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1. Introduction

This Quarterly Technical Report, Number 18, describes

aspects of our work performed under Contract No. MDA903-78-C-0356

during the period from 1 November 1982 to 31 January 1983. This

is the eighteenth in a series of Quarterly Technical Reports on

the design of a packet speech concentrator, the Voice Funnel.

The process scheduler is a central part of the Chrysalis

operating system. In the course of the Butterfly software

development effort, the scheduling algorithm and its

implementation have undergone several stages of testing and

refinement. This report describes the algorithm in its final

form. The discussion assumes some familiarity with the operation

of the scheduler for some other operating system, such as UNIX,

TOPS-20, or OS. In keeping with the Chrysalis convention that

resources are managed locally whenever it is practical to do so,

there is a separate instance of the process scheduler on every

Processor Node. Each instance of the scheduler manages the

processes that are local to that node.

The first section of this report reviews certain concepts

and terminology that are essential to a clear understanding of

the scheduler. In the next section, the current implementation

is described in detail. This is followed by a section that

presents performance measurement data. The final section makes

some generalizations about the structure of the scheduler, and

-- '- -- z l r . . . .. S. _ -. .. . . . . ... . . . . . -
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briefly discusses the problem of Global Scheduling.

The experimental data presented in section four was gathered

and analyzed by the BSAT project as part of their effort to

understand the behavior of the Butterfly system and the BSAT

application. Their results are presented in this report because

they give interesting insights into the behavior of the Chrysalis

scheduler.

-2- ]
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2. Related Concepts

This section reviews the concepts on which the Chrysalis

scheduler is based. Occasional references are made to 'Chrysalis

functions.' These subroutines are available to the application

software from the Chrysalis Protected Library. They are

described in detail in the Chrysalis Operating System Manual,

which is currently available in draft form.

2.1 Processes

Chrysalis programs are composed of processes. Each process

is linked independently and has its own address space which can

be manipulated independently of other processes. Processes are

created in two stages: loading of the code and initialized data

segments for a given process type, and creation of a specific

instance of the process. The Chrysalis function MakeTemplate

loads the code and data segments of a process into main memory on

a specific Processor Node. When this operation is complete,

Make-Template returns the Object Handle of a data structure

called a process template. The process template includes various

process parameters along with Object Handles for the code and

data segments.

Once a process template has been loaded, the Chrysalis

j function MakeProcess can be used to create one or more instances

of the process. MakeProcess allocates the necessary resources

Ari'
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on whatever processor the caller designates, starts the process

up, and returns the Object Handle of the process that it has

created.

2.2 Priorities

Under Chrysalis, every process runs at one of four priority

levels.

Priority zero, the lowest available priority, is intended

for processes which are in no hurry to operate and which do not

mind being preempted by ordinary processes.

Priority one is intended for the majority of ordinary

processes, including most processes that service I/O devices.

Priority two is intended for processes which must preempt

ordinary processes in order to operate correctly. An example

might be a disk controller process. The intent is that by

providing enough buffering, all ordinary telecommunications I/O

processes will be able to run at level one.

Priority three is reserved for vital, crash-priority

processes such as debuggers and certain operating system

functions.

Process priority is initially established during

Make-Process. Each of the four priorities has an associated

4
-4- 21
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I
queue on which runnable processes are placed by the post

J microcode. In addition to these four 'normal' priority queues,

there is another set of four 'low' priority queues (priorities -4

through -1); If a process is using more than its fair share of

time, the scheduler may temporarily move it down exactly four

notches to the corresponding low-priority queue.

Every process is always assigned to a particular priority

queue, either its normal-queue or its low-queue. However, it is

only enqueued on its current priority queue if it is r-ady to

run.

2.3 Events

Process scheduling is based on the concept of an 'event.'

To illustrate the behavior of events under Chrysalis, it is

useful to consider the example of a process that has requested

some service from another process and needs to know when the

server process has finished. Before the first process makes its

request, it uses the Chrysalis function Make-Event to allocate

and initialize an Event Block. Make-Event returns an Event

Handle (the Object Handle of the Event Block) which the

requesting process supplies along with parameters describing its

request. When the operation is completed, the server process

'posts' the event, using the Chrysalis function Post-Event. In1
the meantime, the requesting process may continue to run, or itI

-5-
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may choose to wait for the event by declaring itself non-runnable

and asking the scheduler to wake it up when the event is posted.

