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I. INTRODUCTION AND MOTIVATION

A well-documented module ETBFCT for solving generalized continuity

equations was presented in NRL Memorandum Report 3237, dated March 1976.

The module PRBFCT was also included to treat the case of periodic boundary

conditions. In these modules, the cell centers are specified while the

cell boundaries are located midway between the centers. In August 1980,

JPBFCT, in which the cell boundaries are tracked, was documented.

The above modules are based on the Flux-Corrected Transport (FCT)

technique introduced first by Boris and Book. 1 FCT, instead of adhering

to an asymptotic ordering, requires positivity, a physical and mathematical

property of continuity equations. To assure positivity, the convective

stage includes or is supplemented by a large diffusive flux of zeroth

order (in e = u6t). Consequently, an antidiffusive or corrective step has
6x

to follow. The two stages together are able to tre. steep gradients

without generating dispersive ripples. Antidiffusion being a physically

(and numerically) unstable process, the corrective flux is Ki T.ited according

to a criterion which may be stated, "The antidiffusion stage should generate

no new maxima or minima in the solution, nor should it accentuate already

existing extrema."

FCT was shown to be applicable to any finite difference transport

scheme and able to improve it. 2 Phoenical FCT, a refinement which minimizes

residual diffusive errors, was i.itroduced. Clipping and terracing, two

nonlinear processes resulting from the flux limiter were discussed.

Finally, splitting techniques wexe recommended to extend FCT to multi-

dimensions.

1
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The most detailed error analysis of FCT algorithms was performed in

Ref. 3. Low-residual-diffusion and low-phase-error algorithms were derived.

An optimal algorithm, Fourier FCT, was introduced.

The requirements for positivity of a general three-point scheme and

the antidiffusion flux for a minimum residual diffusion were derived in Ref. 4.

Zalesak 5 provided a general mathematical interpretation of the anti-

diffusion flux as the difference between a high-order transport scheme and

a low-order one. He also described a generalized fully multidimensional

flux limiter guaranteeing that the antidiffusion fluxes on all sides of the

control volume, acting in concert, do not create any ripples. It was shown that

by proper selection of the flux limiter parameters the clipping and

terracing phenomena can be reduced.

The goal of the present work is to extend JPBFCT to a fully two-

dimensional algorithm, without time splitting, and incorporate the Zalesak

flux limiter while still keeping the implementation of the convective,

diffusion and antidiffusion processes as physical fluxes.

iALW ~s--ti



II. FOURIER ANALYSIS; DEFINITIONS

A generalized conservation equation can be written in the form:

a2 +Z ~ ~ -

-p V V u = P +V + s(x,t,c... ) (1)

where Z is the velocity vector, P is the generalized density or the trans-

ported quantity whose positivity is to be conserved, and s is a source term

including all the remaining terms, i.e., gradients, divergences, body forces,

etc.

In the analysis we assume s = 0 and u constant. We shall -t with

the one-dimensional case. Eq. (1) reduces to

+ Uo = 0, (2)

whose analytic solution is

p(xt) = p(x - u t,0), (3)

a rightward-propagating wave with velocity u . Let us Fourier analyze

)(x,t) in space, assuming periodic boundary conditions. Assuming an initial

distribution of density 3(x,0) = F(x),

a
F(x) =-S + (a cos kx + b sin kx), (4a)

k=l

where k is assumed to be normalized, i.e., k replaces -- k In complex

form

" ikx
F(x) = pke (4b)

where i -1. From the reality of P(x,0), the ak and bk are real. The

quantity $kis related to these by

3
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a - ib
Zr k 2 0;

a. + i .
K K

a
0

- 0 for k = 0.

Notice that we could have started the summation in Eq. (4a) from k = 0 since

sin 0 = 0 and cos 0 = 1. The zeroth order term would then be a. The form0

(4a) is preferred, however, since it is compatible with the s-mnnetric formula-

tion of Eas. (4b) and (5). Then k is given by

I

i f L - i-x.
k F (x)e lax.( )

From Eq. (3) , the density profile at time t is given b%

tik~x - Uot) - ikx

where

(t) = iku t

k k

shewing that each harmonic independently advances uniformly in phase without

changing its magnitude (see Fig. 1).

Suppose p is known at all times only as a set of N + 1 quantities

.; on discrete grid points with separation Sx x = j~x (j = 0,1,...

N
N-l), since . We can have only 2 + 1 different harmonics. Namely,

L L L
wave numbers (0,1....N/2) and wavelengths ( = L/0, L . N

respectively, where we note that the shortest wave length 4s 26x. Let

A N2
f kx) -- + (A cos kx + B sin kx), (9a)

2 L k/ k

k=l

_-_ __ _
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or
f(x) = N/2 ikx (9b)

k=-N/2

(see Fig. 2). We notice in Eq. (9a) that at k = N/2, sin kx. L L -x

= sin 7J = 0; hence only cos kx is needed at k = N/2. There are then

N coefficients, Ak (k = 0,...,N/2) and Bk (k = 1,2,...,N/.- 1), which can
0

be determined using f(x) = P (j = 0,...,N-l), where superscript 0 denotes

21T -N.-x 27 (N)
time t = 0. Similarly, since for all j, exp exp (i- -

Eq. (9b) is rewritten as

N/2 ikx
f(x) =Z Pke (9c)

k= -N/2+1

Again, we get N coefficients k(k = -N/2+l,...,0,...,N/2). The relation

between the 5k and A k, Bk are given by equations similar to Eq. (5).

Formally,

1 Z N-I

k = N- eikXj (10)

j=0

Eq. (3) predicts the density at time t as

1: N/2 ^ e ik(x - uo0t) N/2 z (t)e ikx

P(x,t) = ' k 0 k

k=-N/2+! k=-N/2+l

w -iku twhere p, (t) = e . Since we are only concerned with p(xjt),

substituting x = x. = ix, we get]

p 'j t) = 1 N/ Pk (t)eij x (l

k=-N/2+1

- - *on.-
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nl fl n n (tnIf the time is also discretized, let tn  n't, n (x,t k n

then

n - N/2 -n ikjix
-k

k=-N/2+l

where

n -iku nft
k k e o (13)k

if we space-discretize only, after we Fourier analyze the initial density

profile p.  i.e., after getting the in Eq. (9c), the problem is reduced
3k ikx

to that of propagation of the complex harmonics e (k = 0,...N/2). In

a nonlinear problem, each harmonic can couple into components of the other

harmonics. In the linear problem of Eq. (2), however, each harmonic propagates

independently (this is also true if u = u(t)). Since the number of spatial

points does not change, we can always express the density at any time as

a Fourier expansion of the form Eq. (9c). In a nonlinear problem 0k (t)

is a function of (ON/2+l.... ,.... Q N/Z)at time t = 0. But in the linear

problem 5 k(t) is only a function of k as is obvious from Eq. (13). if

the time is also discretized, we can then define a transfer function

,n+l

0.
AWk =-' (14)

n

which is independent of n if u = u as is obvious from Eq. (13) (analytic0

solution), yielding

A(k) = e-iku 0t (15)

Eq. (12) may be rewritten then as

n =EN/ 2  k[A kn eikj~x, (16)

k=-N/2+l



7
u 6t

Denoting the constant - by E and the dimensionless wave number kx by £,6x

A(S) = e- i E The amplification is JA()J = 1 and the phase shift is

Notice that the smallest 5 = 0 and largest S = Lr N X = 7. For a finite-
L 2

difference scheme applied to the linear problem, each harmonic propagates

independently. Consequently, a method equivalent to Fourier-analyzing

n+l and pn(j = 0,...,N-l) and evaluating Ak from Eq. (14) is to study the

n o ikj~x 0
propagation of only one harmonic by assuming p. c e , where is

constant. Then

n+l

A(k) = 3 (17)
n

By writing A(k) as

A = JAje i , (18)

we define the amplitude (or diffusion) error and the relative phase error

as

a = AI - 1 (19a)

and

R = 1, (19b)

respectively. We define a scheme as stable if A < 1 (see Fig. 3).

Example:

Assuming u = const = u , the original explicit SHASTA Algorithm can be
0

written as
2

0TD = Q n - E( n - n + n n np = p -(pj-l + (- + - ) (p+- 2pj + p3 I
j j 2 j+l j-l 8 2 j+l j j-I

n+1 TD I TD TD TD
j j 8 (Pj+l j-

FIN-. .
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in which we identify njI - nI ) as the net transportive flux, denoted
1 2 nl _ l 21

by a superscript T, and -+ E )(,n n~ + D ) as the net diffusive
8 2 j+1  i j-1

TD
flux, denoted by a superscript D, from which we have the notation D

TD
Expressing o as a three-point formula we can write

22 2
TD 1 2 n 1 2 1 ,n 1 + 2 n

= [ [1 - 2(+
0. 8 2 j+l 8 2 j 8 2 2 j-1

Each of the quantities in square brackets is > 0 for !,-<1, assuring the

positivity of p. if 0n > 0. The positivity requirement will be discussed3 3 -
Asum n =o ikjfx

later in detail. Assuming p n p o e

TD o ikj6x E o ik(j+l)6x - ik(j-l)6x)Q3 = 0 e 2 (P e' -D e

+1 2 (j+l)6x 0 ikj5x a ik(j-l)6x
+ + ) ( e -+ e
8 2

giving

T(e-£ i -' 1 E (i -iS)
PTD n 2 (e is - e- ) + (1 + ) - 2 + e .

i3-i

ei - e -i

Denoting the operator 2 i sin by t and e - - + e

TD n 1 £
= 2(cos 3 - 1) by d, we have j = (1 - Ft + )d) Cj where - z 2 Then if

1 n+l n n
S , (. - £t + \)d) nl. - d(l - Et + )d),n , whence

J
n+1

P.
A -,- = (1 - ct + vd) (1 - ud). (21)

n
0.3

We notice that at E = 0, A # 1. In fact, A (I + d)(i -- d) , a

88

deficiency that led to the introduction of a phoenical algorithm in Ref. 2,

in which the antidiffusion operates on a transported density which is free

from any zeroth-order diffusion. Phoenical SHASTA is written as

I'

I .I
- - . ..-
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2
T n E n n ) n n np. = P. - - (p+ - j-) + (" .( ,+ - 2p. 4 ,~)
j = 2 j+1 j-1 2 j+i 2 j j-1)

TD T + n n 2 n
PJ =j (,n+1  2p + Pl);

n-- TD 1 T T T

P. = P. - - - 2pj + P T). (22)
j 8 j+l j-l

thus yielding

A = (1 - £t + Ne d)(1 - ud) + vd, (23)

1 1
where = = = -, satisfying A = 1 at E =0.

The importance of phoenicity lies in the fact that the total diffu-

sion through a surface is proportional to the time of diffusion and there-

fore should vanish as 6t - 0, i.e., c - 0.

Later, in Ref. 6, ETBFCT and JPBFCT, based on the scheme

T n E n n
PJ= P - Pj+I j-1)

TD T n n n
pj =pj + V(p - 2pj +pj_

n+l = PTD _ (pT - 2pT + Tp.J p 2p +Pj ) , (24)
j j+l 1 -

were introduced, yielding

A = (I - et)(1 - pd) + vd, (25)

2 2
where 6 + - and p 6 - -- Notice that the zeroth order term is the6 36 6

same in both v and v, thus yielding a residual diffusion O(2) , which

vanishes as 6t 0.

- = v--..... -.



Ill. AMPLITUDE AND PHASE ANALYSIS

If in Eq. (18) A is expressed as A = AR + iAI , where R stands for

real and I for imaginary, then

2 2 2

JA1 2 = A2 + A , (31a)
R I

= tan (AI/AR). (31b)

Equations (31) yield numerical values of JA! and 9 for a given a. These

should be expanded, however, in a power series in 6 and plugged into Eqs.

(19) to get an estimate of the order of a given scheme. Expanding Eqs. (31)

in power series is a huge task. instead, we use a scheme based on successive

differentiation, as follows:

PHASE ERRORS

As seen from Eqs. (21), (23), and (25), three-point schemes can be

expressed in terms of a transport operator t E i sin and a diffusion

operator d E 2(cos - 1). In other words, A = A(t,d) where t = t(B) and

d = d(B). Taking the logarithm of Eq. (18), we obtain log A = log JAI + i ,

yielding

9 = Im[log A]. (33)

Expanding 9 in a power series of 8, near 0, we have

' 8 ~ ,,
9o + o + +

where ( - d( and the subscript 0 denotes the value at a = 0. Since,

from Eq. (33),

10

... ... . . . ,d ! , -- r _-
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__dn A '
d=m (log A)l _ }

d6n d=0 n

all we need are the derivatives of (log A) with respect to 1, at .= .

First, by direct differentiation we get (log A)' = A'/A,

(log A)" = A"/A - (A'/A)2 and so on. Noticing that the "consistency" of

any scheme requires A(a = 0) = 1, we can write

I I

(log A) =A0 (35a)o 0
(log A) A -A ; (35b)o 0 0

log A)= A - 3A A +2A ; (35c)(oA)o o 00 0

oV Av ... '°  '2 " '4
(logA) A - 4AA - 3A + 12Ao A 6A (35d)

(logA) =A - 5AA - 10A A + 20A + 30A A
o o 00 0 0 0 0 0 0

13 " 5
- 60A A + 24A (35e)

0 0 0
3()td

Next denoting by ( ) and ( ) by ( )d, we get by direct differentia-

t ' d " " t 11 d '2 tt ' ,Atd ',2 ddtion A =tA + d A , A =tA +dA + t A + 2t dA +d A , and

so on. Confining our scope to schemes of first degree in t (composite

transport excluded) and of second degree in d, we have

Att 0, Atdd -constant, and Addd -0. (36)

We obtain then

0
A = ;

t= d

A' t'At + dAd; (37a)
0 0 0

,, , t "Ad , 'Atd+ d'2Add ,

All t A d + 2td +d A (37b)o o 0 00 0 0 0 0 0
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"I' "a g  '" d " ' " td ' " dd ''2Atdd;

A = t A -* d A + 3(t d + t d )A + 3d d A + 3t 6 A ; (37c)o 0 0 0 0 00 0 0 0 00 00 0 0 0

A t A d A + (4t d + t d + 4t 6
0 0 0 0 0 0 0 0 0 0 0

- '" "2 dd ' " '2 tdd
+ (4d d + 3d )A + (12t d d + 6t d )A (37d)

00 0 0 Q000 0 0 0

AV tV t dVd ,v ,",, ,

tA + r (5t d + 10t d + 10t d
0 0 a o 0 0 0 0 00

+ 5t d )a + (5dd 10 d )A + (30t d d

00 0 0 0 0 0 0 0 0 0

* "2 ' ' "' '2)Atdd
+ 5t d + 20t'd d + 10t d . (37e)

00 0 0 0 0 0

Going back to the definition of t and d

, , , , v t5v

t = 0, t = i, t = 0, te= -i, t = 0, and t = i, (38a)
o 0 0 0 0

* "i '" 'V dV

d = 0, d = 0, d = -2, d = 0, d = 2, and d = 0. (38b)o 0 0 0 0 0

Substituting in Eqs. (37,, we get

A = 1;0

dt
A = + 6 (39a)

0 0

A! -2A; (3 9b)
o a

A = -(A + 6At); (39c)

0 0 0
A,= 2(A d + 6Add); (396)

Av = i(At + 30Atd + 60Atdd) (39e)
O o 0 0

Finally, with, Eqs. (30), Eqs. (35) yield
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(log A)° = 0;
0

(log A) = iA t; '40a)
o 0

(log A) = -2Ad + (At) ; (40b)o 0 0

(log A) = -iAt (1 - 6A d [6A t d + 2(A ) 3 (40c)
0 0 0 0 0

(log A) = 12A d d + 2(1 -6A
d )[Ad  2(At) 2  6At[4A td

o o 0 0 0 0 0

+ (At ) 31 ; (40d)
0

(log A)v = 6iAltd d + iAt[1-30A
d - 60Ad d + 120(Ad )

2

o 0 0 0 0 0

+ 20i(A t) 3[1 - 6A d  + 30iA td(1 - 4Ad + 4(A t)
2

o o 0 0 0

t 5
+ 24i(A t ) (40e)

0

Eqs. (40) invoke the fact that only the odd derivatives of log A

are imaginary. Therefore, with the use of Eqs. (33) and (34), we get
I I,,

(log A) (log A)o 3
0 +0 _

i 3 ! " ' (41)

Example:

Let us phase-analyze the scheme described by Eqs. (22), i.e., the

transfer function of Eq. (23)

A = (1 - ct + Xe2 d)(i - wd) + vd

1 1
where v= u =-and X = 1

8 2

First we notice that it is phoenical: A = 1 at c = 0. By direct

differentiation, At = - e(l - pd) and A = XE 2(1 - ud) - u(l - zt + Xt2d) + v;

td dd 2 tdd
A A =-2Ac W, andA =0.

I. W. W- t
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t d 2 2
At = 0, t = 0 and d = 0, yielding A = - , and A A& + (N - P) = ,

Atd dd ? Add tdd
Ao -- C' Add-- 2X = - - , and A = 0. Substituting in Eas. (40)
o 8 o 8

(41), we get

E + .1(1 E- E )3 +.
6 4

Using Eq. (19b), the relative phase error is found to be

R - e2)a2 + 0(B4,

showing that the scheme is second order in phase.

Alternatively, let us derive an expression for j which renders the

scheme of Eqs. (24) fourth-order in phase. Upon differentiating the trans-

fer function A = (1 - £t)(1 - id) + vd we get, when we substitute S = 0,

A t  E; and A 
d

o 0

A t d  , Ad d = 0, and At dd = 0, (42)
o o 0

which with Eqs. (39a) through (39c) gives

A i
A = - v

0t

A = -2(v- - .U)
0

I, g
A = - i-; + 6Ei). (43)
0

Substituting in Eq. (35c), we obtain

off 3 2
Im (log A) = £ (1 - 6,) - 6£(v -v ) + 2£ = E(1 - 6", + 2 .

To reduce the coefficient of 2 in the R expansion to zero we require

lot

(log A) 0, yielding0

2
6 + -(44)

'sin. -4 ..



AMPLITUDE ANALYSIS

Denote the complex conjugate by a bar on top:

JAI A A. (45)

d n  d dn ()

Since d-n ( d) ( we get by successive differentiation of Eq. (45)

(IA 2 ) = 1;0

(A) = AA + AA ; (46a)

A )o 0 0 0 0o o

(JAI ) = A A + 2A A + AA ; (46b)
0 0 0 0 0 0 0

, 1 r' 1 I It 0 1 to Ito

(JAI) = A A + 3A A + 3A A + A A 0 (46c)o 0 o0 0 t 0

(JAI) =A A + 4A A +A6AA +4AA + A A (46d)
0 0 0 0 0 0 0 0 0 0 0

Noticing from Eqs. (39) that the odd derivatives of A are pure

imaginary while the even ones are pure real.

A = + A = 1;
o o

C C

A -Ao o

A =+ Ao o

II fIt

A -A ; (47)0 0

and
v -- v-

A = +A
0 0

o o
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Substituting in Eqs. (46), we get

( 2 = 1; (48a)
0

2 = 0; (48b)

0

oo

fit

1[2 ) ... Vo IVA o

(JAKo 2 [A + (_0 0 + 3(A (48e)
o 0 1 1 0

where we notice that the odd derivatives vanish. Accordingly, AIK can be

expanded as

IAI 2=+ (!Aj 2 ) 2 + 2) V + (49)o 2! A , 4!

Example:

Let us derive an expression for iod to render the diffusion error of

ETBFCT fourth order. Substituting Eqs. (42) into Eq. (39d), we find

At -= 2(- (50)
0

Using Eqs. (43) with (48), we obtain (A) = 2[-2(, w) + o1, which has

to vanish for a fourth-order diffusion, yielding

2

- = 0(51)

A2
Solving Es. (44) and (51), we have L = ( whence - = - i, A h

6 i

off

III

A 3 'V 2
o (l - 60)= and A C . We can then write

O2 V 2 3 4 2 2( AI )- 2[F- + 4(-)( + 3 e 2C (1 -wE

ri 101t
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which when substituted into Eq. (49) gives

12
AL 1 2I - 1' 4 6() (52)

showing a slight instability near 6 = 0 (the coefficient of 4 is positive).

A warning is in order at this point. Although a positive coefficient

of the leading term in the expansion imp'ies unstable behavior, a negative

one does not guarantee a stable scheme, since the expansion is valid only

near = 0.

Figure 4 shows the amplification IAI versus we notice a maximum
1

value of IAl = 1.0018 at 6 = 53.668' ± 0.001 for c --. We can get rid of

the potential instability by using a slightly different expression for u,

2

U = - a 6 (53)

By trial and error, a was found to be > 1.056. The dashed line in Fig. 4

shows the resulting amplification for a = 1.056. The maximum value of !Ai

becomes 0.999998 at £ = 45.7750 ± 0.001. Since the phase error depends on

v only, the resulting scheme is still fourth-order in phase error. The

1
zeroth-order antidiffusion being kept at -, phoenicity is preserved, i.e.,

2
the residual diffusion is 0(- ). Later, a modified algorithm which is

stable and has sixth-order diffusion and fourth-order phase errcr is

described.

-4r ON a
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IV. POSITIVITY AND ANTIDIFFUSION

The concept underlying FCT is "positivity." This means that the

sign of the dependent variable must be preserved under the influence of

convection alone. Source terms can alter the sign. Positivity is particu-

larly important near steep gradients where the convective fluxes tend

to make the transported quantity undershoot or overshoot. Positivity is

ensured by supplementing the convective step with a large diffusive flux

of zeruth order in t. For example, in the scheme of Ea. (24), consider

the transport step alone,

T nE£n n
j 22j+l j-

applied to the discontinuities of Fig. 5(a) and (b), where £ = + 1/2. The

negative density in Fig. 5(a) and overshoot in Fig. 5(b) are obviously major

errors. Ry supplying enough diffusion,

TD T + )(+ ,n 2 n
j ) 6 3 j- ),

we see the negative density in Fig. 5(a) disappear, as does the overshoot

in Fig. 5(b). Formally, in the expression

TD i 1 + n n 1 ] nj= [I - 2(- )] c + [(- + C ) - ~ + [(- + ) +
6 3 j 6 3 2 j+l 6 3 l

the quantities in square brackets are all > 0 for El < 1,'2, therefore

TD n
ensuring positivity of o as long as 0. 0.

A side benefit of the zeroth-order term is more accurate propagation

i.e., high-order phase preservation. As seen from Eq. (44), selecting

S= - + - assures a fourth-order phase error.
6 3

A byprc-duct of this large added diffusion is antidiffusion, which

is needed to extract at least the zeroth order part. This leaves a residual

diffusion O(E.) near almost uniform distributions. Near steep gradients,
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antidiffusion fluxes have to be reduced enough to maintain the positivity

TD
of . This process is called correction of fluxes, and gives rise to

the name "flux-corrected transport." In the case of a discontinuity, the

local antidiffusion flux is cancelled completely. This trimming means

that the amplitude no longer has the order of accuracy derived above.

But near steep gradients the concept of order is meaningless anyway. On

the other hand, Eq. (44) is independent of L. The fourth order phase error

is therefore assured regardless of the antidiffusion fluxes. Specifically,

"the antidiffusion stage should generate no new maxima or minima in the

solution, nor should it accentuate already existing extrema" (Ref. 1).

The first mathematical formulation of the above statement was given

1
in connection with explicit SHASTA,

TD n n n 1)nn n
S8 n -P + + , ,n+ , ) (61a)

n+1 TD c Fc

The corrected antidiffusion flux,

c = sign Aj max {0, min sign

"" 1, sign } (62)
.. j+j j+3/2" s j+]

is the corrected form of the raw flux

f 1 1 TD _ PTD (63
j+ 8 j+i 8 j+l ]

which in this scheme is always in the same direction as the gradient in

TD
P T There are eight different possible cases, shown schematically in

Fig. 6. Cases 5-8 are mirror images of 1-4, respectively.
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Equation (62) will cancel an antidiffusion flux whenever it would

lead to accentuate a maximum or a minimum, as illustrated in Fig. 6, and

will trim it enough not to generate a new maximum or minimum whenever

it is not cancelled.

