T A Bt

-
:)
:O .
or POD-HOS INTERFACES:
AN EXAMINATION OF AXES/POD
- RELATIONSHIPS AND OTHER ISSUES
X
= ponmner MN0003%-81-C-9/83
ailable to DTIC does pot
o i ngila mproducin DTIC
<LECTE
MAY 1 g
BES SYSTEMS, INC, 193
WALTHAM, MA 02254
E
AND |
EE; HIGHER ORDER SOFTWARE, INC |
O CAMBRIDGE, MA 02139
o
= DECEMBER 1982
[]
E This document has been C‘Ppm‘d

for public - - - sale; It
distribution 18 usn. coited. #

g3 03 15 032

P ATE U YL S Uy S 3 WP SO S 4 IO LI LI e e |

TLieovay LI R e e A e Sl S AR I A e Il SO e B Y W T I T I AT AT T e T e T
L A ~ A SISt il S AR I RO R T AL T T S e e
-, * . SR - P S - . . B B N e L L R I

...........................

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

b,
;

K I

RedC i Zhue Mo Jhas. i bt s BeaC it Raafi faan Suaidinth id
S R T -

SECYMTY CLASHIPICATION OF THIS PAGE (Bhen Dete Antaved)

REPORT DOCUMENTATION PAGE ' BEPCEE oML Tare pORN
rﬂo -p12%30l1 ']

6 TATLE (and Subetile) 5. TYPE OF REPONT A PEMOD COVERED

POD-HOS Interfaces

6. PERFOMMNG ORG. REPORT NUMBER

RPT-POD-1982-5 4
*. AUTHOR(e) . CONTRACY OR CRaANT NUMUER(s)
BGS Systems, Inc. ~ N-00039-81-C-0183
High Order Software, Inc. _
| [. S ERFORMING GRGANTZATION NAME AND ADOWESS W RROGHAR ELFUENT PROICT VASK
High Order Software BGS Systems, Inc.
955 Mass Ave. University Office Park| ACRN: Item 0004
Cambridge, MA 02139 _ Waltham, MA 02254
1. CONTROLLING OF FICE NAME AND ADORESS 12. REPORT DATE
Naval Electronic Systems Command
Hash‘ington, DC 20630 13. NUMBER OF PAGES
[T MONITORING AGENCY NANE & AGORESI(I dilleront fram Controliing Office) | 15. SECURITY CL ASS. ~f thia repart))

UNCLASSIFIED
[T8a. DECLASSIFICA TioN/ DGWNGRACING |
SCHEDULE

6 DISTRIGUTION STATEMENT (of thie Maport)

17. DISTRIBUTION STATEMENT (of the abelvact entered in Bleck 29, Il ditisveni lrom Repert)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue en severse side I nacesaary and identily by bleeh number)

10. ABSTRACT (Continue on reverse side It necesssry and idwntify by blech mumber)

This document describes an approach to interfacing BGS Systems, Inc.'
POD system and High Order Software, Inc.'s USE.IT system. It 1ncorporated
| a technical overview prepared by BGS Systems and a more detailed report
\ prepared by HOS.

DD %% W73 eowmouor 1uoves s omoreve UNCLASSIFIED
12 T — 7 W

. P - MNEPYD WAy Wy . - e -

P LI A
JOSG A

-
-t

o ..
P o =4

TaTm
4

,

.
b

Y
i
14
l"
i
e
o
Al

.....................

1 OVERVIEW

" vhis report addresses the feasibility of and require-
ments for interfacing two powerful software engineering
tools - POD (Performance Oriented Design) developed by BGS
Systems Inc. and HOS developed by High Order Software,. Inc.

of Cambridge, MA.

POD is a software engineering tool for the 1life cycle man-
agement of system performance. It is a tool which provides
a structured machine readable format (the System Description
File or SDF) for representing a system's hardware architec-
ture, software structure and external load demand. Based on
this representation, POD provides a vehicle to calculate
system performance values such as response time, throughput

and device utilization.

Higher Order Software (HDS) ~ is a methodology for defining

systems in a hardware and language independent manner. It

consists of a specification language AXES, which provides

mechanisms for defining functions, control structures, and

data types,
(USE.ITY,

a User System Evaluation and Integration Tool
which is a family of tools for defining systems
using the AXES language, an Analyzer for analyzing the logi-

cal correctness of systems defined in AXES, and a family of

NTIS GRA&I

DTIC TAB g
Unannounced

By

Distribution/
e - . B R TP

Availcobility Codes

A1l ond/or

Dist |

Accession For

Cpecind
,

Al

P Py CUDE” VTSI T

N
4]

r> 25

LW

PV, SR S O/

PRSP R S

TS T e T T A T AT e T AT NN TR e T e ol R T T T T T W T Y Y T Y U T W W T N
...................... Al et A . " . L/t
........

RATs (Resource Allocation Tools), which translate descrip-
tions from the AXES specification language into target lan-
guages such as Fortran and (potentially) POD. The AXES lan-
guage consists of both a specification 1a;§uage (for de-
scribing the application or other system to be built) and a
metalanguage for describing new data types and their associ-
- ated axiams. The latter is a facility for extending the

AXES language to incorporate new types of information.

In considering the feasibility of and requirements for in-
terfacing POD and HOS, HDS is assessed in terms of its abil-
ity to describe the required POD input specifications. 1In

addition, consideration is given to possible HOS extensions

to support POD, and an approach for interfacing these tools

is suggested.

N

The HOS report is organized as follows: Page one of the ac-
campanying HOS report contains the introduction; pages 3 and
4 contain a summary of POD facilities; pages 5 and 6 give an
overview of HOS and USE.IT; pages 7 thru 35 describe the HOS
- P interface, which is the meat of the report; page 37
has a list of references to HOS papers (plus a reference to
the POD reference manual); Appendix A (which is separately
numbered) consists of pages 177 to 188 of the POD reference
manual.

The report contains a description of parts of the DPOD SDF

language in terms of AXES axiams and an example of how same

, et e L . P P SUST |

™
2

AN ¢ SOy O

——y

PPy .i}'.‘_.,_‘,‘ Ol e S et vt ARt SR Aat ua Sl S At Bt AR
____________ - B . . - st et Tl e .-t . .

information in a typical POD SDF ocould be expressed using
AXES constructs. It is, thus, useful and illustrative of
how a camplete specification of POD information in the HOS

enviromment could be done.

The rationale for this task was to enable users to present a
unified description of a system in the HOS requirement spe-
cification language (AXES) in such a way that sufficient in-
formation would be embodied in such a description so that
both a higher level language (e.g. Fortran) program and a
POD model could be generated from that description. In ord-
er to do this, two things must be done.

1. Conventions must be established so that the necessary
performance related information can be embedded in a
system specification written in the AXES language.

2. The POD SDF language must be defined to HOS so that
an actual translation can be done.

Once this is done a translator (called a RAT in HOS termi-
nology) can be built that uses information embedded in a HOS
description of a system aﬁd information about the informa-
tion layout used by POD to generate a POD model. HOS also
has a facility to do limited consistency checking of this

performance related information.

The HOS report presents two main pieces of new information:

1. A definition of a subset of the POD SDF syntax in the

AXES metalanguage.

C

e ol e SRS SRR el ol

. "

. ®

-~ An example of how sample pieces of a POD SOF model of
a system could be expressed in the AXES language.

The AXES metalanguage provides a facility for extending the
AXES syntax by introducing new primitives that support POD
ooncepts such as workload and device definitions. These are

not nomally part of a requirements or HLL specification for

a system. The extension syntax is defined in the AXES meta-
- language as axiams and data types. Values can then be asso-
; ciated with these new data types as part of a system re-
B quirements specification. As an example of how the

% definition of POD constructs can be produced, the HOS report

provides AXES metalanguage definitions of four POD syntax
canstructs:

1. device type (pp.7-12)

2. file catalog (pp.12-13)

3. workload (pp.14-16)

4., workload type (p.l7)
The definitions are typical of what would be required for a
camplete definition of the POD input language.

The HOS report also specifies a set of conventions for how
information needed by POD can be expressed in the AXES lan-

guage and how these specifications correspond to the infor-
’ mation in a POD SOF. ‘The report gives examples of how six
,; such types of information (needed to build a POD model of a
? system) can be incorporated in an AXES language specifica-
" tion. The cc 'cts illustrated are:

-4 -

1. 1loop statement (pp.l4, 18-20, and 22)

2., case statement (pp.20-21 and 23-24)

3. file catalog (pp.25-26)

4. device description (pp.25 and 27-29)

5. device classes (pp.25 and 29)

6. workload specification (p.30)

7. module description (pp.25 and 31-34)
Both the HOS and POD constructs for describing each of these
types of information are illustrated so that the correspon-

dence between the two ways of describing them can be com-

pared.

An important issue is that POD uses a probabilistic descrip-
tion of the differents paths through a program (choices in a
TEST/CASE statement) while a oconventional programming lan-
guage uses a specification of the conditions that will cause

one or another path to be taken. ‘These probabilities must

::_ be incorporated into the HOS AXES requirement specification
t in order for a detailed POD model of an application to be
,Ei built. PD allows the user to specify program path lengths,
E” the number of times a loop will be executed, and flow of

omtrol in general as a function of data input frequencies
3 (probabilities) that are meaningful to an end user. One

b conclusion of this study is that this type of information

-

must be included in a system specification for a detailed

'
»

v,

and accurate POD model to be produced. Once this informa-

08 00

tion is available, POD allows same of the parameters to be

o SASR AN a0 o bt

la.
1
(9]
|

L gwa S aes ot g W AR T W YT T TR T e T e T e e e e
AW oy WL - - - . R .‘"-;. N N A" - .. . - ., - . - . .