If the process continues to run, it may establish other events

and test outstanding events for completion. If it decides to

wait, it may wait for any outstanding event or for only one of a

specific set of events.

Although a process may wait only for events that it owns, it

may post any event handle, including handles for events on other

Processor Nodes. The automatic posting of events by the

operating system is triggered by such things as timer completion

and dual queue data availability. Also, the high speed

synchronous I/O interface currently supported by the Butterfly is

designed to post events at packet or buffer boundaries rather

than to interrupt on a character-by-character basis.

The operations invoked by calling PostEvent are implemented

primarily in microcode and are tightly coupled to the process

scheduler. When an unposted event is first posted, it is added

to a queue of posted Event Blocks associated with the process

which owns it. If that process is waiting, the event posting

microcode puts the process at the end of the appropriate

scheduler queue, depending on its current priority. If the

posted process is of higher priority than the process that is

currently running, the microcode activates the process scheduler.

-6
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If the event is owned by a process on a remote Processor

Node, the local Processor Node Controller sends a special switch

message to the remote node. On receipt of this message, the

remote microcode executes the post. Unless an error of some sort

occurs, this interaction is transparent to the application level.

The high-speed I/O system is restricted to posting local events.

This is consistent with the general restriction that an I/O

device may only interact directly with application software on

the local node.

2.4 Epoch Scheduling

In real-time systems, as opposed to ordinary time-sharing or

batch systems, it may be vital that a process get a certain

minimum amount of CPU time every little while. Otherwise the job

it is trying to perform may be neglected to such an extent that

the system as whole may fail gracelessly.

The technique of epoch scheduling attacks this problem by

defining (as a system parameter) a scheduling period called an

epoch. Currently, the Voice Funnel uses an epoch of 100

milliseconds. Within this epoch, CPU time is allocated to

processes based in part on a declared need. For example, when a

process is started by MakeProcess, a need for 20 milliseconds

out of each epoch may be declared. Assuming that this process is

ready to run at the beginning of the epoch and remains ready

.- .. * . P il.e9 ' ' - - ' ' ' ° - ~~..U . . ;1 , . • QL
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throughout the epoch, the scheduler guarantees that the process

will be allowed to run for at le.,t 20 milliseconds.

The sum of the declared needs of all processes on a given

Processor Node is called committed time. Obviously, the

scheduler cannot satisfy the needs of every process unless the

amount of committed time is less than the total time available in

an epoch. Time which is not promised is called uncommitted time.

Committed time which is not used is called windfall. The

Chrysalis scheduler is designed so that any uncommitted or

windfall time is available to any process which needs it on a

first-come-first-served basis (with preference given to higher

priority processes).

Processes using uncommitted time are run at normal priority,

while those using windfall time are run at low priority. In

order to make its scheduling decisions, the operating system

maintains a record of how much committed time is left in the

current epoch and how much time has been allocated to each

process so far. At the end of each epoch, a system proces3

called the Epoch Scheduler restores these variables to their

initial state and moves each process to its normal-priority

queue. The use of this information is discussed further in

Section 3.

T
A
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2.5 Time-Slicing

j In real-time systems, most processes normally run in

relatively brief bursts, then wait for some event to trigger

further activity. An epoch scheduler is well suited to this sort

of behavior. Occasionally, some processes will want to run for

extended periods, either due to some unusual occurrence or due to

a greater-than-normal influx of data or service requests. In

other applications, some processes will want to run continuously

for relatively long periods.

To help with these cases, the scheduler provides each

process with a time-slicing parameter. This parameter limits the

time that a process can run without giving up control to other

processes of the same priority. When the time slice of a running

process ends, another process of equal priority will be scheduled

on a round-robin basis. If this parameter is set too large,

other processes may have to wait a long time for service and

uncommitted and/or windfall time may not be fairly shared; if it

is set too small, excessive scheduling overhead may be incurred.

2.6 Process State

The state of a process includes its 68000 registers

(including the status register), the state of its address space,

and a kernel mode flag. Saving and restoring this state is the

most expensive part of the scheduler. The scheduler is organized

-9-
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to save the state of the currently running process only when it

switches processes or goes into the idle state (when no process

is runnable). The state of a process is restored only when a

process switch occurs.

