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Theory of Collision-Induced Ionization of Adsorbed
Species on Solid Surfaces in the Presence of Laser
Radiation

Kai-Shue Lam and Thomas F. George

Department of Chemistry
University of Rochester
Rochester, New York 14627

USA

Abstract

A formalism is proposed for treating the problem of
ionization of adsorbed species on solid surfaces. The
ionizing agents are taken to be impact atoms and laser
radiation with frequency low compared to the inverse of
characteristic collision times. The physical constraints
of short collision times and low laser frequency then
allow one to treat the adatom-surface-plus-field system
under the quasi-static approximation (QSA) and the impact-
atom-adatom-surface collision dynamics under the impulse
approximation (IMA). The latter leads to a time-dependent
ionization cross-section which is factorizable into the
square of an electron-atom scattering matrix element and
a spectral function describing the energy-momentum distri-
bution of electrons in the adatom-surface-plus-field system.
The formalism focuses on the spectral function which is
shown to be derivable from a single-particle Green's func-
tion exactly calculable for the present problem.



I. Introduction

Photoemission studies of adsorbed species on solid surfaces,

both theoretical1 - 3 and experimental, 4 -6 have produced consider-

able information on the nature of chemical bonding between

adsorbed atoms or molecules and solid surfaces. The process of

collision-induced ionization of surfaces, of potential importance

in generating the same information, has, however, claimed rela-

tively little attention, due to the widespread belief that it

would be extremely difficult to extract useful experimental

information from such studies. In this area, new ground has

7
been broken recently by Conrad et al., who considered theoret-

ically the problem of surface Penning ionization of a single CO

molecule chemisorbed on a Pd(lll) surface by metastable He*-beams

and compared their results with existing experimental data. On

another front, gas-phase studies of Penning ionization also suggest

that laser radiation can have pronounced effects on the emitted-

electron energy spectrum8 '9 as well as the ionization probability

itself.1 0 These works all point to the likely fruitfulness of

carrying out studies on collision-induced ionization of adsorbed

species on solid surfaces in the presence of laser radiation. In

this paper, we will propose a formalism to treat this problem.

The physical situation we are considering may entail several

competing processes in addition to the emission of electrons. There

may be desorption and migration1 2 of adatoms, or even formation

of free ions. However, the degree of catastrophe induced on the

surface by the atom beam and the laser radiation is not entirely
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beyond the experimentalist's control. Laser power and laser fre-

quency, for instance, could be selected to minimize desorption

and migration, and the incident-atom impact energy could conceiv-

ably be adjusted such that free-ion formation does not compete

significantly with pure scattering. Also the amount of internal

excitation carried by the impact-atoms may be tailored to prefer-

entially ionize the adsorbed atoms rather than those of the bulk

medium.

The main advantage of the laser as an inducing tool in the

present case is that it has much greater versatility here than,

say, in the process of laser-induced desorption, because no

resonance requirement on the laser frequency need be imposed.

We will, however, assume that the laser frequency is much less

than characteristic band structure resonances of the pure metallic

surface so that photoemission need not be considered as a competing

process. We also require it not to be in resonance with adatom

vibration or phonon coupling modes so as to avoid dealing with de-

sorption or migration of adsorbed species.

Since the laser frequency is considered to be low, most of the

energy required for ionization will have to be supplied by the in-

ternal excitation energy and the translational kinetic energy of

the incident atoms. Hence we consider projectile atoms in an excited

state with large impact velocities, leading to short collision times

T such that T << w 1, where wL is the laser frequency. This means

that the laser photons will only have a relatively short time in

delivering energy. But since the adsorbed atom (adatom) states can

JI
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be considered to be broadened by the solid surface into a "near-

continuum of states"1 3 (with large uncertainties in orbital energies),

the low frequency photons may still be effective in transferring

energy to electronic degrees of freedom in the adatom-surface system,

facilitating electron "hops" between the adatom and the surface.
14

This would not be the case if sharp resonance electronic states were

considered (such as in gas-phase collisions).

