
". POD-HOS INTERFACES:
AN EXAMINATION OF AXES/POD

RELATIONSHIPS AND OTHER ISSUES

copw avcaie to DTIC does 'wt

Vemit fully legible reptduaIi l rIC:
,S 'MAY 1 81983

BGS SYSTEMS, INC.
WALTHAM, MA 02254

AND

HIGHER ORDER SOFTWARE INC.
* CAMBRIDGE, MA 0219

DECEMBER 1982

T'~hs document a~b~DQppC
im (' ' . ! sae; its

distribution Is 10,

83 03 15 032

• " " "" . i. " " " "" " .

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

SaCulmT, CLAS&ICATSoll OF TNIS PAGE (oe Owe 114auq __________________________

REPORT DOCUMEI4TATION PAGE RSAD1t4SLWTh1*CTOSSS
lwrav omsci 40VT*=Saw No: 1. micopstesti CATALE 0111111119

4. TITLE (O MINE S. : P or VRPONT & 090110 COVERED

POD-HOS Interfaces
S. PERPOMIRG ORG. REPORT NUMBER.

____________________________________ RPT-POD-1982-5
au~w~r. S.CONTRACI oR calif souMSEP4.i

BGS Systems, Inc. N-00039-81-C-0183
High Order Software, Inc.

*PERFORMING ORGAmIZATION NAMIE ANDC ADDRESS to. PROGRAM CLFNNT. PROJECT. TASK

High Order Software BGS Sytm, Inc. AE OKlMTIURR

955 Mass Ave. University Office Park ACRN: Item 0004
Cambridge, MA 02139 Waltham,_ MA 02254 ____________

01. CON TROLLIMG OFFICE NAME AND ADDRESS 12. REPORT OATS9

Naval Electronic Systems Commnand______________
Washington, DC 20630 IS. MUsm of, "Armes

14 MONITORING AGENCY NAME & AOORESS(II diti.,mU Ium CmnIWjbMI Gffll.) 1S. SECURITY CLASS.,- #him E ~afe~pe)

UNCLASS.I FlED
IS.OCCLASSI ic 77WIM/ t*ow"R(hc.IN6

10-SCHEDULE

17. DISTRIBUTION STATEMENT (*#M abetec entin Stoo So, 111orn -. m 10..

IS. SUPPLEMENTARY NOTES

it. Key WORDS (Cencha.. an fevaee soft o dlfesa...a ujw~j o~lr = W..1h ba)

20. ABSTRACT (CON11fwe an uruwe sdIe it ftecewg. mud Idmoegp by blek .mfe.)

This document describes an approach to interfacing BGS Systems, Inc.'s
POD system and High Order Software, Inc.'s USE.IT system. It incorporate!
a technical overview prepared by BGS Systems and a more detailed report
prepared by HOS.

AM~17 DTO P MVSUSD.T UNCLASSIFIED
StICURITY CL AMSI ICATIOW OF TIMIS RaRE I*"" Oe. 8*16F

1 OVERVIEW
.1m

7his report addresses the feasibility of and require-

merits for interfacing two powerful software engineering

tools - PCD (Performance Oriented Design) developed by BGS

Systems Inc. and HDS developed by 'High Order Software, Inc.

of Caubridge, MA.

Accession For

PCID is a software engineering tool for the life cycle man- 1NTIS GRA&I
DTIC TAB 13

agement of system performance. It is a tool which provides Unannounced

a structured machine readable format (the System Description"' By

File or SIM) for representing a system's hardware architec- Distribution/____
Availcbility Codes

ture, software structure and external load demand. Based on -. ,nd/or

Dist
this representation, POD provides a vehicle to calculate

system performance values such as response time, throughput

and device utilization.

Higher Order Software (H)-- is a methodology for defining

systems in a hardware and language independent manner. It

consists of a specification language AXES, which provides

mechanisms for defining functions, control structures, and

data types, a User System Evaluation and Integration Tool

(USE. IT), which is a family of tools for defining systems

using the AXES language, an Analyzer for analyzing the logi-

cal correctness of systems defined in AXES, and a family of

-1-

:ATs (Resource Allocation Tools), which translate descrip-

tions from the AXES specification language into target lan-

guages such as Fortran and (potentially) POD. The AXES lan-

guage consists of both a specification language (for de-

scribing the application or other system to be built) and a

metalanguage for describing new data types and their associ-

ated axioms. The latter is a facility for extending the

AXES language to incorporate new types of information.