2.7 Interrupt Routines

The current Butterfly hardware uses conventional interrupts

only for terminal character handling and real-time clock event

signalling. The time used by interrupt routines is charged to

whatever process is active at the time of the interrupt; although

this policy is unfair to the active process, the time involved

should be negligible.

The scheduler itself operates at interrupt level one. Since

this is the lowest-priority 68000 interrupt, the state saved at

the time of interrupt is that of the running application program,

not the state of some other interrupt routine.

2.8 Timer Interrupts

The Processor Node Controller maintains an interval timer

that is used to support the time-slicing functions of the

scheduler. This timer is also used by the Chrysalis timer demon,

which is a service that allows processes to request that wakeup

events be posted at arbitrary times in the future. When an

- 10- II
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interval timer interrupt occurs, the level two interrupt service

jroutine first posts any wakeup events that have come due, and

then checks to see if the currently running process has reached

the end of its time slice. If it has, the interrupt service

routine requests a level one interrupt, causing the scheduler to

run.

The exact details of how the interval timer works and how

the timer demon provides its service are not important here.

What is important is the idea that the interval timer interrupt

service routine performs two functions. As a result, a context

switch at the end of a time-slice takes about 100 microseconds,

which is somewhat longer than one might first expect. The

alternative to this structure would involve maintaining a second

interval timer. We did not do this for several reasons. First,

maintaining an interval timer is expensive in terms of Processor

Node Controller bandwidth and resources. Second, it is expected

that in the Voice Funnel application at least, properly tuned

processes will normally dismiss voluntarily before their time

slices end, so the impact of this extra overhead should be small

in most cases.

3. The Scheduler Algorithm

This section describes the detailed operation of the

scheduler. In addition to switching between runnable processes

--
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at appropriate times, it is up to the scheduler to ensure that

each process gets its share of runtime, as dictated by its need

and time-slice parameters.

3.1 Process Switching

The scheduler is entered only when some occurrence triggers

a level one interrupt. If the machine is idle, posting any event

will trigger the scheduler. Otherwise, posting an event owned by

a process of higher priority than the currently running process

will trigger the scheduler and preempt the current process. If

the current time slice is exceeded, the timer interrupt routine

will trigger the scheduler. Finally, if the process calls the

Chrysalis functions Wait or MWait (directly or indirectly) and an

appropriate event is not yet available, the process will be

marked not-runnable and the scheduler will be triggered.

If the machine was running a process when the level one

interrupt occurred, the scheduler accounts for the time just used

by the process, allocates a new time slice for the process (if

necessary), removes the process from the front of its current

queue, and if the process is still runnable, places it at the end

of the same or the corresponding low-priority queue. Next, the

priority queues are scanned to select the highest priority

runnable process; since the queues contain only processes which

are runnable, the first process on the first non-empty queue is

- 12 -,I
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selected. Finally, the scheduler decides whether it needs to

j save or restore any state information. There are three

possibilities: no process is ready to run, some new process is

selected, or the same process as was previously running is

selected. In the first case, the state of the current process is

saved and the machine goes idle. In the second case, the

scheduler saves the state of the current process, restores the

state of the new process and debreaks to the new process. In the

third case, the scheduler simply debreaks back to the old

process.

If the machine was idle when the level one interrupt

occurred, the scheduler immediately scans for the highest

priority runnable process. If none is found, the machine goes

idle again. If the most recently active process has become

runnable again, its state is still in the registers of the 68000

and the scheduler can debreak immediately to that process without

restoring any state information. Otherwise the scheduler

restores the state of a new process and debreaks to it.

Under the current scheduler implementation, the level one

interrupt is intercepted by the Processor Node Controller (PNC).

The PNC makes all of the necessary scheduling decisions, and

presents one of six interrupt vectors to the 68000, depending on

what kind of context switch is required. The level one interrupt

routine performs the appropriate saving and restoring of process

state (if needed), updates a small set of scheduler statistics,

- 13 -
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and returns. In order to allow the testing of new variations on

the scheduling algorithm without rewriting the PNC microcode,

there is a software switch that inhibits the scheduler microcode

and allows the scheduler to run entirely on the 68000 as the

level-one interrupt routine.

