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PREFACE

Background. This work is a continuation of a previous work effort (1) with

the objective of developing a viscoplastic constitutive model for soils and

rocks. In the previous work, the inviscid-plastic cap model of Sandier and

Rubin (CAP75) was reformulated into a Perzyna-type elastic/viscoplastic

model (2). In addition to the theoretical development a numerical solution

algorithm was developed to compute six dimensional stress histories from an

arbitrary strain loading schedule and vice versa. The algorithm was

embodied in the computer program "VPDRVR" which employs a Crank-Nicolson

time integration scheme and a Newton-Raphson iterative solution procedure.

Numerical studies were performed to validate the program and assess the

accuracy for various options of the time integration scheme. The effect of

the model fluidity parameters was illustrated for triaxial stress and

uniaxial strain loading for a well-studied sand material (McCormick Ranch

Sand). Lastly, a finite element solution methodology incorporating the

viscoplastic model was presented. It was concluded that the elastic-

viscoplastic model shows great promise for capturing the viscoplastic

nature of many geological materials. Recommendations for future advance-

ment of the model were to incorporate a viscoplastic tension-cutoff cri-

terion and to establish parameter identification techniques with

experimental data. Herein lies the impetus of this study.

Objective. As indicated above, this report addresses two main areas: (1)

formulation of a viscoplastic tension-cutoff model to be incorporated into

the viscoplastic cap model, and (2) development of parameter identification

procedures and guidelines for the cap viscoplastic model.

Scope and Approach. Part I of this report deals with tension cutoff. The

underlying motivation for introducing tension cutoff stems from the
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recognition that soils and rocks usually exhibit abrupt changes in the>0,

stress-strain behavior when loaded in tension, i.e., rapid tensile stress

release as micro-cracking or particle separation occurs. To this end, the

JI (first stress invarient) tension-cutoff criterion proposed by Sandier

and Rubin (3) is adopted for this study and recast into viscoplastic for-

mulation. Here, separate fluidity parameters are assigned to the tension

cutoff domain to permit independent control on the rate of tensile . ress

release.

For the sake of completeness, Part I presents a concise review of the

viscoplastic cap model prior to introducing the viscoplastic tension

cutoff. Following the theoretical tension-cutoff development, a numerical

solution algorithm is presented for the entire viscoplastic model including

tension cutoff. This algorithm, which predicts stress histories from

strain loading and vice versa, is an extension of the previous "VPDRVR"

program. Input instructions for the new "VPDRVR" program with tension

cutoff is given in the Appendix. Part I concludes with an illustrative

example comparing the tension-cutoff numerical solution with an exact solu-

tion. Also presented is a critique of the tension-cutoff criterion and

recommendations for future enhancements.

Part I of this report addresses the parameter identification problem.

We begin by illustrating the Influence of various model parameters on the

model's performance. With these insights, a set of guidelines are

established to aid in parameter identification. Far identification pur-

poses, experimental data is classified into two categories "ideal" and

"non-ideal". The former implies a well-designed set of experiments espe-

cially conceived to ease the identification problem. A hypothetical

example of an ideal experiment is presented along with a step-by-step iden-

2
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Although more elaborate functional forms for * may be established (2),

the forms given by Equations 9 and 10 appear to suffice for many geologicai

materials (4,5).

Specification of the plasticity yield function f is patterned after the

inviscid cap model (3) wherein J1, the first stress invariant, and J'2, the

second deviator stress invariant, are used to define the current static

yield surface, as illustrated in Figure 1. Here, the static yield surface

is divided into three regions along the J! axis; the failure surface region

(T - J! > L), the cap surface region (Jl < L), and the tension-cutoff

region (JI > T).

Failure Surface. The failure surface is a non-hardening, modified

Drucker-Prager form with a yield function defined by:

fF(J1" J 2 ) - VSJ2 - (A - C exp(BJ1 )) (11)

where A. B. and C are plastic material constants (A > C). This yield func-

tion is used to define viscoplastic flow (Equation 3) whenever J! is in the

range T 1 J L. The failure surface forms a boundary along which the cap

surface can move (harden/soften).

An alternative form for fF is the standard Orucker-Prager surface given

by:

f F(Ji if 2 2 - (A - 9J) (12)

where A and I are material constants. The first form is generally preferable.

Cap Surface. The cap surface is a hardening surface In the shape of an

ellipse quadrant when plotted In JiO/ 2 space (Figure 1). It Is defined

in a "squared" form with the normlizing constant fo (stoYss omit) is:
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Putt ing this tension cutoff criterion into a wiscoplastic form itfes

the stresses are released at a rate controlled by the fluidity paranter y

rather than an instant-snows releuse. Accordingly,. It is reasonable to

specify I, in the tension region' (say r1) at a higher value than the value

of Y in the failure/cap regions. ftreover, since the tension cutoff cri-

terion treats volumtric and deviatoric stress releases Independently the

viscoplastic strain rate must be Independently defined in terms of volu-

mtric and devlatoric strain-rate components.

With the above understanding, the viscoplastic tension cutoff defl Is

defined by the following. The plasticity yield function for tension

cutoff-, is given by:

fT(J.1) J- - T (20)



WAce, the *static* yeid $ulfoce (el - O-) is a tat'oary verttcil lIe.

J - Y . as shw In Fkigro 1. WA If - U. teasion cutotf is trigWer

and the vis5cpllstlc strain rate is dvtlA" b,

where,

% 20 I, I Z1 Z

2.' J" I

_T • . . . ..0

Equation 21 is a modified form of the viscoplastiC flow rule

corresponding to Equation 3. Nore the first right-hand-sd term contains

the viscoplaStiC strain-rate for volumetric components. and the second tem

contains the devtatot c components. The two tension fluidity pIm ters, yT

and ', permit independent control of the volumetric and deviatoric stress

release rates, respectively.

As a conceptual Illustration. consider a material that is suddenly

strained producing an instantaneous elastic stress state such that fT(J1) >

0. This induces viscoplastic flow (Equation 21) which in turn releases

stresses until • - 0. When this occurs, we have the steady state

condition; fT - fG - 0, or J1 - T and J'2 - O. thereby satisfying the ten-

sion-cutoff criterion.

Exact Solution. A deeper understanding of the tension-cutoff model can be

achieved by obtaining an exact solution and studying its behavior. An

exact solution can be obtained for a specified strain loading by decom-

posing the stress vector and elastic matrix into volumetric and deviatoric

components and solving the uncoupled system. To this end, the stress vec-

tor is written as:

12



o a v + s (22)
v T

where, X 1 1, O, O, 0 > volumetric stress components

T
and S 111 $22" s33. o12, 0i3F 023 deviatorlc stress

components

Accordingly, the elastic matrix is decomposed into bulk and shear com-

ponents as:

D - K + G (23)
am -m m

1 1 1 0 0 01 1 0 0 0
1 0 0 0

where, K -Ko  sym 0 0 0 - bulk modulus components
- 0 0

L 0 j

4 -2 -2 0 0 0
G4 -2 0 0 0

and, G -T 4 0 0 0 shear modulus components3 300
sym 3 0

3

Now the basic constitutive relationship, i.e., the equivalent of

Equation 7, can be expressed in two sets of equations:

!t -vp) (24)

i G '(- ) (25)CVp

Upon replacing -vp in the above with tension flow rule (Equation 21) we

have:

mv_ K-YT O(fT)K m T  (26)

s -G e - (fG) G M (27)

13



Note, the uncoupling in the last two equations is due to the fact that Km- :
i G!!T a 0.

If the viscous flow function * is taken in its simplest linear form,

i.e. 10T) = (Jl - T)/f 0, and O(fG) = /f 0 ' then Equations 26 and 27

become the following first order, linear differential, vector equations:
+ 9Ko) _T 3TK0 YT)(8f0o y) + ( 3 KO +T ( o T (28)

f0 f0GO yG (29)

s -( o ) s G 
(

In arriving at the above, use is made of the relations, v K KT and
s J 2 G -rG

G0

A solution may be obtained for the case of a stepped strain loading,

e(t) = i* h(t), where c is any constant strain vector causing initial

elastic stresses such that Ji > T, and h(t) is a heavyside step function.

Using this loading in Equation 28, we have K j = 0, and the initial con-

dition v(0) = Kc*, so that the solution for volumetric stresses is:

(t) - (Kc* - T/3 T) exp(-9Ko YTt/fo) + T/3 T  (30)

Similarly for Equation 29, we have G 0 = , and the initial condition s(O) =

j * so that the solution for deviatoric stresses is:

s(t) = Gc* exp(-GO YG t/fo) (31)

Some worthwhile observations from these solutions are as follows:

(1) Since o(t) v(t) + 1(t), the instantaneous elastic stress state

is +G = K + = DE*

(2) As time increases, we eventually reach the steady state solution

v(-) = T/3 !T and s.(-) = , or all 022 = 033 = T/3, other ai = 0.

Note, this indeed satisfies the tension-cutoff criterion.

14



(3) The exponential rate of stress release from the initial solution

to the steady solution is 9KoYT/fo for volumetric stresses, and

GOYG/fO for deviatoric stresses.

(4) If it is desired to release volumetric and deviatoric stresses at

the same rate controlled by YT, we can choose YG N

The exact solution will be used subsequently to validate the numerical

solution algorithm presented next.

Numerical Solution Strategy

In the previous work effort (1), a numerical solution algorithm was

presented for the viscoplastic cap model without tension cutoff and coded

in the program, VPDRVR. Here we extend the algorithm to incorporate the

tension-cutoff model. From a programming viewpoint, the incorporation of

tension cutoff is straightforward, only requiring modification to the

subroutine VPLAST in the VPDRVR program along with the additional input

data; T, YT and YG (see Appendix A).

