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ABSTRACT 

A second order autoregressive process in exponential variables, NEAR(2), 

is established: the distributional assumptions involved in this model high- 

light a very broad four parameter structure which combines five exponential 

random variables into a sixth exponential random variable. The dependency 

structure of the NEAR(2) process beyond and including autocorrelations is 

explored using some new ideas on residual analysis for non-normal processes 

with autoregressive correlation structure. Other applications of the expo- 

nential structure are considered briefly. These include exponential time 

series with negative correlation and exponential time series with mixed 

autoregressive-moving average structure. An application to the analysis of 

a set of wind speed data is included.    _^- 
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1. Introduction 

There are several aspects of many observed univariate time series which 

are not satisfactorily accounted for in standard time series analysis: they 

include non-Gaussian marginal distributions, dependence beyond second-order 

moments (autocorrelations) and directionality in the time series. Quite 

often a Gaussian distribution will be inappropriate because the variable 

being modelled has a positive and highly skewed distribution, i.e., the 

service times in a queue or daily flows in a river. Many particular such 

distributions can be envisaged and time series models have been constructed 

for them. Examples are Gamma distributions (Gaver and Lewis, 1980; Lewis, 

1981; McKenzie, 1982; Lawrance, 1982) and mixed exponential distributions 

(Gaver and Lewis, 1980; Lawrance, 1980a; Lawrance and Lewis, 1982) 

However the simplest, most widely used and most tractable analytically 

of these distribution models is the exponential distribution. Like Gaussian 

random variables, exponentially distributed random variables enjoy many 

special properties; also they can be mildly transformed quite easily into 

distributions which are more skewed,or less skewed, than the exponential. The 

Weibull distribution is an example, being just a power transformation of an 

exponentially distributed random variable. Thus the approach here, following 

earlier work (Gaver and Lewis, 1980; Lawrance and Lewis, 1980, 1981) is to 

regard the exponential variables as canonical and to develop their use in 

time series modelling. It should also be noted that time series of uniformly 

distributed random variables are obtained by exponential transformations of 

the exponential time series; this has many possibilities and the process 

of uniformly distributed random variables will be considered elsewhere. 

The work cited above has concentrated for the most part on first-order, 

non-Gaussian autoregressive models, both of the standard type (constant 

coefficient additive linear combinations) and a random coefficient type 

1 
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introduced by the authors. The extension of the models to higher order 

autoregression is clearly necessary to attain flexibility in modelling cor- 

relation and dependency structure of the processes, but these extensions are 

in no way as immediate as in the standard linear Gaussian case. A simple 

mixing device can be used (Jacobs and Lewis, 1983) but the range of correla- 

tions attained is much narrower than the range attained in the standard 

linear, second-order autoregressive structure. A broader extension, called 

the EAR(2) model, was obtained in the exponential case by Lawrance and lewis 

(1980), but its innovation variable has a zero component and this will often 

be hard to justify. 

A major part of the present work consists of obtaining a very broad and 

rich extension of the NEAR(l) model (Lawrance and Lewis, 1981) to a second- 

order autoregressive process; this NEAR(2) model was first proposed in 

Lawrance (1980b) and later reviewed in Raftery (1981), although necessary 

analysis of its innovation structure was not given. The innovation random 

variable for the NEAR(2) process is proved here to exist without unnatural 

boundaries on its (four) parameter region and does not have a zero component. 

Taken out of the context of second-order autoregressive exponential time 

series this result gives a very broad structure for combination of exponential 

random variables. In fact it gives a way to combine three (possibly dependent) 

exponential random variables with an independent pair of (possibly dependent) 

exponential random variables to give another exponential random variable. The 

result has a number of uses beyond the second-order time series model giving, 

for instance, a first-order model which is broader than the NEAR(l) model, and 

several second-order mixed autoregressive-moving average models. Schemes for 

obtaining negative correlation can also be accommodated. These models, as in 

the first-order case, include aspects of dependence beyond autocorrelation and 

also directionality in the time series. 
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The richness of the four-parameter NEAR(2) model and the fact that an 

infinite number of cases of the model with identical correlation structure 

are available forces consideration of higher-order aspects of dependence. 

The analysis of the higher order aspects of the exponential time series is 

at a fairly early stage and is as follows. First it will be shown that the 

autocorrelations PU), ft = 0, + 1, +2,... for the NEAR(2) process satisfy 

the Yule-Walker equations with constants a, and a~ which are functions 

of the four parameters of the model. This follows immediately from the fact 

that X„ is a random-coefficient, linear additive combination of X , , n n-1 

X - anc' tne innovation r.v. E . Secondly, it can be shown (Lewis and 

Lawrance, 1983a) that the residuals X - a,X , - a~X - > which are the 

usual residuals for second-order constant coefficient, linear additive 

autoregressive processes are uncorrelated. 

Thus although the standard analysis of time series stops with uncorrelated 

residuals, i.e. a flat spectrum for the residuals, such residuals can also be 

used to good effect to investigate higher order aspects of dependence in the 

NEAR(2) model. In fact, if the autoregression is not of the standard type 

(constant coefficient, linear additive) the (uncorrelated) residuals will 

have non-random scatters and higher order dependence properties. In partic- 

ular, the squared residuals will have non-zero autocorrelations and the 

cross-correlations of residuals and squared residuals except in the zero- 

lag case will be non-zero; both sets of correlations are effectively zero 

when a standard second-order autoregressive model is appropriate. 