B
A

- r._(“wﬁ il S oSS ALEA NS

L L a0

¢

N S S Ja At Jang Beaiundiy

e TR T T T W T T W T e s e
Fus ants Sl Mok vt SR slar MCRSRES A - Tl Rl

varied interactively to analyze how changes in data input
frequencies will affect system performance. Incorporating
this additional information in an AXES specification should
not be particularly difficult and would be an appropriate

extension of the research reported in the HOS report.

The complete specification of the POD syntax as AXES axioms
and conventions for embedding performance related informa-
tion in an AXES requirements specification is left for a
follow on task. Same of the main issues that could be ad-
dressed there are:
1. shared domains
2. parameter passing between modules and module flow of
control
3. data dependence of module performance and parameteri-
zation to allow analysis of the effects of this de-
pendence in a way understandable to end users
4. POD sources
5. incorporating POD semantic relationships in the HOS

axiom descriptions.

BT . U -

HiIGHER ORDER SOFTWARE, INC.
806 MASSACHUSETTS AVENUE
CAMBRIDGE, MA 02139

POD-HOS INTERFACE

SEPTEMBER 1982

PREPARED FOR
3GS SYSTEMS, INC,.

WALTHAM, A 02234

TABLE OF CONTENTS

I."TRODUCTION 'EEEENRNNEENNE NI I I I IR R R R R BN I IR I I R R I I B) l
1. pOD OvERvIEw.‘.tl'l.t.0.0.....".0!..0......." OOOOOOOOOO » 2
2. HOS & USE.IT OVERVIEW...co0eeencen cesees tececsensssrsarenne 5
3. POD - HOS INTERFACE..oooo.oolootcca.-oc-oaoooo.-oo.."o-oo 7
1 Introduction ' EEREEEEENE N I I I BN I N R BCEC B B B BRI R B A B A B A) 7
2 HOS Specification of POD Semantics ..eeevereecocceses 7
3 A Resource Allocation Tool (RAT) to Generate P0D..... 21
4 Recommendations for Future Work.e...cceesooessces eesess 34
REFERENCES R EE N EE Y E Ty I I I O O B I B AN B B A B R R B R RN RN YR RN B A 37

APPENDIX A - DEMONSTRATING POD FUNCTIONALITY (From [1])

NP U LIPS WP LIPNENPW. U RPN TN S WP IPUI IR S g - P - - = o e

o o arec a0

—————T Y W"vi""\'.‘h_‘x(AR N

INTRODUCTION

In this report we describe two related interfaces between Higher
Order Software (HOS) methodology and the Performance Oriented Design
(POD) system. One interface, which is detailed, is the relation between
POD constructs and HOS mechanisms. Some selected POD constructs are
characterized in HOS terms, and then, from part of an example of a
system described in terms of POD, a corresponding HOS specification of
that system is described. In this way general connections between the
two systems become apparent; for example, attributes in PQD become
primitive operations on data types in HOS. Furthermore, this exercise
suggests ways in which POD descriptions might be enhanced by using HOS.
For instance, it is seen that formalization in terms of HOS makes
explicit attributes that are only implicit in PQD.

The second interface, which is discussed more briefly, is the con-
cept of a POD Resource Allocation Tool (POD RAT), that is, a tool that
takes a correct HOS system specification as input and automatically
generates a POD description. Since HQOS specifications are guaranteed
to possess certain crucial properties (consistency, logical
completeness, and interface correctness, for example), a POD RAT,
which would perserve these properties, would ensure that the resulting
POD description would also have these properties. Furthermore, a
single HOS specification, after being run through a PGD RAT, could
equally well be run through a FORTRAN, PASCAL, or other RAT for imple-
mentation, thereby doing away with the need for further coding of the
system.

Included in this report is a POD overview, an HOS and USE.IT
(FORTRAN/PASCAL RAT plus other HOS tools), overview, and a discussion
of these POD-HOS interfaces.

i

. -'—! AN
L - s . .

S Tttt

ARG &AL

1. POD OVERVIEW

Performance Oriented Design (POD) system is an interactive faci-
Tity that can be used to analyze performance related problems that
arise during the design, implementation, and evolutionary development
of computer based systaems. It provides the following facilities to
the user:

o A format (System Description File) for expressing
a system design's performance characteristics
including hardware and its interconnections,
software, and workloads to be processed.

e A command to read System Description Files and
perform certain syntax checks. (For example,
invalid, redundant, or omitted descriptors are
detected.)

e Commands for transforming device usage estimates
from symbolic machine-independent terms to
actual times.

e Commands to build and evaluate analytic queueing
network models of prospective system designs.

e Commands to express the model behavior in terms

of response time, throughput, device utilization,
queue lengths, and other derived results.

e Commands to modify design performance parameters
interactively and evaluate new designs on-line [1].

Modeling of a hardware/software system can be done on two levels
using POD. On one level software structures (e.g., call structures

and resource requirements) and device capabilities (e.g., device
storage and processing capabilities) are specified. In addition,
workloads (a series of jobs arriving at a computer system from an
external source) and their arrival information must be specified. On
another level, the interaction of workloads is examined. In other
words, the contention for specific (hardware) resources is analyzed.

h - SEN

™

- DI Gl DI S SEey UL I I

L REAGRE SRt St et St Saset et et et At R

Aot et s Bgn M M
AR N N R T IR L T A

2. HOS & USE.IT OVERVIEW

Higher Order Software (HOS) is a methodology for defining systems
;; in a hardware and language independent manner. Systems so defined
' are guaranteed to be consistent and logically complete.

AXES is a specification language which is based on HOS. It pro-
vides the mechanisms to define functions, control structures, and data
types. A system is viewed as a single function which is decomposed
into successive levels of detail in terms of other functions. Control
structures state the relationship between the original function and
the functions which make up its decomposition. Thera are three primi-

tive control structures: JOIN, OR and INCLUDE, which represent sequen-
tial, alternative, and parallel processes, respectively [2,3].

Objects in a system are specified using data types. Data type
specifications provide the primitive operations that operate on or
produce the objects of data types. These operations are primitive in
that they are not decomposable, but their implementations are
constrained by axioms, i.e., statements about the ways in which they
can interact with each other.

Abstraction is gained by defining additional mechanisms using the
primitive mechanisms or pre-defined mechanisms (and thus the
primitives). These mechanisms are stored in a library and can be used
where needed.

The User System Evaluation and Integration Tool (USE.IT) is a
family of tools by which systems are defined (using AXES), analyzed
for logical correctness (using an Analyzer), and programmed (using a
Resource Allocation Tool (RAT))[4]. With USE.IT a specification is
interactively constructed using AXES and checked by the Analyzer for
consistency and logical completeness. The RAT then takes the correct
specification and automatically produces code.

i Some of the advantages of USE.I[T are obvious., Specifications are
;ﬁ formulated in AXES and therefore analyzable for certain desirable

]I properties, The Analyzer ensures that AXES specifications are con-

S sistent, free of data and timing conflicts, and complete. It should
be emphasized that this is done before implementation. Since the RAT
automatically generates code, coding time is minimal,

USE.IT also provides the user with a Yibrary of AXES mechanisams.
In this way a user defines systems drawing upon mechanisms found in
= the library. Of course, the user is not limited to those mechanisms,
gl but may build his own mechanisms and store them in a library for use
% whenever needed.

The generality and portability of USE.IT allows it to produce
“code” in languages other than the common or traditional ones. The
RAT currently produces FORTRAN and PASCAL, but a POD RAT is also
feasible. A POD RAT would take an analyzed AXES specification of a
system, and automatically generate a POD description (Systam

Description File) of that system. This System Description File would
then be input to POD, which would then produce the system's perfor-
mance evaluation.

The benefit of this approach is that the definition, i.e., AXES
specification of a system, would have all the desirable properties
(consistency, completeness, and correct data flow). USE.IT would then
guarantee that the System Description File it automatically generates
is logically complete. Moreover, a POD RAT together with, say, a
FORTRAN RAT would enable a system to be tested using POD and then
implemented in FORTRAN, all from one implementation-free H0S specifi-
cation. Conversely, the POD tool could be used to help decide whether
the system should be RATted into FORTRAN, or whether some other
language would be more appropriate for its implementation.

RACAEA -+ ROAONMUOEONS |

.........

A L

3. POD - HOS INTERFACE

3.1 INTRODUCTION

HOS/AXES provides both a language for the definition of systems
and a metalanguage for the definition of mechanisms that can themselves
be used as a language for the definition of systems. In relation to a
system 1ike POD, the metalanguage aspect emerges as primary, because
its own basic constructs can be defined formally as HOS mechanisms,
thereby enhancing POD with all the benefits that that kind of for-
malization brings. Furthermore, a RAT that automatically generates
PQP descriptions from HOS specifications can be readily built once the
semantics of POD is fully understood and made explicit.

3.2 HOS SPECIFICATION OF PQOD SEMANTICS

HOS characterizes all systems in terms of three fundamental
units: data types, functions, and control structures; and the basic
constructs of POD map naturally into this framework. The following
examples demonstrate the manner in which POD semantics could be for-
malized with HOS.

