the
fact that £,

j+i j+3/2°

Zalesak5 reexpressed the role of the flux limiter as "guaranteeing

is corrected independently of fj-{ and f

that the two antidiffusion fluxes associated with each cell, acting in

concert, should not create any ripples." The mathematical formula

- - e 3
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implementing the above statement is described for 1-D schemes by the follow-

ing steps:

+ - D g . . ; . .
P. = sum of antidiffusive fluxes "intc" grid point j

= max (O'fj-i) - min (O'fj+§) (65)
ot = (X L T (66)
] ] J

0 if p; = 0. (67)

Simzlarly,

Pj = sum of antidiffusive fluxes "out cf" grid point j

= max (O,fj+§) - min (o'fj~§) (68)

- - D min
ER (R I 69
Q] J J (69

min (l,Q;/P;) ifP. >0

()
o
[ d
tH
el
C |
0
o
—~
~1]
O

max min ; n+1l . S
where o and :j are the upper and lower bounds on oj ., respectively, wihich

]

ensure that no ripoles form at grid point j. Defining the correction ratic

i + Ty if £
in (Rj+l,Rj) 1f j+1 > 0
c. ., =
J+e . -
in (Rj,R j+l) if fj+§< 0. {(71)
we set
¢ (72)

veETT o & e — - e
) T TR TS Vv - et L




- e

. . max min .
A conservative choice for Oj and Qj is

max TD ™0 TD
0. =max (c. .,0. .C.

3 j=1""3 i+l

min . T TO TD
] = o, . 0L . 7
e min { 31775 03+1) (73)

This choice will guarantee that no maxima or minima form other than those
elready existing in the OTD distribution. The flux limiter of Eg. (©4),

however, not only guarantees no ripples, but it also cancels the flux in

cases 6-8 of Fig. /. To reproduce the results of Eg. (64), cne should

apply the extra limiter

c =
J+4

po

if (r. -3 . <0 and (£. = 4. < 0 or £.+% - o, < 0) 74
if | j+3 J+3 ( j+3 j+3/2 J ! i ) a

before Eg. (64).
An extensicn of Eg. (64) to more than one dimension, however, cannot

guarantee that there will be no ripples since it lacks knowledge of f4+?/2
J -~

and £, when correcting £ We are left then with only one safe solu-
3

-1 j+d°

tion, which is the extension of Egs. (65) to (74) to multidimensions. Now,

going back to Eg. (73), a more tolerant choice would be

max _ max {max (_ﬁD n ), max ( TD ‘n) max ( TD n )};

Jj t W vj_lle_l r W&l Cj rvj ’ pj+l'oj+1 ;

min , . TD n . D n . D n -
>y = minamin (o, .6y ). min (0g .00, min (°j+1'°j+1)}' (7s)

This choice will partially avoid the clipping associated with the

flux correction of Eg. (73), as explained in Ref. 5. In summary, by calibrating

(o?ax.p?ln) using a guaranteed positive profile, positivity is still pre-

served after the antidiffusion step is performed.
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Now that we have all the definitions and tools necessary for analysis,

let us go back to analyzing schemes.

- e - - Le s e
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V. A STABLE SIXTH-ORDER DIFFUSION ERROR

FOURTH-ORDER PHASE ERROR SCHEME

As mentioned earlier, ETBFCT can be made stable by using u = 1/6 -<1£
where a > 1.056. Then
(a]% ] = 20-200 =) + 71 = 2023 ¥ 1)e?
yielding
al? =1 - &b+ oot (81)

3

which gives for o = 1.056

2
a]? =1 - 2038 %2 4 ogeh

thus giving the scheme a small second-crder error, dut leaving it essentially
fourth order in amplitude.
. . . 2 T
An alternative is to add a small phoenical diffusion O(g) to o

We get then

T € .
o = - -~ - e { "2C c ’

3 pj 2(“3+1 °3~1) A ‘°j+1 5 + “3-1)

TD_ jT ) ( no_ ﬂpn n )
373 R0 S B B A

n+l TD T T T
o, "= o0, = ulp. - 20, + 0. .). (82)
3 j Ti+l 3 j-1

, n o ikjéx
Assuming Qj =90 e ’

A= (1- ¢t + Xazd)(l - wd) + vd, (83)
where t = i sin 8 and d = 2 (cos 8 - 1). Following the method of analysis

described above, we write

*““'““W‘-‘w*m w,-»:z-r
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t
A~ = -¢g, Ad = (v + AEZ) - U,
o) o
Atd = €4, Add = —2Aezu, and Atdd = 0
o o o
Then
1]
A =~ ig;
fo}
L) 2
AO=-2[(v + Ae”) = ul;
10 .
Ao =~ i{~c+ 6¢y:;
4 2 2
Ao = 2{v + Ae” - u = 12X e u);
For a fourth-order diffusion error,
"
(lAIz)O = 2[~2(v + Xe2 - y) + £2] = 0,
yielding
2
2 €
v+ e ~us= > -

Going back to the AO ' AO expressions, we cin rewrite them as

1" 2

A =-:c",

o

V4

AO = €2 - 24,\52u.

For a fourth-order phase error

e
(log A)o = =i[~ 4 6ep] - 3{-ig) (=2) (v + Xez - u) + 2(-is)3
= ie(l - 6(v + Asz) + 262] =9,
yielding
(VI Aez =1/6 + 52/3,




which gives

2
b= 1/6 - £7/6

"i 1y
We can then rewrite AO and AO is
et
A = 153,
O
"w >
A =¢" - 4A62(l - LZ).
o
Checking,
2.'Vv 2 2 2 4 4
(1Al )O = 2" = 4 e" (1l - &7) ~ 4 + 3e¢]

2
- 4A)€2(l - )]

showing that we can make the scheme sixth-order in diffusion by selecting

A= 1/4.
In summary,

v =1/6+ 52/12, u=1/6 - 62/6, A = 1/4.
Again, we have to check TD:

j -
is > 0 if [ef < 1/2, yielding Q?Di_o i

Each quantity in square brackets
Figure 8 shows |A| and R versus 8.

Oj > 0, thus ensuring positivity.
Finally, we note that this is still a 5-point scheme.

(84)
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VI. EXTENSION TO HIGHER ORDERS IN DIFFUSION

AND PHASE ERRORS

We seek a combination of transport operator t(t % i sin 2) and
diffusion operator d(d = 2(cos 8 - 1)) which approaches the analytic solution

up to a prescribed order of B. Since the transfer function of the analytic

solution is expressed as A = e-iBE,

A = cos Be - 1 sin Be (85)
or

AI = ~ sin Be

AR = cos Be. (86)
Now, we write sin Bc as

sin fe = sin SiA\; + Al(l ~ cos B) + A2(l ~ cos 3)2 + ..y (87)

where AO, Al’ A are determined such as to make the series expansion

PIARE
of both sides of Eg. (87) agree up to a prescribed order of £. In other

A

words, the derivatives of both sides with respect to 3 at 8 = 0 have to

be equal. We get the following system of algebraic equations:

e r a0~ 7
\ 1 0 0 ¢} Ao
-t -1 3 0 0 Al
8
> 1 -~15 30 0 A2
= (88)
L_ - W . . . LD i SR

solved by "forward substitution" since the matrix of coefficients is already

.. R R m~*‘ Lo . co. .
foo N ] e Fo- - JE . -
— e had : T il
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"left-triangular." We solve for AO first, then for Al, etc. We get
2 2 2
o _ £(l-c9) _ £{4=<7) (1-€7)
AO-HV, Al—- 3 ,A2- 30 PR (89)

As for the construction of the matrix, the first column is the
odd derivatives of sin 3, the second, those of sin B8(l1 - cos B), the third,
those of sin B(l ~ cos 8)2,... and so on, all at £ = 0. We notice that
the even derivatives are all zero. To get these, let ¢ Z 1 -~ cos R, and

define K recursively Ki+ z Kij where KO = sin 8. If we have the deriva-~

1

tives of K., thcse of K will be
i 1+1

K1+1 = Kib'
1 L ]
= ; K.$ ;
K1+1 K.» + Kl
" " t t "
Ki+l = Ki ¢+ 2Ki¢ + Ki¢ ' (90)
m . a0 (o)
and so on. Generally if () z - ‘ and () = (), we get
48 R=
(n) _ n n,. (m) (n-m)
Xia1 ‘Z (kg 9 (o)
m=0
{
where (n) S LS . All we need then is the derivatives of K = sin 8
m (n~m) !'m! o
and ¢ = 1 ~ cos 8 at £ = 0; namely,
’ (B mne
K =0,K =1,K =0,K =-1,..., and
[} e} (e} Q
5=0,0 =0,08 =1, 8" =0, ¢V =-1,... (92)
Now, we write cos Be as
cos BRe = Bo + Bl(l - cos R) + Bz(l - cos 8)2 + ... (93)
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where BO, B B.,..., are determined such as to make the series expansion

1’ "2
of both sides of Eq. (93) agree up to a prescribed order of 8. 1In this

case
K =1, K =K =K = ... = 0. (94)

Using Eq. (91), we get

F"l— ~ — r— —
1 0 0 0 “ee B
2 o]
-€ 0 1 0 0 .. B
1
54 0 -1 © 0 .. B2
L-d L. . . . J4 L. J (93)

where we notice again a "left-triangular" coefficients matrix. By "forward

substitution" we obtain

_"2 2
B =1, B, = -¢7, B2 = ?f (L-¢7) ... (96)

Obviously, we can get Egq. (93) by differentiating Egq. (87) and
vice versa, but we need then to continue the expansion one more term and
use trigonometric identities. The direct approach followed is, however,
preferred, since it enforces a given form on the expansion which is in
no way unique, as explained below.

Noticing that sin 8 = t/i and 1 - cos B8 = -d/2, we can write a
sixth-order diffusion error, sixth-order phase errcr scheme, for example,

as
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2 _ 2 2 5
4+ (1 - %r)d 1. (

)
N

If we stop at A Bl' we get ETBFCT, which has fourth-order diffusion

1’
and phase error. Aalthough t and d are both three-point operators, td2

is a seven-point formula. An important conclusion follows: We need three
points for a second-oxrder diffusion and phase error, five points for a
fourth-order error, and so on, adding two points at a time. We can, however,
get sixth-order diffusion and fourth-crder phase accuracy with only five

a

1o 12 2
points since we have to match the sum ;Al = A

.
Tt A; up to a prescribed

order of 8 and not AI and AR separately. Scheme (82) is an example. Alter-

natively one can construct a scheme with fourth-order diffusion and sixth-
A

. . . . -1
order phase accuracy using only five points since we have to expand tan Xi'
R
not AI and AR separately.
Before implementing Eg. (97), it is important to emphasize that
the expansion is not unigue. For example, we can use the expansions
sin 8¢ = sin 8 [AO + Al(l - cos 3) + A (1l - cos 23) + ....],
cos Be = BO + Bl(l - cos B) + Bz(l - cos 23) + ... (28)
We get then
~ e F 1 0 0 ] Al
o
3
- -1 3 12 . Al
e’ 1 -15  -120 ... A,
- L . . . - L. (99)
ey

R B O ” - . e 7 ,
TR et g




- e -

31

and
171 [ 1 0 0 . [’ B
e
- 0 ] 4 . B,
ed 0 -1 =16 . B,
L. J L. N I SR

By solving the two systems (99), (100), we obtain

-
A = ¢, A, = €{3 '52)(1 ~ 52) A = -c(4 - 52)(1 -9
o ' 15 T 60 (100)
and
2 5 2 2
=1, B =:(4—c-) B =€.(l_r‘_) (101)
BO ’ l 3 d 1 2 2 6 -

We notice that the matrices are full and the coefficients (Al,

Ayr-..)i (Bys B

2,...) are more complex in form than the corresponding
coefficients Eg. (89), (96). Moreover, they change if the expansion is
extended to higher order. The operator (1 - cos 23) results from a five-
point formula; namely, Qj+2 - 2oj + Dj—z' It is abandoned therefore in
favor of the t...2e-point operator formula cof Eg. (27) since the latter

requires knowledge cf only one point outside the boundary.

We rewrite Eq. (97) as

2 2 2
z (A = - ¢ oLl 1-e 1, g 40
A»AR+1AI— et{1l (6 )ya + | A )5(1 4)d,
2 2 2
£ e 1 - ¢ 2
+{l+2d—4(—z——)d}.
v e
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. . n+l n . ;
Noting that p = Ap , let us collect the terms in such a way as

P . n T no,
positivity at every step. First, (~-ct)c = .7 - 27 where

\T - .n E(An On )

S T TR TS G B R
Then

1 : 1 -2 2 1
n+ n 3 n - .y ,E n £
2T =0+ (= d)e ((Fo—d) (G Dlp + {1-(—=—q)
2 2
1 £ € T n
+ (= dA) (=1 - = )ditee” -0,
o 4
whence
1 2 ] 2 1 2 2
+ - - _ _ -
Mot s i Ea” a9t ¢ o™
2 o S
1 - 1 ;2 T
FLUETE L - Shalt et - e
2 5 4

from our earlier experience, the combination

+

(ST

be

(o]

is known t

2
- .. n
g )Ydo

positive for )el < 1l/2. The remaining terms are

regarded as antidiffusion. The following scheme 1s

recommended:

QT =50 - E( n n ) s

57%5 7 2% e T %500

A T 1 :2 T
: - - = - = ) - ~ o ;
25 P 5(l 3 1Py T 20 03_1)

TAD TA 2 n
ol =3 + (1 + 7)) (p - 20, + 0 )i

J ] +1 3 j-1

1 2

TD T £ n n

. =0, ¥ (- + = - 20 + 2 ;

3 (6 3 )(Dj+l 5 3—1)
ol _ T 1 - 52) (-TAD _ , TAD TAD, *
j "3 6 "3+l 3 =1
* ~ &, - - !

O ensure

(102)

(103)

(104a)

(104Db)

(104c)

(1044)

(104e)
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where the asterisk of Eg. (l04e) means that the antidiffusive fluxes in
. . o . TAD |,
this step are to be corrected. It is worth roticing that if o is taken
T . . . .
as p , we obtain a fourth-order diffusion, fourth-order phase algorithm.

If

we get a sixth-order diffusion, fourth-order phase, and finally,

TAD _ T

o) el +

,
(1 + £7)as"

(G

yields a fourth-order diffusicn, sixth-order phase errcr scheme. The ampli-

tude and phase error versus 3 are shown in Fig. 2.
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VII. PHYSICAL ASPECTS

The conservation of mass, momentum, and energy applied tc a system

are expressed as

-
T 2(x,8)é% =0 (111
£
¥ (t)
d b > > - —_- o -
It a(x,t)u(x,t)d% = c(x,t’ 'x,t8)8% + | 2(n,x,t)ds (1.2)
£
% () (t) st (e
and
d—fo(x,t)‘e(x,t) “‘("ét) 3% = | (%, t)C(X,T). U(x,t)a%
w0 ¥ (t)
> =5 - 5> > =~
+-jﬁT(n,x,t)'u(x,t)dS + g-n ds (123)
£
st o) st o)

where e and G are the internal energy and body force per unit mass, T is
- . . > - .

the stress on an element of surface dS with unit normal n, and g is the
flux of energy through the surface, for example, heat flux. The integra-

. . £ b . D
tions are carried out over ¥ (t), S$ (t), where the superscript indicates
that the contrcl volume moves with the fluid. We notice that all the terms
contributing to the balance of any of the conserved guantities are volume
or surface integrals.

In the case of an inviscid fluid

-

> - - >
T(n,x,t) = ~ p(x,t)n. (114)




. N > > b - -
The surface integra.s ]’Tﬁs and'f;-uds reduce then toj/;nds andJ{;u-ndS
€ i a -
s* s” st s’

which yield grad pd% andj div (pG)dV, respectively, when we apply the

&
wf ¥
divergence theorem.

Recalling Reyn¢ld's transport thecrem

2 tyaw = —-dv—+ u-* (115)
dtc {x J\ 1

V (t) V (t)

*

where ¥ (t) is a control volume whose surface elements 345 move with arbitrary

. —,* . k3 -
velocity u . Notice that the two integrals on the RHS are over space and
therefore depend only on the instantaneous positicn of the control volume.
Consequently, the integration can be carried ocut over any control volume

*

which happens to coincide with ¥ at this instant, whether it is fixed

. . . ) , X . e
or moving with another velocity. Denoting the fluid velocity by u  and

the control surface velocity by we: get, using Eg. (11i5)
d a\ >£ >
3t d¥ = 3t J’ u ‘nds
&

7 ¥t
2 av = EEQ -nds (116)
at | 9¥ = 3t n

I )

C . . £ .
It Vg coincide with ¥ at time t, we get

gdg (A% = ExdT cav + | @af -39 has (117)
&
¥ ¥ s?

-~ -~ D - -
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When G = 0 and g = 0, Egs. (111) through (113) become

S| aw s+ | 5@ -39 -7as = o; (i28)
ac
e 9
5‘{ outaw + | out@ - 39 Tias = - pras; (119)
&9 9 9
-)f.2 |'*f|2
{ ' i - f ~
;—t ole + -{“—q——)dv v ot + 5 @f - 29).7as = - g’ Ras. (120)
I 9 <9

Using the divergence theorem we can get the differential form of the
conservation equaticns. However, it is £far more convenient to use %he
integral form, because a numerical scheme based on the integral form is
already ccnservative, since the fluxes leaving cne control volume have
to enter an adjacent one, and discontinuities can be propagated in principle
without any smecothing, since one can always integrate a profile including
a discontinuity, in contrast with differentiation. Consider Fig. 10,
representing a uniform fixed one-dimensionral grid and a centinuous density
profile incorporating one discontinuity. If we know the mass in the hatched
cell and the velocity at interZaces A and B, Eqg. (118) will give us the
rate o2 change of mass within the cell, and hence the mass itself after
an infinitesimal time 6t. But we have to get the density at A and 8 and
the velocity for the next time step. We must have recourse then to
"averaging"” procedures to get the density from a known cell mass and "inter-
polation" procedures to get the values of the interfaces from the cell
average values. Through these two procedures, errors are introduced.

Firally, we have to use a finite grid in any case.
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Equations (118) to (120) can be written in a reduced form as

-£,2
* -
where p 1s a generalized density (p denotes o, puf and E = p(e + lBEL—)
*
in Egs. (118) to (120), respectively), T 1is a generalized surface stress
* > >f > R * . * .
(T =0, pn, Pu -n), while G denotes a generalized body force (G = 0 in
Egs. (118) to (120)). The two integrals on the RHS are referred to as

source terms.

A naive "finite-integral"” form solution can be written as

mass within mass within net outgoing
control volume|_| control volume| | mass flux throughj _ [source terms].
at t + st at t control surface

As will be explained next, the above formula is supplemented with diffusion

flux terms (actually diffusion and antidiffusion) to improve its accuracy.

ACCURACY

The above mathematical analysis was carried out assuming a fixed

. \ 3 3 .
uniform grid and 3% + %33% = 0, where u_ = constant. We notice also the

absence of any source term (inhomogeneous part of a conservation equation).

The analytical solution was found out to be
n+l n
p = AD
-iB¢ .
where A = e s , then was expanded to get a numerical scheme that matches

it up to a prescribed order of 8. In this context the numerical scheme

TTTT e n o RIS Vo et gt

- W -
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is an approximate solution of the whole PDE, in contrast to schemes which

approximate ;%—alone by a finite difference and {%—alone. By getting
c

~

a solution of the PDE as a whole, we mix the time and space derivatives
for a higher order scheme. To see that, let us expand o(t + 4t,x) in

a Taylor series:

2 .2
., 0 §t7 3
o(t + 8t,x) = o(t) + 8t = + =T ——2—| + o (121)
3t” x
From the PDE
P, e
5t uo 3x (122a)
2 2
30 .3 3y o8 Ly 88y, 238 230 2
2 " 3c¢50 T % ) % axGe T Y% : (1220)
3t ax
Substituting Egs. (122) into (121) we obtain
a0 uo26t2 370
ot + 8t,x) = o(t) - uOSt 3x T T TSt e (123)

ax
showing that we can get a better solution in the time domain (of higher

order in #t) by adding to [o(t) - uoét %%] a diffusion term,

-
o

u ‘3t 2 w26t) 2

o 3 . . . . . Coa
_— , a purely spatial derivative. Notice that —5  is equivalent

(o2

&

[
PO

oX

(]

.. n , .

, the coefficient of dp in the schemes discussed earlier. The re-
3 320

maining terms appear when we try to express 3% and > in terms of finite

X

to

to|m

differences accurately.

A scheme which splits the time and space domains, on the other
hand, treats Eg. (122a) as an ODE, where the right-hand side is assumed
to be a function of time. A second-order Runge~Kutta explicit scheme

can be written as
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p(t + 8t,x) = p(t,x) ~ u dt i-p—] at (124)
[o] 8xt+-—2—,x
where 22 St is obtained by first getting a provisional value of

ax't + —,
> p.4

the density at t + 46t/2 using a lower-order scheme

ot = - g St ose
o(t + S57,x) = At,x) - a3 axlt,x (125)
. 30 . s &t .
then getting §§lt + 3t < by differentiating po(t + == ,x) spatially, with
27 -
the result
30 2p St 820
SI‘t + QE, X = ax{t,x - uo 2 - 2l
2 oX t,x

Upon substituting in Eq. (124), this yields Eg. (123) again. One can
deduce therefore that up to a given crder, schemes which mix the time

and space domains and those which split them are equivalent. A warning,
however, is in order here: A concept derived for a split time-space scheme
cannot be applied directly to one that mixes both domains. For example,

using a half point density in Eq. (123), i.e., the scheme
2.2
u

stc 2
§t §t 3o o) 3 0

PlE + ST ox) = plt,x) - u 5 ax‘t,x 3 > (126a)

3X  t,x

o]

- u, 5t2 2

ot + 8t,x) = p(t,x) ~ u st i P -y (126b)
° It o+ ==, 2 "~ t+ & X

will cause a decrease in accuracy instead of improving it, as can be seen
from differentiating Eq. (126a) with respect to x and substituting in
Eg. (126b). The key point is that Eq. (123) is a solution of the PDE
as a whole.
In summary, the schemes derived in earlier sections are solutions

. . . £
of the conservation equations if u” = constant, ug = 0, and source terms = 0.

PR AW D ) ~

- oy - :.-. ~ias -
E o0 e ~¥ m’tw' - .
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If these are not satisfied, a correction that preserves the order of the
scheme should be adopted. Here we split the two effects:
(1) uf variable and source terms are variable #¥ 0
2y w9 #o0

and treat each separately.