3.2 Time Slices and Priorities

Whenever the scheduler starts a new process, it sets a

timer. If the process is still running at the end of its

allocated time slice, the timer will fire, causing the scheduler

to be invoked. This mechanism enforces the time-slicing

discipline introduced in Section 2. To help it decide how long

the timer interval should be, the scheduler maintains a "time to

end of current slice" (TEOCS) variable for every process. Since

the time-slice parameter of a process is generally smaller than

its declared need, the value of TEOCS for a given process will

usually go to zero at least once before the need of that process

has been satisfied. Thus, the scheduler may occasionally restore

TEOCS to its initial value. This section describes the criteria

used to decide when to restore TEOCS.

If a process has more than a few hundred microseconds left

in its current slice, and it is runnable, we assume that it is

being preempted. We therefore reduce its current slice by the

time it has just used, and leave it at the head of its queue. In

- 14 -
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effect, this allows a higher priority process to interrupt lower

priority processes without disrupting the lower priority

processes, in much the same way as an ordinary interrupt routine.

In those cases where the process has less than a few hundred

microseconds left in its current slice (indicating that it has

exhausted its slice), or the process has become non-runnable and

is waiting for an event, we dequeue the process from its current

queue, account for the time used so far, and allocate a new time

slice. If we cannot allocate enough time to run the process on

its normal queue without encroaching on time committed to some

other process, we switch the process to use its low priority

queue. Note that if the process is not runnable, and it does not

wake up again during the current epoch, the allocation of a new

time slice will turn out to be superfluous. However, if the post
S

microcode does try to make this process runnable again, it must

know which priority queue to use. In any event, the time that it

takes to do the allocation is negligible.

If the process is still marked runnable (or has been posted

recently) we return it to the end of the appropriate queue.

Otherwise, we mark it off-queue so that the post microcode will

put it on the appropriate queue later.

- 15 -
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3.3 Allocating Time Slices

In addition to deciding whether it should renew TEOCS, the

scheduler must decide what value to assign when it does the

renewal. Related to this is the requirement that the scheduler

lower the priority of a process whose declared need has been

satisfied within the current epoch. A somewhat complicated set

of criteria for making these decisions is required in order to

make the behavior of the scheduler reasonable under all

combinations of circumstances.

If a process has been assigned to low-queue, it is always

allocated its full time slice when TEOCS is renewed. (Of course,

a low-queue process can be preempted by any normal-queue

process.) At the end of each epoch, all processes return to

normal-queue and have their time-needed intervals renewed. No

process goes to low-queue until all uncommitted time has either

elapsed or been allocated to specific processes.

The principal complication in this scheduler is the method

by which uncommitted and windfall time is determined and

allocated. At the beginning of each epoch the total declared

need for all processes is determined. This time interval is

subtracted from the time at which the epoch will end to determine

when the 'critical scheduling period' (CSP) will begin; the

period up to this time is called uncommitted time -- even if it

is wasted, we can still theoretically satisfy the declared need

- 16 -
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of every process before the end of the epoch.

jIf a process with a declared need runs before the critical

scheduling period begins, the size of the CSP is reduced.

Therefore, whenever a normal-queue process is rescheduled, the

time it has used so far is added to the time at which the CSP

begins, and subtracted from TEOCS.

Before a new time slice is allocated for a process assigned

to normal-queue, the amount of available uncommitted time is

calculated by subtracting the current time from the time at which

the CSP begins. The amount of time available for the next slice

is then calculated by adding the remaining need of the process to

the amount of available uncommitted time. Finally a new value

for TEOCS is obtained by taking the minimum of the calculated

value and the requested time slice for tiis process. If the

calculation yields a slice that is too small to be useful, we

drop the process to the corresponding low-priority queue and give

it the full slice requested. Otherwise the process continues at

normal priority. If we have allocated some uncommitted time to

the process, we subtract that time from the time at which the CSP

begins. This keeps us from allocating the same time to some

other process later.