Later in Ref. 2 the raw antidiffusion fluxes were evaluated using

T 1 T _T)
IT in the raw flux 1 E-(QT+ - T' where

J 8 j-l j

T n £ n n £ n n n
) + - (P c

' j 2 j. -1 2 j+l j j- "

The corrected flux is expressed as

= sign fj+ max {0, min [ sign f.Sj+i i-+

Zf+ sign f. ]} (64)

where we get sixteen possible cases (twice as many as befcre, depending

whether f4 is parallel to or opposite to it). In Fig. 7 we consider

only those cases when f+, is positive, since the other cases are their

mirror images.

Again, the flux is cancelled whenever it would accentuate a maximum

or minimum. But it is also cancelled in cases 6-8 where it would nct in

general cause any problems, an unnecessary action. This is due to the

fact that f is corrected independently of f and fj +j iscrej1 j+3/2'

Zalesak 5 reexpressed the role of the flux limiter as "guaranteeing

that the two antidiffusion fluxes associated with each cell, acting in

concert, should not create any ripples." The mathematical formula

- .,~- . 4 .h-O
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implementing the above statement is described for 1-D schemes by the follow-

ing steps:

p- sum of antidiffusive fluxes "into" grid point j

- max (O,fj) - min (O,f j+) (65)

+ max - TD (66)

n (1,Q3/P.) if > 0

3 0 = 0. (67)
3

Similarly,

P. _ sum of antidiffusive fluxes "out of" grid point j
3

= max (0,fj) - min (0,fj _) (68)

- TD min(C - ) (69)

0 if P- = 0, (7O)
3

max min n+l
where o. and m are the upper and lower bounds on p , respectively, which

ensure that no ripples form at grid point j. Defining the correction ratio

+ i->

in (Rj+I,R ) ifj > 0

Cj+ i -+ + -

Lin (RjR j+) if fj+,< 0. (71)

we set

fc =C f (72)

j+i j4j j+*

4 A
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A conservative choice for p and om is] ]

max TD TD TD
=max (c , ,i

jJ i-i j J

min TD TD TD
mj j-lpj , j+ .  (73)

This choice will guarantee that no maxima or minima form other than those

TD
already existing in the o distribution. The flux limiter of Eq. (64),

however, not only guarantees no ripples, but it also cancels the flux in

cases 6-8 of Fig. I. To reproduce the results of Eq. (64), one should

apply the extra limiter

_c
" = 0j+

if (f 1 . < 0 and (jf _ < 0 or f.+j < 0)) (74)

j+ 3+ j+ j+3/2

before Eq. (64).

An extensicn of Eq. (64) to more than one dimension, however, cannot

guarantee that there will be no ripples since it lacks knowledge of f.
)+31/2

and f._ when correcting f We are left then with only one safe solu-

tion, which is the extension of Eas. (65) to (74) to multidimensions. Now,

going back to Eq. (73), a more tolerant choice would be

max TD n TD n TD n= max 'max (p ,j ), max (C. ,p.), max (P,0j
j- - j+l j+i.

ranTT i nmmmi (0 D . ,0n), min (p , )} (75)

mun= mi n n TD n TOD n TD n
= min-,min ,j_ ) , min ( j , j+l ,j+l .

This choice will partially avoid the clipping associated with the

flux correction of Eq. (73), as explained in Ref. 5. In summary, by calibrating

max min
(C ,p 0 )using a guaranteed positive profile, positivity is still pre-

served after the antidiffusion step is performed.

- - • . ~ .-
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Now that we have all the definitions and tools necessary for analysis,

let us go back to analyzing schemes.

,dirr~~-~.~-1
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V. A STABLE SIXTH-ORDER DIFFUSION ERROR

FOURTH-ORDER PHASE ERROR SCHEME

2
As mentioned earlier, ETBFCT can be made stable by using u 1/6 -az:

where 'A > 1.056. Then

2" 2 +

(JAI') = 2[-2(v - ) + 2] = 2[-2(----) + lII:,o 6

yielding

Al2 = 1 - (-)E2,2 + 0(4), (81)

which gives for a = 1.056

!A 2  1 0.056 E22 + 0(S413

thus giving the scheme a small second-order error, but leaving it essentially

fourth order in amplitude.
-' T

An alternative is to add a small phoenical diffusion O() to DT

We get then

T n n - n 2 n -),n n

J = 2 j+l -j- 2 j+ -2 jjl

TD= T n ,n + n
+ jVl( -j + jl

n+l TD T+ T +Tn.l= o.D _ ( T - 2pT + 0j.l). (82)
jj+l j -

n o ikj6x
Assuming pJ e

A = (1- t + Xc 2d)(l - d) + 'd, (83)

where t = i sin B and d = 2 (cos - I). Following the method of analysis

described above, we write

" " "" --\ " -." -- ,',- .-. .. '

,, . *-- -
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At Ad  2A=-E, A= (v + XE2 ) - Ii,
o 0

td Add 2 AtddA = A = -2Ac U, andA =0
o 0 0

Then

A - iE;0

A 2[( + XE
2 ) - u];

0o

'II

A 0 - E- + 6sj w];0

A" 21v + XE2 - - 12X C0

For a fourth-order diffusion error,

(JA1 2 ) 2[-2(v + XE2 - + z = 0,
0

yielding

2 E
V + AX 2 E

2

I, IV
Going back to the A , A expressions, we can rewrite them aso 0

Is 2
A =- ,

'V 2 2A = --24X U.
0

For a fourth-order phase error

(log A) --i[-c + 6E - 3 -i) (-2) ( + 2  + 2(-i)
0

- iE(l - 6('0 + XE2 ) + 2F2 ]  0,

yielding

v + XC2  1/6 + 2 /3,

-qW&
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which gives

1

1/6 - c-/6

If I
V

We can then rewrite A and A 0 s

III 3
A =i 3,

0

,V 2 2 2
A E - 4 (1 - .0

Checking,

(A2) 2[1 - 4,c_ (1 2 ) - 4 + 3c 4

0

= 2[l 4X)
2 (1 - 2

showing that we can make the scheme sixth-order in diffusion by selecting

X = 1/4.

In summary,

V = 1/6 + E2/12, u = 1/6 - E2 /6, X = 1/4. (84)

TD
Again, we have to check

2 2 2
TD , )ln 1 n 1

[I - 2( + -+ + -- j + [6+J3 + ] 1 -6 2 I 6 3 2 j+ 6 3 2 j-

Each quantity in square brackets is > 0 if jEJ < 1/2, yielding TD > 0 if
n

.> 0, thus ensuring positivity. Figure 8 shows jAj and R versus 3.

Finally, we note that this is still a 5-point scheme.

- .- - . .- . ... .~
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VI. EXTENSION TO HIGHER ORDERS IN DIFFUSION

AND PHASE ERRORS

We seek a combination of transport operator t(t - i sin 5) and

diffusion operator d(d - 2(cos a - 1)) which approaches the analytic solution

up to a prescribed order of . Since the transfer function of the analytic

-i 8
solution is expressed as A = e

A = cos c - i sin E (85)

or

A =- sin Sc

A = cos SC. (86)

Now, we write sin as ||

sin Sc = sin [A + A1(I - cos a) + A2 (l - cos ) 2 + ... ], (87)
sin

where Ao, A1 , A2 ,... are determined such as to make the series expansion

of both sides of Eq. (87) agree up to a prescribed order of S. In other

words, the derivatives of both sides with respect to S at S = 0 have to

be equal. We get the following system of algebraic equations:

1 0 0 0 ... AoI
3

- - 3 0 0 ... A 2
1

5c 1 -15 30 0 . A2  (8

solved by "forward substitution" since the matrix of coefficients is already

! mV
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"left-triangular." We solve for A first, then for A l, etc. We get
90

2 2E(1-E) F-(4-: )(-C )(89
o £ A1  3 'A 2  30

As for the construction of the matrix, the first column is the

odd derivatives of sin 6, the second, those of sin 6(l - cos 0), the third,

2
those of sin a(1 - cos 6) .... and so on, all at 6 = 0. We notice that

the even derivatives are all zero. To get these, let - 1 - cos a, and

define K recursively K - Ki where K E sin . If we have the deriva-
i+l 0

tives of K., those of K +1 will be

Ki+ 1 = i1 il

K =K + ;i+l i

*! I!! !!

10 if I I I

K K t + 2K i  +Ki¢ , (90)
i+l 1 1

(n) d (n
and so on. Generally if ( ) ( n )i and ( ) E (), we get

d n  0=o

K (n) n (m) (n-m) (91)Ki+l=_ nK ()

m=O
n:0

where (n) n! . All we need then is the derivatives of K sin
m (n-rn)!mr!

and - cos 3 at 0 =0; namely,

I It lIt

K = 0, K = 1, K 0 0, K =-1,..., and

= 0, = O, = 1, = 0, = -1 .... (92)

Now, we write cos Oc as

2
cos E =B 0 + B1(1 - cos 0) + B2 (1 - cos 0) + ... (93)

Now . .
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where Bo Bit B 2,...,1 are determined such as to make the series expansion

of both sides of Eq. (93) agree up to a prescribed order of S. In this

case

I it off
K =1, K = K = K -.. . (94)

0 0 0 0

Using Eq. (91), we get

11

0 40 - 0 B. B

where we notice again a "left-triangular" coefficients matrix. By "forward

substitution" we obtain

Bo=1, B 1 = E; 2, B 2= 6(1 - F_ ) ... (96)

Obviously, we can get Eq. (93) by differentiating Eq. (871) a=nd

vice versa, but we need then to continue the expansion one more term and

use trigonometric identities. The direct approach followed is, however,

preferred, since it enforces a given form on the expansion which is in

no way unique, as explained below.

Noticing that sin a = t/i and 1 - cos B=-d/2, we can write a

sixth-order diffusion error, sixth-order phase error scheme, for example,

as
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2 2

A R = 1 + d - - E )d=2 -
S2 2 C2

iA 1  -Et(l 6 d + (1 - )d 2 .

If we stop at Al, BI, we get ETBFCT, which has fourth-order diffusion

and phase error. Although t and d are both three-point operators, td-

is a seven-point formula. An important conclusion follows: We need three

points for a second-order diffusion and phase error, five points for a

fourth-order error, and so on, adding two points at a time. We can, however,

get sixth-order diffusion and fourth-crder phase accuracy with only five

points since we have to match the sum !A2 A + A up to a prescribedI I R u I
order of 6 and not AI and AR separately. Scheme (82) is an example. Alter-

natively one can construct a scheme with fourth-order diffusion and sixth-
-i A1

order phase accuracy using only five points since we have to expand tan A'
R

not AI and AR separately.

Before implementing Eq. (97), it is important to emphasize that

the expansion is not unique. For example, we can use the expansions

sin 5e = sin S [A + A I (1- cos 3) + A, (! - cos 23) + ...

cos 3E = B + B (1 - cos ) + B2 (1 - cos 23) + ... (98)

We get then

1 0 0 ... A
0

3
3 -1 3 12 ... A1

5
1 -15 -120 ... A,

-- j L j L. _ (99)
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and

1 1 0 0 ... B
0

_:2 0 1 4 B1

E4 0 -1 -16 ... B,

By solving tetwo systems (99), (100), we obtain

A , E 9-E2 ) I- E2 A -E (4 -2 HI

o 15 2 60 (100)

and

-2 E: 2 -2

Bo 1, B (4 - E B , - (1 -)(101)

We notice that the matrices are full and the coefficients (A1 ,

A- .. )(Bi, B2,.) are more complex in form than the corresponding

211

coefficients Eq. (89), (96). Moreover, they change if the expansion is

extended to higher order. The operator (1 - cos 23) results from a five-

point formula; namely, o J2 - 2;) + a. It is abandoned therefore in

favor of the te-point operator formula of Ea. (97) since the latter

requires knowledge of only one point outside the boundary.

We rewrite Eq. (97) as

a2) 22

A A + iA tl ( -) -( - -
R 1 6 6 5 4

+ { I , + 1 15 2 d2 60 2(E00)

2 2 2
B1d - (4 -(t 2

A2 , . .. (B , .... )aemr cmlxi or hntecorsodn
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n+l n
Noting that p A= let us collect the terms in such a way as to ensure

n T n
positivity at every step. First, (-Et)c where

T n ( n npj - j+- j-1)

Then

n+l n 2 2 2 1 2
p + ( d) n 

- d)(- d)]P + "I-( d)
6 4 6

2 2

+ 2 d)[1(1 - 2 )d]}(P - p), (102)
6 5 4

whence
-, 2

n+I T - n _1 - T' " n,n + [ 2 + )dja _( 6 d) (p + d)pn]2 6 6 4

2 2
+ - -)) ( -

d  (103)

From our earlier experience, the combination
2 2

T c2 _ E n
aD + (.:-+ )

2 6

is known to be positive for JEJ < 1/2. The remaining terms are

regarded as antidiffusion. The following scheme is

recommended:

T n z n n
. 3 - - 4_ )  (104a)J 3l (j+l J

2
TA T --Il E )(0T+ T TT - 1 -5 4 T - 2 P + o (104b)

S. = p, + ( + ) -(p )

6-1 (104d)

n+l TD 4 2 T

TAD TA 1ADn,

o. 52o T  + -1 ) , (104e)
3 3 6 j+l - j-'

24
n-s-l_ TD l-E TD TA TAD
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whexe the asterisk of Eq. (104e) means that the antidiffusive fluxes in

TAD
this step are to be corrected. It is worth noticing that if D is taken

T
as o , we obtain a fourth-order diifusion, fourth-order phase algorithm.

If

2
TAD T + d n ,

4

we get a sixth-order diffusion, fourth-order phase, and finally,

TAD T 1 2 n
= :+ -(I + £d

yields a fourth-order diffusion, sixth-order phase error scheme. The ampli-

tude and phase error versus 3 are shown in Fig. 9.

_r v~rr.7 7w-VW
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VII. PHYSICAL ASPECTS

The conservation of mass, momentum, and energy applied to a system

are expressed as

-C (xt)dV = 0 (Ill)

-Vf-(t)

cxt)u~x,t d o(x,t" "x,t)d + '(4_~d 12d , ) = C (n,x,t)dS (12 o )

Vf (t) f (t)(

and

f x t) .'xt) + U(X,t) a,;k (xt) G(x' t). u(x, t) dvdtj 2

f (t) f (t)

+fT(nt) t)dS +f 'n dS 113)

Sf (t) S (t)

where e and G are the internal energy and body force per unit mass, T is

the stress on an element of surface dS with unit normal n, and q is the

flux of energy through the surface, for example, heat flux. The integra-

tions are carried out over 1 f(t), S f(t), where the superscript indicates

that the control volume moves with the fluid. We notice that all the terms

contributing to the balance of any of the conserved quantities are volume

or surface integrals.

In the case of an inviscid fluid

T(n,x,t) -p(x,t)n. (114)

. .." . ." "" " -'= -t -: - . . .
L.-. i .,a
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The surface integrals TdS and -udS reduce then to pndS and pu.ndS

Sf S- S S

which yield grad pdV and; div (pu)dV, respectively, when we apply the

f

divergence theorem.

Recalling Reynold's transport theorem

dfX ( x3L ;f Y +d u .ndS (115)

(t) (t) $ (t)

where V (t) is a control volume whose surface elements dS move with arbitrary

velocity u . Notice that the two integrals on the RHS are over space and

therefore depend only on the instantaneous position of the control volume.

Consequently, the integration can be carried out over any control volume

which happens to coincide with V at this instant, whether it is fixed

or moving with another velocity. Denoting the fluid velocity by u and

the control surface velocity by u wef get, using Eq. (115)

fd= f ~~ffd
-f = d + xudt it

f s f

XdtX d= - d4g- (116)

1 g :Vg S g

If Ig coincide with Vf at time t, we get

dd+ f f g) -
Jd -u ) ndS (117)

V9 S

f S
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When G 0 and q = 0, Eqs. (111) through (113) become

d rd-V+fD(uf nS 0
dt(18

-Vg S
g

dt f ouf* + ( - ug)' dS= - pdS; (119)

d Sg  Sg

f0 (e + A.L!) d-- + (u -u ) .xdS = - u fdS. (120)
dt 2 f' 2

Using the divergence theorem we can get the differential form of the

conservation equaticns. However, it is far more convenient to use the

integral form, because a numerical scheme based on the integral form is

already: conservative, since the fluxes leaving one control volume have

to enter an adjacent one, and discontinuities can be propagated in principle

without any smoothing, since one can always integrate a profile including

a discontinuit,, in contrast with differentiation. Consider Fig. 10,

representing a uniform fixed one-dimensional grid and a continuous density

profile incorporating one discontinuity. If we know the mass in the hatched

cell and the velocity at interfaces A and B, Eq. (118) will give us the

rate of change of mass within the cell, and hence the mass itself after

an infinitesimal time 6t. But we have to get the density at A and B and

the velocity for the next time step. We must have recourse then to

"averaging" procedures to get the density from a known cell mass and "inter-

polation" procedures to get the values of the interfaces from the cell

average values. Through these two procedures, errors are introduced.

Finally, we have to use a finite grid in any case.
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Equations (118) to (120) can be written in a reduced form as

dtfo - -)dnJduS T dS + G dV

V g  sg 9 9 11
* * -f [f 2

where p is a generalized density (p denotes p, pu and E E p(e + )

in Eqs. (118) to (120), respectively), T is a generalized surface stress

(T = 0, pn, pu -n), while G denotes a generalized body force (G = 0 in

Eqs. (118) to (120)). The two integrals on the RHS are referred to as

source terms.

A naive "finite-integral" form solution can be written as

L mass within ] Vmass within] Fnet outgoing 1

control volume _ control volume mass flux through + [source terms].

Lat t + 6t jL-at t I L control surface

As will be explained next, the above formula is supplemented with diffusion

flux terms (actually diffusion and antidiffusion) to improve its accuracy.

ACCURACY

The above mathematical analysis was carried out assuming a fixed

uniform grid and 1 + ux = 0, where u°  constant. We notice also the
3t o ax

absence of any source term (inhomogeneous part of a conservation equation).

The analytical solution was found out to be

n+l n
p Ap

-iSc
where A = e , then was expanded to get a numerical scheme that matches

it up to a prescribed order of 8. In this context the numerical scheme

-- .
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is an approximate solution of the whole PDE, in contrast to schemes which

approximate -- - alone by a finite difference and - alone. By getting

a solution of the PDE as a whole, we mix the time and space derivatives

for a higher order scheme. To see that, let us expand )(t + 6t,x) in

a Taylor series:

Q(t + St,x) = p(t) + 6t +x  2 2 + (121)

From the PDE

-= u -- (122a)9t o 3X

,2 2Ct2  1(1) P (-u 3P uo - uO ix2 . (122b)

t2 t at 3t 0Dx 0ox t ax2

Substituting Eqs. (122) into (121) we obtain

tu 26t2 2

O(t + 6t,x) = ')(t) - u St O+ + ao -- 2+ .... ' (123)
o 3x 2 3x2

showing that we can get a better solution in the time domain (of higher

order in St) by adding to [o(t) - u° t - a diffusion term,
o~3x

2t2 ' 2
u St u _(6t)

, a purely spatial derivative. Notice that 0 is equivalent
2 ;x 2
2

nto ; , the coefficient of dQn in the schemes discussed earlier. The re-
22

aP 2
maining terms appear when we try to express -- and in terms of finite,,x 3 in 2 em ffnt

differences accurately.

A scheme which splits the time and space domains, on the other

hand, treats Eq. (122a) as an ODE, where the right-hand side is assumed

to be a function of time. A second-order Runge-Kutta explicit scheme

can be written as

* -
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0 (t + 6t,x) = (t,x) - U It +SIt (124)oSt +--, x
0 ax 2

where . +t is obtained by first getting a provisional value of
x t +- x

the density at t + 6t/2 using a lower-order scheme

t tS -Pl 15
0 (t + -,x) = (t,x) - U I-- (125)

2 02 3xt,x
So St

then getting t + k x by differentiating ;(t +- -,x) spatially, witht -, x
a 22

the result

st9 It _?o01
ait + 3- x ,x 2 X2 tx

2 ;x t,x

Upon substituting in Eq. (124), this yields Eq. (123) again. One can

deduce therefore that up to a given order, schemes which mix the time

and space domains and those which split them are equivalent. A warning,

however, is in order here: A concept derived for a split time-space scheme

cannot be applied directly to one that mixes both domains. For example,

using a half point density in Eq. (123), i.e., the scheme

( t t+ 0u t 2

o x t,x-t+I, X) 0 (t,x) u U _ 30 - + u -t2 (126a)
2 0 2 3x t'x 8 D

u 2t2 2

Q(t + 6t,x) p(tx) - UoSt ; 0 5 (126b)o xt + 2'x 2 - t+ tx

will cause a decrease in accuracy insteaid of improving it, as can be seen

from differentiating Eq. (126a) with respect to x and substituting in

Eq. (126b). The key point is that Eq. (123) is a solution of the PDE

as a whole.

In summary, the schemes derived in earlier sections are solutions

f uof the conservation equations if u =constant, u g = 0, and source terms = 0.

... . * . q
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If these are not satisfied, a correction that preserves the order of the

scheme should be adopted. Here we split the two effects:

f
(1) u variable and source terms are variable # 0

(2) ug # 0

and treat each separately.

GRID MOTION

According to the above splitting, we need to consider a case where

uf = 0 and source terms vanish, but ug 3 0. This is a static field, where

the density and energy are constants. Equations (118) and (120) reduce

then to

df = u .ndS (127)

This exhibits the formula for an accurate scheme when the grid is moving:

the rate of change of volume equals the rate of sweeping by the moving

surface, as illustrated in Fig. 11. Here we can achieve an infinite-

order accuracy in 6t by defining a mean control area Sm e an such that

f U6t-dS = swept volume

smean

Let us consider the three cases of 1-D geometry; namely, planar, cylindrical,

and spherical symmetries, denoted from now on by = 1, 2, and 3, respec-

tively.

In the planar case, the area is independent of the radius, so

that
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n+ j n+j 
(128

A =A =,(12)
L R

where L and R denote the left and right interfaces of the control cell,

respectively.

In cylindrical I-D geometry, the volume swept by the interface

is

B =r[, (n+l 2 _ 2(rB)2S= r B  ) -Cr)
B B B

where B indicates L or R. Here the depth of the cell being considered

n _ nthaergaras
is taken equal to unity. Since u g 5t = rB +  - rB the average area is

n+l2 n2
n+ AB [(rB B (r)n+l n

A = (r + r) (129)
B u t r n+l n B B

B B

One can define then average radii

n+ 1 n n+l.
rB - 1(r B + r ), (130)B 2 B B

since ABn+in+l = 2,rnn+ ,n+l
BB

Finally, in spherical geometry, the swept volume is

4 n+13 n3A =7 i[(r s  ) - Cr)3],

3 B B

yielding

An+ _ -n 4 n2 n n+l n+l
A B r [ (r ) + (r )(r ) + (r (131)

rB r B

whence

n+ 1 n 2 n n+l n+l 2r B  = { [(r B) + (r B  ) + (r ) } (132)

since

i._,,n 4 MotAi"'-V
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An,n+ ,n+ = 4  n(f,n+ ,n+l)2

AB 4 rrB).

Equations (128), (129), and (131) should be used as the proper interface

areas when evaluating the fluxes and surface forces. To complete the

formulation, when body forces are present, the volume used should be that

confined between the average interfaces. It can be arbitrarily selected

for a = 1, and is defined as

,n+ =7[(r + )2 - (r+ ) 2] (133)
R L

for A = 2, and

n. n+ .13 n+ )3

np+ = 47[(r ) - (r ) 3 (134)
3 R L

for a = 3. This choice will ensure a proper balance between surface and

body forces.