GRID MOTION
According to the above splitting, we need to consider a case where

b . . . . ..
u = 0 and source terms vanish, but ug # 0. This is a static fieid, where

the density and energy are constants. Equations (118) and (120) reduce N

then to
d 4 _ >G > 1
ac ¥ = u”+nds (127)
VS Sg

This exhibits the formula for an accurate scheme when the grid is moving:
the rate of change of volume equals the rate of sweeping by tne mcoving
surface, as illustrated in Fig. 1ll1. Here we can achieve an infinite-

L. o mean
order accuracy in 46t by defining a mean control area S such that

39%¢t-nds = swept volume

mean
S

Let us consider the three cases of 1-D geometry; namely, planar, cylindrical,
and spherical symmetries, denoted from now on by x = 1, 2, and 3, respec-
tively.

In the planar case, the area is independent of the radius, 30

that

- e -
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where L and R denote the left and right interfaces of the control cell,

respectively.
In cylindrical 1-D geometry, the volume swept by the interface
is
n+l 2

w = mlen H? - @,

where B indicates L or R. Here the depth of the cell being considered

+1
is taken equal to unity. Since ugSt = rg - rg, the average area is
n+l 2 n, 2
n+i _ AVB [(rB ) - (rB) ! n+l n
A = =7 = 7 (x + r.) (129)
B Ise Lol on B B
B B
One can define then average radii
ntt _ 1 n n+l
3 = 2(rB + ry Y, (130)
+ +
since Ag'n Poatl an;'n },n+l.

Finally, in spherical geometry, the swept volume is

4 n+l 3 n, 3
AW = 3 Tr[(rB )T - (rB) 1,
yielding
n+# A 4 n, 2 n n+1l n+l 2
T —— == Yl
AB rn+l T on 3 [(rB) + (rB)(rB )y + (rB Y7 (131)
B B
whence
n+4 _ 1. n2 n, , n+l n+l 2. .,¢
r, o= {3[(rB) + o (rg) (g )+ (xp ) 13°, (132)
since




n,n+%,n+l, 2
B 4n(rB ).

An,n+§,n+§ _

Equations (128), (129), and (131) should be used as the prcoper interface
areas when evaluating the fluxes and surface forces. To complete the
formulation, when body forces are present, the volume used should be that
confined between the average interfaces. It can be arbitrarily selected

for « = 1, and is defined as

n+4 _ n+d 2 n+d 2
¥ =nl(x, ") (ry )] (133)

for 2 = 2, and

n+4 4 n+} 3 n+d3
7 = n[(rR ) (x; %)

3 ] (134)

for a = 3. This choice will ensure a proper balance between surface and

body forces.

Variable Velocity Field and Source Terms

To account for these two effects, the fluid velocity and source
terms used in the "finite-integral" solution should be evaluated at some
. . . n n+l o
intermediate time between t , t so as to preserve the accuracy of the
scheme. Since we split the effects of grid motion, variable velocity
field and source terms, the above intermediate values should be derived
from an ODE solver of a consistent order in §t. For a fourth-order

(diffusion and phase error) accurate scheme, for example, we need a second-

order-~accurate explicit ODE solver. In other words, for the system of

Egs. (118) to (120), we advance the time one-half step using 3f = En
+ 4 + +
and p = pn to get Qn i, (O—I;I)n-’.é, En é. We define gn } = (D-l:f)n".%/pn-’-i

I

3 en+}

n+ n+
and p z plp ,

) where p(p,e) is the equation cf state and




>n+é2
en+§ - (En+§/pn+§) _lu

2

. . +>f  on+d
Then we advance the system a whole time step using u = u and

+
p = pn i. As explained earlier, we need not and should not update ¢,

e ; .
su and E, during the full time step, since the scheme is already a solu-

tion of the whole PDE. For a sixth-order-accurate scheme, we need a

fourth-order ODE solver and so on.

Example of an Algorithm

Let us implement the scheme

2
T n n € n n
= 2 - - + — - <+ -
Py = Py 2(Dj+l oj_l) n (pj+l 20J Dj—l)’
2

D € n n
Py =Pyt (= + 12)(pj+l 20, + 3-1)’

n+l TD 1 e? T T T

Py =Py - s )(pj+l - 2°j + oj_l), (135)

a stable, fourth-order phase error, sixth-order diffusion error scheme,

+f
where p denotes either of p, ou , or E.

n

. .. n
If we have N cells whose interfaces are at radii (rl/“' r3/ﬂ,...,
< /&

n+l n+l n+l

1 n 5 -
rN+l/2) at time t, moving to (r

the cell centers by the subscripts j =1, 2,...,N, located at

1 n,n+l n,n+l _
2(rj-l/2 rj+l/2) for a = 1,2
r’j"“+l (136)
1 n,n+l 2 n,n+l n,n+l n,n+l 2 .1 _
{3[(rj_l/2) gl ) eyl ) k) 1}% for x = 3.

th
The volume of the j cell per unit angle ic given by

P B S - . _“-‘ .
.- e ~ .‘:.:?’?m“’.m,\?o wﬂw' -
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- Ry n+l _ rn,n+l o= 1
j*1/2 j=1/2 " cRE s
n,n+l 1 n,n+l 2 n,n+l
= — - 2 = 0
¥y 3l i1y, * =2
1 n,n+l 3 n,n+l 3 _
SR (Fyaijp) r 2 =3
Dencting the mean interface radii by r?ti, Egs. (128),
(132) imply for j = 0,...,N,
n+1
7 = )
(r‘+§ j+4)/ =1, 2
rn+§
i+t
2 n n+l n+l
+
(rﬂé (rj:i)(rjié) _ 1+é 7} -,
? 1
giving, according to Egs. (128), (129), and (131), mean interface area

per unit angle

1

n+d n+3

j+d T 4 Tied
n+4,.2

and mean cell volume per unit angle

n+4 n+t
( (r ]+}) —(rj-i)
n+#
.o _) 1. n+¢ 2 n+§
¥ =9 [(-J+} (r -i “
1, n+td 3 n+d 3
\3[(rj+}) (rj-i) ]

for « = 1, 2, 3, respectively. We write Eqg.

(135a)

in the form

(130), and

(137)

(138)

(239)

(140)
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n+l T nn R n n+4 n+d

¥oOToL =0, - 3t(p. A, Su. 1) + ft(o.
i 73 373 J+d et T+

+ \n+§ & (pn _ on) _ \n+§ W (hn _ Dn ) + source
EEES BT AR j REEE IS B j-1

where

n - L(vn .n )

oj+} 2 Qj 3+l

for j =1,..., N-1, while

n

n 1

n
+ .
N- QR)I

n
]

n+4+ . n+i

- 3=

U )

-3

n+4

14

where L and R denote left and right guard cells, respectively. The

difference 13U,
j+

%

n+4
j+d

n+3 n+t

g
. St = U, 5t -
j+3 j+3

3 U 8t = U
v j+3

while the diffusion coefficient is

n+d 1, n+tb 2
\j+i = 4(€j+§) ’
where
ntd n+d
RS I I S LA S S
i+ 2 ]
3 j+1

The velocity at the interfaces satisfies

n+d _ 1, n+d n+4
Uj+§ = 2(Uj + Uj+l)
for 3 =1,..., N-1, while

St - (r.

between the fluid and grid velocities is given by

(141)

(143)

{144)

(145)

(146)




w

- -

n+d  n+d n+d _ n+d
U‘ = UL ’ UN+§ = UR .

.

n ..
The vclumes ¥j are defined as

+1

¥ = —(v’j’ + ¥ ) (147)
4

Equation (135b) then adds the main diffusion, 3iving

n+l TD n+l T n+t n n n n+4 n n n
¥, o, =¥, 0.+ v, . o, -0.) - v, ¥, , (. =0, ) (148)
s s BRRG E BRG E5 It £ BN 3= =3T3 Ti-
where
B
n+y _ 1 “i+d ,
543 T8 Y iz (149)
Finally, the antidiffusive fluxes are evaluated according to
- _ .+t n+l T _.T N
:j+§ = Ui j+§(”j+l Dj), (150)
whare
(712
[
Ur.l-(.i = _1; - ___Ji , (15]_)
S+ 4 S) 5]

and then corrected using one of the flux limiters Eg. (64) or Egs. (65)~(75).
Let us select Eq. (64) on account of its simplicity. The corrected fluxes

are given by

e . . . n+1l TD D
= . { s . . -5
Fj+§ sign (Fj+§) max {0, min [sign (Fj+i) ¥j+} (pj+2 wj+l)'
. [ . . +l' TD _ ™ ,,
Pyl e ston (Fi ) ¥y (37 = 5 1 (152)
whence

2 -




:?+l =P ];l (FS
3 3 ¥§ 3

As for the source terms,

of the cell.
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< -
Y - j-i)' (153)

they are summations over the surface cr the wolunme

Lot us consider first [~/ pn dS), which yields [- grad p]. In

<9

>

cartesian coordinates, following the diagram of Fig. 12,

n+} _ n+} n+} n+} n+i

source . =p. |, A. - p. . 154
j Pioy H4-1 7 Pyay By (154)
where
n+d 1 n+d n+ -
pj+} = 2(pj + pj+l) (155)
. . n+4 n+3 n+4 n+4
£ =1,..., N-1, 1 = =
or j 1 N-1, while pé pL and pN+§ pR
In cylindrical geometry, following Fig. 13, we have
n+i n++ _n+t n++ _n+4 n+4 n+é n+3
source = p. A - . . + p. r. - r,
3 Py A5op T Pyuy Byyg v Py gy morely)
and since
! 2 2 3
2y ik
n+i n+d _ T9+d j-3 3
x. - r, = = ’
j+i j-1 n+4 rn+§ rn+§
j+d j-1 3
where from Eq. (136)
n+t 1 n+d n+4
r. = =(r. + r, 156
5 2( S+ J-i) (156)
. . n+i
for a = 2, we can rewrite the expression for source 5 as
pn+{
n+# n+% n+i n+} _n+i 3 n+
source = p. A - p. A + ¥, 0, 157
3 Pict %3-3 7 Pyad Pyag RTINS (157)
3
v &,
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n+1%

. . n+ - .
where we notice that pj /rj 4 acts as a body fcrce per unit volume per
unit angile.

In spherical geometry,

n+d _ n+d  _n+d n+: _n+4 n+¢ n+t, 2
source 3 = pj_} Aj-i pj+§ S} + pj ((rj+§)

n+s 2 n+¥ _n+# n+¢ _n+¢
- (r. = p. A, | - p. .
( J-i) ] 3=t “3-1 T Pied e
n+4¢
2P, n+3
n+4 2, n+t 3 ’
(rj )/rj’a=2
where from Eg. (136},
»/
n+3 1 n++ 2 n+4 n+4 n+s, 3
r, = —{(r, + (r r. + ) 159

3 3{( J—i) ( 3_4})( ]+§) (r +3 ] ( )

for » = 3, and
n+t n+3
n+d ) r.+i + r‘_i
J,a=2 2
2ot
Again, T3 3 P acts as a body force per unit volume per unit angle.
(z y=/xr.
J i,a=2

Next we consider [- pﬁ-gdsl,which gives rise to the term [~ &iv (pu)l].
Sg

For the three geometries, we get

n+ n+ n+ n+ n+ n+ n+
source L o) H 3 oan+d H RS

T Pyop Yok Byod T Pyay Uiy A4 (160)

In summary, all we need for the source terms is a routine to multiply by
the frontai area for the surface integrals, or cell volume in the case

volume integrals.




n-+3 _ .n+l
Uj 1t—>t+6t B Uj |
and
source n+§l
o 3 t>t+8t
|
- - - W —— - -~ &

Finally, Uj

n+#

and source n+i
whole system of Egs. (136)-(160) a half time step using U;, source ?, then

a whole time step using

t>t+4t/2

n+
= source

t+t+8t/2°

49

are obtained by first advancing the

(161l)

(162)
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XI. TWO-DIMENSIONAL TRANSPORT

Now let us consider the two-dimensional equivalent of Eg. (2),

(2C1)

30 e 30 _
ot T 5x Y 0

whose analytic solution is
(202)

Q(errt) = s(x - Ult'y - uzt,O),
Assuming an initial density

= (u,,u.).

-
a wave propagating with velocity u 1
X L2

S(x,y,0) = F{x,y), we Fourier analyze F(x,y) in space on a rectangie Ll

with periodic bourndary conditions:

© ->
F(;) ___Z ';Ze-lk.r'

-
k=—

(203a)

()

where ; = (x,¥), and ﬁ (kl’kﬁ) is assumed to be normalized, i.e., k
is actually a

k k
2 Notice that the summation of (203a)

denotes 27 (—, —/).
L oy

double summation.
o Jik,x o+ kzy).
s - (203b)

©
F(X'Y) = Z

kl=-oo k2=-w

To gain insight, let us consider only one wave componernt cf Eqg.

O

(203),
-> -
F(r) = sin k- (z04a)
or
kK,x kzy
F{x,y) = six 27 (— + —). (204b)
L L
1 2
Figure 21 shows the resulting waves for different values of (Ll,L2), (kl,kﬁ).

Frem Eq. (204b), F(x,y) is constant along lines of constant

- " oe—— .
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klx k2y
(E—— + E__)' For example, the nodes of the wave coincide with the lines
1 2
k.x k. y
1 2 1 3
L——+L—‘-=O, 5 1, 3, 240 (205)
1 2

-
which are normal to the wave vector k.
To find the wave length for a given (kl,k2), we first go back to
the one~-dimensional case. For a system of length L and periodic boundary
ca . . kx ky . .
conditions, the harmonics sin ZnET and cos ZﬂL are admitted, where k = Q,

1,2,...,»., With each of these is associated a wave length A defined as the

distance between two successive "even" nodes. Since sin 2w%§ =0 at EE%E = 0,
) . 21k . :
7,27,37,..., ) is obtained from = 27, yielding
L
A= X - (206)
- L L L L
We get therefore wave lengths =, L, 3T 3 g where the longest finite
wave length equals L, the system length. 1In two-dimensional, the wave
length for a given k is defined analogously as the distance between two
points on successive "even" node lines, projected on the direction of K.
From Eq. (204b),
klx
F(x,0) = sin 27 ——
L
1
!
which, as explained above, yields Xx = where Ax is the wave length
1 k k
2
along the x~direction, which when projected on k = ZW(EL, f:) yields \:
1 2
L1 kl k2
(i_’O)'(E—' E‘)
\ = 1 1 2 1 P
= = = ==, (207a)
1.2 %22 k1o %, [k
(f_) + () (E“) + (E~)
1 2 1 2
——— ' "Al"




where
o] 2m
. k 5 k2 5
KL= e e
1 2
or
A = L (207b)
1.2 1.2
(*\—-) (j\—-)
A Ay
kl k2
N.w we find all the wavelengths along a given direction T '§ <
1 2
constant c. Noticing that kl' k2 for pericdic boundary conditions can take

only integer values, the waves along a given direction correspond to

1
k{n) = nkil), kén) = nkél) (n = 1,2,...,%) where k{l), ké ) are the
smallest integers that satisfy
(1)
kl /Ll -
(1) B
k2 /L2
From Eg. (207a)
A\
- 1 -1 (208)
/\:,1 n
(1) (1
nk nk
1 2 2 2
(—E——) + T )
1 2
where
A = 1 ) (209)
k(l) k(l)
1 2 2 2
(—ET—_) + L )
1 2
Xl Al Xl
Along a given direction we have wave lengths Xl' PR
Consider, for example, Fig. 21 (b), where L, =2, L2 = 1. Along direction

- e . el
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1 1
(L./2, 1), k{ ) = ké ) = 1, whence K , /\[i The maximum

12 VR S 1Y
system length along this direction being ¢/(= 2 =z

ik

showing that because of the periodic boundary condition ¢ndependently in
each direction the longest wave length is only 80 percent of the maximum
system length in the direction (%,l), in contrast to one-dimensional
cases where Al = L. For the case of Fig. 21(a), Xl is 50 percent of the
systam length.

From Eg. (202),

O(XIYIt) = E Z l[kl(x - ult) * k2 (y - uzt)]
k== _
= Z: Z P (£) el (KX * Kpy) (210a)
'k
X k 1772
1 2
or
I e NN
oty = ) @p ik (T - ut) E °y € (210b)
k k
-
k=—
where
° 2 ~-itk.u, + k.u )t
o] (¢) =9 e 171 272
kl,k2 kl'k2 (211la)
or
- A ik-ut
~ _l -u
p (t) =p_ e
; ; (211b)

Thus each harmonic independently advances uniformly in phase without

changing its magnitude, as shown in Fig. (22).
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We notice that the different harmonics advance in the direction
G, which is generally different from that of k, as illustrated in Fig.
(23). They keep their front normal to k and therefore the projection
cf U on K is the speed cf advance. This adds extra requirements that
were not invoked in the one-dimensional case, namely:
1. The scheme should kec» the wave front a straight line;
otherwise distortion of prorfiles occurs.
2. It should also keep the wave f£ront normal to E; otherwise
"scattering” occurs, namely waves with different :g! but
the same direction (k :kz) will come out in different

1

directions, causing scattering of the transported profile.

v ouer sapmomn

> ; 1
As will be proved later, the speed of prcopagation V of a numerical

. - ne . . . .
scheme differs Zrem u nct only in magnitude as in one dimension but alsc
in direction, providing one more source of error. If the above two reguire-
e . > > > .
ments are satisfied, nowever, cnlv k- (U - u) contributes to the phiase

error.

Now suppose ~ is known at all times only on a set of (N

e SN

Py o=

=

t
—
3

discrete grid points with separatiocn §x = , namely, X, = 1°‘x

z
2
-

-
<

1
(i =0,1,..., Nl- 1y, yj = 38y (3 = O,l,...N? ~ 1), the origin being a memker

of the set. According to periodicity assumption : =D Lo _ &
0,3 Nl,], 1,0 = LN
N.N e
hence we can have only + 1 different harmonics. Let
Nl N2
. 2 2 R i(k,x + k.y)
£ = “ ‘
(x,) E -N E: -~ kk T a0, (212)
_ 1 _ 2 1772
kp =3 k=3

- - ERETR
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i 27k
Smce‘ (k.x + k.y) i(ﬂ(il—)in - < 3¢y i(im + 2753 i y)
et 2¥) | N, =e L2 L, =e T,
k=72
k2 2wk2
ilinm + 2m=—= jdy) - 2mi] i(-im + 38y)
. = e L = e
2 2
- 271K
2T 1., 2 . .
- eI[L ( > Yidx + idyl _ e1(k1x + k2y)l -Nl
1 2 k = ———2

1
for all i, and similarly
P(kyx + kzy)l N

2
k, =3

o ik x + ko) | )

- ¢N2 = e
2 2

for all j, Eq. (212) can be rewritten as

M N
2 2 2 i(k.x + k
f(x,y) =E Z Qk kel( 1 2y)'
1'%,
K ! 1k I’ 1
m 2 ¢ 2 F

>
showing that k space structure contains only Nl X N_ independent points

2

(see Fig. 24). The amplitudes 6 can be obtained from

k, .,k

172

2wkli6x 2wk2j6y
2 AT ) (214)
YKk, .k 1 2

for i = 0,1,2,..., N,-1, and j = 0,1,2,..., N,-1.

1 2

In terms of sines and cosines, Eq. (213) can be written as

o et
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—--1 Ky
flx,y) = A z cos ( + }
E: Ly L,

l =1 2
2nklx 21rk2y 27rklx 2TTk
+Bkk5in(r +L ) + C cos( )
1’72 1 2
l
2ﬂklx 2nk2y - - z_nklx
+ D sin ( - ) |+ cos ( )
kyrky Ly Ly Ly
k =]
N2
21\'le TTNlX Z\—,)— -1 273&2)’
N ~ - A
+ Bk ,o(Sln I ) +AN os{ T ) + o,k cos ¢ % )
1 1 1 1 x_=1 2 2
2 '° 2
2tk Yy 1TN2y TN, X N,y
+ B sin ( y |+ A cos ( )+ cos ¢ + =),
o,k2 L2 O'EIE L2 le i% L1 L:
2 2 ' 2
where (215)
g
Ak, T Tk
5 fork1>0,k2>0
+
Akl,kz lBkl,k
5 ‘ork1<0,k2<0
3 =
e, "
Ckl’kz i lel'kz
3 forkl>0,k2<0
Ckl’k2 + lel,kj
L 5 2 for k, <0, k, > 0
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N,
. s . " . . - 1
Again, we have in Eg. (215) Nl b4 N2 coefficients: Akllkz(kl O,l,...,2
N, N, N,
and k2=0,l,...,—2-), Bkl,k?(kl=0'l’.."_2_- 1 and k2=0,l,...,T— 1y,
Nl N2
1 = 1 — - - —_— -
Ck K Dk K (xl ~,2,...,2 1 and k2 1,2,...,2 1) that can be

172 1772

o
i,3°

determined from the system of equations f(xi,xj) o}
Going back to Fig. 24 let us count the different harmonics. The

harmonics are considered equal if they have the same magnitude

s 27rkl 5 27rk2 5 ' . k
lkl =/ ¢ T 15+ | T } and are aligned, i.e., T
1 2 1 2

= constant. The

t"|'?¢
o

number of the harmonics is almost half the space of Fig. 24 since (kl'kﬁ)
is equivalent to (-kl,—kz) and (kl,—kz) is equivalent to (-kl'kz)' For
example: a and b in Fig. 24 are equivalent. Figure 25 shows the
independent harmonics selected to match the choice in Eg. (215). The

N N2 .
+ 1.
2

number of the harmonics is therefore,

If we count the maximum number of wave lengths, we get an even

smaller number, since according to Egq. (207a), X = %ﬁL . Two harmonics
k|
such as a and b in Fig. 25 will give the same value for ]Q . The maximum

N N,
number of wave lengths is therefore LEL + 1)-031 + 1), corresponding

to the positive quadrant of Fig. 25. This is an upper limit. This is
because the number of wave lengths can be less if the ratio éx/8y is a
rational number. As explained above, decomposition in two directions

puts a limit on the longest finite wave length A in a given direction.
Discretization, on the other hand, puts a limit on the shortest wave length

in a given direction since it reduces n in Eq. {208). The largest value

N N') 2
occurs for k., = —l, k, = —. 1If k(l) k(“)

1 2 2 2 1 r Kk, are the smallest integers

for a given direction, the shortest wave length along this direction




corresponds to

_ min (ilﬁ Nz/z) (216)
" integer 1y * ()T
k k
1 2
Assuming o (x,y,0) = f(x,y), i.e., assuming the density in between

the grid points values pi 3 to be f(x,y), Eq. (202) predicts the density

at time t as

N Ny
> = 2 el[kl(x—ult) + k2(y—u2t)]
o (x,y,t) = 2 Ky ok,
-N -N
1 2
kl=—" + 1 kZ—_—Z— +1
- z S (®) 1l x + kv
1’72
k1 k2
where 5k . (t) = Sk . e—l(klult + kzuzt). Since we are only concerned
1’72 172
with o(xi,y4,t). let x = X, = idx, vy = yj = jéy. We then get
Ny N, ok isx s K 3 .
o(x.,y.,t) = 2:: 2 z:: > 3 (t)el( llux + 2jcy). If the time
1743 k
_-Nl -_--N2
Kp=g v b k= v
: . . no_ . n n, . n _ - n
1s also discretized, let t = nét, pi,j H p(xi,yj,t ) and Dk,,ké'okl,kﬁ(t ).
i 3 3§
Then o | = Z E sh LUk 3% + ko 0y) (217)
i,j3 kl’k7
kl k2
where
.n - ~i(k,u, + k. u.)ndt (218)
¥ = uk Kk e 171 2 2
kl,k2 1'%,

We define A(kl’kz) as
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A(kl’kz) = .

