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I) GENERAL

This is a final report of contract number N00014-76-C-0089 on the

Statistical Mechanics of Non-Equilibrium Processes in Plasmas and Gases.

II) DESCRIPTION OF RESEARCH

Since fluids, both plasma and neutral, are almost always turbulent, the

turbulent fluid plays an important role in a wide range of phenomena.

The work in neutral fluids had been mainly from the standpoint of the

fluid equations (Navier-Stokes equation). We have approached the problem of

obtaining the basic equations from the standpoint of statistical mechanicsl,
2 )

(Liouville equation) as the solid foundation of fluid mechanics. 3 ) The

central problem common to all approaches is the closure of an infinite set of

coupled equations. A recent approach4 ) using the fluid equations employes a

three-point Green's function G(3)(t,t'). The basic assumption in this work is

that the ensemble average <G(3)(t,t')> approaches zero as (t-t') > T wherec

Tc is a time on the order of the decay time of the total energy. This

property is used to obtain closure. A result of this theory is that the

evolution of the energy is essentially independent of the ternary correlation

function <T> = <v(r1 ,t)X(L2 ,t)v(L 3 ,t)>. We show5 ) (Appendix A) that this

conclusion is not valid in general. The problem most likely rests on the fact

that <G(3)(t t')> is not independent of the initial value of <T> as was

implicitly assumed in4 ).

Recent work on the Adiabatic Modifications to Plasma Turbulence

Theories6 ) introduces a special perturbation theory to account for the effects

of the adiabatic response of a plasma. We have shown7 ) that the conventional

turbulent perturbation theory8 ) , if properly used, produces the modified

results (Appendix B).
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III) PERSONNEL

The chief investigator on this project was Professor Marvin B. Lewis of

the Department of Mechanical and Nuclear Engineering and the Department of

Physics and Astronomy of Northwestern University.

IV) CONTRACT PUBLICATIONS

"Kinetic Theory of Turbulent Flows," Ref. (1)

"Kinetic Theory of Turbulent Flows II," Ref. (2)

"Three-Point Method in Turbulence." Ref. (5) (submitted for publication -

Physics of Fluids)

Comment on "Adiabatic Modifications to Plasma Turbulence Theories,"

Ref. (7) (to be published June 1983, Physics of Fluids)
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Three-Point Method in Turbulence

M. B. LEWIS

Northwestern University, Evanston, Ill. (60201)

The three-point method for the description of turbulent flows rests on

the assumption that the average of the three-point Green's function approaches

zero. The argument is made that the evolution of the energy is essentially

independent of the initial value of the ternary correlation function. It is

shown that there exist initial.conditions for which this conclusion does not

hold for times up to the viscous decay time.

PACS 47.10+g
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I. Introduction

Recent work on the theory of turbulence1 ) employes the use of a three-

point Green's function G 3 ) (tt'). The assumption is made that the ensemble

average <G(3)(t,t')> approaches zero for (t-t')>T . This property, due to theC

nonlinear effects, introduces further damping in addition to the viscous

damping into the system. On the basis of this assumption a closed equation

for the energy <U> Is obtained. This equation explicitly contains the initial

value of the ternary correlation function <r> which is said to be arbitrary.

The argument is made that, since the dependence on the initial <T> goes to

zero due to the assumed property of <G(3)>, the initial <T> can be neglected

even if it is not zero. This conclusion is that the evolution of <U> is

essentially independent of the initial <T>.

We show that there exist ensembles for which the conclusion does not hold

for a time to from the initial time where 2to is any time less than the

viscous decay time.

II. Summary of the Three-Point Method1 )

The Navier-Stokes equation for an incompressible fluid can be written as

a[j+ Lo(E)+L(rt)]v(r,t) - 0 (1a)

where

L 0 =-aV
2  (1b)

L(rt)v(rt) f dr A(r,r ): v(r t)v(r t). (c)as -a -- a - -a

The equation for the energy (covariance correlation function) <U( r, 2 ,t)>

<X(rl,t)v(t2,t)> for homogeneous systems with <v(Z,t)> - 0 is

[tt +Lo(r) Lo(r )]<U(r,r ,t)> -(l+tr)fdr A(r ,r ): <T(r ,r ,t)> (2)

-0 - -a 0 a a i

-w VM
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where tr is the transpose and T(rlr 2,r3,t) v(r1,t)v(r2 t)v(r 3 ,t), < > is

ensemble average and <T> is the ternary correlation function. The basic

problem is to obtain an approximate expression for <T> in terms of <U> so that

Eq. (2) is a closed equation.