Variable Velocity Field and Source Terms

To account for these two effects, the fluid velocity and source

terms used in the "finite-integral" solution should be evaluated at some

intermediate time between t , t n+l so as to preserve the accuracy of the

scheme. Since we split the effects of grid motion, variable velocity

field and source terms, the above intermediate values should be derived

from an ODE solver of a consistent order in 6t. For a fourth-order

(diffusion and phase error) accurate scheme, for example, we need a second-

order-accurate explicit ODE solver. In other words, for the system of

-f -n
Eqs. (118) to (120), we advance the time one-half step using u = u

n+(,-)f n+ E n+- + j -f n+ /,n+i
and p = p to get p , , . We define u (puf )

n+j p(pn+j, n+ w
and p p ,e )where p(p,e) is the equation of state and
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enj = (En+i/,,n+) -l 2 2

-f +n+
Then we advance the system a whole time step using u = u and

n+4
p = p As explained earlier, we need not and should not update p,

3u and E, during the full time step, since the scheme is already a solu-

tion of the whole PDE. For a sixth-order-accurate scheme, we need a

fourth-order ODE solver and so on.

Example of an Algorithm

Let us implement the scheme

2
T n (n - n + c ,n - 2 Pn +n
j j 2 j+l j-l 4 j+l j j-1

2
TD= PT + (I E ) n 2 n on
P j 6 12 j+l j 'j-I

2
n+l TD 1 £ T T T

j j 6 6 j+l - j j

a stable, fourth-order phase error, sixth-order diffusion error scheme,

-)f
where p denotes either of p, Cu , or E.

If we have N cells whose interfaces are at radii (r n r n
1/2, 3/.

n n m n+l n+l n+lr N+112 ) at time t , moving to (r1/2 , r 3/2,.) at t let us denote

the cell centers by the subscripts j = 1, 2,...,N, located at

r 1 n,n+l n,n+lI (j/2+r rl/) for = 1,2
23-/ j+1112

n ,n+l
r n - (136)

1 1n,n+l) 2 + (n,n+l n,n+l) + (n,n+l 2 f
S j/2) (+/ 2 )] for = .

th
The volume of the j cell per unit angle is given by

dot.
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n,n+l n,n+lrj/2 - rj 1 / 2  = 1

n,n+l 1 (rn,n+l)2 n,n+l ]
2 j+1/2 - j-l/2), -2

n,n+l 3 n,n+l 3
[r r ) 3

3 j+1/2 j-i/2 (137)

Denoting the mean interface radii by rj+ , Eqs. (128), (130), and

(132) imply for j = 0 .... N,

n n+ ) /2 2
(rj + r+) ~= 1,j2

n+ j
r j

rn + (rn rn+l n+l (138). 3 = 3

giving, according to Eqs. (128), (129) , and (131), mean interface area

per unit angle

A + ~
j+ rj+ (139)

Sn+j )2

and mean cell volume per unit angle

(r n+4 n+
S rj+1) -i_

1 , n+i 2 n+ )2
j =, -[E<r+ - Cr._ )]

2 j+j -

1 . n+. 3 n+) 3- [Cr )r+ - Cr _) ] (140)
3 j+p ie(

for aL 1, 2, 3, respectively. We write Eq. (135a) in the form

-~~~r 7- ~ -. ~ _



45

4nlT=nnt(, n SU , ) + {t(, n j )j

( j+i A j+! Uj_ ji A j_ U -

+ n+ Tn n - n n+i  n n n n+j

+ +) - PJ- ) + source j, (141)

where

n 1 n n
j+f 2 j j+l)  (142)

for j = 1..., N-I, while

n 1 n n 1 n n- ($L + °i ' 0'N- = t(O + QR) '

j 2 L 1' N N R

where L and R denote left and right guard cells, respectively. The

difference SU between the fluid and grid velocities is giver, by

_ + + - un+ n+l n
6Uj = Uj+ 6t - US 6t = r+. 5t- - rn+ , (143)j~j jj j~ j~jj+' j+j

while the diffusion coefficient is

1n+ =I( n+4 (144)j+j 4 Ej+1),(!4

where

n+A n+6

+= j(f K + (145)
jj2 in 4n

3 3+ 1

The velocity at the interfaces satisfies

U n+ l(Un+i + Un +  (146)
j+j = 2 j j+l,..14wi

for j =1...N-1, while
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U+ .n+1 un+ n+
= L , N+ R R 

I
The vclumes 4n are defined as

1(, + ) (147)
fi 2 3 3+1

for j = I..., N-1, and

n
, n n

l' 1 N+j 'N

Equation (135b) then adds the main diffusion, giving

n+lTD n+!,T n+i n n n _ n+j n , (
J .J J J+i V jJ- n1 (148

where

(Z n+ .)2n+j 1 j+i(149)

j+ 6 12

Finally, the antidiffusive fluxes are evaluated according to

n+i r.+l T T
F'+ =j+. j+ i -j+l j

where
n+4 2

(C '

U-- _ j j+i 11
6 6 (15)

and then corrected using one of the flux limiters Eq. (64) or Eqs. (65)-(75).

Let us select Eq. (64) on account of its simplicity. The corrected fluxes

are given by

n 4+l. TD TD

Fc = sign (F j+)-max {0, min [sign (Fj+j 3+1 (Lj+2 - j+l)
)-- j+l+ TD _ TD

;F sign (F 1 TD (152)

whence

i.-r -. . a-
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n+l TD 1 F FC

V n+l ]j F (!5

3

As for the source terms, they are summations over the surface or the volume

of the cell. Lot us consider first [-fpn dS], which yields [- grad pl. In

'D
cartesian coordinates, following the diagram of Fig. 12,

n+ n+ n+4 n+ n+
source pj .P,- A._ - p3+j A+ (154)

where

n+ I n+4 n+5
pj++ jpj + Pj+l )

n+j n+j n+4 n+
for ... N-l, while p+ L and pN+ = PR

In cylindrical geometry, following Fig. 13, we have

n+= n+4 n+1 n+4 n+j n+ n-- n+j
source j = pj_ A. - pj+j + +p (rj+ -r

and since

(n+1 .) o_ ( n+i 2 _,n+j
r n+ " nr-+ - - (rj_ ) _ =_3
j+ -1 r n+j =nir n+- 'rj+ + rj r.

j+- j-4

where from Eq. (136)

n+ 1 n+1 n -,
r. =(r + rj)(156)
3 4 j+1 j-

for a = 2, we can rewrite the expression for source . as2

n+4 n+A n+j n+ n+1 +j n+j
sourcej =Pi- A - pj+ j + n+ j, (157)

r.
]

... h'
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n+. n+j
where we notice that p. /r. acts as a body fcrce per unit volume perJ J

unit angle.

In spherical geometry,

noue+j - A n+j n+ A n++ n+i n+1 2
source = P - pj+ j + p (rj

(r_ i 2 n+i A n+ n+ A n+jSi-i -j+j j ~
- (rl ~) 2 ] = Pj_ - A_ - pj Nj

n+j
2p4

+n+n+ ,2 n+4
(r )7rj a=2

where from Eq. (136),

n+j (1r n+1 2 + (+1.( n+j + ( (159)r = - [tr_) +-irjr )(rj+) +(rj+, (159
3 i-ij-1 i~ j+ j

for a = 3, and

r+j n+n+j i jr. = ]+ to_

l, a=2 2
..+

(An+ai/r,+ acts as a body force per unit volume per unit angle.

Next we consider [ pu-. ndS!, which gives rise to the term [- div (pu)].

2

-s g

For the three geometries, we get

n+ = n+j un+jA n+i _ p n+j + n+source j = p._ U.1 j -pI + j+ A (160)

In summary, all we need for the source terms is a routine to multiply by

the frontal area for the surface integrals, or cell volume in the case

volume integrals.

r.. . -. . -
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Finally, Un+ and source j are obtained by first advancing the

whole system of Eqs. (136)-(160) a half time step using , source ., then

a whole time step using

U n+Ui = un+l (161)j ti+ t-*t+6t/2

and

s source n+l t-t+6t/2 (162)
source jtttt2t+6t

II

I. -
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XI. TWO-DIM]ENSIONAL TRANSPORT

Now let us consider the two-dimensional equivalent of Eq. (2),

+ U -L =0, (201)at 1x 23y

whose analytic solution is

o(x,y,t) = -(x - Ult,y - ut,0), (202)

11a wave propagating with velocity u = (Ul,U Z). Assuming an initial density

O(x,y,O) = F(x,y), we Fourier analyze F(x,y) in space on a rectangle LI x L2

with periodic boundary conditions:

-*. -r,

F ) k ' (203a)

k=-o

where r = (x,y), and k = (kl,k,) is assumed to be normalized, i.e., k

k k 2

denotes 27( , -). Notice that the summation of (203a) is actually a
.L

double summation.

Ew Eco, e -J(k x + ky).

F(xy) = I)kl,k 2  (203b)

k =-C k2=-m

To gain insight, let us consider only one wave component of Eq.

(203),

F(r) = sin k-r (204a)

or
klX k2y

F(x,y) = six 2T(- + -). (204b)

Figure 21 shows the resulting waves for different values of (L,L 2 , (kl,k2 ).

From Eq. (204b), F(x,y) is constant along lines of constant

E- 7. I I III. .
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klX k2y
(-L + -y). For example, the nodes of the wave coincide with the lines
L L2

klx k2y 1 3
+ = 0, , -2 2,... (205)L 1  L 2  ' , . . .

which are normal to the wave vector k.

To find the wave length for a given (kl,k 2 ), we first go back to

the one-dimensional case. For a system of length L and periodic boundary

conditions, the harmonics sin 27 -x and cos 21lz are admitted, where k = 0,
LL

1,2, . With each of these is associated a wave length X defined as the
distance between two successive "even" nodes. Since sin 2- = 0 at kx = 0,

L L

7T,27T,3,r,... N is obtained from Lk -,, yielding

L (206)
k

L L L
We get therefore wave lengths -, L, 2' 3' 4'''' where the longest finite

wave length equals L, the system length. In two-dimensional, the wave

length for a given k is defined analogously as the distance between two

points on successive "even" node lines, projected on the direction of k.

From Eq. (204b),

klx

F(x,0) = sin 
27 --

L
1I

L1
which, as explained above, yields N = - where X is the wave lengthx k I  x kI k

along the x-direction, which when projected on k = 2r(, ) yields :
Ll L2

(L kl k21 LI L2= _2

-1 1 2 2 1, (207a)

Ik k k -
k)2 + (L 2 (~i_) 2 +(22 2 k

I L L
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where

?Tk 211k(_ _) 2
= I + ( L-)

_1 2

or

1
(207b)

1)2 1 2

x

k1  k 2

N w we find all the wavelengths along a given direction _ -
L 1  L 2

constant c. Noticing that k1 , k2 for periodic boundary conditions can take

only integer values, the waves along a given direction correspond to

k 1 = nk I  K) = nk2 (n 1,2,...,-) where k I , k I ) are the

smallest integers that satisfy

k /L
1 1

k(1)/L = c
k /L
2 2

From Eq. (207a)

1 1

An = _______________ n(2408)

nk(1

1l L 2

where

1A--() (209)

k 
k

1 2 2 )

)-+ ( - -)"

i = [k (1 1 29

Along a given direction we have wave lengths , T

Consider, for example, Fig. 21(b), where L = 2, L 1. Along direction
12

- ..- ~ --- i~er-
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(1/2, 1), k k = 1, whence Xi = 1!(i)2 = 2t . The maximum
1 2 1+ 1

system length along this direction being )+ L) 2' /2 -

showing that because of the periodic boundary condition independently in

each direction the longest wave length is only 80 percent of the maximum

system length in the direction (-,i), in contrast to one-dimensional
2

cases where X1 = L. For the case of Fig. 21(a), X1 is 50 percent of the

system length.

From Eq. (202),

tilklCx - ult) + k2 (y - u2 t)]0 (x,y,t) 1:0 10 Pkrk 2 e  1 1 2 2

k1- k2=_

•Z7 Z(t) el(kx + k 2Y) (210a)

k 1 k 2 , 2 1k1 k2

or

(ri4). = *^ ik-r

Ckeii - (r - ut) = p ep (r P e k (2lOb)

k=-

where

-i(klu + k u )t
Pklfkt) =P klk e  11 22 (211a)

or

-ik .ut
p(t) = e (21lb)

k k

Thus each harmonic independently advances uniformly in phase without

changing its magnitude, as shown in Fig. (22).
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We notice that the different harmonics advance in the direction

u, which is generally different from that of k, as illustrated in Fig.

(23). They keep their front normal to k and therefore the projection

of u on Z is the speed of advance. This adds extra requirements that

were not invoked in the one-dimensional case, namely:

1. The scheme should ke-n the wave front a straight line;

otherwise distortion of profiles occurs.

2. It should also keep the wave front normal to k; otherwise

"scattering" occurs, namely waves with different I0 but

the same direction (k :k, ) will come out in different

directions, causing scattering of the transported profile.

As will be proved later, the speed of propagation V of a numerical

scheme differs from u not only in magnitude as in one dimension but also

in direction, providing one more source of error. If the above two require-

ments are satisfied, however, only. k-(' - u) contributes to the phase

error.

Now suppose - is known at all times only on a sec of (N1 + 1'- (N' t i"
L1

discrete grid points with separation 6x = , = namely, x. = 1"x

(i 0,1...,. N1 - ), y.= jy (j = 0,i .... N - 1), the origin being a membar

J_of the set. According to periodicity assumption =o3 , , = ,;

NN 2

hence we can have only N1N + 1 different harmonics. Let2

N N2
1 2 i k x + k Y

f(x,y) 2N 1 Z -N ) ek.,k 1 + k 2y) (212)

k k
1 2 2 2

.. .. . # War-
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Since 2-r N 2Tk, k2
(k x+ N 1 =) ei (2 - ) 2_ " L Y) ei(iTr + 2-r - j Y)

ei(k + k 2Y) 1 e 212e L2

k 22k 2

i[i-r + 2- j6y) - 21Ti] i(-i[r +L j5y)=e =e L2

i[ -NI 2rk2

(--I + j6y] ei(klx + k2Y) -N
= e L6 2 = e I =

for all i, and similarly

ei(klX + k 2 Y) 1 -N 2 = i(k1 x + k 2 Y) k N2

2 2 2 2

for all j, Eq. (212) can be rewritten as

N 1  NI

f(x,y) = ir 2 e 1 - 2y),

-N1  -N2

ki=- - + 1 k=- + 1
12 2 2

showing that k space structure contains only N1 x N2 independent points

(see Fig. 24). The amplitudes 6 kik 2 can be obtained from

N 1 N 2 2kli 2kjY

0 2 2 -- k ei( L1  X + ) L (214)

i 1j 2 k 2  2

kl= -2+ I k2= - + 11 2 2 2

for i = 0,1,2,..., N 1-1, and j = 0,1,2,..., N2-1.

In terms of sines and cosines, Eq. (213) can be written as

.r'\.: -'-
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N _ N 2 2-iklx 21Tk~y-1____.__ .-.-

f(x,y) =A + A Cos L

f %,) 0,0 17ki 2 1 2
k1=l k 2= 1

2iik x 27ky2 r 2Trk,Y2 1l 2'Tk 2Y 271k X 2ky

" B sin (L + - )2 + C os (- -- )

" Dkl k sin L l L12 k1 =1

+ B2kI' (sin + --1o L k2=1 k Lk 2

/ N2 y (N x G-y

sin (2- --) + A ' Cos  L Cos

2 2 ' 2

where(25

A-k rk2 -iBkil') for k1  > 0, k2 > 0
212

Ak lk2 +iBkil 2 for kI < C, k 2 < 0

1

kirk 2

c klk2 -iDkil 2 for k 1 > 0, k 2 
< 0

2 1 2

+ k k2 D l ' for k <  0 , k > 0
22

k.,i k - . .

dams1
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Again, we have in Eq. (215) N x N coefficients: Ak 2 (kI = 0,1,...

1 2 k1
12

N1  N2
,k2 ,k (kI  1,2,.... 2 i and k 2  1,2,..... 2- ) that can be

determined from the system of equations f(x. ,x ) P 0 ij

N1  N'

Going back to Fig. 24 let us count the different harmonics. The

harmonics are considered equal if they have the same magnitude

/ 2 2 2 k k
(2Tkl)2 +-- 22 1and are aligned, i.e., - L constant. The

number of the harmonics is almost half the space of Fig. 24 since (k.,k,)

is equivalent to (-k2-k 2 ) and (kl,-k2 ) is equivalent to (-kl,k 2). For

example: a and b in Fig. 24 are equivalent. Figure 25 shows the

independent harmonics selected to match the choice in Eq. (215). The
N1N

number of the harmonics is therefore, 1-2 + i2

If we count the maximum number of wave lengths, we get an even

smaller number, since according to Eq. (207a), X = 2- Two harmonics

such as a and b in Fig. 25 will give the same value for Iki. The maximum
N N,

number of wave lengths is therefore (-- + l)- ( + 1), corresponding
2 2

to the positive quadrant of Fig. 25. This is an upper limit. This is

because the number of wave lengths can be less if the ratio 6x/6y is a

rational number. As explained above, decomposition in two directions

puts a limit on the longest finite wave length X in a given direction.

Discretization, on the other hand, puts a limit on the shortest wave length

in a given direction since it reduces n in Eq. (208). The largest value

N1  N(
occurs forik =- k k are the smallest integers
fccus for g i drt, 2  s hortes 1 w 2

for a given direction, the shortest wave length along this direction

. ...-q -. wdhi- p,;
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corresponds to

min NI/2 N2/2

= integer ( ( )  k (2). (216)
1 2

Assuming (x,y,O) = f(x,y), i.e., assuming the density in between

0
the grid points values p to be f(x,y), Eq. (202) predicts the density

at time t as

N N
1 2
-2-- 2 k'kei[k (X-Ult) + k2 (Y-u 2 t)

P(x,y,t) 2 2

-N1  -N21- +  2 k)=

12 2

Z: 0 2 (t)e i(k x + k~ y )

k1 k2

= -i(klult + k2 u t). Since we are only concerned
where , (t) = kei2

with (xi,Y,,t),, let x = x. = i6x, y = yj = j6y. We then get

N 1 N

N1( , t2 i(kix + kj6y). If the time
J xj t = - P k(t)e 2

-N1  -*2
k= +1 k--=f + 1

22.

n n ^ n
is also discretized, let tn n6t, onj - p(xiy j ,t

n) and . k (tn)"
1, 1 PXijt and k,k = k ,

2 1
The nn i (ki6x + kiJ v)

Then ; ) ) e 2. (217)
k k2

where

.n e ei(kuI + k 2 u 2 )nt (218)
L kl, 2  k ,k2

We define A(kl,k 2 ) as

- - p-- *~~* ~ ---.4
~!
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^n+l

A(k 1 'k 2  n
k ,k2

Equation (218) expresses the analytic solution as

A(k1 lk 2) = e-i(klUl6t + k 2 u26t). (219)

u 6t u26t
If we denote - by E x, - by c , k 6x by x' and k26y by by, Eq. (219)

x 6y y 1 xy

reduces to

-i(: X + F yy) (220)A(kl,k ] = e x yy

Now let us analyze a fully two-dimensional scheme, a direct extension of

the one-dimensional scheme

IT= n C (n n
3 3 2 j+l - -

TD T _ n n

p. T T 2oT + oT_ (221)j j+1- j i

namely,

Tx n X n n (222a)
0ij Pi,j 2 i+l,j 3i-lj

Ty n _ - ; (222b)
i,j i,j 2 i,j+l i,-1

T -n n n -
P. _2 0. _y (P nP n(2c

i'j i,j 2 i+l,j i l,j 2 i,j+l i,l I

TD T n -n n n

T. . P.T. + v (,n 2o . + ) + v (on  - 2o
i •j ij x i+l,P ij i-1,j y i,j+l i'j

n~ijl (=2d)
+1, J-

.--

- - .-- - ~mot



60

n+1 TD ( Tx Tx Tx - TY T +Ty TY
i,] i,j -i+!,j 

2 i ,i y ij+! i ,] i, -l)

(2z2e)

Again as in one-dimension, after Fourier-analyzing the initial

density profile, i.e., after we have gotten the [k k, the problem is

reduced to propagation of the complex harmonics ei(klX2+ k2Y). Since for

the linear problem Eq. (201), each harmonic propagates independently, we can

get A(k, ,k ) by assuming only one harmonic:

n o i(kli~x + k2 j6y) o i(i3 + j3v), (223)0. e 1 2 z e x V

then using

A(kl,k ) (224)
1'2 n

Q..
1-,,

Substituting Eq. (223) into (222a) we get

Tx o i(klix + k J y) -x .oei [k (i+1)6x + k2j6y]
0. .j= P e 1 2 - o - e1 2

Oei[k (i-i) Sx + k~j~y) }

e i I(225'

hence

Tx

1.1) X x 6a
S1- -- x (e e e ) sin B (226a)

Pij

Similarly Eq. (222b) gives

Ty
1 i c sin (226b)

n y y
ij

Denoting i sin 6x by tx and i sin y by t , Eq. (222c) gives

T
S 1 - £ t - e t (226c)

n xx x x3.
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Substituting Eq. (223) into (222d)

TD T

i = + v (e x - 2 + e X + \ (e Y- 2 + e Y)
n n x y
i,j i,j

T
= i + ,) d + vo d , (226d)

n x x y yp.
ij

where d - 2(cos 3 - 1) and d = 2(cos - i). Finally, Eq. (222e)

x x y y

yields with Eqs. (226c) and (226d)

n+l
P.

A( x s y ) = = (I - E - t + vd+ v d d (1y n x x £yty Y y xdx  - -xx
p.
ij

- y d (1 - y t ) (226e)

From which

n+l o i(i +y

,Jj~~i = A(xy

We notice that the coefficient of e x + is independent

n+l
of i and j, i.e., independent of x,y. Consequently, p.i. have the same

n

wave front inclination and shape as Pi,3; i.e., along the lines of k x + k 2Y

n+l
= constant, o. . = constant. Finally, this is a nine-point explicit scheme,

1,j

as illustrated in Fig. 26, which shows the points involved in determining

n+l
Q...

-~ _ ** .' -.- ~ ~ ..- t
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XII. AMPLITUDE AND PHASE ANALYSIS

We write A as A :Ae i , where jAj is the amplitude and i is

the phase angle. To classify the order of the scheme we need to expand

JAI and S in a power series in 5x and 5Y.

PHASE ERRORS

In the two-dimensional case we have A = A(t ,t ,d ,d ) where t ,d
x y x y x x

are functions of 3'. while t ,d are functions of . Since log A = log !A:
.Cy y y

+ i(S) ,

S = Im (log A). (229)

Expanding S in a power series of ' 5 near 5,x'y = 0, we get

X y xyS 2 52
+ (x 5  + 5y5 ) + (x + e xY + 4 y y  ) (230)

o o x o o x o 2 (230

13 2 y 2 53
x +5xyy x y+ (exxx x x x + ) + (230)

o 6 o 2 o 2 o 6

x
where x  (39/35 x ) at a = 0, while (y (6/36v) at S = 0, etc.o x'x o . y

We therefore need the derivatives of log A. Noticing that

A(S ,x = 0) = 1 we getx 1

(log A)x =A x  (231a)
o 0

(log A) y Y AY; (23ib)
o 0

(log A) x x = A x x - (Ax, (232a)
o o 0

(log A)xy = Axy - AxAY; (232b)
o 0 00

101 Vli I



6 2 -a

(log A) yy= A y' - (A ) 2  (232c)
0 o 0

(log A) x =Ax - 3A xxA x+ 2(Ax) 3 (233a)
0 0 0 0 0

(log A)XXY= A XXY - 2A XYAx - AxxAy + 2(AX)2 2AY; (23 3b)
0 0 0 o 0 a 0 0

(log A)XYY . A Xy - 2A yA y - AXAYY + 2A x(Ay)
2; (233c)

0 0 0 0 0 0 0 0

(log A)Yy' = A - 3AYYAY + 2 (Ay)3; (23 3d)
0 0 0 0 a

and so on.