An extension of this residual analysis is suggested by the fact that 

autocorrelations are time reversible, while the process itself is not time 

reversible, i.e. is directional. Thus one constructs reversed residuals 

X - anX ., - a0X ,0 which are to be used to assess directionality. Analysis 
n   I n+i   c n+c 
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of both types of residuals can be fruitful; because of space limitations we 

present here only an investigation of cross-correlations of residuals and 

squared-residuals. This particular case of the possible residual analyses 

is illustrated by some theoretical calculations, some simulations and a brief 

application to a transformed series of wind speed data. The complete residual 

analysis including directional aspects and their investigation using the 

additional tool of reversed residuals will be given elsewhere. 
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2. Exponential Time Series Models 

Our aim in this section is to give in outline the ideas leading to the 

time series model of main concern in this paper, and called NEAR(2), follow- 

ing the earlier terminology NEAR(l). The NEAR(2) model has four-parameters, 

and incorporates and broadens the earlier two-parameter EAR(2) model (Lawrance 

and Lewis, 1930). The NEAR(2) model will be exponential in marginal distri- 

bution, have second-order autoregressive Markov dependence, and have auto- 

correlations satisfying second-order difference equations of the familiar 

Yule-Walker type. In addition it will have dependence beyond autocorrelation, 

and will have adjustable directionality. It is not linear in the standard 

sense, having random-coefficient, linear additive autoregressive structure, 

but neither is it non-linear in the standard sense of incorporating powers or 

products of lagged variables. 

Writing {Xn} for the time series variables, and {E } for an i.i.d. 

exponential innovation sequence of unit mean, the two-parameter NEAR(l) model, 

as previously defined, is given by 

(2.1) 

with b = (l-a)ß and p = (l-ß)/{l - (l-a)ß} . The parameter region is in 

general 0<a, M 1, a= j/ 1 , The case ß = 1, 0 < a < 1 is rather 

special, and has been called the TEAR(l) model, and when a = 1, 0 < $ <  1 , 

the earlier EAR(l) model is recovered. Except for this EAR(l) case, the 

NEAR(l) model does not allow zero innovations (Gaver and Lewis, 1980) and so 

is more statistically acceptable. The zero innovation implies that 

X = eX i and thus e can be determined exactly from runs down in the 
n   n-1 

sample path of the process. 

In general the i.i.d. innovation in the NEAR(l) process are formed as 

the probabilistic mixture of two exponentials, and are thus easily simulated. 



F 
The NEAR(2) model is a direct generalization of (2.1) and takes the form 

Xn = 

*lx„-l   W'P- al 

h\-2       W-P- a2 

0       w.p. 1-a 

+ E (2.2) 

1 " a2 

with parameter region 0 < B,, ß2 £ 1, a, > 0, a„ >_ 0, a, + a- < 1 ; (E 1 is 

an appropriately chosen innovation sequence. Many special cases can  arise 

when the above restrictions include some of the equalities and, for the pur- 

poses of a general development, it is best to regard the inequalities as 

strict. Given that {Xn} is required to have an exponential marginal distri- 

bution, the main question concerns whether there is a valid probability 

distribution for E . The Theorem proved in Section 2.3 will show that 

this is the case, and that the distribution, when the inequalities on 

Oj + 0^ and ß,, p^ in the parameter region are strict, takes tre form 

E = 1 
n 

w.p. 1-p, 

b2En   w-p- p2 ' 

3 n 
w.p. p. 

;3 ' 

(2.3) 

a probabilistic mixture of three exponentials. To establish this result a 

fairly detailed analysis of a derived moment generating function is required. 

This is necessary since a direct moment generating function solution of (2.2) 

for E  does not establish that E„ has a proper distribution; all that is 
n n 

shown is that the solution is a possibly improper mixture of three exponentials. 
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3.    Validity of the NEAR(2) Model 

In this section we prove the following 

THEOREM.    Let    {E }    be an i.i.d.  sequence of unit mean exponential  random 

variables.    Then if the four parameters    a-,, a2,  B-., P2    satisfy 

a,  > 0, a2 > 0, a,  + a„ < 1,  0 < ß,,  2    < 1, the relationship 

Xn = < 

ßlXn-l       w-p* al   * 

ß2*n-2       w,p' a2  * 

0 W.p.   1-a,   -   a- 

+ En  ,      n = 0, + 1, + 2,...,        (3*.l) 

where 

fcn 
w.p 

»2En 
w.p 

»3En 
w.p 

l-p2 - p3 , 

J2 ' 

J3  » 

(3.2) 

defines a stationary sequence of (marginally) exponentially distributed 

random variables with mean one.    Here 

P2  *  Ka1ß1   + a2ß2)b2 -  {a}   + Ogjßjßgl/C (t>2  '  b3^1 "  b2^}   ' 

p3  =   {{a]   + a2)ß]B2 -   («1ß1   +   o^ß^b^/{(b2 -  b3)(l - b3)}   , 

where 

and 

S  =   (1   -  a1)ß1   +   (1   -  cx2)ß2   , 

(3.3) 

(3.4) 

and 

0 < b3 = 1 js -  (s2 - *r)1/2j < b2 = 1 |s + (s2 - 4r)| < 1   , (3.5) 