The development of the three-point method introduces the Green's function

G defined by

v(rt) - fdr'G(r,t;f't')ov(X',t') . (3a)

Another approach is to use the propagator2 ) W defined by

v(r,t) - W(r,t,t')v(t,t') , (3b)

where W(r,t',t') - 1. The equation for W is the same as the equation for v;

+ L +L)W - 0. (4)
at 0

The evolution of T(r1,r21 3,t) = T(x,t) is given by

T(x,t) - W(3) (x,t,t')oT(x,t')  , (5)

Where W(3 ) , the three-point propagator, is defined by

W(3) (x,t,t') =_ W(r,,t,t') W(r2,t,t') W(r3,t,tl) ,(6)

where it Is understood that W(E1 ,t,t') acts only on functions of *i" The

equation for W(3 ) follows from (4), i.e.,

a 3 3 (3)1 L7 (x) + L3 (x,t)]W (x,t,t') - 0 , (7a)

where

L (x) - Lo(rI) + Lo(E2 ) + Lo(E 3 ) , (7b)

L3 (x,t) - L(r1 ,t) + L(E2 ,t) + L(r3,t) . (7c)

What is needed in (2) is <T>, i.e.,

<T(x,t)> - <W (3) (x,t,t')T(x,t')> .(8)

The method proceeds with an expansion of G 3 ) in terms of <G(3)> [Ref. 1,

Eq. 23]. Here we work with W(3) The corresponding expansion for W(3 ) is

___,__ "15 1
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WC(3) (t,t ) B <W (3) (t,t')> + SWC(3) (t, t ) , (9)

We then have from (5) and (9)

T(t) - <W (3)C(t,t')>T(tl ) + 6WC(3)c(t,t')T(t ' )  (10)

The ensemble average of T is

<T(t)> - Tlv(t) + The(t) (11*)

T IV W ) B <w (3)(t,t1)>c(t1)> , lb)

Thc(t) - <SW (3) (t,t')T~t')>.(l)

The term The is broken up into two terms

Thc(t) B T (t).+ Th(t) (12a)

where T€ is given by

t

T (t) - dt.<W(3)(tt)><L 3(t)T(t")> * (12b)

III. The Closed Energy Equationi)

The expression for <T> has three parts

<T(t)> - TIV(t) + To(t) + Th(t) , (13)

where Tiv is called the initial value term because of its dependence on the

initial value of <T>, Tc is the cascade term and Th is the remainder term.

The right-hand side of (2) has corresponding parts Slv, Sc, and Sh'

The assumption employed is that <W(3)(t2,tl)> approaches zero as (t2-t1 )

increases with a characteristic time T that is small compared with the

viscous decay time. The consequences of this assumption are:

a) The Th term can be neglected.

b) That <v v v v> that occurs in Sc can be written as a sum of terms of

the form <U><U>. This result reduces Eq. (2), except for the term

<W(3)> in Tc [Eq. 12b], to an equation for <U>. The closure is

completed with an approximate equation for <W(3)> that is closed [Ref.

W W-
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1, Eq. 70]. Although no real estimate was made for r it would appear

that if c s greater than the decay time for the total energy then,

as in the usual quasi-normal theory3 , the energy spectrum can become

negative4 ).

c) The initial value term Tiv is negligible after a time interval (t-

t')> c . Since eq. (2) for <U> contains the initial value of <T> in

the term SIv, it can be arbitrary.

On the basis of (c) the argument is then made that Tiv can be neglected

even if the initial value of <T> is not zero since it decays rapidly tu

zero. This conclusion is that the evolution of <U> is essentially independent

of the initial <T>. We shall show that this conclusion is not true in general

for a time t from the initial time where 2to is any time less than the
00

viscous decay time. We compare two systems thpt are related by velocity

reversal. These two systems initially have the same <U> but one <T> is the

negative of the other.

