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PREFACE

Background. This work is a continuation of a previous work effort (1) with
the objective of developing a viscoplastic constitutive model for soils and
rocks. In the previous work, the inviscid-plastic cap model! of Sandler and
Rubin (CAP75) was reformulated into a Perzyna-type elastic/viscoplastic
model (2). In addition to the theoretical development a numerical solution
algorithm was developed to compute six dimensional stress histories from an
arbitrary strain loading schedule and vice versa. The algorithm was
embodied in the computer program "VPDRVR" which employs a Crank-Nicolson
time integration scheme and a Newton-Raphson iterative solution procedure.
Numerical studies were performed to validate the program and assess the
accuracy for various options of the time integration scheme. The effect of
the model fluidity parameters was illustrated for triaxial stress and
uniaxial strain loading for a weli-studied sand material (McCormick Ranch
Sand). Lastly, a finite element solution methodology incorporating the
viscoplastic model was presented. It was concluded that the elastic-
viscoplastic model shows great promise for capturing the viscoplastic
nature of many geological materials. Recommendations for future advance-
ment of the model were to incorporate a viscoplastic tension-cutoff cri-
terion and to establish parameter identification techniques with

experimental data. Herein lies the impetus of this study.

Objective. As indicated above, this report addresses two main areas: (1)
formuylation of a viscoplastic tension-tutoff model to be incorporated into
the viscoplastic cap model, and (2) development of parameter identification

procedures and guidelines for the cap viscoplastic model.

Scope and Approach. Part I of this report deals with tensfon cutoff. The

underiying motivation for fintroducing tension cutoff stems from the




m

recognition that soils and rocks usually exhibit abrupt changes in thejr
stress-strain behavior when loaded in tension, i.e., rapid tensile stress
release as micro-cracking or particle separation occurs. To this end, the
Ji (first stress invarient) tension-cutoff criterion proposed by Sandler
and Rubin (3) is adopted for this study and recast into viscoplastic for-
mulation. Here, separate fluidity parameters are assigned to the tension
cutoff domain to permit independent control on the rate of tensile-stress
release.

For the sake of completeness, Part 1 presents a concise review of the
viscoplastic cap model priof to introducing the viscoplastic tension
cutoff. Following the theoretical tension-cutoff development, a numerical
solution algorithm is presented for the entire viscoplastic mode) including
tension cutoff, This algorithm, which predicts stress histories from

strain loading and vice versa, is an extension of the previous "VPDRVR"

program. Input instructions for the new "VPDRVR" program with tension
cutoff is given in the Appendix. Part I concludes with an illustrative
example comparing the tension-cutoff numerical solution with an exact solu-
tion. Also presented is a critique of the tension-cutoff criterion and
recommendations for future enhancements.

Part I1 of this report addresses the parameter identification problem.
We begin by illustrating the influence of various model parameters on the
model's performance. With these insights, a set of guidelines are
established to aid in parameter identification. For identification pur-
poses, experimental data is classified into two categories “ideal" and
"non-ideal”. The former implies a well-designed set of experiments espe- '
cially conceived to ease the identification problem. A hypothetical

example of an {deal experiment is presented along ;1th a step-by-step iden-




tification procedure. The “non-ideal” esperimpets, WhiCh 52301y onavgh

applies to most existing data, does not leag 1tself 19 & “G1rect” 16mm-

tification procedure. Mere 3 tridl-and-error eppredch wiing Lhe WORWR
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Although more elaborate functional forms for ¢ may be established (2),
the forms given by Equations 9 and 10 appear to suffice for many geologicai
materials (4,5).

Specification of the plasticity yield function f is patterned after the
inviscid cap model (3) wherein Jq, the first stress invariant, and J';, the
second deviator stress invariant, are used to define the current static
yield surface, as tllustrated in Figure 1. Here, the static yield surface
is divided into three regions along the Jj axis; the failure surface region
(T >J; > L), the cap surface region (J) < L), and the tenston-cutoff

region (J; 2 7).

Failure Surface. The failure surface is a non-hardening, modified

Drucker-Prager form with a yield function defined by:

feldys 35) = AT, - (A - Cexp(B)))) (11)

1’
where A, B, and C are plastic material constants (A > C). This yield func-
tion is used to define viscoplastic flow (Equation 3) whenever J; is in the
range T > J; ~ L. The fatlure surface forms a boundary along which the cap
surface can move (harden/soften).

An alternative form for fp is the standard Drucker-Prager surface given

by:

feldye 3%5) 13*; - (A -B)) (12)

where A and B are materia) constants., The first form s generally preferable.
Cop Surface. The cap surface is & herdening surface in the shage of an
e))ipse quadrant when plotted in Jl.liT} space (Figure 1). It s defined

in a "squared” form with the normelizing constant fg (stress wnit) es:




20}y 42T (Tenuon)
1(o,€)s  1,(3,3,), T34,5L (Feilers)
vc(J,.Jz.l). J,$L (Cep)

Figure 1. Illustration of steady-state plasticity swrfaces
for cap modei.
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where 1. i3 determinec from Gquetion 14 by lettisg L - Jy Ve & +J, - .

This spectal Nardening rule for soils teigy to limit escessive dile.
tency (i.e.. volumetric eewpansion inhgrentl, gysocisted with 1oading the
failure and tension surfaces) by siiowing the cap 1O De activeted sooner
when subseguent compression Tgading iy encountered,

Another restriction imposed on ~ Is tAat it is aever 3)lowed 10 become
greater than its initial value ..‘0 .
The foregoing completes the viscoplastic coap model review and sets the

stage for formulating the viscoplastic tension-cutoff model.

Tension Cutoff Theoretical Development.

In this section we present a viscoplastic tension-cutoff model

10




mploying the same tontien foilure Criteries prapatet &y Sondier ang Rbin
for the Iaeitciq Cop mode! (3). ALINGUER tReir (rilerign Gars ool (oaleorm
L0 any rigoreus fraclure Thoory, 1L 1S B0l ieeed Lo O pprepridte for (he
Purpose of ragiely reducing the stiffsess of thesp clampels experionting

tension, Further CriLIgue 304 Sstentions of (Ae Lonsion (viof! aoael ere

eiven In the concluding portian of (Aly drvelopweet,

Jension Cutoff. The tesston-cutoff criterion emploged 1a tAe 1aviscd 39
mode! is triggered when J) - 1. Mere, T 15 ¢ meterisl conslont represent.
Ing the threshold of volumetric tLeesion Stress ot which rwpt stress
relesses ocCur due to tension Gamege. Specifically, whenever & stress
1tate 13 encountered such that J) > T, 1t s sssumnd thst A1) Geviateric
stresses vanish instanteneously, 4nd the volumatric stress a escess of 1
vanishes. Thus, the final 1Aviscid stress state 18 0y ® 0py * 04y * T/),
41) other T 0.

Putting this tension cutoff criterion into & viscoplastic form tafers
the stresses are released ot & rate controlled by the fluidity paremeter v
rather than an instantanecus relesse. Accordingly, 1t s ressonsble to
specify v in the tension region (say y,) at & Nigher velue then the value
of v in the fallure/cep regions., MNoreover, since the tenston cutoff cri-
terion treats volumetric and deviatoric stress relesses independently the
viscoplastic strain rate sust be independently defined in terms of volu-
metric and deviatoric strain-rate components.

With the above understanding, the viscoplastic tension cutoff mode! fs
defined by the following. The plasticity yleld function for teasion
cutoff, fy, is given dy:

f1(9y) = 9 -1 (20)

1
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Nence, the “static” yreld surfece (fy - 0) 1s @ stationary vertice! liae,
Jp 1, as shown In figure . When fy -0, tension (utoff 1y triggered

and the viscoplastic strata rate 15 defined dy.

;ﬁp oy iyl my e 1, ¥(fc) - (21)
'h'r' '6 hd /J.z
N
& -c‘ a Ak-' . y . ‘
" ") 237, M v2er Py #age Iy 203
3'1 7

L SR 1.1, 1,0,06,0

Equation 21 is a modified form of the viscoplastic flow rule
corresponding to Equation 3. Here the first right-hand-side term contains
the viscoplastic strain-rate for volumetric components, and the second terw
contains the deviatoric components. The two tenstion flyidity parameters, Yy
and ;. permit independent control of the volumetric and deviatoric stress
release rates, respectively.

As a conceptudl illustration, consider a material that is suddenly
strained producing an instantaneous elastic stress state such that fy(J;) >
0. This induces viscoplastic flow (Equation 21) which in turn releases
stresses until évp = 0. When this occurs, we have the steady state
condition; fy = fg « 0, or J) = T and J', = 0, thereby satisfying the ten-

sion-cutoff criterion.

Exact Solution. A deeper understanding of the tension-cutoff model can be

achieved by obtaining an exact solution and studying its behavior. An
exact solution can be obtained for a specified strain loading by decom-
posing the stress vector and elastic matrix into volumetric and deviatoric
components and solving the uncoupled system. To this end, the stress vec-

tor is written as:

12




0 s vy ¢
where » v
and S

(22)

J‘ <1,1,1,0,0,0> L volumetric stress components

T

> s

)|
3

deviatoric stress

€ S3ys San Sqaae Oyas Oy4, O
11° 722° 733" "12° "13* "23 components

Accordingly, the elastic matrix is decomposed into bulk and shear com-

ponents as:
D = K+ G (23)
111000 |
1 1000
1 0 0O
where, K = Ko Sym 0 0O = bulk modulus components
- 00
L o—
B
4 -2 -2 00 0T
Go 4§ -2 0 0 O
and, G = 3 4 0 0 O = shear modulus components
- 3 00
sym 3 0
- 3.
Now the basic constitutive relationship, i.e., the equivalent of
Equation 7, can be expressed in two sets of equations:
vos K(E- &) (24)
s ot BIE - g (25)
Upon replacing gvp in the above with tension flow rule (Equation 21) we
have :
Y 2 Ke-vpolfy) Km (26)
s = Ge-vgolfy) Gy (27)

13
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Note, the uncoupling in the last two equations is due to the fact that

Xmg =
G my = 0.