The conditions of short collision time and low laser frequency

permits the use of the quasi-static approximation (QSA) where, even

though the total Hamiltonian is time-dependent (due to the radiation

interaction), the energy of the system is considered to be adiabatic-

ally conserved within the duration of a characteristic collision

time [cf. Eqs.(2.6) and (2.7) below]. Also, the smallness of T war-

rants the use of the impulse approximation15 (IMA) in the treatment

of the projectile atom-adatom-surface collision dynamics. Within

this approximation, the collision between the projectile atom and

the adatam-surface (AS) system is assumed to be mediated by a single elec-

tron possessing a characteristic momentum and energy distribution

determined by virtue of its being part of the adatom-surface plus

field system and otherwise considered to be free. Naturally the IMA

will be more suitable when applied to cases where the adatom-surface

system to be ionized has loosely bound electrons. The momentum and

energy distribution will be most conveniently obtained through a

Green's function formalism. The IMA has been successfully applied

to a wide variety of collision processes, such as fast electron-atom

collisions,1 6 A(p,2p)B scattering in nuclear reactions, 1 7 ,18 and gas-

phase collisional ionization. 19 Recently, we have also applied it to
20

high-energy positron ionization of adsorbed species, a process

closely related to that discussed in the present work.
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In what follows we will construct a formalism for the calcu-

lation of the differential cross section of the ionization process.

This formalism is based largely on many-body techniques leading to

the construction of an adatom-surface-plus-field Green's function

that is time-dependent. The implementation of the main approxima-

tions, the QSA and the IMA, will be shown in the course of the de-

velopment.

II. The Ionization Cross-Section

We consider the process in which projectile atoms B with

momentum pi are incident on an adatom-surface (AS) system which is

driven by monochromatic laser radiation with field strength repre-

sented classically by E(t) = EOcOScLt, where wL is the laser fre-

quency. Assuming that this collisional process leads to ionization

with emitted electron momentum and final momentum for the atoms B

equal to p and pf respectively, the time-dependent differential

ionization cross-section can in general be written 
in the form17

d 6 a(t) -- IT(t) 12I +E(+ (t) -(E0 (t)+. +£iA)IL d}1 d 21t t)f 0 i v0  (27h) 3 (.

In Eq.(2.1) v0 is the incident velocity of B atoms;

c = 2/2m, (2.2)

i = p2/2mB, (2.3)

and
n p /2m B  (2.4)

£f

are the kinetic energies of the emitted electron and the free atoms

B before and after the collision respectively, with m = mass of

_ _ _ _ _ _~4 %____
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electron and mB = mass of atom B; and

A = Ei - Ef, (2.5)

the internal energy transfer, is the difference between the initial

and final internal energies of the atom B. The presence of the 6-

function with time-dependent energy variables follows from the

quasi-static approximaticn (QSA), where it is assumed that if the

collision time T is short enough compared with the period of the

driving force, the ground state energy E0 and excited energies E(+)

of the unperturbed and singly-ionized AS+field system vary adiabatic-

ally over t < T; also, the total energy of the system is adiabatically

conserved. The QSA then implies that

HAS(t)IT 0(t)> z E0 (t) IT0 (t)>, (2.6)

and

H AS(t)I ) (t)> =- E () t)1 ( + ) (t)>, (2.7)

j where HAS (t) is the total time-dependent Hamiltonian of the AS system

plus field; and I0 (t)> and IT (+) (t)> are the corresponding adiabatic

ground state and excited state wave functions, unperturbed and singly-

ionized, respectively. The summation in Eq.(2.1) is over all the

final singly-ionized AS states IT(+ ) (O)>, where it is assumed that

at t=0, the laser field is turned on. Within the impulse approxima-

tion (IMA), the transition matrix element T can be written as
.4

STct) - '' (tI~ 1) IV(t)>TE,E,p , (2.8e)

where a(pl) is a fermion annihilation field operator (removing an

electron of momentum p from the AS system in its ground state at

time t) and TEf,Pf, ;E, ,4 is an off-shell electron-atom scattering

_____________
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matrix element, describing the collision between an atom B in the

initial state Ii> with kinetic energy P2/ 2mB and a free electron
43.