IV. Reversibility of the Inviscid Equations

We consider the evolution of a system from the initial time t'- 0 to a

time (2to). For large Reynolds number and for <U> restricted to macroscopic

scales at the initial time, the viscous decay time is larger than the decay

time for the total energy and over the interval (0, 2to ) the effects of

viscosity can be neglected. Over this time interval the Navier-Stokes

equation is reversible. Consider the system to have a velocity z+ (r,O) at

the initial time and a velocity + (t) for t 4 2to . Consider a second system

starting at time to with an initial velocity v (t ) -Z+ (to). By

reversibility the evolution of this second system over the interval (to, 2to )

is related to the velocity of the first system over the interval (0, t0 ) by
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v(t) -v+(2t0-t) ; to t 4 2t (14)

Calling vn - vv , we have

Vnt)- (-~ 0(2to-t) ; t 2 0 (15)

Now consider an ensemble of systems, each member having a different x+(0). As

in the three-point method we consider cases for which vO(t)> - 0. At to

construct a second ensemble formed by taking for each member of the ensemble

v(t) = -v+(to). It follows from (15) that

nv(t)> _ (_1) n . 2t-t)> (6

-v n n(t (16

t < t 4 2t
0 0

Special cases of (16) for n-2 and 3 are

<U_(t)> - <U + (2to-t)> ; <T_(t)> -<T +(2to-t)> (17)

We compare the evolution of the two ensembles starting from to over the

interval (to, 2to). At the initial time t - to, from (17), both ensembles

have the same energy <U_(to)> - <U+(to)> and the ternary correlation functions

are the negative of each other <T(to)> - -<T+(to)>. From (16) with t - to

all even moments are equal and all odd moments are the negative of each

other. Assuming that the ensemble at to does not weight v and -v equally

(e.g. Gaussian) these two ensembles, having different initial moments, evolve

in different ways. The evolution of the second ensemble over (to, 2to) is

related to the evolution of the first ensemble over (0, to) by (16). If the

first ensemble at to were e.g. Gaussian then velocity reversible does not

produce a new ensemble i.e., the first and second are the same ensemble. From

the moment point of view all odd moments are zero and therefore all moments of

the two ensembles are equal. Assuming that this is not the case the evolution

of the two ensembles, even though they start with the same <U>, can evolve in

distinctly different ways. Suppose that the first ensemble evolves over

- ' - " - - .- g. --. m'I -.-1
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(0, 2to ) in such a way that the energy flows from large to small scales and

therefore from large to small scales over (to, 2to). The second ensemble

energy over the internal (to, 2to), by (17), flows from small to large

scales. The usual inviscid quasi-normal theory3 ) explicitly shows this type

of behavior. The above argument is general in that it does not involve a

specific theory.

For the three-point theory, <W 3) (t,to)> and <W (3)(t,t )> go to zero for+f0

t - t + T . According to (a) and (c) the right-hand side of the energy
0 c

equation (2) for t > to + T depends only on Tc and according to (b) Tc is a

functional of <U>. For the <U> of the two ensembles to evolve from to in the

same way Tc+(t) must essentially equal Tc_(t). For the first ensemble Tc+ is

given by

t3

Tc+t W r dt"<W (3)(t't")><L 3(t")T+ W )>  ; to o t(8

C t 180
0

The contribution to the integral comes from an interval (t-- ) C t" 4 t i.e.,

it depends on <U+(t")> for t" in the neighborhood of t" - t. For the second

ensemble T,_(t) is

T (t d- (3)(tTX 3 (TTW t(19)
c(t) d<W (t,T)><L(r)T()> ; to t 0 0

By reversibility and the fact that 0 is linear in v we have

<L 3- <L (2t -r)T (2to -r)>
+ 0o

so that

(t) - J dt<W (3)(t,2to-rt)><L (t")T (t")> (20)
2t -t 0 ; +

0

The contribution to the integral comes from an interval (2t -t) • t"
%
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(2to-t) + T i.e., it depends on <U+(t")> for t" in the neighborhood t"-2to-t.

For a system (the first ensemble) that is evolving over an interval (0, 2to )

the value of <U+> for a time in the interval (0, to) is different from its

value for a time in the interval (to, 2to) and therefore To+ is in general

different than T¢_.