If the viscous flow function ¢ is taken in its simplest linear form,
foe. o(fy) = (3; - T)/f . and o(f;) = A7, /f,, then Equations 26 and 27

become the following first order, linear differential, vector equations:

. 9K, Y 31K, v
R N e L (28)
f = f T
0 0
G, Y
s+ (28 )56t (29)
0 J
In arriving at the above, use is made of the relations, v = —%~ K My and
A 0
- 2 Gm.
5*--6—————9.
0

A solution may be obtained for the case of a stepped strain loading,

*
€(t) = £ h(t), where gf is any constant strain vector causing initial

elastic stresses such that Jy > T, and h(t) is a heavyside step function.
Using this loading in Equation 28, we have K ¢ = 0, and the initial con-

dition v(0) = Kgf; so that the solution for volumetric stresses is:

L

y(t) = (Ke

—

- T/3 my) exp(-9Kg YTt/fo) + T/3 my (30)

Similarly for Equation 29, we have G ¢ = 0, and the initial condition s(0) =
i} g*;so that the solution for deviatoric stresses is:

s(t) = G exp(-6y Yg t/fo) (31)

Some worthwhile observations from these solutions are as follows:

(1) Since o(t) = v(t) + s(t), the instantaneous elastic stress state
is 0(0)=££*+_§E*=D€*

(2) As time increases, we eventually reach the steady state solution
v(=) = T/3 my and s{=) = 0, or Oy) = Opp = 033 = T/3, other 95 = 0.

Note, this indeed satisfies the tension-cutoff criterion,

14




i (3) The exponential rate of stress release from the initial solution

to the steady solution is 9K,Y1/f, for volumetric stresses, and

GOYG/f0 for deviatoric stresses.

(4) If it is desired to release volumetric and deviatoric stresses at

9
h the same rate controlled by Yy, we can choose Yo T

Yoo
GO T

The exact solution will be used subsequentiy to validate the numerical

solution algorithm presented next,

Numerical Solution Strategy

In the previous work effort (1), a numerical solution algorithm was
presented for the viscoplastic cap model without tension cutoff and coded
in the program, VPDRVR, Here we extend the algorithm to incorporate the

tension-cutoff model. From a programming viewpoint, the incorporation of

tension cutoff is straightforward, only requiring modification to the
subroutine VPLAST in the VPDRVR program along with the additional {input
data; T, Yy and Yg (see Appendix A).

For completeness, we will review the development of the numerical
algorithm along with a flow chart of the complete model wherein the primary
objective is to predict the stress reponse history from a specified strain
loading schedule. Alternatively, the VPDRVR program has the option to pre-
dict strain history from a stress loading schedule. However, the former

option is directly suited for finite element applications.

Lo Numerical Approximation. The basic strategy employs a Crank-Nicolson step-

by-step time integration scheme along with a Newton-Raphson iterative solu-

tion procedure. We begin with Equation 7 and integrate over one time step,

At, from time t, to t,,; to get the incremental constitutive relationship:




b0 = D(8e - ¢, ) (32)

p

where Ao = gp+] - gp with gﬁ = gﬂtn), similarly for Ac and Agvp‘
All quantities at time t, are presumed known., Next, we approximate Agvp by

a one parameter Crank-Nicolson time integration scheme as:

- _ayen “n+l
Aévp at (1 e)gvp + 8 Evp ) (33)

where ¢ is the adjustable integration parameter in the range 0 < ¢ < 1.

Choosing 8 = 0 implies the integration scheme is explicit (simple forward
n

difference) so that Agv is determined directly from the known value of évp

p
at the beginning of the time step. As a consequence, At must be restricted

in size to avoid numerical instability (6,7). Alternatively choosing 6 >
én+1
—vp

the end of the time step; thereby, requiring an iterative solution proce-

0, the scheme is implicit since Agvp is related to the unknown value at

dure within the time step. For 8 > 0.5, the implicit scheme is uncon-
ditionally stable so that the choice of At is governed by accuracy, not

stability.

Algorithm for Strain Loading. Returning to the incremental constitutive

relationship with Agvp replaced by the Crank-Nicolson approximation and
0n+]

using Ag = ¢ - gh, we rearrange Equation 32 to get the unknown quan-

tities on the left as:

n+l

+ At © év = fe - At(1 - 0)e" + 07! " (34)

-1 n+l
g
- Y p 3

0

éﬁ

Or, more compactly, in a symbolic functional notation.
p™!, ™ - " (35)

where P is the vector of all unknown quantities at time tpn,), and q" is the

vector of known quantities including the specified strain increment Ae .

16
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For 6 > 0, Equation 34 (or Eq. 35) forms a coupled set of six noalinear
+)

algebraic equations for the components of q" with the understanding that

é:;] is to be replaced by the appropriate flow rule and 1ts associated yield
function depending on which region of the cap mode! is currently being
activated (i.e. tension, failure, or cap).

To solve the above, a Newton-Raphson procedure is used by expanding the
vector function P in a limited Taylor series about & stress state g_i which
is some estimate of g"+], and 69_i is a first order correction to the esti-

mate, i.e, gp+] = g’* ég‘. This leads to a linear set of equations to

obtain the correction 69} given by:

P ol =g - P (36)

where Pl =D7' ol 4 at eéf,p (31)

and pr ;éi . g-l + Ate ;g;g (38)
Here P' is the Jacobian matrix of the vector_gi evaluated at,g'. gip.

The iteration process is repeated with gj+] = gi + Goi to get 2 new

correction 6gj+] until eventually the correction approaches zero. Table 1
summarizes the basic algorithm (Note to start the first iteration (i=}),
Pl pri and o' retain their values at time tp).

Upon reviewing Table 1 it is evident that the updating procedure for
fi+‘, mi*], éi;] and g'i*]is dependent upon the current value J‘i’] which
dictates what region of the model is being activated; tension, failure, or
cap. From a computational viewpoint, the updating process can be stream-
lined by expressing all of the plasticity yield function, f., fg, fy,

and f; in a general form as:

17
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TABLE 1. 5014108 ol@uriiam for oirewy '@stiC (A Walei
Including LONs1OM-culn?’ Slsele . ab8Im§,

[ ] L3 .
l. 8"" It timg t K TP “'. :" !. ol “ ‘Iﬁ :
2. Timg loop: A =} to amas
" kA .‘ ] "! .
‘“‘) g * b‘ni M -«“‘ v 0}':‘9 g ;
3. lteration loop. 1 ¢ 1.2, Ve ¢

(solve) P! s’ g’ -0

(update) g"‘ LYY ;

133 n-l -! g.;
S

(J'l e d b {eivo compele !QJ
K

4 "QJ"-leab'j:':

'C(J‘A JZ. ‘i J v h !

t ..
3 {130 compte “~ LLEP

e v o&f,) » t o oﬂfob % - N 1
‘ »
d rolf)m . g, 1

}
i, . i
g g * te &_ﬂp 1
: |

P 141 2 NS Mﬂ

”

4. Repeat iteration (step 1) unless one of the following i3 satisfied:
(a) e = 0, (explicit integration)
(b) € and TAALND 0, (elastic domain) ‘
(c) ldo‘l < tolerance, (convergence)
(d) & > imax, (iteration limit)
5, Print results and advance to next load increment (Step 2)
6. End
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L = X - Rg(l) 180,
where  gj(L) = -A » C exp(BL).

For the special hardentny rule for solls ‘apt rocasi. (he sonw to.r
steps are used when [0ading the faliure vr Teasior surfeces (.. - ().

except the second step 's replaced by

n v m“u;(]'
~1+} ‘ ‘ ¢ -
3 = mn w.oeAp UA W8

t

where X. - Jl + R gliJl)(Lnd 40 t4 the Intf.g! «a'ye,

This completes tne yeneral numerical algorttme for stra’s cae »g,
however, one last remark 1s tn order, !! 4 nchitregr @ 324 chY,) tely.
tionship 1§ used, 1.,e,, L M) »“, where D i3 g T.r Clom gf . _rreed :lerwss,
then the update for ;:;‘ 1n Table 1| must be done 2% "he ‘riremwelpl eue’
That is, t._vi;] = z_n"- :7;” where %;.! ’ <:, . C.f ! Thie tate [0l eQute

is used in the new YPDRVR program and 15 epplicad e for Jot* 1:=pgr gnd

nonlinear forms of the D metrix,

Algorithm for Stress Loading. For the inverye probles, -.e.,  i%pul tlresy

loading with the objective of determining the sirain response, 4 Aumet:<8!?
algorithm similar to that presented 1n Tadie | <or do edtiiy estabiished.
In point of fact the stress loading algorithm ts comp,tatiorall, m(t
simpler because the associated Jacobian matris becones ihe identity mptriy
as illustrated in the following developmer:®.

We begin by rewriting fquation 34 with the unkngwn strain guartities o
the left and the known quantities (stress increment and guantities &t % me

th) on right to get:

. -1 .
E"” - At ;3;] = D a0 s ontil - ‘”r:;) * ‘;-n (32}
22
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Or, equlsalentiy, 18 ¢ symB0lic fumctionsl aploliom

asl - asl '
[ 4

4 bo-y (93}

~ “wp
where the eeclory P end " ore the left oad rigat-Reng-sige of (quetion &2,
re; 8¢t ively,

for implicit Imtugretion '™ “ 0), Louetion 43 14 9 et of 31 nonltnesr

algobrat. eguations tu Be valied %) Rcuton-dgphior iterglion,
Alvernatively, 17 @4p) 2t 1ALegra% or 1% o0l o+ 0), the oQuiliony gre
11neer and O not reguire 1terdtion,

A Newton-Reghion procedure cen be *iledlished Dy €spanding P \a o

|}
Iimited Taylor rertes oDont the strein ¢lele ¢« whi A iy some @t imete of

nel ! , rel \
S, and - iy 4 freat order orfection to the evlimete, e, LA I Vo
i

Thiy leads to & Tirear et of eQuationy for *c givean Oy

RSN U (34)
rere P oo e ] %
where : ‘vp {5%)

i ot
and peo- P L
‘e (56)

Mere the Jacobtan matri P becomes the identity matris Decouse {yp can be
replaced by the stress dependent fiow rule so that i-_cf'p/:a; - 0.

