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Stationary Exponential Time Series: Further model development

and a residual analysis

by
A. J. Lawrance P. A. W. Lewis
Department of Statistics Department of Operations
University of Birmingham Naval Postgraduate School
Birmingham, England Monterey, California, U.S.A.
ABSTRACT

A second order autoregressive process in exponential variables, NEAR(2),
is established: the distributional assumptions involved in this model high-
1ight a very broad four parameter structure which combines five exponential
random variables into a sixth exponential random variable. The dependency
structure of the NEAR(2) process beyond and including autocorrelations is

explored using some new ideas on residual analysis for non-normal processes

with autoregressive correlation structure. Other applications of the expo-
nential structure are considered briefly. These include exponential time
series with negative correlation and exponential time series with mixed

autoregressive-moving average structure. An application to the analysis of

a set of wind speed data is included. X
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1. Introduction

There are several aspects of many observed univariate time series which
are not satisfactorily accounted for in standard time series analysis: they
include non-Gaussian marginal distributions, dependence beyond second-order
moments {(autocorrelations) and directionality in the time series. Quite
often a Gaussian distribution will be inappropriate because the variable
being modelled has a positive and highly skewed distribution, i.e., the
service times in a queue or daily flows in a river. Many particular such
distributions can be envisaged and time series models have been constructed
for them. Examples are Gamma distributions (Gaver and Lewis, 1980; Lewis,

1981; McKenzie, 1982; Lawrance, 1982) and mixed exponential distributions

(Gaver and Lewis, 1980; Lawrance, 1980a; Lawrance and Lewis, 1982).

However the simplest, most widely used and most tractable analytically
of these distribution models is the exponential distribution. Like Gaussian
random variables, exponentially distributed random variables enjoy many
special properties; also they can be mildly transformed quite easily into
distributions which are more skewed,or less skewed, than the exponential. The
Weibull distribution is an example, being just a power transformation of an
exponentially distributed random variable. Thus the approach here, following
earlier work (Gaver and Lewis, 1980; Lawrance and Lewis, 1980, 1981) is to
regard the exponen;ial variables as canonical and to develop their use in
time series modelling. It should also be noted that time series of uniformly
distributed random variables are obtained by exponential transformations of
the exponential time series; this has many possibilities and the process
of uniformly distributed random variables will be considered elsewhere.

The work cited above has concentrated for the most part on first-order,
non-Gaussian autoregressive models, both of the standard type (constant

coefficient additive linear combinations) and a random coefficient type
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introduced by the authors. The extension of the models to higher order

autoregression is clearly necessary to attain flexibility in modelling cor-
relation and dependency structure of the processes, but these extensions are
in no way as immediate as in the standard linear Gaussian case. A simple
mixing device can be used (Jacobs and Lewis, 1983) but the range of correla-
tions attained is much narrower than the range attained in the standard
linear, second-order autoregressive structure. A broader extension, called
the EAR(2) model, was obtained in the exponential case by Lawrance and lewis
(1980), but its innovation variable has a zero component and this will often
be hard to justify.

A major part of the present work consists of obtaining a very broad and
rich extension of the NEAR(1) model (Lawrance and Lewis, 1981) to a second-
order autoregressive process; this NEAR(2) model was first proposed in
Lawrance (1980b) and later reviewed in Raftery (1981), although necessary
analysis of its innovation structure was not given. The innovation random
variable for the NEAR(2) process is proved here to exist without unnatural
boundaries on its (four) parameter region and does not have a zero component.
Taken out of the context of second-order autoregressive exponential time
series this result gives a very broad structure for combination of exponential
random variables. In fact it gives a way to combine three (possibly dependent)
exponential random variables with an independent pair of (possibly dependent)
exponential random variables to give another exponential random variable. The
result has a number of uses beyond the second-order time series model giving,
for instance, a first-order model which is broader than the NEAR(1) model, and
several second-order mixed autoregressive-moving average models. Schemes for
obtaining negative correlation can also be accommodated. These models, as in
the first-order case, include aspects of dependence beyond autocorrelation and

also directionality in the time series.

o




— o T T——

The richness of the four-parameter NEAR(2) model and the fact that an
infinite number of cases of the model with identical correlation structure
are available forces consideration of higher-order aspects of dependence.
The analysis of the higher order aspects of the exponential time series is
at a fairly early stage and is as follows. First it will be shown that the
autocorrelations p(2), 2 =0, + 1, + 2,... for the NEAR(2) process satisfy
the Yule-Walker equations with constants a and a, which are functions
of the four parameters of the model. This follows immediately from the fact
that Xn is a random-coefficient, linear additive combination of Xn_] 3
X..p and the innovation r.v. E . Secondly, it can be shown (Lewis and
Lawrance, 1983a) that the residuals X, = a1X._y - 3% _, , which are the

usual residuals for second-order constant coefficient, linear additive

autoregressive processes are uncorrelated.