Our conclusion is that for a given initial <U> there do exist ensembles

(related by velocity reversible) of differing initial <T> that evolve in

distinctly different ways over a time interval to. The above argument

restricts the initial <T> for which the three-point method is valid. There

can be a class of ensembles with the same initial <U> but different initial

<T> that evolve in essentially the same way over the interval to. However the

class cannot contain pairs of ensembles that are related by velocity reversal.
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Comment on

"Adiabatic Modifications to Plasma Turbulence Theories"

H. B. Lewis
Northwestern University, Evanston, Illinois 60201

In Ref. 1 Catto introduced a new perturbation scheme to account for the

adiabatic response of a plasma and obtained the nonlinear dielectric function.

Krommes2 ) calculated the dielectric function from the conventional theory

obtaining a result differing from Catto's by a term (k2Dr2) and then remarked

that "Catto makes subsidary approximations which lead him to neglect the

(k2Dr2) term". Catto3 ) responded that the term (k 2Dr2) appears erroneously in

Ref. 2 "because the properties of the adiabatic response are not properly

preserved by the average trajectories". The purpose of this note is to show

that Catto's new scheme can be obtained from the conventional scheme if use is

made of the constraint

LFM - 0 (1)

where H Is the part of the distribution function that depends on the energy,
e

L '+L', Ty. i *L-, L'- - E'- 1- and E'-V is the fluctuation in the field. The

ensemble average field E is zero.

We start with Weinstock's4 formulation of the conventional scheme for f,

the fluctuating part of the distribution function F
t

f(r,v,t) - Ua(tO)f(O) - f dt'Ua(tt')L'(t')?(t') (2)

where F-F+f. The operator UA is defined by

+ PJUA(t't o) - 0 (3)

where f=-(A-1)L and A is an operator which takes the ensemble average of

everything on which it operates. Equation (2) is exact and therefore can be

employed in the problem of the near equilibrium plasma. In this case 1 )
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F-FM+G, FMFoexp[TA] , Fo-c exp[-mv2 /2T]. We also have f-Fl+g where

F'3(FM4- ) and g-(G-U). Equation (2) is then
t

f - UA(t,O)[F 0)+g(O)l - f dt'UA(t't')L'G - I
(4)

t
I f dt'UA(,tt')L'M(t',)

o
The approximation developed by Weinstock4' for UA is

U UA(t,tl) (1-A) - (1-ATU(t,t-) (5)

where i is the ensemble average of the Vlasov operator U. The problem

referred to by Cattol ) is in using V in I since FM satisfies (1). This

problem can be circumvented by a transformation on I. The integral I can be

written as
t-1 

-

I-f dt'UA(t.O)UA (t',O)L'(t')F M(t)
0

where U;I is the inverse of UA and satisfies the equation

L U;1(tto) - UCA(tto)p - 0 (6)atA

From L--0 it follows that L F,--L'IP and from this that L'F i-PFA. Using

this relation and (6) in I we have
I - UA(t,O)F (o) - tFIt) + f dtUF(t' t') (7)

- Mt f t'Att) at,

Equation (4) is then, using (5) t aF'¢t')
f - U(tO)g(O) + PF(t) - f dt')(t,t')[ t + L1,] (8)

0 at

Equation (8) is equivalent to Catto's1 ) eq. (6b) except that the operator

acts on the entire term !-F and not just the #t part. Using the same

approximation as Catto, following his eq. (6b) we have
3

fdf *(t)( + ifdvdvUk , (v)v )Fo vo)

4 'dv~) '' -02

* #k(t)f F (v )(I1+ f dr(iw)exp[ti(-kvo0 -k2 Dr 3/31) (9

where Uk,,(, is defined in ref. (2). The conventional result is obtained from

(2) using (5) and replacing F by Fo and results2 ) In (9) with the factor
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(1m) replaced by (w-k 2 DT2). The conventional perturbation (2) in conjunction

with the constraint (1) gives the result of Catto (8) and produces in the

explicit form for 1 a term differing by (k2Dr2) from the explicit form for

obtained only from the conventional perturbation (2).

1) P. J. Catto, Phys. Fluids 21, 147 (1978)
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