In considering the feasibility of and requirements for in-

terfacing POD and HOS, 1DS is assessed in terms of its abil-

ity to describe the required POD input specifications. In

addition, consideration is given to possible HOS extensions

to support POD, and an approach for interfacing these tools

is suggested.

The HOS report is organized as follows: Page one of the ac-

ccazpanying HmS report contains the introduction; pages 3 and

4 contain a summary of PaD facilities; pages 5 and 6 give an

overview of HOS and USE. IT; pages 7 thru 35 describe the HOS

- PaD interface, which is the meat of the report; page 37

has a list of references to NO2S papers (plus a reference to

the POD reference manual); Appendix A (which is separately

numbered) consists of pages 177 to 188 of the POD reference

manual.

*i The report contains a description of parts of the PCD SDF

language in terms of AXES axioms and an example of how some

* -2-

information in a typical PCD SDF could be expressed using

AXES constructs. It is, thus, useful and illustrative of

how a complete specification of PCD information in the HOS

envircment could be done.

he rationale for this task was to enable users to present a

unified description of a system in the HOS requirement spe-

cificaticn language (AXES) in such a way that sufficient in-

formation would be embodied in such a description so that

both a higher level language (e.g. Fortran) program and a

D model could be generated from that description. In ord-

er to do this, two things Tust be done.

1. Conventions must be established so that the necessary

performance related information can be embedded in a

systemn specification written in the AXES languaqe.

2. The PCD SDF language must be defined to H)S so that

an actual translation can be done.

Once this is done a translator (called a RAT in HOS termi-

noloqy) can be built that uses information embedded in a HOS

description of a system and information about the informa-

tion layout used by PRD to generate a POD model. HDS also

has a facility to do limited consistency checking of this

performance related information.

The HOS report presents two main pieces of new information:

1. A definition of a subset of the POD SDP syntax in the

AXES metalanguage.

-3-

.. An example of how sample pieces of a P0) SDF model of

a system could be expressed in the AXES language.

The AXES metalanguage provides a facility for extending the

AXES syntax by introducing new primitives that support POD

concepts such as workload and device definitions. These are

- not normally part of a requirements or HLL specification for

a system. 7he extension syntax is defined in the AXES meta-

language as axioms and data types. Values can then be asso-

ciated with these new data types as part of a system re-

quirements specification. As an example of how the

*-" definition of P0D constructs can be produced, the HOS report

provides AXES metalanguage definitions of four P0) syntax

ccnstructst

1. device type (pp.7-12)

2. file catalog (pp.12-13)

3. workload (pp.14-16)

4. workload type (p.17)

The definitions are typical of what would be required for a

complete definition of the POD input language.

The HOS report also specifies a set of conventions for how

information needed by PCD can be expressed in the AXES lan-

guage and how these specifications correspond to the infor-

mation in a PMD SDF. The report gives examples of how six

such types of information (needed to build a POD model of a

system) can be incorporated in an AXF-S language specifica-

tion. The c ,rts illustrated are:

-4-

I.

1. loop statement (pp.14, 18-20, and 22)

2. case statement (pp.20-21 and 23-24)

3. file catalog (pp.25-26)

4. device description (pp.25 and 27-29)

5. device classes (pp.25 and 29)

6. workload specification (p.30)

7. module description (pp.25 and 31-34)

Both the HOS and POD oonstructs for describing each of these

types of information are illustrated so that the correspon-

dence between the two ways of describing them can be com-

pared.

An important issue is that PCD uses a probabilistic descrip-

tion of the differents paths through a program (choices in a

TESTASE statement) while a conventional programing lan-

guage uses a specification of the conditions that will cause

one or another path to be taken. 7hese probabilities must

be incorporated into the HOS AXES requirement specification

in order for a detailed POD model of an application to be

built. PC) allows the user to specify program path lengths,

the number of times a loop will be executed, and flow of

control in general as a function of data input frequencies

(probabilities) that are meaningful to an end user. One

conclusion of this study is that this type of information

must be included in a system specification for a detailed

and accurate POD model to be produced. Once this informa-

tion is available, POD allows some of the parameters to be

4I - 5-

varied interactively to analyze how changes in data input

frequencies will affect system performance. Incorporating

this additional information in an AXES specification should

not be particularly difficult and would be an appropriate

extension of the research reported in the FIOS report.

The complete specification of the POD syntax as AXES axioms

and conventions for embeddinq performance related informa-

tion in an AXES requirements specification is left for a

follow on task. Sane of the main issues that could be ad-

dressed there are:

1. shared domains

2. paraneter passing between modules and module flow of

control

3. data dePendence of module performance and parameteri-

zation to allow analysis of the effects of this de-

pendence in a way understandable to end users

4. PCD sources

5. incorporating POD semantic relationships in the IIOS

axiom descriptions.