with momentum pl, to produce an atom B in the state If> with kinetic

2energy pf/2mB and a free electron with momentum p. The IMA to T is

schematically represented in Fig 1, in which e1 and p, represent the

energy and momentum removed from the AS+field system at time t.

The IMA also implies that at the right vertex (blank circle) energy

and momentum are both strictly conserved. Hence we have
2 2

P? -- (2.9)1 2mB 2mB 2m'

and

+ = + Pf. (2.10)

We first discuss the sum in Eq.(2.1). This equation, together

with Eqs.(2.8) and (2.9), implies that the sum can be written as:

() (t>26 (+-)S( ,0t) - I<Y (t)la(Pl)T0(t)1E( l+)+) (t)-E 0( )

(+)f+)(0

it
< 0(t)Ia(pl)6 (C1+E + (t)-E 0(t))I W(t)>

X <(+))(t apI I ()
^t . t) A +)(+)

<T0()a(pl I M(: 1+H AS (t)-E 0 (t.Us ( (tO) I Y (  (0) >

(+)( ) +)
X + (O)'IU(+) (t,O)a(,P 1) IT0(t)>

< 0 (t) la (pl) 1 E1+H AS(t)-E 0(t))a(,PI)IT 0(t)> , (2.11)

where in the second equality use has been made of Eq.(2.7) (the QSA),
and the time evolution operator, ;(+)(t,0), for the Schr~dinger picture

s

wave function T (+) (t) has been introduced such that
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U S (tO) IT 0 (0)> I 0 (t)> (2.12)

The quantity S(Pl,el,t) is referred to as the time-dependent

spectral function and can be interpreted as the probability at

time t of finding an electron with momentum p in the AS+field

system and the energy E0 (t)-E 1 in the residual system after an

electron has been removed. The differential ionization cross-

section can then be written as:

a 2) 121 d3pd= l'l' 4i 2 ( P (2.13)

The time-dependent spectral function can be shown be related

to the Fourier Transform of the advanced single-partic ,reen's

function as follows. We start with the definition of the advanced

si.ngle-particle Green's function;

G A(pl,-t,t') F i< ola H(Pl,t)a H(Pl,t')ITO>O(t-t') (2.14)

where

IT0o> = IT0(0)>, (2.15)

and e(t-t') is the Heaviside step function. aH(Plt) is the time-

dependent Heisenberg picture fermion annihilation field operator

given as:

aH(Pl,t) = Us(t,o)a(,l)us(t,o), (2.16)

with Us(t,0) satisfying the relation

IT= Us(t,0)IT0>. (2.17)

We can then write the advanced Green's function as

L! I- - ' .
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GA(l;t,t') = i<lU (t,)a 1 )Us(t,)U (t',O)a(, 1 )Us(t',0)I '0>O(t-t')

At "t -0. A -
= i<Y 0 U (t,O)a (pl)U s(t,t')a(Pl)Us(t+tlt)Us(t,0)IT 0>e(-t 1 )

= i<Y 0 1U8 (t,0)a (Pl)Us(t+tlt)a(pl)Us(t+tl,t)Us(t,0) l' 0>6(-t)

i< 0(t , 6a(P)U(t+tllt)a(Pl);s(t+tlft)IT0(t)>O(-tl)

(2.18)

In the second equality above we have made the change of time variables

t= t' - t (2.19)

and use of the property for the time evolution operator Us that

Us(tilt 2 )Us(t 2 ,t 3 ) = Us(tilt 3 ). (2.20)