Deotn ) I =S 0 by X ', 3(~ 0 by ( x,
Dntn tx ()0 Mx IXa

so on, confining our scope to schemes of second degree in the operators

t ,t , dxl or d y, and using the chain rule of differentiation we get

t d

*A =A t + A d ;d (235b)
0 o yo 0 yo

XX t X d x 2t t x , t xd xd xd; (236a)
A tI A + do A + t A + 2t d A + d )A

0 XO 0 X0OO x XOO XO0 XOO0

t t t d d t dtd
* 0 ~t 0t yoA 0~ +t 0d yoA 0 + d X0t yoA0Y+ d 'd oAX. (236b)

t d d 2 tt , Itd 2d yd Y.6c
*_y to A v+dtA Y+ t A Y + 2t d A0yY + d 2 A (236c
o yoo0 yoo0 yoo0 yo yo yoo0

AXXX f t x fo d x #,o t t
A =t A + d A + 3t t Ax x

0 XOO0 X0 0 X XOO0

t d , ,d d
+ 3(tr do + t# d )A + 3dI do A ; (237a)

X0 X0 X0 XO 0 XO XOO0

A XXY t to A tx ty +t"do A tx d + do to o x dy (237b)
0 x yo 0X0 yo0 0 xyoo 0x0yo0

A .
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A Y Y = t tt A x y + t d A tx d d t A X y + dd A x y; (237c)
o xo yo o xo yo o xo yo o xo yo o

t d y+3t t tayy "' 0 "' 0 '" yo 0

+ t A d + t 3 d )A Ay+3 Ayy(3d
o yoo yo o yo yo o

+3( d +t d ) d 3d d .d27d
3yodYo + yoyo Y Y +3yodyoo23d

Finally,

,V t. , d , I , , t tx ft I
A x x  = t A x + d A x + (4t t + 3t X )A 0 + (4t do o o xo o xo xo xo 0 xo xo

+t~t d d "2

6t d i 4t d )A x d + (4d d + 3d )A ; (239a)
XO XO XO XO 0 XO XO XO 0

,, ,tl , ta a , ,dt , d

Axx xy = t (t A x y + d A x d) + d (t A x t + d A x y); (239b)
o Xo yo o yo 0 xo yo 0 yo 0

xx = t t A + d A + t d A + d t A (239c)

o XO yo o xo yo O x0 yo 0 xo yo O

t ,d t t d ddAXyyy "'_ 'oo ) '' xy ' xy

A = t (t y + d A x Y) + d (t A * - d A ; (239d)
o yo xo Xo c yo Xo0 xoo

A y ly  = t A y  + d A y  + (4t t" + 3t Ao y y (4tio dyI

S yoo yo o yo yo Yo 0 Yo yo

t d dd
,i I i ,11 112 y" if I + t " d Y + (4d d + 3dy2 )A dy (239e)+ 6tyodyo + 4tyodyo )A0 yo yo yo 0

Going back to the definitions of t ,t ,d , and d ,x y A y

xo yo 0;

I

t =t =;
xo yo

II ti

t = t = 0; (240a)
xo yo

t = t =-i;
xo yo

IV IV
t =t 0;xo yo. . . . .... . . . . .t
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d =d =0;
xo yo

* I

d d =0;
xo yo

It Itd = d = -2; (240b)xo yo (4b

ii III
d =d = 0;
Xo yo

Iv Iv
d =d =2.xo yo

t t t t
Substituting into Eqs. (235)-(239) and assuming A x x A Y Y  0, we get

A = 1; (241)0

t t
Ax = iA x, AY  iA Y; (242)

o 0 0 0

d t t d
Axx -2A x, AxCY A x Y A Y 2A Y; 243)o o 0 0 0 0

t t d

Axx = - i(Aox + 6A x (244a)o oa (4a

t d
AXXY= - A y X; (244b)o 0

t d
AXYY = - 2i A x y; (244c)

o 0

t t d
Ay y y = - i(A Y + 6A Y Y (244d)

and

d d dAx x x x =2Ao+6Ax)
Ao0 = 2(A +6A ); (245a)

t t
Axx x y = A x y (245b)

o 0

dd
Ax x y y = 4A x y (245c)

o 0

t t
Ax y y y = A x y (245d)

o 0

- -- -
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d dd

Ay y y y = 2(A Y + 6A Y Y). (245e)
0 0 0

It is worth noticing that Eqs. (241)-(244) are valid for schemes
t t

of higher degree in the operators tx'ty'dx' and d , as long as A x x

t t
A Y Y = 0, i.e., as long as composite transport is excluded. With the

above equations, Eqs. (231)-(233) yield

t t
(log A)x  iA x, (log A)y  iA Y  (246)

o 0 0 0

d t

(log A) x x  -2A x + (AX ) 2 (247a)
0 0 0

t t t t
(log A) = - A x y + A XA Y; (247b)

o 0 0 0

0 t

(log A)y y  - 2A Cy + (AY)2 (247c)
o o 0

t d t d t

((., A) x x x  iA X(l - 6A x) i[6A x x + 2(Ao) 3; (248a)
o0 0 0 0

d t d t t t t t t
xxy x x  y x  y

(logA) =-2i(A 0 AXA0+ 2 i (A 0 A0A 0248b)

xyy d t d t t t t t t
(log A) 0 2i(A 0 x A A X) + 2iA 0(A x  v A 0 Y) 

t d t d t

(log A) y y  iA Y(1 - 6A yN - i[6A Y Y + 2(A Y) 31 (248d)
o 0 0 0 0

Only the odd derivatives are imaginary. Therefore, Eq. (229) implies

(log A) x (log A)
y  (log A)

x xx 83
0+ ]X

x I y i 6

(log A)xxy 828 (log A)x
y y  5x 2 (log A)y

yy B3

+ 0 _ y + 0 _ y + ... (249)
i 2 2 i 6

Example:

Let us analyze the phase error associated with Eq. (226e),

A = (i - E t - t ) + v d + v d - jxd(1 -1 t x) - u d (i - t ).xx yy xx yy xxx yy yy
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By direct differentiation 
we get

t t
A x = E, A y =- ; (250)o x o

d d
A x =v -v x , A 0 = - ;o x o y y

t t t d ddx x x x x x
A =0, A 0 , A 0 0;O o -xx

t d dd
tt 0, Y o y  y  

t t t d t d d d
A x YO 0, A x Y= 0, A Y x 0, A X Y =0;

whence

(log A)x (log A) y

o 0- x , = E (251)

(log A) xxE
= 6 F (--v +-2 (252a)

i x6 x 3

(log A)xxy
0 = -2 (v - x  2x); (252b)
iy x x X

(log A)xxy
0 2 c (v - - Ey (252c)

i Xy y y

(log A)
Yy y  C 2

0(-- ) + ). (252d)
i y 6 y 3

Substituting in Eq. (249), we get

2
e [x 2 + 2 2 +

x 6 3 x y y y y

- x + -z 61 3")6 + y v - ) Y
yy y 6 3 y x x x x

- ~ -
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u, 5t
Noting that = ( )(kl6x) =u klt and E u k6t, we can rewrite

xx S x 1 1 1 y y 2 2

the above equation as

k - k VSt, (253)

where k = (klk 2 ), V (v 1,v2 ). If U =(Ulu 2 ),

2

1 U2 + + N 2 2 E2 ) 2 +
V1  1 x 6 3 x y y y y

and
2

v -u + ( 1 -) + P E +2.. (254b)
2 2 y 6 3 y x x x x

Ccomparing Eq. (253) to the analytical solution, we find

-analytic =  k U6t (255)

as is obvious from Eqs. (211).

Following Eq. (19b), we define a relative phase error matrix, R,

such that

4. 4. .

V = U + RU, (256)

where R, given by Eqs. (254), in this scheme is

\ - xc/3) + (V - ;y- L.) 2
x x y y y

R=
1 2 2 2 2

(V0 2 - /3) v x - - 2)$ 2 + .. (257)
y 6 y y x x Xx

Thus we can reduce the phase error to fourth order by selecting

1 + e /3; (258a)
6 xy y

-x -ix =2 (258b)
y y Y
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Solving Eqs. (258a, b), we get

1 2 21 x 63 x (258c)

y y

AMPLITUDE ANALYSIS

Following the analysis of the one-dimensional case, since AI = AA

we have

S(JAI12)o = i

( 0A 0 0 ;

o 0 0 0 0CIAI2) y  A ' + A Ao (259)

and so on. Noticing from Eqs. (241)-(245) that odd derivatives are purely

imaginary while even ones are real, we get after substituting in Eqs. (259)

(JAI2) = 1; (260)

Ax
(JA 12x 2(Aox  + ]) ; (261a)

2) Ax Ay

0 0
(IAD = 2 + -.-- ] (261b)

O o i 1

A
y

(l2yy _ yy 0
(IA o)0  2[A + (-)21; (261c)

12)xxx AXA XXYAx  Ax x

A = 2iA + 4(( ) + 3(A x)]; (262a)
o o i o

Ax x x  Ay  Axxy Ax

(lAI) = 2(A + ( )(o) 3( _ (_o, + (3AxxAxy]; (262b)0 0 1 1 0 0

Axxy Ay

(!A) = Z[A + ( )(-) + AxxAyy
0 o0 0 0

Axyy Ax
+ 2( )(i-) + 2 (A xy) 2 ]; (262c)

1 0

h.. .AR
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Ax  AM AXYY Ay

OA 12) - [AXYYY + -2 )( 0 ) + 3( ) () + 3AXYAYY ; (262d)
o 0 1 1 0 0

while the odd derivative vanishes. Consequently, the expansion of JA1 2

takes the form

2 22 + 2 x x - 2 2

Al (JA) +E(IAI ) o2 + Cl( 7 . + (JA1 2 2x N 1)yB 2)~ #y
0 0 2 0 x o Y  0 2

S4 o 3 a (2 2" (JA 12) xxx -s ( I,,2))xxxy x_ Y (I Aj2 xxyy xy
o 24 0 6 o 4

x8 3 4

+ (JAI2)xYYY 6 + (JA 2)yYYY y  + (263)
0 6 0 24

Example:

Using Eqs. (250), Eqs. (241)-(243) yield

A 1;
0

A x  Ay

0 0

i x I y

AXX= -(v - i -) = x

AXY = 0;
0

vv 2
A

= -2( - 2 ) 2
o y y y

which when substituted into Eqs. (260), (261) give

(1A 12) -= 1;

(1A1
2)xx = 2£2;
O x



70

(A12)xyo = 2cxy

( 2)yy = c2(IAI2) -_
0 y

Equation (263) then expresses the amplitude expansion as

2 2 2 + 22)

JA1 2 = 1 - (E2 2 2E E ) + +

1Al 2 = 1 1 - 2 + ... (264)

showing that the diffusion of the scheme is second-order.

POSITIVITY

From Eqs. (223) and using Eq. (258a),

2 2
TD n 1 x 1 EPij ij [ I - 2(_ + -2) - 2(- +-_)]
Q.j 6=p 3 6 3

2 2
n x x n 1 x x

i+l,j -) - i-l,j 6 3 2

2C £

n 1 n+[(+ ) + p 1 (-+ Y) + 'I
i j+l 6I ijl 6 3 2

Each of the square brackets is > 0 for IF- xI, C y < j.

Consequently, pTD > 0 if all pinj > 0. Now we get

T T T T T T
n+l TD x x +y y
i,j (i,j - i+1,j - 2pi,j +i-l,j yi,j+l " P + Pi

The asterisks denote the fact that the antidiffusion fluxes are trimmed

n+l TD n+l
enough such that p is limited by the sign of oi ." Then 0i > 0.

i.,j i- '
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STABILITY

Equation (264) proves the stability of the scheme near 6 = y C.x y

For the scheme to be completely stable, however, we must have A!< 1 for

0< x fby < . Let us check A , at the largest values admitted for x E y

namely 1/2.

From Eq. (226e)

AR = 1 - 2(vx - )(-os )- 2( - Uy)(l - cos y); (266a)

A I = - x sin x [1 + 2x (1 - cos ax)

- Ey sin 5y [1 + 21y (I - cos Sy)] (266b)

Substituting for v - Ui from Eq. (258b), and u from Eq. (258c), we getxx x
y y y

2 2
AR = 1 - 2Ex(1 - cos a ) - 2y (l - cos 5 ); (267a)Rx x y

A, = - £ sin I [ + -(1 - 4c ) (l - cos 5 )]
I x x 4 x x

- e sin [I + 1(1 - 4 C)(l - cos 5y)]. (267b)

At r, =y 1/2, Py = 0; Eas. (267) reduce toA x' y y/,U

A = i( 1 
- Cos ) - 1(1 - cos 5y);

R 2 x 2 y

1
A = - -+sin a + sin ).

I x y

Noticing that 1 - cos a = 2 sin2 (/2) and sin 8 = 2 sin (5/2) cos (8/2),

we get
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AR = 1 - sin ( /2) sin ( /2);

A, =- [sin (Bx/2) cos (Bx/2) + sin (y/2) cos ( /2)),

yielding

IA2 2 A 2 = 1 + sin 4  + sin 4! + 2sin2  x  2 n y

R I 2 2 2 sin 2

2i2  x +i
2  y) + 2 x 2 x + 2 2

- 2(sinn + sin - cos - sin cos

Tx  + Sin T)T

+ 2 sin sin cos -- cos

2 Sx

Collecting the terms containing sin 2 we have

2  x 2 2 x 2 x 2

2[(1-sin + .(1- cos sin Cos y
-sn 22 2 2 2

+ sin 2 a x 2 x 2 sin4  x+- si - sin - Cos -2 sin -
2 2 2 2

Similarly sin 2  y l .2 2 x 4 y

terms yield - sin -Z Cos - -sin resulting in2 2 2 sn

1 - 2 ax 2 y a x a x

JA (sin - cos 2 sin - sin cos- cos
2 2 2 2 2 O 2

22 x 1 * _ x 2
+ sin2  o (sin -Cos 2-Z sin _ 2Cos-)

cos T T

2i 2si 3Y5 - 3ifl cos2x V
=l1- sin(- - 2 =osC- "-)

2 2 2 2

Consequently,

IxAex = = cos - !Z) <1, (268)
2 2 -

showing the scheme to be stable at Ex ,y = 
" The value JAl for smaller

values of Ex y was evalL ted numerically and found always to satisfy < 1.

Hence the scheme is completely stable.
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It is worth noticing the diagonal symmetry of Eqs. (264), (268).

In fact, on the Sxl Sy plane, JAl looks like a wave with front parallel

to the x = y diagonal, as illustrated in Fig. 27.
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XIII. RECTANGULAR GRID MOTION

Consider a system of points tagged by the double indices i, j;

x.ii = x(i,j,t) ; (270a)

Yi,j =  y(i,j,t). (270b)

Figure 28 illustrates the grid formed by Eq. (270) at a given time t.

The pair of numbers at each point indicates (i,j). For a strictly rectangular

grid at all times (which includes Langrangian grid motion),

x. x(i,t); (27!a)

Yi,= y(j,t). (271b)

which we therefore denote from now on by

x. = x(i,t); (272a)
I

yj = y(j,t). (272b)

This leads to a mesh as in Fig. 29.

I- n I i . . . "a..
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XIV. GEOMETRICAL ASPECTS

We consider seven geometries. (These by no means cover the whole

spectrum of twc-dimensional systems.) In cartesian geometry, we have x-y

(x-z or y-z); in cylindrical geometry, r-z, r-,., and z-,, and finally in

spherical geometry r-e, r- , and - Figure 30 illustrates a finite

control volume in each of the different cases.

As explained earlier, when the grid moves the control surface area

in the integral form of the conservation equations should be an average

surface area defined as

,fsa (u- nt)dS = swept volume.
fsmean

in one-dimensional cases, the above definition reduces to defining

A = swept volume . In two dimensions, however, this is not enough.
interface g

u 6

We have to find a path between the old grid and the new one such that we can

construct a mean cell having its surfaces equal to the average areas and

corners located on the above path.

1. Cartesian Coordinates

nFigure 31 illustrates the location of cell (i,j) at times t and

n+ nTh
t t + 6t. The left and right interfaces are denoted by (i - 1/2, j),

(i,j + 1/2, j), respectively, and the bottom and top ones by (i,j - 1/2),

(i,j + 1/2). we notice here that since all i ± 1/2, j interfaces

(different j's) move as a whole, the grid velocity is independent of j.

It is therefore denoted by ug  without a j index. The same is true

for vg

j± "
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In cartesian geometry, it is obvious that the path needed is a

straight line between the new and old corners of the cell, and the mean cell

is halfway between the old cell and the new one.

The volume swept by interface (i 1 1/2, j) is given by the product

(average base) x (height):

(Y n n ( n+l n+i

VYj) + Y+ - Y- [x n+l xn
- + j=2 xi+- -i± ]

1 n n+l 2. n+l n
(A. + . X

3 3 ti± x i+

where we notice again that the i index is omitted from Ai±, j since all the

Ai±1, j interfaces (different i's) are ecual. The above equation can bei±~, j
written as

n n+l n n+l
%VC( Y ±y + j+ _ y-1 + Y -) (x n+l n

iz1,j 2 2 J(xi - xi±2

showing that the mean area is halfway between old and new. The grid velocity

ug  in this case is considered constant,i±
n+l ng  i±1 - xi± 

(287)

and the mean area is

An + n~l
An+ n+ n+ A. A.

A n j + 2= '1 (288a)J2

where

n+ 1 n n+l (288b)
j±= 2j-+ j±)

i iiWar-.. ..
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Similarly,

n n+ln+ n+j n+j Ai +  i
A =+ xfi+ ij 2 - (289a)

where

xn+1 i.n + xn+l (289b)
i±f 2 xi±i i_2

The mean cell colume is

.n n+ n+ . n+ n+
1,3= (y -j_ ixi _ xi . (290)

2. Cylindrical (r-z) Coordinates

Let us derive the required path between the corners of old and new

cells such that the corners of the mean cell fall on that path. Figure 32

illustrates the old and new cells. Figure 33 shows the volume swept by

interfact (i,j ± 1/2):

n+l n+l
z j± 2z j± 2I. 2 j2

j T r dz j±- f Tri dzj± , (291)

n n
zj zj_+

2
where it is obvious that a linear average can be obtained if r 2 is

assumed to be linear in zj± . Let

(ri ) - (r±) z - z±
-- = (292a)

n+l. 2 n ) 2 n+l n
ri±) - (r zj - zj±

i.e., a parabolic path. The above formula can be written concisely as

2

i=_ , (292b)
AR2AR. Azj±

|"1 o
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yielding

2 n )2 R  (292c)
r i± = (rAi± I AZj± 2 i±("

Substituting (292c) into (291), we get

AV ,Zj (r+2 - r2 AZ.

0

n ,n+l, 2  n )2 n+l)2
(ri+ + r+) Cr. + Cri-

=TrAz + i_ -Ij±j 2 + 2

yielding a mean area

n + n+1

An+ - i,j±l _ n+1 2 ( n+j 2 1 (293a)A. = ii(ri+ ) - Cri-) ]= 2 '
i AZ i-i 2

where

n+ /(ri±) + (ri
ri± - 2 "2) (293b)

This shows the advantage of the parabolic path (292a), namely

2
AIz Ar2
A - 2 = 1/2, (293c)
Sj±j AR

in-i

i.e., the average area A. is halfway along z between the old and new ones,i

at

n n+l
n J± 2 ± (293d)

Following the nomenclature of Fig. 34, the volume swept by the inter-

face i± ,j is
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f n+l

i±, 2ri (z -z )dr

r.it

n+l
r- zj)dr2  

(294)

n

But

n

zj±= z +1 + Azj± , (295)

yielding n+l
nr±  n Az. j_ Hd. 2

i± ,j [(z +i j + Z.____ _ 3 j )
it Z j+j ZJ+ zj_ 3 -i di±

n+1
r

which, with (292b) gives

R2 1i n n
A *i ± I , j =  L R i + j [ ( Z + 1 - .49

0

r 2z. 6r

+ _ (Z+ - Z )]d i± Z

A j +1 i-i AZ

-TR2 1Z n+ n+4 .(26

the parabolic paths of Eq. (292a), the quantities ±,j

half way between old and new, i.e.,
=lot;
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.n n+ n+ n+
A n 2Itr [z n (297)
i±j ri±i j+j 3-

where we notice that the interface area is dependent on both i,j, in contrast

to the cdrtesian case. With Eq. (296), Eq. (297) yields

An+ = i±i (298)i± ,j= AR2 ,/ n+(

i±/ i±

whence, if + denotes the average velocity of the grid during t,

n+l 2 n )2U~z 6t (r r±)" - (ri ±

g ± (299)
i~j 2rn+ j

where, as is clear from Eq. (293a), it was assumed that

V 6t Zn+1 n (300)+j =Aj±j =  j± .3 30

The difference between the form of (299) and that of (300) is attributed to

the parabolic path of the corner. If the grid velocity vg  is a constantj±j

during 6t, we evaluate ug  at tn +  = tn + 6 from (292c)

i~j 2

dr AR dAz R 2AR
drir_ i± j±i = i± dzj±

2ri± dt AZj± dt AZj± dt

whence

AR2  vg R2
g i±l +j _ i±

______ _ -I= (301)
i±j 2r i± A Z.±j 2r i± t

using Eq. (300). Since v q const., (Azj± /AZj ) = 1/2.j± ' ±3 6t "

Consequently, from (292c)

r 21t i n ) 2 + n+l 2 ( n+j 2t =  [( 2ri± )  i±. -i± )
2
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thus reproducing Eq. (299) when substituted in Eq. (301). A more general

definition of the average interface is therefore

mean 1 swept volume (302)

interface (velocity of interface at t + -).5t
area.

where the denominator is approximately but not quite exactly equal to the

distance the interface is shifted. Finally, the mean cell volume is

4n+ i-[ s- n 2 _ n-J,2], _ 1 (303)i'j =  ri+ )  -,i+ j [j+j -i_133

3. Spherical r-. Coordinates

Figure 35 illustrates cell i,j at tn and tn + l . Consider Fig. 36

showing the motion of interface i,j±_. The volume swept by interface

i+ 9n+l

3 j±
= 27r 3 -3

.-jC ri+ -r_) sin 3j± d6j+

',ji J3 i-4- i- j~j±

=n

j±j= n oj± '2z 3 3 ),(3)

=I -- r i + - r i . )d (- co s j ) ,(3 4

showing that we can get a linear average if r 3 is assumed to be a linear

function of (- cos 9 3+). Let

r - (ri±) cos + - cos ,.1 !(305a)
n+l. 3 n 3 en C n+l '

Cri± ) - (ri± ) cos _ -cosj
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or in a more concise form,

Ar _+ A(- cos e
-- = (305b)

3 A(- cose )ARi+ J±

This yields

3 n 3 A(- Cos 0_±_) 3
r i =(r +,) + C- c j AR+i± .  (305c)

A Ccos e ARj 1

Substituting into Eq. (304) we get

/1
27 (- cos (0 ( n3 in 3

i,j±_ 3 3- f i+i i-
0

A(- cos 6±4) (ARi - R 3(- cos a.±})

A(- Cos 0 .~) 1+3 i- A(- cos 0(J ±i

n 3 n+l3
2(osn n+l Cr.+ ) + Cri)

-(Cos 6 n - cos 8 )
3 j2

n )3 + n+l.3Cri_ ) + Cri_ )
2 2. (306)

We notice that the mean interface i,j± is halfway on a cosine scale between

n n+l n n+l
e 1 9 j or on a cubic scale between ri+,, ri±,. As for interface

(i±,j), it sweeps a volume (see Fig. 37),

n+1

2irr 2+(cos e - cos 9. )dr

n
ri±

n+l

c (Cos 8. - cos - )dr-3  (307)

nri±3 ~ ij

ri~



83

But Cos ej+4 = cos j± + A - cos 8 j±), yielding

n+l

iA(- Cos 7j. ,
i±, =  r1  [(cos en Cos a + {(- cos
i±_,j 3J- j+) + - cos 0.) T-

nr i±1

-A(-COS 0. )}) dri3 ,

which with Eq. (305b) results in

S2-m M3 +( 8 n C n+li±i,j 3- i± f (o j_ I co j+ )

0

A3 Ar 3

+ r (- cos 0. . - (- cos 0 ) d -

AR 33± j+j 3
+ R~i - A_±j

C n + n+l n + n+l
2,T 3 cos6 -cos cos +cos..+
T -R,± [2+ + (308)

Here we notice that interface i±i,j is halfway on a cubic scale between
n n+l n _n+l
ri±n , r i± or on a cosine scale between , n 1 5 Consequently, we can

construct a mean cell having its corners on the paths of Eq. (305a). Let

(r n )3 + (rn+l)
3 ) 1/3

rn+j (i±)+j (i±i (09
ri±i 2(39

and n An+1

cos 9n± + cos e 

(3 0

cos an-j ±I (310)

Eqs. (306) and (308) can be written then as

2 TT n -cos 3n + l  n+ 3 (n+ 3] (311)
i,j± 3 (Cos j± j±) i+ )  -i

and

or _*-



84
2I (csen+ Cos an+4)(rn+l)3 _ n 3

i± ,j 3 i- j+ i± (312) i

respectively. Now in order to be able to construct the average cell,

A i,j± and A i j should take the forms

• n+1 2 n+i 2 1A. + f = [Cr ) - ( ) I sin (313a)

forcing the choice

6V . n+i 3 , n+j 3 C n C n+l
vg 6t= j± 2 (ri) -ri cos j± cos9j±

3 n+. 2 .n-s-f 2n+ 6, (313b)
A (r. jri+ ) - (r i) sin e.j

and

An+ n+ ) 2(cos -Cos . )~ (314a)i±j = 2z i±j ij -i co j+ ) 31a

forcing the choice

n+1 3 n 3

i 6tj (ri± ) - (ri±()
g 3(rn+j 2(314b)i± ,j 3riz j

To complete the formulation, it remains to check the consistency of the two

velocities u ±+, vg9, , namely that they occur at the same instant.