Based on the above, 3t is evident that the algoritim for stress losding
parallels the strain ioading algorithm (Table 1) where P, P, and ¢" are
replaced by _i’_. _ﬁ'. and :g”. respectively. Table ] summarizes the stress
Joading algorithm. The procedure for updating the hardening parsmeters ¢ ,
X, and L is identical for both algorithms,

This completes the algorithm for stress loading.

Discussion of Tension Cutoff Algorithm

In this section we fllustrate the performence of the tension cutoff
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TABLE 3. Solution algurithe for Ji1s.opiestic cap wmode!
1ncluding tension cutuft! (stress loading)
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) 1
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[ s < s ¢ » P AN
1. Given at time tpe ¢ 0 v Svpt and 4
2. lime loop: n - |, Lo mas

LIPS ey D n
| (set) Q *Q fcertilo-v ‘vp o
' J. iteration loop: 1+ = 1,2, .. timaa

(solve) s g -

: (update) L"l S 5.‘
)

1ol 1e] -1 nel

v =P
"(Jl) . \:' > 1 (also compute (G)
1+
f . fF(Jl, Jz) . L o= Jl « 7

| ; .
: fL(JI' Jzn l) . Jl L {
!
| 1e) 3f

m s - (also compute mo {f J, > T)

; e | sufydm g elfgdmg L gy o T

| I MIT S SR |
| | . . !
; il 0 ke MY ‘
? e

4. Repeat iteration (step 3) uniess one of the following is satistied:
{(a) o = 0, (explicit integration)
(b) f" and fi" < 0, (elastic domain)
(c) ls;il < tolerance, (convergence)
{(d}) i > imax, (iteration limit)
5. Print results and advance to next load increment (step 2).

6. End.
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algorithm along with an exact solution. Also, a critique of the model is

given followed by some suggestions for future improvement.

I1lustrative Example. Figure 23 shows a tensile uniaxial strain loading

which “"abruptly” jumps from O to 5% strain and held constant. Also given
in the figure are the assumed elastic properties (K, and Gy) and the ten-

sion cutoff parameters yy, v, T and fo. Other material properties asso-

ciated with the failure and cap surfaces are immaterial since only the
tension surface is loaded in this example. (For reference, however, the cap
and failure surfaces were given the properties for McCormick Ranch Sand
(1)). The viscous flow function is chosen as ¢(f) = f/f, so that the pre-
viously developed exact solution (Equation 30 plus Equation 31) can be used
as a check.

In this example, the exact solution for axial stress simplifies to:

o11(t) = 0.5 exp (-24t) + 0.1 (ks{) (87)

and lateral stresses (022 = 033) are:

upa(t) = 0.1 exp (-24t) + 0.1  (ksi) (58)

9K

These simple forms arise from choosing Y6 © Ea— Yy

deviatoric stresses are released at the same rate. From the above

so that bulk and

equations, it is evident that o11(0) = 0.6 ksi and 022(0) = 033(0) = 0.2
ksi so that the instantaneous value of Jj; = 1.0 ksi indeed triggers
tension cutoff (Jy = 1.0 > T = 0.3).

Figure 2b shows the resulting stress histories as obtained from the
exact solution and the numerical solution (program VPORVR). The numerical
solution overlaps the exact solution with less than 0.2% error. Most of

this small error is due to the finite rise time (0.0001 time units), used
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AXIAL STRAIN, €,(%)

STRESS REPONSE, ksi

0.5 b ei - -
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| T = 0.3kl
0.3}t Y. 00 -
' .
E re‘.-' 00‘5
0211 Ko* 66.67 ksi A
o § Go* 40.0 ksi, _‘
! 5 fo = 0.25 ksi
o I Il [l 4
0.0001 0.1 0.2 0.3 0.4 0.5
TIME
Figure 2a. Uniaxial strain loading for tension
cutoff.
0.6 — Exact and i
0.5 Numerical Solution |
0"" (9 =O.5,At=0.0l)
004 Ny
0.3 7
0.2 Steady Stote -
0.1 Z — 1
o O'zzg . . N
0 0. 0.2 0.3 0.4 0.5
TIME
Figure 2b. Stress responses for tension cutoff.
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in the numerical solution, as shown in Figure 2a, to simulate a jump
loading. It can be observed that the stress responses effectively reach
steady state at 0.2 time units after loading (o)) = gpp = o33 = 1/3).
This time period can be increased or decreased by choosing yy higher or

lower, respectively. It is generally recommended to choose Yo 2§ Yr -
0

Critique of Tension Cutoff Model. Up till now, little has been said about

the rationale of the tension-cutoff criterion, i.e.,, is it reasonable to
assume that hydrostatic tension (Jj) by itself provides an adequate cri-
terion for tension failure. From a rigorous viewpoint, the answer is
generally no. However more pragmatically, it depends on the objective of
the analysis and, of course, the type of geological material we are dealing
with. Granular materials, for example, behave very erratically when one or
more of the principal stresses are in tension. In such cases, the Jj ten-
sion criterion may be as appropriate as any other criterion, particularly
if the analysis objective is to simply provide a means of effectively
reducing the stresses of those elements experiencing tension.

On the other hand, some brittle rock materials exhibit fairly well
defined fracture planes when loaded in tension. Here more realistic tension
failure theories are available, such as, maximum principal stress theory or
William-Warnke models (8). These theories employ three independent stress
invariants (e.g. Jj, J'p and J3) to describe the initial tension cutoff
surface and are inherently anisotropic in the post fracture analysis. When
initial tension failure occurs, normal and shear stress components on the
fracture plane are released. However on planes orthogonal to the fracture
plane, stresses are still active., If additional tensile loading is applied

such that three fracture planes develop then all stresses are released and




the effective stiffness in all directions is zero.

To be sure, the J] tension cutoff model is not capable of tracking the
progressive fracture planes for brittle materials. At best it may be said
that J; model simulates a complete tension failure with a small residual
hydrostatic stress T which may be specified as small as desired.

In summary the J) tension model may be adequate for granular materials
by default, i.e., other tension cutoff criterion have not demonstrated a
faithful representation of granular materials in tension. For brittle
materials, the J; tension cutoff criterion is a crude approximation, and
more rigorous models are available. Nonetheless, if the analysis objective
is to simulate loss of material strength in localized areas of tension, the
J; model provides a good engineering approximation. Many soil-structure

problems, including ground-shock problems, fall into this category.

Modifications for Viscoplastic Tension Damage. Presuming that the J) ten-

sion cutoff criterion is acceptable for some soils and rocks, we now
discuss how the viscoplastic tension model could be modified to represent
tension damage accumulation, That is, limited experimental evidence indi-
cates that the rate of tensile deformation increases for each loading cycle
in tension (9). Conceptually we can conceive of this as the progressive
growth of microcracks which do not heal during the cyclic loading.

As previously presented, the viscoplastic tension model is insensitive
to tension damage accumulation because regardless of how many times it is

cycled into tension, the viscoplastic strain rate év remains proportional

p
to the fludity parameter Y1 and the viscous flow function ¢ (Note g is
assumed to be related to YT). Thus, if each tension stress cycle is the

same, évp has the same flow rate in each tension cycle.
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To simulate the tension damage phenomenon, two modifications are

———

suggested; (1) a strain softening function for the tension cutoff sur-

face, and (2) a functional representation for Y7. Both functions could *
employ the same history dependent measure for tension damage accumulation.

As an example, the strain softening function for tension could be taken as:

f1{Jdy, €7} = Jp - T(eq) (59)
where  T(€7) = T, exp (-aj €7) (60)

In the above Ty and o) are positive material constants and €y is a monoto-
nically increasing measure of tension damage accumulation (discussed

subsequently). Accordingly, as tension damage accumulates, fy increases

for a given value of J; thereby increasing the magnitude of év Also,

p.
since T(ET) decreases with increasing tension damage, the tension cutoff
criterion is triggered at successively lower values of J; in cyclic

loading. This mimics non-healing crack growth.

The functional modification for Y1 could be taken as

vpleg) = YTO expla, €r) (61)

where Y1, and ap are positive material constants. Here YT(ET)increases
with tension damage thereby increasing the viscoplastic strain rate and the
rate of stress release.

Lastly, the measure of viscoplastic tension damage accumulation, ET,
used in both modifications, could be defined as an accumulation of positive
increments of volumetric viscoplastic strain (similar to the cap hardening

argument), i.e.,
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and ET is an initial value for tension damage.

0

The foregoing modifications are merely suggestions to indicate how f
viscoplastic tension damage accumulation could be represented within the
general framework of the viscoplastic cap model. Although the incorporation
of these modifications into a computational procedure is relatively
straightforward, more experimental data is needed to verify the validity

of these or other possible forms.
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PART 11. PARAMETER IDENTIFICATION AND EXAMPLES 1

Introduction ;

The complete description of the viscoplastic cap model requires the
following identifications; elastic parameters (K and G), faflure surface
parameters (A, B, and C), cap surface parameters (X, and R) along with har-
dening parameters (W and D), tension cutoff parameter (T), and the viscous
flow function exponent (N) along with the compressive fluidity parameter (Y)

and the tensile fluidity parameters (Y and Yg). The normalizing

constant (f,) should not be viewed as an independent parameter and is
recommended to be taken as fy = A,
For subsequence reference, the pertinent functional forms employing the

above parameters are listed below (excluding tension cutoff).

Failure and cap surfaces.

-~
H

f A7, - (A-C exp(BJ‘)) , T>0, > 1L

2 1 (64)
f =
£ s, - (x-0% - @y - BYRGF LI, <L (65)
c 2 1 0 '
Cap hardening.
A = In(e/W + 1)/D (66)
- - t <
€ =gyt J € dt (67)
0
é ] min (va. 0) , J] <L (68)
max (&vp’ o), J] > L (soil only)
oo . !
o fvpyy T Fvpy, ! “¥p3;3 (69)
EO = w(exp(oxo) -1 (70)
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L=X«+R(A-Cexp(BL)) (11)

viscous flow rule.

e * yo(fim

Svp (12)
(f/fo)N , £>0
o(f) = (23)
0, f<0
.o L . (14)
oG5 9, b9, 3
Constitutive reiationship.
9 = Deg (75) ﬂ
€ £ Lyp (16)

All the above forms have been developed and discussed in the first part of
this report as wel)l as in Reference (1). The tenston cutoff equationc are
not repeated here since the identification of the associated parameters (T,
Y7 and yg) has already been addresed, i.e., 7 should be selected as some
fraction of FCUT (say T = 0.5 FCUT), and yg = 9K Y1/G, and Yy taken an
order of magnitude larger than y.