-6-

HIGHER ORDER SOFTWARE, INC.

806 MASSACHUSETTS AVEJUE

CAMBRIDGE, MA 02139I.-

POD-HOS I NTERFACES

SEPTEMBER 1982

4

PREPARED FOR

3GS SYSTEMs. irlc.

WALTHAM. MA 02254

Ld

TABLE OF CONTENTS

Page

!NTRODUCTION.....*.*.. 1

1. POD OVERVIEW... 2

2. HOS & USE. IT OVERVIEW................................... 5

3. POD - HOS INTERFACE. .. 7

3.1 Introduction 7
3.2 HOS Specification of POD Semantics 7
3.3 A Resource Allocation Tool (RAT) to Generate POD. 21
3.4 Recommuendations for Future Work 34

REFERENCES *..o *........ 37

APPENDIX A -DEMONSTRATING POD FUNCTIONALITY (From [1])

INTRODUCTION

In this report we describe two related interfaces between Higher

Order Software (HOS) methodology and the Performance Oriented Design

(POD) system. One interface, which is detailed, is the relation between

POD constructs and HOS mechanisms. Some selected POD constructs are

characterized in HOS terms, and then, from part of an example of a

system described in terms of POD, a corresponding HOS specification of

that system is described. In this way general connections between the

U two systems become apparent; for example, attributes in POD become

primitive operations on data types in HOS. Furthermore, this exercise

suggests ways in which POD descriptions might be enhanced by using HOS.

For instance, it is seen that formalization in terms of HOS makes

explicit attributes that are only implicit in POD.

• The second interface, which is discussed more briefly, is the con-

cept of a POD Resource Allocation Tool (POD RAT), that is, a tool that

*. takes a correct HOS system specification as input and automatically

, generates a POD description. Since HOS specifications are guaranteed

to possess certain crucial properties (consistency, logical

completeness, and interface correctness, for example), a POD RAT,

which would perserve these properties, would ensure that the resulting

POD description would also have these properties. Furthermore, a

- * single HOS specification, after being run through a POD RAT, could

* * equally well be run through a FORTRAN, PASCAL, or other RAT for imple-

mentation, thereby doing away with the need for further coding of the

system.

Included in this report is a POD overview, an HOS and USE.IT

(FORTRAN/PASCAL RAT plus other HOS tools), overview, and a discussion
of these POD-HOS interfaces.

I~It

L-_

1. POD OVERVIEW

Performance Oriented Design (POD) system is an interactive faci-

lity that can be used to analyze performance related problems that

* arise during the design, implementation, and evolutionary development

of computer based systems. It provides the following facilities to

the user:

s A format (System Description File) for expressing

a system design's performance characteristics

including hardware and its interconnections,

software, and workloads to be processed.

*A commnand to read System Description Files and

perform certain syntax checks. (For example,

invalid, redundant, or omitted descriptors are

detected.)

*Commnands for transforming device usage estimates
* from symbolic machine-independent terms to

actual times.

e Commnands to build and evaluate analytic queueing

network models of prospective system designs.

* Commiands to express the model behavior in terms

of response time, throughput, device utilization,

queue lengths, and other derived results.

*Commnands to modify design performance parameters

interactively and evaluate new designs on-line [1].

Modeling of a hardware/software system can be done on two levels

using POD. On one level software structures (e.g. , call structures

3

and resource requirements) and device capabilities (e.g., device

storage and processing capabilities) are specified. In addition,

workloads (a series of jobs arriving at a computer system from an

-'external source) and their arrival information must be specified. On

another level, the interaction of workloads is examined. In other

words, the contention for specific (hardware) resources is analyzed.

4

2. HOS & USE.IT OVERVIEW

Higher Order Software (lAOS) is a methodology for defining systems

in a hardware and language independent manner. Systems so defined

are guaranteed to be consistent and logically complete.

AXES is a specification language which is based on HOS. It pro-

K vides the mechanisms to define functions, control structures, and data

types. A system is viewed as a single function which is decomposed

into successive levels of detail in terms of other functions. Control

structures state the relationship between the original function and

the functions which make up its decomposition. There are three primi-

tive control structures: JOIN, OR and INCLUDE, which represent sequen-

tial, alternative, and parallel processes, respectively [2,3].

Objects in a system are specified using data types. Data type

specifications provide the primitive operations that operate on or

produce the objects of data types. These operations are primitive in

that they are not decomposable, but their implementations are

constrained by axioms, i.e., statements about the ways in which they

* can interact with each other.