Thus although the standard analysis of time series stops with uncorrelated

residuals, i.e. a flat spectrum for the residuals, such residuals can also be
used to good effect to investigate higher order aspects of dependence in the
NEAR(2) model. 1In fact, if the autoregression is not of the standard type
(constant coefficient, linear additive) the (uncorrelated) residuals will
haye non-random scatters and higher order dependence properties. In partic-
ular, the squared residuals will have non-zero autocorrelations and the
cross-correlations of residuals and squared residuals except in the zero-
lag case will be non-zero; both sets of correlations are effectively zero
when a standard second-order autoregressive model is appropriate.

An extension of this residual analysis is suggested by the fact that
autocorrelations are time reversible, while the process itself is not time
reversible, i.e. is directional. Thus one constructs reversed residuals

X, - a]Xn+] - azxn+2 which are to be used to assess directionality. Analysis

- e c———

o '
et R L R £ "o PV « - .
R TP DR e o . e L P : .
- e -7"’! O pACE L€ b
A ; 2

—




of both types of residuals can be fruitful; because of space limitations we

present here only an investigation of cross-correlations of residuals and
squared-residuals. This particular case of the possible residual analyses

is illustrated by some theoretical calculations, some simulations and a brief
application to a transformed series of wind speed data. The complete residual
analysis including directional aspects and their investigation using the

additional tool of reversed residuals will be given elsewhere.
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2. Exponential Time Series Models

Our aim in this section is to give in outline the ideas leading to the
time series model of main concern in this paper, and called NEAR(2), follow-
ing the earlier terminology NEAR(1). The NEAR(2) model has four-parameters,
and incorporates and broadens the earlier two-parameter EAR(2) model (Lawrance
and Lewis, 1980). The NEAR(2) model will be exponential in marginal distri-
bution, have second-order autoregressive Markov dependence, and have auto-
correlations satisfying second-order difference equations of the familiar
Yule-Walker type. In addition it will have dependence beyond autocorrelation,
and will have adjustable directionality. It is not linear in the standard
sense, having random-coefficient, linear additive autoregressive structure,
but neither is it non-linear in the standard sense of incorporating powers or
products of lagged variables.

Writing {Xn} for the time series variables, and {En} for an i.i.d.
exponential innovation sequence of unit mean, the two-parameter NEAR(1) model,

as previously defined, is given by

BXn_1 W.p. o E W.p. P,
A= + (2.1)
0 w.p. l-a bE w.p. 1-p,

n
with b = (1-a)g and p = (1-8)/{1 - (1-a)8} . The parameter region is in
general 0 <a, 8<1,a=8#1. Thecase g=1,0<a <1 is rather
special, and has been called the TEAR(1) model, and when o =1, 0<g< 1,
the earlier EAR(1) model is recovered. Except for this EAR(1) case, the

NEAR(1) model does not allow zero innovations (Gaver and Lewis, 1980) and so

is more statistically acceptable. The zero innovation implies that

Xn = an 1 and thus B8 can be determined exactly from runs down in the

sample path of the process.

In general the i.i.d. innovation in the NEAR(1) process are formed as

the probabilistic mixture of two exponentials, and are thus easily simulated.
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The NEAR(2) model is a direct generalization of (2.1) and takes the form

len-l W.p. ay L
Xn = BZXn-Z W.p. a + En (2.2)
0 W.p. ]~a] - a,

with parameter region 0 < 8;, 8, <1, a; 20, a,2>0, aj +a, <1; €} is
an appropriately chosen innovation sequence. Many special cases can arise
when the above restrictions include some of the equalities and, for the pur-
poses of a general development, it is best to regard the inequalities as

strict. Given that {Xn} is required to have an exponential marginal distri-
bution, the main question concerns whether there is a valid probability
distribution for En . The Theorem proved in Section 2.3 will show that

this is the case, and that the distribution, when the inequalities on

oy + o, and B], By in the parameter region are strict, takes tke form

En = {b,E, W.p. Py > (23)

a probabilistic mixture of three exponentials. To establish this result a

fairly detailed analysis of a derived moment generating function is required.

This is necessary since a direct moment generating function solution of (2.2)

for Eh does not establish that En has a proper distribution; all that is

shown is that the solution is a possibly improper mixture of three exponentials.
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3. Validity of the NEAR(2) Model

In this section we prove the following
THECREM. Let {En} be an i.i.d. sequence of unit mean exponential random
variables. Then if the four parameters a1s @5 Bys By satisfy

ay > 0, a, > 0, o + a, < 1, 0 < B1s 32 < 1, the relationship

len-l W.p. ag s

Xn= Bzxn-z WEIRES G +En s, n=0,41,+2,..., (3.1)
0 W.p. 'I-a.l -y,
where
En W.p 1-p2 P3 »
En = lszn W.p. p2 ’ (3.2)
~b3En W.p. p3 s

defines a stationary sequence cf (marginally) exponentially distributed

random variables with mean one. Here

p2 & -{(G]B] s azsz)bz = (0-] + 02)3132}/{ (bz o b3)(] e bz)} ’ (33)
Py = {{ag +0y)By8, = (a8 + 4,8,)bs3/{(b, - b3)(1 - b3)} (3.4)
and
0 <by = ‘?{s £ (B Ar)uz} <b, =‘§{s + (% - 4r)} e il |, (3.5)
where
S = (] -‘a])B] o (] E az)Bz ) (3.6)
and
i & (] = C.-I = 0-2)6]82 . (3°7)
7
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PROOF. For the NEAR(2) model specified by (3.1) - (3.7), let ¢X(t) and