We now consider identification techniques for the remaining parameters.

To be sure, identification is a difficult, non-unique process and is dep-

endent upon the quality and quantity of experimental data. With regard to
{dentification, experimental testing may be grouped in two categories

"ideal" experiments and "non-ideal” experiments. The former is & complete
set of experiments explicitly designed to provide relatively easy parameter
identification by controlling the loading schedule to permit separate iden-

tification of viscous and plastic (steady-state) responses. Conversely,
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the "non-1deal” esperiments arc iniumg cle @r3°vd & FGT 60 lde Ated

INTOrMatIon on uncoupling viscous end plerytiv (dleedy slele fesparyes.
For the non-1ded) cases, peromeler 13entiticatlion 1y ,rubed’y Besl eLhie el
by a trial ana error approech usin; the *FOUYE Lrogrew,

Parameter i1dentificetlion for DOLN the 1dee! end nom-13eel coser 1
discussed 'n subsequent sections., Unfortunetely most of tre esistiag
experimental date for soi) end rocks Talls 1nto the “non.i1des!’ cetegor),
To circumvent thig problem, we will define an i1deql sot 0f erperimpnts
along with a hypothetical set of results to illustrote the "i1dea!" i0en-
tification procedures. MHopefully this will serve o3 ¢ templote for t . ture
experimental work. For the non-i1deal cases, »#a1sting esperimentel date
will be used to illustrate parameter i1dentification by o trigl end ecror
process using the VPDAVR program,

Before these identification procedures are presented, it 1y weli to
discuss some behavioral aspects of the viscoplastic cap msode! along with

the influence that various parameters have on the model’s response.

Model Behavior and Parameter Influence

The behavior of the viscoplastic cap model s best visualized by con-

sidering the plasticity surfaces in Jl./ﬁTZ space as shown 1n tigure o,

Here the initial cap setting, X, gefines the initial elastic region shown
by the shaded area. To begin with, we suppose a compressive stress stote

"op" is suddenly applied and held constant such that fc(’A' Xo) > 0 but

within the failure surface as illustrated in Fig. 3a. Viscoplastic flow
will commence with a rate proportional to vd(fc)m, Eq. 72. At the same
time, the cap location X will begin to move from its initial location X,

toward the location Xa so that as time passes fc(oa, X) (and hence ¢p)
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to both model shapes. As before 1t a stress stele 4 15 $.80chi) M OSed,
both cap surfaces will move from the:ir 1rilig) lucealiony aFd veenlusliy
reach a steady-state pasition Cuntdining Lhe stress-slete _p 4% VNOwt.
During this movement, the relative distribulior of solumelric ame
deviatoric viscoplastic strdirs 1y ;0verne! 2y tre tolewar? rurne’ ot g
Consequently the vertical e'lipse (W - |, ¢'stridules @ yredler [roportion
of its siscoplastic strain te the volurelfiC COMpUnents "Rgh doey THhe horl.
zontal elhipse (k - 1Y, Thus, the ma o jurgose o7 the (g amelet = 1y o
control the relative distrotuttorn o' woimet bt gr, Ag.-at o it
strain components.

Cap hardening, which locates the current ,cy'’ton of 1, epgy .0y Lhe
parameters W and D along with the daccumu.ate? visccuiest 'y slre:r Pyroer:r

measure . as given by tquation 6b6. However the infl.,ence f w arg [ 2y

much more complicated than this equattion tritiaily suggests because v 1Img.
tely is also dependent on W and U through the vis.opiastic fiow -,'e,
Nonetheless, 'f Equation 6u 135 piotted 1n nongirenstonal fora 45 thowr 4n
Figure 4, it can be uysed to great advantage in understand:ry, the hardenin;
behavior, as well as, helping to quantify the ¥ and D parameters,

Listed beiow are some useful 1nsi1ghts with regard to the hardenrry

relationships in Figure 4.

(1) D (units of i1nverse stress) and W (units ¢f strain} are posttive
constants so that DX and /W are dimensioniess hardening coor-
dinates. At any instant in time DX and /W are related by the
graph in Figure 4.

(2) Assuming the initial value of X = X, is negative (which also gives
Eo <0) then all subsequent values of X and € are negative such

that Xo > X > -=and ey > € > - W. Thus W represents the maximum
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absolute value of volumetric viscoplastic stra)n accumulation that
can ever be achieved under any loading,

(3) when /W +-1.0 or, equivalently, when DX > 3.0 (approximately)
we see that a small change in sZz'éAt produces & large change AX =
iAt. As a consequence X moves 1ts position (hardens) very rapidly
toward the steady-state position so that the net response is
almost entirely elastic (i.e., there is no time for viscoplastic
strains to accumulate). This is why the cap mode! produces an
asymtotically increasing stress-strain curve in hydroscs”ic
compression, in effect, a pure elastic slope in the limit,

Based on the above insights, experience has shown that it is usually best
to quantify the parameter D in conjunction with X,. That is, X, is first
chosen to establish the size of the initial elastic domain, then D is cho-
sen such that |DXg! < 3.0 in order that plastic hardening will be effec-
tive. Typically |DXo < 0.5 has been used in this study. Having made the
selection for D, the parameter W may be used for control. Increasing W
results in increased amounts of viscoplastic strain, and conversely,

decreasing W decreases the amount of viscoplastic straining.

Identification Guidelines

Summarized below are the behavioral aspects and parameter iden-
tification guidelines for the viscoplastic cap model.

Elastic Parameters. The bulk modulus K and shear modulus G control the

elastic response. These parameters are best determined from unloading
tests and are restricted such that K > 2/3G. Nonlinear forms, K = K(J;) and
G = G(J2), may be used if warranted.

Failure Surface. The failure surface, denoted by fg in Equation 64, is




defined by parameters A, B, and C and forms a static yield surface ff = 0
along which the cap surface can move. |[f a constant stress state fis
imposed such that fy > 0, steady-state failure conditions will result
wherein the deviatoric components of tvp will continue to increase at a
constant rate. The parameter A is the maximum height of the static failure
surface and A-C is the height at Jy = 0, hence A > C. The parameter B
controls the curvature of the static yield surface, as B incrases, the rate
of curvature increases,

Cap Surface. The cap surface, denoted by f. in Equation 65, is an ellipse
quadrant whose shape is governed by the parameter R and whose initial loca-
tion is set by Xo. Choosing R > 1 implies a horizontal ellipse whereas R <
1 implies a vertical ellipse. By increasing R the outward normal of the
cap surface leans more toward the deviatoric direction ( vJ'; ) so that a
greater proportion of éxp is weighted toward the deviatoric components as
opposed to the volumetric components. In a typical triaxial stress loading,
for example, the effect of increasing R is to increase the total axial
strain £1). As a first guess, use R = 1.0 for trial and error
identification,

Setting Xy to a large negative value provides a large initial elastic
space which is often a suitable representation for pre-consolidated soils
or rocks. However remolded soil specimens are usually best represented
with an initially small elastic domain in which case X, is assigned a small
negative value near the Jj origin. Once X, is selected, e, is given by
Equation 70, and L, is given by Equation 71.

Cap Hardening. The parameters D and W, Equation 66, control cap hardening

along with the accumulated volumetric viscoplastic strain measure € ,

Equations 67-70. Experience has shown it is best to set D < 1/2 | X| -!
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and use W to control the cap hardening. To wit, increasing W retards the {
cap movement thereby increasing the accumulation of ¢yp. As [E/W| ;
approaches 1.0, the rate of cap movement X becomes infinite, and hence, the
response becomes more elastic.

Viscous Parameters. The cap/failure fluidity parameter y linearly controls

the viscoplastic strain rate évp via Equation 72, The exponent N also

influences the rate but in a nonlinear fashion dependent on the current

. . N :
value of f/f,, i.e. €yp =va(f/fo) M. Typically N = 1 is used, and € ,p is

controlled by Y unless sufficient experimental data is available to quan-
tify both parameters. The tension fluidity parameters are usually chosen

on an arbitrary basis since experimental data in tension is usually

ot vl o

lacking. It is recommended to choose yy an order of magnitude larger than y

and set g = 9 K/G Y7.

Tension Cutoff. The tension cutoff parameter T is also usually chosen on

an arbitrary basis. However, it is limited to a small practical range, 0 <
T < FCUT, where FCUT is the intersection of the failure surface with the Jj
axis. Typically, we set T = FCUT/2, but we must check that T > L, if L4 is
positive.

The foregoing guidelines are used extensively in the following iden-
tification procedures.

Parameter ldentification Using ldeal Experimental Data

In the following, an ideal experiment is defined and hypothetical )
results are constructed to illustrate an identification procedure.

Loading Schedules, A conventional triaxial testing apparatus is used to

conduct the ideal test. We require at least one purely hydrostatic test
and a minimum of three triaxial tests with successively increased confining

pressures. Figure 5a illustrates the stress paths of these tests in terms
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of 0y and o3 where H is the hydrostatic test (o) = o3) and Ty, Tp, T3 are

the triaxial tests. Each test employs a virgin material specimen, and as

illustrated, we require an unload-reload cycle on the hydrostatic test and
one of the triaxial tests.

The time loading schedule for the hydrostatic tests is illustrated in
Figure 5b. Here a sequence of pressure increments are applied such that
each increment is maintained until steady-state conditions are observed
(i.e. no volume change, W= 0). Similarly, the time loading schedule for
each triaxial test is a sequence of axial stress increments as shown in
Figure 5c. To start, we require the initi1al hydrostatic loading to be at a
steady-state condition before the first axial load increment is applied.
Each axial load increment is applied and held constant until a steady-state
condition él = 0 is observed for axial strain after which the next load
increment is applied. Eventually a failure condition is observed él =
constant (or increasing in rate) which temminates the test. In both types
of tests an unload-reload cycle is conducted from a steady-state position.