Differentiating (305a) with respect to time and taking ri±,, 5 j± at the
n+ n+±

moment when they are halfway i.e., ri+' 0j we get

• n+i 2 n+4 n+l n+4

3(r (dr iz/dt) sin ( j± 1/dt)

n+l1 3 n 3 n C n+l
(i±) - Cri) cos 0 - cos j±

Recognizing that (dri /dt)n = ug  the velocity of the grid at-t i± '

n 6t
t + -T, from Eq. (314b) and the above equation we obtain

d cos -n _ 0n+l

6t = ± o - ,± (315)
dt sin nj

whence from Eq. (313b), the velocity of the grid at tn + 6-
2'

4-

~'1VC ~jX
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n+i 3 n+i 3
(r. ,) - (ri) d3

,+ 2 1+1 ( ±j ) j 316)
i,j-+ 3(r n+ )2 n+i 2 dt

(ri 2-i

Recognizing ( )as the angular velocity at t n + 6t/2 of the interface

i,j±i [from Eq. (315) obviously independent of index i as expected after

the discussion in the section "Rectangular Grid Motion"], we can define

an average radius for the interface i,j±j (independent of j) as
! , n+I + (n+i n+i n+j

R n+ ±(ri+ )2 + (ri) (ri_) + Cri_ )2]R. (317)

I[(r ) + (r .)12 i+j i-i

Finally, the mean cell volume is

..n+i 2T n+ 3 - n+1 3 n+i .n+i
i. = -3- [ ) (r- ) ](cos e - cos "i ). (318)

Coordinate cases 4-7 will be treated in a later report.

* 4 . . . . . .
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XV. SOURCE TERMS

As explained earlier, source terms are integrated either over cell

volume or over cell interface area. The volumes and areas used are those

of the mean cell. The balance of source terms is the main reason for the

necessity of a closed mean cell construction, i.e., the ability to construct

a closed cell whose corners are on the paths between old and new cell

corners. For example, if we try to solve a hydrostatic pressure problem

in cylindrical r-z coordinates, the momentum equation is nothing but the

balance of the body gravity force and the pressure force on the top and

bottom surfaces. If the mid-cell interfaces compose a closed surface

enclosing the midway cell which happens to have a volume consistent with

the interface areas, force balance is already guaranteed (provided the

pressures are correct).

Let us consider the difference form of -j pnds (yielding - grad p)

in tne three coordina4 ases considered above. The resulting forces

along the x, y directions are

F = n+j n+ ) n+ (321a)

F = (pi_.j - )Ai ; (3s2lb)

xi,j = ijj-P~~

respectively, where

n+ n+1
n+j Pi,j + Pi+l,j (322a)

Pi+ ,j 2

and

. .. ,



~ ~ 87n+i n+1 8

pp+ Pi,J + Pi,)+l (322b)
,j+ 2

In cylindrical r-z coordinates,

n+1 An+ n+ n+ n+i n+ n+j n+4 zni-
F =p, A +2 p. (r -r )(Z -. )r. i-j,j ij - Pi+j,j i j +  i,j i+ i-i ]j+1 - 3-I

1,2

which with Eq. (303) yields

n+j n

F n+* An+ pn+ An+ + Pi,j i,j
r =. i-A, - p.. j A i+ , n+ 2a
1,j r.

1

where

n+4 n+j
n+j _ i+A + i-i

2 r (324)
l 2

n+ n+
We notice that p, /r. n acts as a body force per unit volume. The force

1,2 1

in the z-direction iG

F ,n+ n+ .n+
F (,Pi- - Pij)Ai (323b)

.j ,j ij+i i

In spherical r-e coordinates, as illustrated in Fig. 38, the pressure

acting on the hatched area creates a resultant force normal to the axis

from which S is measured, which in turn gives rise to a radial ccmponent

F and a tangential component F,. This situation, namely, the creationr

of a body-force-like component, occurs whenever the area of parallel

surfaces of the cell are not equal. This is bound to happen whenever the

interface area depends on both indices i,j. A simple way to evaluate

the force generated is the "pressure x projected area" since this area

is the difference between the areas of these parallel surfaces. The

radial force is therefore
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F l+i fl+i n+j n+j +F

r. *i~iP A - .+

where

p I +1 nj 2 pn+ f[ n+i
Fp. ~ (A j Aij i+

r.i 2~ n inij Pi"j

Cm )(Cos a j+ Cos fl+j R ~
i

R. was defined earlier in Eq. (317). Thus

n+i n+i

F+ n~ n+ n+ 2p. =p AV- A (325)

F rl+ i- n+j Aii' - +Fij iI'

where

n+j ( n+4 n+j n+i + 2

C rr,) 2(sin jn+j sin

if we note that

n~ni n~jn+Co
sin~ ~ ~ e-i sn

j 2 2

and
n+j n+1 + +

+e +
-44 e. 2 i sin (~~

Cos Coejj i 2 2

and using Eq. (318), F can be expressed as

* V..--- -
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n+j Vn+

F, - j i'j
Ii,j R +. tan

I 3

where

3n+ +n+

-n+ J+ + -i (326)
2

Thus

n+ n+ n+ n+ n+ .
F p.I A -p A + i'j ij

2= 3i,-1 i'j-I - i'j+ i, j+ ij j

11j Rn + tan n+
1 3

Next, let us consider the difference form of f pu-nds [yielding - div(pu)j.

s

For the three coordinate systems considered above, the power added to the

cell (i,j) is

p. _n+ u+ An+ -pn An+

n+ n+k An+4  n+ n+j n+

+ PAnj- vinj- A - Pi, vi A n+ (328)

where

n+ +n+n+ u .
u i+ ,j = 2 (329a)

and

n+ n+j
V. . + V

v 1,j+l (329b)ili+i 2

The forces (Wx,F ), (Fr,Fz), and (F_,F ),and the power P constitute a

y r' z

sample of the source terms encountered in treating generalized continuity

n+ j
equations. These are denoted by source . in the next section.

1,j
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XVI. ALGORITHM

We describe the implementation of the scheme of Eqs. (223). The

program and calling sequence are listed in the Appendix.

Assume a rectangular grid in two dimensions denoted by the coordi-

nates x, y (not necessarily cartesian; for example x - r, y - yield

spherical coordinates). Let the interfaces coordinates be x 1 2 , x 3/2,....

XN +1/2; Y l/2' Y3/2".' YN +1/2 (see Fig. 39).

x y

The cell centers are located midway between the interfaces and are

denoted by a pair of indices (i,j), corresponding to (x,y), respectively.

The cell volumes are given by

cartesian ( n,n+l n,n+l., nn+l n,n+l( y.+ - Yj )(txi -x. );

n,n+l
3i;F cylindrical [Oxn n+Y2 X n,n+l 2 nn+l n,n+lI

r-z )- Cxj -Yj_ ]

spherical 27 n,n+l 3 .Xnjn+l 3 n,n+l n,n+l
- +[cosy_ - cos y+ ;

We have then

,n+l Tx =n n 6t( n An+j n:i,j i~j 1r l,j i ij i+ , i j i. ,j)

+ 6tn(Pi-, n+j ,,n+i + source n+j (332a)

_ _~ - , . . ,- . ,'
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and

+1  T ni

+.Y. n n ( n An+j n+jvn+ )
_n+ p. A 6V + ,) + source (332b)

for (i 1,...,N ) and (j = 1,.... ), where
n n

Pi j + 0i n(33a)

Pi+i,j =  2

for i = 1,... ,N - 1 and j = 1,... ,N, while

n n
ni,3 + Pi,j+l (333b)Pjilj+i 2

n n
for i = 1,...,N x and j = 1,...,N - i. The boundary values p,j, PN +Ij

x y x

are obtained from

n n
Pl,j + P ,

0 n
N + ,j 2x

for (j = 1,...,N y) where L and R denote left and right boundaries,

respectively, while

n n
n il + Pi,B

i 2
n n

Pi,N + Pi,T
nyDi' ,y +1 2=

for (i = 1,...,N x ) where B and T denote bottom and top boundaries,

x. i ~ " ".",....
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n+j n+
respectively. The mean interface areas A and A are given by

An+ .n+ n+
A.+j = yj+ - Yj (334a)'+b ,j j+j -

and

n+ . n+ _ n+j
A i,j +i xi+j -Xi (334b)

where
n n+l

Yj- y 2 (335a)
j~j 2

and
n n+l

n+j x i+j + xi+
x i+ = 2 (335b)

for cartesian x-y coordinates; by

"n+ = xn+1 n+ _ n+ .n+a
i+j 2 x yj - ) (336a)

and

An+ ,n+ )2 ,n+ 2]
A.j = 

Tr[(xi+ - (X i_) , (336b)

where

n n+l
-n+j Yj+ + Y +j (337a)

j~j 2

and

S (x n )2 + (x n+1 )2 -3n+j {i+) + xi+ )
x i+ = - (337b)

for cylindrical r-z coordinates; and by

- -. - :-- - . --.- '= -. ? .jU..._ _ .....
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A ~ .=2(x )~ (Co n Co s l*$j (3 38a)i~~~j cos~jii ~

and

"nj = 7tfx nj) 2- (xn~ ) 2 sin y ,~ (338b)

where

= arc cos [-{cos y.n + Cos >1 (339a)

and

(n )3 +(n+l ) 3- 1 /3
Cx n ~ ) +~ Cx. (339b)L~ 2

for spherical r-e coordinates. Finally,

6u n. = ~ - Cg 340a)
i-4ij i-tiij i+j

and

6fl+j ~j -V (341a)

The grid velocities ug+'IV, are given by

n+l n

=g i+1 - i+1 (341b)

n+l -n

g9 __________

i , j~i t

for cartesian x-y coordinates; by

(n+l)2 (x (n )2

ug _ i-ti i+ (342a)

2 x nj6t

iat



94

n+l n

v -= (342b)i~j+f 6

for cylindrical r-z coordinates; and by

n+l 3 n 3(xi+ ) - (Xi

Ug  +i (343a)
3 (xn+) 2i+ ,j 3ti+

n+ n n+l |
v x. cos y - cos n+(vg _1 __+__Y_+___(343b)

i -j+I 5t sin yCj43

for spherical r-8 coordinates, where

. n+) 2 + n+, . n+1 ) n+. 2
n+j 2 (xi+ +(xi +)(x i-) + i- (

i 3 n+f n+j
xi+ + xi-

Equations (334)-(344) are valid for i = 0, ,...,N x and j 0, 1,...,Ny

Equations (332) yield and pT y ., which are used later to evaluate

t-he antidiffusion fluxes. The transported and diffused densities are then

obtained from

,n+l TD ji+1 T nIl n n

i,j i,j ij i,j i+i 3+1-,j (i+lj i,j

-i+l (f - n + n+l (nVi- , _jp,j _ P i_-'J ) + Vij+ i,j+ (Pi,j+l

n ,n+l n n

j ij- ,j ij-1 (346)

for i = 1,...,N and j =l,...,N where

1 1 2 C34 7a)
i+i,j 6 + Ci+i,j

and
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1 1 2 (347b)

while

i l( +l + .) (348a)
i+9,j 2 i,j i+ij

for i = 1,...,N - 1 and j 1,...,N Similarly,

1 •n+l +n+l
9i'j+1 

= 2 (i,9 i,j+l )  ( 4 b

for i = 1,...,N and j 1,... ,N - 1. At the boundaries,

Vn+l V n+l a n+l n+l, =  !jandy Nx j =  x j
(349a)

Ij l,j N1 +I,j N ,j

forj = l,...,N while

4i+l =,n+l an+l n+l (349b)IA i'l adi,N y+ = i,N y

for i = 1,...,N. The dimensionless velocities ei+I,j' Ci j+1 are

obtained from

n+j An+ 6
Ei+j, i+ ,j + 1 ( 3

_(50a)

-i+ij 2 .in+l e+l
i,j i-il'j

for i = 0,...,N x and j = 1,... ,Ny using (349a) and

n+1 n+jEl, A i,j+i 6t + 1__35_ 1

-ij+
=  2 .n+ + 1n+ (350b)

ij i,j+l

for i = 1,...,N x and j = 0,...,Ny using (349b). The antidiffusion fluxes

are then evaluated according to
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n+l Tx Tx
F 1 P,)(351a)

Fi+J,j = i+i,j i, (i+l,j - i,j) 35a

and

F. nj+i (PTYj - P i.), (351b)

where

1 2 2
i+J,j -6 3 i+J,j

and

1 22
i,j+i - i,j+ "

FLUX CORRECTION

The flux correction adopted here is that of Zalesak5 in multi-

dimensions. It "guarantees that the four antidiffusion fl.xes, associated

with each cell, acting in concert, do not create any ripples." In our

notation it takes the following form:

1. A flux is cancelled if it is opposite to the local gradient

of .TD along the same direction, and if opposite to either or both

TD
adjacent gradients of P , i.e., Fi = 0 if

i+413

EF (TD TD ) < 01 and QF ( TD[i+i,j (i+l~ -irD Fi+i ,Pi+2,j

- TD < 0] or [F TD TD < oi (352a)
Pi+l,i [Fi+,j( i,j -i-l, <

and F.+j =0 if
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[F. TD T ) < 0] and ([F. ([ilj+i i~j+1 -~ ilii ij+

TD TD TD.j+) < 01 or [F +(i -(.P < 0]l. (352b)- il l ill 1 ,j-i 1

2. Evaluate the total in- and out-fluxes and their upper bounds.
+

Let P. equal the sum of all antidiffusive fluxes "into" grid point (i,j):i,j

+
Pi,j = max (0, F.i in (0, F i+,j

+ max (0, F.._) - min (0, Fij). (353a)

+ +

Next we evaluate the upper bound on P
i,31

+ max - TD n+l (354a)
Qi,j (i - iji,j "

35a

The limiting ratio R+ . is thus estimated as1,3

+ +min (1 Q+,jiP+, i ++ (, ./P ) if p..> ifp 0 (5
R. = 3,l~j +

0 if P. 0 (355a)
1,j

Figure 40 illustrates the bounding process. Similarly, an upper bound

Qi,j is placed on the "outgoing" fluxes.

Pi,j = max (0, F ) - min (0, F .

+ max (0, Fi .) - min (0, F.j) (353b)

- (PTD mi4 n+l
1,3 1,3 1,) I,

fmin (1, i if P. > 0
d i,j

0 if 0 (355b)Ij

. . ....
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max min
In the above p Pifj are the upper and lower bounds, respectively,

n+l
on pi, chosen so as to guarantee no ripples formation at grid point (i,j).

Finally, since each flux leaves a cell to enter an adjacent one,

3. The fluxes correction factors are defined as

mi (Ri .j R7~) if F > 0
Ci+ ,j ~j 1 _+F I

[min (R , Ri +) if F < 0 (356a)

i-sl,jl i'i i+j

and { -~(..1Ci~+ min (R+i, j+11 Ri1 j3 if P ilj+ > 0

iran (R ,j+ l , R ) if F i,j+ < 0. (356b)

The corrected fluxes are given by

F . C F (357a)

F = C F (357b), j+1 ,j+1 Fi'j+'

4. For and pmin two choices are presented. A conservative

choice would be

max TD TL TD TD TD )  (358a)0 i,j = max (i-l,'j Pi, j-1' Pil, Pi+l,j' p ' l  ;

m = TD TD TD TD TD
p i,j m Pi-l,' 0i,j-l' Pi,j' Pi+l,j' Pi,j+l )  358b)

A more tolerant choice that gets rid of the problems of "clipping" and

"terracing" partially is

max a a a a a
i,j a (i, j , i,j-' Pi,j 'i+l, (359a)

NIL- xfto-
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where

a .TD n= max , )
1~ ~,] i,j

and

pn in = min (b b b b b (359b)
i,j i-ij ij-l i,j l,- j+

where

b in TD n
0 = min(p. ., Di,j J ,3

ANTIDIFFUSION AND HALF-STEP UPDATING

The corrected antidiffusion fluxes are added

,n+l n+1-= ,r~l TD (Fc -Fc Fc Fc (C0£q t -(F. -F )- F -F.. (3e0)
C 4 i, j , ) i,j i+ , ,j -, -

' _n+l 4

thus giving the new density oini

n+1 n+ neutos(4)i
Finally, it remains to specify u i+i,4 and vi in equations (340)

n+1
and the source terms denoted by "source .. " First, the velocities at the

1,]

interfaces are obtained from

u n+ . + n

u2+j ilj (361a)

for i = 1 ,...,N - 1 and j = 1,... N while

n+
S+j u. . uL

2u , = ~ +

n+i+ , 2
x

and
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n+j n+i
V .+ V.vn+4 3. 1,3+ (31b

Vi, = i 2i(3+b

for i = !,...,N and j = 1,...N - 1 whiley

V +v
n+ i--- B

'il 2

-~ i, T
i,Ny+j 

2

As for the source terms they were defined earlier, Eqs. (321) through (329).

n+i n+j n+i
Next, to get u. ,v , and source i, we advance our system of conserva-

n n n , t e
tion equations time step using u. n , , source n, ten

n+ n n .. = n+l ,~ St
ui ~~i~j vit jt + = i~ j't

n+i n n n+l n n ft
V.~ I t +Ct = V.. t*t n + -

n+i n+1 n n

source 113 t nn + t= source t-t +

i- ~
.)j j; - - - -. lI
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XVII. TWO-DIMENSIONAL TIME SPLITTING

VERSUS FUL v TWO-DIMENSIO'AL ALGORITHMS

Going back to Eq. (202),

- i(E a + Cy y) -iE S -i (x A  v

A(xy) = e x x y = e x x e y y = A( )A(B ) (362)

n ik-x 3
If e , where x = (i6x,j~y), the analytic solution of - + U*' = C,

according to Eq. (362), yields

n+l np. = A(3 )A(C )c. (363)ij y x ij

where u = (u,v) is constant and the two operators A( ) and A(B ) are

commutable. Noticing that

x n

Dix j = A( x)in (364a)

is the analytic solution of - + u =0, whereas
t ,ex

n+l x
0 . = A(3 )lo (364b)
1'- y f

is the analytic solution of -L + v )p = 0 for an initial density ox

equation (363) invokes time splitting as an exact solution for the

linear PDE. If we derive a numerical scheme by expanding A( x,3 ) in terms
xy

of sin ax, cos x' sin y and cos ay such that both A( x, y) and its

expansion agree up to a prescribed order of 6x and y, we obviously end

with a time splitting scheme, in which each of the x and y operators

agrees with A(sx) and A( y) up to a prescribed order of x and 6y

respectively.

Alternatively, if a 1-D scheme is n - order in phase error

and m - order in diffusion error, namely
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AJ = 1 + 0(e') (365)

and

=  + o()n+l (365b)exact

where JAI and are the amplitude and angle of the scheme transfer function A,

i.e., A = IAI e i', using a time-splitted version of the one-dimensional scheme

to solve a two-dimensional, x-y problem, gives JAI ei  = A-A A
x y

= (&Ax lex) (iA ye y. Thus,

!A, = I •IA (1 + o(,m))(l + 0(f )) = 1 + O( m ) + o(f) (366a)
x* y x y x

and

x+ + O(-n+ )] + + (,n+l ]
X y x exact x y exact y

exc+ o(anl) + n+l) (366b)
exact X y

showing the two-dimensional scheme to be of the same order as the 3ne-

dimensional one. Moreover, the errors in both JAl and S are free from
nn

mixed frequencies, such as O(Sx 2 ) where n1 + n = m or n + 1.
x y 1 *2

Although time-splitting appears to be the perfect solution,

physically unacceptable results are produced when dealing with incom-

pressible or nearly incompressible flow fields, or when a differential

identity, such as divergence free property or irrotationality, is to be

strictly enforced. Moreover, because the antidiffusion fluxes are

corrected in each direction independently of the other, unnecessary

"clipping" occurs. Namely, the flux corrector may cancel a flux that

would produce a ripple in one direction, which actually is safe in two-

dimensions due to the growth or decay of the adjacent cells in the other

direction.

' -dea h -"-
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Going back to the problems arising in incompressible flows, let's

consider a case where U = U(xey), independent of time, satisfying 7-U = 0.

For simplicity assume u = u + Cx and v = v - Cy. Figure 41 illustrateso 0

the velocities at the interfaces of a cell, when 3x = 6y = 1, C = 0.1.

0.1

0.1 i, 0.2 Fig. 41

fx=l

0.2

Using a simple-transport scheme with time splitting

x 0 0i~j Ili =~ i -~ ,- P  ~ -1 iIl (367a)

1 x -× )6xt
i,j Pi,j = i,j Pi -i,-1 i,j- x  (36,b)

where 0,1 stands for t = 0, 6t, respectively. Assuming a uniform initial

density o = i, and 6t = 1, Eq. (367a) gives (!)"(p, ) = (I)-(!) - ((0.2)(1)1,3

x
(0.I)'(i)(i)(i) yielding , = 0.9. Since u = u(x), v = v(y), 0i. = 0.9

for all j's and since u,v are linear, it is also true for all i's. Then, from

Eq. (367b), we obtain (i)"(Pi ) = () -(0.9) - ((0.1) (0.9) - (0.2)-(0.9)).

1
(l) (l) yielding o = 0.99. After n time steps, it is obvious that

1,j
n n n 0 l n

0 = (0.99) for all i and j. Generally, p = Q (-C In otherirj j, i,3

words, the density keeps on uniformly distributed but decreases with time

continuously.
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An equivalent fully two-dimensional scheme would be

1 0 0
P I V - Cu- ) -yui ' ,i i , 3  0 i j i+ j j o i+ 1 j i- i ,j i - i ,;j Y

0 0

-(V 0 -v p (368)(v ij+1 Pi+ - V ij-I P i, j- ) x t  
3

which gives p = , i.e. conserves the mass.

The discrepancy obviously lies in the assumption of U = const

while p is varying when deriving Eq. (362). In terms of transfer func-

tions, the scheme of Eqs. (367) is written as A = (I - £t )(1 - E t )

whereas that of Eq. (368) takes the form A =1 - £ t - c t .

The difference is obviously in the term "z y t t " which as will be

shown later is essential for high order diffusion. In the next section, we

try to cast a time-splitted scheme into a fully two-dimensional form. A

detailed explanation of the problems involved is given.