Devices in POD, for example, comprise an HOS data type [5], a
formal characterization of which is given in Figure 1. A user of POD
must attribute to devices only those attributes which POD itself
attributes to them, either explicitly or implicitly, and.strict
adherence to the specification in Figure 1 would guarantee that this
was the case. The standard set of device attributes in POD is given
in Figure 2, and each of these, as well as the device type, is
reflected as a primitive operation in Figure 1. The default units and
values in Figure 2 are omitted from Figure 1 solely in order to
simplify the exposition, byt they would be included in a more complete

- - ‘. . * - Y - - -t - o ——— v
LAY WLl ST S T L W WL ST Y o Sl anl e

PRIMITIVE OPERATIONS:

device type = Device-Type (device);
rational = Rate (device);

list (of files) = Device-map (device);
rational = Seeks (device);

rational = Revolution-time (device);
natural = Capacity (device);

string (of characters) = Operation (natural,device);
natural = Number-of-operations (device);
formula = Time (natural, device);
natural = Multiplicity (device);

string (of characters) = Class (device);

» AXIOMS:
“_t}t WHERE REJECT IS A MEMBER OF EVERY TYPE:
ti WHERE dev IS A DEVICE;

WHERE nat IS A NATURAL:

Not(Or(Equal(Device-type(dev),cpu),
Equal(Device-Type(dev),disk),
Equal(Device-Type(dev),server)))

= Equal(rate(dev),REJECT);

Not (Or(Equal (Device-type(dev),defined),
Equal(Device-type(dev),defined-cpu}))
= Equal(Operation(nat,dev),REJECT);

Equali(Operation(nat,dev),REJECT)
= Equal (Time(nat,dev),REJECT);

Not(Equal(Device-type(dev),memory))
a Equal(Capacity(dev),REJECT);

Not(Equal(Device-type(dev),disk))
= Equal (Device-map (dev), REJECT);

Not(Equal(Device-type(dev),disk))
= Equal(Seek(dev),REJECT);

Not(Equal(Device-type(dev),disk))
= Equal(Revolution-time(dev),REJECT);

Not(Or(Equal (Device-type(Dev),cpu),Equal (Device-type(dev),disk)))
= Equal(class(dev),REJECT);

Not(Or(Equal(Device-type(dev),cpu),Equal(Device-type(dev),server)))
a Equal(Multiply(dev),REJECT);

¢(nat ,Nuaber-of -operation(dev))
= Equal(Operation{nat ,dev),REJECT);

END DEVICE;

Lt e a2 b N o
. . .
AERPEERNE T T P

Figure 1: in H

- LT L T T Pt I P S (T Y P UL IR EPUT SN IS W WS PP S]
a P I P ST Py -

2 [OEVICE | REQUIRED . DEFAULT | OPTIONAL ~ . DEFAULT |
TRE ATRIBUTES . UNITS | ATIRIBUTES . VALUES
T! | cpu { RATE . MIPS | MULTIELICITY . 1|
:) CLASS .
:", L___-__ I hd l . l
}", . .
| | DEVICE_MAP . | . |
- RATE . CHAR/MSEC CLASS . _
- | DISK | SEEK . MSEC | . |
! REVOLUTION TIME . MSEC)
| | : | ' |
h ey | capacry © wokos | : o
" | SERVER | RATE . oS/ | : |
.-- . MICROSECOND MULTIPLICITY . 1
. L l » l . 1
| DEFINED | OPERATION . | : |
TIME L MSEC)
I | . | . 1
| DEFINED CPU| OPERATION) l : |
I TIME . MSEC |) '

?
- Figure 2: Device Attributes in POD (from [1])
-
ET.
4
9

R Py YR WP WP - P DN VR N G, S] 2 B Letinetn. PR § -~ - a a =

..........

P POPPPTY
- riair i !

D

...........
......................

specification of the data type. The number of operations a user-
defined devic2 has is not listed in Figure 2 as an attribute of P00
devices, but it must be included in the HOS specification in order to
formulate axioms that completely characterize the other primitive
operations/attributes. HOS formalization thus brings to light a
further attribute which POD and its users must implicitly take into
account, even though P0OD does not explicitly recognize ic.

The effect of the axioms in Figure 1 is to restrict each primi-
tive operation, and thus each attribute, to exactly those device types
that are appropriate, by specifying that its use rejects for devices
of other device types. The first axiom states, for example, that the
Rate primitive operation rejects for a device if and only if its
device type is not cpu, disk, or server, indicating that only devices
of these three types can properly be said to have rates in a PQD
description of a system, as figure 2 requires. The third axiom says
that Operation rejects if and only if Time does and so, together with
the second axiom, restricts both Operation and Time to be applicable
only to devices of type defined or defined-cpu. The last axiom says
that the nth operation of a (user-defined) device exists if and only
if n is less than or equal to the number of operations for that
device. This is necessary in order to restrict the applicability of
the earlier axioms that also contain Operation.

Most of the data types that provide inputs or outputs to the pri-
mitive operations in Figure 1 are already available in the general HOS
library, but one of them, that of device types, is entirely specific
to POD (in the present usage, at any rate). Since device types are,
in fact, a kind of "object," whose members get associated with device
"objects," they must be formally characterized in HOS as a data type,
just as devices do themselves. A specification of the data type
DEVICE TYPE is given in Figure 3.

10

A mbeA 2 PRSI ¢ P PP ST S WP SO N

DATA TYPE: DEVICE TYPE;
PRIMITIVE OPERATIONS:
AXI0MS:

WHERE cpu, disk, memory, server, defined,
defined-cpu ARE CONSTANT DEVICE TYPES;

WHERE dt IS A DEVICE TYPE;

WHERE TRUE, FALSE ARE CONSTANT BOOLEANS;

Or(Equal(dt,cpu),Equal(dt,disk),Equal (dt,memory),
Equal (dt,server) ,Equal(dt,defined),
Equal(dt,defined-cpu)) = True;

Equal(cpu,disk) = False;
Equal(cpu,memory) = False;
Equal(cpu,server) = False:
Equal(cpu,defined) = False;
Equal(cpu,defined-cpu) = False;
Equal(disk ,memory) = False;
Equal(disk,server) = False;
Equal(disk ,defined) = False;
Equal(disk ,defined-cpu) = False;
Equal (memory,server) = False;
Equal(memory,defined) = False;
Equal(memory ,defined-cpu) = False;
Equal(server,defined) = False;
Equal(server,defined-cpu) = False;
Equal(defined,defined-cpu) = False;

. Vg A A i 20 e
-'-‘-' LI AN

Dkt AL A

END DEVICE TYPE;

Figure 3: Data type DEVICE TYPE in HOS

n

e B 2P At St el St it R

Y

MF S

I"4'A'

-~ T T v—m"’r"'- T R - o ot - o . *

Since device types are used solely to identify which attributes
g0 with which kinds of devices, and since this has already been spe-
cified in Fiqure 1, data type DEVICE TYPE requires no primitive opera-
tions of its own, and so none are included in Figure 3, (Equal is a
universal primitive operation, and Or is a boolean one, both available
in the HOS library.) If reason were found for updating POD in some
way that put device types to further use, then primitive operations
and axioms that constrain them could be added to the data type speci-
fication to account for that. At present, however, the data type con-
sists simply of six distinct members, identified in the first WHERE
statement as the CONSTANT device types cpu, disk, memory, server,
defined, and defined-cpu, the device types listed in Figure 2. These
six device types are characterized in relation to each other in the
axioms in Figure 3, the first of which says that any device type at
all has to be one of the six, and the rest of which say that the six
are, in fact, distinct. Any further properties that device types must
be said to have can be introduced, as necessary, as further primitive
operations with axioms to constrain them.

An HOS specification of data type FILE CATALOG is given in Figure
4 as a further example. The two essential components of a file cata-
log in POD are file names and record sizes, and these become primitive
operations on the data type in HOS. The first axiom says that the
length of each file name must be less than or equal to the value of
some parameter to be specified by the user, perhaps in a formal charac-
terization of a data type for file names. Length in Figure 4 is a
primitive operation on strings available in the HOS library, but it
could also be specified more abstractly as a primitive operation on a
data type FILE NAME. The other two axioms specify that record sizes
must fall within some range, saying that they must be greater than O
and less than some user-supplied parameter value. These are sample

axioms only. Further constraints are likely to be necesssary, espe-
cially in connection with file names.

hih SN St

Bl PSRN

- T WS TTRT A TG TR W T e T
= AT LW w W W T T NT T s J

DATA TYPE: FILE CATALOG;
PRIMITIVE OPERATIONS:

string(of characters) = File-name(natural,file catalog);
natural = Record-size(natural,file catalog);

AXIOMS:
WHERE fc IS A FILE CATALOG;
WHERE nat IS A NATURAL;
WHERE O [S A CONSTANT NATURAL;
<(Length(File-name(nat,fc)),m) = True;
<(0,Record-size(nat,fc)) = True;

<(Record-size(nat,fc),n) = True;

END FILE CATALOG;

Fiqure 4: Data Type FILE CATALOG in HOS

13

PPN G Y G ST G- urare S

L Al S B s

b
b
-
g
b~
v
P

.
b
b

e

Like devices and file catalogs, which comprise components of a
configuration specification in PQD, workloads are also charactarizable
most naturally in HOS as data types, as shown in Figure 5, Like devi-
ces, workloads have both attributes, shown in Figure 6, and types,
which are themselves characterizable as a data type, as shown in
Figure 7. Again, the attributes become primitive operations in HQS,
with a further primitive operation that assigns each workload its type.