(3.6) 

r =   (1   -  a-|   -  a2)ß-jß2 (3.7) 

-   -.«•>••   .  •* «._.rr^ *i<fg»,+ii* ? Y -    cat-.- t mpr 



PROOF. For the NEAR(2) model specified by (3.1) - (3.7), let $x(t) and 

<(>E(t) be the moment generating functions of the {X } and {E } sequences; 

then quite simply if stationarity of the {X } series is assumed, n 

*XU) = •E(t){a1*x(ß1t) + a2$x(ß2t) + (1 - a1 - a2)} . (3.8) 

Assuming an exponential marginal distribution of unit mean for {X } , then 

the independent distribution of {E } has moment generating function, 

possibly not proper, given by 

•c(t) -  J L-  .     (3.9) 
(l+t)[(l-a1 - a2)ß1ß2t

c + {(l-a1)ß1 + (l-a2)ß2}t + 1] 

First we remark that (3.9) simplifies in special cases, such as when one of 

^» &2  = 1' ei = e2' or al + a2 = ^ " For slmPlicity in the development, 

the parameter region considered in the theorem is that defined by 0 < ß,, 

ß2 < 1, ot-j, a2 > 0, a-j + a2 < 1 . Interesting special cases are more easily 

treated separately; these include NEAR(l) models and particularly tractable 

types of NEAR(2) models. 

It is convenient to establish right away that the quadratic term in the 

denominator of (3.9) has real distinct and positive roots, b, and b2 ; this 

eliminates any subsequent need to invert such a term as a whole. The required 

condition for real distinct roots is that 

C(l-a1)ß1 + (l-ct2)ß2]
2 - 40-aj - a2)ß1ß2 

be positive:    this is so from its equality to the expression 

f»-'- vr -     CSP^T 



C(l-a1)ß1 - (l-a2)ß2] + 4a1a2ß1ß2 

which is clearly positive; the positivity of the roots b, and bo is obvious 

from (3.9) since their product and sum given in (3.11) and (3.12) below are 

both positive. 

Subject to the above qualifications concerning b, and b2 , a partial 

fraction expansion of (3.2) can be written in the suggestive form 

•E(t) - (1-P2-P3) T?t 
+ P2 üb^t + P3 T^t • (3J0) 

Comparisons between (3.9) and (3.1C) then show that b2, b3 and p2, p3 may 

be obtained in terms of ß,, ß2 and »1, a2 by solving the equations 

b2 + b3 = (1-c^)^ + (l-o2)ß2 ; (3.11) 

b2b3 = (1-c^ - «2)^2 ' (3>12) 

(l-b2)p2 + (l-b3)p3 = a1ß1 + a2ß2 ; (3.13) 

b3(l-b2)p2 + b2(l-b3)p3 = (o1 + 02)3^2 • (3-14) 

A difficulty with this apparently straightforward solution is that the inversion 

of (3.9) or (3.10) could lead to a function which is not a probability density, 

or it could yield a probability density but not one which is a probabilistic 

mixture of three exponentials. In fact, neither of these possibilities is 

the case, as will be shown by establishing that p2 and p3 are positive 

and subject to the condition p2 + p3 < 1 , and hence can represent 

probabilities. 
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Explicit expressions for p2 and p3 can be obtained from (3.13) and 

(3.14) and are given at (3.3) and (3.4). From now on it will be assumed, 

in accordance with the theorem, that b2 is the larger of b? and b? , 

these being obtained by solving the quadratic pair (3.11) and (3.12). Jo 

establish that p2 + p3 < 1 , we have, by adding (3.3) and (3.4), 

P2 + P3 = 

(a, e, + a,ß9) - (a, + a,) 1 1   2 2 1 ' u2'plp2 
d-b2)(l-b3) 

(3.15) 

Multiplying out (l-b2)(l-b3) in the denominator and using (3.11) and (3.12) 

gives, after some rearrangement, 

(l-ß1)d-62) 
P2 + P3 = ' ~ (l-ß1)(l-ß2) + a^d-ßg) + a2&2(]-^)   ' (3.16) 

The algebraic expression here is clearly positive and less than one, from 

which it follows that p, + p2 < 1 . 

The positivity of p2 and p3 will now be proved by showirg that the 

numerators and denominators of (3.3) and (3.4) are positive. For the 

denominators, this requires that 0 < b2, b3 < 1 which will be verified 

by showing that 0 < b2b3 < 1 and 0 < (l-b2)(l-b3) < 1 . The first of 

these latter two inequalities is obvious from (3.12); for the second consider 

the expressions 

(l-b2)(l-b3) = 1 - (b2 + b3) + b2b3 

=   (a]ß1   + l-ßj)(a2ß2  +  1   -  ß2)   -   (ajßjKagß^ 

after using (3.11) and (3.12), and then 

1 - (l-b2)(l-b3) = b2 + b3 - b2b3 

= (l-a^O-ßg) + (l-ogjßgd-ß^ + ßjßg • 

(3.17) 

(3.18) 

10 
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Both the right hand sides of (3.17) and (3.18) are obviously positive. This 

concludes the proof that 0 < b,, b, < 1 and hence that the denominators of 

P2 and p3 are positive. 