For completeness, we will review the development of the numerical

algorithm along with a flow chart of the complete model wherein the primary

objective is to predict the stress reponse history from a specified strain

loading schedule. Alternatively, the VPDRVR program has the option to pre-

dict strain history from a stress loading schedule. However, the former

option is directly suited for finite element applications.

Numerical Approximation. The basic strategy employs a Crank-Nicolson step-

by-step time integration scheme along with a Newton-Raphson iterative solu-

tion procedure. We begin with Equation 7 and integrate over one time step,

at, from time tn to tn+1 to get the incremental constitutive relationship:

15



A9. D A _C-Ac ) (32)
-Vp

where Ao = n_ - a n with a = o(tn), similarly for Ac and Acv p .

All quantities at time tn are presumed known. Next, we approximate Ap by

a one parameter Crank-Nicolson time integration scheme as:

Ac p = At - np + pn+l) (33)

where 0 is the adjustable integration parameter in the range 0 < 8 < 1.

Choosing 0 = 0 implies the integration scheme is explicit (simple forward

difference) so that Ac p is determined directly from the known value of E.n

at the beginning of the time step. As a consequence, At must be restricted

in size to avoid numerical instability (6,7). Alternatively choosing e >

0, the scheme is implicit since Ac is related to the unknown value fn+l at
-Vp -vp

the end of the time step; thereby, requiring an iterative solution proce-

dure within the time step. For e > 0.5, the implicit scheme is uncon-

ditionally stable so that the choice of At is governed by accuracy, not

stability.

Algorithm for Strain Loading. Returning to the incremental constitutive

relationship with A-vp replaced by the Crank-Nicolson approximation and

n+l n
using A0 -a - S_ , we rearrange Equation 32 to get the unknown quan-

tities on the left as:

I n.l n+l n n3D a + At 8 c = Ac - At(l - . + D"  (3_= -, v

Or, more compactly, in a symbolic functional notation.

n+l, n+l n (35)
a ,t35

where P is the vector of all unknown quantities at time tn+1, and qn is the

vector of known quantities including the specified strain increment AE

16



For 0 >0, Equation 34 (or Eq. 35) forms a coupled set of six malloNor

algebraic equations for the components of 0i with the understanding that

1vn  is to be replaced by the appropriate flow rule and its associated yield

function depending on which region of the cap model is currently being

activated (i.e. tension, failure, or cap).

To solve the above, a Newton-Raphson procedure is used by expanding the

vector function P in a limited Taylor series about a stress state a
i which

n+1 i
is some estimate of an , and 6o is a first order correction to the esti-

n+l i i
mate, i.e. a = o4 6 .  This leads to a linear set of equations to

obtain the correction 6!a given by:

P 6oi =qn P' (36)

where Pi' D-I a + At e, (37)

and60 + Ate(38)

Here P' is the Jacobian matrix of the vector P1 evaluated at .2 C

1+1 i I
The iteration process is repeated with a a a + 6o to get a new

correction 6a _i+  until eventually the correction approaches zero. Table 1

summarizes the basic algorithm (Note to start the first iteration (i-1),

Pi, pi, and a1 retain their values at time tn).

Upon reviewing Table I it is evident that the updating procedure for
i+l i+l *i+l p,i++

fl l m , S and P Mis dependent upon the current value J1 I  which

dictates what region of the model is being activated; tension, failure, or

cap. From a computational viewpoint, the updating process can be stream-

lined by expressing all of the plasticity yield function, fc, fF- fT

and fG in a general form as:

17
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(a) 1 0 max, (iteration limt)

5, Print results and advance to next load incrient (Stop 2)

6. End
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L - X - g1(L)

where gl(L) a -A , C etp(BL).

For the special hardening rult for suit% 'not, t. e taiw tcw.

steps are used when loading t(et llurv uf !fn'CA$I ISf OM t ,

except the second step is replaced by
-i~l '° , f v4"i) '...

L)A
'U

where XC - * R 9 1(J1 ) and 1 is the Initia ,oe60.

This completes tne 4enle-al ruirwrtical 4rttPw for "tra-- 4 , 1S

however, one last remark Is in or~ Wr. '1 0 A ,lt#i ,- ' $

tionship is used, i.e.. w Iet is 4, tIQo4. of f.PftVP toewt..

then the update for ,i in Tat~e I .s..st bb. fn , t "
VP

i-l nol -1 1 , 1 1
That is, p- w'ere .

is used in the new VPDRvR program and is appitcab 41 fqr bat#, ),r',t 40%

nonlinear forms of the 0 matrix.

Algorithm for Stress Loading. For the ieierse problem. " #W.. %It*%%

loading with the objective of determiining the strain rv59Hws#, a t-c41

algorithm similar to that presented in Ta:e I can t. vasi, rstalbi"td.

In point of fact the stress loading algorftro is c0pAtI(81i1 vv

simpler because the associated Jacobiar eatit. becwws O, e ote-tit, a'e .

as illustrated in the following developMer.

We begin by rewriting Equation 34 wttr the unknown strain i-t es Cr

the left and the known quantities (stress increment and q antltles at tine

tin) on right to get:

n+l "n+l -(
-vp - Vp-
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or. eqidoty to 4 '414001C twctiaml #*tattoo

nut. *all S

whe,. tr#* *oci.r$ V *o are tP# Otft dad ~ ~ ,,i0o (futiP ii

for ItMi., 1C IA~~*9 t ~ 0).etr 10 (9 o 5 it VA t* 4 iit V4"1 tt

dt eepHltt Oq~otleftfA ti bi bo 0).qr 1the dtiOG1M*

Atomtftt.i wop *aOI ft 10waAs beP ISt *I"R t%* equalles off

limitedS !AyIOV tort*% abu the %trot" $11611 4 tUS;# Is MOM~ etq1*te of

ar 1% a Ff',it *tart ,a'rqcqiof to IN* ,itiff4to. I~.*.

This 1004% to a 11004P tot of eqwot1055 too, wf jI'Q by

4.~I(4

06')

Mere th, J.cobtaft smatrit F becomr the id"Mift7  atria becoye t Can be

tepl.-ed by the stress drien4#flt flow ryu.e so that Clw/ -e 0.

Based on the abovep. It it evident that the algorithm for stress loading

parallels the strain odinq algorithm (Table 1) where P. P'. and je are

replaced by P. V. and qrespectively, Table I srites the stress

loading algorithm. The procedure for updating the hardening parameterst

X, and L is identical for both algorithms.

This completes the, algoritk for stress loading.

Discussion of Tension Cutoff Algorit?.

In this section w illustrate the performance of the tension cutoff
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TABLE 3. Solution &19,rit1 for witopiet'( Cap wae!
incl~pnig teihsion cutuil (trei Ioadingj

F1 n n .
1. Given at tie t n .  C a I . P ard

2. Time loop , - I. to nmaa

(set) f g _ -*

3. Iteration Ioop 1 1.2. Ima

(solve) St..
wpd tel 0 . I , 4

*l t* -1 n*i
I, L . ° D

f W y1 " (also compute

f ¢F(Ji, Jz) 2 L J) . T

f (ill JZ 1  J

m*1 - (also compute mG if J> T)

•~ ~ ~ ~~) iO !W 'TmT'1 (f) m G J > T

vp (fm di <

pifl T~ T "T G

vpp
L -AtO~

Vp

4. Repeat iteration (step 3) unless one of the following is satistied:

(a) 0 - 0, (explicit integration)

(b) fn and fil < 0, (elastic domain)

(c) JSE i I tolerance, (convergence)

(d) i > imax, (iteration limit)

5. Print results and advance to next load increment (step 2).

6. End.
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algorithm along with an exact solution. Also. a critique of the model is

given followed by some suggestions for future improvement.

Illustrative Example. Figure 2a shows a tensile unlaxial strain loading

which "abruptly" jumps from 0 to 51 strain and held constant. Also given

in the figure are the assumed elastic properties (Ko and GO) and the ten-

sion cutoff parameters 'vT' YG' T and fo. Other material properties asso-

ciated with the failure and cap surfaces are immaterial since only the

tension surface is loaded in this example. (For reference, however, the cap

and failure surfaces were given the properties for McCormick Ranch Sand

(1)). The viscous flow function is chosen as o(f) - f/fo so that the pre-

viously developed exact solution (Equation 30 plus Equation 31) can be used

as a check.

In this example, the exact solution for axial stress simplifies to:

oll(t ) - 0.5 exp (-24t) + 0.1 (ksl) (57)

and lateral stresses (o22 = 033) are:

022 (t) = 0.1 exp (-24t) + 0.1 (ksi) (58)

9K0
These simple forms arise from choosing YG = G- YT so that bulk and

0
deviatoric stresses are released at the same rate. From the above

equations, it is evident that oli(0) - 0.6 ksi and 022(0) - o33(0) - 0.2

ksi so that the instantaneous value of Jl - 1.0 ksi indeed triggers

tension cutoff (Jl = 1.0 > T - 0.3).

Figure 2b shows the resulting stress histories as obtained from the

exact solution and the numerical solution (program VPORVR). The numerical

solution overlaps the exact solution with less than 0.2% error. Most of

this small error is due to the finite rise time (0.0001 time units), used
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Figure 2b. Stress responses for tension cutoff.
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in the numerical solution, as shown in Figure 2a, to simulate a jump

loading. It can be observed that the stress responses effectively reach

steady state at 0.? time units after loading (011 - 022 - 033 - T/3).