Response Data. For the hydrostatic test we require steady-state data of

pressure vs. volumetric change, as well as, a time history plot of volu-

metric change vs. time. For each triaxial test we require steady-state data
of shear stress oj - o3 vs. axial and lateral strains. As the first step

in parameter identification, we will use steady-state data to identify the
plasticity parameters. To this end, the hypothetical stress-strain responses
are plotted in Figures 6a and 6b.

Identification Procedure. The basic strategy for parameter identification

1s to determine elastic parameters from unloading data, plasticity parameters
from steady-state data, and viscous parameters from time history response

data. This is fllustrated in the following steps.
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Figure 5a. Stress path loadings, triaxial and hydrostatic.
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Figure 6a. Pressure vs. volume change at steady states.
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Figure 6b. Shear stress vs. axial and lateral strain
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(1)

(3)

Elastic parameters (K, G). The bulk modulus K is the slope of the
hydrostatic unload-load curve (Figure 6a) and Young's modulus is
the slope of the triaxial unload-load curve (Figure 6b). Thus, G
= 3KE/(9K-E).

Initial elastic domain (Xy). The initial elastic domain as
controlled by X, can be determined by transferring the bulk modu-
ius slope K to the origin of Figure 6a and finding the presure Py,
at which the slope departs from the data curve. Thus, X5 = 3Pg.
Failure surface (A,B,C). The failure points for tests T;, T, and
T3 (Figure 6b) represent the maximum steady-state shear stress
obtainable for each confining pressure. These three points may be
plotted in Jy, YJ', space with Jj =0y + 293 and YJ'p =loy - 04]//3

as shown in Figure 7, Accordingly, the parameters A, B, and C may

be determined by the failure condition fgp = 0, (i.e., ¥J'p = A - C exp(BJy)

for the three data points. This may be done graphically by
establishing the values for A and C as shown in Figure 7 and
using the above equation to compute B. Alternatively, a least-
squares error fit could be used to get A, B, and C simultaneously.
Cap hardening (W, D). Since hardening is controlled by the volu-
metric viscoplastic srain measure €, the steady state hydrostatic
data (Figure 6a) is sufficient to determine the hardening parame-
ters W and D by using Equation 66. To this end, we note that the
steady-state hydrostatic data implies X = J; (i.e., X coincides

with J) at steady-state) and € = €5 + wyp (1.e., wyp is always

compressive so that all increments add to €). Since wyp = w - J}/3K

we can say € = €5 + w - J1/3K, where €, is defined by Equation 70,

Substituting the above relationships for X, € and€ , into Equation

a4

e s




Figure 7. Failure surface piot.
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66 we have

W(exp(DJy) - exp(DXg)) = w - J}/3K

In the above K and Xy dre known constants (Steps 1 and 2) and w

and Jj are steady-state data points in Figure 63a. Accordingly,

the unknown parameters W and D are to be determined to best

satisfy the above equation for all data points. The easiest way

to do this is to choose D = 1/2 ]Xol-} and directly solve for W

at several (Jy, w) data points. [If each of the W's so determined is
not approximately the same, make a small adjustment in D and try
again.

(5) Cap shape (R). The strategy to determine R is illustrated in

Figure 8 where a particular failure data point (Tp) is chosen with
known coordinates J*, YJo*. At this point, we have L = 3", and
our objective is to determine the location X so that R is given by
R=(L - X)/ /55‘. To get X we use the hardening function, Equation
66, in which W and D have already been determined, so our problem

is to find £ at the failure point J,*, vJ,*. This may be

achieved by adding the volumetric viscoplastic strain from the
hydrostatic test evaluated at Jl* with the additional volumetric
viscoplastic strains from triaxial test T, (Figure 6b). Thus the

computational steps are as follows:

w=w(d*) + (b + 2Neq) (volumetric strain)
wyp = w - J1"/3K (viscoplastic volumetric

strain)
€= g4 + Wyp (hardening strain)
X = 1n(€/W + 1)/D (cap X associated with

*
J]*, Jz )
46




Figure 8.

Cap surface plot for determining R.
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R - (L - k) es eleiatsglice ol a

This process mdy be repedle? Tur g4y mgr, 'aticre ,uifls o0 0
4% desired and an asserdye 43 Le Ll ok _ar e SelefWited,
viscous Parameters N I utt o, e nteg p-3T8tle Cale e L A
rers @ and N Can De Jeleraine ! oo Tt 0yge Tt Tegt i,
MAtChing viscoplast © o Lt 0 stlrair cate Cotc wilt lhe
viscoplastic flow ruie, c2udatiom L. 1L Deytr witt, we ot ..
vs., time as 1llustrated tr figure § where the lime sfatiore 1),
to, etc. correspond te the hydrousta®le (veline s hedu e 'r o big re
5p. At the beyinning o! ea(nh Creep pha.e, e, YTime - 3y 'r
Figure 9, the volumetric viscoplastic sireir retr it et e
measured as the tangen® to the tine Mistary . 'ot,  Suchk cala
values va(ti) may be obtained fur each Lime staticen U, - 1., 14,
ts, ... termingting a !oad increase. tquating t+1s deta to
the volumetric viscoplastic flow rule we have

;Vu(tj) ,1f£ eov“\yui,

where mp - 2(dy - L)/t €
It 1s understood that f. ancd m; are tc be esaina®ed ot trrme t,,
Evaluating fo and my oS 13borious but straightforward as 107! ws,
first compute - {t,) <. g * wop(ty), second compute X, t., from
Equation 66, and third compute L(t;) from fjiattror 7., Havinc X
and L along with Jyj{t;), f. and m may be directly evaluates since
all plasticity parameters are known and J', = 0.

Now for each '.'vp(ti) fata peint everything 14 browmr yn the
above expression except r and N. These parameters can be deter-

mined by a least-square error technique. Or, more simply, choose
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N = 1 ang determnine value . ot St Ty, U e Lunpuled Ty are
not 1n good agrewment 1l ust N oan! Uiy ggarn,
This completes the 1deal 1dent tieatior prucess, we fest (onsiger trig,

and error methods with the VPUKYR progran,

Parameter ldentification Ustny Non-lded’ caperrental Jata
Three dJ1stinct sets ot crpertiental are cursidered . the gut,use ut
1denti1fying the vis.opiastic parduete;s By o tria' and errur procedsre
using the VPDRVR progran. The tnree sxperiments represent o rarge of <
geologicalmaterig’s, nard imestone, soft sediraent sy roce, dnd weil-gradeg
sand. Further, the manner 5f l10adiny and iuading rates are Ltyr-‘1cant’y

different between each experiment, thus, this study no% on., liustirates

tne parameter 1Jdentification process, but alsu, drmonstrales the capah', -

ties and limitations of trne viscoplastic cap mode!. tacn experine~t arg

correspending parameter fit 1s discussed 10 turn,

Limestone in Triaxial Stress. A rather elaborate, nonstandsrd, trramnia!
test experiment on specimens of Solenhofen Limestone was cunducted by
Robertson (10) to measure the axial strain history - |} resuiting from a
variable axial stress loading sequence. Details of the testing apparatus
an¢ experimental progran are somewhat 1nvolved 4nd are nut repeated here.
Instead, we simply 1dentify the stress loading history (Figure 10) for
Robertson's specimen number S-90 whigh is considered 'n this study. As
shown in Figure 10, an initial triaxial stress state is rapidly imposed )
= 96.1 ksi, Opp =733 = 44,1 kei). Thereafter, the lateral stresss are
maintained constant, and the axial stress 1s intermittentiy step loaded at

time = 7.2, 12.9, and 22.8 Filoscconds. After each step loading including

the initial loading, J)} decreases by some amount due to the nature of the
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MODEL PARAMETERS FOR LIMESTONE

Elastic Moduli:  Bulk = 3,500 ksi; sheor, G(J,') =
91 (1+21exp(-0.0012 J,")) ksi

Failure Surface: f.(J,, Jp') = JJz' -(1.0-0.28J,) ksi
Cap Surface: Rs24, fo = 1.0 ksi ; X5 =212.0 ksi
Cop Hardening: W =0.55, D, = 0.0024 ksi~'

Viscous Filow Function:
Nsi|,; f.=1.0 ksi
0 e -
y * 02 x 107 sec

Figure 10. Triaxial stress loading schedule and model
parameters for limestone.
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hydraulic testing apparatus. Although the magnitude of these decreases

were reported, their time history was not. Accordingly, the linearly

decreasing functions following each jump 1n Figure 10 are approximations,
Axial strain measurements were recorded before and after each loading

step, pruviding a data base for attempting to "curve fit" the viscoplastic

cap modei. Since the experiment represents a consecutive sequence of
loadings, “"curve fitting”, in this case, is quite difficult because the
accumulated strain depends upon the entire loading history and the strain
hardening parameter ¢ controlling the cap movement.

figure 11 shows strain history data points along with a viscoplastic
cap mode! representation producing a fairly good correlation. Since the
viscopiastic model was driven by the triaxial stress loading schedule in
Figure 10, the stress loading algorithm was used in the VPDRVR program. The
final parameters for the viscoplastic cap model are also shown in Figure 10
and were largely determined by trial and error, discussed next.

[sotropic elastic parameters, bulk modulus and shear modulus, were
determined by best fitting the instantaneous jump responses, i.e., no
viscoplastic flow was assumed to occur during the loading jumps. This was
best matched by a constant bulk modulus and a variable shear moduius mono-
tonically decreasing with J'p (Fig. 10). The iailure surface was

simplified to a standard Drucker-Prager form and the initial cap surface,

shaped as a horizontal ellipse R = 2.4, was located well into the

-212.0 ksi. The motivation for this

i

compression region by setting Xg
initial setting was to provide a large elastic region so that the initial

Jump loading did not cause excessive viscoplatic flow in accordance with

observations. Also it insured the viscoplastic flow in accordance with

the cap surface (Jy < L) throughout the loading schedule.
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Figure 11. Axial strain response and viscoplastic cap model
representation for limestone.
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In accordance with previously presented guidelines, the hardening

parameter D was set at LQ|x°|°], The hardening parameter W as well as the
fluidity parameter Y were adjusted by numerical experimentation to best
match the data. No attempt was made to vary the exponent of the viscous
flow function and was set at N = 1.