For the numerators of p2 and p- to be positive (3.3) and (3.4) 

indicate that b • (a, + a2)ßi32/(a,ßi 
+ a2e2^ must satisfy tne inequalities 

b, < b < b2 (3.19) 

At this last stage, explicity expressions for b2 and b3 must be used, 

and from (3.11) and (3.12) are given, after writing 

by 

s = (1-ot^)ß-j + (l-a2)ß2 and r = (l-a-j-ag)^^ ' 

b2 = ^{s + (s
2-4r)1/2( and b3 = ^s - (s2-4r)1/2>.        (3.20) 

Then (3.19)  is equivalent to 

- (s2-4r)1/2 <  s - 2b < (s2-4r)1/2 

or 

or 

s2-4r > (s-2b)2 

sb - b   - r > 0 (3.21) 

After some algebraic rearrangement the left hand side of (3.21) becomes 

2 2 
ala2ßlMßl~ß2^ /(ai^i+a2e2^ (3.22) 

which is again clearly strictly positive, excluding special cases, as 

was to be proved. 

11 
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This concludes the proof that p2 and p3 are both positive subject to 

p2 + p3 < 1 ; hence l-p2 ~ P3 » P? » an(* P3 can a^ De regarded as prob- 

abilities. Thus E  has a proper probability distribution which can be 

generated as the (l-p2 - P3» P?» P3) mixture of three exponentials of 

means 1, b2 and b3 respectively; further, both b2 and b3 are less than 

unity and b2 t  b3 . 

In the special cases mentioned earlier, there are valid and simpler 

results for the distribution of E . For instance, when ß, = ß2 = 1 , 

E  has a simple exponential distribution of mean (1-a, - o2) . When 

ß, = ß2 f  1 the innovation has a mixed exponential distribution of the 

NEAR(l) form given in (2.1) with a = a, + a2 . Delineation of all these 

special cases is needed for successful simulation of the NEAR(2) process 

for the full parameter range. This will be considered elsewhere. 

12 
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4. Other Uses of the NEAR(2) Exponential Construction 

The NEAR(2) process was established by showing that (3.2) was a valid 

innovation distribution for the relation (3.1). The distributional assump- 

tions implied by this result can also be taken out of the time series context in 

which they were derived and viewed generally as a way to combine a pair of 

(possibly dependent) unit exponential variables (L,, L2) with an independent 

triple of (possibly dependent) unit exponential variables (M,, M2, M3) so 

as to yield a further unit exponential variable. Specifically, with 

(a-,, a2, &-\,  ß2) 
and (°2' b3» P*' P3) as previously related by (3.3) - (3.7), 

the Theorem has established that 

ß2L2 

w.p. 

w.p. 

w.p. 

al 

a2 

1-a 

+ • 

M, w.p. 

b2M2 w.p. 

b3M3  w.p. 

1-Pi 

(4.1) 

has a unit exponential distribution. 

First of all, the idea of "switching" will be illustrated; in the NEAR(2) 

context, this suggests taking (M1, M2, M3) as Un_-|> Xn_2, Xn_3) and 

(L-j, L2) as (En, En) . Then (4.1) gives the time series model 

X_ = 

Vi w.p. l-p2- P3 *lEn w.p. al 

b2Xn-2 w.p. p2 + ' *2En w.p. a2 

b3Xn-3 w.p. P3 0 w.p. 1—1 

(4.2) 

This is a third-order autoregression, actually a case of the EAR(3) model 

cited in Lawrance and Lewis (1979); note, however, that this third-order 

autoregressive exponential process allows zero innovations. Another, better 

13 
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behaved higher-order exponential model -in fact a p-th order model- is 

obtained by the following application of the result (4.1) in its original 

form (3.1). Let the indices l,2,...,p be partitioned into two non-empty 

sets I, and I2 of size t, and t2 respectively. Then in the model 

rß'X    , 
1 n-1 w.p. 1 

al 
• • • • • • • • • 
• • • • • • • • • 

6PVP w.p. 
ap 

0 w.p. T-aj 
pj 

• + En ,  n - 0, + 1, + 2,...,  (4.3) 

let    $\ = p.,  f€I-j ß! = ß?,  t€l„;    I     a'.  = a1    and     £     a\  = ao •    Then 
l€l, i€l2 '   l 

if a^ + a2 < 1 , 0 <: ßj, 32 < 1 the distribution of E  is given by the 

Theorem. Thus we have a pth-order exponential autoregressive process with 

four-parameters. However, while this may seem satisfying it is not clear 

that four parameters would be sufficient to characterize the sample path 

behaviour of an exponential process with very  high order dependence. 

Another use of (4.1) is to allow L, and 1_2 to both be X , , and 

so obtain a four parameter first-order model of the form 

•IVI w.p. al 

ß2Xn-l w.p. a2 

0 w.p. '-I' • a2 

w.p.  l-p~ - p- , 

¥n w-p- '2 ' 

b3En w.p. p3 . 