¢E(t) be the moment generating functions of the {Xn} and {En}

' then quite simply if stationarity of the {Xn} series is assumed,

ox(t) = op(t)loqoy(8yt) + ooy (Byt) + (1 - oy - ay)} .

possibly not proper, given by

(1+8,t) (1+8,t)

t) = .
(]+t)[(]‘°~] = az)B]BZtZ"" {(]"0])8] + (]‘02)82}1'- + ]]

sequences;

(3.8)

Assuming an exponential marginal distribution of unit mean for {Xn} , then

the independent distribution of {En} has moment generating function,

(3.9)

First we remark that (3.9) simplifies in special cases, such as when one of

B1s B, = U By = Bys Orag +a, = 1 . For simplicity in the development,

the parameter region considered in the theorem is that defined by 0 < 81>

By < 1, ays ap > 0, @) * o, < 1 . Interesting special cases are more easily

trrated separately; these include NEAR(1) models and particularly tractable

types of NEAR(2) models.

It is convenient to establish right away that the quadratic term in the

denominator of (3.9) has real distinct and positive roots, b, and b, ; this

eliminates any subsequent need to invert such a term as a whole.

condition for real distinct roots is that
BT+ (T=ciglan]® = d(Teas = alsp
! 1% 2'%2 Bt )

be positive: this is so from its equality to the expression

TS T e v z =5 T 2 -
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2
[(]‘Q])B] - (]‘“2)62] + 401626162

which is clearly positive; the positivity of the roots b] and b2 is obvious
from (3.9) since their product and sum given in (3.11) and (3.12) below are
both positive.

Subject to the above qualifications concerning b] and b2 , a partial

fraction expansion of (3.2) can be written in the suggestive form

: 1 1 1
og(t) = (1-pp=P3) Tag * Pp Tob,t * P3 Tabt - (L,

Comparisons between (3.9) and (3.10 then show that by b3 and p,, p3 may

be obtained in terms of B1s By and ays @y by solving the equations

b, + by = (1-&1)61 + (l-az)s2 3 (3.11)

byby = (1-ay - a,y)B¢8; 3 (3.12)

(1-by)p, + (1-b3)py = ay8y + a8, 3 (3.13)
b3(1-by)p, + by(1-b3)py = (ay + ay)8y8, - (3.14)

A difficulty with this apparently straightforward solution is that the inversion
of (3.9) or (3.10) could lead to a function which is not a probability density,
or it could yield a probability density but not one which is a probabilistic
mixture of three exponentials. In fact, neither of these possibilities is

the case, as will be shown by establishing that p, and p3 are positive

and subject to the condition pp + p3 < 1, and hence can represent

probabilities.
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Explicit expressions for Py and Py can be obtained from (3.13) and
(3.74) and are given at (3.3) and (3.4). From now on it will be assumed,
in accordance with the theorem, that b2 is the larger of b2 and b3 c
these being obtained by solving the quadratic pair (3.11) and (3.12). To
establish that Pp * Py < 1 , we have, by adding (3.3) and (3.4),

(o787 + a,8,) ~ (o7 + ,)B,8
Loy + a8y  + )88y
Py * P3 = (1D, 1(T-b,7 : (3.15)

Multiplying out (1-b2)(1-b3) in the denominator and using (3.11) and (3.12)

gives, after some rearrangement,

) (1-8,)(1-8,)
P ¥ P3 = 1 - TTog T(T-8,0 ¥ w8y (T-6,) ¥ a,8,(16;7 * S

The algebraic expression here is clearly positive and less than one, from
which it follows that Py * Py < 1 e

The positivity of Py and P3 will now be proved by showirg that the
numerators and denominators of (3.3) and (3.4) are positive. For the
denominators, this requires that 0 < b2, b3 < 1 which will be verified
by showing that 0 < bybs <1 and 0 < (1-b2)(1-b3) <1 . The first of
these latter two inequalities is obvious from (3.12); for the second consider

the expressions

(1-b2)(1-b3) =1 - (b2 + b3) + b2b3
(a-lﬁ-l + 1-6])(a282 +1 - 62) - (a]B-I)(aZBZ) (3.17)

after using (3.11) and (3.12), and then

] - (]'bz)(]'b3) = b2 + b3 = b2b3

= (1-a])e](1-62) + (1-&2)62(1-6]) + B8, . (3.18)

10
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Both the right hand sides of (3.17) and (3.18) are obviously positive. This
concludes the proof that O < b], b2 < 1 and hence that the denominators of
Py and py are positive.