This time period can be increased or decreased by choosing YT higher or
9K0

lower, respectively. It is generally reconmended to choose G G-T 

Critique of Tension Cutoff Model. Up till now, little has been said about

the rationale of the tension-cutoff criterion, i.e., is it reasonable to

assume that hydrostatic tension (J1 ) by itself provides an adequate cri-

terion for tension failure. From a rigorous viewpoint, the answer is

generally no. However more pragmatically, it depends on the objective of

the analysis and, of course, the type of geological material we are dealing

with. Granular materials, for example, behave very erratically when one or

more of the principal stresses are in tension. In such cases, the J1 ten-

sion criterion may be as appropriate as any other criterion, particularly

if the analysis objective is to simply provide a means of effectively

reducing the stresses of those elements experiencing tension.

On the other hand, some brittle rock materials exhibit fairly well

defined fracture planes when loaded in tension. Here more realistic tension

failure theories are available, such as, maximum principal stress theory or

William-Warnke models (8). These theories employ three independent stress

invariants (e.g. J1, J'2 and J3) to describe the initial tension cutoff

surface and are inherently anisotropic in the post fracture analysis. When

initial tension failure occurs, normal and shear stress components on the

fracture plane are released. However on planes orthogonal to the fracture

plane, stresses are still active. If additional tensile loading is applied

such that three fracture planes develop then all stresses are released and
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the effective stiffness in all directions is zero.

To be sure, the J1 tension cutoff model is not capable of tracking the

progressive fracture planes for brittle materials. At best it may be said

that J, model simulates a complete tension failure with a small residual

hydrostatic stress T which may be specified as small as desired.

In summary the JI tension model may be adequate for granular materials

by default, i.e., other tension cutoff criterion have not demonstrated a

faithful representation of granular materials in tension. For brittle

materials, the J1 tension cutoff criterion is a crude approximation, and

more rigorous models are available. Nonetheless, if the analysis objective

is to simulate loss of material strength in localized areas of tension, the

J, model provides a good engineering approximation. Many soil-structure

problems, including ground-shock problems, fall into this category.

Modifications for Viscoplastic Tension Damage. Presuming that the JI ten-

sion cutoff criterion is acceptable for some soils and rocks, we now

discuss how the viscoplastic tension model could be modified to represent

tension damage accumulation. That is, limited experimental evidence indi-

cates that the rate of tensile deformation increases for each loading cycle

in tension (9). Conceptually we can conceive of this as the progressive

growth of microcracks which do not heal during the cyclic loading.

As previously presented, the viscoplastic tension model is insensitive

to tension damage accumulation because regardless of how many times it is

cycled into tension, the viscoplastic strain rate Cvp remains proportional

to the fludity parameter 'T and the viscous flow function 0 (Note YG is

assumed to be related to YT). Thus, if each tension stress cycle is the

same, has the same flow rate in each tension cycle.
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To simulate the tension damage phenomenon, two modifications are

suggested; (1) a strain softening function for the tension cutoff sur-

face, and (2) a functional representation for YT" Both functions could

employ the same history dependent measure for tension damage accumulation.

As an example, the strain softening function for tension could be taken as:

fT(1 , ET) =J - T(ET) (59)

where T(ET) = To exp (-a1 ET) (60)

In the above To and a, are positive material constants and ET is a monoto-

nically increasing measure of tension damage accumulation (discussed

subsequently). Accordingly, as tension damage accumulates, fT increases

for a given value of J1 thereby increasing the magnitude of Cvp" Also,

since T(cT) decreases with increasing tension damage, the tension cutoff

criterion is triggered at successively lower values of J1 in cyclic

loading. This mimics non-healing crack growth.

The functional modification for YT could be taken as

YT(CT) :YTo exp(a2 CT) (61)

where YTo and a2 are positive material constants. Here YT(CT)increases

with tension damage thereby increasing the viscoplastic strain rate and the

rate of stress release.

Lastly, the measure of viscoplastic tension damage accumulation, cT,

used in both modifications, could be defined as an accumulation of positive

increments of volumetric viscoplastic strain (similar to the cap hardening

argument), i.e.,
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ET a CT0 + 0cdt (62)

{VPlE vP + ' fT >0'P v+ P22 + vP33 T

where ET (63)

and T is an initial value for tension damage.

T0

The foregoing modifications are merely suggestions to indicate how

viscoplastic tension damage accumulation could be represented within the

general framework of the viscoplastic cap model. Although the incorporation

of these modifications into a computational procedure is relatively

straightforward, more experimental data is needed to verify the validity

of these or other possible forms.
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PART II. PARAMETER IDENTIFICATION AND EXAMPLES

Introduction

The complete description of the viscoplastic cap model requires the

following identifications; elastic parameters (K and G), failure surface

parameters (A, B, and C), cap surface parameters (Xo and R) along with har-

dening parameters (W and D), tension cutoff parameter (T), and the viscous

flow function exponent (N) along with the compressive fluidity parameter (y)

and the tensile fluidity parameters (YT and YG)" The normalizing

constant (fo) should not be viewed as an independent parameter and is

recommended to be taken as fo = A.

For subsequence reference, the pertinent functional forms employing the

above parameters are listed below (excluding tension cutoff).

Failure and cap surfaces.

fF = /J'2 (A - C exp(d , T > J > L (64)

f = 4

fc =(J - ((X - L)2 _ (Jl L) 2 )/R2)/fo ,J < L (65)

Cap hardening.

X = ln(E/W + 1)/D (66)

+ E dt (67)

S::min (jvp' 0) , Jl < L (68)

Pmax ( 0vp O) , JI > L (soil only)
vp =  E vPl l + vP22 + EvP33 (69)

E0 = W(exp(DX0 ) " 1) (70)
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L a X + R(A - C exp(BL)) (1]

Viscous flow rule.

t p "Y#Mfm,;2

OM If/fo0) f > 0 (3

0(f) (3

o f , 
7

S3 = g b + g', a

Constitutive relationship.

a DcO (75)

C L - Yp (76)

All the above forms have been developed and discussed in the first part of

this report as well as in Reference (1). The tension cutoff equations are

not repeated here since the identification of the associated parameters (T,

IT and YG) has already been addresed, i.e., T should be selected as some

fraction of FCUT (say T = 0.5 FCUT), and YG - 9K Y T/G, and )T taken an

order of magnitude larger than '.

We now consider identification techniques for the remaining parameters.

To be sure, identification is a difficult, non-unique process and is dep-

endent upon the quality and quantity of experimental data. With regard to

Identification, experimental testing may be grouped in two categories

"ideal" experiments and "non-ideal" experiments. The former is a complete

set of experiments explicitly designed to provide relatively easy parameter

identification by controlling the loading schedule to permit separate iden-

tification of viscous and plastic (steady-state) responses. Conversely,
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the *nnIwl esperixe~t1 *re ihJCMV rte opJ'jV X fO alV 3
t

For the non-14I*a F.ases. paraeter Identifil(W1A is *fvba 1wl 6041tee

by a trial and error approach usl't; the W"VA prqroe.

Parameter identificatlon for both the 1641 and .t al .t teie is

discussed in subsequent sections. Uinfortt ately aot of ',1W aisq

expertmental data for soil and ro.Is f4a1 intO t%* 'fton.lGial' teo ry.

To circumvent this problem. w witl define an ideal set of vperiwnot

along with a hypothetical set of results to Illustrate the "inal tfen.

titfcation procedures. Hpefully this will serve as a te"late (o f~tyrq

experimental work. For the non-ideal cases. oaliting experimental data

will be used to illustrate parameter Identification b a trial and error

process using the VPDRVR program.

Before these identification procedures are presented. it is well to

discuss some behavioral aspects of the vScoplasttl cap model along with

the influence that various parameters have On the model's response.

Model Behavior and Parameter Influence

The behavior of the viscoplastic cap mode) Is best visualized by con-

sidering the plasticity surfaces in J, /J 2 space as shown in itgire "-a.

Here the initial cap setting, Xo, defines the initial elastic region shown

by the shaded area. To begin with, we suppose a compressive stress state
01A" is suddenly applied and held constant such that fc"- A* X0 ) > 0 but

within the failure surface as illustrated in Fig. 3a. Viscoplastic flow

will commence with a rate proportional to Yv(fc).!, Eq. 7. At the same

time, the cap location X will begin to move from its initial location Xo

toward the location XA so that as time passes fc(GA, X) (and hence -vp)
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to both model shapes. As before it a -tr,-;. It~te -A I ,St

both cap surfaces will move from tiei, 1,itiol lu41ift-4 W'd Wea er e

reach a steady-state position cuntanin th it trr-tste -A 4S VkOwt-

During this movement, the relative distribut i w a oolwt r i Can

deviatorc viscoplastic st~idrs is .jvt- ri !) to-r ttwr ! tvt a ' t'.

Consequently the vertical e'llpse (w 1) v,.tributes 4 yv'eI ;roporItiti

of its .,<scoplastic strain tk trie vo:u+,et ic coAvo~c nt% !?le dtw% 'o* horn,

zontal ellipse A - ). 'iu, . toih rw ,.)r ur, cF u t, ;.a, afa r to

control the relative ,i-St 'tutior .' * z.. . .t. t, ,f . ' . - .

strain components.

Cap hardening, which locates the _urrent ato' oA A. #-Poio.qj the

param. ters W and D along with thr accumuat.',- vi ,C (, e t r.1-r . P(arder,-

measure as given by LEQdtion 66. HOwever the Inf: ente .f i an 3s

much more complicatedi than this equation Ir.itlaIiy suggo'.s b (c-.j t tm.

tely is also dependent on W and U tnrouqh the viS~olasti. f;, -e.