(4.4) 

Four parameters seems excessive for a first-order autoregressive process but 

simulations show a wide range of behaviour in sample paths with different 

choices of parameters. Equation (4.4) in turn suggests a first-order model 

allowing negative dependence. This is obtained by letting the variable in 

14 
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(4.4) which is multiplied by ß9 be the antithetic transformation of X , , 

"Vl 
that is - log(l-e   ) . A two parameter version of the model could be 

obtained, for example, taking a, = a- , ß, = ß„ • 

A third type of use of the construction is to give mixed autoregressive 

moving average models; for this, (L^, Lp) is Un_-|> 
x
n_?) 

as previously, 

but (M,, M2» M3) are chosen to be (E  E^+1, E^) for a second-order moving 

average cumpoent, or as (E  E
n+i« 

En+2^ ^or a tn"ird~order moving average 

component. 

Out of the time series context, the construction suggests ways to obtain 

multivariate exponential distributions, rather as in Lawrance and Lewis 

(1983b). 

Further possibilities are numerous, but it is not the intention here to 

exhaustively list them, or to derive the details of those cited at this time. 

Analysis in the following sections will deal with the basic NEAR(2) model. 

15 
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5. Autocorrelation Structure of the NEAR(2) process 

In this section we show that the autocorrelations pU) = corr(xn»
x
n_J» 

I = 0, + 1, + 2,... of the NEAR(2) process satisfy Yule-Walker type dif- 

ference equations; thus the second moment dependency aspects of the process 

are indistinguishable from those of a standard autoregressive model, AR(2). 

To show this it is convenient to write the equation (3.1) as an additive 

autoregressive combination of X ,, X - and E . Thus we have a random 

coefficient, linear additive autoregressive process 

where 

K   *    MnXn 1    + Mn*„ 0    +   LnE„ n   in n-1   Z n r\-c        n n 

t 
1      w. P. 1-P2 - P3 ' 

b2   w. P. P2 » 

b3   w. P- P3 , 

(1,0) w.p. al   ' 

(0,1) w.p. <*2  ' 

(0,0) w.p. l-a-.   -  a« 

n = 0, + 1, + 2,..., 

n = 0, + 1, + 2,..., 

0, + 1, + 2,, 

(5.1) 

(5.2) 

(5.3) 

and the i.i.d. sequences {Ln} and {K , K } are mutually independent and 

independent of the independent exponential sequence {E } . The En's are 

assumed to have mean and variance 1 , as do the X 's by construction. 
• i 

Now E(Kn) = a1 and E(Kn) = a2 , so that E(Ln) • l-«^ - a2
62 ' 

Then multiplying Xn in (5.1) by Xn_^ we have, for I >  1 , 

E(Vn-£> = W^I-lW + a2e2E(Xn-2Xn-P + E(Ln>E(En>E<Xn-^ 
= alßlE(Xn-lW + a2ß2E(Xn-2Xn-£) + ] '  Vl " a2ß2 • 

so that 

E<XnXn-*> " 1 = Vl{E(Xn-lXn-£> " 1} + a2ß2{E(Xn-2Xn-£) " 1} 

16 
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—........ — —  

and P(-£) = alP(-(£-l)) + a2p(-0e-2)) 

where a] = a^ and a2 = a^ . Using P{-1) = P(l), I  > l , we have 

finally 

oil)  • a]P(l-l)  + a2p(£-2) , I  > 1 , (5.4) 

which are the Yule-Walker equations for the AR(2) process. The conditions 

for a solution to exist (Box and Jenkins, 1970, p.58), a, + a? < 1 , 

a2 > a2 > - 1 are clearly satisfied when the conditions on 

<*j» «2' ßl' h    9iven in the Theorem of Section 3 hold. We then have 

PO) = a.,/(l-a2) and P(2) = a^O) + a2 . (5.5) 

Note, however, the restriction to positive correlations since a1 and a~ 

are positive. The possible region of (p(l),p(2)) values is bounded below by 

p(2) = p (1) and otherwise bounded by p(l) > 0 and p(2) <_ 1 . Broadening 

of the model to negative dependency may be achieved using antithetic ideas, 

or the bivariate scheme given in Gaver and Lewis (1980), but is not pursued 

here. 

Note too that the parameters in (5.4) enter only as products a-, = a-iP-. 

and a2 • a232 • Thus for small enough a, and a2 , values of ß, and ß2 

greater than one could be allowed, and (5.4) would still have a stable 

solution. However the sequence E  in the defining equation (3.2) may not 

exist; it is not known if ß, <_1 and ß2 <_ 1 is a necessary condition for 

this existence. 

Solutions to (5.4) are given in detail in Box and Jenkins (1970, 

pp. 58-60). 
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Specifying allowable values of p(l) and p(2), as may be done by an 

initial second order analysis of data, leaves two parameters to be specified 

in the model, say a, and a~ which could produce very different sample 

path behaviour in the time series. It is important to notice that this 

specification of p(l) and p(2) further constrains the range of possible 

a, and dp values. Recalling that p(l) and p(2) fix a-i = a-,?,-,    and 

a~ = apSo' as we^ as tnat »i + ou <_ 1 , 1t Is easily shown that we must 

have 

a, _< a,    and a~ <_ a~ (5.6) 

which implies that a, + a» < a, + a» < 1 . Thus a, and a2 are forced 

to lie in a triangular subregion of the triangular (a,,«^) region which is 

bounded below by a~ , bounded on the left by a, , and bounded above by 

the 1ine a, + a2 = 1 . 
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6. An analysis of wind velocity data 

6.1. Discussion of the data 

Lewis and Hugus (1983) have given an analysis of a set of 3-hourly 

wind velocity readings taken by ship PAPA in the Gulf of Alaska over a 15 

year period. After suitable detrending to remove 1 year, 6 month, 12 hour 

and 6 hour cyclic trend components a first-order autoregressive Gamma model 

(Lewis, 1981) was fitted to the data, the use of the model being suggested 

by the shape of the (marginal) histogram of the data (Figure 6.1) and the shape 

of the normalized log periodogram of the data (Figure 6.2). Note that the 

sample size is N = 43,800; also there is a residual 6-hour effect (P = 21900) 

because this cycle varies in intensity over the 15 years. In what follows 

this will be ignored and the data will be treated as stationary. 