For the numerators of Py and P; to be positive (3.3) and (3.4)
indicate that b = (a] + “2)5182/(“181 + a282) must satisfy the inequalities

b3 <b< by . (3.19)

At this last stage, explicity expressions for b2 and b3 must be used,

and from (3.11) and (3.12) are given, after writing

s = (1-a7)8; + (1-a,)8, and r = (1-ay-0,)8:85 »
by
by = ls + (F-ar)!/?) and by = gis - (sF-an)!/%y. (3.20)

Then (3.19) is equivalent to

- (52-4|r-)]/2 <s-2b< (sz-lhr-)]/2
or 52-4r > (S-2b)2

or sb-b%-r>0. (3.21)
After some algebraic rearrangement the left hand side of (3.21) becomes
BB, ( B1-8,) 2/ (a1 B 40, 8,) 2 (3.22)
172517251 %2 1177272 ’

which is again clearly strictly positive, excluding special cases, as

was to be proved.
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This concludes the proof that Py and py are both positive subject to
Py + Py < 1 ; hence l-p2 = P3Py and Py can all be regarded as prob-
abilities. Thus Ex has a proper probability distribution which can be
generated as the (l-p2 - P3s Pps p3) mixture of three exponentials of
means 1, b2 and b3 respectively; further, both b2 and b3 are less than
unity and b2 # b3 2

In the special cases mentioned earlier, there are valid and simpler

results for the distribution of En . For instance, when B] = 32 =1,

E, has a simple exponential distribution of mean (1—u] - u2) . When

By = B, # 1 the innovation has a mixed exponential distribution of the
NEAR(1) form given in (2.1) with o = a ta, . Delineation of all these
special cases is needed for successful simulation of the NEAR(2) process

for the full parameter range. This will be considered elsewhere.
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4. Other Uses of the NEAR(2) Exponential Construction

The NEAR(2) process was established by showing that (3.2) was a valid
innovation distribution for the relation (3.1). The distributional assump-
tions imp]iéd by this result can also be taken out of the time series context in
which they were derived and viewed generally as a way to combine a pair of
(possibly dependent) unit exponential variables (L], L2) with an independent
triple of (possibly dependent) unit exponential variables (M], My, M3) so
as to yield a further unit exponential variable. Specifically, with
(a], as Bys 82) and (b2, b3s Py p3) as previously related by (3.3) - (3.7),
the Theorem has established that

B]L] W.p. @ M] w.p. ]'p] = p2
8oL, w.p.  ay o bZMZ w.p. P, (4.1)
0 Ww. p. ]‘a] - 02 b3M3 Ww. p. p3

has a unit exponential distribution.

First of all, the idea of "switching" will be illustrated; in the NEAR(2)
context, this suggests taking (M], Ms» M3) as (Xn_], X\-2 Xn_3) and
(L], LZ) as (En, En) . Then (4.1) gives the time series model

Xn-l W.p. l-p2 - Py B]En W.p. o
X, = 1boX o W.p. Py + BZEn W.p. ap (4.2)
b3xn-3 w. p. p3 0 w.p. ]"G-I - (12 ©

This is a third-order autoregression, actually a case of the EAR(3) model
cited in Lawrance and Lewis (1979); note, however, that this third-order

autoregressive exponential process allows zero innovations. Another, better

13




behaved higher-order exponential model -in fact a p-th order model- is
obtained by the following application of the result (4.1) in its original
form (3.1). Let the indices 1,2,...,p be partitioned into two non-empty

sets I, and 12 of size Y and to respectively. Then in the model

B1Xn-1 W.p. g

e s ﬁBéXn_p w.p. a6 rtE., n=0,+1,+2,..., (4.3)
0 3 . ‘l_ I_ ]
~ o Rty

let 3% = By ieI]; s; = Bos 1612; igl a% = oy and iEI ai = a, . Then
i 2

if ap +ay <1,0<8y, B, <1 the distribution of E, 1is given by the
Theorem. Thus we have a pth-order exponential autoregressive process with
four-parameters. However, while this may seem satisfying it is not clear
that four parameters would be sufficient to characterize the sample path
behaviour of an exponential process with very high order dependence.
Another use of (4.1) is to allow L and L, to both be Xpo » and

so obtain a four parameter first-order model of the form

B]xn_] w.p. a-, En w-p. ]-pz - p3 Y
Xp = 182X W.p. oy + b2En W.p. Py (4.4)
0 W.p. 1-a] - o b3En W.p. P3 -

Four parameters seems excessive for a first-order autoregressive process but
simulations show a wide range of behaviour in sample paths with different
choices of parameters. Equation (4.4) in turn suggests a first-order model

allowing negative dependence. This is obtained by letting the variable in

14




(4.4) which is multiplied by B, be the antithetic transformation of Xno1
that is - log(l-e~ n-l) . A two parameter version of the model could be
obtained, for example, taking @y = ay 5 By =B, .