Equation (218) expresses the analytic solution as

-7 -
Atk k) = e LT T Rpup08) (219)
u,§t u,ét
5 ol
If we denote ——— by €_, 5y by By k,8x by 8 , and k,dy by ay, Eq. (219)
reduces to
- ~ "
Ak, k) = e e By v oeghy) (220)

Now let us analyze a fully two-dimensional scheme, a direct extension of

the one-dimensional scheme

=20 - oL, - )
?3 773 T 2% T Py
TD n n n
D _ - - .
©5 pLt u(oj+l Zaj o]_l)
n+l _ TD T T
= o, = ulp, - 20, + o0 ) (221)
‘3 3 i+l 3-1
namely,
Tx n €X n n
- R P - 222
5,3 T 5,5 7 2 Wi,y T Yi-1,3)0 (2224)
1,9 7 Pi,5 7 2 PiLge1 T 04,5100 (2225)
T n Ex n € n
= - = - - 222
1,5 71,5 72 Pia,y T %150 T2 PuLga T a5 (222¢)
™ _ T N (ﬂn 201 n ) v (5 _ n
i3 Pivg T VxPis1,; i3 7 Pi-1,5 vy %i,j+1 i3
n , 222
+ 0% ) (222d)




i,] i,3 x Ti+l,] i,; i-1,3 y i,j+1 i,3

Again as in one-dimension, after Fourier-analyzing the injitial

density profile, i.e., after we have gotten the [Ek X
’
2
. . i(k X + k_ v)
reduced tc propagation of the complex harmonics e 1 2°

:l/:‘-l) .

2:2e)

], the prcblem is

. Since for

the linear problem Eg. (201), each harmonic propagates independently, we can

get A(k,,kj) by assuming only one harmonic:

. . oae . . 5
Dg = QOel(klléx + xzjoy) - Doel(lsx + Jay), (223)
i,3
then using
An-rl
. _Cid
Ak, k) = ——n—i . (224)
o. .
i,3
Substituting Eg. (223) into (222a) we get
o ik i 15 € . . .
O?x. - pael_kllﬁx + kz, Y) _ —itpoel[kl(l+l)dx + k,38y]
i,3 2
i - F ok 8y
_ poéikl(l 1)sx + k53 v) ] (2251
hence
:?x. S is -i3
el o - :?(e “oe %) =1-1ic¢_sing 226a)
n 2 x X
1,3
Similarly Eq. (222b) gives
S TY
0.7 . -
2 -1 -ie sin 3. (226b)
Ny Y Y
i,]
Denoting i sin Bx by tx and i sin Syknrty, Eq. (222c) gives
T
o)
R R B (226¢)
X X X X
o. .
i,]
T ™ .
TETT s v et o x o e et R Ve - - "
o~ oo adle T il X




Substituting Eg. (223) into (2224d)

TD T ) . :
L . . 18 -18 ig -ig
2l 2l e o214 * + v (e Y i 2+ e y)
. n n X Yy
pl,j Di,j
pT
==2td s ya +v4d, (2264)
n X X Yy
1,7
where 4 = 2(cos 3 - 1) and 4 = 2(cos § = 1). Finally, Eq. (222e) i
yields with Egs. (226c¢c) and (226d4d)
n+l {
AB ,8) =—td=(1-¢ct ~ct)+vd+vd -pd(l-zt)
Xy On X x Y Y X X yvy X X X X
i,3
-pd (1l -¢¢t (226e)
LY Y Yy Y)
From which
or."ﬂ. = A(B_,B )ooel(lgx * ]e‘{)
1,3 X Y

. . 1(ig  + 33 ) ._ . ;
We notice that the coefficient cf e X y 1s independent

n+l
of i and j, i.e., independent of x,y. Consegquently, pi 3 have the same
1

. . : n . .
wave front inclination and shape as €y 57 1.eoy along the lines of klx + k2y
’

n+l . . . . . P
= constant, o. ., = constant. Finally, this is a nine-point explicit scheme,

’

as illustrated in Fig. 26, which shows the points involved in determining

n+l
i,3°

0
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XII. AMPLITUDE AND PHASE ANALYSIS

) . i3 . . o
We write A as A = ;ale””, where |A{ is the amplitude and > is
the phase angle. To classify the order of the scheme we need to expand

[a] and 3 in a power series in 8, and By'

PHASE ERRORS

In the two-dimensional case we have A = A(t ,t ,d ,d ) where t ,4&
x" Ty x'y x" 7%

are functions of 5‘, while ty,dy are functions of ay. Since log A = log A
+ i(3),

2 = In (log A). (229)

Expanding 2 in a power series of Sx' Sy near Bx’ay = 0, we get

82 82
3= 4 (g 4 8¥3 ) ¢ (0 E 43 a4 aYY T (230)

o ox o'y o 2 o X'y o 2

2 2 3
. (Qxxx Eﬁ . L XXY sty . XYY BxBy . aYYY Ez - (230)
"o 6 "o 2 "o 2 "o 6 Tt
-\x = 39 = i :‘y = 39 =
where >, = (;,/aex) at BX 0, while S (ou/3ey) at Sy 0, etc.

We therefore need the derivatives of log A. Noticing that

A(Bx'8‘= 0) = 1 we get

.
P

N X - X 531
log A)o AO (231a)
(log A)Y = a¥; (23ib)

(o) o]

\ XX_ XX _ X, 2 nan
(log A)o Ao (AO/ ; (232a)
(log A) Y= aA*Y_ a%pY, (232b)

Q (o) G O
e oA . = o™ Y » shne - - " . [
R ﬁwuﬂﬂbﬁ; y > Ve - d

A~= b - s -
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(log a)Y¥= a¥Y - (a¥)?2 (232¢)
o O o)
(log 8)%% = a%¥*¥ _ 3% |, 2% 3 (233a)
(o] o Q o] o]
. (log 2) Y = a¥*Y | 5x¥Yp* | %Y 4 2% %Y, (233b)
(o) o] o] o} Q Q o (@)
X
(log &) YY = aXYY _ 2%, Y _ 2%p¥Y | oa*a?)?, (233¢)
(o] (o] o] (o] o 0 (o] (o)
(log A)YYY = AYYY _ 3p¥¥ ¥ 5 a¥)3 (233d)
o (o] O o] o
and so on.
t é
. 3( 3() x 3() _ x
Denoting |8, /8, =0 by ( Yo e IBX,BY =0by ()5,
so on, confining our scope to schemes of second degree in the operators
tx'ty'dx' or dy' and using the chain rule cf differentiation we get
x tx L d 1
a=a*t +a*a ; (235a)
() Q X0 O X0
t o, d
a¥ =a ¥ ¢ a¥a ; (235b)
o) o yo o yo
t a t t t d ad ; (236a)
" 1 ] ] ] o
At A ¥ ia Aa¥arta¥Fioa aX¥,Lg %K
o] X0 o] X0 O X0 O X0 X0 O X0 O
X 1 ] txt 1 L} txd 1] 1] d‘(t L} H dxd
a%Yo t Y4+ 4q Yoa t a®Y4i4a a a¥?, (236b)
o X0 yo o X0 yo O X0 yo o %o yo o
TR d t d 1y 4.4
Ao " aYia AaYeedaYY o g Aoj Y4 g at ¥ (236¢)
) yo Yy yo yo yo
t d t t
1K) 12 1 ’”
A _ A *hra AT 4 o3t X x
o] X0 © o O X0 X0 ©
" ’ txdx ] " dxdx
+ 3(t_d t )A +3d & A ; (237a)
XO XO X0 XO o X0 XO O
t t t a at d a
" ¥ 12 L " 1 Tt L}
AYY - t A¥Y 4+ e a a®*Y¥iaq vt a*Yeq a a*y, (237b)
o X0 yo o X0 yo o X0 yo o X0 yo o
E ]
L
-y, L RN
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x 1 " txt L} (3] txd‘ L} " dxt 1] 1t dxd
AXYY o T Aa XY b da a¥Ysa ¢ o aXY g a Aty (237¢)
Q X0 yO Q X0 Yo Q X0 yo o X0 YO ©
yy 1 tv mn d 1] (3] tyt
7YY o a¥Ysa aY i3t t AYY
o yo o vo o yo yo o
t d aa
' 1" 1" [} v " -
+3(t. d +t & AaY¥4s3a a a’¥. (237d)
yo yo yo yo'o yo yo o
Finally,
t d t t
" - [V 4 1] [R1] ||') "t 1
ARREX _ A ¥ g A% e et o+3t AT 4t 4
Q X0 O X0 O X0 XoO XO Q X0 X0
t a 4 .a
” 1) ] " ) e "
v et a4 +de A H)ATX 4 a4 +3d5a % (239a)
XO XO XO XO O X0 XO X0 C
t t t 4 d t dd
fre 1] ’ tEX] ’ ’
ATY _ T A ®Y g A%y v a (e Aa¥Y ia a®Yy, (239b)
o Xo ' yo o yo o X0 Yo o yo o
t t ad t d at
" " < " e LN ] " " 11
AYY T T A XY v d aafYie da a®Y4a ¢ Ay, (239¢)
o X0 yo o X0 yd o X0 yo o X0 VO ©
X "t 1] t t | dxt e L] txd ) d‘(d
AYYY o e AaX¥Y L a a®Yy 4 g (¢ a®Y¥ yg ATy, (2394)
Q yO X0 © X0 ¢ yO X0 O Xo O
8 'V t (Y4 d ] e " tt ey ]
Al e A Y v g AaY s 4t £ +3t 9AYY (4t g
(o) yo o Vo o yo yo yo o ~ yo yo
t d dadq
" 18] 1 "t 1 [RR] (2]
ror d +at a aYY 4 4d 4 +3a Hary, (239%)
yo yo yo yo' o yo Yo vo ‘"o

Going back to the definitions of tx,ty,dx, and dy,

t =t = 0;
X0 vo
] 1
t = ¢t = 1i;
X0 yo
" "
Exo ~ tyo = 0; (240a)
111] ™"
Pxo = tyo = 7Hi
" 1A'
t =t = 0;
X0 yo
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a4 =4 = 0;
X0 yo
. '
ad =4 =0;
p3e! yo
121} ”"
deo = dyo =2 (240b)
[N 2] "
d =4 =0;
X0 yo
[V (A'4
a4 =4 =2,
X0 yo

t t t t
Substituting into Egs. (235)-(239) and assuming A XX ¥ ¥ 0, we get

A = 1; (241)
[e]

< t t

a® = ia ¥, aAY = ia Y, (242)
o) [e) o]

XX X txt Y d

A= o X, A A XY, QY Lo oY, (243)
[e] o [e] O Q

XXX t txd
A =-i(d % +en "%, (244a)
Q o} o

XX t dx

AFY = _ i pa Y% (244b)
(o] le]

X txd

AYY o _ i a ¥ Y, (244c¢)
(@] o

t
AYYY oL ia Y sen YY)y, (2444d)
Q Q
and

XXAX d dxdx

A =2 % + 6 ); (245a)
Q Q

XXXY _ A X y; (245b)
[} (o]

XX dxd

ARXYY S ogp XY (245¢)
[e] o]

N £t

AXYYY _ a XY, (245Q)
e} O
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a ad
AYYYY s Y 4 ea Y Yy, (245¢)
o) @] (o]

It is worth noticing that Egs. (241)-(244) are valid fcr schemes
t t
of higher degree in the operators tx,ty,dx, and dy' as long as A *

tt
=a¥¥ < 0, i.e., as long as composite transport is excluded. With the

above equations, Egs. (231)-(233) yield

t t
(log A)z = ion, (log A)Z = iAOY; (246)
XX dx tx 2
(log A)O = - 2AO + (Ao ) 7s (247a)
. €t t ot
(log A)OY =-a Yo, A AOY; (247b)
Q t 5
(log A)zy = - 2AOY + (AOY) ] (247¢)
XXX tx dx txdx tx 3
= - i - -1 ol .
(log a) ia (1 - ea") - i(ea + 28,705 (248a)
cxy at a t £, £t £t
(log Y = 2ia ™Y -a*a¥ioa*a ™Y -afaY, (248b)
Q Q Q (@) Q Q (@) o)
Xyy dt, 4t £, et €t
(log A) =-—2ia ¥ ¥ a0 ¥a*Y¥oataYy, (248 %)
o o o] @) Q Q o) Q
Yy ty Y tydy ty 3
< = = 1 - \ - 3 ) 1
(log A)O le (1 6AO ) 1[6AO + _(Ao )7L, (2484)
Only the odd derivatives are imaginary. Therefore, Eq. (229) implies
< )
(log A)O (log A)z (log A)zxx Bi
Yl (g Bt
XX 2 2
(log MY 828 (log &Y 5 &2 (log MY g3
+ : Y : g : Ly o+ .. (249)
i 2 i 2 i 6

Example:

Let us analyze the phase errcr associated with Eq. (226e),

= -et -c¢ +v d - ud - ¢ - - .
A (1 et YtY) v, d. + vydy My x(l fxtx) uydy(l eyty)

i S ot il »
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By direct differentiation we get

t t‘
A X = £ A Y = - €7
o x o Y
dx dy
AO = vx - ux, Ao = Vy - uy,
txtx txdx dx x
A = Q, A = £ U, A = Q;
o} o XX o
td d4d
tt Yy Yy
A = £y, A = 0;
a¥¥=o0, % yHy
txt txd t dx dxd
a*Y=0, a*¥Y=0, a¥*=0, a*Y-o;
o fo! o) fe}
whence
(log A)Z (1og B)Y
=~ € _, N = = £ 3
i X i y
(log A)xxx E‘,‘
= 6e (l-- v, o+ =)
i X 6 X 3
XX
(log A) Y "
Q= -2e (v -u =&Y
i X x''
(log a) Y
o == 2¢ (v = u_ - 52)-
i X v’
(log A)Y¥Y e2
° = 6e (_]_ -y + __Y.>'
i Yy 6 Y 3

Substituting in Eg. (249), we get

2
8 =-¢8 1 fx 2 o 2.2
x'x [1 + (\)X -2 3 )Bx + éay “y ey)BY + ...
2
1 Sy 2
- eyBy[l + (vy -8 7;)By + (v - u "€ B o+ ...

(250)

(251)

(252a)

(252b)

(252¢)

(2524)
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u, 5t
. _ 4 - - = - .
Noting that exBx = 5% )(kléx) ulklot and Eysy u2k26t, we can rewrite
the above equation as
3=~k - Vst, (253)

- > >
where k = (kl’kz)’ V = (vl,vz). If U = (ul,uz),

2
_ 1 "x, .2 2, .2
v, = ul[l + (vx 3 3 ) Bx + (vy uy sy)By + ..ol
and
E2
_ _ I y.2 _ _.2.,2
v, =u, [1 + (vy c 3 )By+(\)x Mo °x)8x + ... (254b)

Ccomparing Eg. (253) to the analytical solution, we find

> -
= — A4 ) 2
8analytic k - Ust (255)

as is obvious from Egs. (211).
Following Eq. (19b), we define a relative phase error matrix, R,

such that
- - -
Vv = U + RU, (256)

where R, given by Egs. (254), in this scheme is

1 2 2 _ 2.2
(v = 3 sx/3)Bx + (vy My °y>3y .o 0
R = ‘
1 2 2 2, ,2
;o= == 2 /3 - - € “ee 2
0 (»y 3 °y/')BgKVx My X)SX + (257)

Thus we can reduce the phase errcr to fourth order by selecting

1 2
\ = — c . 2
)x 5 + :x/3, (“586)
7 b4
2
Ve T oM, T E . (258b)
b4 Y Y
B ) Nia
o hgntt i SR T
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Solving Egs. (258a, b), we get

12 2
Y Y
AMPLITUDE ANALYSIS
Following the analysis of the one-dimensional case, since !A[z = AA
we have
2
(lA| )o = 1;
2, % X X
(a9 =a"a_ +aa
o Too " o
(|a]%)Y = A%+ a a?, (259)
o 0% T oo

and so on. Noticing from Egs. (2417(245) that odd derivatives are purely

imaginary while even ones are real, we get after substituting in Egs. (259)

(IAIZ)O = 1; (260)
X
(IMZ)xx = 22" + (1-\3)2]- (261a)
o o i ! a
X Ly
(Ja]$H Y = 202 + %o i"—]- (261b)
o o i1t -
Ay
Yy _ Yy 0,2, -
(al 'S 2007+ (7715 (261c)
X XX¥
(|a|2)XXxx | 5aXxxx 4:2)(1\0 )+ 3(a% %), (262a)
o N o i i o ! a
2, XXXy XXXY 2XX Ag Azxy A: XX, Xy
Ga[HTT = 2 7 + (=) () + 3= () + (A TAT]; (262b)
XXY Y
A
(:Alz)zxyy = 2“‘2){” + (=) (=2) + aAFFAYY
d 1 o} o]
Azyy Az Xy, 2
20 ) 2l 4 (262¢)
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2. XYYy XYyy Az Agyy Azyy Ag XY. Yy
= D —— ——— . >
(al® g 27T ¢ () () + 3= )+ 3A AT (2624d)
y yYy

2, YYYY _ YYYY | 4 B, Bo 3(aYYy2 262 i

GalHT = 27 + a7 () + 3D 7T, (262e) |
while the odd derivative vanishes. Consequently, the expansion of IA'Z

takes the form

2 2
8 8
2 _ 2 2,XX “X | 2.xy 2 yy Ty
)% = dalDH + tdalH " 5+ U] Vo BB, ¥ (alH sy 50
g 8 &> g
12, XXXX "X 2,XXXY XY 2.%XyY XY
+ a7 sp+ RN ] s+ dalny 4
3 4
» (|a]H*YYY 353ﬁ+ (|a]2)Y¥¥y Egl) + (263)
o 6 o 24 o
Exanmple:
Using Egs. (250), Egs. (241)-(243) yield
A =1;
@]
a* a¥
_O = - ———0- = =€ 3
i £x’ i %
a¥¥= =2(v_ - u) = -2:-:0,
X
a® = o,
o]
Yy 2
Afd= -2 - = =2¢7,
© (UY uY) EY

which when substituted into Egs. (260), (261) give
2
daf® = 1;

(]A]Z)zx = - 2€i;

b—
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([Aiz)zy = 2¢c € ;

(a]®H¥Y - 2

Equation (263) then expresses the amplitude expansion as

2 _ 2,2 _ , 2,2
|a]® =1 - (e 8, 2e e, BBy, T EB) ¥ e
[A‘z =1 =-| €8, - Eyey |2 + oeay (264) %

showing that the diffusion of the scheme is second-order.

POSITIVITY

From Egs. (223) and using Eg. (258a),

2 2
€ [
™ _ 0 1.2 1,
Pi,g =Pyl -2+ 7)) - 2(g+ 3
2 . 2
|9 T <
n 1 X X n 1 X X
Pl 3 ey 53
2 2
n L, Sy, J . 1, 5y .y
ol T3 Tl ey gl )

Each of the square brackets is > 0 for [exl,ley[< .
TD . n
Consequently, pi 3 > 0 if all pi 3 > 0. Now we get
’ ’
T T T T T T
n+1 ™D X X X * Y 5. Y Yy
= - . .- .. o . - e.T L - Zp.7 .t oL *
oi,j oi,j ux(pl+l,] 201,3 * 1-1,3) uY(Pl,j+l F1,] pl,j-l)

The asterisks denote the fact that the antidiffusion fluxes are trimmed

+
enough such that p?+; is limited by the sign of Dij' Then o? ? > 0.

(4

14
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STABILITY
Equation (264) proves the stability of the scheme near Ex = By = C.
For the scheme to be completely stable, however, we must have |Al <1 for
0 i_sx,s < 7. Let us check A , at the largest values admitted for € v Ey’

Yy
namely 1/2.

From Eq. (226e)

= -2 -3 -c - 2(v_ - - ; 266

ag 1 (vx ux)(l cos Bx) ()y Jy)(l cos By) (266a)
z = - i 2 -
AI e, sin Bx (1L + hux(l cos BX)]

- ¢ sin 8 [1 + 2u (1L - cos 38 )] (266b)

Ty T Ry Yy "O% Py
Substituting for Ve T Hy from Eg. (258b), and uX from Eg. (258¢c), we get
v ¥ Y

1 : 2e201 267

AR = - 2;x(l - cos Bx) - ‘Ey( - cos By), (267a)

2
A= - £y sin Bx (1 + %(l - 4€;)(l - cos Bx)]

I
i 1 1 1 4 2 67b
- e + = - - g . 2
e, sin By { 4( ey)(l cos ;y)] { )
= s o= 2 = =.E'2-v
At Tt Sy 1/2, Mo uy 0; Egs. (267) reduce to
1 1 .
AR =1 - 3(1 - cos 3) - ?(l - cos B );
A-l('8+s'nﬂ)
1= S(sin 8 i By)

Noticing that 1 - cos 8 = 2 sin2(8/2) and sin B8 = 2 sin (8/2) cos (B/2),

we get




. 2 .2
AR =1 - sin (Bx/2) sin (By/Z)'
_ _ . + si ) 91,
A {sin (Bx/2) cos (Bx/2) sin (By/2) cos (By/ )]
yielding
8 B B B
1a}2 =22 + a2 =1 + sin = 4+ sin® X + 2sin? X sin? X
2 2 2 2
8 B8 8 B8 g 8 4
.2 % .2 ¥y X 2 ’x .27y 2 7y )
2(sin 5 + sin > ) + sin > cos > + sin 5 cos >
8 Sy Bx EZ
+251n7 sin > cos—E— cos 5.
2 8x
Collecting the terms containing sin > we have
B B 8 B B
_ einl X O s 2 7y - 2 x = = al X 2y
sin > (1 sin ) ) + (1 cos” — )] sin 5 {cos 5
+ sin2 E-15] = - sin2 Ei cos2 EX - sin Eﬁ
2 2 2 2"
B 8 8 B
Similarly sin2 E¥ terms yield - sin2 ?¥ cos2 ?? - si 4 JL, resulting in
B B 8 8 B 8
2 .1 - (sin® =X 2y . in =X sin L X X
|A| =1 (sin 5 Cos 2 sin 5 sin —= cos —= cos
B 8 8 B 8 3
.2y 2 7x. X A i Y x,2
+ sin 5o cos ?r) =1 - (sin 5 ©0s 5~ - sin 5+ cos 3 )
3 8 B 8
= - einl X ¥y 2. x _ ¥
=1 sin (2 3 ) cos (2 3 ).
Consequently,
8 8
x X
!Al€x=€y=i cos (5 ) <1, (268)

showing the scheme to be stable at €er € = {. The value lA] for smaller

Y

values of Ex' Ey was evalt ted numerically and found always to satisfy < 1.