FULLY TWO-DIMENSIONAL VERSIONS OF
TIME-SPLITTED SCHEMES

Going back to the fourth order phase and diffusion scheme

A = (1 - £t)(1 - Pd) + \d (370)

C2 = and - The two-dimensional, splitted version
where V - + - and two=6 3 6

of Eq. (370)

A = ((- xt x)( - x d x ) + VX d x]-[(l - Et 1 -)d y) + v yd (371a)

or
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A ( ( )(I - t + \)d) - i (1- (i d ty +v d )XX x X X y y y y Uxx xtx y y y

(371b)

can be written as

TD t vd Et v d
A 1- lx x 2 2 y y 2

E t v d st vd+ Vxdx (i - YY +  y-Y) + " d y (I - x___x + __x x) (372a)

x x 2 2 y y 2 2

which is > 0 for !x ,jay < f, therefore ensuring positivity of oTD if

n > 0. Then,

AATD d -l t )[ t +vd - (1- et)]
x x X X y y y y 2y y y y

* 1
- - E t )[I - E t + v d - I p d (1 t )b

ydy y y x x x 2 XdX x X(372b)

where the asterisks denote the operators which fluxes are to be corrected.

This will allow us to correct the x and y antidiffusion fluxes simul-

taneously, thus avoiding unnecessary clipping. But that does not solve the

problems associated with divergence free flow fields, for example, because

of the term ": z t t ." Moreover, we notice that the form of Ea. (372) isx y

in no way unique.

Although Eqs. (366) show in a clear simple way that A - A A isxy

fourth order in phase and diffusion, let us analyze it using Eqs. (246) to

(248), Eqs. (260)-(262) with Eqs. (241)-(244). The purpose is to

determine which terms are responsible for the fourth order diffusion,

fourth order phase error, positivity, stability, and so on. We nctice
t t t t

that A x x= 0, A Y Y 0, making Eqs. (Z41)-(244) valid.
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Differentiating Eq. (371a), we get

t
x

A = - - d A (374)

y y y x

d
X

A = [(v - vIx) + Ex xtx]Ay (375)

y y yy x

t d
Xx

A Y A 
(376)

y yx

t d
A (i )[(v - I +  c I t ](377)

y y

t t

YxY

A x yE E (1 - .xdx) (1 - Uydy) (378a)

dd
A X Y [(v + t + t (378b)

At =y = 0, t =t =0, and d =d = 0, thusA =A 1, yieldingAt x y x y x yy

ttx
A Y = (379)

0 xy

d
x

Y v -
(380)

o x
y Y

t d
Xx

04 (381)o x~X

y y
t d

A(382)

oy

t t

Ax y (383a)
o x y

d d

A = ( - )  - (383b)

0 X y W6



107

Substituting into Eqs. (246) and (248), we get

x
(log A)y  - iF (384)

o x
y

xxx
(log A)YY = i.E l - 6(v - ia)] - i[6xUx - 2 E:

0o x x x x x
y y y y y y

C2
x

6ix(- + - "- ) (385)
Y Y

showing A A to be fourth order in phase error, but more importantly, that

the cross terms of Eqs. (382) and (393a), which do not appear in one-

dimension, are essential to the fourth order phase. More specifically,

these cross terms reduce the dependence of phase error on , and u to

dependence on v only, leaving w free to be adjusted for a high order

diffusion.

dd
A 0 in Ea. (383b) is not used in either (384) or (385) and0

therefore can take any value without affecting the phase error.

Now we can construct the simplest fourth order phase error scheme.

Such a scheme has to satisfy Eqs. (379) to (382) plus Eq. (383a) giving,

A = (1 - cxtx )(1 - yt ) + (vx - x)d x + (v - u )dy t u dxxy y y x xxx

+ y t Yu d - x t x(Vy - P y )dy - £ t y x(v - x)dx  (386)

where the integration constant was selected as unity to satisfy consistency,

i.e., A( ×,y = 0) = 1. Eq. (386) can be written as

A ( - £ xt )(l-y t y) + v xd (1- £y t y) + yd (1 - £ t )
y(t y t yyy x x

x x x y y x x yy

.. ..q -. . -,-_-
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dd

Since A x y does not affect the phase error order, we can assign a value
0

for it that would ensure positivity. We add to the terms of Eq. (387)

". v d d ," yieldingxyxy

A c( - £xt + xdx) (1 - E yt + vydy) - Uxd (1 - Ext - E t

- 1yd y( - xtx - yt ) (388)

Now, substituting Eqs. (379) to (383) into Eqs. (242) and (243), we get

x
A - iE (389)
o x

y

xx

A y = - 2(v - x) (390a)
o x

y y

Axy = - E (390b)
o xy

which when substituted into Eqs. (261), yield

I(JA2)y= 2[-2(v + C 2 0 (391a)

o x x x
y y y

A 2[- £ + £ 1 0 (391b)
o xy x

showing A A to be fourth order in diffusion error.xy t
t t

Notice that A x y = E E is essential for fourth order diffusion
0 x y

(already satisfied by the scheme of Eq. (388)).

The simplest fourth order (phase and diffusion error) positive

scheme is therefore that of Eq. (388). It is, however, unstable. For

instance,

. . .. "P
- 17 =
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AR = 1 +(vx - )d x + C - dy )d + x v d d + c t t (392a)
R y yy x y xy xy xy

while

AI = - x t x l -1 xdx + (v y - y)d I-yt yl- 1 ydy + (x- jx)dx I (392b)

At £x = = & and ax = y= /2, dx = d = -2 and t = ty = i, yielding

1 1 1 1
A = 1 4- 4-+ 1 4 (393a)

R 4 4 4 4

1 1 1 1
A I = - il + - - - - + - -] - 1 (393b)

I44 4 4

Since we know that A of Eq. (372) is stable, let's try to approach

it in steps. First, we try

A = ( - tx + x d x) (I - £y ty + v yd) - x d x (I - t x) (1 - E ty

- y d (I - y t y)(1 - x t ) (394)

thus adding "-(ix d + i yd y)( xy t xt y)" to the real part, becoming then

AR = 1/2 - 1/8 = 3/8 (395)

still unstable. Next, we try

A = (1 -c t + Jd )(1 - c t + )d ) - ud (i1- t xt)(i1- £ t + vd )
x t x x y y y y x x xy y y y

... d (1 - C t H ( t + v d ) (396)ydy eyy)i xx + x

This will add "-(j v + y v )dx d y to the real part and "(x t x X

+ ex xy x xty

+ cyty~.y v)d dy" to the imaginary one. We get then
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A 3 1 1(397a)
R 8 4 8

A, 1 (397b)8 8

whenceIA2 () 2 12 6 < I, showing Eq. (396) to be too stable at

x = . Moreover, it is not phoenical; A # 1 at £ = 0. These
x y 2 x y

two effects can be avoided by picking

1A - t + vxdx) (1 - E t + v d ) d (1 t H t + - v dx x x y y xx xx y y 2 y y

1
-yd( - t )(1 - t + I vd) (398)

y y y y x x 2 x x

yielding

3 1 1 1
A = - 1 x 1 = 1 (399a)

R 8 2 4 4

1 1 15
A, =- +-I X (399b)

I 2 8 16

whence JA12= ()15)2 + (1)2 24156 < 1, closer to 1, therefore promising a

smaller net diffusion and phoenical since A = 1 at £ = E = 0.
x y

Noticing that the added terms to Eq. (388) are triple operators
III

(tx t d , tx y v, tx d xd y, ty d d ) they have no effect on (log A)o

Eq. (398) is still fourth order in phase error. Furthermore, upon expanding

Aj 2, we get

A1 C (1 - + [E (i- £)
12 x x x x y

+Fy2(1 - E2aa2 + E2(i E 2)64 + .(400)

showing diffusion error to be of fourth order. The scheme is, however,

slightly unstable near $ = a= 0, since the fourth order coefficient isx y



positive. We notice also the presence of a term " ' in Eq. (400) (also
x y

in the phase error expansion), which does not show in the expansion of Ea.

(372) (according to Eq. (366), making the scheme of Eq. (398) slightly

inferior to that of Eq. (372).

Upon comparing Eq. (398) to (372), it is obvious that Eq. (372)

cannot be much simplified; at least without sacrificing stability or

phoenicity. Whichever we use, the n0 of operations involved in evaluating

n+l
0 is much larger than that in the fully two-dimensional scheme of Eq.

(226e). Moreover, the no of two-dimensional arrays required to store the

intermediate values is enormcus.

Since the only advantage of Eqs. (372), the fully two-dimensional

version of the time-splitted scheme of Eq. (371b) is the reduced clipping

associated with the flux limiter, we conclude that time splitting is the

sensible answer. We abandon, therefore, trials to cast the time-splitted

scheme in fully two-dimensional versions.

- v __-w --.-
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XVIII. IMPROVING DIFFUSION ERROR OF THE

FULLY TWO-DIMENSIONAL SCHEME

Now that we have classified the terms responsible for the fourth

order phase, diffusion, etc., in the time-splitted scheme, let's go back

to the fully two-dimensional scheme and study the terms preventing us

from reaching a fourth order diffusion error. As explained earlier, the

term " c t t " is essential to reduce the dependence of the phase errorxyxy

to one on v alone, thus leaving i free to be adjusted for a high order

diffusion. A closer look reveals, however, that the above conclusion is

an indirect one. The direct conclusion is that "E c t t " is needed to
x y x y

cancel "c 3 S " resulting from squaring the imaginary part. Specifically,
xxyy

any scheme has to incorporate the combination (E t + £ t ) leading toxx yy

i(x sin S + c sin v ) which is approximated by ix x + £ ,). To cancel
x x y y x x y y

it, a term including sin ;x sin 5y is needed. Besides tX t, the above

term can also result from cos (x=S y ), i.e. diagonal diffusion

( ,n ± - 11, + 'n
- rii;l

) . Admitting diagonal terms is outside the

scope of this article and is left out to an upcoming one. However, we

empnasize that there is a stability problem caused by the imaginary part

iA I  [x t x(l x d x ) + t (t -(I d )] which amplitude is already

1
larger than unity for = = = 7 unless =

x 2y y

there, in which case we have a large residual diffusion. Adding just a

diagonal diffusion can't help, since it only adds to the real part.

,POW"- I I I I I II I , . .. .
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APPENDIX



SUBROUTINE FCT2D(RHO,KO,KN, KR, SNKRNZ,
& LBCRHOLBC,RBC,RHORBCBBCRHOBBCTBCRHOTBC)

C
C
C ORIGINATOR : RAAFAT H. GUIRGUIS
C

C DESCRIPTION
C
C

C A FULLY 2-D ROUTINE THAT SOLVES GENERALIZED CONTINUITY EQUATIONS
C OF THE FORM

C
C D RHO / D T = - DIV( RHO * V ) - SOURCES
C

C WHERE RHO IS THE GENERALIZED DENSITY, AND V IS THE FLUID VELOCITY.
C FOR SECOND ORDER ACCURACY, IT IS ADVISABLE TO ADVANCE HALF A
C TIME STEP USING THE VELOCITY AND SOURCE TERMS AT THE BEGINNING

C OF THE TIME STEP, THEN ADVANCE A WHOLE TIME STEP USING THE
C HALF-POINT VELOCITY AND SOURCE TERMS. USING THE HALF POINT
C DENSITY IS NOT RECOMMENDED. IT IS, HOWEVER, INCLUDED AS AN

C OPTION, BY ALTERNATING (KO,KN) BETWEEN (1,2) FOR THE HALF TIME
C STEP, AND (2,1) FOR THE WHOLE TIME STEP.
C THE OLD, (KG), AND NEW. (KN), DENSITIES C AT THE BEGINNING AND END

C OF THE TIME STEP, RESPECTIVELY ) ARE STORED IN A 2-LEVEL 2-D ARRAY

C ( 3-1) ARRAY ). THE MASS AND DIFFUSION FLUXES ARE EVALUATED USING
C KO DENSITY, WHEREAS KN DENSITY DETERMINES THE ANTI-DIFFUSION
C FLUXES. IT IS ADVISABLE TO SET KO = 1, KN = 2, UNLESS THE HALF
C POINT DENSITY IS TO BE USED DURING THE WHOLE TIME STEP. THEN
C KO = 2, KN = 1 FOR THE WHOLE TIME STEP.
C KR DETERMINES THE LOCATION OF THE RESULTING DENSITY. IT IS
C ADVISABLE TO SET KR = 2 * I , FOR THE HALF AND WHOLE TIME STEPS,
C RESPECTIVELY. THIS CHOICE ELIMINATES THE NEED TO COPY THE NEW
C DENSITY ON THE OLD ARRAY, IN PREPARATION FOR A NEW TIME STEP.
C SNKRNZ IS A LOGICAL VARIABLE WHICH, WHEN SET TO .TRUE., TELLS THE
C ROUTINE TO USE THE CORRECTION FACTORS OF THE LAST SNKRN7 = •FALSE.
C CALL, TO LIMIT THE ANTI-DIFFUSION FLUXES. IF SET TO .FALSE., THE
C CORRECTION FACTORS ARE EVALUATED FROM THE CURRENT VARIABLES AND

C USED IN THE LIMITING PROCESS.
C LBC, RHOLBC, RBC, RHORBC, BBC, RHOBBC, TBC, RHOTBC, ARE DEFINED
C BELOW.
C
C (1) A PARTICULAR GEOMETRY IS SELECTED BY A CALL TO ENTRY
C SETOOM :
C CALL SETGOM( 4HCART, IHX, IHY, NX, NY
C OR .. ,1HX, IHZ,... OR ... , 1HZ, 1HY....ASSUMES CARTES',N
C COORDINATES. ORDER OF THE 2 COORDINATES IS IMMATERIAL ONLY

C FOR THIS CASE.
C CALL SETGOM( 3HCYL, lHR, 1HZ, NX, NY
C CALL SETGOM( 3HCYL, IHR, 3HFYE, NX, NY
C CALL SETGOM( 3HCYL, IHZ, 3HFYE, NX, NY )
C FOR THE 3 TYPICAL CYLINDRICAL COORDINATES.
C CALL SETGOM( 3HSPH, lHR, 4HCETA, NX, NY

Al
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C CALL SETGOM( 3HSPH , IHR, 3HFYE, NX, NY
C CALL SETGOM( 3HSPH, 4HCETA, 3HFYE, NX, NY)

C FOR THE 3 TYPICAL SPHERICAL COORDINATES.

C NX, NY, ARE THE NUMBERS OF CELLS CENTERS ALONG THE 2
C COORDINATES, IN THE PRESCRIBED ORDER. IF THE LITERAL
C CONSTANTS DESCRIBING THE GEOMETRY ARE MISS-SPELLED, AN ERROR
C MESSAGE IS ISSUED, AND EXECUTION STOPPED.
C NOTE : THE 2 COORDINATES ARE GENERALLY DENOTED BY (XY). IN
C SPHERICAL R-FYE GEOMETRY, FOR EXAMPLE, X MEANS R, WHILE
C Y MEANS FYE.
C
C (2) THE LEFT, RIGHT, BOTTOM, AND TOP BOUNDARIES ARE EXTENDED
C 1 CELL BEYOND THE LAST GRID POINT, YIELDING (NX+2)*(NY+2)
C CELLS. THE DENSITY OF AN EXTRA LEFT CELL = LBC * (DENSITY
C OF ADJACENT CELL ON SAME ROW) + RHOLBC. BY ADJUSTING THE
C VALUES OF THE TWO I-D REAL ARRAYS ( OF DIMENSION NY+2 ) LBC
C AND RHOLBC, VARIOUS TYPES OF BOUNDARIES CAN BE SIMULATED.

C SIMILAR RELATIONS APPLY FOR RIGHT, BOTTOM, AND TOP
C BOUNDARIES, DENOTED BY R, B, AND T, RESPECTIVELY. NOTE
C THAT BOTTOM AND TOP ARRAYS ARE NX+2 CELLS LONG.
C
C (3) ALL THE BOUNDARIES ARE CONSIDERED PERMEABLE TO DIFFUSION AND
C ANTI-DIFFUSION FLUXES, UNLESS A CALL TO ENTRY SOLDFY INFORMS
C THE ROUTINE OTHERWISE. ANY OF
C CALL SOLDFY( 4HLEFT, KSTRT, FEND
C CALL SOLDFY( 4HRITE, KSTRT, WEND
C CALL SOLDFY( 4HBOTM, KSTRT, FEND
C CALL SOLDFY( 3HTOP, KSTRT, FEND
C MAKES THE LEFT, RIGHT, BOTTOM, OR TOP BOUNDARIES IMPERMEABLE
C TO BOTH DTFFUSION AND ANTI-DIFFUSION FLUXES FROM CELL
C NUMBER KSTRT TO CELL NUMBER FEND, INCLUSIVE.
C NOTE : CELL 1 IS NOW THE EXTRA CELL BEYOND THE BOUNDARY,
C CONFINING CELLS 2 TO NX+1, OR NY+I.
C ANY NUMBER OF CALLS TO SOLDFY IS ALLOWED, MAKING
C IT POSSIBLE TO SOLIDIFY UNCONNECTED PATCHES ALONG EACH
C BOUNDARY. EACH TIME SOLDFY IS CALLED, A MESSAGE EXPLAINING

C THE ACTION TAKEN IS ISSUED.
C
C (4) CALLS TO ENTRY PRODIC, FOR EXAMPLE,
C CALL PRODIC( 1 , IHX )
C INFORM THE ROUTINE TO TREAT THE 1 ST OR 2 ND COCRDINATE AS
C PERIODIC. THE SECOND ARGUMENT IS JUST TO GENERATE A LABEL;
C THE MESSAGE " X COORDINATE FERIODIC " IS ISSUED. SIMILARLY,
C CALL PRODIC( 2 , 3HFYE )
C MAKES THE 2 ND COORDINATE PERIODIC, AND THE MESSAGE " FYE
C COORDINATE PERIODIC " ISSUED.
C IF THE PERIODIC CALL IS MADE FOR A COORDINATE THAT SHOULDN'T
C BE PERIODIC, A WARNING MESSAGE IS ISSUED, THEN EXECUTION
C PROCEEDS.
C
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C (5) THE GRID IS INITIALIZED BY A CALL TO ENTRY ORIGRD:
C CALL ORIGRD( XGN, YON)
C WHERE XGN, YON ARE TWO I-D REAL ARRAYS OF DIMENSIONS NX+l,
C NY+1, CONTAINING THE LOCATIONS OF X, Y INTERFACES.
C ORIGRD WILL THEN CONSIDER THESE AS THE INITIAL LOCATIONS.
C AT THE BEGINNING OF EACH TIME STEP
C CALL NGRID( XGN, YGN)
C WILL EVALUATE VOLUME, MEAN INTERFACE AREA, ... OF CELLS,
C WHEREAS
C CALL OGRID( XGN, YGN
C AT THE END OF EACH TIME STEP, RESET THE OLD ARRAYS
C FOR THE NEXT TIME STEP.
C
C (6) IT IS ASSUMED THAT THE GRID IS MOVING, UNLESS CALLS TO ENTRY
C FIXORD FIX ONE OR BOTH OF THE COORDINATES GRIDS.
C CALL FIXGRD( I , IHX )
C INFORMS THE ROUTINE THAT THE 1 ST COORDINATE GRID IS FIXED.
C THE SECOND ARGUMENT IS JUST TO GENERATE A LABEL; THE MESSAGE
C "X GRID FIXED " IS ISSUED. SIMILARLY,
C CALL FIXGRD( 2 , 1HZ )
C FIXES THE 2 ND COORDINATE GRID AND ISSUES THE MESSAGE " Z
C GRID FIXED ". IF BOTH COORDINATES GRIDS ARE FIXED, CALL
C NORID, THEN OGRID, ONLY ONCE AFTER INITIALIZATION.
C
C (7) A PARTICULAR ANTI-DIFFUSION FLUX CORRECTOR IS SELECTED BY A
C CALL TO ENTRY SETLMT
C CALL SETLMT( 5HBORIS, 4HBOOK
C INVOKES BORIS-BOOK FLUX LIMITER, WHILE
C CALL SETLMT( 7HZALESAK. 1H )
C INVOKES ZALESAK FLUX LIMITER. THE ARGUMENTS REFER TO THE
C ORIGINATORS OF THE FLUX LIMITER. IF THE LITERAL CONSTANTS
C DESCRIBING A LIMITER ARE MISS-SPELLED, AN ERROR MESSAGE IS
C ISSUED, AND EXECUTION STOPPED.
C
C (8) A TIME STEP STARTS BY A CALL TO ENTRY NGRID, FOLLOWED BY
C CALL VOLFLX( U, V, DT )
C WHERE U,V ARE TWO 2-D REAL ARRAYS OF DIMENSIONS (NX+2)t(NY+2)
C CONTAINING THE COMPONENTS OF VELOCITY VECTOR AT THE CELLS
C CENTERS. DT IS rHE TIME STEP.
C
C (9) BEFORE EACH CALL TO FCT2D, THE SOURCE TERM IS DETERMINE:'
C BY A SEQUENCE OF CALLS
C CALL CLRSRC
C CLEARS THE SOURCE TERM WHICH REMAINS ZERO UNTIL ANY OF THE
C NEXT CALLS IS DONE. EACH CALL ADDS TO THE SOURCE TERM.
C ANY NUMBER OF CALLS IS ALLOWED, TO FORM THE TOTAL VALUE OF
C THE SOURCE TERM.
C CALL SORCES( 3HBDF, SORCE, DT
C ADDS A BODY TYPE FORCE, WHERE SORCE IS A 2-0 REAL ARRAY OF
C DIMENSION (NX+2)X(NY+2) CONTAINING THE BODY FORCES PER UNIT
C VOLUME.