When a time slice ends for a process assigned to normal-

queue, we reduce its time-needed variable by the time it has just

used, and add that time interval to the time at which the CSP

- 17 -

- t



Report No. 5285 Bolt Beranek and Newman Inc.

begins. If the allocated time slice does not match the time

used, any allocated but unused time is also added to CSP, while

any time used in excess of the allocated time and the total

time-needed is subtracted from CSP.

3.4 Windfall

Once we are past the beginning of the CSP, any process whose

time slice ends will be placed on low queue if its need for the

current epoch has been satisfied. When a process on low queue is

allowed to run, it is making use of windfall time. If any

process has used windfall time, the scheduler cannot guarantee

that all processes with unsatisfied need can be satisfied during

the current epoch. Looking at it another way, if a process is

not ready to claim its stated need until after the beginning of

the CSP, the scheduler will give time away to other processes,

rather than letting it go to waste. Note that if an unsatisfied

process becomes ready to run during the CSP, it will preempt any

processes using windfall time. Note also that a process which

comes ready just at the end of the epoch will make good use of

its time in the next epoch. What's past is lost.

There is another, less desirable, mechanism by which a

process may get more than its share of normal-queue time when

others may fail to get their declared need. This can happen if

one process runs during uncommitted time and gets its entire need

18
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before the beginning of the CSP. After the need of such a

jprocess has been satisfied, sufficient uncommitted time may

remain to allocate another time slice at normal priority. If the

J process waits a while and then uses this time near the end of the

epoch, it may block other normal priority processes which are

ready to run at the same (or lower) priority, and which have not

been run enough to satisfy their Jeclared needs.

Although it is not the best possible outcome, this situation

is by no means fatal, as the unsatisfied processes will get their

time in the next epoch, if they are ready soon enough. Note that

this condition will occur only if the unsatisfied processes are

not ready to run until after the start of the CSP.

It may seem unreasonable to allocate, and thus commit,

uncommitted time to a process which has used up its declared need

early in the epoch. However, if the process is runnable, it must

have a time slice allocated to it, and it is the policy of the

scheduler to demote processes to low queue only during the CSP.

Furthermore, we expect that if a process has been busy enough to

consume its total need at the beginning of the epoch, the extra

time allocated is likely to be put to good use.

4. Scheduler Performance Measurement

Given the central role of the scheduler, it is important

that its operation be both efficient and understandable. To

- 19 -
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achieve maximum performance, much of the scheduler and many

related functions are implemented in microcode. This raises the

additional concern that the scheduler be coded correctly, because

microcode PROM updates are expensive. We have therefore run a

fairly extensive set of tests in order to characterize the

performance of the scheduler under various sets of circumstances.

The results of these experiments are presented in this section.

4 .1 Measurement Tools

in order to observe the behavior of the scheduler and the

application code, we installed a certain amount of

instrumentation: the Process Control Block (PCB) was extended to

make room for a set of per-process counters; the supervisor data

segment (Segment F8) was changed to make room for a set of per-

processor-node counters; and a small amount of code was added to

the scheduler to maintain these counts. Since the impact of this

instrumentation on ,rformance appears to be minimal, we have

left it in place to support Cuture experiments.

The per-node counters include one counter for each of the

six scheduler interrupt paths so that we can determine how often

each path is taken. In the special path where the scheduler

switches from one running process to a another, we installed an

additional counter that records how often the switch is caused by

a high queue process interrupting a low queue process. All of
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I
these counts are cumulative from the time Chrysalis first begins

running.

In the Process Control Block definition, there was already a

record of the total run time of each process being maintained by

the Epoch Scheduler. We added to this a count of the number of

times the process has been scheduled to run. Both of these

counts are cumulative from the time that the process was created.

A collection of software procedures was written by the

Butterfly Satellite IMP project, part of the Wideband Satellite

Network contract, to sample all of the counters in the system,

and present a readable summary of their contents. The numbers

are scaled to convenient units, such as milliseconds of run time

per second of real time, or events per second, before being

displayed. The procedures also allow the sample interval to be

varied easily so that the experimenter can see both short term

and longer term behavior of the system.

4.2 Method of Measurement

The Butterfly Satellite IMP program (BSAT) contains a

Message Generator, two types of Message Sink, and a Delivery

(routing) process which can be easily controlled and moved from

processor to processor. The operation of these processes was

well understood and so could be modelled easily. The BSAT

monitoring and display process was run in a separate processor
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from the processes being measured so that it would not interfere

with the measurements.