Hence the scheme is completely stable.
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It is worth noticing the diagonal symmetry of Egs. (264), (268).
In fact, on the Bx, By plane, [Ai looks like a wave with Zront parallel

to the Sx = By diagonal, as illustrated in Fig. 27.

Ll e I R R . e
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XIII. RECTANGULAR GRID MOTION

Consider a system of points tagged by the dcuble indices i, j;

- X x(i,3,t); (270a)

1,3

Figure 28 illustrates the grid formed by Eg. (270) at a given time .
The pair of numbers at each point irdicates (i,j). For a strictly rectangular

grid at all times (which includes Langrangian grid motion),

x(i,t); (271la)

A<
i

y{j,t). (271b)

"
[}

which we therefore denote from now on by

X, = x(i,t); (272a)

y. =vy({3,e). (272b)

This leads to a mesh as in Fig. 29.




X1v. GEOMETRICAL ASPECTS

We consider seven geometries. (These by no means cover the whcie
spectrum of twc-dimensicnal systems.) In cartesian Geometry, we have x-y
(x=z or y-z); in cylindrical geometry, r-z, r-;, and z-3, and finally in
spherical geometry r-<, r-4, and $-5. Figure 30 illustrates a finite
control volume in each of the different cases.

As explained earlier, when the grid moves the control surface area
in the integral form of the conservation equations should be an average

surface area defined as

(Zgit'g)ds = swept volume.

Smean
In one-dimensional cases, the above definition reduces to defining
swept volume . . ; . .
a, - < SWEPL VO_UNE | In two dimensions, however, this is not enough.
interiface

1?6t
We have to find a path between the o0ld grid and the new one such that we can

construct a mean cell having its surfaces egqual to the average areas and

corners located on the above path.

1. Cartesian Coordinates

Figure 31 illustrates the location of cell (i,j) at times t? ard
n+l n R . . . . .
t =t + dt. The left and right interfaces are denoted by (i - 1/2, 3},
(i,3 + 1/2, j), respectively, and the bottom and top ones by (i,j ~ 1/2),

(i,3 + 1/2). We notice here that since all i * 1/2, j interfaces

(different j's) move as a whole, the grid velocity is independent of j.

g
it}

It is therefore denoted by u without a j index. The same is true
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In cartesian geometry, it is obvious that the path needed is a
straight line between the new and old corners of the cell, and the mean cell
is halfway between the o0ld cell and the new one.

The volume swept by interface (i * 1/2, 3) is given by the product

(average base) x (height):

( n - )+ ( n+l n+l)
RSS! i Yi+d " Y55 L LR
itd, 2 itd i

{

n+l 2, n+l n
(A + AJ ) (xiti T Xisy

)

where we notice again that the i index is omitted from A since all the

itd, ]

Ai+} j interfaces (different i's) are equal. The above eguation can be
-2

written as

n n+l n n+l

< izt vy o Yiey T Y5y el

n
A% 3 )] (x, - xi‘*> (286)

ixd,3

showing that the mean area is halfway between old and new. The grid velocity

: u3+} in this case is considered constant,
xn+l _ xn
g iz} Tis} .
Uisy 3t ’ (287)

and the mean area is

An + An+l

n+t n+4 n+i 3 j

. = Y. - . = ’ 288
A5 Y6 7 Y54 2 (288a)

where

n+4 l n n+l

. = —(y. + vy, . 288

j4 2(yJﬂ y]ﬂ) (288b)

Ao

- T et ea LS sy mm*m mﬂ Eﬂr T J




Similarly,

n n+1l

R TS SO s S

i Ti+d i-4 2 !

where
n+4 1 n n+l
= — <+ .
Xivg = 2F5ay ¥ Fiay)
The mean cell colume is

n+4 n+4 n++4 n+4 n+4t
¥, .= . - . X - . .
1,5 7 Waey T Y5 (g 7 %5y

2. Cylindrical (r-z) Coordinates

(289a)

(289b)

(290)

Let us derive the required path between the corners of old and new

cells such that the corners of the mean cell fall on that path.
illustrates the old and new cells.

interfact (i,j £ 1/2):

zn+l zn+l
j*} jxd
2 2
¥l’]t§ = mr +3 dz £} -—[' m:l_é dz 3’
20 zn
jti jtd

. . X . 5 . . 2
where it is obvious that a linear average can be obtained if r.,

assumed to be linear in Ziyr Let

2 n 2 n
(Fiay) = (Fiey) %3y T Z4ed
(rn+l)2 - )2 B LN+l _ oo '

i*i it jt j*4

i.e., a parabolic path.

Figure 32

Figure 33 shows the volume swept by

(221)

3 is

(292a)

The above formula can be written concisely as

(292b)
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yvielding
Az,
5 1+
2 = (et % 24 ARZ .
it4 i*d Azj*'i it}

Substituting (292c¢) into (291), we get

1 5 2 Az 3
Avi,jté = ~rAZji (ri+§ - rl_i)d(zziz—)
0
n ,.n+l 2 n 2 n+l 2
- HAZ [(rl""& + kri+_}) . (rl-i) + ( . é) ]
j+3 2 2 !
yielding a mean area
n+l1
An+§ - AVi,‘:} - TT[(rn+<})2 - (rn+i)2] _ Ay + Ai
i Azjti i+d i-% 2 !
where
n 2 n 2\
ot [ Taey) * (Fi4y)
i+d 2

This shows the advantage of the parabolic path (292a), namely

face itt,j is

(292¢)

(293a)

(293b)

(293¢)

(2934d)

i +
Az X = AR2 =1/2,
IFT SRy
i.e., the average area A2+§ is halfway along z between the old and new ones,
at
zn + zn+l
zn+§ - jri jti
jxi 2 :

Following the nomenclature of Fig. 34, the volume swept by the inter-




r,
i*4 5
=f LCTLIENNOL (294)
rn
it
But
z =z A 29
jep T Fyep T gy (299)
yielding n+l
ixd n n Az ,4 LES P
Wi,y T Tilegy T oE) Y G Ay T T, M 1y
r.
iz

0
2 2
Ar’, beT
s ez -z et
AR I+ J ARS
i+é it}
2 n+4 n+4
= TAR . 2
AR, (25,5 + 250)) (296)

Now to be able to construct a rectangular mean cell with its four corners on

<4
the parabolic paths of Eg. (292a), the quantities A" :

. have to be also
ltirj

half way between old and new, i.e.,
/s
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n+d n+é  n+d  n+i
= 2Tr [zj+§ zj_§

ith,j it} 1. (297)

where we notice that the interface area is dependent on both i,j, in contrast

to the cartesian case. With Eg. (296), Eg. (297) yields

n+i Aviii
. . = (298)
i*d, ] AR2 /Zrn+§
it} i*d
whence, if u?+§ denotes the average velocity of the grid during t,
n+l, 2 n 2
(r,, )" - (x. ;)
g _ _Tixd it} -
uitist = 2rn+§ (299)
itd
where. as is clear from Eg. (293a), it was assumed that
v? st = AZ = zn+l -2 (300)
SEY) j+é x4 jt4°

The difference between the form of (299) and that of (300) is attributed to

the parabolic path of the corner. If the grid velocity v?+i is a constant
during §t, we evaluate u?+§ at tn+§ = tn + %F from (292c¢)
dr AR? . dpz AR | dz
oy ixd Uil j*d _ Ty SES)
. = A - ’
it} dt qu_ti dt Athi dt
whence
2 g 2
R R
g BRi+1 Ve %Nig
Yixy T ox AZ. .,  2r. .ot ' (301)
itd EX) itd
. . g - =
using Eq. (300). Since v't§ = const., (Azjti/Azjii)t . s = 1/2.
2
Consequently, from (292c)
2 _l. .. n (2 n+l, 2, _  n+i 2
ritil st~ 20 Fiay) F rg )T =m0y
T
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thus reproducing Eq. (299) when substituted in Eg. (301). A more general

definition of the average interface is therefore

mean swept volume (302)

interface (velocity of interface at e o+ %?).St
area

where the denominator is approximately but not quite exactly equal to the

distance the interface is shifted. Finally, the mean cell volume is %

Vn+% = ﬂ[(r?+§ 2.

) n+d 2. n+d _ n+d
i,] i+4

i+§) ][zj+§ “j—i]' (303)

(r
3. Spherical r~¢ Coordinates
: . . n n+l . .
Figure 35 illustrates cell i,j at t and t . Consider Fig. 36

showing the motion of interface i,j*i. The volume swept by interface

i,j*t is
n+1l
jxi
_ 27 3 _ .3 .
A¥i,jt§ = 3 (ri+§ ri-i) sin ejié dejii
n
3.
jxi
Jn+l
‘jté 2 3 3
= 7 - - 6
_f 3 (ri+§ ri-—})d( cos Vjﬁé), (304)
3"
jx

showing that we can get a linear average if ri+§ is assumed to be a linear

function of (- cos ejii)' Let
3 n 3 n .
(rixi) - ('iié) ) cos ejti - cos biti (3053)
(rn+l)3 _ (rn )3 - cos &" - e en+l ! a
ith it} 0% Tyep T 08 Yyaa




or in a more concise form,
Ar3 A(~ cos € )
ity j+i ]
- (305b) i
AR3 A(=~ cos ®.+ ) i
i
This yields
A= cos 9.,,) %
3 _ n 3 j*3 3
Tieg = Cia)  * T eos o MRy (305¢) ki
jxd T
Substituting into Eqg. (304) we get F
1 .
_2n - n3 _ n3 !
Advi,j:ti =3 A(~ cos Ojté)f [(ri+§ ri_&) ‘
0
A(~ cos 6.:§) (AR3 ) AR3 4 A(- cos ?jié)
A(- cos thi) i+% i-3 A (- cos Ojti
n 3 n+l, 3
__gg( s en - en+1)[(ri+§) * (ri+i)
=3 (co j+3 os 44 5
(Gt oTh3
- 5 ]. (306)

We notice that the mean interface i,j*% is halfway on a cosine scale between

n+l
ixd’

n
31

(ix?,3), it sweeps a volume (see Fig. 37),

n+l . n .
8 9j+§ or on a cubic scale between ri+§, r As for interface

rn+l
itd 5
¥, .= . . - . .
a it1,5 2nrlt§(cos eJ-& cos %+i)dr1t§
oy
ité
n+l
iz 27
= Rl 307
3 (cos 8._§ cos B +*)dr +3 ( )
N
it}

e g = e R R e PR
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But cos 9, , = cos 6? + A{- cos 6j+é)' yielding

jt jt
n+l
- rité n n A{- ccs 3+§)
== 3 - 5, — {A(- 3,
Aviti,j 3 [(cos 5-1 cos vj+&) + A(- cos ®.+§) (- cos 3—§)
rn ”
it3

3
- A(-cos 9j+i)}] drii}'

which with Eg. (305b) results in

1
2m 3 n n+l
¥ L = = . - .
A i3, 3 Ath% [{cos 6]-§ cos 8]+&)
o]
3 3
A
Srixy 8%y
+ {A(~ cos 5. ,) ~ &(- cos ©. ,)}] @&
AR3 J-i j+§ L‘.R3
i*} it}
n n+l n n+l
. + 9, o . + g, .
B El AR3 : cos ej-i cos -1 ) cos a]+§ cos ]+’] (308)
) itd 2 2 ©

Here we notice that interface i*{,j is halfway on a cubic scale between

+1 +1
rzii' & 14} or on a cosine scale between a?ti, S?ii' Consequently, we can
construct a mean cell having its corners on the paths of Eg. (205a). Let
3 n+l, 3\ 1/3
N R
riti = 5 (309)
and
cos e“ + cos Qn+l
+ i+ i E
cos o771 = 2 L (310)
jt 2

Egs. (306) and (308) can be written then as

n+d 3 n+d o3 (311)

_ 2m n - n+l
Av = {(cos ejt§ cos 3, i)[(ri+§) (ri—i) ]

i,3¢% 3 jz

and

- r——— - . .
W v oy 2 e a - v - ."""-” - *
- a J.i.ﬁT,ﬂzxrntu:gijggzz?yuwg- -n#sapE:EE!.;»4 e
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2n n+d n+§
it3,5 "3 (cos ej-& cos i)“

n+l 3 n 3

hyd l+§ - (rlié) ]I (3]-2)

respectively. Now in order to be able to construct the average cell,

A, . and A, . should take the forms
lljti l'télj
: n+4+ n+§ 2 n+t 2 . n+d
=T - . ’
B jtd [y (x;_3)71 sin 553 (313a)

forcing the choice “
A n+t 3 n+4 3 _ n+l i
9 5o - 1,3t} 2 (ri+% (ri~§) cos thé ccs ejt& (315
i,j*4 n+i 3 (rn+})2 - n+§)2 i 6n+§ !
i3 i+d i~4 SN Cyy
and
n+# _ n+i, 2 n+3 n+3
Aiti,j = 2n(riti) (cos ej_i - cos 6j+%), (314a)
forcing the choice
n+l 3 n 3
e
g T I U T %
u; 8t = = . (314b)
it An+} 3(Inﬂ)z
i*d,3 ixd

To complete the formulation, it remeins to check the consistency of the two

velocities us+§, vg 44’ namely that they occur 2t the same instant.
Differentiating (305a) with respect to time and taking rl £ 6j+§ at the
moment when they are halfway i.e., rn+§ 6§+§, we get

n+d 2 n+# iy oL n+i
) (drité/dt) _ sin é(de i/dt)

n+l, 3 n .3 +1
- 1) cos Bjté - cos Bjt&

Recognizing that (dr i/dt)nfi = u2+§, the velocity of the grid at

tn + %}, from Eg. (314b) and the above equation we obtain

n+d n n+l

(de.t} L st o cos ejt} - cos ejii

dt ' (313)

. n+}
sin 6,

ji

whence from Eg. (313b), the velocity of the grid at "+ ?;,

- o arm——— y— - I

W P e . e~ e [ SN .
s -—g -2 s r1xr1.u1=§!gs==!?y, ”""tji!!!-V" .
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Recognizing (——%%i)as

i,j*} [from Eq. (315)
the discussion in the

an average radius for

85
n+% 3 n+§ 3,
i 2 Fiag) T o) Taey ne e
i, jx¢ 3 (rn+§)2 (rn+§)- dt 0T
i+d i-4

, . n N .
the angular velocity at t + 3t/2 of the interface
obviously independent of index i as expected after
section "Rectangular Grid Motion"], we can define

the interface i,3j*} (independent of j) as

1 n+d 2 n+i n+# n+§ 2
Slr, ) ) (x ) + (r )]
RriH»i o 3 i+d Fivd’ iy i-4 (317)
1 n+§ n+i,
2[( ) + (r &
Finally, the mean cell volume is
SOt 27 n+§ 3 _ ,.n+: 3 n+¢ q+§
¥i,j =i 1+§ (ri_*) 1 (cos ej_i cos +§ (318)

Coordinate cases 4-7 will be treated in a later report.
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XV. SOURCE TERMS

As explained earlier, source terms are integrated either over cell

volume or over cell interface area. The volumes and areas used are those

of the mean cell. The balance of source terms is the main reason for the
necessity of a closed mean cell construction, i.e., the ability to construct
a closed cell whose corners are on the paths between old and new cell
corners. For example, if we try to solve a hvdrostatic pressure problem

in cylindrical r-z coordinates, the momentum equation is nothing but the
balance cf the body gravity force and the pressure force on the top and
bottom surfaces. If the mid-cell interfaces compose a closed surface
enclosing the midway cell which happens to have a volume consistent with

the interface areas, force balance is already guaranteed (provided the
pressures are correct).

-~

Let us consider the difference form of —j pH&s (vielding - grad p)
g
s
in tne three ccordina* ises considered above. The resulting forces

along the x, y directions are

_ , n+d n+# n+d .
Fr, .7 Pic,y T Piay,ylR (3222)
1,]
n+# n+4 n+# e
F = . - p. . A, %, 2ib
Y. . (pl,J—i pl,j+§) 3 (32-5)
i,J
respectively, where
n+# n+}
pP. . + D, .
n+4 _Ti,3 i+l,9 \
pi+§,j 5 (322a)

and

ni53‘1iji!!.r., . mms




n+d n+3 87
P, . *tPp. .
n+d_ TiLj i,j+1 (3225)
i,3+4 2 : -
In cylindrical r-z coordinates,
n+i n+3 n+4 n+4 n+4  n+4 n+4 n+4 a+4
F =p. . A, . = p. . A, .t 2% p. L (r. - r, z, T =22 7),
rij Pi-1,5 %i-1,3 7 Pi+d,3 “ied,3 pl,J(rHé rl-é)(]ﬂ Zi-4
,
which with Eg. (303) yields
pn+§ n+4
n++4 n+i n+4 n+4 i,j 1,3
F = p, . A, . =~ P, . A, F—_—m—,
r., . pl‘&,j l-ilj pl+&,j l+il] n+§ (323&)
1,] r,
i
where
n+i rn+§
n+d _ Ti+d Ti-3
£ z 3 . (324)
. n+d , n+d .
We notice that pi ,/ri acts as a body force per unit volume. The force
!

in the z-direction is

F e LT A P
25 i,j-% i,j+4"71

. (323b)

In spherical r~: coordinates, as illustrated in Fig. 38, the pressure

acting on the hatched area creates a resultant force normal to the axis

from which 2 is measured, which in turn gives rise to a radial ccmponent
' !

Fr and a tangential component FS' This situation, namely, the creaticn

of a body-force-like component, occurs whenever the area of parallel

surfaces of the cell are not equal. This is bound to happen whenever the

interface area depends on both indices i,j. A simple way to evaluate

the force generated is the "pressure x projected area” since this area

is the difference between the areas of these parallel surfaces. The

radial force is therefore

§
\

TIETT T e -~ r " P mapivenin ) . o T i




ALEXANDRIA VA R H GUIRGUIS 21 MAR
. JAYCOR-J206-83-003/620t SBI-AD-E001 427
UNCLASSIFIED N00173-80-C-0297

AD-A128 364  TWO-DIMENSIONAL FLUX-CORRECTED TRANSPORT{U) JAYCOR
83

F/G 20/4

1

NL




= ﬂﬂi? f22
= 2z

flis :

?? - mu2 0
= e
22 s s

o

\\\\l

\I\l




F n+d n+# n+# n+% '
= p, -9 . . .+ F
Ti,3 Piy,5 Bi-1.5 Pivy,5 Ti+v:,3 r, j'
where
! _n+d n+i n+# n+# n+t, 2
Fo . TPy, ¢ i+d,3 i-4,3° m Pi,3 ((ri+§)
i,)
n+t +3
n+dt 2 n n & i,j i,
- c . - cos 8 =
( l-é) } (cos 93 3 cos J+i Rn+&
i
Ri was defined earlier in Eg. (317). Thus
n+d _n+i
n+} n+d n+4 n+i Pi,' ¥i,'
F = p, . A, . - P, . A, .+
Y, . l-&:j i-%,3 i+d,3 i+d, ] n+4
i,)] Ri
As for the tangential direction,
+ 1
P, - p2+§_§ A2+§+i . p;w;& n §+& +F ,
i,j I ? 1 I l')
where
' _ _n+d ntd n+} _ n+i n+§ 2
Fﬁi 3 i,3 i, j+4 i, j-% i pl 3 Hr 1+§
!

1f we note that

sn+§ Jn+d Vn+§
sin 62:3 - sin 9 i = 2 sin (—l——————l—*) cos bl—-————l——)
and
D+ n+§ en+§
cos 8 _i - cos 6?:: = 2 sin (‘J——————j——ﬁ gin (—J——————l——)

and using Eq. (318), F

can be expressed as

(325)
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n+4 Vn+§
F, = n+; s n+4’
“i,3 R, tan 7
i
where
s :ﬂ:§+a¢i
RN . SN it S (326)
3j 2
Thus
n+d n+d nvdn+d o+l o+t
E| =p. . . -p. . .. + i,3 i,3 ’
2. i,3-% "i,3-% i,j+¥ i, 3+
3 R o o0t
J
. . - - > > . . . ->
Next, let us consider the difference form of -| pu-°nds [yielding - div(pu)].
sg

For the three ccordinate systems considered above, the power added to the

cell (i,3) is

n+4 n+d n+3 n+i} n+i n+i
P, . =D, ., . A" . - p. . u, -y .
i3 Pi-4,3 Yi-1,5 Bi-4,3 T Pied, 3 Uied, i Tied,
n+d n+# n+t n+i n+4 n+4 -
: ; - . . . P 328)
Y Py, 5ed Vi,a-3 BiLod T Py, 5e ViLged BeLies (32
where
+
n+4 u2+§7 u2+i i
= ¢ rd 9
Yivd, 2 (329a)
and
n+4 n+3
n+4 Vi3 T Vi, 941
» = ’ ~a
Vi,j+§ 5 . (32¢b)

The forces (Fx,Fy), (Fr,Fz), and (FV'F@)' and the power P constitute a

sample of the source terms encountered in treating generalized continuity

n++

14

equations. These are denoted by source in the next section.
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XVI. ALGORITHM

We describe the implementation of the scheme of Eqs. (223). The
program and calling sequence are listed in the Appendix.
Assume a rectangular grid in two dimensions denoted by the coordi-

nates x, y (not necessarily cartesian; for example x = ¥, y = § vield

spherical coordinates). Let the interfaces coordinates be xl/z, x3/2,...,

xN“+l/2; yl/z, Y3/2,..., yNy+l/2 (see Fig. 39).