Abstraction is gained by defining additional mechanisms using the

primitive mechanisms or pre-defined mechanisms (and thus the

primitives). These mechanisms are stored in a library and can be used

* where needed.

The User System Evaluation and Integration Tool (USE.IT) is a

family of tools by which systems are defined (using AXES), analyzed

for logical correctness (using an Analyzer), and programmned (using a

Resource Allocation Tool (RAT))[4]. With USE.IT a specification is

interactively constructed using AXES and checked by the Analyzer for

consistency and logical completeness. The RAT then takes the correct

specification and automatically produces code.

5

L.

Some of the advantages of USE.IT are obvious. Specifications are

formulated in AXES and therefore analyzable for certain desirable

properties. The Analyzer ensures that AXES specifications are con-

sistent, free of data and timing conflicts, and complete. It should

be emphasized that this is done before implementation. Since the RAT

automatically generates code, coding time is mninimal.

IJSE.IT also provides the user with a library of AXES mechanisms.

In this way a user defines systems drawing upon mechanisms found in

the library. Of course, the user is not limited to those mechanisms,

but may build his own mechanisms and store them in a library for use

whenever needed.

The generality and portability of USE.IT allows it to produce

"~code"I in languages other than the commnon or traditional ones. The

RAT currently produces FORTRAN and PASCAL, but a POD RAT is also

feasible. A POD RAT would take an analyzed AXES specification of a

system, and automatically generate a POD description (Syste-n

Description File) of that system. This System Description File would

then be input to POD, which would then produce the system's perfor-

mance evaluation.

The benefit of this approach is that the definition, i.e., AXES

specification of a system, would have all the desirable properties

(consistency, completeness, and correct data flow). USE.[T would then

7 guarantee that the System Description File it automatically generates

is logically complete. Moreover, a POD RAT together with, say, a

FORTRAN RAT would enable a system to be tested using POD and then

implemented in FORTRAN, all from one implementation-free HOS specifi-

cation. Conversely, the POD tool could be used to help decide whether

* the system should be RATted into FORTRAN, or whether some other

language would be more appropriate for its implementation.

6

3. POD -HOS INTERFACE

3.1 INTRODUCTION

HOS/AXES provides both a language for the definition of systems

and a metalanguage for the definition of mechanisms that can themselves
be used as a language for the definition of systems. In relation to a

system like POD, the metalanguage aspect emerges as primary, because
its own basic constructs can be defined formally as HOS mechanisms,

thereby enhancing POD with all the benefits that that kind of for-
malization brings. Furthermore, a RAT that automatically generates

POD descriptions from HOS specifications can be readily built once the
semantics of POD is fully understood and made explicit.

3.2 lIDS SPECIFICATION OF POD SEMANTICS

HOS characterizes all systems in terms of three fundamental
* units: data types, functions, and control structures; and the basic

* constructs of POD map naturally into this framework. The following

* examples demonstrate the manner in which POD semantics could be for-

* malized with HOS.

Devices in POD, for example, comprise an HOS data type [5), a
formal characterization of which is given in Figure 1. A user of POD

* must attribute to devices only those attributes which POD itself
* attributes to them, either explicitly or implicitly, and'strict

adherence to the specification in Figure 1 would guarantee that this
*was the case. The standard set of device attributes in POD is given

in Figure 2, and each of these, as well as the device type, is
reflected as a primitive operation in Figure 1. The default units and

* values in Figure 2 are omitted from Figure 1 solely in order to
* simplify the exposition, but they would be included in a more complete

7

DATA TYPE: DEVICE;

PRIMITIVE OPERATIONS:

device type = Device-Type (device);
rational - Rate (device);
list (of files) - Device-map (device);
rational - Seeks (device);
rational a Revolution-time (device);
natural - Capacity (device);
string (of characters) = Operation (natural ,device);
natural - Number-of-operations (device);
formula - Time (natural, device);
natural -Multiplicity (device);
string (of characters) a Class (device);

AXIOMS:

WHERE REJECT IS A MEMBER OF EVERY TYPE;

WHERE dev IS A DEVICE;
WHERE nat IS A NATURAL;

Not(Or(Equal (Device-type(dev) ,cpu),
Equal (Device-Type(dev) ,disk).
Equal (Device-Type(dev) ,server)))

Equal (rate(dev) ,REJECT);

Not(Or(Equal (Device-type(dev) ,defined),
Equal (Device-type(dev) ,defined-cpu)))

aEqual (Operation(nat ,dev) ,REJECT);