A third type of use of the construction is to give mixed autoregressive
moving average models; for this, (L], L2) is (Xn-], xn-2) as previously,
but (M, M, M;) are chosen to be (En, En+1’ En+1) for a second-order moving
average compoent, or as (En, En+1’ En+2) for a third-order moving average
component.

Qut of the time series context, the construction suggests ways to obtain
multivariate exponential distributions, rather as in Lawrance and lewis
(1983b).

Further possibilities are numerous, but it is not the intention here to

exhaustively list them, or to derive the details of those cited at this time.

Ana]ysié in the following sections will deal with the basic NEAR(2) model.

-




5. Autocorrelation Structure of the NEAR(2) process

In this section we show that the autocorrelations p(¢) = corr(X ,X . ),

£=0, +1, +2,... of the NEAR(2) process satisfy Yule-Walker type dif-
ference equations; thus the second moment dependency aspects of the process
are indistinguishable from those of a standard autoregressive model, AR(2).
To show this it is convenient to write the equation (3.1) as an additive
autoregressive combination of X ;. X o and E . Thus we have a random

coefficient, linear additive autoregressive process

= [} 1] - i + 2’ ,
X0 = BiKn¥nar * BKeKno2 * Ly n=0, 21,2
r1 W 1-p, -
P 1-py - P3 s
where L, = 1by w.p. P, : n=90,+1, +2,...,
\b3 W.p. P3 3
{
(1,0) W.p. ay s
{Kys K3 =4(0,1)  wp. oy n=0,+1, +2,...
\(0,0) W.p. 'I-oz-I - oy

and the i.i.d. sequences {Ln} and {Kn, K;} are mutually independent and
independent of the independent exponential sequence {En} . The En‘s are
assumed to have mean and variance 1 , as do the Xn‘s by construction.

Now E(Kn) = oy and E(Kn) = a, , SO that E(Ln) = 1o By - o8, .
Then muitiplying X in (5.1) by Xop We have, for £>1,

E(ann_z) = ¢]8]E(Xn_]xn_£) + “282E(Xn-2Xn-£) S E(Ln)E(En)E(Xn_z)

= oy BiE(X X p) + agBpB(Xy oKy p) + 1 - oqfy - agBy s
so that
E(ann-z) -1= “181{E(xn-1xn-z) -1 + QZBZ{E(Xn-ZXn-z) - 11

(EHD),

(5.2)

(5.3)

diag

v 2

-~




and p(-£) = ajp(-(€-1)) + ap(-(£-2)) ,

where a; = o18; and a, = o,f, . Using p(-£) = o(¢), £ > 1 , we have
finally

() = aje(e-1) + asp(L-2) , 251, (5.4)

which are the Yule-Walker equations for the AR(2) process. The conditions

for a solution to exist (Box and Jenkins, 1970, p.58), a; *a, <1

ay -~ a, > - 1, a, > - 1 are clearly satisfied when the conditions on

ays aps Bys By given in the Theorem of Section 3 hold. We then have

1 (1) = a]/(l-az) and p(2) = a]p(l) ta, . (5.5)

Note, however, the restriction to positive correlations since a; and a,

are positive. The possible region of (p(1),p(2)) values is bounded below by
p(2) = pz(]) and otherwise bounded by o(1) >0 and p(2) <1 . Broadening
of the model to negative dependency may be achieved using antithetic ideas,
or the bivariate scheme given in Gaver and Lewis (1980), but is not pursued
here.

Note too that the parameters in (5.4) enter only as products 2y = Py
and 2, = ayB, . Thus for small enough o and a values of 81 and By
greater than one could be allowed, and (5.4) would still have a stable
solution. However the sequence En in the defining equation (3.2) may not
exist; it is not known if g, <1 and g, <1 is a necessary condition for
this existence.

Solutions to (5.4) are given in detail in Box and Jenkins (1970,

pp. 58-60).
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Specifying allowable values of p(1) and p(2), as may be done by an
initial second order analysis of data, leaves two parameters to be specified
in the model, say o and oy which could produce very different sample
path behaviour in the time series. It is important to notice that this

specification of p(1) and p(2) further constrains the range of possible

a and o, values. Recalling that p(1) and p(2) fix aj; = a8y and
3, = ayBys 3s well as that ay +a, <1, it is easily shown that we must

have

ay <oy and a, < a (5.6)

which implies that a, +a, <a; *+a, <1 . Thus a; and a, are forced
to lie in a triangular subregion of the triangular (a],az) region which is
bounded below by a » bounded on the left by ay » and bounded above by

the line o ta, = I .
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6. An analysis of wind velocity data
6.1. Discussion of the data
Lewis and Hugus (1983) have given an analysis of a set of 3-hourly

wind velocity readings taken by ship PAPA in the Gulf of Alaska over a 15
year period. After suitable detrending to remove 1 year, 6 month, 12 hour
and 6 hour cyclic trend components a first-order autoregressive Gamma model
(Lewis, 1981) was fitted to the data, the use of the model being suggested
by the shape of the (marginal) histogram of the data (Figure 6.1) and the shape
of the normalized log periodogram of the data (Figure 6.2). Note that the
sample size is N = 43,800; also there is a residual 6-hour effect (P = 21900)
because this cycle varies in intensity over the 15 years. In what follows
this will be ignored and the data will be treated as stationary.