Under the QSA we can write

^ (i ^  (t) = x l tl} (2.21).~~~ Ust1tt -ep-h AS

if Itl < T and it follows that

^ )(H) (tS -E 1 (t))tl ^ 2G (Pl;t,t+t I ) = i<T e Tapr ) e  of G 8_t )a(' I wr (t)>

It 11 < T. (2.22)

Introducing the integral representation for the step function

OW I 0 dw e+_i (2.23)

-00O

we have

G(_tl)exp{i-(Hs(t)_E0(t)tl 0 1 dw- e -i^  1 (2.24)
1 t, S 0 1 21Ti W_ + 1+ HAS(t) -E 0(t) ]-in

Hence the restricted Fourier Transform of GA(Pl;t,tl+t) can be written
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as

^s a p a(p 1 )I o(t)>. (2.25)
GA (P''t) <TO (t)1 ) s l l - 0 (t 0

From Eq. (2.11), the relation between the spectral function and the

restricted advanced Green's function is then

~~~1 lim [A

S(PI'EI't) = 2-- n G(PI',I -in ' t) - GA(Pl'wl+in't) ]

- n4l0 Im GA (p ,Wl-int), (2.26)

where

1i - (2.27)

and the representation for the delta function
1 lim,16(x) = 1 urn 1 1 (2.28)

has been used. We note that in arriving at Eq.(2.25) the restricted

Fourier Transform is taken as though Us(ti+t,t) assumes for all t1 the

functional form dictated by ItlI < T, that is, the Hamiltonian enterina

into the computation of GA(Pl;t,t') is just HAS(t) (cf. EQ.(2.21)].

The restricted transform is, of course, distinct from the true trans-

form
00 i tlGA

GA(pl,it) = dt I e A~pl;t,t'), tl=t'-t. (2.29)

The computation of GA(Pl,t,t') will be discussed in the next section,

and that of G( ,w,t) in Appendix I.

We now turn our attention to T . -0. , the electron-atomEf, PP; EipiP1

scattering matrix element. This is a well-studied problem which we

will not pursue in detail. 16 Under ordinary situations where only
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p >> Pf leads to significant cross-sections in Eq.(2.1), the Born

approximation can usually be applied. In this case

TEfpf,P;Ei,Pi,P 1 = dre r V(rx)li> (2.30)

where ftq, the electronic momentum transfer, is given by

fi- p1 -(m/mB)Pf] (2.31)

and V(-) is the electrostatic interaction between an electron

(with coordinate r) and the electrons in atom B (with collective

coordinates x).

III. Development of the Green's Function in the Presence of an

External Field - Time-dependent Spectrum

We wish to calculate the space-time Green's function
G('t' .tZ-iWAt ,)

G(',t' t) YOITtaH(x )aH(+,t) -]IT 0> (3.1)

(and its Fourier Transform) where T denotes the time-ordered product,

a H(,t) is the time-dependent Heisenberg picture fermion creation

field operator and IT0> satisfies (cf. Eq. (2.15)]

ITO >  = 1. (3.2)

aH(*,t) is the Fourier Transform of a (P,t) [cf. Eq. (2.14)1:
Hi H

aH(xt) =(2n) 33 a( ,t). (3.3)

We assume that the separate problems of the adatom orbitals
4. _+

i(x) and the self-consistent eigenstates 0,(x) of the unperturbed

semi-infinite surface are solved so that the time-independent field

operators can be expressed as

-- - .- ----- -- . ~ - - '. .q



4.w

a( ) = ai4i(x) + [ a * (')= a(x O)" (3.4)

The surface is taken to be metallic and a includes the wave number
A

and the band index. ai and aa are the electron annihilation

operators for the ith adatom state and ath surface state, respec-