The cell centers are located midway between the interfaces and are
denoted by a pair of indices (i,3j), corresponding to (x,y), respectively.

The cell volumes are given by

( cartesian .o n,n+l _ n,n+l)(xn,n+l _ xn,n+l)'
x=y 0 Yyer T ¥5ep )P i~y
n,n+l
¥, . = (¢ cylindrical n,n+l2  n,n+l 2, n,n+l _ n,n+l
i,] r-z : [(Xiﬂ (xi-i )][yj+é Vi3 1
spherical 271 n,n+l 3 n,n+l 3 n,n+l_ - n,n+l
L re3 3 [y )7 0G0y ) Tees vyl e ces vy
We have then
Vn+l oTx = 0 . st (" An+§ n+4
1,3 1,3 7 1,301, Piv3,3 Yied, 5 °Vitd,]
n  _n+t n+4 n+#
+ 6t(pi—§,j Ai-i,j i-i,j) + source , (332a)
. NS

’




P —

T
o S AT Y PO N Vs S
i,] Qi:j i,] pir] S (0113"'* 1,j+¢ il]*‘i‘)

n+d Lt urce M (332b)

a e s
i,j~% " 1,33 1.3

for (i = l""’Nx) and (j = l,...,Ny), where

n n
n _Pi,5 7 Py (33a)
Pivd,; 2

for i = l,...,Nx - 1land j = l,...,Ny, while

P e o0
n _Yi,9 i,3+1
pi,j+§ = 3 (333b)

n

. . n
for i = l,...,Nx and j = l,...,Ny - 1. The boundary values D§¢j' DNX+&’j

are obtained from

n n
+
pn _ pl,j pL,j_
3,3 2 !

n n
o] A o] .
o _ Nx,J R,]
. ?’
NX+§,J 2

for (j = 1,...,Ny) where L and R denote left and right boundaries,

respectively, while

n i1 7 Pi,B
i, 2 '
n n
p1,N * pi,T
0" =,
l,Ny+§ 2

for (i = l,...,Nx) where B and T denote bottom and top boundaries,
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respectively. The mean interface areas Az:i,j and A2T§+§ are given by
n+3 n+¥ n+4
ivd,3 ~ Y41 T Y32
and
n+# - n+d - n+s
i,j+% i+d i3’
where
n + n+1l
n+¥ _ yj+} yj+§
Y543 2
and
xn ‘n+l
xn+§ _ i+ i+l
i+d 2

for cartesian x-y coordinates; by

n+ n+t n+d _ n+d

itd,3 2m xi+§(yj+§ yj-é)
and
n+i _ n+4 2 _ n+4 2
i,5+4 T mlhix; 3 (xi—é) 1,
where
n + n+l
n+d _ yj+§ yj+§
Ti43 T 2
and
r n 2 n+l 2—1‘ &
e S B Ve L TY Y
i+ 2

for cylindrical r-z coordinates; and by

(334a)

(334b)

(335a)

(335b)

(336a)

(336b)

(337a)

(337b)
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n+d _ ,_ n+d 2 n+¢ _ n+#
i4d,9 = ‘n(xi+i) [cos yj-i cos yj+§] (338a)
and
n+4 _ n+i 2 n+4, 2 . n+4
1,9+ = n[xi+§) (xi-i) ] sin yj+§' (338b)
where
?:i = arc cos [%{cos y?+* + cos ygii}] (339%a)
and
n 3 n+l, 3
n+i [:(x1+§) *(Xy) ]”3 (339b)
X,
i+d 2
for spherical r-9 coordinates. Finally,
gtd  _ nt+d g
Vird,3 7 Yird,5 7 Vit (2402
and
syt n+i (341a)

.. = v, . - vy .
i, j+% i,3+% i,j+%

g g

The grid velocities ui+i,j' vi,j+§ are given by
n+l _ <0
g o ity Ti4d
ui+§,j Tt (341b)
yn+l _,hn
o _ o+t Yi+3
i,j+% st
for cartesian x-y coordinates; by
n+l 2 n 2
(x, )7 = (x, ;)
u? . = it} it (342a)
i+d,3 n+4
2 x st

i+d




n+l n

v -y,
g _ g+ jt+i
Vi,j+§ 5t (342b)
for cylindrical r-z coordinates; and by
n+l 3 n 3
g _ (i) 7 = ()
Yi+1,3 n+i 2 (343a)
’
3(xi+}) 5t
xn+§ cos yT., - cos n+l
v3 - yj+§ yj+é (343b)
i,j+d St sin n+4
Yi+3
for spherical r-8 coordinates, where
n+4 2 n+ n+4 n+t. 2
)
n+dd 2 (Rppg? B P Xy ) P (344)
X T3 n+4 . n+i :

it T Xy
Equations (334)-(344) are valid for i =0, l,...,Nx and j = 0, l,...,Ny.

Equations (332) yield ozx. and pfy., which are used later to evaluate
’ !

]

the antidiffusion fluxes. The transported and diffused densities are then

obtained from

n+l TD +1 T + n+1l (on _ pn
i,9 Pi,5 i,3 Pi,5 itd,3 “i+d,5Pi+1,5 " i,
+1 n n n+l n
Vicd, 3 ¥i-4,5%5,9 7 fi-1,5) T Ve 5e Vi34 a0
n n+1l n n
- P, L) = Vv, . b S .. - ..
pl'J) vlrj-i l,J-i(Ql,J Dl,]-l) (346)
for i = l,...,Nx and j = l,...,Ny, where
1 1 2
\ -—+—
i+d,3 6 3 €1+§,] (347a)
and

T —

e T e —

L e
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while

+1 1 n+l +1
v2+i,j = 2(V§,j * V?+1,j’

for i = l,...,Nx -1and j = l,...,Ny. Similarly,

1, .n+l n+1l
¥ =TT+
i, 3+3 2(vi,j V1,3+l)

for i = 1,...,Nx and j = l,...,Ny - 1. At the boundaries,

n+l n+l n+l n+1
¥, . =% and ¥ . =¥ .
%IJ ll] n Nx+§,] NX'J

for 3 = l,...,Ny, while

+1 n+l n+1l n+l
& = 7 ana ¥, =¥
ll% i,1 lINY+§ ery
for i = 1,...,NX. The dimensionless velocities Ei+§,j' ai,j+i are

obtained from

syt Attt se
. - U1+§,3 i+,3 ¢ 1 + 1 )
i+d,] 2 St +1
i,3 i+l,3

for 1 = O,...,Nx and j = l,...,Ny using (349a) and

n+d n+#
. A YIS i VTS S B S
i,j+¢ 2 n+l n+l
i, i,3+1

(347b)

{348a)

(348b)

(349%a)

(349b)

(350a)

(350b)

for i = 1,...,Nx and j = 0,...,Ny using (349b). The antidiffusion fluxes

are then evaluated according to




%

n+1l Tx Tx
F.o, .= u. . .« ¥ (e =) (351a
itd, 3 - Yied,3 Titd,3 Pitl,5 T PiLj )

and
) ntl Yy Ty
Bt = Bi, 541 Vi, 541 Pyl 5e T P50 (351b)
where
-1_2.2
ui+§,j 6 3 Ti+d,5
and
=L_2.2
Hi,9+3 T 6 T3 fi, g+

FLUX CORRECTION
The flux correction adopted here is that of Zalesak5 in multi-
dimensions. It "guarantees that the four antidiffusion fluxes, associated
with each cell, acting in concert, do not create any ripples.”" In our
notation it takes the following form:
1. A flux is cancelled if it is opposite to the local gradient

D . . : . .
of JT along the same direction, and if opposite to either or both

. . T . .
adjacent gradients of o, i.e., Fi+§,j = 0 if
™0 D D
- <
(Fivy,505p1,5 = 05,y <07 and {(F; 0 55 5
D D TD
- - <
Pivr,y) €O OF [Fyy 5oy 5 =5,y <01 (332a)

and Fi,j+§ = 0 if
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™ ™ D
By 544 Pi, 961 ~ Pg,3) <01 and IR, L0y 4s
_m ™D D . ,
pi,j+l) < Q) or [Fi,j+§(pi,j pi,j-l) < Q]! (352bk)

2. Evaluate the total in- and out-fluxes and their upper bounds.

Ll

+
Let Pi 3 equal the sum of all antidiffusive fluxes "into" grid point (i,3):

+
. L = , F. ,) — mi 0, F, .
l—"l'J max (0 1-%,3) min ( x+§,3)
’ F. . - i ’ B, . .
+ max (0 l,j-i) min (O 1,J+§) (353a)
+ +
Next we evaluate the upver bound Qi 3 on P.l j:
+ max D n+1l
A R D L 354
QL,J (Dl,j Pi,9°71,5 (354a)
The limiting ratio RZ 3 is thus estimated as
. + + +
+ / i
Ri j _ J min (1, Qi,j’Pi,j) if Pi,j > 0
14
0 if Pl . =0 (355a)
1,3

Figure 40 illustrates the bounding process. Similarly, arn upper bound

Q: 3 is placed on the "outgoing” fluxes.

Pl,j = max (O, Fi+§,j) - min (O, Fi—},j)

+ max (G, Pi,j+§) ~ min (O, Fi,j-i) {353b)
g, . = (TP, o nyntl (354b)
1,3 1,3 i, 1,3

Q. . _

B min (1, —td4) if B_ , >0
R . = P 1,)
1,3 3.3

0 if P, . =0 (355b)

i,3
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X min .
In the above p?aj, pilj are the upper and lower bounds, respectively,
r ’
n+ . . . . A
on pi ?, chosen so as to guarantee no ripples formation at grid point (i,3).

) '

Finally, since each flux leaves a cell to enter an adjacent one,

3. The fluxes correction factors are defined as

, + -— .
- ) min (Ri+l,j' Ri,j) if Fi+§,j >0
i+, 3 _ +
min (Ri+l,j' Ri,j) if Fi+§,j <0 (356a)
and
min (R, R, .) if F > 0
i,3+1" 71,3 i,3+3% =
C, . =
i,j+3%
R - + R
min (Ri,j+l’ Ri,j) if Fi,j+§ < 0. (356b)

The corrected fluxes are given by

c =c

Fi+§,j it+d,3 Fi+§,j; (357a)

C
F, . C. .., F. . .,
i,9+3% i,3+% "i,3+%

(357b)

max min . .
4. For pj and Qj , two choices are presented. A conservative

choice would be

Dmax = max ( TD OTD QTD ™D \TD ) (358a)
i,j pi_l’jl ,i’j_ll i’jl pi"‘l,j' Li,j+l H

min _ . TD D D TD TD

Di'j = min (pi-l,j' Qi’j_ll Di'jl pi+l’j, Qi’j+l)- (358b)

A more tolerant choice that gets rid of the problems cof "clipping" and

"terracing”" partially is

max = max (Da
Pi,5 i-

, 02 SO a (359a)

1,317 Pi,5 7 Pisl, 3 Pi,5e1)

1,3
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where
a TD n
o =max (p. ., ¢ ) e
1,) 1,3 1,3
and
min . b b b b b
Di,j = min (Di_l'jl ui,j_ll Ci,j' pi.+l,j’ Vj*‘l)’ (359b)
where
. D n
2 min (&, ., 9. L)
i, 1, 1,]

ANTIDIFFUSION AND HALF-STEP UPDATING

The corrected antidiffusion fluxes are added

n+l n+l n+l TD c c c c
Foo.C, . =%, p. .- . .~ F, J - .. - F, | 3€0)
1,3 "i,3 i3 71,7 i+d, ] i-4,3 ( i,3+4 i,3-2 (3
L . n+l
thus giving the new density Di 3
14
. . . n+ T+ . .
Finally, it remains to specify u ,i . and v‘*% in eguations (340)
i+4,3 i,3+4
B s ' +2 W . . s .
and the source terms deiloted by "source o %. First, the velocities at the
’
interfaces are obtained from
n+d 2+§ * “2:% j
: - r r
u, .= 361
i+1,3 > (36la)
for i1 = l""'Nx - 1land j = l,...,Ny while
n+3
\ u., . o+ u
un+s = 1,3 L
$.3 2
n+$
.+ u
N R
un+§ ) "J
N +4.5 2
X

and
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n+i n+4
n+4 _ 1.7 1,3+l ,
vi,j+§ > (361b)

for 1 = l,...,Nx and j = l,...,Ny - 1 while

vn+§ +
n+d i,1 B
i, 2

vn+i + v
i,N T

vn+<} - y

1,N +4 2

Y

As for the source terms they were defined earlier, Egs. (321) through (329).

n+: n+ n+#
Next, to get ui j,vi 3, and source i,5° we advance our system of conserva-
7 L. ’

. . . . n n n .
tion equations % time step using uy 5 2 57 source 57 then

’ ’ ’

+ n . n+l n 3
PR g = 0L B 2
i3 i, ] 2
n+ nn n+l nn St
yot et +6t = e+ ==
1.3 1,3 2
n+ n . n+l n.n ¢
source ? [t3¢™ + 5t = source o heset EE
| ] ] <
!
J
- - r—— - (] V.

e -:“, D™ o Wmﬁ.

LT e TR - et g 4
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XVII. TWO-DIMENSIONAL TIME SPLITTING

VERSUS FUL V TWO-DIMENSIONAL ALGORITHMS

Going back to Eg. (202},

. _ ~-i(e B + e B )Y _ -ie B -ige B _
A(Bx,oy) = e X X vy =e X X e yy = A(SX)A(By) (362)
iK x 3 -+

. >

1f oz 3 = e * , where x = (iéx,jdy), the analvtic solution of 3% + u-Vo =

according to Eg. (362), yields

o™ = a A )o” (363)

i,3 Y x"7i,]

where 3 = (u,v) is constant and the two operators A(BX) and A(By) are

commutable. Noticing that

b n
. L = . 6
ol’] A(BX)DL,] (364a)
. . . 30 30
is the analytic solution of 3? + u Evile 0, whereas
o+l A3 )ox (3€4b)
“i,3 Yy 1,3
. . . . 30 30 C e . X
is the analytic solution of 3t + v :; = 0 for an initial density 0y 3
o] ’

equation (363) invokes time splitting as an exact solution for the
linear PDE. 1If we derive a numerical scheme by expanding A(Bx,Sy) in terms
of sin Bx, cos Bx' sin By and cos By such that both A(Bx,By) and its
expansion agree up to a prescribed order of Bx and By’ we obviously end
with a time splitting scheme, in which each of the x and y operators
agrees with A(Bx) and A(By) up to a prescribed order of Bx and By'
respectively.

Alternatively, if a 1-D scheme is n ~ order in phase error

and m - order in diffusion error, namely
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Al =1 +0(8™ (365)

and

5 =3 n+l
“exact

where {A| and ¢ are the amplitude and angle of the scheme transfer function 3,

. 19 . : . . . .
i.e., A = |a] e'’, using a time-splitted version of the one-dimensional scheme

to solve a two-dimensional, x-y problem, gives [A[ et = a EAxAy

] is‘ 1 1.’3
= (ia_le x)(;Ay}e y). Thus,

_ . - m m - m m
lal = Ja | IAyl (1 +0(B)) (L + 0(8)) =1+ 0() + 08) (366a)
and
s = 13 n+l . Jntl
ST T 9y (% exact ¥ 00 11+ [jy exact © O(‘?’y ']
_ n+l n+l
= Sexact + o8, )+ o(BY ) (266b)

showing the two-dimensional scheme to be of the same order as the one-
dimensional one. Moreover, the errors in both |A| and 3 are free from
n, n
mixed frequencies, such as o(Sx By ) where n, + n, =morn + 1.
Although time-splitting appears to be the perfect solution,
physically unacceptable results are produced when dealing with inccem-
pressible or nearly incompressible flow fields, or when a differential
identity, such as divergence free property or irrotationality, is to be
strictly enforced. Moreover, because the antidiffusion fluxes are
corrected in each direction independently of the other, unnecessary

"clipping” occurs. Namely, the flux corrector may cancel a flux that
would produce a ripple in one direction, which actually is safe in two=-

dimensions due to the growth or decay of the adjacent cells in the other

direction.

+ 0(8 ) {365p)
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Going back to the problems arising in incompressible flows, let's

ﬁ(x,y), independent of time, satisfying 70 = 0.

"

consider a case where U

For simplicity assume u u, + Cx and v = v_ - Cy. Figure 41 illustrates

o]

the velocities at the interfaces of a cell, when dx = dy =1, C = 0.1.

0.1
0.1 1.3 0.2 Fig. 4l
o {y|=li—
Sx=1
0.2

Using a simple-transport scheme with time splitting

X o o e
¥, .0, . =¥, . .o.o= (u. . P, .- u, RN ) Aydt

i,j "i,3 i,3 ol,j ( i+4,3 ol+},3 ul—é,J 1-&,3) Y (367a)
7 L = X X - (v px - v ox Y Exdt

1,3 P8, 7 V1,3 P 1,943 Pi941 T Vi, PiL, -1 (367b)

where 0,1 stands for t 0, &t, respectively. Assuming a uniform initial

1, Eq. (367a) gives (l)'(“x

X o -
density o = 1, and ot oL
i,3

)= (L) (L)y - ((C.2)- (D)

- (0.1)-(1))-(1)- (1) yielding Qi ., = 0.9, Since u = u(x), v = v(y), px 0.2

v ] 1,73

for all j's and since u,v are linear, it is also true for all i's. Then, from
Eq. (367b), we obtain (l)'(oi j) = (1)+(0.9) - ((0.1)-(0.9) - (0.2)-(0.9))-

(1) - (1) yielding oi 3 = 0.99. After n time steps, it is obvious that

T 2
o? . = (0.99)n for all i and j. Generally, pé .= o? . {1-C )n. In other
i,3 i,3 i,3

words, the density keeps on uniformly distributed but decreases with time

continuously.
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An equivalent fully two~dimensional scheme would be

¥, p% L= R o? o= °© 5

- - F
1,3 i,) 1,] .lIJ ui"'ilj ui+§lj ui‘élj ’)i-érj)-’ycc

o o
(vi,j+§ Di+§ vi,j~§ pi,j-i)GXSt (368)

. . 1 .
which gives pi . =1, i.e. conserves the mass.
’

The discrepancy obviously lies in the assumption of U = const

while p is varying when deriving Eq. (362). In terms of transfer func~-
tions, the scheme of Egs. (367) is written as A = (1 =~ 5xtx)(l - eyty)
whereas that of Eg. (368) takes the form A = 1 -~ Sxtx - ayty.

The difference is obviously in the term "sxeytxt " which as will be

shown later is essential for high order diffusion. In the next section, we
try to cast a time~splitted scheme into a fully two~dimensional form. A

detailed explanation of the problems involved is given.

FULLY TWO-DIMENSIONAL VERSIONS OF
TIME-SPLITTED SCHEMES

Going back to the fourth crder phase and diffusion scheme

A= (1l -et)(l - ud) +vd (370)
1 £ 1-¢?

where v = A + é— and u = - - The two-dimensional, splitted version
of Eg. (370)

A= [(1 - sxtx)(l - uxdx) + vxdx]-[(l - ayty)(l - uydy) + vydy] (371a)
or

v - , -,
- Lol A PR I Y T




" -
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= (1 - \ - et - - et - ¢
A (1 Extx + dex) (1 ey v + \)ydy) uxdx(l €y x) (1 Yty + vydy)

- uydy(l - syty)(l - Sxtx + vxdx) - uxgydxdy(l - sxtx)(l - syty) H
(371b)
can be written as
D Eztz vzdz Extx xdx
A =1 - extx(l -5 + 5 ) - Eyty(l -5 + —5——)
e t vydy Extx vxdx
+ vxdx(l - —%—X + 5 ) + vydy(l - + 3 ) (372a)

which is > or ¢ |,ie | <%, therefore ensuring positivity of o i
hich is > 0 f ! < ! v < ¢, ti 3 i itivity of o' if

pn > Q. Then,

D * 1
A =2 - d (1 - ¢ t l-¢t +vd -= d (1 - ¢ ¢t
Mgy { x| vy vy 2"y yty) !
d* 1 L 4 (1
- Jy y<l - Eyty){ - £':xtx * vxdx T2 Hx x( - “xtx)J (372b)

where the asterisks denote the operators which fluxes are to be corrected.
This will allow us to correct the x and y antidiffusion fluxes simul-
taneously, thus avoiding unnecessary clipping. But that does not solve the
problems associated with divergence free flow fields, for example, because
of the term "sxeytxty." Moreover, we notice that the form of Eg. (372) is
in no way unique.

Although Egs. (366) show in a clear simple way that A = AxAy is

fourth order in phase and diffusion, let us analyze it using Egs. (246) to

(248), Egs. (260)~(262) with Egs. (241)-(244). The purpcse is to
determine which terms are responsible for the fourth order diffusion,
fourth order phase error, positivity, stability, and so on. We nctice

t t £t
that A * * =0, a Y Y = 0, making Egs. (241)-(244) valid.




Differentiating Eg. (37la), we get

o
]

[(

ex(l - uxdx) A
Y Yy

v, - ux) + exuxtx]A
Y YYVY

<X

(4}
%

=
-

S
F

- e 1 - nd )iy - ux)

Y YY

e (1 - 1-qud)
ExEy (1= Mgl ( u dy

X
Y
- u,
Y
axux
Y vy
- e (v = wu)
X
Y
£ €
Xy
(v_ - ux)(vy -y )

u

4
Y

t
¥ %%

+ t ]
v T Sy

= 0, thus Ax = Ay

(374)

(375)

(376)

(377)

(378a)

(378b)

= 1, yielding

(379)

(380)

(381)

(382)

(383a)

(383b)
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Substituting into Egs. (246) and (248), we get

X
Y _ _ .
(log A)O = ie, (384)
Y
Y 5
(log A)5 = lsx[l - o(vx - ux)] - 1(6exux - Zax]
Y Y Y Yy y
62
1, ¢
=6ic (Z+5 -v) (3853)
Y Y

showing AxAy to be fourth order in phase error, but more importantly, that
the cross terms of Egs. (382) and (393a), which do not appear in one-
dimension, are essential to the fourth order phase. More specifically,
these cross terms reduce the dependence of phase exrcocr on v and u to
dependence on v only, leaving u free to be adjusted for a high order
diffusion.
d.d
X

ARy

o in Eg. (383b) is not used in either (384) or (385) and

therefore can take any value without affecting the phase error.
Now we can construct the simplest fourth order phase error scheme.