The components of POD module specifications, however, map into
HOS not as data types, but as control maps, i.e., structured func-
tions. The loop in Figure 8, for example, maps into the function tree
in Figure 9, in which the data, subfunctions, and structural relations
that are implicit in Figure 8 are indicated explicitly. Notice that
the structure in Figure 9 Loop-Number-of-[mages-Times, is not a primi-
tive but a user defined control structure. A formal specification of
this structure must be provided to fully explicate the intended beha-
vior. In a similar manner other module specificatons (i.e. user
templates) can be fully specified in terms of the true underlying
semantics or meaning of these usage oriented templates. All of the
POD modules must have one of these associated forma! definitions asso-
ciated with it if it is to be considered to be formaily defined in the
HOS sense of an AXES specification. Following is a walk through of
the POD module as we understand it (see Figure 10).

The overall effect of the specification is to define a function,
in the mathematical sense, called here Loop-Number-of-Images-Times.
Choice of names is theoretically arbitrary in HOS, but good style
involves making choices that enhance clarity and understanding. This
function inputs values of a variable alpha and, perhaps, other input,
such as the state of the relevant device. The way the function gets
carried out is indicated by the three levels of decomposition into
sybfunctions. First, a counter, n, is initialized to 0 and then fed,
along with alpha and input, into the function that comprises the main

14

E et s 4

b I £ SNSRI

Ty yr A

DATA TYPE: WORKLOAD;

PRIMITIVE OPERATIONS:

workload type = Workload-type(workload);
natural = Mpl(workload);
list(of(job,percent)) = Job-stream(workload);

natural = Arrival-rate(workload)
natural = Think-time(workload);
natural = Users(workload);
Natural = Priority(workload);

AXIOMS:

WHERE wl IS A WORKLOAD;
WHERE 14 IS A CONSTANT NATURAL;

Equal (Workload-type(wl),periodic)

= Equal(Mpl(wi),REJECT);
Equal(Workload-type(wl),interactive)

= Equal(Job-stream(wl) ,REJECT);
Equal(Workload-type(wl),interactive)

= Equal(Arrival-rate(we),REJECT);
Equal(Workload-type(wl),cycle)

= Equal(Arrival-rate(wl),REJECT);
Not(Equal(Workload-type(wl),interactive))

= Equal(Think-time(wl),RREJECT);
Not(Equal (Workload-type(wl),interactive))

= Equal(Users(wl),REJECT);
<(0,Priority(wl)) = True;
{(Priority(wl),14) = True;

END WORKLOAD;

Figure 5: Data type WORKLOAD in HOS

15

PUEY

P U G VD " GRS ST

| WORKLOAD | REQUIRED . DEFAULT | OPTIONAL . DEFAULT)
‘ TYPE ATTRIBUTES . UNITS | ATTRIBUTES . VALUES
- ——— i : b '
1 | ovoE | PL . J0BS | PRIORITY . LOWEST |
' J0B_STREAM . - . PRIORITY(O)
L. 1 - 1 |
| | JOB_STREAM ‘ ; . |
and . DOMAIN ID . -
| PERIODIC | ARRIVAL_RATE . JOBS/HR | . LOWEST |
or . PRIORITY . PRIORITY(0)
| | SOURCES . - | . |
3 ! JOB_STREAM : o . |
TRANSACTION | and . | PRIORITY LOKEST |
| ' ARRIVAL_RATE . JOBS/HR | . PRIORITY(O)|
or . .
SOURCES . - ' DOMAIN_ID . - l
| | MPL . J08S :
I | — l) |
5 | INTERACTIVE | MPL . Joss | . |
: THINK TIME . SEC PRIORITY . LOWEST
| | USERS . - | . PRIORITY(O) |

"J‘I' T, .

Figure 6: Workload Attributes in POD (from [1])

K& 35

-

4 AR

16

v

L ' B N P st

DATA TYPE: WORKLOAD TYPE;

PRIMITIVE OPERATIONS:

AXIOMS:

WHERE cycle, periodic, transaction,
interactive ARE CONSTANT WORKLOAD TYPES;
WHERE wt IS A WORKLOAD TYPE;

v

Or(Equal(wt,cycle),Equal(wt,periodic),
Equal(wt,transaction),Equal (wt,interactive)) = True;
Equal(cycle,periodic) = False;

Equal(cycle,transaction) = False;
Equal(cycle,interactive) = False;
Equal(periodic,transaction) = False;
Equal(periodic,transaction) = False;
Equal(transaction,interactive) = False;

END WORKLOAD TYPE;

S oo ien & SR Jaf it i g
TE o

2

[Figure 7: Data type WORKLOAD TYPE in HOS
F

A

;“.

b 17

i

LY AP TLUE S W W 4 o a e Al e & a il oa). ISP T SN NP WU PN Gy TP WP Y o

N . _ . . itk et sty n odu_anllh aebl PN SR ST SIL RN P RS
e e, e e YT W Y, Y W WY w ¥ v Wy .. -, . -

LOOP MUMBER OF IMAGES TIMES
CALL TASK 2(ALPHA)

END LOOP

Figure 8: A POD LOOP Specification (from [1])

S g

18

AR S b KRN

T

s Bethnallh '

ey rl".'.'.'.‘. i

v

PR

Figure 9:

DGR WAL W N S W A WA S .

PP T

alpha', input' =

alpha*, input* =

A Use of the Defined Structure LOOP-NUMBER-OF-IMAGES-TIMES

A_USE(alpha,input)

.......

LOOP-NUMBER-OF - IMAGES~TIMES

TASK2(alpha,input)

formally defined in Figure (10)

19

A et e elth e CAMRaMEA . AmAub ek PL

ah oma a o ad

:f subfunction, called here Loop-task2. Kg is a universal primitive
operation of HOS, a function that generates 0 as its output value no
matter what its inputs are. Such a constant function K; is available

) e
. R

for use for any member i of any available data type. Second, a func-
tion called hera Do-task updates alpha, the other input, and n and
then determinas whether to loop or stop, depending on the current
value of n, now called n', Changing a variable's value requires also
changing the variable itself in HQS, even if only by adding a prime or
asterisk, in order to maintain traceability of data and the possibi-
lity of static checking. Third, the counter gets updated and Task 2
actually gets carried out, after which, based on the counter's value,
either Loop-task2 gets recalled for that value and the updated alpha
and input or those values get retained as the final values. Clone; is

P.

;
o
&
»
i
E. -
3

another operation of HOS, one that produces one copy of its input,
whatever that is, as its output, i.e., makes possible a further
reference to its input.

The symbols CJ, J, I, and CO in Figure 9 indicate examples of HOS
control structures [2,3], i.e., relations between functions and their
subfunctions. CJ is the COJOIN structure, which indicates sequential
execution and shared inputs, I[f n were the only input to Loop-task 2,
then the CJ could be replaced with J, a purely sequential JOIN

construct, in which the output of one subfunction is the only input to
the other. Such a structure is involved, in fact, in the decom-
position of Loop-task 2, whose subfunctions share no inputs, the out-
put of one, namely, alpha*, input*, and n', being the only inputs to
the other. [, which decomposes Do-task2 is a parallel INCLUDE struc-
: ture, which partitions input and output lists and matches the sublists
f: to each subfunction with no overlap. A COINCLUDE structure is also

i available, related to INCLUDE much as COJOIN is related to JOIN, but
that structure is not needed for this example. CO is a COOR struc-
ture, indicating deterministic alternatives, which can also be used to

pti * I

—veTY
Al

'fr"l?{ e ".'..'..".

20

‘)
]

()
e

[54

T

| SR L . L

At e

........

Ml

o P o DN P PN

P S et v S Jhal PG MG S S et et it It S

explicate the POD TEST construct, as shown in Figure 11 for the
example in Figure 12. If Cloney (alpha*,input*) were replacad with
Identifyy 2 (alpha*, input*, n'), then this COOR could be replaced
with an OR structure, which requires each offspring to have exactly
the same inputs as the parent function. ldentify},...k for j <k

£ i, is another operation of HOS, the effect of which is to extract the
jth,... and kth members of a length-i input list. JOIN, OR, and
INCLUDE comprise the three primitive control structures of HOS, out of
which all other allowable structures can be defined. The lower-most
occurrence of Loop-task2 re-invokes the named function for the indi-
cated updated inputs, thereby creating the loop effect that is named,
but not otherwise represented, in the POD notation. If this lower
occurrence were replaced with some other function name not also
occurring elsewhere in the tree, then this recursive effect would
disappear.

It should be stressed that Figure 10 gives an explicit account of
the semantics of the syntax in Figure 9. Figure 8 might seem easier
to use, and indeed it is easier to use for one who is famfliar with
it, but the fact that so much of its meaning is only implicit makes it
subject to misinterpretation, incorrect usage, side effects, and so
on. The description in Figure 9, in contrast, is guaranteed to be
logically correct, because it has a clearly identifiable meaning in
terms of its formal definition in Figure 10 following the HOS rules,
which eliminate interface errors and ensure correct modularization

(21.