Nonetheless, if Equation 6i, ii plotted in nov;oir:enstonal fora as Shcwr t,

Figure 4, it can be used to great advantage in understaniir. tfe haroenin;

behavior, as well as, helping to quantify the W and 0 Parameters.

Listed below are soine useful insignts with recari to the h.arden'rr

relationships in Figure 4.

(1) D (units of inverse stress) and W (units Vo strain) are positive

constants so that DX and ./W are dimensionless hardening coor-

dinates. At any instant in time OX and /W are related by the

graph in Figure 4.

(2) Assuming the initial value of X = Xo is negative (which also gives

f] <0) then all subsequent values of X and E are negative such

that Xo > X > -- and -o c W. Thus W represents the maxlmum
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absolute value of volumetric viscopldstic strain accumulation that

can ever be achieved under any loading.

(3) When Z/W -1.0 or. equivalently, when DX > 3.0 (approximately)

we see that a small change in C c t produces a large change pX

xt. As a consequence X moves its position (hardens) very rapidly

toward the steady-state position so that the net response is

almost entirely elastic (i.e., there is no time for viscoplastic

strains to accumulate). This is why the cap model produces an

asyntotically increasing stress-strain curve in hydros~i'ic

compression, in effect, a pure elastic slope in the limit.

Based on the above insights, experience has shown that it is usually best

to quantify the parameter D in conjunction with Xo . That is, Xo is first

chosen to establish the size of the initial elastic aomain, then D is cho-

sen such that IDXo! , 3.0 in order that plastic hardening will be effec-

tive. Typically IDXo' < 0.5 has been used in this study. Having made the

selection for D, the parameter W may be used for control. Increasing W

results in increased amounts of viscoplastic strain, and conversely,

decreasing W decreases the amount of viscoplastic straining.

Identification Guidelines

Summarized below are the behavioral aspects and parameter iden-

tification guidelines for the viscoplastic cap model.

Elastic Parameters. The bulk modulus K and shear modulus G control the

elastic response. These parameters are best determined from unloading

tests and are restricted such that K > 2/3G. Nonlinear forms, K = K(JI) and

G = G(J2 ), may be used if warranted.

Failure Surface. The failure surface, denoted by fF in Equation 64, is
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defined by parameters A, B, and C and forms a static yield surface fF = 0

along which the cap surface can move. If a constant stress state is

imposed such that fF > O, steady-state failure conditions will result

wherein the deviatoric components of tvp will continue to increase at a

constant rate. The parameter A is the maximum height of the static failure

surface and A-C is the height at J, = 0, hence A > C. The parameter B

controls the curvature of the static yield surface, as B incrases, the rate

of curvature increases.

Cap Surface. The cap surface, denoted by fc in Equation 65, is an ellipse

quadrant whose shape is governed by the parameter R and whose initial loca-

tion is set by Xo . Choosing R > 1 implies a horizontal ellipse whereas R <

1 implies a vertical ellipse. By increasing R the outward normal of the

cap surface leans more toward the deviatoric direction ( /V2 ) so that a

greater proportion of Lvp is weighted toward the deviatoric components as

opposed to the volumetric components. In a typical triaxial stress loading,

for example, the effect of increasing R is to increase the total axial

strain Ll. As a first guess, use R = 1.0 for trial and error

identification.

Setting Xo to a large negative value provides a large initial elastic

space which is often a suitable representation for pre-consolidated soils

or rocks. However remolded soil specimens are usually best represented

with an initially small elastic domain in which case Xo is assigned a small

negative value near the Jl origin. Once Xo is selected, C- is given by

Equation 70, and Lo is given by Equation 71.

Cap Hardening. The parameters D and W, Equation 66, control cap hardening

along with the accumulated volumetric viscoplastic strain measure c

Equations 67-70. Experience has shown it is best to set D < 1/ 2 Xo -1
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and use W to control the cap hardening. To wit, increasing W retards the

cap movement thereby increasing the accumulation of cvp. As JE/W1

approaches 1.0, the rate of cap movement X becomes infinite, and hence, the

response becomes more elastic.

Viscous Parameters. The cap/failure fluidity parameter y linearly controls

the viscoplastic strain rate Evp via Equation 72. The exponent N also

influences the rate but in a nonlinear fashion dependent on the current

N
value of f/fo, i.e. Lvp = ''4(f/fo) n- Typically N = I is used, and Cvp is

controlled by Y unless sufficient experimental data is available to quan-

tify both parameters. The tension fluidity parameters are usually chosen

on an arbitrary basis since experimental data in tension is usually

lacking. It is recommended to choose YT an order of magnitude larger than y

and set YG = 9 K/G YT-

Tension Cutoff. The tension cutoff parameter T is also usually chosen on

an arbitrary basis. However, it is limited to a small practical range, 0 <

T < FCUT, where FCUT is the intersection of the failure surface with the J1

axis. Typically, we set T = FCUT/2, but we must check that T> Lo if Lo is

positive.

The foregoing guidelines are used extensively in the following iden-

tification procedures.

Parameter Identification Using Ideal Experimental Data

In the following, an ideal experiment is defined and hypothetical

results are constructed to illustrate an identification procedure.

Loading Schedules. A conventional triaxial testing apparatus is used to

conduct the ideal test. We require at least one purely hydrostatic test

and a minimum of three triaxial tests with successively increased confining

pressures. Figure 5a illustrates the stress paths of these tests in terms
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of o I and (3 where H is the hydrostatic test (0I 03) and T1 , T2 , T3 are

the triaxial tests. Each test employs a virgin material specimen, and as

illustrated, we require an unload-reload cycle on the hydrostatic test and

one of the triaxial tests.

The time loading schedule for the hydrostatic tests is illustrated in

Figure 5b. Here a sequence of pressure increments are applied such that

each increment is maintained until steady-state conditions are observed

(i.e. no volume change, w = 0). Similarly, the time loading schedule for

each triaxial test is a sequence of axial stress increments as shown in

Figure 5c. To start, we require the initial hydrostatic loading to be at a

steady-state condition before the first axial load increment is applied.

Each axial load increment is applied and held constant until a steady-state

condition ci = 0 is observed for axial strain after which the next load

increment is applied. Eventually a failure condition is observed EI =

constant (or increasing in rate) which terminates the test. In both types

of tests an unload-reload cycle is conducted from a steady-state position.

Response Data. For the hydrostatic test we require steady-state data of

pressure vs. volumetric change, as well as, a time history plot of volu-

metric change vs. time. For each triaxial test we require steady-state data

of shear stress 01 - 03 vs. axial and lateral strains. As the first step

in parameter identification, we will use steady-state data to identify the

plasticity parameters. To this end, the hypothetical stress-strain responses

are plotted in Figures 6a and 6b.

Identification Procedure. The basic strategy for parameter identification

is to determine elastic parameters from unloading data, plasticity parameters

from steady-state data, and viscous parameters from time history response

data. This is illustrated in the following steps.
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Figure 5a. Stress path loadings, triaxial and hydrostatic.
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Figure 5b. Hydrostatic test loading schedule.
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Figure 5c. Triaxial test loading schedule.
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Figure 6a. Pressure vs. volume change at steady states.
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Figure 6b. Shear stress vs. axial and lateral strain
at steady states.
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()Elastic parameters (K, G). The b~ulk modulus K is the slope of the

hydrostatic unload-load curve (Figure 6a) and Young's modulus is

the slope of the triaxial unload-load curve (Figure 6b). Thus, G

= 3KE/(9K-E).

(2) Initial elastic domain (Xo). The initial elastic domain as

controlled by X. can be determined by transferring the bulk modu-

ius slope K to the origin of Figure 6a and finding the presure Po

at which the slope departs from the data curve. Thus, Xo = 3Po.

(3) Failure surface (A,B,C). The failure points for tests T1 , T2, and

T3 (Figure 6b) represent the maximum steady-state shear stress

obtainable for each confining pressure. These three points may be

plotted in J1 , I-2 space with J1 = al + 203 and v'J' 2 =101 - (3/3

as shown in Figure 7. Accordingly, the parameters A, B, and C may

be determined by the failure condition fF = 0, (i.e., -VJi2 = A - C exp(BJ1 )

for the three data points. This may be done graphically by

establishing the values for A and C as shown in Figure 7 and

using the above equation to compute B. Alternatively, a least-

squares error fit could be used to get A, B, and C simultaneously.

(4) Cap hardening (W, D). Since hardening is controlled by the volu-

metric viscoplastic srain measure E, the steady state hydrostatic

data (Figure 6a) is sufficient to determine the hardening parame-

ters W and D by using Equation 66. To this end, we note that the

steady-state hydrostatic data implies X = JI (i.e., X coincides

with J1 at steady-state) and C 0 + wvp (i.e., wvp is always

compressive so that all increments add to i). Since wvp - w - Jj/3K

we can say £ = £o + w - JI/3K, where Jo is defined by Equation 70.

Substituting the above relationships for X, E andco into Equation
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66 we have

W(exp(DJI) - exp(DXo)) z w - JI/3K

In the above K and X0 are known constants (Steps I and 2) and w

and J1 are steady-state data points in Figure 6a. Accordingly,

the unknown parameters W and [ are to be determined to best

satisfy the above equation for all data points. The easiest way
-l

to do this is to choose [) = 1/2 JXoJ and directly solve for 6

at several (J1 , w) data points. If each of the W's so determined is

not approximately the same, make a small adjustment in D and try

again.