A3



C CALL SORCES( 4HXGRD, SORCE, DT
C CALL SORCES( 4HYGRD, SORCE, DT
C ADDS THE X OR Y COMPONENTS OF THE GRADIENT OF THE OUANTITY
C IN ARRAY SORCE.
C CALL SORCES( 3HDIV, SORCE, [IT
C ADDS THE DIVERGENCE OF THE OUANTITY IN SORCE. ENTRY SORCES
C DETERMINES WHICH FORM OF GRADIENT OR DIVERGENCE TO USE
C ACCORDING TO THE GEOMETRY. ALTERNATIVELY, ONE CAN
C SEPARATELY CALL ENTRY BODY FOR BODY FORCES, XGRAD OR YGRAD
C FOR THE GRADIENT IN CARTESIAN COORDINATES, RCGRAD OR YGRAD
C FOR THE GRADIENT IN CYLINDRICAL R-Z GEOMETRY,... OR XGRAD AND
C YGRAD FOR DIVERGENCE IN CARTESIAN GEOMETRY, RCDIV AND YGRAD
C DIVERGENCE IN CYLINDRICAL R-Z GEOMETRY,...
C
C (10) THE TIME STEP ENDS BY A CALL TO OGRID
C
C (11) FOR 2 ND 'RDER ACCURACY, STEPS (8) , (9) ARE PERFORMED TWICE.
C ONCE WITH DT= TIME STEP / 2 FOR THE HALF TIME STEP, THEN
C DT= TIME STEP FOR THE WHOLE TIME STEP.
C
C ENTRIES ...
C ENTRY NGRID(XGNYGN)
C ENTRY OGRID(XGNYGN)
C ENTRY ORIGRD(XGN,YGN)
C ENTRY VOLFLX(UV, DT)
C ENTRY SORCES(SRCTYP,SORCEDT)
C ENTRY CLRSRC
C ENTRY BODY(SORCE,DT)
C ENTRY XGRAD(SORCE,DT)
C ENTRY YGRAD(SORCEDT)
C ENTRY RCGRAD(SORCEDT)
C ENTRY RCDIV(SORCE,DT)
C ENTRY SETGOM(GOMTRYCRD1,CRD2,NI,N2)
C ENTRY PRODIC(CRDNT,CRD)
C ENTRY SETLMT(LMTR1,LMTR2)
C ENTRY FIXGRD(CRNT,CRD)
C ENTRY SOLDFY(BONDRYKSTRTKEND)
C
C
C CALLS TO ...
C SUBROUTINE NUMU(NI,N.JEPS,NUV.MUV)
C
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c DECLARATIONS
C --- - - - -

PARAMETER NFPX=1007 NF'Y=100
PARAMETER NPIX=NFX+1 NFV=NFPY+l
PARAMETER NP2X=NPX+2.7 NP2Y=NPY+2

C

INTEGER OEOM7 CRDNT

INTEGER IFLX (NF2X, NF2Y)
C
C

LOGICAL LSRC
LOGICAL SNO'.RNZ
LOGICAL XCHNGI YCHNG
LOGICAL XPRDCYPRDC

C
c

REAL TEXT(20)
REAL LMTR1(2)7 LMTR2(2)
REAL TGM(3),TCRD(6)7 TLMI(27 4)7 TLM2 (2-,4)

REAL LBC(NP2Y) 1RHOLEBC(NP2Y)
REAL R8C(NP2Y) 7RHOR8C4NP2Y)
REAL PC(NP2-;X)IRHOSPC NP2X)
REAL T9C(NP2X) 7RHOTBC(NP*'2X)

C
REAL PRMBLL (NF"2Y) ,PRMBLR (NF2Y) ,PRMBLB (NP2X) PRMBLT (NF'X)

C
REAL XGO(NFIX),XGN(NPIX),YGO(NF'lY),YGN(NF'1Y)
REAL XG(NPIX),DXG(NPIX),Y6(NF'lY),DYO(NPlY)
REAL E'XGO(NP2-X) 7DXON(NP2 X) ,DYOO(NF' Y) ,EIYON(NP2'Y)
REAL RDXGN(NP2ZX) ,RDYGN(N'Y)
REAL DXONH(NF1IX),RDXG3NH(NF'1X),DYONH(NFP1Y)7 RD-YGNH(NPlY)
REAL AX(NFX) ),AY(NPY)
REAL SO(NF1IX),SOO(NF1IX),SQN(NF*1X)

C
REAL RHO (NP2X, NF2Y, 2)
REAL U (NF- X1 NFPY) AEUOT (NP 1X7 NP'Y)
REAL V(NF'2 X,NF'2Y) 7AEIDT(NF'X,NFP1Y)
REAL CELMAS (NF':( ,NFY) , SOURCE (NF2XA NPFZ-Y) SORCE (NP2X, NFY)

C
REA4L TEMP I (NF2ZX, NF'ZY) ,TEMP'2 (NP2X, NPY)
REAL TEMP3(NFlX 7NFP1Y),TEMP4(NF'lX,NPIY)
REAL TEMP5 (NP2X, NP2Y) , TEMP'6 (NF-X, NP2ZY)

C
REAL QLr'YOL (NF2X, NF2Y) , RVOL (NP2-X, NP2ZY)
REAL AVXVL (NF'lX, NPlY) ,RAkXVL (NP1X, NP1Y)
REAL AVYVL (NF'1 X, NF'Y) ,RAVYYL (NPX, NP1Y

C
REAL XMSFLX(NFlXNF'lY),YMSFLX(NP1X,NPIY)
REAL XDFFLX (NF'2X,NPZ'Y) , YDFFLX (NP2X,NP2Y.
REAL XNTFLX(NFIX 7NPIY),YNTFLX(NF'lX,NFPY)

C
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REAL EPSX (NP1IX,NPlY) NUX (NP2X,NF2Y) MUX (NF2X,NF2Y)
REAL EPSY(NP IX,N'1Y) ,NUY(NP2X,NP2Y) vMUY(NP2XNP2-Y)
REAL NUX VOL (NP2W:X, NF')Y) , MUXYOL (NF'2X, NFC-Y)
REAL NUYVOL (NP2X, NP2Y) , MUYVOL (NP2-X, NP2Y)

C
REAL MXFLX(NF'2XNP2Y) 7MNFLX (NF'2 X,NF'2Y)
REAL FLXIN(NP2X7 NP2' -Y) ,FLXOUT(NP2 XN F'2 Y)
REAL RHOMX (NF2 -X7 NF'2Y) ,RHOMN (NF2-X7 NF2 Y)
REAL MX IN (NP"2XNP2Y) , MXOUT (N'2X7 NFP2:Y)
REAL DIFF(NP2X,NP2Y) 7FLX(NF2 -X,NF'Y)

C
REAL RIN (NP2X, N'2Y) , ROUT (NP2XNFC-Y)
REAL XFLXCR (NP2 X, NP2Y) YFLXCR(NP2 X, NP2 Y)

C
C

EQUIVALENCE (TEMP1,FLXINRIN)
EQUIVALENCE (TEMP27 FLXOUT1 ROUT)
EQUIVALENCE (TEMP3,XMSFLX, XNTFLX,AVXVL,RAVXYL,EF'SX)
EQUIVALENCE (TEMP4, YMSFLX, YNTFLX, AVYVL, RAVYVL, EPSY)
EQUIVALENCE (TEMP5, XDFFLX, YD:FFLX,NUX7 NUXVOL,NUY, NUYVOL)
EQUIVALENCE (TEMP5,OLDVOLRVOLDIFF,MXFLX,FLX, IFLX)
EQUIVALENCE (TEMF'6, SOURCE, MUX,MTUXVOL7 MUY7 JUYYOL)
EQUIVALENCE (TEMP6,RHOMX,RHOMN1,MXIN,MXUT,INFLX)
EQUIVALENCE (TEMP6, XFLXCR7 YFLXCR)

C
C

DATA TEXT(l),TEXT(2),TEXT(3)/4H M,4HISS-7,4HSPEL/
DATA TEXT(4),TEXT(5)/4HLING,4H OF /
DATA TEXT(?),TEXT(10)ITEXT(11)/4H IDE,4HNTIF,4HIER/
DATA TEXT(12),TEXT(12),TEXT(14)/4H GE,4HOMET,4HRY
DATA TEXT(15),TEXT(16) 7TEXT(17)/4HFLUX7 4H LIM,4HITER/
DATA TEXT(18),TEXT(19),TEXT(2 0)/4HSOUR,4HCE T,4HYF'E/

C
DATA TGM(l),TOM(2 ),TGM(3)/4HCART,4HCYL ,4HSPH/

C
DATA TCRD(1)7 TCRD(2-),TCREI(3)/4HX ,4HY 4HZ /
DATA TCRD(4),TCRD(5),TCRD(6)/4HR 74HCETA,4HFYE/

C
DATA TEBND(1) ,ThNDI(2"),/4HLEFT,4HRITE/
DATA TBND(3) TBND(4) /4HBOTM, 4HTO'

DATA LMTR1,LMTR'2/4*4H/
DATA TLM1(1,1),TLM1(2-1t)/4HBORI,4HS ,

DATA TL-M'2(1 11) vTLM2-(2 7 1) /4H.OO%, 4H
DATA TLM1(1,2 ),TLMI(2 ,2 )/4HZALE,4HSAK /
DATA T L M2( 1 ,2) ,T L M(2, )4 H ,4H /

C

C
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C FORMATS
C - -

C
10 FORMAT(///5X,7HWARNING,5X~ 11A4)
20 FORMAT(///5X,7HWARNINO,5XA4,2X,22HSHOULD1 NOT BE PERIODIC)
30 FORMAT (///5X, 24HALL BOUNDARIES PERMEABLE)
40 FrORMAT(///5XA4,^-X,19HCOORDINITE PERIODIC)
50 FORMAT(///5X.A4,2X,IOHGRID FIXED)

F0 ORMAT (///5X, A4,2-'X, 22-HBOUNDARY SOLID BETWEEN,
& 2X,4HCELL,"2XI4,2-'X1 3HANDI,2X,I4)

70 FORMAT(///5X,25HGEOMETRY NOT INCLUDED YET)
C
C
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C EVALUATE OLD CELL MASS "CELMAS"
DO 110 J=1,NY
DO 110 I=1,NX
OLDIVOL (I,U) =DXGO (1+1) EDYGO (J-.-)

110 CELMAS(I,J)=RHD(I+1,J+1, 1)*OLDVOL(I,U)
CI
C ADD SOURCE TERM "SOURCE" WHEN AP'PROP'RIATE

IF(.NOT.LSRC) 00 TO 125
C
C

DO 120 J=1,NY
DO 120 I=1,NX

120 CELMAS (IU) =CELMAS (I,U) -SOURCE (I, U)

121,75 CONTINUE

C
C EVALUATE X-CONVECTION FLUX 'XtISFLX"

DO 130 J=1,NY
DO 130 I=17 NXPI
TEMP3 (I,U) =RHO (I+1, J+1, KO) +RHO (I, U+1 KO'.)
TEMPS (I, U)=-0. 5*ADUIT (I, U)

130 XMSFLX(I,J)=TEMFP3(I,J)*TEMF5(I,J)
C
C EVALUATE Y-CONVECTION FLUX "YMSFLX"

DO 140 J=1,NYPI
DO 140 I=11 NX
TEM'4 (I, ) =RHO (1+1,J1, KO) +RHO (I+1, J, K)
TEMP6 (I,J)=0. 5*ADVDT (I, U)

140 YMSFLX(I,J)=TEMP4(I,)*cTEMFP6(I,J)

C EVALUATE X AND Y TRANSPORTED DENSITIES
DO 150 J=1,NY
DO 150 I=17 NX
TEMPS (I,U) =XMSFLX (1,3)-XMSFLX (1+1, U)
TEMF'6(I,U) =YMSFLX (I,U) -YMSFLX (I, U+1)
TEMP3j(1, U) =CELMAS (I, U) TEMF'5 (I, U)
TEM'4 (I U) =CELMAS(1, U) +TEMF' (1,J)
CELMAS (I,U) =TEMFP3 (T, U) +TEiP6 (1,3)
RVOL (I,U) =RIXON (1+1) *RDY0N (3+1)
F:,HO (I+1,jU~l, KN) =TEMP3(I, U) *F:OL (I, U)

150 TEM1P4I, U) =TEMF'4(I, U)*RV)OL (I, U)
C
C EVALUATE X-TRANSPORTED DENSITY AT LEFT AND RIGHT BOUNDARIES

DO 170 U=2,NYP1
RHO (1, U7 N) =LEC () *RHO (IL, U, KN) +RHOLC (U)

170 RHO(NXP27U',JN)=RBC(Ui)*RHO(IR,J,K:N)+RHORBC(J)
C
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C EVALUATE "EPSX"
DO 180 J=1,NY
DO 180 I=1,NXF'1
RAVXVL (I, J) =RDIXNH (I) *RDYON (J+l)

180 EPSX(I,J)=RAYXYL(I,J)*ADIUD~T(IJ)
C
C EVALUATE X DIFFUSION AND ANTI-DIFFUSIONrEOEFFICIENTs "NUX", "lUX'

CALL NUMU(NXPI,NY,EPSX,NUX,MUX)
C
C CANCEL THE DIFFUSION AND ANTI-DIFFUSION X-FLUXES THROUGH SOLID
C PORTIONS OF LEFT AND RIGHT BOUNDARIES

DO 185 J=1,NY
NUX (1, U) NUX ( , U)*FRMBLL (J+l)
flUX (1,J) -MUX (1,J)*PRMBLL (J+1)
NUX (NXP1 , ) =NUX (NXP1, U)*FRMBLR (3+1)

185 MUX(NXPI,J)=MUX(NXPI,J)*PRMBLR(J+l)
C
C EVALUATE X DIFFUSION AND ANTI-DIFFUSION FLUXES "XDFFLX" "XNTFLX"

DO 190 J=1,NY
DO 190 I=1,NXP1
AVXVL (I, 3)=DXGNH (1) *DYGN (3+1)
NUXVOL (I 3) =NUX (I,3) *AYXVL (I, 3)
MUXYOL (I,J)=MUX (I 3) *AVXVL (I, 3)
TE'F3 (I,3) =RHO (I+1, J+i, K0 -RHO (I, J+1,KIO)
XDFFLX (I,3) =NUXVOL (I,3) *TEMP3 (I,3)
TEMP3(I,J)=RHO(I+11 3+1 1 KN)-RHO(I,J+1,KN)

190 XNTFLX (IJ)=MUXVOL (I, 3) TEMFP3 (I, 3)
C
C ADD X-DIFFUSION TO "CELMAS"

DO 200 J=1,NY
DO 200 I=1 1 NX
RHO (I+1w 3+1, KN)=TEMP4 (I, 3)
TEM'6 (1,3) =XDFFLX (1+1,J) -XDFFLX (I, 3)

29100 CELMAS(I,J)=CELMAS(1,J)+TEMFP6(1,J)
C
C EVALUATE Y-TRANSF'ORTED DENSITY AT BOTTOM AND TOP BOUNDARIES

DO 210 I=1,NXF'2
RHO (I, 1, KN)=2,BC CI)*RHO (I, UB, KN) +RHOBBC (I)

.110 RHO(I,NYP'2,r'N)=TBC(I) *RHO(I,JT,KN)+RHOTBC(I)
C
c EVALUATE "EPSY"

DO 22-70 J=1,NYP1
DO 220 I=1,NX
RAVYVL (13) =RD:XGN (1+1) *RDYGNH (3)

220 EFSY(I,J)=RAVYVL(I,J)*ADVDT(I,3)
C
C EVALUATE Y DIFFUSION AND ANTI-DIFFUSION COEFFICIENTS "NUY", 'MUY"

CALL NUMU(NXNYPIEPSYNUY,MUY)
C
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C CANCEL THL DIFFUSION AND ANTI-DIFFUSION Y-FLUXES THROUGH SOLID
C PORTIONS OF BOTTOM AND TOP BOUNDA~RIES

DO '225 I=1,NX
NUY(I,1)=NUY(I,1)*PRMELB(I+1)
MUY (I,1) =MUY(1,1) *PRMBLB4(I#1)
NLP'(I, NYP1I)=NUY(1,NYPI1) $PRMELT (1+1)

225 MUY(INYP1)=MUY(INYPI)*FRMLT(I+1)

C EVALUA~TE Y DIFFUSION AND ANTI-DIFFUSION FLUXES "YDIFFLX" ,"YNTFLX"

DO 230 J=1LNYP1
DO 230 11I,NX
AVYVL (I, U) =EXON (I+1) *DYGNH (U)
NUYVOL (I,U) =NUY (I,U) *AVYVL (I, U)
MUYVOL CL, ) =MUY (IU) *VYVL (I, )
TEMP4 (I,U) =RHO (I+1, U-.1 , K) -RHO (1+1,K ()
YDFFLX (I,U) =NUYYOL (I,U) *TEMP4 (I, U)
TEMP4 (I,U) =RHO (I+1, U+1 , KN) -RHO (1+1,, <KN)

2'JOYNTFLX(I,J)=MUYVOL(I,J)*TEMP4(I,J)
C
C ADD Y-DIFFUSION TO "CELMAS"

DO 240 J=1,NY
DO 240 I=1,NX
TEMP (I,U) =YDFFLX (I, U+1 )-YDFFLX (I, U)

240 CELMAS (I ,U)=CELMAS (IU) +TEMPS (I, U)
C
C IF SYNCHRONIZATION OF ANTI-DIFFUSION FLUXES IS SPECIFIED, SKIP
C EVALUATION OF CORRECTION FACTORS

IF(SNKRNZ) 00 TO 445
C
C
C EVALUATE TRANSPORTEr-DIFFUSED DENSITY

DO 250 J=1,NY
DO 250 I=1,NX
RYOL (I,U) =RDXGN (1+1) *RDYGN (J+1)

"250 RHO C +1, J+1 , N) =CELMAS CL, ) *RVOL (I, U)
C

C EVALUATE TRANSPORTED-D1IFFUSED DENSITY AT BOTTOM AND TOP ?OUNDARIES
DO 260 I=2,NXPl
TEMPI (I, 1)=1.O0
TEMP2 (I-1,NYP ) =1.0
RHO(1,1,K.'N)=2BC(I)RHO(IUB,KN)RHOEBECcI)

.260 RH ,Y P',KN)=TP.C(!)*FHO(I,JT,K:N)+RHOTBC(I)

C EVALUATE TRANSPORTED-DIFFUSED DENSITY AT LEFT AND RIGHT 2CUNDARIES
DO 2"70 UZ'NJYF1l
TEMPi (1,U)=1.O
TEMP'2(NXP'1 ,J-1) =1.0
RHO (1,J U'%N) =LBC (U)*RHO (IL,JU7 KN) +RHOLBC (U)

270 RHO(NXP2,J,KN" )=RBC()RH(IR,,N\)+RHORqC(J)

C
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C CANCEL THE ANTI-DIFFUSION X-FLUX IF IT IS OPPOSITE TO ITS LOCAL
C TRANSPORTED-DIFFUSED DENSITY GRADIENT AND ANY OF THE ADJACENT ONES

Do 260 J=1,NY
Do 280o I=l,NXPl

280 DiIFF (I,U) =RHO (1+1, J+1 , KN) -RHO (I, J+1, KN)
C

DO 290 J=1, NY
DO 290 I=1,NX
TEMF'1( I+1, J+1) =XOR XN FFLX ( 1+1, ) , 01FF ( , U)

290 TEMP2:-(I,J)=XOR(XNTFLX(I,U),DIFF(I+1,J))
C

DO 300 J=1,NY
DO 300 I=1.,NXP1
TEMP5(IJ)=XOR(XNTFLX(I7 U),[DIFF(I1 J))
TEMP6(CI,U) =OR (TEMPiC I, U+1) ,TEMP2 (1,))
FLX (I,U) =AND (TEMPS (I, J) TEMF'6(I, U))
FLX (I,U) =COMPL (FLX (I, U))
IFLX (I, J) =LSHF (IFLX(CI, U),-
FLX (I U) =FLOAT CIFLX CI, ))

300 XNTFLX(I,J)=XNTFLX(IJ) *FLX(I,J)

C IF X-COORDINATE IS PERIODIC AND EITHER LEFT OR RIGHT BOUNDARY'S

C ANTI-DIFFUSION FLUX IS CANCELLED, CANCEL THE OTHER
IF(.NOT.XPR',C) GO TO 305

C
DO 304 J=17 NY
XNTFLX (1,U)=AND(XNTFLX (1U), XNTFLX (NXP'1,U))

304 XNTFLX (NXPI, U) =XNTFLX (3, U)
C

305 CONTINUE
C
C
C CANCEL THE ANTI-DIFFUSION Y-FLUX IF IT IS OPPOSITE TO ITS LOCAL
C TRANSPORTED-DIFFUSED DENSITY GRADIENT AND ANY OF THE ADJACENT ONES

- DO 310 U=1,NYF'l
DO 1310 I=17 NX

310 01IFF (I, U) =RHO (I+1, U+l, 1N) -RHO(I+1,U, KN)
C

DO 320 U=1,NY
DO 20 1=1,NX
TEM'1 (I-f-, U+1 )=XOR (YNTFLX (I, UfI) ,DIlFF (I, U))

320 TEMP ( I ,U) =XOR(YNTFLX (I ,J),DIFF (I ,U-9-))

DO 330 U=i,NYPI
DO 330 I=I7 NX
TEMPS C I,U) =XOR (YNTFLX (I, U) ,DIFF (I,U))
TEMFP6 (I,U)=OR (TEMPiC I+1,U) ,TEMP2 i(I, J))
FLX (I U) =AND (TEMP5 (I, U) TEMF,6 I, U))
FLX CI, U)=COMF'L(FLX (I, U))
IFLX(I,J)=LSHF(IFLXCI,U),-31)
FLX (I,U) =FLOAT(CIFLX (I, U))

3-30 YNTFLX (I,U) -YNTFLX (I,U) *FLX (I, U)
C
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C IF Y-COORDINATE IS PERIODIC AND EITHER BOTTOM OR TOP BOUNDARY'S
C ANTI-DIFFUSION FLUX IS CANCELLED7 CANCEL THE OTHER

IF(.NOT.YF'RrC) GO TO 335
C

E'O 'Z34 I=1,NX
YNTFLX (I, 1) =ANDj(YNTFLX (I, 1), YNTFLX (I, NYF1))

334 YNTFLX(I,NYF'1)=YNTFLX(I,l)
C

'325 CONTINUE
C
C
C EVALUATE NET INCOMING "FLXIN", OUTGOING "FLXOUT" ANTI-DIFFUSION

DO 340 J=1,NY
DO 340 I=1,NXP1
TEMP5(I,J)=ASHF(XNTFLX(I,J),-31)
MNFLX (I, J) =AND ( XNTFLX (I, J),TEM'S ( , J))
TEMP ( I, J) =XOR (XNTFLX (I, U) TEMPS (I,U))

340 MXFLX (I,J)=AND(XNTFLX (I,) ,TEMP5(I,U))
C

DO 350 U=1,NY
DO '350 I=1,NX
FLXIN(I+1,J+1)=1.E-50+MXFLX(I,J)
FLXOUT (1+1 ,U+1 )=2.E-50-MNFLX (I, U)
FLXIN(I+1,U+1)=FLXIN(1+1,U+1)-MNFLX(I+1,U)

'350 FLXOUT(I-.1 7 U-+-)=FLXUT(I+1 7U+1)+MXFLX(I+1,U)
0

DO 360 J=17 NYP1l
DO 360 I=1,NX
TEMP5(I,J)=ASHF(YNTFLX(I,J),-31)
MNFLX (I,U) =AND (YNTFLX (I, U),TEMPS ( , U))
TEMF5(IU)=XOR(YNTFLX(I,U) 7TEM1F'5(I,U))

360 MXFLX(I,U)=gND(YNTr-LX(I,U),TEMFP5(I,J))
C

DO 370 U=1,NY
DO 370 I=1,NX
FLX IN ( 1+,U+l) =FLX IN (1+1, j+1) +MXFLX (I, J)
FLXOUT (I+1, U--) =FLXOUT (I+1,U+1) -MNFLX (I,J)
FLX IN (I+1, U+ )=FLX IN (1+1, J-I-)-MNFLX (I, U+l)

370 FLXOUT (1.+, U-i-1) =FLXOUT (1+1, J+1) +MXFLX (I, U--)
C
C

GO TO (375,385) ILMTR
C

375 CONTINUE
C IF BORIS-BOOK FLUX LIMITER IS REGUESTED7 USE TRANSPORTED-DIFFUSED
C DENSITY TO BOUND NEW DENSITY

DO 380 J=1,NYF2
DO _30 I=1,NXP2

380 TEMPS (I,U) =RHO (I,U, KN)
C

GO TO 395
C
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385 CONTINUE
C IF ZALESAK FLUX LIMITER IS REQUESTED, USE MAXIMUM OF OLD AND
C TRANSPORTED-DIFFUSED DENSITY AS UPPER B4OUND FOR NEW DENSITY

DO 390 U=11 NYPZ
DO 390 II 7,NXP2

390 TEMP,5(I,J)=AMAX1 (RHO(IJK'O) ,FHO(I,J,K'N))

395 CONTINUE
C

B C EVALUATE MAXIMUM ADMISSIBLE ANTI-DIFFUSION INTO CELL "MX IN', AND
C IN TURN CORRECTION FACTOR "RIN"

DO 400 I=72-,NXF'1I ~TEMP6 (I, J) =AMAX1 (TEMPS (I, U) ,TEMPS (1 1U))
TEMP6 ( I, )=AMAXI(TEMPF6 ( IJ) ,TEMP ( I+1,U))
TEMP6 (I,U) =AMAX1(TEMFP6 (1 U) TEMPS (I,U-1))
RHOMX (IU) =AMAX1 (TEMP6 ( IU),TEMPS (1, 3+1)
TEMP6 (I,U) =RHOMX (I, 3)-RHO CI~ ,KN)
TEMP6 (I,3) =TEMP'6 (I, ) DXGN (I)
MXIN(I,J)=TEMF'6(17 3)*D:YGN(J)
TEMP6( I ,)=MXIN( I ,J)/FLXIN (I ,J)

400 RIN(I,J)=AMIN1 (1.0,TEMFP6(I,J))
C

GO TO (415,405) ILMTR
C

405 CONTINUE
C IF ZALESA' FLUX LIMITER IS REQUESTED, USE MINIMUM OF OLD AND
C TRANSPORTED-DIFFUSED DENSITY AS LOWER BOUND FOR NEW DENSITY