Although it is not claimed the model parameters chosen here are repre-
sentative of the limestone material in any loading environment, we do
assert that the representation in the range considered is fairly good. It
must be said, however, that Robertson's data extended beyond the range
presented here, and it was observed that, as the axial load increased, axial
strains were increasing at an ever increasing rate. Such behavior may be
attributed to strain softening which is not within the capabilities of the
current viscoplastic model. This is illustrated in another manner in the
next experiment.

Sedimentary Rock in Triaxial Stress. The viscoplastic yielding of soft

sedimentary rock samples was investigated by Akai, et al. {4). Their
experiments consisted of standard triaxial tests on cylindrical samples of
a porous tuft described as an ideal soft sedimentary rock.

The data considered here is for four separate creep tests all with the
same confining pressure and different axial loads. Each axial load is
rapidly applied and held constant for the duration of the creep test, up to
8,000 minutes. Figure 12 defines the imposed stress states for each of the
four tests along with the initial cap model setting and the model parame-
ters used for this study. The measured strain history data (deviatoric
strain, 211) reported by Akai is shown by data points in Figure 13 along
with the viscoplastic model representations shown with soiid lines. Here it

is observed that reasonable correlation with the data was achieved in the
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Figure 12. Stress states, initial cap setting and parameters
for soft sedimentary rock.
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primary and secondary creep range, but not in the tertiary creep range.
This will be elaborated further after a brief discussion on the parameter
identification procedure,.

The elastic properties were determined by assuming no viscoplastic
flow occured while each axial load was imposed so that the initial strains
were elastic. As shown in Figure 12, the initial cap setting was taken
well into the compression range with X, = -800 psi and R = 0.35 along with
a standard linear Drucker-Prager failure surface. The motivation for these
choices were due to the observation that the strain response data exhibited
continued elastic behavior for test 1, creep and then steady-state behavior
for test 2, and creep and then steady-state "failure" followed by tertiary
creep for tests 3 and 4. Accordingly, the initial cap setting was located
between stress states 1 and 2 to insure an elastic response for test 1.

The failure surface was located slightly above stress-state 2 to achieve
steady-state response for test 2 and below stress-states 3 and 4 to achieve
steady-state failure. Of course there is nothing unique about the par-
ticular parametric values chosen to accomplish this ipitial setting, In
accordance with previous guidelines, the hardening parameter D was taken as
a fraction of [xol'1 and the remaining parameters W, Y , and N, shown in
Figure 12, were chosen by numerical experimentatioﬁ with VPDRVR program,

Returning to the model‘s performance shown in fFigure 13, we observe
the elatic response, test 1, and the steady-state viscoplastic response,
test 2, are well correlated with the experimental data. In test 3, the
model correlates fairly well with primary and secondary creep data.

Primary creep is the early portion of the curve with decreasing strain
rates {cap movement) and secondary creep is a constant strain rate

(steady-state failure). The last two data points in test 3 exhibit ter-
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tiary creep, i.e., increasing strain rate, which is not represented by the
viscoplatic cap model. Test 4 also exhibits tertiary creep beginning
almost immediately after the primary creep phase. Again, tertiary creep is
not represented by the viscoplastic cap model.

From these comparisons we conclude that the present viscoplastic cap
model is capable of simulating elastic, primary creep and secondary creep
behavior but not tertiary creep. The inability of the viscoplastic model

to simulate tertiary creep is not a guestion of readjusting the parameters,

but rather, it is an inherent limitation of the functional forms defining
the model, i.e., the present model can only respond with constant strain
rates once the steady-state failure condition is reached (e.g., recall Fig. ;

3a). One way of overcoming this limitation is to introduce strain soften-

ing into the hardening function such that after € has grown (hardened)

to a specified level, a softening function is activated shrinking E, and
hence increasing the strain rate as the cap retracts. Another approach
would be to redefine the fluidity parameter in a functional form dependent

on N . This idea was discussed at the end of Part 1 of this report.

Sand in Uniaxial Strain with Variable Load Rates. We now consider the

last, and perhaps, the most significant experimental test for evaluating
the performance of the viscoplastic model, as well as, identifying the

model's parameters. This rather ingenious experimental test, conducted at

the Army's Waterways Experimental Station (11), was undertaken to directly
assess the effect of loading rate on the constitutive behavior of a dry
remolded sand (20-40 Ottawa Sand). The sand was molded into a thin disk-
shaped specimen at the bottom of a rigid cylindrical test chamber which
provided Tateral constraint {uniaxial strain). By means of rather ela-

borate ram and explosive loading devices, several specimens were pressure
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loaded with different rise times ranging from approximately 0.2 to 20,000
milliseconds. Data for each test included the time history of the pressure
loading and the corresponding strain history.

Due to the small thickness of the disk-shaped specimen (1.27 cm)
intertial effects are negligible even for the most rapid loading rate, That
is, in reference to the so-called "multiple-reflection theory", the sand-

specimen thickness is designed to be sufficiently small to permit a stress

wave to multiply propagate back and forth between the rigid-bottom boundary
and the free-surface boundary during the loading rise time. According to
the theory, inertial stresses are negligible, and therefore, the resulting
stress-strain histories provide a direct representation of the constitutive
behavior. This theory was independently verified by the WES investigators
for their test specimens by a simple dynamic analysis (i.e., a one-
dimensional wave propagation computer program using the actual loading
histories and piece-wise linear stress-strain relations determined from
static tests).

Figure 14 shows the pressure loading history (oj; stress) along with
the measured strain history for the "slow" loading rate which has a rise
time of 15,000 milliseconds. At the other extreme, Figure 15 shows the
stress and strain histories for the "rapid" loading rate which has a rise
time of 0.2 milliseconds. The resulting stress-strain curves for both

loading rates are shown in Figure 16. Here it is plainly evident that ihe

sand specimen exhibits rate-dependent stress-strain behavior.

Intermediate loading rates with rise times on the order of 100 milli-
seconds gave results almost identical to the slow loading rate experiment.
This leads to two important observations, (1) the non-linear stress-strain

relationship for the slow loading rate is not time dependent and may be
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Figure 14. Slow loading stress and strain histories.
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Figure 15. Rapid loading stress and strain histories.
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Stress-strain response for slow and rapid loading.
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assumed inviscid, and (2) rate effec”: unly becune significant when the

rise time approaches the sub-millisecond ranye. These observations wi!) be
used to great advantage 1n the subsequent parameter i1dentification process.

The overall strategy for determining the model's parameters {(listed n
Figure 16) is based on the observation that the experimentsl stress-strain
curve for the slow loading rate is an 1nviscid-plastic response.
Accordingly, all the elastic and plastic parameters cdn be determinea from
the slow loading-rate test. Once these parameters have been 1dentified,
the viscous parameters {, and N) can be determined from the rapid i10ading
test. That is, for the slow-loading trial simulations, : 1s taken suf-
ficiently large to ensure complete viscoplastic flow {1.e, 1nviSiac-plastic
response). In other words, there 1s some lower limit or « Such thdat ary
value greater than this limit produces identical results. The *1ngl taice
for * is directed by the r.pid-loading test, 1.e, + 15 (hoser 5, trial ang
error to achieve reasonable agreement bdetween the predicted ang neads .red
stress-strain slopes from rapid lcdding.

With the above understanding, tne toilcwing parameter 1dent - ficatrer
procedure employs the strain loading history from Figure 14 as 1nput nto
the VPDRVR program. Identification begins by selecting elastic parameters
to match the initial unloading slope of the slow-loading test. 1lhis sliope
is an elastic confined modulus graphically measured as 57,000 MPa. lsing
this value along with an assumed value of Poisson's ratio : “ .3, the bulk
and shear modulus are set once and for all as recorded in Figure 16.

Selection of the failure surface parameters, A, B, and C (Sandler
form) are guided by the observation that the unloading curve begins to
exhibit a nonlinear response after a st-ess reduction between § to 1 MPga,

This suggests that the elastic unloading space is rather small, hence, the
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maximun Tailure surface Retghs A 1y Se¥ ot g rortnglly, wme | saiue of &
MPa, and the curvature parameler B 's dele’tired Ly trial one errcr to pry.
duce a re-entry point un the fatlure surface wt'Ch apprusimateiy metches
the break i1n the unloading curve, The paremeter value Tor { 1§ chosen
slightly 'ess than A tn arder thetl the i tference, A-U, Lroviges & very
smatl value for the 1n1%1a! elastic Spdu- vrtor Uy lgeding,  Thiy 1y tr
contorad.e with the cbserva® i se *naY =5 ~i213) elastlc resgonse 1§
observed 4pon tri1ttal loadin,, AL a2 side cuoaenrl, 1T wes ubtervec thiuugh
numert.dl experimental ‘ur That 8 aore profnuvanced breds ir the Jh'oaging
Curve (an be achreved by reds(ing A ang 1rcregstng 8,

For the 1mtial cay surfece iocattor, X, ts sel at an arbilrary semall
value to iimit the size of the 1nitisl elastic space 1n corformence with
the smali A-C value discussed gbove. The Cap shape parameter h 13
arbitrarily set at 2.... Numerical experimentation 1ndicated that changes
in R has little effect on the axta) stress-strain curve. Ity primary
influence is to increase the magnitude of lateral stresses 83 R i1ncreases
(Yateral stresses were not measured in the experiments),

The most important parameters for capturing the shape of the stress-
strain loading curve are the cap hardering parameters W and O. Since o
represerts the maximum volumetric viscoplastic straftn that can be achieved,
it was initialiy estimated as 0.03 which is approximately the maximym volu-
metric total strain observed in the test. As previous'y discussed, it 1s
generally recommended to choose D!‘Ol - 3.5, Decreasing D or W resylts in
increased stress magnitude, i.e., a steeper stress-strain loading curve.
After several trials, the final values selected are W = 0.027 and DIXO’ *
0.047. This completes the identification of elastic and plastic parame-

ters.
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During the above 1dentification prucess, the tluidily parameter ' was
set at a relatively large value to ensure INyISuiy responses tor the s!uw
loading-rate test ( . = 1.0 x ic-% miilisecona-1), Atter the final eiastic
and plastic parameters were chosen, ; was repeatedly reduced tu 8scertein
at what value of 1 the slow luading NS to exhibDit 4 smatl visLous
resporse which did not differ trom the 1nviscid response by more thar 1%,

~

"his value of + was determir>d tu be 5,02 v 15°% milliseconds=»,
Theretore, tmis vailue 15 & lowerbound on the final vaiue of : that may be
selected to be.t fit the rapid-loading test.