tively. Each electron in the adatom-surface plus field system is

considered to be under the influence of a self-consistent field

so that the single-particle Hamiltonian can be written as

hAs(',t) = h(X) - eE0 * xe(t) cosw Lt. (3.5)

where the second term is the classical interaction Hamiltonian

between an electron at x and an external laser field of field

strength E0 and frequency wL (in the dipole approximation). The

field-free Hamiltonian h(x) is assumed to have the properties

>= 6ij (3.6)

< !hO I> = 6 oaa, (3.7)

where ci and c. are energies belonging to the states Oi and 0.

with the adatom at infinite distance from the surface. The interac-

tion leading to adsorption is given by the matrix elements

<aihj, > ! vi.- (3.8)

Using the basis {'ip 1, h can then be written in matrix form as

171
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ia
",_

eh h(,, ©(3.9)

C •r

It is also convenient for the computation of the Green's function,

to write the total single-particle Hamiltonian as

diagonal elements in Eq. (3.9). The total Hamiltonian in second

I quantized form is then given by

HAS(t) = fd 3 x at(x)hs(t)a(x)

= o+ ai aiei + (Vi 0 (t)a a +V. ( .

0 10

i ~ io+V ()aa i

. 4 A

H a0 a 0 ,u ,(t) + a i , ui, (t) (3.11)

i#i' i i'

where
i(t) =

+ ui u + Uio(t), (3.12)

aa 2. i.

whr
V a() <ihj_"t 0y

V... a+u at ( .2)
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and

Uab (t) = <alhf(Xt)Ib> (3.13)

with a,b standing for {i} or {a}. In Eq.(3.11) the first two

terms describe "unperturbed" electrons correspondinq to the states

j > and 1y; the third term accounts for the combined effects of

adsorptive and radiative interaction between the states > and

>; and the last two terms describe radiative interactions within

the sets of states 1a> and 10i> respectively.

Since the interaction Hamiltonian hI only involves single-

particle coordinates [cf. Eq.(3.10)], the series expansion of the

Green's function [defined in Eq.(3.1)] ssumes a particularly simple

form. The usual expansion procedure using Wick's theorem 21 leads

to the following diagrammatic representation for G(x',x):

! 3

x 2  3

+ x1 + + X2 +...... (3.14)

x1

x x
x x x

x

where the contracted notation x stands for the space-time point

(X,t), etc.; the double bar and the single bar stand for the full
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Green's function and the "non-interacting" Green's function

respectively; and the wavy lines stand for the interactions

h Iintegrated over intermediate space-time variables. Eq.(3.14)

is equivalent to

G(x'x) = G 0 (x' ,X) + d d4 x G 0 (x',x )h (x )G (x11 x)

+(l )2fdxld 4 xGO(x',x,)h1:(x )G 0 (x2,x )h (x )G 
0 (x1 1 x)

+ (.)3fd 4 x d4 xd4 x G (xl,x )h (x )G 0(x3 x)h (x)

X G0 (x 2 1 x )h (x )G 0(x 1 1 x) ......... ,0 (3.15)

where G 0is the "non-interacting" Green's function; and it leads

to the Dyson's equation

G(x',x) = G(x',X) + f d x IG (x,x 1 )(x Gxl~x) (3.16)

where E(x), the proper self-energy, is simply given as

E~x W 1 x (3.17)

Equation (3.16) can also be represented in the diagrammatic form

+ x(3.18)

x x x



where the shaded circle stands for the proper seif-eneray.