DO 410 U=1,NYP'2
DO 410 I=I,NXP2

410 TEMF5(17 U)=AMIN1 (RHO(I,J7 K0) ,RHO(I,J,K'N))
C

415 CONTINUE
C EVALUATE MAXIMUM ADMISSIBLE ANTI-DIFFUSION OUT OF CELL "MXOUT",
C AND IN TURN CORRECTION FACTOR "ROUT"

DO 420 U=2,NYP1
DO 4 20 1 =2, NX P
TEMP*6 (I,3) =AMIN1 (TEMPS C I, ) ,TEMP ( I-i,U))
TEMP6 ( I, )=AMIN1 (TEMP6 (I, ) ,TEMP ( 1+1, 3)
TEMP6(I,J)=AMIN1(TEMP6,(I7 ),TEMF'5(I,J-1))
RHOMN (I,U) =AMlIN1 (TEMP6(1,3) ,TEMPS (I, 3+1))
TEMP' (1,3) =RHO (I, U, KN) -RHOMN (I,J)
TET1P6(1,J) =TEr1P6 1 *DIXGrN (I)
MXOUT CI,U) =TEMP6(CI,3) *EYGN (3)
TEMP$(I ,U) =MXOUT (I,3) /FLXOUT (1,J)

420 ROUT(I,J)=AMIN1 (1.O,TEMF'6(1,3))
C
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C IF A COORDINATE IS NOT PERIODIC, "RIN", ROUT 'ARE ASSUMED TO BE
C CONTINUOUS THROUGH ITS NORMAL BOUNDARY

DO 430 1=2,NXP1
RIN (I,1) =RIN (I, UB)
PIN (I, NYP2) =RIN (I, UT)
ROUT (I,1) =ROUT (I, JB)

430 ROUT(I,NYF'2)-ROUT(I,JT)

DO 440 J=2,NY'1
RIN (1, U)=RIN(CIL, U)
RIN (NXP2,U) =RIN(I R1 U)
ROUT (1, U)=ROUT (IL, U)

440 ROUT(NXP2,J)=ROUT(IR 1U)
C

445 CONTINUE
C
C
C LIMIT ANTI-DIFFUSION FLUXES USING MINIMUM OF ADJACENT CELLS'
C MAXIMUM ADMISSIBLE FLUXES

DO 450 U=11 NY
DO 450 I=1,NXP1
FLX (1, ) =XNTFLX (I, U)
IFLX(I,J)=LSHF(IFLX(l,J),-31)
FLX (I,U) =FLOAT (IFLX I, U))
RHO ( +1, U+1, K'N) =AMIN1 (RIN( I, J+I,ROUT I-I-,J+)
XFLXCR (IU) =FLX (I, U) RHO (I+1 U-'1 ,KN)
RHO(I4-1,J+I,KN)=AMIN1(RIN(I+1,U+1),ROUT(CI,J+1))
FLX (I, U) =1. -FLX (I, U)
FLX (I~ U)=FLX (I, U) RHO (I+1, U+1 ,KI:N)
XFLXCR C I ) =XFLXCR (I.,U)+FLX (I, j)

450 XNTFLX~t7 U)=XNTFLX(IJY*XFLXCR<IJ)
C

DO 460 J=1,NYPI
DO 460 I=1,NX
FLX (I,U) =YNTFLX (I, U)
IFLX(I,J)=LSHF(IFLX(I,J),-31)
FLX (I, ) =FLOAT(CIFLX (IU))
RHO (1+1, J+I, KN) =AMINl (RIN( I-?i, ) ,ROUT ( 1+1,j~
YFLXCR (I,U) =FLX (I,U) *RHO(I +1, U+1,K1N)

FLX (I,U) =1. 0-FLX (I, U)
FLX (I U) =FLX (I,U) *RHO(I+1 U+.1(,N)
YFLXCR (I,U) =YFLXCR (I, U) +FLX (I, U)

460 YNTFLX(I,J)=YNTFLX(I,U)*YFLXCR(I,J)
C
C
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C ADD CORRECTED ANTI-DIFFUSION FLUXES AND EVALUATE NEW DENSITY
DO 470 J=1,NY
DO 470 11I,NX
TEMPS (IJ) =XNTFLX (I,U) -XNTFLX (I+1, )
TEMP6 (I, U)=YNTFLX CLU) -YNTFLX (I, J+l)
CELMAS (IU) =CELMAS (I,U) +TEMP5 (I, J)
CELMAS (I,U) =CELMAS (I,U) +TEMP6 (I, U)
RVOL(I,J)=RDXGN(I+1)*RDYGN(J+1)

470 RHO(I+1,Ui-1,KR)=CELMAS(I,J)*RVOL(I,J)
C
C EVALUATE NEW DENSITY AT B~OTTOM AND TOP BOUNDARIES

DO 490 I=2,NXP1l
RHO(I,1,KR) =BBC (I) *RHO(CIUB, KR) +RHOBBC (I)

490 RHO (I 1NYP2, KR) =TBC (I) *RHO (I, UT, KR) +RHOTBC (I)
C
C EVALUATE NEW DENSITY AT LEFT AND RIGHT BOUNDARIES

DO 500 U=2,NYP1
RHO (11 ,KR) =LBC (U)*RHO (IL,JU7 KR) +RHOLBC (U)

500 RHO(NXP2,J,KR)=RBC(J)*RHO(IR,,KR)+RHORSC(J)
C

RETURN
C
C
C
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ENTRY NGRID(XGNYGN)
---C- -- - - - -

C
C EVALUATE AVERAGE ( BIETWEEN OLD AND NEW ) INTERFACE VELOCITY AND AREP
C AND NEW AND AVERAGE VOLUME COMPONENTS.
C IF X-GRID OR Y-GRID IS NOT MOVING, USE ITS OLD VALUES.
C INTERFACE VOLUME IS CONSIDERED AVERAGE OF ADJACENT CELLS' VOLUMES.
C
C

GO TO (510,5910,530,540,550,560,570) GEOM
C
C

510 CONTINUE
C
c CARTESIAN COORDINATES
C

IF(.NOT.XCHNG) GO TO 513
C

DO 511 I=I1 NXPI
XG( I) =0. 5*(XON (I) 4XGO (I))

511 DXG(I)=XGN(I)-XGO(I)
C

DO 512 1=2,NXP1
DXGN (I) =XGN (I) -XON (I-i)
AX (I-i) =XG (I) -XG (I-1)

51'2 RDXGN(I)=1.0/DXGN(I)
C
513 CONTINUE

IF(.NOT.YCHNG) GO TO 580
C

DO 516 J=1,NYP1
YG(J)=0.5*(YGN(J)+YGO(J))

516 D:YG(J)=YGN(J)-YGO(J)
C

DO 517 J=2,NYP1l
DYON (J) =YGN (J) -YGN (J-1)
AY (J-1) Y0 (J) -YG (J-1)

517 RDYGN(J)=l.0/EDYON(J)
C

GO TO 580
C

520o CONTINUE
C
C CYLINDRICAL R-Z COORDINATES
C

IF(.NOT.XCHNG) 00 TO 523
C

rio 521 I=1,NXF1l
500 (1) =0. 5* (XOO (I) *XGO (I))
SQN (I) =0. 5* CXGN (I) *XGN C
XG (I) =SON CI) 300(I)
DXO (I) =SON (I) -600(I)

521 SO(I)=SQRTCXG(I))
C
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DO 522 I-2,NXP1
DXGN (I) =SQN (1)-SON (I-i)
AX(I-1)=0.5*(XG(I)-XG(I-1))

522 RDXGN(I)=1.0/DXGN(I)
C

523 CONTINUE
IF(.NOT.YCHNG) O0 TO 580

C
DO 526 J= 1,NYPI
YG(J)=0.5(YGN(J)+YGO(J))

526 DYG(J)=YGN(J)-YGO(J)
C

DO 527 J=2,NYPI
DYGN(J)=YGN(J)-YGN(J-1)
AY (J-1) =YG(J)-YG (J-1)

527 RDYGN(J)=1.0/DYGN(J)
C

O0 TO 580
C

530 CONTINUE
C CYLINDRICAL R-FYE COORDINATES

540 CONTINUE
C CYLINDRICAL Z-FYE COORDINATES
550 CONTINUE

C SPHERICAL R-THETA COORDINATES
560 CONTINUE

C SPHERICAL R-FYE COORDINATES
570 CONTINUE

C SPHERICAL THETA-FYE COORDINATES
C

PRINT 70
STOP

C
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580 CONTINUE-
IF(.NDT.XCHNG) GO TO 586

C
DXGN (1) =DXGN (IL)
DXON (NXP2) =EXGN (IR)
RrDXGN (1)=RDXGN (IL)
RDXGN (NXP2) =RDXGN (IR)

DO 585 I=1LNXF'1
DXGNH (I) =0. 5* (DXGN (I) -XON ( +1))

585 RDXGNHI)=.5*(RrXGNI+RDXGNuI+±)
C

586 CONTINUE
IF . NOT. YCHNG) RETURN

C
DYGN (1)=DYGN (JB)
DYON (NYP2)=DYGN (UT)
RDYGN (1) =RDYGN (U4)
RDYGN (NYP2) =RDYGN (JT)

C
DO 590 J=1,NYP1l
DYGNH (U)=0.5* (DYGN (U) +DYN (J+1))

590 RDYGNH (U =0.5* (RDYGN (U)+RDYGN (J+1))

RETURN

C
C
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ENTRY OGRID(XGNYGN)
C -

C
C RESET OLD GRID PARAMETERS, IN F'REFARATION FOR A NEW TIME STEP
C

IF(.NOT.XCHNG) GO TO 593
C

DO 592 I=1,NXP2
592 DXGO(I)=DXGN(1)

C
593 CONTINUE

IF(.NOT.YCHNG) GO TO 595
C

DO 594 J=1,NYP2
594 DYGO(J)=DYGN(J)

C
O0 TO 595

C
C
C

ENTRY ORIORD(XGN,YGN)
C
C

C ORIGINATE THE GRID
C
C SET DEFAULT : GRID IS MOVING

XCHNG=.TRUE.
YCHNG=.TRUE.

C
595 CONTINUE

IF(.NOT.XCHNG) GO TO 597
C

DO 596 I=1,NXP1
596 XGO(I)=XGN(I)

C
597 CONTINUE

IF(.NOT.YCHNG) RETURN
C

DO 598 J=I,NYP1
598 YGO(J)=YGN(J)

C
RETURN

C
C
C
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ENTRY VQLFLX(UV 7 DT)
C - - - - - - - - - -

C
C EVALUATE X AND Y VOLUMETRIC FLUX THROUGH INTERFACES
C
C

DT2'"=0. 5*DT
C
C

DO 60.2 J=1,NY
DO 602 I=1,NXP1

602 ADIUDT(IJ)=U(IJ+1)+U(I+1,J+1)
C

DO 604 J=1,NYP1
DO 604 I=17 NX

604 ADVDT (IJ)=V (I+1wJ) +'V(I+1w d+1)
C

GD TO (606r_,3,60606060 GEOM
C
C

610 CONTINUE
C
C CARTESIAN COORDINATES
C

DO 611 J=1,NY
DO 611 I=l7 NXPl
ADUDT (I J) =ADUDT (I, J) *DT2
ADUDT (I ,J)=ADUDT (I ,J) -DXO (I)

611 ADUDT(I,J)=ADUDT(I,J)*AY(J)
C

DO 612 J=17 NYP1
DO 612 I=1,NX
ADVDT (I, J) =ADVDT (I,3) *DT2
ADVDT (I,3) =ADVDT (I,3) -DYG (3)

6 12 ADV0T (I 3) =ADVD-T (I,3)t*AX (I)
C

RETURN
C

620r!' CONTINUE
C
C CYLINDRICAL R-Z COORDINATES
C

DO 621 J=1,NY
DO 621 I=1,NXPl
ADUDT (I 3) =ADUDT (I, 3) *60(I) *DT2-'
ADUDT (I, J)=ADIUDT (I, 3) -OXO(I)

621 ADUDiT(IJ)=ADUDT(I,J)*AY(J)
C

rDO 622 J=1,NYP1
DO 622 I=1,NX
ADVDT (I,3) =ADViT CI, 3) *ET2l
ADViT (I, J) =ADVDT (I,3) -DYG (3)

622 ADVDT(IJ)=ADVDT(I,J) *AX d1
C

RETURN
C
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630 CONTINUE
C CYLINDRICAL R-FYE COORDINATES
640 CONTINUE

C CYLINDRICAL Z-FYE COORDINATES
650 CONTINUE

C SPHERICAL R-THETA COORDINATES
660 CONTINUE

C SPHERICAL R-FYE COORDINATES
670 CONTINUE

C SPHERICAL THETA-FYE COORDINATES
C

PRINT 70
STOP

C
C
C
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ENTRY SORCES (SRCTYP, SORCE, DT)

C

C MANAGEMENT OF SOURCE TERM EVALUATION
C
C

IF(SRCTYP.E.EIDF) 0O TO 750
C

IF(SRCTYF'.EQ.XGRD) 0O TO (760,800,999,999,999,999 ,9 9 9) GEOM
IF(SRCTYP.EO.YGRD) 0O TO (780,760,999,999,999,999,999) GEOM

C
IF(SRCTYP..EQ.DIV) 00 TO (760,950,999999,999,999,999) GEOM

C
TEXT (6) =TEXT (18)
TEXT (7) =TEXT (19)
TEXT(S) =TEXT (20)
PRINT 10, (TEXT(I),I=1,11)

C
STOF'

C
C
C

ENTRY CLRSRC
C - - - - - -

C
C CLEAR SOURCE TERM

LSRC=.FALSE.
DO 710 J=1,NY
DO 710 I=1,NX

710 SOURCE(I7 ,J)=0.
C

RETURN
C
C
C

ENTRY BODY (SORCE, OT)

C - - - - - - - - - -

C
C EVALUATE BODY FORCE TYPE SOURCE TERMS

750 CONTINUE
LSRC=.TRUE.

CI
DiO 755 J=1,NY
DO 755 I=1,NX
TEMP3 (I, J)=AX (I)*AY (J)
TEM'4 (I,U) =SORCE (I+l, j--) *DT
TEMP5(1,~J)=TEMP3 (I, ) XTEMF'4 (1,J)

755 SOURCE(I,J)=SOLJRCE(I,)+TEM'5(I,J)
C

RETURN
C
C
C
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ENTRY XGRAD (SORCE7 DT)
C- - - - - - - - - - -

C
C EVALUATE CARTESIAN X GRADIENT COMPONENT

SRcTYP= X RD
760 CONTINUE

LSRC=.TRUE.
DT2=0. 5*DT

C
DO 765 J=1,NY
DO 765 I=1,NXP1

765 TEMF3 , J) =SORCE (I, J+ )+SORCE (I+1,J+1)
C

DO 770 J=1,NY
DO 770 I=1,NX
TEMP4 (IJ) =TEM'3 (I--, J) -TEM3 (I, J)
TEMPS (I, J) =TEMP4 (I, J) *AY(J) *DT2.

770 SOURCE(I2 J)=SQURCE(I1 J)+TEMP5(l~J)
C

IF(SRCTYP.EQ.DIV) G0 TO 760
C

RETURN
C
C
C

ENTRY YGRAD (SORCE7 DT)
C- - - - - - - - - - -

C
C EVALUATE CARTESIAN Y GRADIENT COMPONENT

760 CONTINUE
LSRC=.TRUE.
DT2=0. 5*DT

C
DO 765 U=i 7 NYPI
DO 765 I=17 NX

725 TEM3(I,J)=SORCE(I+1,J)sSORCE(I+1,J+1)
C

DO 790 J=17NY
DO 790 1=17 NX
TEMP4 (I,U) =TEMF,3(I, U--) -TEMP,3(I, U)
TEMPS (I U) =TEMP4 (I,U) *AX (I) *DT2

790 SOURCE (I,U) =SOURCE (I, U) -TEMF5(I, U)

RETURN
C
C
C
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ENTRY RCORAD (SORCE, DT)
C - - - - - - - - - - -
C
C EVALUATE CYLINDRICAL R GRADIENT COMPONENT

6300 CONTINUE
LSRC=. TRUE.

C
DO0 805 J=1,NY
DO 805 I=1,NXP1
TEMP3 i(I,3) =SORCE (I, 3-1) +SORCE (I+1, 3+1)
TEMF'4(I, 3) =6(I) *AY (3) *ET

805 TEIP3(1,J)=0.5*TEMF'3(I,J)
C

DO 610 J=1,NY
DO 810 I=17 NX
TEMP (1,3) =TEMP3 (1,J)*TEMF'4( I-'A )

810 TEMP5 (I3) =TEMP4 (1+1 3) -TEMP4 (1,3)
C

DO 815 J=1,NY
DO i815 I=17 NX
TEMF'4 (1,J)=TEM'3 (1+1,3) -TEMP3 (1,3)
TEMPS (I,J) =TEMP5 (1,3) *SRCE (I+1, 3+1)
SOURCE (I,U) =SOURCE (I 3) +TEIF'4 (1,3)

615 SOURCE(I,J)=SURCE(I,)+TEIF5(I,J)
C

RETURN
C
C
C

ENTRY RCDIV(SORCE,DT)

C EVALUATE CYLINDRICAL DIVERGENCE
950 CONTINUE

LSRC=. TRUE.
DT2::=0. 5*DT

C
DO 955 J=1,NY
DO 955 I=1,NXP1
TEMF'3(CI,3) =SORCE (I73+1) +SORC E (1+1,3+l)

955 TEiP4(I,J)=SG(1,*AY(J)*IT2"
C

DO 960 J=1,NY
DO 960 I=17 NX
TEMPS (1,3) =TEMP3 (I+1,J) -TEfIP3 (1,J)
TEMP3(I,J)=TEMP5(I,J) ZTEMF'4(I+l,3)

960 SOURCE(I,J)=SOURCE(I,3)+TEM'(I,J)
C

GO TO 760
C

RETURN
C
999 PRINT 70

STOP
C
C
C
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ENTRY SETOOM (GOMTRY, CR01,CR021 Ni N2)

C
C SET AND CHECK REQUEST FOR A PARTICULAR GEOMETRY
C
C

GEOM0O
C

IF(GOMTRY.ED.TOM(1)) GEOM=1
C

IF(GOMTRY.NE.TGM(2)) GO TO 1210
IF(CRD1.NE.TCRD(4)) GO TO 1205
IF(CRD2.EQ.TCRD(3)) GEOM27
IF(CRD2.EQ.TCRD(6)) GE0M=2

1205 CONTINUE
IF(CRD1.EOI.TCRE'(3).AND.CRD2-.EQ.TCRDI(6)) GEOM=4

C
12-10 CONTINUE

IF(GOMTRY.NE.TGM(3)) GO TO 12"20
IF(CRDl.NE.TCRD(4)) GO TO 1215
IF(CRD2..EO.TCR'(5)) GEOM=5
IF(CRD2.EO.TCRD(6)) GEOM=6

1215 CONTINUE
IF(CRD1.EQ.TCRD(5).AN['.CRD24.EO.TCRD(6)) GEOM=7

C
11220 CONTINUE

IF(GEOM.GT.0) GO TO 1225
C
C ISSUE AN ERROR MESSAGE UPON REQUEST OF AN UNRECOGNIZED GEOMETRY
C AND STOP

TEXT (6) =TEXT (12)
TEXT (7) =TEXT (13)
TEXT (8)=TEXT (14)
PRINT 10, (TEXT(I)1 I=1,11)

C
ST OP

C
1225 CONTINUE

C
C

NX=N1
NXP1=NX+1
NX P2-=N X+2

C
NY=N 2
NYP1=NY+1
NY F2-=NY +2

C
XPRDC=. FALSE.
IL=2
I R=NXP 1

C
YPRDC=. FALSE.
JB=2
JT=NYP 1

C
LSRC=.FALSE.

C A25



C SET DEFAULT : ALL BOUNDARIES ASSUMED PERMEABLE
DO 1226 1=1,NXF2
PRMBLB (I) =1. 0

1226 PRMBLT(I)=1.0
C

DO 1227 J=1 7 NYP2
FRMBLL (J) =I. 0

1227 PRMBLR(J)=i.0
C

PRINT 30
C

RETURN
C
C
C
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ENTRY PRODIC(CRDNTCRD)
C
C
C IDENTIFY X OR Y COORDINATE AS PERIODIC
C
C

IF(CRDNT.NE.1) GO TO 1230
C

XPRDC=. TRUE.
IR=2
IL=NXF l

C
PRINT 40, CRD

C
1230 CONTINUE

IF(CRDNT.NE.2) GO TO 1240
C

YPRDC=. TRUE.
JT=2
JP=NYF' i

C
PRINT 40, CRD

C
1240 CONTINUE

IF(CRD.EQ.TCRD(4).OR.CRD.EL.TCRD(5)) PRINT 20,CRD
C

RETURN
C
C
C
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ENTRY SETLMT (LMTRI , LMTR2)
C -

C
C SET AND CHECK REQUEST FOR A PARTICULAR FLUX LIMITER
C
C

DO 1255 1=1,4
C

DO 1251 J=1,2
IF(LMTRI(J).NE.TLMI(J,I)) GO TO 1255

1251 CONTINUE
C

DO 1252 J=1,2
IF(LMTR2(J).NE.TLM2(JI)) GO TO 1255

1252 CONTINUE
C

GO TO 1260
C
1255 CONTINUE

C
C ISSUE AN ERROR MESSAGE UPON REQUEST OF AN UNRECOGNIZED FLUX
C LIMITER AND STOP

TEXT (6) =TEXT (15)
TEXT (7) =TEXT (16)
TEXT (8) =TEXT (17)
PRINT 10, (TEXT(I),I=1,11)

C
STOP

C
1260 CONTINUE

ILMTR=I
C

RETURN
C
C
C
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ENTRY FIXGRD(CRDNT, CRD)

C
C LABEL X OR Y GRID AS FIXED
C
C

IF (CREINT.NE.1) GO TO 1265
C

XCHNG=. FALSE.
PRINT 50, CRD

C
1265 CONTINUE

IF(CRDNT.NE.2) GO TO 1270
C

YCHNG=.FALSE.
PRINT 50, CRD

C
1270 CONTINUE

RETURN
C
C
C
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ENTRY SOLDFY (EONDRY, KSTRT, KEND)
C

C
C CANCEL THE DIFFUSION AND ANTI-DIFFUSION FLUXES THROUGH PATCHES
C OF BOUNDARY INTERFACES
C
C

IF(BONDRY.NE.TBEND(1)) GO TO 1280

rO 1275 J=KSTRT,KEND
1275 PRMBLL(J)=0.

C
PRINT 60, BONDRY,KSTRTKEND

C
1280 CONTINUE

IF(BONDRY.NE.T8ND(2)) GO TO 1290
C

DO 1285 J=KSTRTKEND

1285 PRMBLR(J)=0.
C

PRINT 60, SONDRYKSTRT, KEND
C
1290 CONTINUE

IF(BONDRY.NE.TBND(3)) GO TO 1300

C
DO 1295 I=KSTRT,KEND

1295 PRMBLB(I)=0.
C

PRINT 60, BONDRYKSTRTKEND
C
1300 CONTINUE

IF(BONDRY.NE.TBND(4)) GO TO 1310
C

DO 1305 I=KSTRTKEND
1305 PRMBLT(I)=0.

C
PRINT 60, BONDRYKSTRTKEND

C
1310 CONTINUE

RETURN

C
C
C

END
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7c SUBROUTINE NUMU(NINJEPSNUVMUV)

c EVALUATE DIFFUSION AND ANTI-DIFFUSION COEFFICIENTS

PARAMETER NFX=100,NY=100
PARAMETER NPlX=NPX+ , NP1lY=NPY+1
PARAMETER NF2X=NF'X+2 7 NF2Y=NPY-'2

C
REAL EFS(NP1X,NPlY)7 NUV(NF'2 ;X7NF2Y),MUV(NP2-X.NFP2 Y)

DO 100 J=1,NJ
DO 100 I1 1 NI
EPS (I, J) =EPS (IU) *EPS (I, U)
NUV (I,U) =0. 333333*EPS (I, U)
NUV(IJ)0. 166667-4NUV(I,J)

100 MUV(I,J)=NUV(I1 J)-EPS(I7 J)

RETURN
END
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