It is not the object here to discuss the above analysis in detail but
to discuss a different analysis of the data using an assumption of a Weibull
marginal distribution and a transformation to exponential variables. This
is suggested firstly by the fact that a Weibull distribution is commonly used
for this type of data by meteorologists and secondly by the fact that Weibull
and Gamma distributions fit the data equally well (Lewis and Hugus, 1983).

The histogram of the transformed data, X = X2-2%3

is shown in Figure 6,3,
where the power transformation to exponentiality has been determined by fitting
the empirical coefficient of variation, 0.479, to the theoretical Weibull
coefficient of variation, C(X) = {r(2/c + 1)/[{r(1/c + ])]2} -1 to give
c = 2.205. This transformation does affect the correlation structure of the
data, as shown in Table 6.1.

Column 2 in Table 6.1 gives the estimated auto correlations, ;(1) 5
of the detrended data; rough 95% confidence bands for these estimates are

1/2 1/2

given by adding and subtracting 2/(N) = 2/(43,800) ~ .01 . The first
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column gives the fitted auto correlations for a model with AR(1)-type auto

correlations, just o(2) = (5(1))2 = (.8214)" , for lags » = 1,...,5.
The maximum difference (3rd column) is 0.0109 and the fit is clearly good.

Column 6 in Table 6.1 gives the estimated auto corelations, :Kx) ,
for the transformed data; the transformation changes the serial correlations
slightly. However, columns 5 and 7, which give the fitted AR(1) and AR(2)
correlation models respectively, show that a model with AR(1) correlation
structure is not adequate, but that a model with AR(2) correlation fits well.
This fit is borne out by a periodogram analysis, which is not given here.

Thus, a NEAR(2) model is a candidate for representing the transformed
data, and if p(1) and p(2) are fixed at the estimated values of 0.7985
and 0.6574, then the corresponding a; = (a]B]) and a, = (azsz) from (5.5)
are, respectively, 0.75488 and 0.05463. There are still two degrees of free-
dom left in fitting the model, represented by choice of parameters o and
ay greater than an equal to 0.75488 and 0.05463 respectively, with
ap ta, < 1.

Figure 6.4 shows the logarithm of the periodogram of the usual AR(2)
model linear residuals, R = X' - a;X' 5 = a,X: ,, of the transformed data.
This is flat (ignoring the slight effect at period 6 hours). At this point
it might be thought that the usual second-order autoregressive model is
adequate. We shall however now develop an extended residual analysis for
higher order dependence which justifies fitting the NEAR(2) model to the

transformed data.
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7. A Residual Analysis for the NEAR(2) Model
7.1. General results

It has already been remarked that the autocorrelations p(2) are
insufficient to describe the dependency structure of NEAR(2) models. A
natural next step might be to examine higher joint moments and consider their
associated spectra (see e.g., Priestley, 1982). The functions so obtained, e.qg.
the bispectrum, are often found to be difficult to calculate and hard to
interpret. Rather than follow this course, it is proposed to adapt some
ideas from a residual analysis for autoregressive models which has recently
been suggested by the authors (Lewis and Lawrance, 1983). The thrust of
this analysis is that the standard process of fitting and validating a linear
autoregressive model is carried out beyond the customary final stage at which
uncorrelated residuals are obtained (as in the previous section). The usual
presumption is that the residuals are not only uncorrelated but also inde-
pendent. This need not be the case,as will be exemplified for the wind ve-
locity data. Moreover, dependent but uncorrelated residuals are obtained
(Lewis and Lawrance, 1983) even for the NEAR(2) process. Thus the residuals
should be subjected to further analysis in respect of their remaining de-
pendency. Any found is then evidence that a standard linear, constant co-
efficient second-order autoregressive model is deficient. With normally
distributed time series data this might suggest that non-1linear modelling
should be explored. With data marginally distributed in some other identi-
fiable manner, then the exploration of a particular type of model with
specified marginal distribution and autocorrelation function is suggested.

This latter course is envisaged here.
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Higher order dependency properties of the uncorrelated residuals are
obtained for the proposed model and compared with their data counterparts;
this stage can be informative from both exploratory and estimation consid-
erations, and can be thought of as part of the model-refinement process
common to much statistical methodology.

It might be thought that the specific class of NEAR(2) models could be
incorporated in a residual analysis in the standard manner. However, a
moments reflection indicates that even after estimating parameters of (2.2),

it will not be possible, because of the mixture involved, to write down an

expression or recursion for the residual innovations, namely E, . However,
the corresponding autoregressive (or linearized) residual is available and

given, as in the previous section, by

n n 1°n

We now show that these are uncorrelated for the NEAR(2) process.