The last step in the 1dentitication process 1s to simulate the rapio-
icading test using the strain history data in figure 15 tor input 1nto the
VPLRVR program and ascertaining the viscous parameters y and N to best
mat~n the rapid-loading stress-strain curve, all other parameters remaining
the same. Here N was set to 1.0 (not varied) and the final choice for s 1is
0.2 « 10-4 millisecond-l, an order of magnitude greater than the lower
bound estabiished above, As a final check, the slow-loading test was rerun
with tre final parameters and identical results were obtained, Moreover,
intermediate-loading rates with rise times on the order of 100 milliseconds
were run, and the resuiting stress-strain responses did not differ signifi-
cantly from the slow-loading rate (i.e., in conformance with experimental
observations).

pon examining Figure 16, 1t 1s evident that the viscoplastic cap ‘
mode} accurately reflects the test data. For the slow-loading test, the
cap surface continually moves with the stress state producing a stiffening
stress-strain response as shown. Since the stress state is on the cap sur-
face during loading, the immediate unloading response is initially elastic

prior to re-entering the failure surface. On the other hand, for the fast-
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loading rate, the cap surface lags behind the loading stress state pro-
ducing an “apparent” softeninig stress-strain response (of course, this is
reaily a time-dependent effect). Just prior to unloading,the stress state
is well above the cap surface, thus when unloading occurs, the stress state
remains in the viscoplastic domain producing additional strain accumula-
tions as shown. The correlation between the model's performance and the
observed performance is truly quite remarkable, particularly with regard to
matching the rapid-loading behavior characteristic of ground shock

problems.

Summary and Recommendations

Summary and Conclusions. In Part I of this report a theoretical for-

mulation for viscoplastic tension cutoff was developed based on a Jj stress
criterion, For completeness, this formulation was presented with the pre-
vious CAP75 viscoplastic formulation (1) providing a complete description
of viscoplastic behavior for tension cut-off, failure surface, and cap har-
dening. A numerical solution strategy for the complete model was presented
and coded in the computer program VPDRVR {Appendix). This algorithm
employs a variable Crank-Nicolson time integration scheme together with
Newton-Raphson iteration procedure to solve for the six-component stress
history resulting from an arbitrary six-component strain loading schedule.
Also, the program solves the inverse problem, i.e., stress loading 1nput'
strain history output.

The new tension-cutoff algorithm was tested against an exact solution
for the case of uniaxial-stepped-strain loading. Perfect agreement was
obtained. [t was concluded that the fluidity parameters in the tension

domain should be at least an order of magnitude larger than that in the
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viscoplastic cap model is well suited for capturing the time-dependent

| behavior of soils and rocks over a wide range of loadings. Future enhan-
cements of the model can easily overcome the shortcomings noted above.
Future Recommendations. Recommendations for future efforts are divided
into two main areas; “model enhancement” and "automated parameter
identification”. MWith regard to model enhancement, two improvements are

suygested. First and foremost it is recommended to generate the

appropriate functional! forms of the mode! to provide the capabaility of
simulating tertiary creep. This could be done by introducing a history
dependent function for tie fluidity parameter and/or a strain softening
function for the cap. Sufficient experimental data currently exists to
meaningfully undertake this enhancement. The Second enhancement is con-
cerned with simulating tension damage accumulation associated witn cyclic
loading. Again, this could be done with special functional forims for the
tension fluidity parameter and/or softening functions for the tension
failure surface. However, to meaningfully undertake this effort, addi-
tional experimental data is required.

Lastly with regard to automated parameter identification, it is recom-
mended to re-structure the VPDRVR program into an interactive, user-
friendly, identification program. Ffor "ideal" data the program would
determine all the model parameters with very little assistance from user.
For "non-ideal" data a close interaction between the user and the computer

is the best approach. Here it is envisioned that the user would specify

several constraints (e.g., slope of unloading curve, initial size of
] elastic domain, etc.) along with both stress and strain response histories.
A first estimate of the parameters would be determined by the program with

an over-ride option by the user. Thereafter, the user would specify one or
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more parameters to be optimized, and the program would respond with the

current optimum value of the varied parameter along with diagnostic data
and graphs illustrating the effects of the parameter. Stepping along in
this interactive fashion, i.e. changing one parameter at a time, a final
solution can be obtained in a matter of a few minutes, instead of weeks by
a batch oriented trial and error approach. Moreover, the intermediate
diagnostic data is of tremendous educational value with regard to
understanding the model's behavior.

In closing, it is worthwhile to repeat that the viscoplastic cap model
has been shown to perform extraordinarily well with experimental data over
a wide range of loading environments, as well as, for a variety of geologi-
cal materials. No other time-dependent constitutive model has exhibited
this degree of generality. Accordingly, it is highly recommended to pursue

the future development of this model along the lines suggested above,
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APPENDIX A

PROGRAM VPDRVR: INPUT INSTRUCTIONS

This Appendix provides input instructions for the VPDRVR program which
exercises the viscoplastic cap model with tension cutoff., Only a very
minor change to the original input instructions (1) are needed to define
the tension cutoff parameters. These changes are on one card (Group D,
Card 10} which is extended to define the tension fluidity parameters Yy and
Yg and the hydrostatic tension cutoff value T.

For convenience, the entire set of input instructions along with ten-
sion cutoff input is given here., The program documentation and benchmark
problems given in Reference (1) remain valid and are not repeated here.
Benchmarks for tension cutoff are given in Part [ of this report.

Input data cards are grouped in the following categories:

A. (Cards 1 and 2): Heading and Master Control

B. (Cards 3, 4, and 5): Elastic functions/parameters

C. (Cards 6, 7, 8, and 9): Plastic function/parameters

D. (Card 10): Viscous functions/parameters and tension cutoff

E. (Cards 11, 12): Loading schedules for stress or strain.
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USER INPUT INSTRUCTIONS
A. Problem Initiation, Heading and Master Control Cards.

Card 1. (15A4) Heading

Columns Variable Entry Description
01-60 TITLE Descriptive problem title, (program
(15A4) terminates if TITLE(1l) = STOP).

Card 2. (415, Al, 2F10.0) Master Controls

Columns Variable Entry Description
01-05 LTYPE Loading type identification;
(15) = 0, strain loading.
= 1, stress loading.
06-10 NTSEG Number of time segments to define
(15) loading, (Default = 1, Maximum = 30).
11-15 I TMAX Number of Newton-Raphson iterations,
(15) (Default = 10).
16-20 KPRINT Qutput print control;
(1%) = 0, standard response output
= 1, above plus iteration parameters
= 2, above plus yield function values.
= 3, above plus iterative correction vector
= 4, above plus Jacobian matrix.
20-21 IPLOT Plot control for response data written
(Al) to unit 11:

Y (YES) Data written to unit 11
N (NO) Not written

o

22-31 THETA Crank Nicolson integration parameter;
(F10.0) 0< 08< 1.0

32-41 CONVRG Convergence tolerance for Newton-Raphson
(F10.0) iteration, (Default = 0.01, i.e. 1%

relative error).
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B. Elastic Function and Parameter Cards

Card 3. (215) Selection of Elastic Functions

Columns Variable Entry Description Notes
01-05 1FBMOD Selection of bulk modulus function, K(J;): (9)
(15) 1, K(Jy) = BDATA(1) , (linear)

2, K(Jl) = BDATA(1)/(1-BDATA(2))*
(1-BDATA({2)*EXP(BDATA(3'*J1))
(Default = 1)

06-10 IF SMOD Selection of shear modulus function, G(Jp): (10)
(15) = 1, G(J2) = SDATA(1l), (linear)
= 2, G(J2) = SDATA(1)/(1-SDATA(2))*
{1-SDATA(2)*EXP(-SDATA(3)*J2)).
(Default = 1)

Card 4. (7F10.0) Bulk modulus parameters, BDATA

Columns Variable Entry Description Notes
01-10 BDATA(1) First bulk modulus parameter. (11)
(F10.0)
11-20 BDATA(2) Second bulk modulus parameter.
(F10.0)
21-30 BDATA(3) Third bulk modulus parameter,
(F10.0)
Card 5, (7F10.0) Shear modulus parameters, SDATA
Columns Variable Entry Description Notes
. 01-10 SDATA(1) First shear modulus parameter (12)
(F10.0)
11-20 SDATA(2) Second shear modulus parameter
(F10.0)
i 21-30 SDATA(3) Third shear modulus parameter
| [(F10.0)
f p
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C. Plastic Function and Parameter Cards

Selection of CAP75 functions

Entry Description

Selection of failure surface function
fp =/Jz2 + 95, (J1):

=1, 9F1 = -FDTATA(1) + FDATA(2)*J1.
= 2, 9, © -FDATA(1) + FDATA(2)*

EXP(FDATA(3)*J1).
(Default = 1)

Selection of cap surface ellipse ratio R:
0, No cap, just railure surface.

1, R = CDATA(1).

2, R = CDATA(1)/(1 + CDATA(2))*

(1.0 + CDATA(2)*EXP(CDATA(3)*EL)).

Control of cap hardening:

0, No hardening, stationary cap.

1, CAP75 hardening function is used:
€ = W(EXP(D*X) - 1).

HDATA(1)

HDATA(2)

O X m
n on u

Selection for soil or rock hardening laws:
0, soil material,
1, rock material,

Initial location of cap X on Jj axis.

(F10.0)  Failure Surface Parameters, FDATA.

Card 6. (415, G10.0)
Columns Variable
01-05 IFFAIL
(15)

06-10 IFCAPR
(15)

11-15 IFHARD
(15)

16-20 KAPTYP
(15)

21-30 XINITL
(G10.0)

Card 7.

Columns Variable
N01-10 FDATA(1)
(F10.0)

11-20 FDATA(2)
(F10.0)

21-30 FDATA(3)
(F10.0)

Entry Description

First failure surface parameter,

Second failure surface parameter,

Third failure surface parameter.
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Card 8. (7F10.0) Cap Surface Parameters for R, CDATA

Columns Variable Entry Description Notes
01-10 CDATA(1) First cap R parameter. (19)
(F10.0)

11-20 CDATA(2) Second cap R parameter.