Equal (Operation(nat,dev) ,REJECT)
- Equal (Time(nat,dev),REJECT);

Not(Equal (Device-type(dev) ,memory))
aEqual (Capacity(dev) ,REJECT);

Not(Equal (Device-type(dev),disk))
=Equal (Device-map (dev), REJECT);

Not(Equal (Device-type(dev),disk))
aEqual (Seek(dev) ,REJECT);

Not(Equal (Device-type(dev) ,disk))
aEqual (Revolution-time(dev) ,REJECT);

Not(Or(Equal(Device-type(Dev),cpu),Equal (Device-type(dev),disk)))
aEqual (class(dev) ,REJECT);

Not(Or(Equal (Device-type(dev) ,cpu) ,Equal (Device-type(dev) ,server)))
aEqual (Multiply(dev) ,REJECT);

<(nat ,NL.ber-of-operation(dev))
aEqual (Operatlon(nat,dev) ,REJECT);

END DEVICE;

8 Figure 1: Data Type DEVICE in HOS

I _I

-Th IC- REQUIRED . DEFAULT TIONAL . DEFAULT
TYPE ATTRIBUTES . UNITS ArTRIBUTES . VALUES

CPU RATE MIPS MULTIPLICITY .I
• CLASSI I•

I DEVICE MAP - I
RATE . CHAR/MSEC CLASS

DISK SEEK . MSEC I
REVOLUTION TIME • MSEC

MEMORY CAPACITY WORDS.:I L • I•
SERVER RATE * OPS/ I

- MICROSECOND MULTIPLICITY .

DEFINED OPERATION - j*
TIME , MSEC

DEFINED CPU OPERATION
I TIME. MSEC

Figure 2: Device Attributes in POO (from [1])

9

7 .V

specification of the data type. The number of operations ai user-

defined device has is not listed in Figure 2 as ani attribute of POD)

devices, but it must be included in the HOS specification in order to
formulate axioms that completely characterize the other primitive

operations/attributes. HOS formalization thus brings to light a

further attribute which POD and its users must implicitly take into

account, even though POD does not explicitly recognize it.

The effect of the axioms in Figure 1 is to restrict each primi-

tive operation, and thus each attribute, to exactly those device types
that are appropriate, by specifying that its use rejects for devices

of other device types. The first axiom states, for example, that the
Rate primitive operation rejects for a device if and only if its

device type is not cpu, disk, or server, indicating that only devices

of these three types can properly be said to have rates in a POD

description of a system, as figure 2 requires. The third axiom says
that Operation rejects if and only if Time does and so, together with

the second axiom, restricts both Operation and Time to be applicable

only to devices of type 'defined or defined-cpu. The l-ast axiom says

that the nth operation of a (user-defined) device exists if and only
if n is less than or equal to the number of operations for that

device. This is necessary in order to restrict the applicability of

the earlier axioms that also contain Operation.

Most of the data types that provide inputs or outputs to the pri-

mitive operations in Figure 1 are already available in the general 1405

library, but one of them, that of device types, is entirely specific

to POO (in the present usage, at any rate). Since device types are,

in fact, a kind of "object," whose members get associated with device

"objects," they must be formally characterized in HOS as a data type,
just as devices do themselves. A specification of the data type

DEVICE TYPE is given in Figure 3.

10

DATA TYPE: DEVICE TYPE;

PRIMITIVE OPERATIONS:

AXIOMS:

WHERE Cpu, disk, memory, server, defined,

defined-cpu ARE CONSTANT DEVICE TYPES;

WHERE dt IS A DEVICE TYPE;

WHERE TRUE, FALSE ARE CONSTANT BOOLEANS;

Or(Equal (dt,cpu) ,Equal Cdt ,disk) ,Equal Cdt ,memoiy),

Equal (dt,server) ,Equal (dt,defined),

Equal(dt,defined-cpu)) - True;

Equal(cpu,disk) - False;

Equal(cpu,iuemory) - False;

Equal(cpu,server) a False;

Equal(cpu,defined) - False;

Equal(cpu,defined-cpu) x False;

Equal(disk,memory) - False;

Equal(disk,server) = False;

Equal(disk,defined) - False;

Equal (dlsk,defined-cpu) - False;

Equal(memory,server) *False;

Equal(memory,defined) =False;

Equal (memory ,defined-cpu) - False;

Equal(server,defined) -False;

Equal (server,deflned-cpu) aFal se;

Equal (defined,defined-cpu) =Fal se;

* END DEVICE TYPE;