(5) Cap shape (R). The strategy to determine R is illustrated in

Figure 8 where a particular failure data point (T2 ) is chosen with

known coordinates J1*, Y'J2*. At this point, we have L = J1 , and

our objective is to determine the location X so that R is given by

R = (L - X)/ /J2*. To get X we use the hardening function, Equation

66, in which W and D have already been determined, so our problem

is to find L at the failure point J1*, VJ2" This may be

achieved by adding the volumetric viscoplastic strain from the

hydrostatic test evaluated at J1* with the additional volumetric

viscoplastic strains from triaxial test T2 (Figure 6b). Thus the

computational steps are as follows:

w = w(J1*) + (Ac1 + 2Ac 3) (volumetric strain)

wvp = w - Jl*/3K (viscoplastic volumetric

strain)

= £0 + Wvp (hardening strain)

X = ln(E_/W + 1)/D (cap X associated with

J1' J2 )
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k (Ji -t C) V1i * tOr.kz'

- IV

is desired ani an ,T*0 ar'.., ° ' ,

b)Viscous Parameter% , %). , ,, "r *~-~* 0 * t r3

ters !andi N can ) *Itvv2it.' i t'2w r't

? scop ! d t I( f ) OWr~' 10 .. r * n ac 0*.

vS. time as illustrated ,r I i,,ur- 9 wtirre t, tw' ! t i 'f

t 2 , etc. correspond t(, the hydruta'li% ',.a:1: ,d • 9r

5b. At the beyinning (f eacn Creel , pha.,.. ,. ,

Figure 9, the volumetr1 vi5,cO$AastiC %'rair ret" .., k. e

measured as tht tangent to Lh.' tlrw $ti r Y, f. )'U 4L ,a a

values wvp(ti) ma) be obtained for each tiaw *tatio t, -.. t-.

t5 , ... ternilnatinq a load increase. iquatlng i% isata to

the volumetric viStoplast)c f -ow rile we have

(t. f 3r
V p

where 1j ?(Jl L)Ifo '

It is understood that f- and mi are tc be e'- ,a, ed a! t'.-. t,.

Evaluating fc and mi is laboro,,s but straIghtforwar-j a, follow,.

first compute: (t 1 ) -o wvp(ti). Second cG.pute , frcxt

Equation 66, and third com:pute L(ti) from likatio- i1. Havinc i

and L along with JI(ti), fc and m, may be jirectly evpluato,4 since

all plasticity parameters are known and J 0.

Now for each Wvp(ti) ht, pu int ewrythin'j i, ir. n thf

above expression except y and N. These parameters can be deter-

mined by a least-square error technique. Or, more simply, choose
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a anu dt.. rnj I jj Pt Vi t ti jAlyuxetC ark

not in good daj' rectu t ri C u',: t-, oa In.

This completes the 1dt'dl 10,e t Itldt 1 r VU"h,u ', wr fe ! t ou slaef trill

and error methods with the MPbkk prour~vi.

Parameter Identflication U sir Non- Idta' - ' )ttaI

Three Jistinct sets u t v r1 : itt, I ,t t. (, , (,ere-p r tr L, ! , o', uf

identifying the vis~opiastic ardmett-:s by o trid' and trfur prct-,.re

using the VPDRVR progrd.2. fnt tr-t, ex;,torennts ep~ese'nt a rari;,. uf

geological inate i -,nard imestone. soft se, -d",nr i'y ro,,. dr,* w'.- -rai1,d

sand. Farther, the manner .)f loadiny and 'k ,1,iry rdt,.s are ",r" ant'

different between each e*,eriment, thuS, this St..! not on,. 0 lustrates

tne parameter lJentiflcdton ,rocess, hQt dIso, , ,.nC rd ,1-s tlie rapsb,,-

ties ano limitations of tn, viscuplastiC c4w mode!. iacn experi'i-Pt drd

correspcnding parameter fit is discussed in turn.

Limestone in Triaxial Stress. A rather elaborate, nonstandarrl, triavial

test experiment on specimens of Solenhofen Llrw'stone was conducted by

Rot-rtson (10) to measure the axial strain history • 1 resulting from a

variable axial stress loading sequence. Details of tne testing apparatus

and experimental progran are Somewhat involved dnd are not repeated here.

Instead, we simply identify the stress loadinq history (Figure 10) for

Robertson's specimen number S-90 whi4O is considered in this Study. 4s

shown in Figure 10, an initial triaxial stress state is rapidly imposed

= 96.1 ksi, 022 = )33 = 44.1 ksi). Thereafter, the lateral stresss are

maintained constant, and the axial stress is intermittently step loaded at

time = 7.2, 12.9, and 22.8 kilo,,econds. After each step loading including

the initial loading, ill decreases by some amount due to the nature of the

50



LJn80.0-
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TIME, SECONDS x 10

MODEL PARAMETERS FOR LIMESTONE

Elastic Moduli: Bulk a 3,500 ksi ; shear, G(J 2 ) •

91 (I + 21 exp (-0.0012 J2 )) ksi

Failure Surface: fF ( JI, J' )  42 - ( 1.0 - 0.25 JI) ksi

Cap Surface: R a 2.4; fo 1.0 ksi ; XO a -212.0 ksi

Cop Hardening: W -0.55, D a 0.0024 ksi' 1

Viscous Flow Function:
NEI; foul.0 ksi
y a 0.2 x 101 sec -

Figure 10. Triaxial stress loading schedule and model
parameters for limestone.

51



hydraulic testing apparatus. Although the magnitude of these decreases

were reported, their time history was not. Accordingly, the linearly

decreasing functions following each jump in Figure 10 are approximations.

Axial strain measurements were recorded before and after each loading

step, providing a data base for attempting to "curve fit" the viscoplastic

cap model. Since the experiment represents a consecutive sequence of

loadings, 'curve fitting", in this case, is quite difficult because the

accumulated strain depends upon the entire loading history and the strain

hardening parameter c controlling the cap movement.

Figure 11 shows strain history data points along with a viscoplastic

cap model representation producing a fairly good correlation. Since the

viscoplastic model was driven by the triaxial stress loading schedule in

Figure 10, the stress loading algorithm was used in the VPDRVR program. The

final parameters for the viscoplastic cap model are also shown in Figure 10

and were largely determined by trial and error, discussed next.

Isotropic elastic parameters, bulk modulus and shear modulus, were

determined by best fitting the instantaneous jump responses, i.e., no

viscoplastic flow was assumed to occur during the loading jumps. This was

best matched by a constant bulk modulus and a variable shear modulus mono-

tonically decreasing with J'2 (Fig. 10). The iailure surface was

simplified to a standard Drucker-Prager form and the initial cap surface,

shaped as a horizontal ellipse R = 2.4, was located well into the

compression region by setting X0 = -212.0 ksi. The motivation for this

initial setting was to provide a large elastic region so that the initial

jump loading did not cause excessive viscoplatic flow in accordance with

observations. Also it insured the viscoplastic flow in accordance with

the cap surface (J, 1 L) throughout the loading schedule.
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Figure 11. Axial strain response and viscoplastic cap model
representation for limestone.
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In accordance with previously presented guidelines, the hardening

parameter 0 was set at 10ZIX 0
- . The hardening parameter W as well as the

fluidity parameter Y were adjusted by numerical experimentation to best

match the data. No attempt was made to vary the exponent of the viscous

flow function and was set at N = 1.

Although it is not claimed the model parameters chosen here are repre-

sentative of the limestone material in any loading environment, we do

assert that the representation in the range considered is fairly good. It

must be said, however, that Robertson's data extended beyond the range

presented here, and it was observed that, as the axial load increased, axial

strains were increasing at an ever increasing rate. Such behavior may be

attributed to strain softening which is not within the capabilities of the

current viscoplastic model. This is illustrated in another manner in the

next experiment.

Sedimentary Rock in Triaxial Stress. The viscoplastic yielding of soft

sedimentary rock samples was investigated by Akai, et al. (4). Their

experiments consisted of standard triaxial tests on cylindrical samples of

a porous tuft described as an ideal soft sedimentary rock.

The data considered here is for four separate creep tests all with the

same confining pressure and different axial loads. Each axial load is

rapidly applied and held constant for the duration of the creep test, up to

8,000 minutes. Figure 12 defines the imposed stress states for each of the

four tests along with the initial cap model setting and the model parame-

ters used for this study. The measured strain history data (deviatoric

strain, C 11) reported by Akai is shown by data points in Figure 13 along

with the viscoplastic model representations shown with solid lines. Here it

is observed that reasonable correlation with the data was achieved in the
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Failure Surface

3 0 0 - Or S tress -- Oxia l 0 iateral- A 1-00State (psi) (psi)
W~ -D

1 497.9 71.137200 2 668.61 71.13
3 711.29 71.13
4 739.74 71.13

I00-

600 700 800 900
- J (psi)

Elastic ModulIi: K 125,000 psi ,G a 60,000 psi
Failure Surface: fFavu 2 - ( 275.0 - 0.8 63 1 ) psi
Cap Surface: Ra.35, X0 ' -800 psi
Cap Hardening: Da 0.00078 (pu.),l WBO-25
Viscous Flow: yu 0.5 x 10-3 (min)-I, N a 1.6,

t 275 psi

Figure 12. Stress states, initial cap setting and parameters
for soft sedimentary rock,
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primary and secondary creep range, but nut in the tertiary creep range.

This will be elaborated further after a brief discussion on the parameter

identification procedure.

The elastic properties were determined by assuming no viscoplastic

flow occured while each axial load was imposed so that the initial strains

were elastic. As shown in Figure 12, the initial cap setting was taken

well into the compression range with Xo = -800 psi and R = 0.35 along with

a standard linear Drucker-Prager failure surface. The motivation for these

choices were due to the observation that the strain response data exhibited

continued elastic behavior for test 1, creep and then steady-state behavior

for test 2, and creep and then steady-state "failure" followed by tertiary

creep for tests 3 and 4. Accordingly, the initial cap setting was located

between stress states 1 and 2 to insure an elastic response for test 1.