The principal method of analysis was one of making

incremental changes to the system under test and observing the

resulting changes in its behavior. The changes consisted of

varying the frequency and type of scheduling performed and the

amount of uncommitted time in the epoch. The behavior consisted

of the number of packets sent through the system (a measure of

useful work done), the percentage of the CPU used by each

process, and the number and type of schedulings that occurred.

A process was modelled as having two components: time spent

executing the application task, and time spent doing system

overhead functions. Timer interrupts, for example, are charged

to the then-running process as far as scheduling is concerned,

though the interrupted process gets no useful work done during

the interrupt. Similarly, time spent saving and restoring the

process state is charged to a process, even though the

application process is not progressing during that time.

Observing changes in the number of packets transmitted was used

as a measure of time spent executing the application task.

Changes in the charged run time of a process, coupled with

knowledge of time spent executing the application work, may be

used to measure time spent in a system overhead operation.

- 22 -
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The foregoing may be summed up in the following equation:

t = M B + n*s (*)

where:

t = total run time needed (msec. CPU time/1 sec. clock time)

M = messages/second flowing through the system (messages/sec)

B = time needed to process one message (msec./message)

n = number of times the process is scheduled (1/second)

s = overhead time per scheduling (msec.).

This equation may be solved for "s" to yield:

s = (t - M * B) / n (2)

This says that the average time spent per scheduling is the total

run tidie of the process minus the time spent doing the

application's work, spread over the total number of times that

the process was scheduled.

From the experimental data we can get values for t, M and n

directly. This leaves the problem of determining B and s. This

problem is solved by considering the equation as having the

unknowns B and s, and declaring that these values must be

constant from one set of experimental data to the next. Using

this assumption, we can take two sets of measurements and use the

following formula (derived from equation 1) to estimate B:

B (n2 * tl - n1 * t2) / (n2 * M1 - n1 M2) (3)
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where t1, M1, and nl are from one experiment and t2, M2, and n2

are from a second measurement. The value of B is milliseconds of

run time per message processed.

It turns out that calculation of "s" using the formula above

is very sensitive to small changes in B. We were thus able to

determine the value of B with good accuracy.

It should be noted that the time per scheduling(s) that we

compute from these measurements is NOT the same as the microcode

scheduling time, it is the total of anything that occurs when the

process is scheduled and may include timer interrupts, Chrysalis

system code invoked only when a process stops or starts, or user

process code invoked only when the process awakens or goes

quiescent. In interpreting the measurements, it was necessary to

identify all the various causes of once-per-scheduling time spent

before we could believe that we understood the behavior of the

scheduler.

4.3 Experimental Results

In the experiments that we conducted, we quickly determined

that the Chrysalis system processes behaved in a constant and

experimentally uninteresting fashion. In brief, the Epoch

Scheduler caused 10 preemptive rocess swaps per second, and

another 10 process swaps as it returned to running the lower

priority process it had preempted. The Remote Demon, responsible
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I
for garbage collecting memory, also caused 20 process swaps per

second. Together, they took a relatively constant 3.1% of CPU

time. Most of this is taken by the Remote Demon, whose run time

is a parameter that we can change.

Because these two processes are so constant, the experiments

below are described as if they were not present. However, each

processor always had an Epoch Scheduler and a Remote Demon

running on it.

The other near-constant we found is that 0.8% of the CPU

time is not charged to any process. We believe that most of it

is lost between the time one process ceases to be charged and the

next process starts to be charged. Some of it may also be lost

because of the manner in which the Epoch Scheduler attempts to

update its own run time while'it is running.

In the first experiment we determined the time needed to

reschedule a process. To do this, the Message Generator was

started with its parameters set so that it would try to send to

an illegal destination. In this mode it will run constantly.

The Message Generator was the only process trying to run on its

processor.

The process requested 100% of the CPU time, so the processor

was overcommitted. By doing this, the Message Generator was

guaranteed never to be placed on low-queue. The experiment

consisted of varying the scheduling slice parameter from 96

-25 -
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milliseconds per slice (one scheduling per epoch) to 1

millisecond (approximately 96 schedulings per epoch).