It is not the object here to discuss the above analysis in detail but 

to discuss a different analysis of the data using an assumption of a Weibull 

marginal distribution and a transformation to exponential variables. This 

is suggested firstly by the fact that a Weibull distribution is commonly used 

for this type of data by meteorologists and secondly by  the fact that Weibull 

and Gamma distributions fit the data equally well (Lewis and Hugus, 1983). 
i    p 7Cf\ 

The histogram of the transformed data, X = X " , is shown in Figure 6,3, 

where the power transformation to exponentiality has been determined by fitting 

the empirical coefficient of variation, 0.479, to the theoretical Weibull 

coefficient of variation, C(X) • {r(2/c + l)/[r(l/c + l)]2} - 1 to give 

c = 2.205. This transformation does affect the correlation structure of the 

data, as shown in Table 6.1. 

Column 2 in Table 6.1 gives the estimated auto correlations, PU) , 

of the detrended data; rough 95% confidence bands for these estimates are 

given by adding and subtracting 2/(N)1/2 = 2/(43,800)1/2 ~ .01 . The first 
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column gives the fitted auto correlations for a model with AR(l)-type auto 

correlations, just p(ij • (p(l))e = (.8214)' , for lags i  = 1 5. 

The maximum difference (3rd column) is 0.0109 and the fit is clearly good. 

Column 6 in Table 6.1 gives the estimated auto corelations, p(l) , 

for the transformed data; the transformation changes the serial correlations 

slightly. However, columns 5 and 7, which give the fitted AR(1) and AR(2) 

correlation models respectively, show that a model with AR(1) correlation 

structure is not adequate, but that a model with AR(2) correlation fits well. 

This fit is borne out by a periodogram analysis, which is not given here. 

Thus, a NEAR(2) model is a candidate for representing the transformed 

data, and if p(l) and p(2) are fixed at the estimated values of 0.7985 

and 0.6574, then the corresponding a, = (a-jg,) and a2 = (a^ßo) from (5.5) 

are, respectively, 0.75488 and 0.05463. There are still two degrees of free- 

dom left in fitting the model, represented by choice of parameters a,    and 

a2 greater than an  equal to 0.75488 and 0.05463 respectively, with 

Figure 6.4 shows the logarithm of the periodogram of the usual AR(2) 

model linear residuals, R = X' - a,X' , - a^X'o> of the transformed data. 

This is flat (ignoring the slight effect at period 6 hours). At this point 

it might be thought that the usual second-order autoregressive model is 

adequate. We shall however now develop an extended residual analysis for 

higher order dependence which justifies fitting the NEAR(2) model to the 

transformed data. 
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7. A Residual Analysis for the NEAR(2) Model 

7.1. General results 

It has already been remarked that the autocorrelations p(n) are 

insufficient to describe the dependency structure of NEAR(2) models. A 

natural next step might be to examine higher joint moments and consider their 

associated spectra (see e.g., Priestley, 1982). The functions so obtained, e.g. 

the bispectrum, are  often found to be difficult to calculate and hard to 

interpret. Rather than follow this course, it is proposed to adapt some 

ideas from a residual analysis for autoregressive models which has recently 

been suggested by the authors (Lewis and Lawrance, 1983). The thrust of 

this analysis is that the standard process of fitting and validating a linear 

autoregressive model is carried out beyond the customary final stage at which 

uncorrelated residuals are obtained (as in the previous section). The usual 

presumption is that the residuals are not only uncorrelated but also inde- 

pendent. This need not be the case,as will be exemplified for the wind ve- 

locity data. Moreover, dependent but uncorrelated residuals are obtained 

(Lewis and Lawrance, 1983) even for the NEAR(2) process. Thus the residuals 

should be subjected to further analysis in respect of their remaining de- 

pendency. Any found is then evidence that a standard linear, constant co- 

efficient second-order autoregressive model is deficient. With normally 

distributed time series data this might suggest that non-linear modelling 

should be explored. With data marginally distributed in some other identi- 

fiable manner, then the exploration of a particular type of model with 

specified marginal distribution and autocorrelation function is suggested. 

This latter course is envisaged here. 
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Higher order dependency properties of the uncorrelated residuals are 

obtained for the proposed model and compared with their data counterparts; 

this stage can be informative from both exploratory and estimation consid- 

erations, and can be thought of as part of the model-refinement process 

common to much statistical methodology. 

It might be thought that the specific class of NEAR(2) models could be 

incorporated in a residual analysis in the standard manner. However, a 

moments reflection indicates that even after estimating parameters of (2.2), 

it will not be possible, because of the mixture involved, to write down an 

expression or recursion for the residual innovations, name)y   E    . However, 

the corresponding autoregressive (or linearized) residual is available and 

given, as in the previous section, by 

Rn = Xn " alXn-l " a2Xn-2 ' 

We now show that these are uncorrelated for the NEAR(2) process. 