We are now in a position to calculate Gd 'Ai;w,t), the restricted

Fourier Transform of G(x',t';x,t), by converting Eq.(3.16) into an

algebraic equation. First we note that the QSA allows us to replace

E~ljt )in Eq. (3.16) by Z(xj11 t) [cf. discussion following Eq.(2.28)].

Dyson's equation can then be written

G('X',t';'X,t) = G0 (X' ,t';X,t) + fdXld il )(Xgt

44(319

X G(x1 t 1 ;x,t) (.9

Fourier transforming with respect to t'-t, Eq. (3.19) becomes

1fde_'(t' -t)[G(x',x,w,t) - G 0(x ,x,w)]

- (2tTtT) iwe'''(t 1-t)

X G(xl, 01 W At), (3.20)

since Gonly depends on the difference of the time variables, h 0 (x)

being time-independent. By first performing the integration with

respect to t 1 and then w', the right side of Eq.(3.20) can be ex-

pressed as

1 W 4. 4.

X fdt 1eiww)
= -dL~iWtfd3 0GO-)-- 1 sw (X itw1 4.(1 .Wt

= -TfdwAe iW~d x 1G (X' X,Ipw)(x 1t) G(x 1x , W,t).(2)

3 , 4. -0
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Eq.(3.20) then leads to the following Dyson's equation for G(*',x,,t):

G(xXw,,t) = G0 ( ,X,W) + fd3x 1G0(x , l,w)E(xl,t)G(xlx,w,t). (3.22)

Next, the spatial Fourier transforms of G(x',x,w,t) are performed

to obtain G(t',i,,w,t). Eq.(3.22) can be written as

1 6 d d3ke i  "x eii't G(t',t,wt) - G0 (t'A,,w)]

3k~~~ iei Xl
12Jd x 1''kd ' i lz( -,t 1, ,t) dk2dk

(27)

x ei ' IGi,,t), (3.23)

where Z(t',Al1 W,t) I fd3x'd3e-i ei GO (Xl',l,)E(Xlot). (3.24)

Again, by doing the appropriate integrations, we can reduce the

right side of Eq.(3.23) as follows:

(27r)2 2

d f 3x1ei(tl25.x- 1 fd3k d 3k ek i' '
' i*-d

(2(7

d=l (_1 d, 'd

x d (~' ~ ~Zwt)G(- k,w,t). (3.25)

Comparison with Eq. (3.23) yields the Dyson's equation for G(t',,,t):

G64',wt)= G (t'AW) + 1 fd ,kZ(k'-(
wi(2h) 3a (3.2

which can also be written in the diagrammatic form
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- 1

- + j'l (3.27)

3

where the angular bar stands for the interaction Z/(2r) and the

intermediate momentum variables are to be integrated over.

At this point it is convenient to expand G and G0 as

G(',,t (-k')()GN(wt), (3.28)

S0 t (-im') 0 (k)G0 (M)s (3.29)

ae a 1

where each of the sums runs over the complete set of indices {i}

and {a} [i.e., the non-interacting adatom and surface states, cf.

Eq. (3.4)J and

d(x) = .(x) (3.30)

0 -1., 0
Expressing G (x',xl ,w) also as

0 -_ - 0
G(x ,I) = *(x ') ( l)G (W), (3.31)

we obtain the following form for Z(t',tw,t):

> # ... ii' .'.. : ".-' uI
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1 3 d3leit'-

CL' l t = d xv d x' I'e-ial X * CL aXl)

X hi (lt)G (() ; 4,)X t)G0(w), (3.32)
1' a

where

xa (,t) d- x a ( I h I (Xl It) •(3.33)

Using Eqs.(3.28, (3.29), (3.32) and (3.33), Eq. (3.26) becomes

h01-+ - -0
• 'a(-k)O(k)EG (w,t) Ga (W)6 

(34

aB a B

1 k~. 1 )X(...j,t)GO0(W) X )G * (w &
(21) 3 a (UkL I

3,t-dl () d (x (X) (3.34)

may be considered to be a generalized time-dependent Rabi frequency.

Eq.(3.34) yields immediately the algebraic Dyson's equation for

G (G,t) :

G (w't) - G ( )6 ' G( )j , G _ , (wt) (3. 36)

Ot 6 a -h aa I
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or - -(t) G , -t) * (3.37)