Such a scheme has to satisfy Egs. (379) to (382) plus Eg. (383a) giving,

A= (1 - sxtx)(l - eyty) + (v~ dd o+ (vy -~ uy)dy et u

+ ety LT extx(vy - uy)dy - evtykvx - ux)dx {386)

Yyvy

P4

where the integration cconstant was selected as unity to satisfy consistency,

i.e., A(SX,By =0) = 1. Eg. (386) can be written as

A= (l-ct)l-ct)+vd(l-ect)+Hvd(l-c¢t)
X1 Yy XX Yy Yy XX

(387)

- uxdx(l - Extx - eyty) - uydy(l - extx - eyty)
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dd
. X .
Since AO Y does not affect the phase error order, we can assign a value

for it that would ensure positivity. We add to the terms of Eg. (387)

vxvydxdy, yielding

A= (1- A vxdx)(l - Eyty + vydy) - uxdx(l - Extx - Eyty)

- d(lL-et =-¢t) 388
My xx Yy (388)

Now, substititing Egs. (379) to (383) into Egs. (242) and (243), we get

X
Al = - e (389)
lo} X
¥
Ao = = 2(\)x - ux) (390a)
vy oy
A = - o e (390b)
o Xy

which when substituted into Egs. (261), yield

2. 3% 2
(3] )gy = 2(-2(v - u) + ] =0 (391a)
v v v
(|A|2)2y= 2 ez, el =0 (391b)

showing AXAY to be fourth order in diffusion error.
t t
Notice that Ao Y 2 € &, 1s essential for fourth order diffusion

XYy
(already satisfied by the scheme of Eqg. (388)).
The simplest fourth order (phase and diffusion error) positive

scheme is therefore that of Eg. (388). 1It is, however, unstable. For

instance,
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AR =1 +(vx - ux)dk1-(vy - uy)dy + vxvydxdy + exsytxty (3922)
while
AI = - extx[l - uxdx + (\)y - uy)dy] - ayty[l - uydy + (vx— ux)dX] (392b)
At € = ey = § and Bx = By =17/2, dx = dy = - 2' and tx = ty = i, vielding
AR=1-%-%+%-%=§ (393a)
AI=—§[1+%—%]-§[1+%-%1=-1 (393b)

Since we know that A of Eg. (372) is stable, let's try tc apprcach

it in steps. First, we try

A= (1 - axtx + vxdx)(l - Syty + vydy) - uxdx(l - sxtx)(l - eyty)
- uydy(l - eyty)(l - extx) (394)
thus adding “-(uxdx + uydy)(axeytxty)" tc the real part, becoming then
AR =1/2 -1/8 = 3/8 (295)

still unstable. Next, we try

A=(l=-¢t +vd)(l-ct +9yd)=-uyd(l-¢ct)(l=-2ct +vd)
X X X X VY% vy X X X X

- uydy(l - syty)(l - Extx + vxdx) (396)

This will add "-(u_v_+ u v )d d " to the real part and "(e t u v )
X'y Yy x' 'xvy X X XY

+ et v_.)d d " to the imaginary one. We get then
y yuy x’ %% g Y g




AR___.g-Z.:_S. (397a) 1
-11
1 7 -
a,=-l+g=-3 (397b) ]
i
2 :
whence [A|° = (%02 + (%JZ = g% < 1, showing Eq. (396} to be too stable at
= =£ i i 1 . = = |
Bx By 5 - Moreover, it is not phoenical; A # 1 at €y Ey 0. These H
two effects can be avoided by picking
1
= - - ¢ + - - - = -
A (1 Extx + vxdx)(l yty vydy) pxdx(l sxtx)(l ey . + 5 )Ydy)
- ud (l=-¢t)(l-ct + L v.d) (328)
uy Y vy X X 2 x x -
yielding
3 1 1 1
AR =5 " 32%7°3 (399%a)
_ 1 1__15
AI = 1l + 3 X s = 16 (399b)
whence IAIZ = (*l-é)2 + (202 <24l 1, closer to 1, therefore promising a
16 4 256
smaller net diffusion and phoenical since A = 1 at €, = Ey =

Noticing that the added terms to Eqg.

, t
Y Y

(398) is still fourth order in phase error.

(ttd,ttd, tdd
Xy X Xyv X X
Eg.

{A(Z, we get

i2=l+*l—{€i

A %

2. .4 2 2
(1 - sx)sx + [ex(l - ey)

2. 200,22 2. 2 4,
+ cy(l sx)]BxSy + ay(l sy)B I

PN

showing diffusion error to be of fourth order.

slightly unstable near Sx = BY =0,

The scheme is,

dxdy) they have no effect on (log A)O

however,

(388) are triple operators

Furthermore, upon expanding

since the fourth order coefficient is

(400)
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positive. We notice also the presence of a term "BiB;" in Eg. (400) (also
in the phase error expansion), which does not show in the expansicn of Eg.
(372) (according to Eg. (366), making the scheme of Egq. (398) slightly
inferior to that of Eqg. (372).

Upon comparing Eg. (398) to (372), it is obvious that Eg. (372)
cannot be much simplified; at least without sacrificing stability or
phoenicity. Whichever we use, the n® of operations involved in evaluating
3n+l is much larger than that in the fully two-dimensional scheme of Eg.
(226e). Moreover, the n° of two-dimensional arrays required to store the
intermediate values is enormcus.

Since the only advantage of Egs. (372), the fully two-dimensional
version of the time-splitted scheme of Egq. (371b) is the reduced clipping
associated with the flux limiter, we conclude that time splitting is the
sensible answer. We abandon, therefore, trials to cast the time-splitted

scheme in fully two-dimensional versions.




XVIII. IMPROVING DIFFUSION ERROR OF THE

FULLY TWO-DIMENSIONAL SCHEME

Now that we have classified the terms responsible for the fourth
order phase, diffusion, etc., in the time-splitted scheme, let's go back
to the fully two-dimensicnal scheme and study the terms preventing us
from reaching a fourth order diffusion error. As explained earlier, the

term "sxsvtxty" is essential to reduce the dependence of the phase error

to one on v alone, thus leaving p free to be adjusted for a high order
diffusion. A closer look reveals, however, that the abcve conclusion is

an indirect one. The direct conclusion is that "exsytxty" is needed to
by Q "

cancel ugxaxsyov resulting from squaring the imaginaryv part. Specifically,

any scheme has to incorporate the combination (axtx + syty) leading to

<

i(e. sin 8 + & sin 3 ) which is approximated by ¢ 8 + = 3 ). To cancel
b X v y X X vy

it, a term including sin Sx sin 8 1s needed. Besides txtv' the above

<

term can alsc result from cos (Bx:Sy), i.e. diagonal diffusion

‘ n . . . . .
p? R ? o+ D, ._,). Admitting diagonal terms is outside the
i+l,32d i,3 i-1,3%1

(

T

w

scope of this article and is left out to an upcoming cne. However, we
empnasize that there is 2 stability problem caused by the imaginary part

1AI = —[sxtx(l - pxdx) + syty(l - uydy)] which amplitude is already

, : . - - - -
larger than unity for Sy T, T o Bx = Sy =3 unless He = Uy =0

there, in which case we have a large residual diffusion. Adding just a

diagonal diffusion can't help, since it only adds to the real part.

B e e

[P p—

C e o
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SUBRQUTINE FCTZ2DO(RHO, KO, KN, KR, SNKRNZ,

& LBC.,RHOLBC, REC, RHORBC, BEC, RHOEBEC, TEC, RHOTBC)
ORIGINATOR @ RAAFAT H. GUIRGUIS

DESCRIFTION :

- — e e . S i

A FULLY 2-0I ROUTINE THAT SDLVES GENERALIZED CONTINUITY EQUATIONS
OF THE FORM

ODRHO 7 DT = - OIV( RHO x V ) - SOURCES

WHERE RHO IS THE GENERALIZELD DENSITY. AN vV IS THE FLUILD VELOCITY.
FOR SECOND ORDER ACCURACY, IT IS ADVISABLE TO ADOVANCE HALF A

TIME STEF USING THE VELOCITY AND SOURCE TERMS AT THE BEGINNING

OF THE TIME STEP, THEN ADVANCE A WHOLE TIME STEFP USING THE
HALF-FOINT VELOCITY ANDO SOURCE TERMS. USING THE HALF FOINT
DENSITY IS NOT RECOMMENDED. IT IS, HOWEVER. INCLUDED AS AN
OFTION,. BY ALTERNATING (KO-KN) BETWEEN (1.2) FOR THE HALF TIME
STEF. AND (2,1) FDR THE WHOLE TIME STEP.

THE OLD., (KO), AND NEW. (KN), DENSITIES ( AT THE BEGINNING AND END
OF THE TIME STEP, RESFPECTIVELY ) ARE STORED IN A Z-LEVEL 2-0 ARRAY
( 3-0 ARRAY ). THE MASS AND DIFFUSION FLUXES ARE EVALUATED USING
KO DENSITY, WHEREAS KN DENSITY DETERMINES THE ANTI-DIFFUSICN
FLUXES. IT IS ADVISABLE TO SET KO = 1, KN = 2, UNLESS THE HALF

POINT DENSITY IS TO BE USED DURING THE WHOLE TIME STEF. THEN
kO = 2, KN = 1 FOR THE WHOLE TIME STEP.
KR DETERMIMES THE LOCATION OF THE RESULTING LDENSITY. IT IS

ADVISABLE TO SET KR = 2 » 1 , FOR THE HALF ANLD WHOLE TIME STEFS,
RESFECTIVELY. THIS CHOICE ELIMINATES THE NEED 7O COFY THE NEW
DENSITY ON THE QLD ARRAY., IN FREFARATION FOR A NEW TIME STEF.
SNERNZ I3 A LOGICAL VARIABLE WHICH, WHEN SET TO .TRUE., TELLS THE
ROUTINE 7D USE THE CORRECTION FACTORS OF THE LAST SNKRMNT = ,FALSE.
CALL, TQ LIMIT THE ANTI-DIFFUSION FLUXES. IF SET TO .FALSE., THE
CORRECTION FALTORS ARE EVALUATED FROM THE CURRENT VARIAEBLES AND
USED IN THE LIMITING PROCESS.

LBC, RHOLEC, REBC, RHOREC, BRC, RHOEBEBC, TBLC, RHOTBLC, ARE DEFINELD
BELOW.

(1) A FPARTICULAR GEOMETRY IS SELECTED BY A CALL TO £ENTRY

SETGOM :

CALL SETGOM( 4HCART, 1HX, 1HY, NX, NY )
OR ..»1HX, tHZ,... OR ...5 1HZ, 1HY,...,ASSUMES CARTESI?
COORDINATES. OROER OF THE 2 COORDINATES IS IMMATERIAL ONLY
FOR THIS CASE.

CALL SETCOM( SHLCYL., 1HKR, 1HZ, NX.: NY )

CALL SETGOM( ZHCYL, 1HR, 3HFYE. NX, NY )

CALL SETGOM( SHCYL., 1HZ, 3HFYE, NX, NY )
FOR THE & TYFICAL CYLINDRICAL COCRLIINATES.

CALL SETGOM( ZHSFH, 1HR, 4HCETA, NX, NY )

A1
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(3)

(3)

CALL SETGOM( 3HSFH, 1HR, ZHFYE, NX, NY )

CALL SETGOM( ZHSPH., 4HCETA, ZHFYE, NX, NY )
FOR THE 2 TYFICAL SFHERICAL COORDINATES.
NX, NY, ARE THE NUMBERS OF CELLS CENTERS ALONG THE 2
CODRDINATES, IN THE PRESCRIBED ORLDER. IF THE LITERAL
CONSTANTS DESCRIBING THE GEOMETRY ARE MISS-SFELLED, AN ERFROR
MESSAGE I5 ISSUED. AND EXECUTION STOFFEL.
NOTE : THE 2 COORDIMATES ARE GEMERALLY LDEMNQTELD BY (X.Y). IN
SFHERICAL R-FYE GEOMETRY. FOR EXAMFLE., X MEANS R, WHILE
Y MEANS FYE.

THE LEFT, RIGHT, BOTTOM, AND TOF BOUNDARIES ARE EXTENLDEL

1 CELL BEYONDI THE LAST GRID FOINMT, YIELDING (NX+2) X (NY+2)
CELLS. THE DENSITY OF AN EXTRA LEFT CELL = LBC x (DENSITY
OF ADJACENT CELL ON SAME ROW) + RHOLEBC. BY ADJUSTING THE
VALUES OF THE TWO 1-D REAL ARRAYS ( OF TIMENSION NY+2 ) LEC
AND RHOLRBC. VARIDUS TYFES OF BOUNDARIES CAN BE SIMULATELD.
SIMILAR RELATIONS APFLY FOR RIGHT, BDTTOM, AND TOF
BOQUNDARIES, LENOTED BY R. B, AND T, RESFECTIVELY. NOTE
THAT BOTTOM ANL TOF ARRAYS ARE NX+2 CELLS LONG.

ALL THE BOUNDARIES ARE CONSIDERED FERMEAEBLE TO DIFFUSION AND
ANTI-DIFFUSION FLUXES, UMLESS A CALL TO ENTRY SOLDFY INFCRMS
THE ROUTINE OTHERWISE. ANY OF

CALL SOLDFY( 4HLEFT, KSTRT., KEND

CALL SOLDFY( 4HRITE, KSTRT. KEND )

CALL SCLDOFY( 4HBOTM, KSTRT, KEND )

CALL 80OLLDFY( 3HTOF., KSTRT. KEND )
MAKES THE LEFT. RIGHT, BOTTOM, OR TOF BOUNDARIES IMFERMEABLE
TO BOTH DTFFUSION AND ANTI-DIFFUSION FLUXES FROM CELL
NUMBER KSTRT 70 CELL MNUMBER KEND, INCLUSIVE.
NOTE : CELL 1 IS NOW THE EXTRA CELL BEYOND THE BOUNLARY,
CONFINING CELLS 2 TQ NX+1, OR NY+!.
ANY NUMBER OF CALLS TO SCLDFY IS ALLOWEL., MAKING
IT POSSIBLE TO SOLIDIFY UNCONNECTED FATCHES ALONG EACH
BOUNDARY. EACH TIME SOLDFY IS CALLED, A MESSAGE EXFLAINING
THE ACTION TAKEMN IS ISSUED.

CALLS TO ENTRY FRODIC, FOR EXAMFLE,
CALL FRODICC 1 , 1HX )
INFORM THE ROUTINE TO TREAT THE 1 ST OR 2 NI COCRIOINATE AS
FERIQDIC. THE SECOND ARGUMENT [E JUST 70O GENERATE A LARELS
THE MESSAGE " X COORIINATE FERICDIC " IS ISSUEL. SIMILARLY,
CALL FPRODIC( 2 , SHFYE )
MAKES THE 2= ND COCRDINATE FERIODIC, AND THE MESSACE " FYE
COORDIMATE FERIQDIC " ISSUED.
IF THE FERIODIC CALL IS MADE FOR A COORDINATE THAT SHOULDON'T
BE FERIODIC, A WARNIMG MESSAGE IS ISSUED, THEN EXECUTION
FROCEEDS.

A2
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(&)

(7)

(8)

()

THE GRID IS INITIALIZED BY A CALL TO ENTRY ORIGRDO:

CALL ORIGROC¢ XGN, YGN )
WHERE XGN., YGN ARE TWO 1~D REAL ARRAYS OF DIMENSIONS NX+1,
NY+1, CONTAINING THE LOCATIONS OF X. Y INTERFACES.
ORIGRD WILL THEN CONSIDER THESE AS THE INITIAL LOCATIONS.
AT THE BEGINMING OF EACH TIME STEF

CALL NGRID( XGN. YGN )
WILL EVALUATE VOLUME, MEAN IMTERFACE AREA,... OF CELLS,
WHEREAS

CALL OGRID( XGN, YGN )
AT THE END OF EACH TIME STEF, RESET THE OLD ARRAYS
FOR THE NEXT TIME STEF.

IT IS ASSUMED THAT THE GRID IS5 MDVING, UNLESS CALLS TO ENTRY
FIXGRLD FIX ONE OR BOTH OF THE COORLINATES GRIDS.

CALL FIXGRD( 1 » 1HX )
INFORMS THE ROUTINE THAT THE 1 ST COORDINATE GRID IS FIXELD.
THE SECOND ARGUMENT IS JUST TDO GENERATE A LABEL; THE MESSAGE
"X GRID FIXED " IS ISSUEL. SIMILARLY,

CALL FIXGRD( 2 > 1HZ )
FIXES THE 2 ND COORDINATE GRID AND ISSUES THE MESSAGE " Z
GRID FIXED ". IF BOTH COORDINATES GRIDS ARE FIXELD. CALL
NGRID, THEN OGRID, ONLY ONCE AFTER INITIALIZATION.

A PARTICULAR ANTI-DIFFUSION FLUX CORRECTOR IS SELECTED BY A
CALL TO ENTRY SETLMT :

CALL SETLMT( SHEORIS, 4HEOOK )
INVOKES BORIS-BOCK FLUX LIMITER, WHILE

CALL SETLMT( 7HZALESAK., 1H )
INVOKES ZALESAK FLUX LIMITER. THE ARGUMEMTS REFER TQ THE
ORIGINATORS OF THE FLUX LIMITER. IF THE LITERAL CONSTANTS
DESCRIRING A LIMITER ARE MISS-SFELLED,. AN ERROR MESSAGE IS
ISSUED., ANLD EXECUTION STOFFELD.

A TIME STEF STARTS BY A CALL TO ENTRY NGRIL. FOLLOWED BY
CALL VOLFLX(C U, v, DOT )

WHERE U,V ARE TWO Z-D REAL ARRAYS OF OIMENSIONS (NX+2) ¥ (NY+D)

CONTAINING THE COMFPONENTS GF VELOCITY VECTOR AT THE CELLS

CENTERS. 0T IS THE TIME STEF.

BEFORE EACH CALL TO FCTZLD, THE SQURCE TERM IS LDETERMINED
BY A SEQUENCE OF CaALLS :

CALL CLRSRC
CLEARS THE SOQURCE TERM WHICH REMAINS ZERD LUNTIL ANY 0OF THE
NEXT CALLS IS DOnE. EACH CALL ADDS 70 THE S0OWURCE TERM.
ANY NUMBER OF CALLS IS ALLOWELD, TO FDRM THE TDTAL VALUE OF
THE SCURCE TERM.

CALL SDRCES( ZHBDF, SORCE. DT )
ALDS A BODY TYrFE FORCE, WHERE SORCE IS A I-0 REAL ARRAY OF
DIMENSION (NX+2) x (NY+Z) CONTAINING THE BOLY FORCES FER UNIT
VOLUME.

A3
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(10)

(11)

CALL SORCES( 4HXGRD, SORCE. OT )

CALL SORCES( 4HYGRDO. SORCE. DT )
ADDS THE X OR Y COMFPONENTS OF THE GRADIENT OF THE QUANTITY
IN ARRAY SCRCE.

CALL SDRCES( 3ZHDIV, SORCE. LT )
ADDS THE DIVERGENCE 0OF THE QUANTITY IN SORCE. ENTRY SORCES
DETERMINES WHICH FORM OF GRADIENT OR DIVERGENCE TO USE
ACCORDING TO THE GEDOMETRY. ALTERNATIVELY., ONE CAN
SEFARATELY CALL ENTRY BOL'Y FOR BODY FORCES, XGRALDl OR YGRAL
FAOR THE GRADIENT IN CARTESIAN COORDINATES,. RCGRAD DR YGRAD
FOR THE GRADIENT IN CYLINDRICAL R-Z GEOMETRY.... DR XGRAD ANL
YGRAD FOR DIVERGEMCE IN CARTESIAN GEOMETRY, RCDIV AND YGRAD
DIVERGENCE IN CYLINDRICAL R-Z GEOMETRY....

THE TIME STEF ENDS BY A CALL TO OGRID

FOR 2 ND “RDER ACCURACY, STEFS (8) » (9) ARE PERFORMED TWICE.
ONCE WITH DT= TIME STEP / 2 FOR THE HALF TIME STEP, THEN

DT= TIME STEF FDR THE WHOLE TIME STEF.
ENTRIES ...