7.2. The residual theorem.

The autocovariances of the residuals (7.1) are

Cov(Rn, Rn+z) Cov(Xn, Rn+z) -a Cov(Xn 1 n+z) - a Cov(Xn 2 n+2)

Cov(Xn, Rn+z) - a]Cov(Xn, Rn+£+1) - aZCov(Xn, Rn+z+2) A

since the {Xn} process and consequently the {Rn} process is stationary.

The covariances on the right hand side are all of the same type and given by

R = X - a X _] - azxn-z . (7.])

(si2)

Cov(X.» Rys,) = CoviXo, (Xopo = ayXp, g - 3K, o))
(7.3)
= (Var(X)}(e(2) - ape(2-1) - ap(e-2)), 2 =1,2,...
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By the Yule-Walker equations (5.4) the expression in brackets is zero, and

hence also

Corr(R,R,)=0, 2=+1,%2,.. (7.4)

as was to be proved. That these residuals are uncorrelated is an immediate
consequence of the autocorrelations following Yule-Walker equations; this
emphasizes that this type of residuals will be uncorrelated for any model
whose autocorrelations satisfy Yule-Walker equations.

The analysis of the uncorrelated residuals Rn,n = 3,4,... should begin
with scatter plots of the low lag adjacent values; any patterns or concen-
trations will be evidence of dependency in the residuals. Many possibilities
present themselves but only one is pursued in the following Section 8, and

then applied in Section 9 to a continued analysis of the wind velocity data.
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8. Cross-correlation analysis of {Rn} and {R
After the satisfactory fit to data of an ordinary linear model, the

residual, R_, should not only be uncorrelated but also independent; the

n
latter is customarily investigated by seeking a flat spectrum, while for

the independence, a flat spectrum of the squared residuals can be sought.

As a method for probing model validity, the examination of squared residuals
has been employed by MclLeod and Li (1983), following Cranger and Andersen
(1978); these authors suggested bilinear modelling for dependent but un-
correlated residuals of ARMA models. It is suggested here that autocorrela-
tions of squared residuals and cross correlations of residuals of squared
residuals be used in the analysis of higher order dependence of the detrended
transformed wind speed data and its modelling by the NEAR(2) process. The
residuals for this data have already been shown to have a flat spectrum

(Figure 6.4) while the curved plot in Figure 8.1 for the cumulative periodogram
shows that the spectrum of the squared residuals is far from flat.

Theoretical investigation of the squared residuals of the NEAR(2) model
is pursued here. Whilst the autocorrelations of the squared residuals have
just been mentioned, for the NEAR(2) model this involves computation of
36 terms, mostly distinct types of 435 order moments. A simpler suggestion
which involves only third-order moments, and is thus the next step up after
autocorrelations, is to use the cross correlations of the Rn and Rﬁ sequences;
apart from lag 0, zero values will be found for linear models. This sug-
gestion is more tractable than the squared residual analysis and will now
be described. Sampling properties of third-order moments are also likely
to be less extreme than those of fourth-order moments.

The starting point of the calculation is to note that from the definition

of Rn at (7.1) that
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E(R R

nRn- 2) E(R X

g 2) - a E(R X

2
3 (R y) 5

n-g- 1) 1
whence there is the structural form,

2 . 2 2 2
Cov(R.s R_,) = Cov(R, X _ ) - a;Cov(R, X ;) - a,Cov(R., X - ,) . (8.6)

n-¢ n
Calculation of the covariance terms in (8.6) requires the expanding out of

2 . : ST .
Rn, taking expectations and expression in covariance terms. Thus

2 - 2 290 2.2
Ro*n-p = Xn¥n-g * Xy Xt azxn-zxn-g
2a1ann 1%n-% 2a2ann 2°n-¢
t ek X 2%, (3.7)

The conversion to covariances yields

2 - 2 2
Cov(Rn, xn-z) = J](z) + a]dl(z-1) + azd](z-Z)

-Za JZ()) - 2a2J3(f) + Za]azdz\k-1) (8.3)
where

A 2 _
Jy() = Cov(Xy s X o) 5 Jp(2) = Cov(X X 4, X ) .

Ja(e) = Cov(X X s X. .} - (8.9)

We thus see the types of third-order joint moments which are involved in
the Cov(Rg, R,.,) calculation: each of these has to be obtained using two
difference equations, one for 2 > 0 and one for ¢ < 0 .

Taking J](z) for illustration, square each side of the NEAR(2) defin-
ing equation (2.2) and multiply by Xn-g * After converting to the required

covariances, the recursion is found to be

J](z) = a]B]J](z-l) + azszdl(z-z) + 2(1-a] - az)p(z) . (8.10)

3
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For negative £ there is the corresponding equation

J1(£) = a1J1(2+1) + a2J1(9+2) R 8.11)

obtained by multiplying each side of (2.2) by Xﬁ_i and converting to
covariances. These equations are given for illustration: there are similar
equations for JZ(Q) and J3(z) , and various special cases. Also required

is the variance of Rﬁ which involves many terms.