ct' G (w)

0a a

In natrix notation,

G(w,t) = r-l(W,t), (3.38)

where

FL Yas(t). (3.39)

Since
_0 1 (3.40)

where

W E a/h, (3.41)

= (W-oaa -Y* (t). (3.42)

If we let
-+ = <e 1 8  (3.43)

we have

I1 yij (t) 4= - i a 0 (t ) cosot (3.44)

YM(t) = 14v - e 0"i. (t) co t}, (3.45)
Yia 2h.0 0 la

and

To'()= - g 0.o ,6(t coswt- (3.46)

Eqs.(3.28) and (3.38) then determine the time-dependent Green's

function G( ,t)

G is related to GA, the advanced Green's function, through the

following relationships:

GA(pw,t) =

(3.47)
=G* (p, p,w, t), W > 1j(t)/h

--------

L. . . . n I. . 1 .. . n. . . . . . .
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where U(t) is the time-dependent chemical potential of the adatom-

surface-field system. According to the Lehmann representation, 22

P(t) is determined as the point in real w space at which the imagi-

nary parts of the poles of G (regarded as a function of w) change

sign. These poles are determined by Eqs.(3.38) and (3.42). Eq.(2.26)

can then be used to give the spectral function.

IV. Conclusion

We have proposed a non-perturbative formalism to treat the bound-

continuum (BC) problem of collisional ionization of solid surfaces.

This formalism has certain advantages over conventional treatments

of BC problems. First it provides a direct way of obtaining differ-

ential cross sections with respect to the continuum of emitted elec-

tronic energies, whereas the usual optical potential methods would

only lead to the total cross section. Second, it bypasses the

approximation of limiting the problem to a finite number of chan-

nels, usually two, that is often required in coupled-channels ap-

proaches. Further, it renders the discretization of electronic

energies unnecessary, which is again the standard procedure in

coupled-channels as well as semiclassical treatments.

The QSA and the IMA, however, pose limitations on the validity

and usefulness of the present approach. In situations where the

applied field has frequencies w L large compared to or of the order

of l/T, the QSA breaks down, although the IMA may still be applicable

to the field-free problem. Fields with large wL may by themselves

lead to electronic excitation or ionization, and the inclusion of

collisional effects may not necessarily provide extra information

• , !' - -' .1
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on the systems of interest. However, the general collisional problem

with arbitrarily variable wL is definitely of immense theoretical

interest. It should also be noted that the underlying criterion for

the validity of both the QSA and the IMA is the shortness of the

collision time T. With the relaxation of this criterion to the

extent that the IMA is no longer valid, electron correlation effects

will have to be considered which would render the Green's function

formalism much more complicated than the present treatment.

L
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App2endix I

In this appendix we will derive the Dyson's equation for

the quantity G(P11 w,t) [cf. Eq.(2.29)I. We start from Eq.(3.16):

G(, G0 ~,'~ t) + f d xif dt 1G c't; 1 )