7.2. The residual theorem. 

The autocovariances of the residuals (7.1) are 

Cov(Rn, Rn+,)  - Cov(Xn, Rn+£) - a1Cov(Xn.r  R^) - a2Cov(Xn_2, R^) 

= Cov(V  W " alCov(V Wl* " a2Cov<V W21   ' 

(7.1) 

(7.2) 

since the {X } process and consequently the {Rn> process is stationary. 

The covariances on the right hand side are  all of the same type and given by 

Cov(Xn, RnH)  - Cov{Xn, (Xn+£ - a^^ - a2Xn+^_2)} 
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By the Yule-Walker equations (5.4) the expression in brackets is zero, and 

hence also 

Corr(Rn, Rnn) = 0 ,   *=+!,+ 2,... (7.4) 

as was to be proved. That these residuals are uncorrelated is an immediate 

consequence of the autocorrelations following Yule-Walker equations; this 

emphasizes that this type of residuals will be uncorrelated for any model 

whose autocorrelations satisfy Yule-Walker equations. 

The analysis of the uncorrelated residuals R ,n = 3,4,... should begin 

with scatter plots of the low lag adjacent values; any patterns or concen- 

trations will be evidence of dependency in the residuals. Many possibilities 

present themselves but only one is pursued in the following Section 8, and 

then applied in Section 9 to a continued analysis of the wind velocity data. 
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8. Cross-correlation analysis of {R } and {R } 

n     n 

After the satisfactory fit to data of an ordinary linear model, the 

residual, Rn, should not only be uncorrelated but also independent; the 

latter is customarily investigated by seeking a flat spectrum, while for 

the independence, a flat spectrum of the squared residuals can be sought. 

As a method for probing model validity, the examination of squared residuals 

has been employed by McLeod and Li (1983), following Oranger and Andersen 

(1978); these authors suggested bilinear modelling for dependent but un- 

correlated residuals of ARMA models. It is suggested here that autocorrela- 

tions of squared residuals and cross correlations of residuals of squared 

residuals be used in the analysis of higher order dependence of the detrended 

transformed wind speed data and its modelling by the NEAR(2) process. The 

residuals for this data have already been shown to have a flat spectrum 

(Figure 6.4) while the curved plot in Figure 8.1 for the cumulative periodogram 

shows that the spectrum of the squared residuals is far from flat. 

Theoretical investigation of the squared residuals of the NEAR(2) model 

is pursued here. Whilst the autocorrelations of the squared residuals have 

just been mentioned, for the NEAR(2) model this involves computation of 

36 terms, mostly distinct types of 4^ order moments. A simpler suggestion 

which involves only third-order moments, and is thus the next step up after 
2 

autocorrelations, is to use the cross correlations of the Rn and Rn sequences; 

apart from lag 0, zero values will be found for linear models. This sug- 

gestion is more tractable than the squared residual analysis and will now 

be described. Sampling properties of third-order moments are also likely 

to be less extreme than those of fourth-order moments. 

The starting point of the calculation is to note that from the definition 

of Rn at (7.1) that 
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1 
E<RnRn-*> - E<RnV*> " alE<RnVM> " a2E(RnXn-?-l' (3.5) 

whence there is the structural form, 

Cov(R2, Rn_e) - Cov(R2, Xn_2) - alCov(Rn
2, X^) - a2Cov(R

2, Xn_;_2) .  (8.6) 

Calculation of the covariance terms in (8.6) requires the expanding out of 
2 

R , taking expectations and expression in covariance terms. Thus 

RnXn-e = XnXn-A + alVlXn-c + a2Xn-2Xn-* 

" 2alXnXn-lV)c ' 2a2XnXn-2Xn-? 

+ 2ala2Xn-lXn-2Xn-?, • (a.7) 

The conversion   to covariances yields 

where 

Cov(R2, Xn_A) = JjU) + afj1(n-l) + &l^(l-Z) 

-2a1J2(>.) - 2a2J3t:) • 2a1a2J2v--'l)   , 

^(0 - Cov(X^, Xn_9)   ;    J2(Jl)  = Cov(XnXn_r Xn.J 

J3(0 • cov(xnxn.2, xr_£) . 

(8.3) 

(3.9) 

We thus see the types of third-order joint moments which are involved in 
2 

the Cov(RS Rn .) calculation: each of these has to be obtained using two 

difference equations, one for z >  0 and one for t <  0 . 

Taking J,U) for illustration, square each side of the NEAR(2) defin- 

ing equation (2.2) and multiply by X . After converting to the required 

covariances, the recursion is found to be 

JjU) = tjftjJjU-1) + agßgJ^ii-Z) + 2(l-a1  - a2)pU) (3.10) 
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For negative I there is the corresponding equation 

JjU) = a1J1(2+l) + agJ^J+2) , 8.11) 

obtained by multiplying each side of (2.2) by X _,  and converting to 

covariances. These equations are given for illustration: there are similar 

equations for J2( i)    and J^d) , and various special cases. Also required 

2 
is the variance of R  which involves many terms. 