The failure surface was located slightly above stress-state 2 to achieve

steady-state response for test 2 and below stress-states 3 and 4 to achieve

steady-state failure. Of course there is nothing unique about the par-

ticular parametric values chosen to accomplish this initial setting. In

accordance with previous guidelines, the hardening parameter D was taken as

a fraction of j Xoj - and the remaining parameters W, Y , and N, shown in

Figure 12, were chosen by numerical experimentation with VPDRVR program.

Returning to the model's performance shown in Figure 13, we observe

the elatic response, test 1, and the steady-state viscoplastic response,

test 2, are well correlated with the experimental data. In test 3, the

model correlates fairly well with primary and secondary creep data.

Primary creep is the early portion of the curve with decreasing strain

rates (cap movement) and secondary creep is a constant strain rate

(steady-state failure). The last two data points in test 3 exhibit ter-
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tiary creep, i.e., increasing strain rate, which is not represented by the

viscoplatic cap model. Test 4 also exhibits tertiary creep beginning

almost immediately after the primary creep phase. Again, tertiary creep is

not represented by the viscoplastic cap model.

From these comparisons we conclude that the present viscoplastic cap

model is capable of simulating elastic, primary creep and secondary creep

behavior bat not tertiary creep. The inability of the viscoplastic model

to simulate tertiary creep is not a question of readjusting the parameters,

but rather, it is an inherent limitation of the functional forms defining

the model, i.e., the present model can only respond with constant strain

rates once the steady-state failure condition is reached (e.g., recall Fig.

3a). One way of overcoming this limitation is to introduce strain soften-

ing into the hardening function such that after E has grown (hardened)

to d specified level, a softening function is activated shrinking £, and

hence increasing the strain rate as the cap retracts. Another approach

would be to redefine the fluidity parameter in a functional form dependent

on . This idea was discussed at the end of Part I of this report.

Sand in Uniaxial Strain with Variable Load Rates. We now consider the

last, and perhaps, the most significant experimental test for evaluating

the performance of the viscoplastic model, as well as, identifying the

model's parameters. This rather ingenious experimental test, conducted at

the Army's Waterways Experimental Station (11), was undertaken to directly

assess the effect of loading rate on the constitutive behavior of a dry

remolded sand (20-40 Ottawa Sand). The sand was molded into a thin disk-

shaped specimen at the bottom of a rigid cylindrical test chamber which

provided lateral constraint (uniaxial strain). By means of rather ela-

borate ram and explosive loading devices, several specimens were pressure

58



loaded with different rise times ranging from approximately 0.2 to 20,000

milliseconds. Data for each test included the time history of the pressure

loading and the corresponding strain history.

Due to the small thickness of the disk-shaped specimen (1.27 cm)

intertial effects are negligible even for the most rapid loading rate. That

is, in reference to the so-called "multiple-reflection theory", the sand-

specimen thickness is designed to be sufficiently small to permit a stress

wave to multiply propagate back and forth between the rigid-bottom boundary

and the free-surface boundary during the loading rise time. According to

the theory, inertial stresses are negligible, and therefore, the resulting

stress-strain histories provide a direct representation of the constitutive

behavior. This theory was independently verified by the WES investigators

for their test specimens by a simple dynamic analysis (i.e., a one-

dimensional wave propagation computer program using the actual loading

histories and piece-wise linear stress-strain relations determined from

static tests).

Figure 14 shows the pressure loading history (o11 stress) along with

the measured strain history for the "slow" loading rate which has a rise

time of 15,000 milliseconds. At the other extreme, Figure 15 shows the

stress and strain histories for the "rapid" loading rate which has a rise

time of 0.2 milliseconds. The resulting stress-strain curves for both

loading rates are shown in Figure 16. Here it is plainly evident that the

sand specimen exhibits rate-dependent stress-strain behavior.

Intermediate loading rates with rise times on the order of 100 milli-

seconds gave results almost identical to the slow loading rate experiment.

This leads to two important observations, (1) the non-linear stress-strain

relationship for the slow loading rate is not time dependent and may be
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Figure 14. Slow loading stress and strain histories.
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Figure 15. Rapid loading stress and strain histories.
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Figure 16. Stress-strain response for slow and rapid loading.
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assumed inviscid, and (?) rate effec'- unlj be(ove siyniticant when the

rise time approaches the sub-millisecond rdfige. These observaItions i1, 1 be.

used to great advantage in the subsequent parameter identification process.

The overall strategy for determining the model's parameters (listed in

Figure 16) is based on the observation that the experimental stress-strain

curve for the slow loading rate is an inviscid-plastc response.

Accordingly, all the elastic and plastic parameters can be determinea from

the slow loading-rate test. Once these paramettrs have been identIfIed,

the viscous parameters (, and N) can be determined from the rapid loadin

test. That is, for the slow-loading trial simulations, , is taken suf-

ficiently large to ensure complete viscoplajtic flow (i.e. invisiu'(-plast1(

response). In other words, there is some lower limit or - such tndt efj

value greater than this limit produces identicdl result%. Thi. lin o

for is directed by the r. id-loading test, i.e, ,s ct'ot,. tria anc

error to achieve reasonable agreement between the predjie(i j,,: was ,ro

stress-strain slopes from rapid loa(ding.

With the above understanding, tn toll cvin,, p ararete'r iJer0.*' cat 'U

procedure employs the strain loading history fron i igure 14 as irput into

the VPDRVR program. Identification begins by selecting elastic parameters

to match the initial unloading slope of the slow-loading test. Ihis slope

is an elastic confined modulus graphically measured as 57,000 MPa. Lslng

this value along with an assumed value of Poisson's ratio .3, the bulk

and shear modulus are set once and for all as recorded in Figure 16.

Selection of the failure surface parameters, A, B, and C (Sandier

form) are guided by the observation that the unloading curve begins to

exhibit a nonlinear response after a st-ess reduction between 5 to lr MPa.

This suggests that the elastic unloading space is rather small, hence, the
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maximnum failure surface height A i s t j i'.al, )a^& I wAd,%e of k

MPa and the curvature adratieter B is tie!,tttr t trial and errur itc i'ru.

duce a re-entry point ut, the failure surta," -'(h &ppr)A',mateiy &atches

the break in the unloading curve. The paramter value for C is chsoen

slightly less thao A in oroer that tne )1fr'ence. A-C, 1,roviav% a vea y

sral I vdlje for thet lti7' l elastic q4ak, ,,rtor t,. lo.o, . , i f,

e, with the utsvrva: I a" ?) - I! 1 3 rldit( reb)Core is

ohervei jpol iri'la! , ; a %is2 Lv wrt'm , it was wlierved thriugh

fnl'rnerr..dl , Ir fl.n? ',w tnat 4 :uire proeIuineetA Irea ir te rWoadi gi

curve can be aIhievePl t, rt-ijcin, A art, irre4:i:. B.

Por the initial ca;) surface location. 1, is set at an arbitrary sall

value to limit the sie o f the initial elatir space in corforwsnce with

the small A-C value disclUSsed above. The cap sfhape parameter A is

arbitrarily set at 2.1,. Numerical experiventation indicated that charges

in R has little effect on the aelal stress-strain curve. Its primary

influence is to increase the magnitude of lateral stresses as R increases

(lateral stresses were not measured in the pxperiments).

The most important parameters for capturing the shape of the stress-

strain loading curve are the cap hardening parameters W and D. Since W

represents the maximum volumetric viscoplastic strain that can be art'ieved,

it was initially estimated as 0.03 which is approximately the maximum volu-

metric total strain observed in the test. As previously discussed, it is

generally recommended to choose DtX i 3.5. Decreasing [ or W results in0

increased stress magnitude, i.e., a steeper stress-strain loading curve.

,fter several trials, the final values selected are W - 0.027 and OjX

0.047. This completes the identification of elastic and plastic parame-

ters.
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During the above identification proivtss, tre fluidity parameter i wdS

set at a relatively ldrye value to enure ifivis,i responses for the s'.o

loading-rate test ( , 1.0 x i - 4 millistcona-l). ,tter the final e;dstic

and plastic parameters were chosen, f wAs repeatedly reduced tu ascertain

at what value of , th Slow lod(dIn,, '.Ins to ehii)it a smal vISLuUS

re trO;O whic did not differ from the inv)scid respinse !)y miore thar i%.

This ve~ue of , was determi r p to bt j.o? - 11j" , miliseconds-1

Therefore. tnis vaiute is a lowerbuund on the final vaiue of 7 that may be

selected to tle~t fit the rapid-loading test.

The last step in the identification proce's is to simulate the rapio-

loadinq test using the strain history data in riyure l5 for input into the

VPDRVk program and ascertaininq the viscous parameters -, and N to best

:rhatC~ the rapid-loading stress-strain curve, all other parameters remaining

the same. Here N was set to 1.0 (not varied) and the final Lhoice for Y is

0.? r 10- 4 millisecovd-1 , an order of magnitude greater than the lower

bound established above. As a final check, the slow-loading test was rerun

witn t,"e final parameters and identical results were obtained. Moreover,

interinediate-loading rates with rise times on the order of 100 milliseconds

were run, and the resulting stress-strain responses did not differ signifi-

cantly from the slow-loading rate (i.e., in conformance with experimental

observations).