EMTRY NGRID(XGN, YGN)

ENTRY OGRID(XGN, YGN)

ENTRY ORIGRI(XGM, YGN)

ENTRY VOLFLX<(U,V,DT)

EMTRY SORCES(SRCTYF,SORCE,DT)
ENTRY CLRSRC

ENTRY BOLDY (SORCE.DT)

ENTRY XGRALD(SORCE,DT)

ENTRY YGRALD(SORCE,DOT)

ENTRY RCGRAD(SORCE.DT)

ENTRY RCDIV(SORCE,DT)

ENTRY SETGOM(GOMTRY,CRI1,CRDO2,N1,N2)
ENTRY PRODIC(CRDNT,.CRD)

ENTRY SETLMT(LMTR1,LMTRZ)

ENTRY FIXGRLD(CRNT,CRDD

ENTRY SOLLFY (EONDRY,KSTRT. KENL)

CALLS TO ...
SUBROQUTINE MNUMU(NTI,NJ,EFS, MUY MUV)

Ad
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DECLARAT IONS

- s . s e s s iy St

FARAMETER
FARAMETER
FARAMETER

INTEGER

INTEGER

LOGICAL
LOGICAL
LOGICAL
LOGICAL

REAL
REAL
REAL

REAL
REAL
REAL
REAL

REAL

REAL
REAL
REAL
REAL
REAL
REAL
REAL

REAL
REAL
REAL
REAL

REAL
REAL
REAL

REAL
REAL
REAL

REAL
REAL
REAL

NFX=100,NFY=100
NF1X=NFX+1,NF1Y=NFY+1
NF2X=NFX+2, NF2Y=NFY+2

GEQOM, CRONT

IFLX (NF2X,NFZY)
LSRC

SNKRNZ

XCHNG, YCHNG
XFROC, YFRDC

TEXT (20)
LMTR1 (2) . LMTRZ(2)
TGM(2) > TCRDO(&) » TLML1 (2, 4) , TLM2(Z, 4)

LRC (NF2Y) : RHOLEBC (NFZY)
RBC (NFZY) » RHOREBEC (NF2Y)
EBRC (NP2X) » RHOEEC (NF2X)
TBRC (NP2X) » RHOTEC (NF2X)

FRMBELL (NFZY) » PRMBLR (NFZY) , PRMELE (NFZX) » FRMBLT (NFZX)

XGO(NF1X) » XGNINF1X) » YGO (NF1Y) , YOGN(NF1Y)
XGANFLIX),DXGINPLX) . YGINFLY) , DYGINFLY)

OXGO (NP2X) » DXGN (NF2ZX) » OYGO (NFZIY) » DYGNINF2Y)
ROXGN(NF2X) - RDIYGN (NF2Y)

DXGNH(NF1X) » RDXGNH(NF1X) , DYGNH (NF 1Y) » ROYGNH (NF1Y)
AX (NFX) , AY (NPY)

SQINF1X),SQ0(NF1X),SON(NF1X)

RHO (NF2X, NFZY, 2)

U(NFZ2X, NFZY) , ADUDT (NP1 X\ NFY)
VANPEXSNFP2ZY) s ADVDT (NFPX, NF1Y)

CELMAS (NF X, NFY) , SOURCE (NFZX, MNF2Y) , SORCE (NF2X, MFZY)

TEMF1(NF2ZX,NFIY) , TEMPZ (NF2X, NFZY)
TEMP3 (MF1X,NFL1Y), TEMFA(NF1XNFLY)
TEMFS (NFZX, NFZY) , TEMF6 (NF2X, NPZY)

DLDVOL (NF2X,NF2Y) . RVOL (NF2ZX, NFZY)
AVXVL(MFLIX NFLY) , RAVXVL (NF1X, NFL1Y)
AVYVL(NFLI XS NFLY) , RAVYVL (NF1X, NFLY)

XMSFLX (NF1X,NF1Y), YMBFLX (NF1X,NF1Y)
XDFFLX (NFZX,NPZY) , YOFFLX (NF2X, NF2Y)
XNTFLX (NF1X,NF1Y), YNTFLX (NF1X,NF1Y)

AS




REAL
REAL
REAL
REAL

REAL
REAL
REAL
REAL
REAL

REAL
REAL

EFSX (NF1X,NF1Y),NUX (NF2X,NFZY) , MUX (NFZX,NF2Y)
EFSY (NF1X,NF1Y) . NUY (NF2X,NFZY) , MUY (NFZX, NP2Y)
NUXVOL (NF2X, NFZY) , MUXVOL (NF2X, NFZY)
NUYVOL (NFZX. NPZY) , MUYVOL (NF2X, NFZY)

MXFLX (NP2ZX,NPIY) - MNFLX (NF2X, NF2Y)
FLXIN(NF2X, NF2Y) , FLXOUT (NPZ2X, NFZY)
RHOMX (NF2X, NF2Y) » RHOMN (NFZX, NFZY)
MXIM(NF2ZX, MF2Y) - MXOUT (NFP2X, NF2Y)
DIFF (NP2X,NF2Y), FLX (NF2X,NFZY)

RIN(NPZX, NF2Y) , ROUT (NFZX, NFZY)
XFLXCR (NFZX, NFZY) , YFLXCR (NFZX, NFPZ2Y)

EQUIVALENCE (TEMPL,FLXIN, RIN)

EQUIVALENCE (TEMFZ, FLXGUT . ROUT)

EQUIVALENCE (TEMP3, XMSFL X, XNTFLX, AVXVL ., RAVXVL, EFSX)
EQUIVALENCE (TEMF4, YMSFL X, YNTFLX, AVYVL, RAVYVL, EFSY)
EQUIVALENCE (TEMPS, XDFFLX, YOFFL X, NUX . NUXVOL » NUY ., NUYVCL)
EQUIVALENCE (TEMFS,0LDVOL,RVOL,DIFF,MXFLX,FLX, IFLX)
EQUIVALENCE (TEMF&s SOURCE, MUX , MUXVOL » MUY, MUY'VOL)
EQUIVALENCE (TEMF&, RHOMX - RHOMN, MX TN, MXOUT > MNFLX)
EQUIVALENCE (TEMF6&, XFLXCR, YFLXCR)

DATA
DATA
DaTA
DATA
DATA
DATA

DATA

DATA
DATA

O

BDATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA

Ll SRR N

TEXT (1), TEXT(2),TEXT(Z) /4H M, 4H185-, 4HSFEL/
TEXT(4) . TEXT (Z) /4HLING, 44 OF /

TEXT(9). TEXT(10) , TEXT(11)/4H IDE,4HNTIF,AHIER /
TEXT(L12), TEXT(13),TEXT(14)/4H GE,4HCMET, 4HRY /
TEXT(1S) . TEXT (161, TEXT(17) /4HFLUX 4H LIM, 4HITER/
TEXT(18), TEXT(19), TEXT(20) /4HSCUR, 4HCE T, 4HYFE /

TGM(1) . TGM(2) » TGM(3) /4HCART» 4HCYL . 4HSPH /

TCRD (1), TCRD(2) » TCRD(Z) / 4HX » 4HY » AHZ /
TCRD(4), TCRO(S) » TCRO(&) /4HR » AHCETA, 4HFYE /

TBNDR (1), TEND(Z) /AHLEFT, 4HRITE/
TEND(3) . TBEND(4) /4HEQTM, 48TOFP /

LMTR1,LMTRZ/4%x4H /
TLMLI(1,1),TLML1<(2, 1) /4HEORT , 4HS
LM2(1, 1), TLMZ2(2, 1) /4HEOOK , 4H
TLM1(1,2),TLML (2,2) /4HZALE, 4HSAK
TLMZ2(1,2), TLM2(2,2) /74H » 4H

\\\~\\

BOF /3HRLF 7/, XGRD, YGRD/4HXGRD, 4HYGRD/, DIV/ZHDIV/

AS
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C FORMATS :

C
10 FORMAT (///SX, THWARNING, SX, 11A4)
20 FORMAT (/7 /75X, 7HWARNING, SX», A4, 2X, 22H5HOULDY NOT EBE FERIQDIC)
3 FORMAT (///5X,24HALL BOUNDARIES FERMEAELE)
40 FORMAT (///5X» A4, 22X, 1FHCOORDINATE FERICDIC)
SO FORMAT (///S5X» A4, 2X, 1OHGRID FIXEDD
&0 FORMAT (///5X, A4, 2X, 22HEBOUNDARY SOLID BETUWEEN,

& X, 4HCELL . 2Xy 14, 2X, ZHAND, 2X, 14)
- 70 FORMAT (///35X,2SHGEOMETRY NOT INCLUDED YET)
C
c
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c EVALUATE OLD CELL MASS "CELMAS"
DO 110 J=1.NY
00 110 I=1,NX
OLDVOL (I, J)=DXGO(I+1)xDOYGO(J+1)
110 CELMAS (I, J)=RHO(I+1,J+1,1)%0LOVOL (I,

ADD SOURCE TERM "SQURCE" WHEN AFFROFRIATE
IF(.NOT.LSRC) GO TO 125

oo 00

DO 120 J=1,NY :
DO 120 I=1.,NX i
120 CELMAS (1, J)=CELMAS(I,J)~SOURCE(I,J)

125 CONTINUE

o000 O

EVALUATE X-CONVECTION FLUX "XMSFLX"
DO 130 J=1.NY
DO 130 I=1.NXF1
TEMF3S(I,J)=RHO(I+1,J+1,K0)+RHQ (I, J+1,¥KD)
TEMPS (I,J)=0.3%XADUDT (I,
130 XMSFLX (I, D =TEMF3 (I, DN XTEMFS (I, D)

C EVALUATE Y-CONVECTION FLUX "YMSFLX"
DO 140 J=1,NYP!
00 140 I=1,NX
TEMF4 (I, J)=RHO(I+1,J+1,K0)+RHO(I+1,J>KD)
TEMPS (I, J)=0.3%ADVDT (I, )
140 YMSFLX(I.J)=TEMP4(I,J)¥TEMF&(I D)

ac

EVALUATE X AND Y TRANSFORTED DENSITIES

00 130 J=1,NY
0 1S0 I=1,NX
TEMPS(I,Jd)=XMSFLX(I,J)=XMSFLX (I+1,d)
TEMFO (I, J)=YMSFLX(I,J)=YMSFLX(I,J+1)
TEMFS (L, J)=CELMAS(I,J)+TEMFS(I. )
TEMFA (I, J)=CELMAS(I,J)+TEMF&(I, D)
CELMAS(I,J)=TEMPI(I,J)+TEMF&(I,J)
RVOL (I, J)=RDXGN(I+1)¥RDYGN (J+1)
FHO(I+1,J+1,KN)=TEMPZ (I, J) XRVOL (1. )

130 TEMFA4 I, D =TEMF4 (I, ¥RVOL (I, D

C EVALUATE X-TRANSFORTED DENSITY AT LEFT AND RIGHT ROUNDARIES
DO 170 J=2,NYF1
RHO (1, J, KN)Y=LEC (J) ¥RHO(IL, J, KN) +RHOLEC (J)
170 RHO (NXPZ, J, KN) =REBC (J) ¥XRHO (IR, J, KN) +RHOREC (J?
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180

nono 00

183

190

200

00N

220

EVALUARTE "EFSX"
DO 180 J=1,NY
DO 180 I=1,NXF1
RAVXVL (1, J)=RDXGNH (1) ¥ROYGN(J+1)
EFSX (I, =RAVXVL(I,J) xADUDT (I, J)

EVALUATE X DIFFUSION AND ANTI-DIFFUSIONTECEFFICIENTS “NUX", "MUX"
CALL NUMU(NXP1,NY,EPSX,NUX,MUX)

CANCEL THE DIFFUSION AND ANTI-DIFFUSION X-FLUXES THROUGH SOLID
PORTIONS OF LEFT AND RIGHT BOUNDARIES

0g 185 J=1,.NY

NUX (1,J)=NUX(1,d) xFPRMEBLL (J+1)

MUX (L1, J)=MUX(1,Jd) XPRMELL (J+1)

NUX (NXP1,J)=NUX{NXF1,J)¥FRMBLR (J+1)

MUX (NXP1,s J)=MUX (NXF1,J) ¥FRMBLR (J+1)
EVALUATE X DIFFUSION AND ANTI-DIFFUSION FLUXES “XDFFLX" , "XNTFLX"

D0 190 J=1,NY

DO 190 I=1,NXP1

AVXVL (I,J)=0XGNH (1) XDYGN{J+1)

NUXVOL (I, Jd)=NUX (1.3 XAVXVL (I, D

MUXVOL (I, ) =MUX(I,Jd) XAVXVL (I, D)

TEMP3 (I, D =RHO(I+1,J+1,K0)-RHG(I,J+1,KD)

XDFFLX (I, J)=NUXVOL(1,J) ¥TEMF3(I,J)

TEMPI (I, D =RHO(I+1,J+1,KN)-RHO (I, J+1,KN)

ANTFLX (I, J)=MUXVOL (I, J) ¥TEMFZ (I, J)

ADD X-DIFFUSION TO "CELMAS"
DO 200 J=1,NY
DO 200 I=1,NX
RHO(I+1,J+1.XN)=STEMF4(I,J)
TEMFO (I, ) =XDFFLX (I+1,J)=XDFFLX (I,
CELMAS (I, J)=CELMAS (I, N +TEMF& (I, )

EVALUATE Y-TRANSFORTED DENSITY AT BOTTOM ANLD TOF EQOUNLCARIES
DO 210 I=1,NXF2
FHOC(I, 1.KN)=EPEC (1) *RHOC(I,JB,KN)+RHROEBEBC (1)
RHO (I, NYPZ,KN)=TEBC(I) XRHO (I,JT,KN) +RHOTBC (1)

EVALUATE "EPSY"
DO 220 J=1,NYF1
DO 220 I=1.NX
RAVYVL (I, J)=ROXGNCI+1) XROYGNH (J)
EFSY (1,J)=RAVYVL (I, ) XAQVDT (I, )

EVALUATE Y DIFFUSION AND ANTI-~DIFFUSION COEFFICIENTS "NUY", “"MUY"
CALL NUMYU(NX,MYFL.,EFSY,NUY,MUY)
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CANCEL THL DIFFUSION AND ANTI-OIFFUSION Y-FLUXES THROUWGH S0OLID
PORTIONS OF BOTTOM AND TOFP BOUNDARIES

D0 225 I=1,NX

NUY (I, 1)=NUY (I, 1)*PRMELE(I+1)

MUY (I, 1) =MUY (I, 1} ¥PRMELR(I+1)

NUY (I, NYF1)=NUY (I.NYF1)XFRMELT (I+1)

MUY (I, NYFL1)=MUY (I,.NYFP1) ¥FRMBLT (I+1)

EVALUATE Y DIFFUSION AND ANTI~-DIFFUSION FLUXES “YDFFLX" , "YNTFLX"
RO 250 J=1,NYPI1
00 230 I=1,NX
AVYVL (I,J)=DXGN(I+1) xDYGNH (D)
NUYVOL (I,J)=NUY (I,J)*¥AVYVL (I, J)
MUYVOL (I,J)=MUY (I,J)XAVYVL (I, D)
TEMPA (I, =RHO(I+1,J+1,.KO)-RHO(I+1,d,KO)
YOFFLX(I,J)=NUYVOL (I,J)*TEMP4(I,J)
TEMPA (I, J)=RHO(I+1,J+1,KN)-RHO(I+1,d,KN)
YNTFLX (I,Jd)=MUYVOL(I,J)XTEMF4(I,J)

ADD Y-DIFFUSION TO “CELMAS"
DO 240 J=1,NY
00 240 I=1.NX
TEMF& (I J)=YLFFLX(I,J+1)=-YDFFLX(I.d)
CELMAS(I,J)=CELMAS(I,J)+TEMP&L (I, )

IF SYNCHRONIZATION OF ANTI-DIFFUSION FLUXES IS SFECIFIED. SKIF
EVALUATION OF CORRECTION FACTORS
IF (SNKRNZ) GO TO 445

EVALUATE TRANSPORTEL-DIFFUSELD DENSITY
DO 230 J=1,NY
DO 250 I=1,NX
RVOL (I,J)=ROXGN(I+1) XROYGN (J+1)
RHO (I+1,Jd+1,KN)=CELMAS (I, J) ¥RVGL (I, J)

EVALUATE TRANSFPORTED-DIFFUEED LENSITY AT BOTTOM AND TOF EOUNLDRARIES
PO 260 I=2,NXF1
TEMF1(I.1)=1.0
TEMFPZ(I-1,.NYP1)=1.0
RHO (I, 1,KN)=ERC(I)XRHC (I, JB,KN)+RHOBBC (1)
RHO (I NYP2, WN) =TEZ (1) ¥RHO (1, JT:KN)+RHOTEC (1)

EVRLUATE TRANSFPORTED-DIFFUSED DENSITY AT LEFT AND RIGHT EBEQUNDARIES
DO 270 J=Z,NYF1
TEMFL1(1,J)=1.0
TEMF2 (NXF1,J-1)=1.0
RHO (1, J5 KN) =LEC (J) *RHO(IL, J, kN) +RHOLEC (J)
RHO (NXF2Z, J, KN) =RBC (J) ¥XRHO (IR, J, KN) +RHOREBC (1)
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C CANCEL THE ANTI-DIFFUSION X-FLUX IF IT 1S OFFOSITE TO ITS LOCAL
C TRANSFORTED-DIFFUSED DENSITY GRADIIENT AND ANY OF THE ADJACENT ONES
DO 280 J=1.NY
DO 280 I=1,NXP1
280 DIFF(1,J)=RHOC(I+1,J+1,KN)=RHO(I,J+1,KN)
c .
00 290 J=1,NY
D0 290 I=1,NX
TEMFL1(I+1,J+1)=XOR(XNTFLX(I+1,J),DIFF(I,d))
290 TEMP2 (I, J)=XCR(XNTFLX (I J)»DIFF(I+1,U))
c .
00 300 J=1.NY
DQ 300 I=1,NXP1
TEMPS (I, J)=XOR(XNTFLX(1,J),DIFF(I,J))
TEMP&(I,J)=CR(TEMP1 (I,J+1),TEMF2(I,J))
FLX(I,J)=AND(TEMPS(I,J),TEMF6(I,J))
FLX(I,J)=COMPL(FLX(I,d))
IFLX (1, D =LSHF (IFLX (I, Jd)»=31)
FLX(I,J)=FLOAT(IFLX(I,J))
300 XNTFLX (I, J)=XNTFLX (I, J) XFLX(I,Jd)
c
c IF X~-COORDINATE IS FERIODIC AND EITHER LEFT DR RIGHT BOUNDARY'S
c AMTI-DIFFUSION FLUX IS CANCELLED, CANCEL THE OTHER
IF (.NOT.XPROC) GD TO 205
C
DO 304 J=1,NY :
XNTFLX (1,J)=AND (XNTFLX (1,J)» XNTFLX (NXF'1,J))
304 XNTFLX (NXF1,J)=XNTFLX (1,J)
C
205 CONTINUE
C
C
c CANCEL THE ANTI-DIFFUSION Y-FLUX IF IT IS OFFQSITE TO ITS LOCAL
c TRANSPORTED-DIFFUSED DENSITY GRADIENT AND ANY OF THE ADJACENT ONES
. DO 310 J=1,NYP1
DO 310 I=1,NX
310 DIFF (1, ) =RHO(I+1,J+1,KN)=RHO(I+1,J>KN)
C
00 220 J=1,NY
0O 2320 I=1,NX
TEMF1 (I+1,Jd+1)=X0R(YNTFLX(I,J+1),DIFF(I,J))
320 TEMP2(I,J)=XOR(YNTFLX(I,J),DIFF(I,J+1))
o
00 330 J=1,NYF1
0DQ 330 I=1,NX
TEMFS (I, J)=XOR(YNTFLX(I.Jd),DIFF(I,J))
TEMFG(I,J)=0R(TEMF1(I+1,J), TEMFZ(I,d))
FLX(I,J)=AND(TEMFS(I,J), TEMF6(I,J))
FLX(I,J)=COMFL(FLX(I,d))
IFLX (I,J)=LSHF (IFLX(I,J),=31)
FLX(I,J)=FLOAT(IFLX(I,J))
3320 YNTFLX (I J)=YNTFLX (I, J)¥FLX (I, J)
c
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IF Y-COORDINATE IS FERIODIC AND EITHER EQOTTOM OR TOF BOUNDARY'S
ANTI-DIFFUSION FLUX IS CANCELLED, CANCEL THE OTHER
IF(.NOT.YFRDC) GO TO 338

0O 234 I=1,NX
YNTFLX (I, 1)=ANDCYNTFLX (I,1),YNTFLX(I,NYF1))
YNTFLX (I,NYF1)=YNTFLX (I, 1)

CONTINUE

EVALUATE NET INCOMING "FLXIN", OUTGOING "FLXOUT" ANTI-DIFFUSION
00 340 J=1,NY
0O 340 I=1,NXF!
TEMPS (I,J4)=ASHF (XNTFLX(I,J),»=31)
MNFLX (I,J)=ANDO(XNTFLX (I, J)» TEMFS(I,J))
TEMFS (I, J)=XOR(XNTFLX(I,J)»TEMFS(I,J))
MXFLX (I,J)=AND(XNTFLX(I,Jd).TEMPS(I,d))

DO 350 J=1,NY

DO 350 I=1,NX
FLXIN(I+1,d+1)=1.E-SO+MXFLX (I,J)

FLXQUT (I+1,Jd+1)=1.E-30-MNFLX (I,
FLXIN(I+1,Jd+1)=FLXINC(I+1,Jd+1)-MNFLX (I+1,J)
FLXQUT (I+1,Jd+1)=FLXCUT (I+1,J+1) +MXFLX (I+1,d)

DO 360 J=1,NYF1

DO 360 I=1,NX

TEMPS (I, J)=ASHF (YNTFLX (I.J).=31)

MNFLX (I, J)=ANDCYNTFLX (I,d)» TEMPS (I, 4))
TEMPS (I, D =X0R(YNTFLX (I, J)» TEMPS(I,J))
MXFLX (I, J)=ANDCYNTFLX (I, J)» TEMPS (I, J})

D0 270 J=1.,NY

N0 370 I=1,NX
FLXIN(I+1,J+1)=FLXINCI+1,J+1)+MXFLX(I.J)
FLXOUT (I+1,J+1)=FLXOUT(I+1,J+1)=MNFLX (I, J)
FLXINC(I+1,J+1)=FLXINCI+1,d+1) —MNFLX (I,d+1)
FLXOUT (I+1, J+1)=FLXOUT (I+1, J+1)+MXFLX (I, Jd+1)

GO TO (Z27%5,388) ILMTR

CONTINUE
IF BORIS-EOQOOK FLUX LIMITER IS REQUESTED,. USE TRANSFORTED-DIFFUSEL
DENSITY TO EBOUND MEW DENSITY

OO0 380 J=1,NYF2

00 280 I=1,MXF2

TEMFS (I, J)=RHO(I,Jd,KN)

GO TO 395
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415
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CONTINUE
IF ZALESAK FLUX LIMITER IS REQUESTED. USE MAXIMUM OF OLD AND
TRANSFPORTED-DIFFUSED DENSITY AS UPFER BQUND FOR MEW DENSITY
00 390 J=1.NYPZ
00 390 I=1,NXF2
TEMFS(I,J)=AMAXL1 (RHO(I.J,kK0) . RHOCI, J,KN))

CONTINUE

Do 400 J=Z,NYF1
EVALUATE MAXIMUM ADMISSIBLE ANTI-DIFFUSION INTO CELL "MXIN", ANLD
IN TURN CORRECTIOM FACTOR "RIN"
DO 400 I=2,NXF1
TEMFPS6 (I, )=AMAX1 (TEMPS(I,J),TEMFS(I-1,d))
TEMP&(L,J)=AMAXL(TEMF&6(I.J) , TEMFS(I+1,d))
TEMF&6 (I, J)=AMAX1 (TEMF&6 (I, ), TEMPS (I, J-1))
RHOMX (I,Jd) =AMAX1 (TEMF& (I J) , TEMFS(I, d+1))
TEMFG (I, J)=RHOMX (I,J)~RHO(I.Jd,KN)
TEMF& (I, ) =TEMF& (I, J) xDXGN(I)
MXIN(I,J)=TEMF&(I.J) XDYGN ()
TEMPS (I, J)=MXIM(I,J) /FLXIN(I,d)
RIN(I,J)=AMIN1 (1.0, TEMF&(I,J))

GO TO (4135,40%5) ILMTR

CONTINUE
IF ZALESAK FLUX LIMITER IS REQUESTED. USE MINIMUM OF OLD AND
TRANSPORTED-DIFFUSED LENSITY AS LOWER BOUND FOR MEW DENSITY
DO 410 J=1,NYPZ
DO 410 I=1,NXFZ2
TEMFS(I,J)=AMINI(RHO(I,JsKD),RHO(I,J,KN))