Figure 3: Data type DEVICE TYPE in HOS

Since device types are used solely to identify which attributes

go with which kinds of devices, and since this has already been spe-

U cified in Figure 1, data type DEVICE TYPE require~s no primitive opera-

tions of its own, and so none are included in Figure 3. (Equal is a

universal primitive operation, and Or is a boolean one, both available

in the HOS library.) If reason were found for updating POO in some

way that put device types to further use, then primitive operations

and axioms that constrain them could be added to the data type speci-

fication to account for that. At present, however, the data type con-

sists simply of six distinct members, identified in the first WHERE

statement as the CONSTANT device types cpu, disk, memory, server,

defined, and defined-cpu, the device types listed in Figure 2. These

six device types are characterized in relation to each other in the

axioms in Figure 3, the first of which says that any device type at

all has to be one of the six, and the rest of which say that the six

are, in fact, distinct. Any further properties that device types must

be said to have can be introduced, as necessary, as further primitive

operations with axioms to constrain them.

An HOS specification of data type FILE CATALOG is given in Figure

4 as a further example. The two essential components of a file cata-

log in POO are file names and record sizes, and these become primitive

operations on the data type in HOS. The first axiom says that the

length of each file name must be less than or equal to the value of

some parameter to be specified by the user, perhaps in a formal charac-

terization of a data type for file names. Length in Figure 4 is a

primitive operation on strings available in the HOS library, but it

could also be specified more abstractly as a primitive operation on a

data type FILE NAME. The other two axioms specify that record sizes

must fall within some range, saying that they must be greater than 0
61 and less than some user-supplied parameter value. These are sample

axioms only. Further constraints are likely to be necesssary, espe-

cially in connection with file names.

12,

3 DATA TYPE: FILE CATALOG;

PRIMITIVE OPERATIONS:

string(of characters) File-name(natural,file catalog);

natural = Record-size(natural ,file catalog);

AXIOMS:

WHERE fc IS A FILE CATALOG;

WHERE nat IS A NATURAL;

WHERE 0 IS A CONSTANT NATURAL;

((Length(File-name(nat,fc)),m) =True;

<(O,Record-size(nat,fc)) -True;

<(Record-size(nat,fc).n) = True;

END FILE CATALOG;

Figure 4: Data Type FILE CATALOG in HOS

13

Like devices and file catalogs, which comprise components of a

configuration specification in POD, workloads are also characterizable

most naturally in HOS as data types, as shown in Figure 5. Like devi-

ces, workloads have both attributes, shown in Figure 6, and types,

which are themselves characterizable as a data type, as shown in

Figure 7. Again, the attributes become primitive operations in HOS,

with a further primitive operation that assigns each workload its type.

The components of POD module specifications, however, map into

HOS not as data types, but as control maps, i.e., structured func-

Itions. The loop in Figure 8, for example, maps into the function tree

V in Figure 9, in which the data, subfunctions, and structural relations

that are implicit in Figure 8 are indicated explicitly. Notice that

the structure in Figure 9 Loop-Number-of-tmages-Times, is not a primi-

tive but a user defined control structure. A formal specification of

this structure must be provided to fully explicate the intended beha-

vior. In a similar manner other module specificatons (i.e. user

templates) can be fully specified in terms of the true underlying

semantics or meaning of these usage oriented templates. All of the

POD modules must have one of these associated formal definitions asso-

ciated with it if it is to be considered to be formally defined in the

HOS sense of an AXES specification. Following is a walk through of

the POD module as we understand it (see Figure 10).

The overall effect of the specification is to define a function,

in the mathematical sense, called here Loop-Number-of-mages-Times.

Choice of names is theoretically arbitrary in HOS, but good style

involves making choices that enhance clarity and understanding. This

function inputs values of a variable alpha and, perhaps, other input,

such as the state of the relevant device. The way the function gets

carried out is indicated by the three levels of decomposition into

subfunctions. First, a counter, n, is initialized to 0 and then fed,

along with alpha and input, into the function that comprises the main

14

DATA TYPE: WORKLOAD;

PRIMITIVE OPERATIONS:

workload type = Workload-type(workload);

natural = Mpl (workload);

list(of(job,percent)) = Job-stream(workload);

F- natural aArrival-rate(workload)
V natural - Think-time(workload);

natural = Users(workload);

Natural -Priority(workload);

AXIOMS:

WHERE wi IS A WORKLOAD;

WHERE 14 IS A CONSTANT NATURAL;

Equal (Workload-type(wl) ,periodic)

=Equal (Mpl (w) ,REJECT);
Equal (Workload-type(w) ,interactive)