Upon examining Figure 16, it is evident that the viscoplastic cap

model azcurately reflects the test data. For the slow-loading test, the

cap surface continually moves with the stress state producing a stiffening

stress-strain response as shown. Since the stress state is on the cap sur-

face during loading, the immediate unloading response is initially elastic

prior to re-entering the failure surface. On the other hand, for the fast-
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loading rate, the cap surface lags behind the loading stress state pro-

ducing an "apparent" softeninig stress-strain response (of course, this is

really a time-dependent effect). Just prior to unloading,the stress state

is well above the cap surface, thus when unloading occurs, the stress state

remains in the viscoplastic domain producing additional strain accumula-

tions as shown. The correlation between the model's performance and the

observed performance is truly quite remarkable, particularly with regard to

matching the rapid-loading behavior characteristic of ground shock

problems.

Summary and Recommendations

Summary and Conclusions. In Part I of this report a theoretical for-

mulation for viscoplastic tension cutoff was developed based on a J, stress

criterion. For completeness, this formulation was presented with the pre-

vious CAP75 viscoplastic formulation (1) providing a complete description

of viscoplastic behavior for tension cut-off, failure surface, and cap har-

dening. A numerical solution strategy for the complete model was presented

and coded in the computer program VPDRVR (Appendix). This algorithm

employs a variable Crank-Nicolson time integration scheme together with

Newton-Raphson iteration procedure to solve for the six-component stress

history resulting from an arbitrary six-component strain loading schedule.

Also, the program solves the inverse problem, i.e., stress loading input

strain history output.

The new tension-cutoff algorithm was tested against an exact solution

for the case of uniaxial-stepped-strain loading. Perfect agreement was

obtained. It was concluded that the fluidity parameters in the tension

domain should be at least an order of magnitude larger than that in the
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viscoplastic cap model is well suited for capturing the time-dependent

behavior of soils and rocks over a wide range of loadings. Future enhan-

cements of the model can easily overcome the shortcomings noted above.

Future Recommendations. Recommendations for future efforts are divided

into two main areas; "model enhancement" and "automated parameter

identification". With regard to model enhancement, two improvements are

suygested. First and foremost it is recommended to generate the

appropriate functional forms of the model to provide the capabaility of

simulating tertiary creep. This could be done by introducing a history

dependent function for the fluidity parameter and/or a strain softening

function for the cap. Sufficient experimental data currently exists to

meaningfully undertake this enhancement. The second enhancement is con-

cerned with simulating tension damage accumulation associated with cyclic

loading. Again, this could be done with special functional forms for the

tension fluidity parameter and/or softening functions for the tension

failure surface. However, to meaningfully undertake this effort, addi-

tional experimental data is required.

Lastly with regard to automated parameter identification, it is recom-

mended to re-structure the VPDRVR program into an interactive, user-

friendly, identification program. For "ideal" data the program would

determine all the model parameters with very little assistance from user.

For "non-ideal" data a close interaction between the user and the computer

is the best approach. Here it is envisioned that the user would specify

several constraints (e.g., slope of unloading curve, initial size of

elastic domain, etc.) along with both stress and strain response histories.

A first estimate of the parameters would be determined by the program with

an over-ride option by the user. Thereafter, the user would specify one or
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more parameters to be optimized, and the program would respond with the

current optimum value of the varied parameter along with diagnostic data

and graphs illustrating the effects of the parameter. Stepping along in

this interactive fashion, i.e. changing one parameter at a time, a final

solution can be obtained in a matter of a few minutes, instead of weeks by

a batch oriented trial and error approach. Moreover, the intermediate

diagnostic data is of tremendous educational value with regard to

understanding the model's behavior.

In closing, it is worthwhile to repeat that the viscoplastic cap model

has been shown to perform extraordinarily well with experimental data over

a wide range of loading environments, as well as, for a variety of geologi-

cal materials. No other time-dependent constitutive model has exhibited

this degree of generality. Accordingly, it is highly recommended to pursue

the future development of this model along the lines suggested above.
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APPENDIX A

PROGRAM VPDRVR: INPUT INSTRUCTIONS

This Appendix provides input instructions for the VPDRVR program which

exercises the viscoplastic cap model with tension cutoff. Only a very

minor change to the original input instructions (1) are needed to define

the tension cutoff parameters. These changes are on one card (Group 0,

Card 10) which is extended to define the tension fluidity parameters YT and

YG and the hydrostatic tension cutoff value T.

For convenience, the entire set of input instructions along with ten-

sion cutoff input is given here. The program documentation and benchmark

problems given in Reference (1) remain valid and are not repeated here.

Benchmarks for tension cutoff are given in Part I of this report.

Input data cards are grouped in the following categories:

A. (Cards 1 and 2): Heading and Master Control

B. (Cards 3, 4, and 5): Elastic functions/parameters

C. (Cards 6, 7, 8, and 9): Plastic function/parameters

D. (Card 10): Viscous functions/parameters and tension cutoff

E. (Cards 11, 12): Loading schedules for stress or strain.
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USER INPUT INSTRUCTIONS

A. Problem Initiation, Heading and Master Control Cards.

Card 1. (15A4) Heading

Columns Variable Entry Description Notes

01-60 TITLE Descriptive problem title, (program (1)
(15A4) terminates if TITLE(1) = STOP).

Card 2. (415, Al, 2FI0.0) Master Controls

Columns Variable Entry Description Notes

01-05 LTYPE Loading type identification; (2)
(15) = 0, strain loading.

= 1, stress loading.

06-10 NTSEG Number of time segments to define (3)
(15) loading, (Default = 1, Maximum = 30).

11-15 ITMAX Number of Newton-Raphson iterations, (4)
(15) (Default = 10).

16-20 KPRINT Output print control; (5)
(15) = 0, standard response output

= 1, above plus iteration parameters
= 2, above plus yield function values.
= 3, above plus iterative correction vector
= 4, above plus Jacobian matrix.

20-21 IPLOT Plot control for response data written (6)
(AI) to unit 11:

= Y (YES) Data written to unit 11
= N (NO) Not written

22-31 THETA Crank Nicolson integration parameter; (7)
(FIO.0) 0< 0< 1.0

32-41 CONVRG Convergence tolerance for Newton-Raphson (8)
(FlO.0) iteration, (Default = 0.01, i.e. 1%

relative error).
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B. Elastic Function and Parameter Cards

Card 3. (215) Selection of Elastic Functions

Columns Variable Entry Description Notes

01-05 IFBMOD Selection of bulk modulus function, K(J1 ): (9)
(15) = 1, K(Jj) - BDATA(1) , (linear)

= 2, K(JI) = BDATA(1)/(-BDATA(2))*
(1-BDATA(2)*EXP(BDATA(3'*JI))

(Default = 1)

06-10 IFSMOD Selection of shear modulus function, G(J2 ): (10)
(15) = I, G(J2) = SDATA(1), (linear)

= 2, G(J2) = SDATA(1)/(I-SDATA(2))*
(1-SDATA(2)*EXP(-SDATA(3)*J2)).

(Default = 1)

Card 4. (7FI0.0) Bulk modulus parameters, BOATA

Columns Variable Entry Description Notes

01-10 BDATA(1) First bulk modulus parameter. (11)
(FIO.0)

11-20 BDATA(2) Second bulk modulus parameter.
(F1O.0)

21-30 BDATA(3) Third bulk modulus parameter.
(FIO.0)

Card 5. (7FIO.0) Shear modulus parameters, SDATA

Columns Variable Entry Description Notes

01-10 SDATA(1) First shear modulus parameter (12)
(F1O.0)

11-20 SDATA(2) Second shear modulus parameter
(FIO.0)

21-30 SDATA(3) Third shear modulus parameter
IFIO.0)
p
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C. Plastic Function and Parameter Cards

Card 6. (415, G10.0) Selection of CAP75 functions

Columns Variable Entry Description Notes

01-05 IFFAIL Selection of failure surface function (13)
(n5) fF = /J2 + gF1 WO1 :

= 1, 9F, = -FDTATA(1) + FDATA(2)*J1.

= 2, gF, =-FDATA(1) + FDATA(2)*

EXP(FDATA(3)*J1).

(Default = 1)

06-10 IFCAPR Selection of cap surface ellipse ratio R: (14)
(15) = 0, No cap, just failure surface.

= 1, R = CDATA(1).
= 2, R = CDATA(1)/(1 + CDATA(2))*

(1.0 + CDATA(2)*EXP(CDATA(3)*EL)).

11-15 IFHARD Control of cap hardening: (115)
(15) = 0, No hardening, stationary cap.

= 1, CAP75 hardening function is used:
E = W-(EXP(D*X) - 1).
W = HDATA(I)
D = HDATA(2)

16-20 KAPTYP Selection for soil or rock hardening laws: (16)
(15) = 0, soil material.

=1, rock material.

21-30 XINITL Initial location of cap X on J, axis. (17)
(G1O.0)

Card 7. (F1O.0) Failure Surface Parameters, FDATA.

Columns Variable Entry Description Notes

01-i0 FDATA(1) First failure surface parameter. (18)
(F 10.0)

11-20 FDATA(2) Second failure surface parameter.
(F 10.0)

21-30 FDATA(3) Third failure surface parameter.
(F1O.0)

72



* Card 8. (7F0.0) Cap Surface Parameters for R, CDATA

Columns Variable Entry Description Notes

01-10 CDATA(1) First cap R parameter. (19)

(F10.0)

11-20 CDATA(2) Second cap R parameter.
(FIO.O)

21-30 CDATA(3) Third cap R parameter.
(FIO.0)

* Card 9. (7FI0.0) Hardening cap parameters, HDATA.