X (Xo~ 1)G'll 1x~).(A1

It should be noted this equation differs from Eq.(3.19) [which is

used to obtain the restricted Fourier Transform G(pl1 w,t)] only

in the time variable in the proper self-energy Z. Fourier Trans-

forming with respect to t'-t, Eq.(A.l) becomes

T Jdwe [~t t G("',w,t) - G ('xW)I

1 d3  t, w t- I t)G0 i w '(t1-t)

(270 fXif 1 ~ 1

From Eqs.(3.17) and (3.10)

The t 1-integration on the right side of Eq.(A.2) can then be

written as:

-i(w '-w)t

2-_ (x )6w - !e-E-X 1 f dt, ei'(wv"w)tle~tp )coswtl

-' ~h ()6(w'-w) - w 1 + 1 (A.3)
*h I1 1 W+wl+fl WL)W,+f

-L L-------
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where n is a vanishingly small positive quantity, and the inte-

gral representation for e(t) [Eq.(2.23)] has been used. Perform-

ing the W' integration next, we find that

0+ -1.1

G(x,X",w,t) -G (x ,xrw)

(3 h 1 (x 1 ) ____ x
-Jx G (X'1 x1 W)- -(x 1 x.&W 1 t) -__

X W eL Idw" eiW~t 4
X fe 7--i- rrT G (Xi XL"+W+WL t)

+ e ~ G ( l, ,W"+oWL~)] (A.4)

The spatial Fourier Transforms are then performed by rewritinq

Eq.(A.4) as follows:

1 6d 3k d 3ke e i-x LG( ',k-,L,t) - G (k',k,w)]
(27T) ik

_~~i 1 fdxidk'k ii*x
12~ 12_ d3xf 3 k 1d3kei "x e z 1 uk,kr1 ojd3k 2d ke - 2 1 e3*~

i L tij;cii 1 1

'A G(i 1tW't) + -1 12e L_ fd 3x ifd 3k'd 3k 1e it ,e
(2 7T)

z 1w~ -d k d ke 2l') Gkkw1wwt
2' 1 J2ri w"-inJ 2 ek 2 w+ L'~t

+(2Tr) 12 2 f dx 1 d Mdke xe z 2 (tK1 w)J f

_+ 4-

e ~ ~ i 3x 1i
X~ e, dk d ke 2 lekG~2l,w"+w-w Lt) (A. 5)

where4.+I
4. ~ I 3 3~ k.x -ikl*x 1 h 1 -. 04.A-

z~~ (kw~~ -kl() f d x- x -X1 G( -A6
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and

z 2  (ktw)- d e -di' eE0" )G ( ' ,) (A.7)z2 l ' ) -a x e -i' e 0- 1 0

By first performing the xI and then the k2 integration, we obtain the

Dyson's equation for G(',AW,t):

(' ,AW,t) - G° ( ',3) = kZ ''t)

(2 ; reW" dt iw"t

(27T) 12 1 )iiwi

e -iLtfdw " e iwt+ - ,W"+W- Lt) ]. (A. 8)
2 ~ 1 T I T.U 'l L

We again invoke the expansions [cf. Eqs.(3.28), (3.29) and (3.31)]:

0 -).,,1 , . 4. -.. -0
G ( X ) = I ()a(x )C (M), (A.9)

G (A.10)

and
0* (-') (t)G (w,t). (A.11

The interaction terms Z and Z can then be written:

= 41 d x'd x e e ( X (G

41) * - (1) (_ )G0 (), (A.12)

a

3 3 -el0 1  0
Z2( x- x. 'd 3 Xlelk x e Mll*( * ) (  0(

= d * ( (. 13

2 "
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where

(1) ~ 3  Ak1 x 1  h 1(x1
Xa i ( 1 eO( I (A.14)

and

(2)r 3  Sk1  x 1  ___0__-"

X (d e (i)( Oa (). (A.15)

Finally, we perform the i integration on the right hand side of

Eq.(A.8) and thus obtain [following the procedure in Eq.(3.34)]

the Dyson's equation for G 8(W,t):

_0 (l)*-G aB (w,t) = G0W () [60. + ,Y c 0  G al(W,t)

iiw t " ei "t - -iWLt i"t
+ (2) e " dy" G (,+W +L t) + e2 dw" e

X G al,(W"+W-WLPt)}] (A.16)

where

(2) 3 X* -,) 0

which may again be considered as Rabi frequencies [cf. Eq.(3.35)].

In matrix notation Eq.(A.16) can be written as

1 (2)*iWL t fdw, e imt iLt

I = r(1 ) 'G(w ,t ) - (2)* t +
S - t) -- _~ .7e =3n G(w'+w+L't) 4 e

Jdi' eiW
t

f j G({a'+w-wLt ) } (A.19)

where

(i) 6a (i*

r aB -0 Yaa (A.20)
G a(W
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