The time to re-schedule a process whose time slice has run

out was measured at 129 microseconds. This includes the time

spent in the timer interrupt code, which also implements a wakeup

service that is not directly related to the scheduler. In later

experiments we found that the timer interrupt code seems to take

about 100 microseconds to run. This means that the microcode

time for stopping and restarting a process is approximately 29

microseconds.

In the next experiment the Message Generator was set up to

send messages via a Dual Queue to a Message Sink process in the

same processor. Both processes always ran on high-queue. The

Vessage Generator ran until its time slice had run out, while the

Message Sink voluntarily dismissed when it found it had no more

messages to discard. Both processes ran at the same priority and

so were round-robin scheduled by the Butterfly scheduler. Again

the scheduling slices were varied.

We found that the time to switch from the Message Sink to

the Message Generator was 119 microseconds. The time to switch

from the Message Generator to the Message Sink was 219

microseconds. The difference between these two types of context

switch is the 100 microsecond runtime of the timer interrupt

routine.
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In another experiment we varied the amount of committed time

requested by the Message Generator as well. This meant that

during part of each epoch the Message Generator ran on low-queue.

Since the Message Sink always ran on high-queue, and since

EnqDualQ to a higher priority process results in an immediate

preemption, we were able to cause the scheduler to be invoked for

every message and to measure the time spent during preemptive

scheduling.

We found that the total time for a preemptive process swap

was 135 microseconds. However, this measurement includes the

time that it takes to post the Event that triggers the

preemption. Thus, we can separate this result into 119

microseconds for the swap and 16 microseconds for the Posting of

the event. Our experiments are not sufficientlycomplete to be

sure that this division of the 135 microseconds is the correct

one, but it corresponds closely to what we expected.

The results of these experiments are summarized in Table 1.

These numbers appear to be consistent with what we know about the

operation of the Butterfly hardware. For example, the difference

in time between switching processes and restarting a process is

mostly the time to save and restore the registers when switching.

The difference of 119 - 29 = 90 microseconds is slightly (and

within experimental error) larger than the time a 68000 takes to

perform a register save and restore.
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SCHEDULER TIMINGS

OPERATION TIME COMPONENTS

RESTART 129 psec 29 Muuc MICROCODE
PROCESS 100 juec TIMER INTERRUPT

ROUND- ROBIN 219 gisc 119 guc REGISTER SWAP& MICROCODE
SWAP AT 100 /sec TIMER INTERRUPT

END OF SLICE

ROUND -ROBIN 119 uwc REGISTER SWAP & MICROCODE
SWAP ON

VOLUNTARY
DISMISS

PREEMPTIVE 135,unc 16 ,uc EVENT POSTING
SWAP 119 #Mc REGISTER SWAP & MICROCODE

Scheduler Performance Measurement Results
Table 1
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Incidental to these experiments, we were able to make some

preliminary measurements on the BSAT processes that were used as

test vehicles. Four types of process were used. There was a

Message Generator Process which composed messages and put them

onto a Dual Queue. There were two kinds of Message Sink process.

The "simple" Message Sink received message IDs on a Dual Queue

and discarded them. When a message ID appeared, the Simple

Message Sink removed it from the Queue, mapped in the message,

incremented a counter, and freed the message buffers. The

"complex" Message Sink simulated part of the activity of a BSAT

host I/O process, and its processing rate was much lower (in

fact, the results of these measurements prompted a rewrite of

part of the corresponding BSAT process). We also used the BSAT

Local Delivery process. The function of this process in the BSAT

is to route messages that are destined for locally connected

hosts. When a message ID arrives, the Local Delivery Process

removes the ID from a Dual Queue, maps in the message, uses the

header to make a routing decision, enqueues the message ID to the

appropriate host output queue, and posts an event.

Some preliminary throughput measurements for these processes

are given in Table 2. The first part of the table shows the

processing rate of the Message Generator, the Simple Message

Sink, and the Local Delivery process, running on separate

Processor Nodes. For the Message Generator, results are given

for two cases. In one case, the Message Generator output queue
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was local to the process. In the other case, the queue was on a

remote node and the enqueue operation typically involved Posting

an event to a process waiting on the queue. This accounts for

the differetice in throughput. The second part of Table 2 gives

the measured throughput for the Message Generator, both types of

Message Sink, and the Local Delivery Process running together on

the same Processor Node. As expected, these numbers indicate

lower throughput.