=Equal (Job-stream(w) ,REJECT);
Equal (Workload-type(wl) ,interactive)

-Equal (Arrival -rate(we) ,REJECT);

Equal (Workload-type(w) ,cycle)
*Equal(Arrival-rate(wl),REJECT);

Not(Equal (Workload-type(wl),interactive))
-Equal (Think-time(w) ,RREJECT);

Not(Equal(Workload-type(wl),interactive))

-Equal (Users(wi) ,EJECT);
<(O,Priorlty(wl)) =True;

<(Prlority(wi),14) =True;

END WORKLOAD;

Figure 5: Data type WORKLOAD in HOS

15

I WORKLOADO REQUIRED DEFAULT OPTIONAL . DEFAULT S
TYPE ATTRIBUTES . UNITS ATTRIBUTES . VALUES

CYCL E 'I PL JOBS PRIORITY . LOWEST
JOB STREAM - . PRIORITY(O)

I JOBSTREAM
and DOMAIN ID .

PERIODIC ARRIVAL RATE . JOBS/HR j- . LOWESTp or. PRIORITY . PRIORITY(O)
I j SOURCES -

K • •
JOB STREAM -

TRANSACTION -and PRIORITY LOWEST
ARRIVAL RATE . JOBS/HR . PRIORITY(O)

I o - • •o
SOURCES . - DOMAINID • -iI I • -•*
MPL JOBS

INTERACTIVE MPL , JOBS
THINK TIME . SEC PRIORITY . LOWEST

I I USERS - . PRIORITY(O)

Figure 6: Workload Attributes in POD (from [1])

-6

16

i.,

DATA TYPE: WORKLOAD TYPE;

PRIMI1TIVE OPERATIONS:

AXIOMS:

WHERE cycle, periodic, transaction,

interactive ARE CONSTANT WORKLOAD TYPES;

WHERE wt IS A WORKLOAD TYPE;

Or(Equal (wt,cycle) ,Equal (wt,periodic),

EquaI(wt,transaction),Equal(wt.interactive)) =True;

Equal(cycle,periodic) - False;

Equal (cycle,transaction) = False;

Equal(cycle,interactive) - False;

Equal (perlodic,transaction) = False;

Equal(perlodic,transaction) = False;

Equal(transactian,interactive) = False;

END WORKLOAD TYPE;

Figure 7: Data type WORKLOAD TYPE in HOS.

17

LOOP NUMBER OF IMAGES TIMES

CALL TASK 2(ALPHA)

END LOOP

Figure 8: A POD LOOP Specification (from [lj)

18

alpha', input' =A USE(alpha,input)

LOOP-NUMBER-OF- IMAGES-TIMES

alpha*, input* =TASK2(alpha,input)

Figure 9: A Use of the Defined Structure LOOP-NUMBER-OF-IMAGES-TIMES
formally defined in Fig-ure (10)

19

- -7 -7 4 j- -

subfunction, called here Loop-task2. K0 is a universal primitive

operation of HOS, a function that generates 0 as its output value no

matter what its inputs are. Such a constant function Ki is available

for use for any member i of any available data type. Second, a func-

tion called here Do-task updates alpha, the other input, and n and

then determines vhether to loop or stop, depending on the current

value of n, now called n'. Changing a variable's value requires also

changing the variable itself in HOS, even if only by adding a prime or

asterisk, in order to maintain traceability of data and the possibi-

lity of static checking. Third, the counter gets updated and Task 2

actually gets carried out, after which, based on the counter's value,

either Loop-task2 gets recalled for that value and the updated alpha

and input or those values get retained as the final values. Clone, is

another operation of HOS, one that produces one copy of its input,

whatever that is, as its output, i.e., makes possible a further

reference to its input.

The symbols CJ, J, 1, and CO in Figure 9 indicate examples of HOS

control structures [2,3], i.e., relations between functions and their

subfunctlons. CJ is the COJOIN structure, which indicates sequential

execution and shared inputs. If n were the only input to Loop-task 2,

then the CJ could be replaced with J, a purely sequential JOIN

construct, in which the output of one subfunction is the only input to

the other. Such a structure is involved, in fact, in the decom-

position of Loop-task 2, whose subfunctions share no inputs, the out-

put of one, namely, alpha*, input*, and n', being the only inputs to

the other. I, which decomposes Do-task2 is a parallel INCLUDE struc-

ture, which partitions input and output lists and matches the sublists

to each subfunction with no overlap. A COINCLUDE structure is also

4J available, related to INCLUDE much as COJOIN is related to JOIN, but

that structure is not needed for this example. CO is a COOR struc-

ture, indicating deterministic alternatives, which can also be used to

20

explicate the POD TEST construct, as shown in Figure 11 for the

example in Figure 12. If Clone, (alpha*,input*) were replacd with
3

.. Identifyl, 2 (alpha*, input*, n'), then this COOR could be replaced

with an OR structure, which requires each offspring to have exactly

the same inputs as the parent function. Identifyf.k for j < k
< i, is another operation of HOS, the effect of which is to extract the