3.3 A RESOURCE ALLOCATION TOOL (RAT) TO GENERATE POD

[f a system is described completely in HOS to begin with, POD
code can be generated automatically from it with a RAT, as can code in
any language for which a RAT is available [7), We will use the

21

"

A M AR
Taats
e
o .

i

MEAAGL S 2 e &

vy

0
'

A A A, . i IO I S e A e e A e S e S R R

(aldna’ ,1mput™) = gon-tiumber-nf.images-Timas iinra.oon,e

(4idNA° aput ' s _300-Task2,1'sna, 1noyn

calonav . imoutv s J0-T:5/273 3m3,t704,0)

J3lbna’ 1nput’) = Stop-Loop-or-go-an(aipna*,1nput®,n’)

o= Succin)

n' = number n' # nunver
numper f - c0 of images
1nayes {alpha*,input*) = Task2(alpha,1nput)

(alpna', input') = Clonel(a|pha'.input')(a!pha'. input’) = Loop-task2(alpna®,input*,n')

Figure 10: Formal Specification of Figure 2

22

TV VP TEIN LA G S WY W - - H Lo o e .

il it M et Bt et ngth sl nd it it Andb Sl S S

output = Test-current-mode(input,current mode)

—— current mode
= attack

current node
= standby

attack

output = Offense(input) output = Defense(input) output = Standby(input)

Figure 11: HOS Control Map for a POD CASE Statement

23

''''''''

TGP I WU DU SN W SIS

- w TR W, W Y eI Y IWT, WO, W W W, w W e, ww = v
Eial Bt It et sdtiod Adbibg fatind Al TV T e

PR

TEST CURRENT_MODE

CASE 'STANDBY'
CALL STANDBY

CASE 'UNDER ATTACK'
CALL DEFENSE

CASE 'ATTACK'
CALL OFFENSE
ENDTEST

Figure 12: The POD construct whose control map appears in

P/ PP N T Ty

in Figure 10 (from [1])

24

PR T T YN T S V) P DRy« Y P LIPS el el o it

RS DR
e RS S
L L - . .

v, Rd Ay Au 2 ."'l " R

AR

e

w——v Ll e Sgr ACK Sl Al Smi ARl et A PP

example in the appendix (which just so happens to be a specific POD
specification) to show what it would mean t3 spacify % in HOS func-
tional notation and then show the connection between that specifica-
tion and a POD RAT.

The example in the Appendix consists of specific values being
given to various kinds of items: a file catalog, devices, modules,
and so on; and each such item can be defined as a CONSTANT in HOS with
a WHERE statement. An HOS specification of the file catalog in the
example is given in Figure 13. For each natural number, the
corresponding file name and record size are specified, exactly
reflecting the information contained in the POD description, byt
making more explicit the fact that each of these depends both on the
file catalog itself and on a choice of natural numbers.

The first device specification in the example can be translated
into HOS as in Figure 14, which names the particular device and
provides it with a type and with a value for the attribute that is
required for it by Figures 1 and 2. The other devices are all disks
and have the same values for their Rate and Seek attributes, so they
can be specified either individually, as in Figure 15, or, more
succinctly, by making use of an HOS version of the POD CLASS construct,
as in Figure 16. A specific workload can be specified in terms of a
defined structure in exactly the same way as shown in Figures 9 and
10, for the one in Figure 17.

Specific modules in POD can be expressed in HOS as control maps.
The module Retrieve-record in the example, for instance, becomes the
function tree in Figure 18, where the "..." is included only for
perspicuity. As a further example, the LOOP module DISPLAY can be
written in HOS as the control map in Figure 19, which has no TEST
construct, as Figure 18 does, but has a recursive call to one its
higher higher-level functions. Complete specifications of these

25

WHERE file catalog IS A CONSTANT FILE CATALOG;
WHERE F1,F2,F3,F4,L,A,D,SWD,SUCC ARE STRINGS OF CHARACTERS;
WHERE 1,2,3,4,5,6,7,8,9,100,50,36,200,450 ARE CONSTANT NATURALS;

File-name(l,file catalog) = Fl;
File-name(2,file catalog) = F2;
File-name(3,file catalog) = F3;
File-name{4,file catalog) = F4,

File-name(5,file catalog) = L;
-f File-name(6,file catalog) = A;.
i‘ File-name(7,file catalog) = D;
File-name(8,file catalog) = SWD;
File-name(9,file catalog) = SWC;
Record-size(l,file catalog) = 100;
Record-size(2,file catalog) = 100;
Record-size(3,file catalog) = 100;
Record-size(4,file catalog) = 100;
Record-size(5,file catalog) = 50;
Record-size(6,file catalog) = 36;
Record-size(7,file catalog) = 200;
Record-size(8,file catalog) = 450;
Record-size(9,file catalog) = 450;

END file catalog;

Figure 13: HOS Specification of a Specific File Catalog

AR, 0 gaaror o
PR B -CIE S N

26

.r‘l'Y.'
e

Y

AR

RN SN SRV S T PP S

———— = T -
——— T T T T T

WHERE cpu IS A DEVICE TYPE;

WHERE 1,2 IS A CONSTANT RATIONAL;

WHERE central processor IS A CONSTANT DEVICE;
Device-type (central processor) = cpu;
Rate (central processor) = 1.2;

END central processor;

Figure 14: HOS Specification of a Specific Device

27

WHERE 20,30 ARE CONSTANT NATURALS;
WHERE disk IS A DEVICE TYPE;
WHERE disk, IS A CONSTANT DEVICE;
Device-type (disky) = disk;
Rate (disky) = 100;
Seek (disky) = 20;
Revolution-time (disky) = 30
Device-map (disky) = (F1,SWD);
END disk;

WHERE disky IS A CONSTANT DEVICE;
Device-type (diskz) = disk;
Rate (disk,) = 100;
Seek (disk,) = 20;
Revolution-time (diskp) = 30;
Device-map (diskz) = (F2,SWC);
END disk2;

WHERE diskg 1S A CONSTANT DEVICE;
Device-type (diskj) = disk;
Rate (disk3) = 100;
Seek (disky) = 20;
Revolution-time (disky) = 30;
Device-map (disky) = (F3,L,A);
END disk3

p - WHERE diskq IS A CONSTANT DEVICE;

o Device-type (disk,) = disk;

o Rate (disks) = 100;

Efff Seek (diskg) = 20;

T!{‘ Revolution-time(disky) = 30,

- Device-map (diskyq) = (F4,D);

{;;1 END disky;

"

P —

- Figure 13: HOS Specification of Some Specific Disks
u.*:,t 28

o

|, B 'L) " . L P

{aml

»
"t
]

TR

,'Iv'_r
BEPIR ¥ DU

a a'aaal s a'e a i P P

WHERE disks IS A CONSTANT CLASS;
Rate (disks) = 100;
Seek (disks) = 20;
Revolution-time (disks) = 30;

END disks;

WHERE disk;, diskp, diskj, diskgq ARE CONSTANT DEVICES;

Device-type (diskl) = disk;
Device-type (disk,) = disk;
Device-type (diskj) = disk;
Device-type (disk4) a disk;
Class (diskl) = disks;
Class (diskz) = disks;
Class (diskq) = disks;

Class (disky) = disks;

Device-map (disk;) = (F1,SWD);
Device-map (diskz) = (F2,SWC);
Device-map (diskg) = (F3 L,A);
Device-map (disky) = (F4,D);

END diskl, diskz, disky, disky;

Figure 16: HOS Specification of the CLASS of Disks in Figure 14

29

— - - g —a e v — =
- . - i D] v i et d i A
P T - ; e oy v

WHERE 5 and 10,000 ARE CONSTANT NATURALS;
WHERE 70% and 30% ARE CONSTANT PERCENTS;
WHERE data base usay=2 [S A CONSTANT WORKLOAD;

Workload-type (data base usage) = transaction;
Mpl (Data base usage) = 5;

Arrival-rate (data base usage) = 10,000;
Job-stream (data base usage) =

({Retrieve-record, 70%),
(Update-record, 30%)),

r'| END data base usage;
1

e

s

; Figure 17: HOS Specification of a Specific Workload
-

¢

3

¢ 10

;..

L N

——

) . P o .]
| PRI et o detdbndl O UL PGP U VO o

DAL
. .

L PR R P

modules might require more knowledge about the details of the data
structures involved and perhaps other information as well that is only
implicit in the POD example. In contrast to the POD module specifica-
tion, an AXES defined structure definition makes explicit data, func-
tions, control structures, and so on that are implicit in the POD
specification's meaning, but not expressed in the notation. An AXES
specification has two components in a usar defined structure. The
first is a simple use oriented syntax (as in Figure 9) stating the
missing variable information needs of the full definition (as in
Figure 10). The first is comparable to the POD module specification.
The second is a full system definition which is hidden to simplify the
actual usage of that definition. This second component, the defini-
tion of the meaning, must be available for a user to really understand
what these POD module specifications really do.