Since these measurements were made, some of the BSAT code

has been rewritten to be faster. Measurements of Chrysalis

routines have changed our understanding of which operations are

"expensive" and which are "cheap," and will be a basis for tuning

Chrysalis, the Voice Funnel and the BSAT for better performance.

Another aspect of the scheduler that was tested but which is

difficult to describe easily is the handling of committed,

uncommitted, and windfall time. We performed tests that

determined that the scheduler does indeed run processes on high-

queue during uncommitted time, moves them to low-queue at the

proper point after committed time has begun, and will properly

preempt lower priority processes when a higher priority process

becomes runnable. These changes were seen as increases in both

the number of times selected processes were scheduled, and in the

throughput numbers. By modelling the processes' behavior during

each phase of the epoch (uncommitted, committed, windfall), we

were able to compare our composite numbers with the observed
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values. There was excellent agreement.

Processing Rate

Process Messages/second msec/message

Message Generator
queue on same processor 1811 0.5522
queue on remote processor 1633 0.612

Simple Message Sink 6580 0.1520

Local Delivery 2095 0.478

Combined Throughput - Single Processor Node

Processes Messages/second msec/message

Message Generator/ 1345 0.743
Simple Message Sink

Message Generator/ 688 1.453
Local Delivery/
Complex Message Sink

Table 2. Preliminary BSAT Throughput Measurements

To complete these results, it would be useful to count the

instructions in the appropriate macrocode and microcode routines

to make sure that the measurements correspond to the instruction

times and to give us a better feel for such things as what impact

the instrumentation software has on the performance of the

scheduler. This is an activity that we have not yet undertaken.
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5. Conclusions

The concept of an epoch scheduler was developed by the

Butterfly group at BBN, based in part on the TENEX/TOPS-20 idea

of a pie-slice scheduler. A pie-slice scheduler allows a user to

buy a fixed percentage of a shared computer for a fixed price.

If all users are always ready to run and the machine is fully

committed, the goals of the two schedulers are quite similar

(although the implementations no doubt differ). The major

differences involve the idea of an explicit epoch (a specific

pie-slice is only guaranteed over some indefinite period) and the

treatment of uncommitted and windfall time.

Since pie-slice schedulers do not ordinarily guarantee to

provide service within any specified interval, needed time may

not be made available soon enough. Real-time applications may

need time several times a second or a minute, while time-sharing

or batch systems may provide pie-slices only when averaged over

periods of minutes or hours.

A secondary problem is the distribution of uncommitted and

windfall time. For example, assume that groups A and B own pie-

slices, but that group A fails to use any time for a few days,

while group B is using the entire machine. If group A then also

attempts to use the entire machine, it may well be assigned its

pie-slice plus all available uncommitted and windfall time, in an

attempt to equalize the situation between the two groups.
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When allocating uncommitted time, pie-slice schedulers

generally try to provide fairness over an interval of perhaps

several months. This sort of policy may be good from a billings

point of view, but is not necessarily suitable for real-time

applications. The current Butterfly epoch scheduler uses a

first-come-first-served approach (with time-slicing) for

distributing such time; once an epoch is over, all processes are

restored to an equal footing. Thus, performance under heavy load

is proportional to need, independent of past history.

We expect that for some applications it may be necessary to

monitor system performance on a longer-term basis, and to tune

the need and time-slice parameters of various processes

dynamically in order to provide desired performance under varying

types of load. This could be done either manually or

automatically. In the Butterfly multiprocessor, this monitoring

and tuning is closely related to the problem of load balancing

among the individual processors and the same set of programs

would probably perform both tasks.

The ep ch scheduler described above is fast and efficient,

and seems to provide the facilities needed for real-time

telecommunications applications. Coding much of the posting and

scheduling algorithms in microcode has allowed us to switch

processes in times on the order of a hundred microseconds. To

.speed this up further would require a CPU with the ability to

switch between sets of internal registers without dumping its
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current set into main memory and restoring a new set. This would

allow process switching times in the tens of microseconds.
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