(F10.0)

21-30 CDATA(3) Third cap R parameter.

(F10.0)

*  Card 9. (7F10.0) Hardening cap parameters, HDATA,

Columns Variable Entry Description Notes
01-10 HDATA(1) First hardening parameter, W. (20)
(F10.0)

11-20 HDATA(2) Second hardening parameter, D.

(F10.0)

*Skip Cards 8 and 9 if IFCAPR = O.
D. Viscous Function and Tension-Cutoff Parameters

Card 10. (15, 6F10.0) Selection of viscous function/parameters

Columns Variable Entry Description Notes
01-05 IFVISC Selection of viscous function : (21)
(15) = 1,4 = (f/ANORM)**EXPN.

= 2,9 = EXP((f/ANORM)**EXPN) - 1.

(Default = 1)
06-15 EXPN Exponent in o function, (22)
(F10.0) (Default = 1.0).
16-25 GAMMA Fluidity parameter,Y . (23)
(F10.0)
26-35 ANORM Normalizing constant in ¢ function, (24)
(F10.0) (Default = max(FDATA(1), 0.01)

- Card 10 continued on next page -
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D. Card 10 continued (tension cutoff parameters)

Columns Vvariable Entry Description Notes
36-45 GAMMAR Fluidity parameter for volumetric (a)
(F10.0) tension cutoff, vy
Default = Y

46-55 GAMMAG Fluidity parameter for deviatoric (b)
(F10.0) tension cutoff, Y

; Default = 10.0*"y

i

' 56-65 TCUT Hydrostatic tension cutoff limit, 7 {c)
(F10.0)

Notes a, b, and ¢ for Card 10.

(a) To simulate rapid volumetric stress release, GAMMAB {yy) should be
taken significantly greater than GAMMA (Y) which controls the
viscoplastic flow in the cap/failure regions.

{(b) In order to have deviatoric stresses release at the same rate as volu-
metric stresses, set Yg = 9Ky Y7/Gg, where K, and Go are bulk and shear
elastic moduli. Typically g should be an order of magnitude greater
than vrt.

(c) The tension cutoff value TCUT (or T) triggers tension cutoff whenever
Ji - T >0. Accordingly, a sensible choice for T is in the range 0 <
T < FCUT. FCUT is where the failure surface intersects the Jj axis.
If it is desired to deactivate the tension cutoff procedure entirely,
set T >> FCUT. To insure that TCUT is not specified within the cap
domain, the program checks that TCUT > L. If this is not satisfied,
the program resets TCUT = L, and is noted on the printed output.
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Columns

Card 11 (F10.0, 215)

Variable

01-10
(F10.0)

11-15
' (15)

- 16-20
(15)

Columns

Card 12.

TS(NS)

NUMDT(NS)

IPRNT(NS)

(6F10.0) Stress or strain load vector at time TS(NS).

variable

01-10
(F10.0)

11-20
(F10.0)

21-30
(F10.0)

31-40
(F10.0)

41-50
(F10.0)

51-60
(F10.0)

PLOAD(1,NS)

PLOAD(2,NS)

PLOAD( 3,NS)

PLOAD(4,NS)

PLOAD(5,NS)

PLOAD(6, NS)

E. Input Loading Schedule and Time Steps.
Repeat card set 11 and 12 NTSEG times; NS = 1, NTSEG

Time segment, number of steps, print control.

Entry Description

Time at end of segment NS.

Number of times steps within time
segment NS,
(Default = 10)

Print interval for standard output:
= 1, every time step prints output,
= n, every nth step prints.

(Default = 1)

Entry Description

011 lor ¢11) at TS(NS).
092 (or rp2) at TS(NS).
o33 (or e33) at TS(NS).
012 (or €12) at TS(NS).
013 (or £13) at TS(NS).

Vo3 (or £23) at TS(NS).

Notes

(25)

(26)

(27)

Notes

(28)

e A " v ——— L g

***END OF INPUT FOR ONE PROBLEM

kW
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Commentary Notes with lnput Instructions: !

1. Problems may be run back-to-back. Terminate the last problem by
writing STOP in columns 1 to 4.

2. Strain loading implies the six components of strain will be specified \
individually during the loading schedule. Similarly, stress loading ;
implies the six components of stress will be individually specified.

3. For either stress or strain loading, NTSEG 1s the desired number of
time segments to define the loading histories in & piecewise linear
fashion,

4. Generally 10 iterations is more than syfficient tc achieve convergence,
[f convergence is not achieved, it is a strong indicaticn that the time
step is too large. Note that convergence of the Newton-Raphson
procedure does not guarantee accuracy, Accuracy can only be assured by
repeatable solutions with smaller time steps.

5. Standard output includes stress or strain responses, cap location,
number iterations to converge, stress invariants, anc type of respornse.
For KPRINT > 0, additional information is given primar iy for debugying
purposes.

6. Standard response data is written to unit 11 for subsequent plotting on
a CALCOMP plotter. Subroutine GRAPH is used for plotting and may be
removed or replaced if desired.

7. For THETA = 0., the solution algorithm is explicit resulting in ltnear
equations {i.e. no Newton-Raphson iteration). For THETA - 0, the
algorithm is implicit and generdally more accurate for a given time step
size., but requires Newton-Raphson iteration., for THETA * 0.5, the
algorithm is unconditionally stable. -

8. The convergence tolerance, CONVRG, is tested against the ratio formed
by the norm of the correction vector for stress (or strain) divided by
the norm of the stress {or strain) vector. Norms are Euclidean,

9. The nonlinear bulk modulus function given by IFBMOD = 2 is taken from
CAPCRIVER (NCEL Program). It is a function of J; (first stress
invariant} and is treated the same for loading or unloading.
Additional functions may be added to program in FUNCTION DI{1,J).

10. The nonlinear shear modulus function given by [FSMOD = 2 is a function
of Jp, second deviator stress invariant (see Note 9).

11. For future program expansion, BDATA is dimensioned to 7 to allow incor-
poratin of higher order nonlinear functions.

12. SDATA is dimensioned to 7 (see above),

13. For IFFAIL = 1, the failure surface is standard Drucker-Prager (or Von
Mices if FDATA(2) = 0.0). For IFFAIL = 2, the failure surfa» 1§ the
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14,

15.

16.

17.

18.

19.

20.

21.

22.
23.

24,

25.

exponential form suggested by Sandler tor CAPJS., Additonal functiona)
forms may be added to the program i1n FUNCTIUN FGI.

By setting [FCAPR = 0, the plasticity model is governed by only the
failure surface. For IFCAPR = | or 2 the cap surface is included with
R given by the corresponding functional form., Additional fynctional
forus for R may be added to program in FUNCTION FRCAP., (Note for
IFCAPR = 2, R = R(EL) where EL is "L of cap).

If desired, a nonhardening cap surface may be used by settinyg [FHAKD =
0. DOtherwise the CAP’5 hardening function s employed. New hardening
functions can be employed by modifying SUBROUTINE CAPJS.

See Part 1 for the special hardening rules for soils (KAPTYP = (),

The initiai location of X defines the starting position of the . ap sur-
face. The program checks that XINITL is not greater than FCUT, 1.e.
the intersection of the failure surface with Jl axis. I1f it s, XINITL
is automatically reset slightly less than FCUT. Note, the sc-called
Von Mises Transition employed by Sandler is not included in this devel-
opment. Thus, if it is desired to obtain steady-state viscopliastic
solutions to exactly match CAP7S plasticity solutions, XINITL shoula be
chosen so that the initial L location is not greater than zero.

The “standard Sandler” CAP75 failure surface 1s the form given by
IFFAIL = 2. In which case FDATA(1) = A, FDATA(2) = C, and FD#TA(3, =
B.

The "standard Sandler” CAP75 cap surface parameter is the form given by
IFCAPR = 1, i.e., CDATA(1) = R.

[f [FHARD = 0, HDATA(1) and HDATA(?) are read but not used. [f |FCAPR -
0, cards 8 and 9 are not read. HDATA as well as FDATA and CDATA are
dimensioned to 7 for future program expansion.

For geological materials IFVISC = 1 is generali, the most popular form
for the viscous function., Additional functional forms may be added to
the program in SUBROUTINE PHIF.

EXPN need not be a3 whole number, but must be greater than zero,

GAMMA has units of inverse time, the units (e.g. seconds, hours, years)
correspond to the loading time units TS in Card 11,

Generally the default value fo ANORM is appropriate providing FDATA(1) #
0.0 . ANORM should not be viewed as an independent material parameter

since it ts always associatd with GAMMA in the quotient GAMMA/ANORM**EXPN,

Up to 30 time segments may be used to define a piecewise continuous
collection of straight lines to define loading. For the first time
segment, the program automatically assumes initial time {s zero, i.e.
TS(0) = 0.0. Thus, TS(1) is the time at the end of first segment,
TS(2) is the time at the end of the second segment, etc. Successive
values of TS(NS) must be greater than the previous value.




26.

27.

Any number of time steps may be assigned to each time segment.
Accuracy/stability is controlled by the time step size so that it is
good practice to repeat solutions by doubling the value of NUMDT(NS).
Although the time step size may be specified differently in each time
segment, it is good practice not to make changes in t between segments
by a factor of more than 2.

The printout interval may be specified differently for each time
segment .

. Loading values at the end of each time segment are specified indivi-

dualiy for each vector component of strain if LTYPE = 0, or each vector
component of stress if LTYPL = 1., For the first time segment the
initial loading and responses are automatically assumed zero i.e.,

3{0) = €(0) = 0. Standard continuum mechanics sign conventions are
observed tor all input and output. For example if a uniaxial stress
Toading cycle is desired in which U1 is compressed at a constant rate
to a stress value -10.0, held constant, then reverse loaded at a
constant rate to a tensiie stress value of +1.0, and again held
constant; we infer NTSEG = 4, and 9y is described by:

PLOAD(1,1) = -10.0
PLOAD(1,2) = -10.0
PLOAD{1,3) = +1.0
PLOAD(1,4) = +1.0

and all other stress components (PLOAD) are zero.
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