In general, performance information can be derived from a control
map in conjunction with information about the hardware and resident
software (and so on) on which it is to be implemented, {67 in accor-
dance with the general operation template

performance information = POD-RAT(control map, hardware, resident software,...).
(expressed in PQD notation) (all expressed in HOS/AXES)

For the control map in Figure 18, for example, the INCLUDE structure
in the lower right indicates the possibility of a parallel implemen-
tation. If the hardware and resident software permit this possibility
to be realized, then the structure can be implemented in that way;
otherwise, the two functions Access-record and Succ can be implemented
in sequence, and in either order, because the possibility of
parallelism implies non-dependence. In either case, performance time,
say, of these two primitive operations can be determined from the
hardware/software input and that of Do-access-record determined from
that and the choice of implementation of the structure. Similarly, the

31

et a4 o PPy PRSP N

v
<
N
_ ™
) L
L
.
| ALNPO} J14133dS v Jo uoLIedL}193ds SO g dunbi4
3
]
.
.
:
(-00s 3 mid (o0 ©_10%323018 {P I8 [PRIS LTI i.. Ee e [P T RUTIN 4
foe0 veud 1reowa Fagrees apgg)iepiun LTI TR IITY) T Foerey apigphineway ° *r At UL L LT P T RETILENETTE
P
3 . A
-
' (.anssainag (#1909 -4
2 o Seer C bogoae s agagl g e [RIRRNIL L IRALE AL IR 1] (eapusagyppsnias sy s-?::c) -
P -
[A * E
b ~ \\ eoe
s LAV P 4
p \
Cased ey . wer I b 4
e e (00 ot pragnds fLensear0ud (*s3u) (a0l qeaan t 10353000 geaquad 24 pYa1uY [T VLN T L)
3 e :..“ vy P g s agat) T Rageye 3g0)2y sy f- T BA1010 BIUIY C beprme pag i g tia Y “epeey 3tey)”“"wﬂa "".:-. SIS - - soynies #18) // 4
/ . D
4 ~— B 1
p) -] ’
—— TR) 24 15amhas apyy o - 15anhar agsy 24+ 3tambes 1y J
b T o~
/ 4
4 4
b
. Lo e
(s g agm e, [ooenomnt roua s Tageies pig)

(asabra 2903, 10833004 (013003 Boperrr apgy)3sanhas.agyy-aemp - {omtsamed (vajuay’ toge1er 3449)

[o20558008 goagear _Laye19 2)q) ips0120 2asi0ya L YUY S ageg)

/ /

/ﬁ.,’

Entsamed pooines) ™y . ogoin [3%avhas 30)% aans2 08 {Ra10a2° LOIRIPI SI1LIDRIBE 2031 003 - (4 105129008 4@ sIwa +’ HngOIeY ayt))
<

/

(1rambar a91)° tmrasnid 10 qur tajegey ILIPIIOm-panyar I ayay -

{36080, j0ssan a4 021N bngr1ed)

e BB

(U RNTNTH Y NP TTH R

M) o - ChOpeIRD i) Paoaa ssay

tanssazoud e Chogeges ULy paodan

{doo) IATsUN338 31415348 v 30 NOTAYD13TDadS SOH : e

s {rossraad peayuag *L hageyrn aqey)

{.n

FRULASIRU N T X TR
thoperes apey)

1 10%0-csa e oo §

ARRERLEIL B (TR LTS 5 TINT (P

(v20s50000d (Pa1uad ¢ Ghogeyer RITEE)

3yno1l 4

(. sossannad yeaqnan S bgRIey Gpey) taung)

33

= (o 10583000 [LR LG R TITY) T IS T

7 (vt0ss200ad peayu LTI LR YNS)

! U Joreied aqy) (U °,205832040 1PaTIAD ¢ bojelrd ary) _5-2...5..:..mm
~ ’ -
~ Ve
P T~ ~ \
/I \
. —~ d
. o r
a T
b ///
R . O, I . =
1 {10ssinad Jeauad hOpeIeY apy) - u (v "anssa300i feagund thoterer agay) ¢ ..,Suw..-um...”.uo.?\ﬂ.,.owmu?:_ 1203427 *hotered agy)
b ~
ﬁ T
f /
/

(RIS RN [LAVIIESY .Pr..:. - ghesn

(ossaad peauy Chageyen P0E) apnpom-

(+0SS300.0G (€0142) “hogeley agy) Aeqdsi

~ ()

11

:q._:a_:,u (Mesn ¢ L a0q5a0000 §P.4q0AD ‘eboiryen ayy)

e a2k

(40852040 1P.YJUDD * ,bojryen aye1)

-~ - e ~ '

. . ; J
ha'adada ‘a alataia Xy

o S,

v e .
'
‘1’11

-
.
a2

.
e
L -
g-.
Lo~
k.

e . e

COOR structure on the lower left tells us that only one of the sub-
functions is ever run on a particular performance pass and thus that
only one processor need ever be made available for executing the
structure as a whole, i.e., the compound operation Stop_or_go_on.

Once everything involved is expressed clearly in HOS/AXES--i.e.,
system specification, hardware, resident software, and so on--, all of
the relevant information concerning performance time, efficiency,
etc., can be readily determined by a RAT and expressed in PQD for-
malism for processing as usual by the PQD tool.

Rather than writing systems directly in POD, one can write them
instead in HOS and then generate the PQD code automatically. The
advantage of this way of doing things is that the same HOS specifica-
tions can also be input to other RATS, such as those for FORTRAN,
PASCAL, or other programming languages. Once a single HOS specifica-
tion is completed, any number of other versions of it can be automati-
cally generated, for any language for which a RAT has been built,
Furthermore, the POD tool can be used to evaluate which RAT should
be used to implement a particular system, since RATs themselves can be
taken as inputs to the POD-RAT function. A system that involves a lot
of concurrency, for example, should be RATted into an implementation
language that best supports that facility, whereas one that has none
should be RATted into a lanquage that does not, in order to optimize
both resource usage and performance characteristics. The use of a PQD
RAT in making these decisions would optimize those decisions, thereby
enhancing system performance [6,7].

3.4 RECOMMENDATIONS FOR FUTURE WORK

The single most important task that should be undertaken as a
further development of the HOS-POD interface is the construction of a
POD RAT, Such a RAT would make possible the automatic evaluation of
systems expressed in HOS/AXES in order to determine their optimal

34

AP Y . & "

implementation environment by generating PQD descriptions to be input
to the POD tool. Writing systems in HOS would make further coding
unnecessary, since a single specification could be used both for
evaluating and for implementing systems, as well as for choosing the
optimal implementation.

A second task would be developing a complete HOS specification of
the full POD semantics, both in order to make explicit the full power
of POD and also to enhance the building of a POD RAT. A POD RAT could
be built without such a full specification, but its existence would
simplify and enhance the building of a RAT. I[deally, this task would
be included as a major subtask in the beginning stages of a RAT deve-
Topment.

T T I

35

- {—"' e, _'_.. .-."l.

T ey

......

. ot
e SR

(1]

£2]

{31

(4]

€s]

(6]

(7]

v %
T ~ A

REFERENCES

J. P, Buzen, G. B. Giacone, D. E. Hall, P. S. Mager,

R. T. Williams, "Performance Oriented Design POD Reference
Manual," BGS Systems, Inc., P.0. Box 128, Lincoln, MA,
September, 1981.

M. Hamilton and S. Zeldin, "Higher Order Software, Inc. - A
Methocdology for Defining Software," IEEE Transactions on
Software Engineering SE-2 (1), 9-32, 1976.

M. Hamilton and S. Zeldin, “The Relationship Between Design and
Verification," The Journal of Systems and Software, Elsevier
North Holland, Inc. New York, New York, Volume 1, No. 1, 1979.

Higher Order Software, Inc., Cambridge, Massachusetts, “USE.IT
Reference Manual," Reference Manual No. 6, May 1982.

S. Cushing, "Algebraic Specification of Data Types in Higher
Order Software (HOS)," Proceedings Eleventh Hawaii International

Conference on System Sciences, Volume 1, University of Hawaii,

Honolulu, Hawaii, January 5 - 6, 1978.

M. Hamilton and S. Zeldin, "Properties of User Requirements"”,
Formal Models and Practical Tools for Information Systems
vesign; edited by Hans-Jochjen Schneider, North Holland
Publishing Co., April 1979.

M. Hamiiton and S. Zeldin, "A Functional Approach To The Life
Cycle Model: Towards a Development Support System for DOT,"
(Part 1 of 2 Parts), prepared for SDC Integrated Services, Inc.
McLean, Virginia, August 1981.

37

-
r.
J

AAANANMLIAAY P ar i dare i e

- r——
| JENENNN

FEVEPR VLRSS

D NSTRATIN D _FPUNCTIONALITY

(rrom [1])

et A e 2 L3P . P R T S

TR VW

g ﬂ-v——-—v——w;-—_vv_—*l. T

8 P

e DANMNIOC § a';" RERE

Bt
N

APPENDI X A: DEMOIISTRATING POD FUNCTIONALITY

Background

This example involves the analysis of an idealized on-iine system Ior
information retrieval and urdating. Systems of thiz =ype are used within
the Navy for such purposes as maintaining informazion con the iccation ¢f
ships, the status of personnel, the avzilability of logistis suppor:
facilities, and so on.

We assume in this particular example that the information within ‘he
system is organized into four files: Fi, F2, r3, F4. An operator at a
terninal can, in a single transaction, either retrieve or change (update) a
record from one of these files. Thus, the system supports eight separate
transaction types:

R1 - Retrieve a record from file
R2 Retrieve a record from file F2
R3 Retrieve a record from file F3
R4 Retrieve a record from file F4
C1 Change (update) a record in file Fi
C2 Change (update) a record in file F2
C3 Change (update) a record in file F3
C4 . Change (update) a record in file F4

In transaction types R! -~ R4, the operator types in a record
identifier (a key), and the system retrieves :he appropriate record and
displays its contents on a screen. Thus, files F' - 74 function as indexed
files.