Columns Variable Entry Description Notes

01-10 HDATA(1) First hardening parameter, W. (20)

(F1O.0)

11-20 HDATA(2) Second hardening parameter, D.
(FIO.0)

*Skip Cards 8 and 9 if IFCAPR = 0.

D. Viscous Function and Tension-Cutoff Parameters

Card 10. (15, 6F10.0) Selection of viscous function/parameters

Columns Variable Entry Description Notes

01-05 IFVISC Selection of viscous function (21)

(15) = i, = (f/ANORM)**EXPN.
= 2,¢ = EXP((f/ANORM)**EXPN) - 1.
(Default = 1)

06-15 EXPN Exponent in 0 function, (22)

(F1O.0) (Default = 1.0).

16-25 GAMMA Fluidity parameter,Y . (23)

(FO.0)

26-35 ANORM Normalizing constant in € function, (24)

(FIO.0) (Default = max(FDATA(1), 0.01)

- Card 10 continued on next page -
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D. Card 10 continued (tension cutoff parameters)

Columns Variable Entry Description Notes

36-45 GAMMAB Fluidity parameter for volumetric (a)
(FIO.0) tension cutoff, T

Default =

46-55 GAMMAG Fluidity parameter for deviatoric (b)
(F10.0) tension cutoff, )G

Default = lO.O*yT

56-65 TCUT Hydrostatic tension cutoff limit, T (c)
(F10.0)

Notes a, b, and c for Card 10.

(a) To simulate rapid volumetric stress release, GAMMAB (OT) should be
taken significantly greater than GAMMA ( ) which controls the
viscoplastic flow in the cap/failure regions.

(b) In order to have deviatoric stresses release at the same rate as volu-
metric stresses, set YG = 9Ko YT/GO, where Ko and Go are bulk and shear
elastic moduli. Typically 'fG should be an order of magnitude greater
than ) T-

(c) The tension cutoff value TCUT (or T) triggers tension cutoff whenever
J, - T > 0. Accordingly, a sensible choice for T is in the range 0
T < FCUT. FCUT is where the failure surface intersects the Ji axis.
If it is desired to deactivate the tension cutoff procedure entirely,
set T >> FCUT. To insure that TCUT is not specified within the cap
domain, the program checks that TCUT > Lo . If this is not satisfied,
the program resets TCUT L0 and is noted on the printed output.
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E. Input Loading Schedule and Time Steps.

Repeat card set 11 and 12 NTSEG times; NS 1, NTSEG

Card 11 (FIO.O, 215) Time segment, number of steps, print control.

Columns Variable Entry Description Notes

01-10 TS(NS) Time at end of segment NS. (25)
(F1O.0)

11-15 NUMDT(NS) Number of times steps within time (26)
(15) segment NS.

(Default = 10)

16-20 IPRNT(NS) Print interval for standard output: (27)
(15) 1 1, every time step prints output.

= n, every nth step prints.
(Default = 1)

Card 12. (6F10.0) Stress or strain load vector at time TS(NS).

Columns Variable Entry Description Notes

01-10 PLOAD(1,NS) all (or Ell) at TS(NS). (28)
(FIO.0)

11-20 PLOAD(2,NS) 022 (or 1-22) at TS(NS).
(F1O.O)

21-30 PLOAD(3,NS) 033 (or £33) at TS(NS).
(F10.0)

31-40 PLOAD(4,NS) 012 (or E12) at TS(NS).
(FIO.0)

41-50 PLOAD(5,NS) 013 (or L1 3 ) at TS(NS).
(FIO.0)

51-60 PLOAD(6,NS) J23 (or E2 3 ) at TS(NS).
(FIO.0)

END OF INPUT FOR ONE PROBLEM***
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Commentary Notes with input Instructions:

1. Problems may be run back-to-back. Terminate the last problem by
writing STOP in columns I to 4.

2. Strain loading implies the six components of strain will be specified
individually during the loading schedule. Similarly. stress loading
implies the six components of stress will be individually specified.

3. For either stress or strain loading, NTSEG is the desired number of
time segments to define the loading histories in a piecewise linear
fashion.

4. Generally 10 iterations is more than sufficient to achieve convergence.
If convergence is not achieved, it is a strong indication that the time
step is too large. Note that convergence of the Newton-Raphson
procedure does not guarantee accuracy. Accuracy can only be assured by
repeatable solutions with smaller time steps.

5. Standard output includes stress or strain responses, cap location,
number iterations to converge, stress invariants, and type of respotse.
For KPRINT 0 0, additional information is given primarily for debugginy
purposes.

6. Standard response data is written to unit 11 for subsequent plotting on
a CALCOMP plotter. Subroutine GRAPH is used for plotting and mdy be
removed or replaced if desired.

7. For THETA = 0., the solution algorithm is explicit resultiny in linear
equations (i.e. no Newton-Raphson iteration). For THETA 0 0, the
algorithm is implicit and generally more accurate for a given time step
size, but requires Newton-Raphson iteration, for THETA , 0.5, the
algorithm is unconditionally stable.

8. The convergence tolerance, CONVRG, is tested against the ratio formed
by the norm of the correction vector for stress (or strain) divided by
the norm of the stress (or strain) vector. Norms are Euclideari.

9. The nonlinear bulk modulus function given by IFBMOD = 2 is taken from
CAPERIVER (NCEL Program). It is a function of JI (first stress
invariant) and is treated the same for loading or unloading.
Additional functions may be added to program in FUNCTION DI(I,J).

10. The nonlinear shear modulus function given by IFSMOD = 2 is a function
of J2, second deviator stress invariant (see Note 9).

11. For future program expansion, BDATA is dimensioned to 7 to allow incor-

poratin of higher order nonlinear functions.

12. SDATA is dimensioned to 7 (see above).

13. For IFFAIL = 1, the failure surface is standard Drucker-Prager (or Von
Mices if FDATA(2) = 0.0). For IFFAIL = 2, the failure surfar, is the
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exponential form suggested by Sandier for CAP75. AdditonaI functional

forms may be added to the program in FUNCTI()N FGI.

14. By setting IFCAPR - 0, the plasticity model is governed by only the
failure surface. For IFCAPR 1 I or 2 the cap surface is included with
R given by the corresponding functional form. Additional functional
formus for R may be added to program in FUNCTION FRCAP. (Note for
IFCAPR = 2, R z R(EL) where EL is L of cap).

15. If desired, a nonhardening cap surface may be used by setting IFHAbD
0. Otherwise the CAP/5 hardening function is employed. New hardening
functions can be employed by modifying SUBROUTINE CAP/5.

16. See Part I for the special hardening rules for soils (KAPTYP U).

17. The initiai location of X defines the starting position of the cap sur-
face. The program checks that XINITL is not greater than FCUT, i.e.
the intersection of the failure surface with JI axis. If it is. XINITL
is automatically reset slightly less than FCUT. Note, the so-called
Von Mises Transition employed by Sandler is not included in this devel-
opment. Thus, if it is desired to obtain steady-state viscoplastic
solutions to exactly match CAP75 plasticity solutions, XINITL should be
chosen so that the initial L location is not greater than zero.

18. The "standard Sandler" CAP75 failure surface is the form given by
IFFAIL = 2. In which case FDATA(1) = A, FDATA(2) = C, and FDtTA(3
B.

19. The "standard Sandler" CAP75 cap surface parameter is the form yIven ty
IFCAPR = 1, i.e., CDATA(1) = R.

20. If IFHARD = 0, HDATA(I) and HDATA(2) are read but not used. If IFCAPR
0, cards 8 and 9 are not read. HDATA as well as FDATA and CDATA are
dimensioned to 7 for future program expansion.

21. For geological materials IFVISC = I is generali, the most popular form
for tne viscous function. Additional functional forms may be added to
the program in SUBROUTINE PHIF.

22. EXPN need not be a whole number, but must be greater than zero.

23. GAMMA has units of inverse time, the units (e.g. seconds, hours, years)
correspond to the loading time units TS in Card 11.

24. Generally the default value fo ANORM is appropriate providing FDATA(]) #
0.0 . ANORM should not be viewed as an independent material parameter
since it is always associatd with GAMMA in the quotient GAMMA/ANORM**EXPN.

25. Up to 30 time segments may be used to define a piecewise continuous
collection of straight lines to define loading. For the first time
segment, the program automatically assumes initial time is zero, i.e.
TS(O) = 0.0. Thus, TS(1) is the time at the end of first segment,
TS(2) is the time at the end of the second segment, etc. Successive
values of TS(NS) must be greater than the previous value.
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26. Any number of time steps may be assigned to each time segment.
Accuracy/stability is controlled by the time step size so that it is
good practice to repeat solutions by doubling the value of NUMDT(NS).
Although the time step size may be specified differently in each time
segment, it is good practice not to make changes in t between segments
by a factor of more than 2.

27. The printout interval may be specified differently for each time
segment.

28. Loading values at the end of each time segment are specified indivi-
dually for each vector component of strain if LTYPE = 0, or each vector
component of stress if LTYPf :1 1. For the first time segment the
initial loading and responses are automatically assumed zero i.e.,
c(0) = E(O) = 0. Standard continuum mechanics sign conventions are
observed for all input and output. For example if a uniaxial stress
loading cycle is desired in which ul1 is compressed at a constant rate
to a stress value -10.0, held constant, then reverse loaded at a
constant rate to a tensiie stress value of +1.0, and again held
constant; we infer NTSEG = 4, and 011 is described by:

PLOAD(1,1) = -10.0
PLOAD(1,2) z -10.0
PLOAD(1,3) = +1.0
PLOAD(1,4) = +1.0

and all other stress components (PLOAD) are zero.
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