The complete algorithm for computing the cross-covariances is as follows.

Algorithm for computing cross-covariances for ¢ =0, + 1, ...

1+
=

0. Input ays 2y, Bys By -
Set p(0)

(]

1; p(1) = a1/(1-a2); p(2) = apy + a, and, for ¢ = 3,...,K ,
p(r) = a]p(1-1) + azp(l-z). Note that p(-2) = p(2) but these are

not needed in computations.
2
1. Set J1(0) = 4; J(1) = {4a1(e1+a232) + 2(1-a1-a2)]/(1-a262) .

2a. J1(z) = a1J1(z+1) + a2J1(z+2) for 2 ==1, -2,..., - (L+4) .
Zb. J](l) = a181J1(l-1) + 6282J1(l-2) + 2(1-61-az)p(l) for o 8 2,3,...L .

3. Set JZ(O) - J1(1) SRR J2(1) = J1(-1) -p(1) + 1.

+

4a. Jz(z) = a]J2(1+1) a2J2(1+2) for 2 =-1,-2,..., -(L-3) .
&b. Jz(z) = a1J1(1-1) + a2J2(1-1) + 2a1 + (1+p(1))a2

-[14p(1)1 + 01 + p(l-1)](1-a1-a2) for £=2,3,..., L.
5. Set J3(0) = J,(2) - p(2) + 15 J5(1) = J2(2)+o(1)-p(2); J5(2) = 3;(-2) - o(2) + 1.

6a. J3(l) = a1J3(l+1) + 62J3(l+2) for o, 5 -1, '2,---, ks (L+2) .
6b. J5(2)

[}

a1J2(z-1) + a2J1(z-2) + [1+p(1)]a1 + 2a, ‘
+ [1+p(£-2)](1-a1-a2) - (1+p(2)) for R SR

32
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7. () = 33(a) + a5, (2-1) + aB3(2-2) - 2a30,(n)
- 2a2J3(£) + Za]azdz(z-?) for 2

- (L+2),..., (L) .

8. Cross-covariance (Rﬁ, Ri_g) = d(r) - a;d(e+1) - a,0(e+2)

for g=-L,..., L.




9. Further Analysis and Modelling of the Wind Velocity Data

Dependence in the uncorrelated linear residuals for the NEAR(2) model
has already been demonstrated (Figure 8.1). Further evidence of this is
provided by the cross-correlations of R, and Rﬁ given in Figure 9.1.
The corresponding theoretical cross-correlations for the NEAR(2) model will
next be presented, having been computed using the algorithm given in
Section 8. At this point, it will be recalled, the NEAR(2) model has not
been fitted in terms of all 4 parameter; the residuals involve the model
parameter only through ay = ay8y and 3, = asB, and aq58y5%558, have
not been separately estimated. In the present rather exploratory analysis
the estimation problem will be circumvented; the cross-correlations of
(Rn,Rﬁ) will be given for four representative sets of parameter values in
the reduced allowable region, asconstrained by (a] > 315 ay > 3y, oy * o0y < M
according to (5.6). For the detrended transformed wind speed data,

ay = 0.75488 at a, = 0.05463, and the four chosen sets are given by

(A) ay = 0.760, a, = 0.06; 8y = 0.99326, By = 0.91050
(8) ay = 0.925, a, = 0.06; 8; = 0.81608, By = 0.91050
(C) ay = 0.760, a, = 0.20; By = 0.99326, By = 0.27315

(D) ay = 0.850, ay = 0.10; By = 0.88809, By

0.54636.

In Figure 9.2 the cross-correlations of (Rn,Rﬁ) for each of these
cases are presented; there is considerable differentiation amongst the
figures, although the zero values for all but one or two negative lags are
evident in all four cases. This effect will be due to the directional
nature of the process. For matching with the wind speed data, Case D
appear the most promising, although the suggestion of a negative correlation

at lag minus one lends a little support to Case A . Cases B and C are




definitely unsympathetic to the data. Hence, a choice of parameters inter-
mediate between Cases A and D 1is suggested by this exploratory analysis.

A fuller analysis would require estimates of all four parameters and compari-
son of the resulting residual-squared residual cross-correlations with the

estimated cross-correlations obtained from the data, as shown in Figure 9.1.
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10. Conclusions and Further Analysis

The very broad four parameter NEAR(2) time series model having expo-
nential marginals and the correlation structure of an AR(2) model has been
establishedﬁ further developments will be reported elsewhere. A preliminary
fit of the NEAR(2) model has been made to a very long series of wind speed
data, the data having been detrended and transformed so as to have exponen-
tially distributed marginals; utility of the suggested residual analysis in
probing higher order dependence has been demonstrated. This residual analysis
has been based on the cross-correlations between the residuals and the
squared-residuals.

An extension to this analysis using reversed residuals is possible;
more of the higher order dependency of the NEAR(2) model would be revealed
and this would enable further aspects of its suitability of the model for

the wind speed data to be ascertained.
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