In order to process a transaction, it is necessary %0 swap the
appropriate processing routines inzo main memory, access one of the four
data files (F1 - F4), and also access a log file ‘L), 2n accounting file
(A) and a display file (D). The average number of accesses per transaction
to each of the files is given below:

. NS . e . M . N - . -
LIPS Ry W P I D Vg U YU YN TOA0 WA YD G W PO U W Yy W U VT PR D S S PN

- LA et Mtuh Bmase I hd v S w e e it
o - — v — r—r r———)
L R Fe ;2 Fd o A T SWD sSwC
» ..v ~ - . -
S a1 - SN S S S S N S S
— - - - .
"Q Re ¢ 2 v o ‘ 1 2 z !
0l 3 ¢ > 2 o vz oz o
- . ~ - - ~ . . -~ ~ .
o al &= v W - - b - -
“ - - -~ . - -~
b v’- < 3 ~ 2 ‘ - ey N
|4 -~ - . - -~
L ve Q el - - ! ! s 2 :
- - ~ - - . - -
3 v ~ - - ! : Z 2 !
o] < o] 2 2 1 1 2 z $

't

> VT2
'.‘s’:"v{' R
oo LA

]

[

- E /- -3
Jl.e acclesses/ cransaciior

Note that there are two swap files: the data swap file, SWD, 3né¢ the

%)
&,
t3
Ng)

code swap file, SWC. Upon initiation of 2 transaction both data (from

(9]

3
'_‘

[

and code (from SWC) are swapped in. Upon terminatiorn of a ‘ransaction

the data is swapped out (to SWT) since the code is pure. Thus each

¢ransaction accesses SWD twice and TWC once.

In the case of the "retrieve” <%transactions =% - R4, %he tWo accesses

%0 the data files (F! - F4) represent one access to the index and one

access to the data itself. Ir the case of “chang«" transactioms (C1 - C4&),

the system is designed so that a change must always follow a retrieve and
will always alter the record that has just been retrieved. Thus, the
access to the index is eliminated. However, it is necessary ian this case
20 carry out a second read access after the record nas been written tc
verify the fact that there were no =2rrors ia tne write cperation. The
value that is actually read from the disk after writing is displayed on the

screen as part of the "change” transaction.

Performance Data

Assume that the system being evaluated has four nigh speed disk
drives, each with a :ransfar rate of 100 bytes, msec, an sverage seek “ime
of 2C msec and a revolutian <ime of 30 msec. Sls2 surpose that the fille:

are mapped onto the disks as follows:

DISK 1: F1, SWD
DISK 2: F2, SWC
DISK 3: F3, L, A
DISK 4: F4, D

PPN R P ¥ PPN D A |

Lo

—— Ry, ... Y
4N

S Ama Amch At e stee ey T Sedt Aent-lath]
RaaliiN Al el .

Assume thet the following information is also xnown:

Transaction arrival rate = 10000 per hour
Retrieval percentage = T70%

(R1 - R4 all occur in equal proportions)
Change percentage = 30%

(C1 - C4 all occur in equal proportions)
Numbter of messzge regions = ©

Initial POD Specification

The facilities of POD will t. Jemornstrated ty addres:ing <ie following

questions:

1. Someone has suggested that it night be rossitle o imgrove
average data base transacticn response time Sy Taking -he index
portions of files F! - F!{ memory resident. Thiz would save one
disk access in transaction types R! - R4. In addition, by
eliminating the CPU overhead necessary to initiate the index
access (and carrying out other optimization steps while
modifying the code), assume it is possitle to reduce the average
CPU time required for the module accessing the index by 304.
Assume also that it is necessary to recduce number of message
regions by two in order to make the index portions of the files
memory resident. How will this suggestion affect overall
response time?

2. Assume that the load on the system is expected to grow to 14350
transactions per hour in the next year. What will the response
time be at that time for both the memory resident and the disk
resident options?

3. Assume that a faster CPU will be available when the 14350
transaction per hour load is reached. The faster C2U will
execute instructions in an average of 10% faster than the
current CPU. What will the response times be for each option if
the faster CPU is used?

The following is a sample POD System Zescription File <that :ontains
sufficient detail to address these issues. It should be noted that
liberties have been taken in selecting the CPU processing requirements of
the modules and the file organization characteristics. I general, such

data would have to be collected and supplied by the usw.r.

PR P WP PGS Wy W e)

i Aincl

:
3
o
’
i
‘
g

R g i e e e T P e T W N T I
e I R ol o ks Sath Lest aendi el Sl e DTS A R
ST AR |

GLOBAL.DECLARATION

. PARAMETER
i FILE_RSQUEST = 'Fi’ 25%
.rz' 25%
‘TR 28%
YRPLS:
Z¥D

ZND

CONFIGURATION.SPECIFICATICH

FILE CATALOG
NAME=F1, RECORD_SIIE=100
NAME=F2, RECORD SIZEs130
NAME=F3, RECORD SIZE=1CO
NAME=F4, RECORD SIZE=100
NAME=L, RECORD_SIZE=50
NAME=A, RECOED SIZE=36
RAME=D, RECORD SIZE=200
NAME=SWD, EECORD SIZE=450
UAME=SWC, RECORD_SIZE=450

END

DEVICE CENTRAL PROCESSOR TYPE = CPU
RATE = 1.2 &MIP
ERD

DEVICE DISK! 7TYPE = DISK
RATE = 100 &KBYTES/SEC
SEEK = 20 aMSEC
REVOLUTION TIME = 30 &MSZC
DEVICE MAF = F1, SWD

END

DEVICE DISK2 TYPE = DISK
RATE = 100 &KBYTES/SEC
SEEK = 20 &MSEC
REVOLUTION TIME = 30 &MSEC
DEVICE MAP = F2, SWC

END -

DEVICE DISK3 TYSE =« DISK
RATE = 100 &KBYTES/SEC
SEEK = 20 &MSEC

3 AEVOLUTION TIME = 30 SMSEC

g DEVICE MAF = F%, L. A

END -

» DEVICE DISK4 7Y% = DI3K

b RATE = 100 &K3YTES/SEC

1 SEZK = 20 8MSEC
REVOLUTION_TIME = 30 &MSEC

i mndiie ool v T

PO -

v

Biw g v
-

”'Elrf‘

'—I B e n A an o 2 4 ﬁ', Sy R I R
R AR K -1 A e A
- . AT S .

[T, v r.rrlf_v'r‘rv' et e
T "“ o» : -

SEVICE WP = 72, T
=D

aem
. -

WORKLUAZ.SPECIFICATIC
WCR¥OAD DATA BASE USagz Y
MPI, = -

3

€ o= TTANZACTICN
ARRIVAL RATE = 100CC i/ :R
JOB_STEZAM = IZTRIIVE RECORT ~if
UPDATE_RECORD 3¢5
3D
=ND

“CDULE.SPECIFICATIO:
ARETRIEVE A DATA BA:“ 3ECORD:
MODULE RETRIEVE RECORD
EST CENTRAL PROCESSCR USAST = Zli01 usl
CALL SVAE_LN
TEST PILE_REQUEST
CASE 'F1°
CALL ACCESS_INDEX{'F1!")
CALL ACCESS_RECURD{'F1')
CASE 'F2'
CALL ACCESS_INDEX('F2')
CALL ACCESS_RECORD('F2')
CASE 'F3'
CALL ACCESS_INDEX('¥3')
CALL ACCESS_RECORL{'F3':
CASE 'F4’
CALL ACCESS_INDEX('F4')
CALL ACCESS_RECORD('F4')
ENDTEST
CALL DISPLAY
CALL CLEANUP
CALL SWAP_OUT
END

4UPDATE A DATA BASE RECORD:
YODULE UPDATE RECORD
EST CENTRAL PROCESSOR USAGE = 50400 IVS
CALL SWAP_IN
TEST FILE_REQUEST
CASE 'T1’
CALL WRITE RECORD('71'}
CALL VERIFY WRITE('Ft')
CASE 'F2'
CALL WRITE RECCRD('72")
CALL VERIFY WRITE{'F2')
CASE 'T3°
CALL WRITE_RECORD('
CALL VERIFY WRITE("
CASE 'F4’
CALL WRITE_RECCRD(74"}

3°)

-
S
N
:! \
N

L A SRR N RPN U S WY WP ST W S WD DU WU Wi S S SOU- S S ———

PR VP

P m . T AT AT e T T T T

4

T LEE B A SN
PN P T
. 4 R T IR

A 4 Y‘WIY“ '
Iy

v

weT
Pt
.
[NRY

- - — e, W, v W
- —— =T —y —w W L T

Ty T T e T T o e o oo, e 0

CALL VERIFY WRITE{'F4',
ENDTEST
CALL DISPLAY
SALL CLEANUP
TALL SWAR_CUT

END

&ACCESS A RECCAZ FRCM THEI SPECIFIZC FILE:
MODULE ACCIZSS_RECORI(TFILE!
EST CENTRAL PRCCZSSCR USAGE = 1220C IHE

- -
-ZST FILE

CASE '™

EST 1 USAGE = 1 READ
CASE 'F2'

gsT S2 USAGE = 1 3EAL
CASE 'F3'

EST F3 USAGE = 1 READ
CASE 'F4°

EST F4 USAGE = 1 READ
CASE 'D°

EST D USAGCE = 1 READ

ENDTEST

END

&ACCESS THE INDEX ON THE SPECIFIED FILE:
MODULE ACCESS_INDEX(FILE)
EST CENTRAL PROCESSOR USAGE = 90480 INS
TEST FILE

CASE 'Ft'

EST F1 USAGE = 1 READ
CASE ‘F2'

EST P2 USAGE = 1 READ
CASE 'F3'

EST F3 USAGE = 1 READ
CASE 'F4'

EST T4 USAGE = 1 REAT

ENDTEST

END

&DISPLAY THE RETRIZVED RECORD:
MODULE DISPLAY
SST CENTRAL PROCESSOR USAGE = 16800 INS
LOOP 2 TIMES)
CALL ACCESS RECORD('D')
ENDLOOP -

T

s ®ar

4INFORM THEZ LOG ANT ACCOUNTING FILI. CF THE TRANSACTLON 4

MOTZULE CLZARUP

- o ATRRIATY W - ~ e -~ - v - - - ae
28T CEZNTRAL PROCESSOR USAGE = =600 INS
e v crgm e emey o - Y
CAve ARITE ¢ ARTUCA
g
Ve nemnTn e oty
Gl B0 Lol g -

PO e A A Pm Bahadas e i A e

L EALE X LT IN
Wewr!'easas.