The complete algorithm for computing the cross-covariances is as follows, 

Algorithm for computing cross-covariances for £ = 0, + 1. ... *  L . 

0. Input a,, a2, $•,,  32 • 

Set    p(0)  = 1; p(l) = a«/(l-a2h P(2) = a1P1  + a2 and,  for £ = 3,...,K , 

P(JI) = a,p(£-l) + a2pU-2).    Note that P(-£)  = PU) but these are 

not needed in computations. 

1. Set J}(0) - 4; 0(1) = tfa^+agßg) + 20-aT-a2}]/(l-afß2) . 

2a.    J,(i) = a^U+1) + a2J1(£+2)        for        £ = -1, -2,..., -  (L+4)   . 

2b.    JjU) = a^JjU-1) + a2ß2J1(£-2) + 2(l-a1-a2)p(£)        for        £ = 2,3,...L  . 

3.    Set J2(0) • J^l) - p(l) + 1; J2(l) = J^-l) - p(l) + 1  . 

4a.    J2U) = a^U+l) + a2J2()i+2)        for       1 = -1, -2,..., -(L-3)  . 

4b.    J2()i) = a^U-1) + a2J2(a-l) + 2a] + (1+P(l))a2 

-[1+P(1)1 +  [1 + p(a-l)](l-a1-a2)        for       £ = 2,3,..., L . 

5.    Set J3(0) • ^(2) - P(2) + 1; J3(l) = J2(2)+ P(1) - p(2); J3(2) = J^-2) - p(2) + 1 

6a.    J3U) = a]J3(ji+l) + a2J3()i+2)        for       t • -1, -2,..., - (L+2)  . 

6b.    J3(ä) • a1J2(£-l) + a^U-2) +   [l+P(l)Ja1  + 2az 

+   [l+P(£-2)](l-ara2) - (1+P(2))        for        f 3,4,5,..., L  . 

32 

-r *•   - -*   •   - cas-.^T 
.'• 



7.    JU)  = JjU)  + a^U-1) + a|j.(l-2) - 23lJ2(0 

- 2a2J3(«) + 2a1a2J2(£-l)       for       l » - (1+2),..., (L) 

8.    Cross-covariance (R^, R     ) = J(jt) - a-,J(ä+1 ) - a2J(«+2) 

for       t = - L,..., L  . 
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9. Further Analysis and Modelling of the Wind Velocity Data 

Dependence in the uncorrelated linear residuals for the NEAR(2) model 

has already been demonstrated (Figure 8.1). Further evidence of this is 
2 

provided by the cross-correlations of R  and R~ given in Figure 9.1. 

The corresponding theoretical cross-correlations for the NEAR(2) model will 

next be presented, having been computed using the algorithm given in 

Section 8. At this point, it will be recalled, the NEAR(2) model has not 

been fitted in terms of all 4 parameter; the residuals involve the model 

parameter only through a-, = a,ß-, and a- = c^ß? ancJ a,,ß,,a„,ß? have 

not been separately estimated. In the present rather exploratory analysis 

the estimation problem will be circumvented; the cross-correlations of 

(R ,R ) will be given for four representative sets of parameter values in 

the reduced allowable region, as constrained by (a-, >. a,, a2 > a,, a-, + a« <.!), 

according to (5.6). For the detrended transformed wind speed data, 

a, = 0.75488 at a2 = 0.05463, and the four chosen sets are  given by 

(A) cij = 0.760, a2 = 0.06 

(B) c^ = 0.925, a2 = 0.06 

(C) a] = 0.760, a2 = 0.20 

(D) a1 = 0.850, a2 = 0.10 

ß1 = 0.99326, ß2 = 0.91050 

31 = 0.81608, ß2 = 0.91050 

ß1 = 0.99326, ß2 = 0.27315 

ß-, = 0.88809, ß2 = 0.54636. 

2 
In Figure 9.2 the cross-correlations of (Rn»Rn) for each of these 

cases are presented; there is considerable differentiation amongst the 

figures, although the zero values for all but one or two negative lags are 

evident in all four cases. This effect will be due to the directional 

nature of the process. For matching with the wind speed data, Case D 

appear the most promising, although the suggestion of a negative correlation 

at lag minus one lends a little support to Case A . Cases B and C are 
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definitely unsympathetic to the data. Hence, a choice of parameters inter- 

mediate between Cases A and D is suggested by this exploratory analysis. 

A fuller analysis would require estimates of all four parameters and compari- 

son of the resulting residual-squared residual cross-correlations with the 

estimated cross-correlations obtained from the data, as shown in Figure 9.1. 
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10. Conclusions and Further Analysis 

The very broad four parameter NEAR(2) time series model having expo- 

nential marginals and the correlation structure of an AR(2) model has been 

established; further developments will be reported elsewhere. A preliminary 

fit of the NEAR(2) model has been made to a very long series of wind speed 

data, the data having been detrended and transformed so as to have exponen- 

tially distributed marginals; utility of the suggested residual analysis in 

probing higher order dependence has been demonstrated. This residual analysis 

has been based on the cross-correlations between the residuals and the 

squared-residuals. 

An extension to this analysis using reversed residuals is possible; 

more of the higher order dependency of the NEAR(2) model would be revealed 

and this would enable further aspects of its suitability of the model for 

the wind speed data to be ascertained. 
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