CONTINUE
EVALUATE MAXIMUM AOMISSIBLE ANTI-DIFFUSION DUT OF CELL "MXOQUT",
AND IM TURN CORRECTION FACTOR "ROUT"
00 420 J=Z,NYF1
0O 420 I=2,NXF1
TEMFG(I,Jd)=AMINL (TEMFS (I, J), TEMFPS(I-1,J))
TEMP& (I,Jd)=AMINL (TEMFP&(I,J), TEMFS(I+1,d))
TEMF&(I,J)=AMINLI (TEMF&(I,J) . TEMFS(I,.J=-1))
RHOMN (I, J)=AMINI(TEMFS (I, J) , TEMFS (I, J+1))
TEMF&S (I, B =RHO(I,JsKN)=RHOMN (I,
TEMP& (I, J)=TEMFS(I,J) ¥OXGN(I)
MXDUT (1, J)=TEMF&6(I,J) ¥DOYGN(J)
TEMPS (I, ) =MXAQUT(I,d) /FLXOUT (I, d)
ROUT(I,J)=AMIN1 (1.0, TEMF&(I,d))
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C IF A COORDINATE IS NOT FPERIODIC. "RIN", ROUT " ARE ASSUMED TO BE
C CONTINUQUS THRQUGH ITS NORMAL EBOUNDARY
DO 430 I=2,NXP1
RINCI, 1)=RINCI,JR)
RINCI.NYFZ2)=RIN(I,JT)
ROUT (I,1)=ROUT(I,JB)
430 ROUT (I, NYF2)=ROUT (1,JT)

0ng 440 J=2,NYF1
RIN(1,)=RINCIL,J)
RIN(NXF2, N =RIN(IR,J)
RAUT (1, )=ROUT (IL.Jd)
440 ROUT (NXF2, J)=ROUT (IR, J)

445 CONTINUE

LIMIT ANTI-DIFFUSION FLUXES USING MINIMUM OF ADJACENT CELLS’

MAXIMUM ADMISSIBLE FLUXES
DO 450 J=1.NY
DO 450 I=1,NXP1
FLX(I>J)=XNTFLX(I,J)
IFLX(I, D =LSHF(IFLX(I,.J),-31)
FLX(I.J)=FLOAT(IFLX(I.J))
RHO(CI+1,Jd+1,KN)=AMINL (RINC(I,J+1) . ROUT(I+1,d+1))
XFLXCR(I»J)=FLX (I,J) *RHO(I+1,d+1,KN)
RHOCI+1,J+1,KN)=AMIN1 (RIN(I+1,J+1),ROUT (I,J+1))
FLX(I,)=1.0-FLX(I,J)
FLXA(I,J)=FLX(I,J)¥RHD (I+1,J+1,KN)
XFLXCR(I+J)=XFLXCR(I.J)+FLX(I,J)

450 XNTFLX (I J)=XNTFLX(I,Jd) ¥XFLXCR(I )

nooon 0

DD 460 J=1,NYF1
DO 460 I=1,MX
FLX(I.J)=YNTFLX(I,d
IFLX(I,D=LSHF (IFLX(I,J)»=-31)
FLX(I,J)=FLOAT(IFLX(I,J))
RHO(I+1,d+1 KN)=AMINI(RIN(I+1,d),ROUT (I+1,d+1))
YFLXCR(I.J)=FLX(I,J)¥RHO(I+1,Jd+1,KN)
RHO(I+1,Jd+1,KN)=AMINL (RIN(I+1,J+1),,RAUT (I+1,d))
FLX(I. ) =1,0-FLX(I.J)
FLXAC(I, D =FLX(I,d)¥RHO(I+1,d+1,KN)
YFLXCR(I, D =YFLXCR(I, D +FLX(I. )

4460 YNTFLX (I, JdY=YNTFLX (I, ) XYFLXCR (I, J)
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c ADD CORRECTED ANTI-DIFFUSION FLUXES AND EVALUATE NEW DENSITY
DO 470 J=1,NY
DO 470 I=1,NX
TEMPS (I, J)=XNTFLX(I,J)=XNTFLX(I+1,J)
TEMP& (I, J)=YNTFLX(I,J)—-YNTFLX(I,J+1)
CELMAS (I, J)=CELMAS(I, D +TEMPS (I, J)
CELMAS (I,J)=CELMAS(I,J)+TEMF&(I,J)
RVOL (I,J)=RDXGN(I+1) ¥RDYGN(J+1)

470 RHO(I+1,J+1,KR)=CELMAS (I, J) ¥RVOL (I,d)
c
c EVALUATE NEW DENSITY AT BOTTOM AND TOP EOUNDARIES
DO 490 I=2.NXF1
RHO(I,»1,KR>=BBC(I)*¥RHO(I,JB,KR)+RHOBBC(I)
490 RHO(I,NYP2,KR)=TBC(I)XRHO(I,JT,KR)+RHOTBC(I)
c
c EVALUATE NEW DENSITY AT LEFT AND RIGHT EBOUNDARIES
0O S00 J=2,NYP1
RHO(1.,J,KR)=LBC (J)X*RHD (IL, J,KR) +RHDLEC (J)
S00 RHO (NXP2, J, KR)=RBC (J) ¥RHO (IR, J, KR) +RHOREC (U)
c
RETURN
c
c
C
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EVALUATE AVERAGE ( BETWEEN OLL AND NEW
AND NEW AND AVERAGE VOLUME COMPONENTS.
IF X-GRID OR Y-GRID IS NOT MOVING. USE
INTERFACE VOLUME IS CONSIDERED AVERAGE

GO TQO (510,520,330,3540,550,560,3570)

CONTINUE
CARTESIAN CODRDINATES
IF (.NOT.XCHNG) GO TO 513

DO 511 I=1,NXF1
XG(I)=0.3% (XGN(I)+XGO(I))}
DXG(I)=XGN(I)=XGO(I)

00 312 I=2,NXP1
DXGN(I)=XGN(I)-XGN(I-1)
AX(I-1)=XB(I)=-XG(I~-1)
ROXGN(I)=1.0/DXGN(T)

CONT INUE
IF(.NOT.YCHNG) GO TO S8O

D0 516 J=1,NYFP1
YG(J)=0.TX(YGN (D +YGO (J))
DYG(J) =YGN (D) -YGO (D

00 517 J=2,NYF1

OYGM (J) =YGN (J) =YGN {(J-1)
AY (J=1)=YG (D) =-YG(J=1)
ROYGN (J) =1.0/70YGN(J)

GO TO =8O
CONTINUE

CYLINDRICAL R-Z COOROINATES
IF(.NOT.XCHNG) GO0 70O S23
00 321 I=1.NXF1
SQAO(I)=0.Sx(XGO(I)%xXGO(I))
SAN(I)=0.Sx (XGN(I)xXGN(I))
XG(I)=8AN(I)+5Q0(I)

DXG(I)=8CN(I)-SQ0 (1)
SQ(I)=8QRT(XG(I))
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DO S22 I=2,NXP1
DXGN(I)=SAN(I)-SQN(I-1)
AX(I-1)=0.8% (XG(I)-XG(I~-1))
ROXGN(I)=1.0/DXGN(I)

w
[

CONTINUE
IF (.NOT.YCHNG) GO TO SBO

w
]
8]

DO S26 J=1.NYF1
YG(J)=0.5% (YGN (J) +YGO(J))
926 DYG (J)=YGN(J) ~-YGO (D)

D0 S27 J=2,NYP1

DYGN (J) =YGN (J) -YGN (J-1)

AY (J=-1)=YG () ~YG(J=-1)
527 RDYGN (J)=1.0/DYGN(J)

GO TO SB0

S30 CONTINUE

CYLINDRICAL R-FYE COORDINATES
540 CONTINUE

CYLINDRICAL Z-FYE CDORDINATES
550 CONTINUE

SFHERICAL R-THETA COORDINATES
560 CONTINUE

SPHERICAL R-FYE COORDINATES
S70 CONTINUE

SPHERICAL THETA-FYE COORUINATES

o0 o ao o o O o

PRINT 70
STOP
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CONTINUE
IF(.NOT.XCHNG) GO TD SBé6

DXGN(1)=DOXGN(IL)

OXGN (NXF2) =0XGN(IR)
ROXGN (1) =RDXGN (IL)
ROXGN (NXP2)=RDOXGN (IR)

0O 585 I=1,NXF1
DXGNH(I) =0, 5% (DXGN(I)+0XGN(I+1))
RDXGNH(I)=0.39% (ROXGN(I)+ROXGN(I+1))

CONTINUE
IF [.NOT.YCHNG) RETURN

DYGN (1) =DYGN(JB)

DYGN (NYPZ2) =DYGN (JT)
RDYGN (1) =RDYGN (JE)
RDYGN (NYF2) =ROYGN (JT)

00 S90 J=1,NYF1
DYGNH (J) =0, S% (DYGN(J) +DYGN (J+1))
ROYGNH (J)=0.35% (ROYGN (J) +RDYGN (J+1))

RETURN
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ENTRY OGRID(XGN, YGN)

RESET OLD GRID FARAMETERS. IN FREFARATION FOR A NEW TIME STEP
IF (.NOT.XCHNG) GO TO S93

DO 592 I=1,NXPZ
DXGO (1) =DXGN(I)

CONTINUE
IF (.NOT.YCHNG) GO TO 593

0o 594 J=1,NYPZ
DYGQ (J) =DYGN (J)

GO TO 595

ENTRY ORIGRD(XGN, YGN)

ORIGINATE THE GRID

SET DEFAULT : GRILD IS MOVING
XCHNG=. TRUE.
YCHNG=. TRUE.

CONTINUE
IF(.NOT.XCHNG) GO TO S97

DO S9&6 I=1,NXF1
XGOCI)=XGN(I)

CONTINUE
IF(.NOT.YCHNG) RETURN

0o 598 J=1,NYF1
YGQ (J)=YGN (D)

RETURN
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CYLINDRICAL R-Z

ENTRY VOLFLX (U,V.DT)

DT2=0.3*x0T

00 602 J=1,NY
00 602 I=1,NXPl
ADUDT (I D =U(I, J+1)+U(I+1,J+1)

DO 604 J=1,NYP1
DO 604 I=1,NX
ADVDTA(I» ) =V (I+1, J)+V(I+1,J+1)

GO TO (&610,620,630,640,650,5680.:670)

CONTINUE

CARTESIAN CODRDINATES

00 611 J=1,NY

DO 611 I=1,NXP1

ADUDT (1,J)=A0UDT (1,J) XDT2
ADUDT (I, J)=ADUDT (I, d) ~DXG(I)
ADUDT (I, ) =ADUDT (I, J) XAY (J)

DO 612 J=1.NYP1

DO 612 I=1,NX

ADVDT (I, J)=ADVDT (I, ) *DT2
ADVDT (I, J)=ADVDT (I, J)-DYG(D)
ADVDT (I, D =ADVIOT (I, N *AX (D)

RETURN
CONTINUE
COORDINATES

DO 621 J=1,NY

DO &21 I=1,NXP1
ADUDTA(I.J)=ADUDT (I, J) ¥SQ(I1) DT2
ADUDT (I, ) =ADUDT (I, ) ~-OXG(])
ADUDT (I, ) =A0UDT (I, ) XAY (D)

00 622 J=1,NYP1

DO 622 I=1,NX

ADVDT (1, d>=A0VOT (1, J) %072
ADVOT (1, ) =ADVDT (I, -DOYG(J)
ADVIOT (I, J)=A0VDT (I, Jd) X&X (1)

RETURN
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z0 CONT INUE

CYLINDRICAL R~FYE COORDINATES
640 CONTINUE

CYLINDRICAL Z-FYE COORDINATES
&S0 CONTINUE
- SPHERICAL R-THETA COORDINATES
460 CONTINUE

SPHERICAL R-FYE COORDINATES
&70 CONTINUE

SPHERICAL THETA-FYE COORDINATES

o0 o o o 0

PRINT 70
STOP

00N
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MANAGEMENT OF SOURCE TERM EVALUATION

IF(SRCTYP.EQ.BLF) GO TO 7S50

IF(SRCTYP.EQ. XGRO) GC TO (760,800,999,999,999,999,299) GEOM
IF(SRCTYP.EQ.YGRD) GO TO (780,780,999,999,999.99%9,299) GEOM

IF(SRCTYP.EQ.DIV) GO TO (760,950,999,99%.999.999.99%) GEOM

TEXT(&)=TEXT(18)
TEXTA(7)=TEXT(19)
TEXT(8)=TEXT(20)
PRINT 10, (TEXT(I),I=1,11)

STOF

ENTRY CLRSRC

CLEAR SDURCE TERM
LSRC=.FALSE.
0g 710 J=1,.NY
DO 710 I=1,NX
SODURCE (I,Jd)=0.

RETURN

ENTRY BODY (SORCE.LDT)

EVALUATE BODY FORCE TYFE SQURCE TERMS
CONTINUE
LSRC=. TRUE.

DO 755 J=1,NY

DO 755 I=1.,NX
TEMF3(I,J)=AX (1) *AY (J)
TEMF4(I,J)=80RCE(I+1,J+1)xD0T
TEMPS(I,J)=TEMF2(I,J) ¥TEMF4(I,J)
SOURCE (I, J)=SOURCE(I,J)+TEMFS(I,J)

RETURN
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760

770

780

785

790

EVALUATE CARTESIAN X GRADIENT COMFONENT

SRCTYP=XGRD
CONTINUE
LSRC=. TRUE.
OT2=0.5X0T

DO 765 J=1.NY
0g 765 I=1,NXP1
TEMFS (I,J)=SORCE(I,J+1)+S0RCE(I+1,J+1)

Do 770 J=1.NY

DO 770 I=1,NX

TEMPA (I, J)=TEMFI(I+1,J)-TEMFS(I.,J)
TEMFS (I, J)=TEMF4(I,J)XAY (J)XxDT2
SOURCE(I.J)=SOURCE(I1.d)+TEMFS (I,

IF(SRCTYF.EQ.OIV) GO TO 780

RETURN

ENTRY YGRAD(SORCE.DT)

EVALUATE CARTESIAN Y CGRALIIENT COMFONENT

CONTINUE
LSRC=. TRUE.
DTZ2=0.35%DT

D0 7835 J=1,NYF1
00 785 I=1,NX
TEMF3(I,J)=SORCE(I+1,J)+S0ORCE(I+1,J+1)

0Dg 790 J=1,NY

DO 790 I=1.NX
TEMF4(I,J)=TEMF3(I,J+1)-TEMF3I(I,J)
TEMFS(I, ) =TEMP4(I,J) XxAX (1) X0OT2
SOURCE (1, J)=SOQURCE(I,J)+TEMFE(I,J)

RETURN
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960

999

EVALUATE CYLINDRICAL R GRADIENT COMFONENT

CONTINUE
LSRC=. TRUE.

DO 8035 J=1.NY
00 805 I=1,NXP1

TEMFS(I,J)=SORCE(I,J+1)+SORCE (I+1,J+1)

TEMF4 (1,J)=8Q(1)XAY (J) x0T
TEMF3Z(I,J)=0.SxTEMF3(1,J)

DO 810 J=1,NY
DO 810 I=1.,NX
TEMPS (I, JJ)=TEMP3(I,J)XTEMF4 (I+1,J)
TEMPS (I, J)=TEMP4(I+1,J)-TEMF4(I,J)

00 815 J=1,NY

DO 815 I=1,NX

TEMF4 (1, ) =TEMFZ(I+1,J)-TEMP2(I,J)
TEMPS (I, J)=TEMPS(I,J) XSORCE (I+1,J+1)
SOURCE(I,J)=S0OURCE(I,J)+TEMF4 (I, J)
SOURCE (I, J)=SQURCE(I, ) +TEMFS(I,J)

RETURN

ENTRY RCOIV(SORCE,DT)

EVALUATE CYLINDRICAL DIVERGENCE

CONTINUE
LSRC=. TRUE.
DT2=0.5%DT

DO 9SS J=1.NY
DO 958 I=1,NXF1

TEMFZ(1,J)=S0RCE(I,J+1)+SORCE(I+1,J+1)

TEMPA(I,J)=S0(I1)xAY (J) x0OT2

D0 960 J=1,NY
00 960 I=1,NX
TEMFS (I, N=TEMFS(I+1,J)-TEMF3 (I, )
TEMFS(I, D=TEMPS(I,J)XTEMF4(I+1,d)
SOURCE (I,J)=S0URCE (I, J)+TEMF2(I,J)

GO TO 780
RETURN

FRINT 70
STOP

A24




c
C
cC
>
c
c
c

1205

1210

1220

SET

AND CHECK REQUEST FOR A FARTICULAR GEOMETRY

GEOM=0
IF (GOMTRY.EQ.TGM (1)) GEOM=1

IF (GOMTRY.NE.TGM(2)) GO TO 1210
IF(CRDI.NE.TCRDO(4)) GO TO 1205

IF (CRD2.EQ. TCRD(3)) GEOM=Z

IF(CRD2.EQ.TCRDO(&)) GEOM=3

CONTINUE

IF(CRD1.EQ.TCRD(3) .AND.CRD2.EQ. TCRO(6)) GEOM=4

CONTINUE

IF (GOMTRY.NE.TGM(Z)) GO TGO 1220
IF(CRD1.NE.TCRO(4)) GO TO 1215

IF(CRDZ2.EQ. TCRDO(S)) GEOM=S

IF (CRD2.EQ.TCRD(6)) GEOM=6

CONTINUE
IF(CRD1.EQ. TCRD(S) . ANL'.CRD2.EQ. TCRD (6)) GEGOM=7

CONTINUE
IF (GEOM.GT.0) GO TO 1228

ISSUE AN ERROR MESSAGE UFON REQUEST OF AN UNRECOGNIZED GEOMETRY

AND

STOP

TEXT () =TEXT (12)
TEXT(7)=TEXT(13)
TEXT(8)=TEXT (14)

PRINT 10, (TEXT(I),I=1,11)

STQF

CONTINUE

NX=N1
NXF1=NX+1
NXF2=NX+2

NY=NZ ,
NYP1=NY+1
NYF2=NY+2

XPROC=.FALSE.
IL=2

IR=NXF1
YFROC=. FALSE.
JE=2

JT=NYF1

LSRC=, FALSE.
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c SET DEFAULT : ALL BOUNDARIES ASSUMED FERMEAEBLE
DO 1226 I=1,NXF2
PRMELE(I)=1.0
1226 PRMBLT(I)=1.0

DO 1227 J=1.NYF2
FRMBELL (J)=1.0

1227 FPRMELR (J)=1.0
FPRINT 20

RETURN

a0oo 9] 0
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IDENTIFY X OR Y COORDOINATE AS FERIODIC

IF(CRDNT.NE.1) GO TO 1230

0O oOo0Oo0oon

XFROC=. TRUE.

IR=2 [
IL=NXF1
c
FRINT 40, CRD
c
1230 CONTINUE
IF(CRONT.NE.2) GO TO 1240
C
YPROC=. TRUE.
JT=2
JE=NYF'1
c
PRINT 40, CRD
C
1240 CONTINUE
IF (CRD.EQ. TCRD(4) . OR. CRD.EQ. TCRD(S)) FRINT 20,CRD
c
RETURN
c
c
c
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ENTRY SETLMT(LMTR1,LMTR2)

C -
c
c SET AND CHECK REQUEST FOR A FARTICULAR FLUX LIMITER
c
c
DO 1285 I=1,4
c
Do 1281 J=1,2
IF(LMTR1(J).NE. TLM1(J, 1)) GO TO 1258
1281 CONTINUE
c
DO 1232 J=1,.2
IF(LMTRZ (J) .NE.TLM2(J, 1)) GO TO 1288
1252 CONTINUE
c
GO TO 1260
c
1285 CONTINUE
c
C ISSUE AN ERROR MESSAGE UFON REQUEST OF AN UNRECOGNIZED FLUX
c LIMITER AND STOP
TEXT (&) =TEXT(1S)
TEXT(7)=TEXT(16)
TEXT(8)=TEXT(17)
PRINT 10, (TEXT(I),I=1,11)
c
STCF
c
1260 CONTINUE
ILMTR=I
£
RETURN
c
c
c
A28
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1270

o0

ENTRY FIXGRLD(CRLONT.CRL)

. . . s s o e oo s — e S > e o "

LAREL X OR Y GRIL AS FIXED

IF(CRDNT.NE. 1) GO TO 1268

XCHNG=.FALSE.
FRINT S0, CRD

CONTINUE
IF(CRDONT.NE.2) GO 70O 1270

YCHNG=.FALSE.
PRINT S0, CRD

CONTINUE
RETURN
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c
c
c CANCEL THE DIFFUSION AND ANTI-DIFFUSION FLUXES THROUGH FATCHES
C OF BOUMDARY INTERFACES
C
c

IF(BONDRY.NE.TENLI(1)) GO TO 1280

00 1275 J=KSTRT.kKEND

1275 FRMEBLL (J)=0.
FRINT &0, BONDRY,KSTRT.KEND
c
1280 CONT INUE
IF(BONDRY.NE. T2ND(2)) GO TO 1290
c
DO 1285 J=KSTRT.,KENL
1285 PRMBLR (J) =0.
c
PRINT 60, EBONDRY,KSTRT, KEND
C
1290 CONTINUE
IF(BONDRY.NE.TBND(Z)) GO TO 1300
c
DO 1295 I=KSTRT.KEND
1295 PRMBLE (I)=0.
c
PRINT &0, BONDRY,KSTRT.KEND
C
1300 CONTINUE
IF (BONORY.NE. TEND(4)) GO TO 1310
c
DO 1305 I=KSTRT.KENL
1305 FRMBLT (I)=0.
C
FRINT &0, BONDRY,KSTRT,KENLD
c
1210 CONTINUE
RETURN
C
C
c
END

A30




0oonn

100

SUBROUTINE NUMU(NI,NJ,EPS:NUV,MUV)

EVALUATE DIFFUSION AND ANTI-DIFFUSION CDEFFICIENTS

FARAMETER NFX=100,NFY=100

PARAMETER NF1X=NPX+1,NP1Y=NFY+1

FARAMETER NF2X=NFX+2, NF2Y=NFY+2

REAL EFS(NF1X,NF1Y},NUVINFP2X,NFZY) MUV (NFZX, NF2IY)

0O 100 J=1.NJ
DO 100 I=1,NI
EFS(I,J)=EPS(I,J)XEFS(I,J)
NUV(I,J)=0,333333*%EPS(I.d)
NUV (I, J)=0.166667+NUV (I J)
MUV (T, ) =NUV (I, -EPS(I.,d)

RETURN -
END
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