PR

-l a e ad

D
{ SWRITE A SECORD T0 THE J0WI T#inr ¥ .7
MCDULE WRLTE RECCRD(FILF
ZET CENTRAL DBCCISSCI USAnS = 21 00 ol
TIST FILE
‘ CASE 'F1
X TST T USAGE = ¢ Whno %
CASE '72°
EST T2 USAGE = ¢ LaITS
1]

CASE '®3
EST 3 USAGE = 1 wrITZ

CASE 'Te
IST T4 USAGE = 1 JEITC
calE A’
EST A USAGE = * WRITC
CASE 'V’
IST L USAGE = @ WRITZ
: ZNDTEST
L) IND
A 4VERIFY THAT THE CHANGE TC THE FILE I3 TIRRECT:
~ MODULE VERIFY WRITE(FILZ)
- EST CENTRAL_PROCESSOR USAGE = 23800 IN3
» TEST PFILE
CASE 'Ft'
EST F1 USAGE = 1 READ
CASE 'F2'
EST 2 USAGE = 1 READ
CASE 'F3’
© BST 3 USAGE = 1 READ
CASE 'F4'
: EST F4 USAGE = 1 READ
ENDTEST
ZND

4SWAP IN THE REQUIRED DATA AND CODE
MODULE SWAP_IN
EST CENTRAL_PROCESSOR USAGE = 27900 IX3
IST SWD USAGE = ! READ
EST SWC USAGE = 1 READ
END

4SWAP QUT THE DATA
MODULE SWAP_OUT
EST CENTRAL PRCCESSOR USAGE = 2790(INS
EST SWD USAGE = ! #RITE
ZND

ZND

—— . Sianans o nChernraRatiNU RS S 4 SR :
~3

rv-rr‘rr-.'. a s

o aunet Jandh Shate Saa AR Shalh SRR T SR

The POD System Description File represents the basic specification of
<he sys:em wi*h the disk resident indices. Specifical:y, the Global
Declaration Section defines FILE REQUEST to account for the variability in
an arriving transaction's raquest to one of the files Ft - F4. The
Configuration Specification Section describes the organization of all of
the files, the mapping of the files to the disis, and the characteristics
of the hardware. The Workload Specification Jection de’ines a single
workload, DATA BASE USAGE, which has a load of 10,000 reguests/hour of
which 70% invoke module RETRIZVE RECORD and 30% invoke module
UPDATE_RECORD. This represents transactions R!-Rd4 and 7!1-C4 respectively.
The MPL parameter constrains the number of transactions the system
processes in parallel. The Module Specification Section rapresents the
system software. The function of each module in deseribed through the

-

comments in the System Description File.
Note, the above System Description Ffile portrays trhe syztem with the
disk resident index oziion only. In order to portiray the system with the
memory resident indices, two chahges to the System Description File are
required. TFirst the workload specifications must indicate the reduced
number of message regions. Second, the ACCESS_INDEX module need not

reference files F1-F4 for the indices and incurs a savings of 90% in its

CPU processing requirement. These changes are depicted below.

%odified Workload Specification Section:

WORKLOAD.SPECIFICATION
WORKLOAD DATA_BASE USAGE TYPE = TRANSACTION
MPL = 3
ARRIVAL RATZ = 10000 &/HR
JOB_STREAK = RETEIEVE RECORD 70%
JPDATE RECORD 30%

a0

| O]
B
9

Y LIRS Jhah Rt BTNt Sl AU SRS P bl

Modified ACCESS_INDEX Mogule:

m MODULZE ACCESS_INDEX
e EST CENTRAL_PROCESSCR USAGE = 2048 IS

ZND

;
Y-
ro.
'

1
N
LY

oo
Lo
L

K

t o1

Also, CALLs to the module ACCESS_INDEX wers cha:ged to remove the

passed parameter since the parameter is no longer reguired.

Note, in order to distinguish between these two System lescription
Files in the remainder of this discussion, we refer to the file
representing the disk resident option and the memory resident option by
file numbers 46 and 47 respectively. We are now in a pesition to iavoke

the interactive facilities of POD to investigate “he issues cited above.

The interactive session first investigates the performance of the system
with the disk resident index option and next with the memory resident index

option. i

7 v
) -

. 'l " .l . [

; T

. . S
[. . LN

Vi vy -' .f i 4 "i ,f"‘—r‘,“"'
. s LA -

!

L st el A el
L4

P —
Ti RIAL Jdc
re INPUT FILn CCHMPLETED

S ———————

e

##® PRINCIPAL RESULTS ¥+

: WCRKLOAD RESPCLSE TIME RESITENCY TIMZ THRCUGHPUT % CTU
P. ! DATA_BASE USAJZ .18 SEC (.97 SiC 16000. PER HOUR €4.6%
TTAL CPU UTILIZATION = 64.5%

SET DATA_BASE_USAGE ARRIVAL_RATE = 1435C

S0

&% PRINCIPAL RESULTS ***

WCEKLOAD REZSPONSE TIME RESIDELCY TINME THRCUGHPLT = CHU

-

! TATA_BASE_USAGE 26.C4

(]

EC 1.23 8¢ 14350. PZR HOUR 22.7%
TOTAL CPU UTILIZATION = 92.7%

et e .
SET CENTRAL_PROCESSOR RATE = GLZ * .
33

- ### RINCIPAL RESULTS ***
{: s ORKLOAD IL3TCLSE TIML RESIDENCY I SULOUGHENT 2 CPU
e

1 DATA BLOE USilE SLl 0o Twe Sl T Ve, BPET 0T SL.7%
i “aTaL ~ILIZATISN = S4.7%
N
o
-
& R
& 1
S
.. ‘.
S
@
E -
['

o . L
o P . o o o Ban - dendunsensteseinduntbestduntdinmiamndanndumedy

S S— - S S — =

-y P el N
- e
[]
b
.
.

|

TEmam
3 Sme Wi
N TVIBWICWM S e m @ Neemy mmmem
- by 8)
~ “dtt v s et VWi T e eae

#e* PRINCIPAL RTSULTS

T
v

WUINICAD RETPCNST TINE IISITrne mmes TUI o nanm T oteu
T 2ATa_3Acz_usacz 1.01 3% ©efT JIZZ 0 4I0lT. IR OHOUR 34 .49
SUUAL TEUOUTILIZATION = 5y, c2
SET DATA_BAUE_USACE ARRIVAL RaTr = 14TE
?_——_'—.—
GO
&% PRINCIPAL RESULTS ##+
“ORKLOAD RESPONSE TIME RESIDENCY Trus TEIIUGHEUT 7 By
1 DATA_BASE_USAGE 20.09 322 Q.74 IO IR0, PER O40UR e .eg
TOTAL CPUOUTILIZATION ' 73,53
Lyt r—— e o]
SET CENTRAL PROCESSOR RATE = QLD * 1.1
GC
%% PRINCIPAL RESULTS ##+
#CEXLOAD RESPONSE TIME EESIDENCY -TuE TERCUGHPR -
! DATA_BASE USAGE .14 SZC Q.70 EE7 273", 3% ouAUR A%
TUTAL DPU OUTILICATYIIN &Sm0
|)
n
. T T

The data produced from this POL interactive s2ssion is summarized in Figure

:,‘- A-t.
:']' i\‘lLf’AhC
LOAD RESPONSE TIME cpPy
ENVIRONMENT (per hr) (per sec) UTILIZATION
DISK RESIDENT INDEXES 10,000 1.16 54.6
{EMORY RESIDENT INDEXES 10,000 . 1.01 51.4
DISK RESIDENT INDEXES 14,350 2h.04 9z.7
MEMORY RESIDENT INDEXES 14,350 20.09 73.8
JISK RESIDENT INDEXES
SLUS CPU UPGRADE 14,359 3.26 84.3
MEMORY RESIDENT INDEXES s .
PLUS CPU UPGRADE 14,350 3.14 7.1
3
&
F Figure A-': Sumnary of hesul s

The results show:

BB A and
. .

e SAL

&

0 The system using disk recident indexes, while producing
acceptable levels of response currently, will bde incapable of

3 rrocessing the expected future load with acceptadbl: response

N delay.

P".-

E 0 Clight reducticn in respcnse tire is achieved by using memory

Y resident indexes over the disk resident indexes in the current

% time {rame. With the heavier wcrxload anticipated irn the future
- vime {rame, the reverse can be exrectei.

L

{: ¢ In thz future “ime Irume raspinse time will Dpe unacceptable

t. anless tne faster JCPU Lz ottuined., regardi-cs of tne inuex option
& selz2cted N
b

]

»
]

12

L o 2