jth,.., and kth members of a length-i input list. JOIN, OR, and

INCLUDE comprise the three primitive control structures of HOS, out of

which all other allowable structures can be defined. The lower-most

occurrence of Loop-task2 re-invokes the named function for the indi-

cated updated inputs, thereby creating the loop effect that is named,

but not otherwise represented, in the POD notation. If this lower

occurrence were replaced with some other function name not also

occurring elsewhere in the tree, then this recursive effect would

disappear.

It should be stressed that Figure 10 gives an explicit account of

the semantics of the syntax In Figure 9. Figure 8 might seem easier

to use, and indeed it is easier to use for one who is familiar with

it, but the fact that so much of its meaning is only implicit makes it

subject to misinterpretation, incorrect usage, side effects, and so

on. The description in Figure 9, in contrast, is guaranteed to be

logically correct, because it has a clearly identifiable meaning in

terms of its formal definition in Figure 10 following the HOS rules,

which eliminate interface errors and ensure correct modularization

[2].

3.3 A RESOURCE ALLOCATION TOOL (RAT) TO GENERATE POD

If a system is described completely in HOS to begin with, POD

code can be generated automatically from it with a RAT, as can code in

any language for which a RAT is available [71. We will use the

21

*1

- ~ ~ ~ ~ (-Ind' IX n r WWW Tr .

4ii)fl '1PIJ7 s 300O7rS2na, lnouz,*i

.31pna' input') Sto L o -rg -)(,in * ip t .'

n' number n'nme

number)f co Cof 4mages

Iinajes la pna*.input*) i aSk2(dIaIq lut;

(alpha'. input') sClonej(alpha*,input*)(alpna', input') Loop-t3Sk2(alpna*.,.nput*.n'

Figure 10: Formal Specification of Figure 9

22

output - Test-current-mode(input,current mode)

current mode current mode current mode
a attack = under attack standby

output a Offense(input) output Defense(input) output = Standby(input)

Figure 11: HOS Control Map for a POD CASE Statement

23

TEST CURRV')T M'ODE

CASE 'STANDBY'

CALL STANDBY

CASE 'UNDER ATTACK'.

CALL DEFENSE

CASE 'ATTACK'

CALL OFFENSE

EMIOTEST

Fiur 12: The POD construct whose control map appears in

in Figure 10 (from [1)

4 24

example in the appendix (which just so happens to be a specific POD

specification) to show what it would mean ta spaciy i. in r(OS func-

tional notation and then show the connection bet.ieen that specifica-

tion and a POD RAT.

The example in the Appendix consists of specific values being

given to various kinds of items: a file catalog, devices, modules,

and so on; and each such item can be defined as a CONSTANT in 1*15 with

a WHERE statement. An HOS specification of the file catalog in the

example is given in Figure 13. For each natural number, the

corresponding file name and record size are specified, exactly

reflecting the information contained in the POD description, but

making more explicit the fact that each of these depends both on the

file catalog itself and on a choice of natural numbers.

The first device specification in the example can be translated

into HOS as in Figure 14, which names the particular device and

provides it with a type and with a value for the attribute that is

required for it by Figures 1 and 2. The other devices are all disks

and have the same values for their Rate and Seek attributes, so they

can be specified either individually, as in Figure 15, or, more

succinctly, by making use of an HOS version of the POD CLASS construct,

as in Figure 16. A specific workload can be specified in terms of a

defined structure in exactly the same way as shown in Figures 9 and

10, for the one in Figure 17.

Specific modules in POD can be expressed in NOS5 as control maps.

The module Retrieve-record in the example, for instance, becomes the

function tree in Figure 18, where the .. "is included only for

perspicuity. As a further example, the LOOP module DISPLAY can be

written in HOS as the control map in Figure 19, which has no TEST

construct, as Figure 18 does, but has a recursive call to one its

higher higher-level functions. Complete specifications of these

25

WHERE file catalog IS A CONSTANT FILE CATALOG;

WHERE FL,F2,F3.,F4,L,A,D,SWD,SUCC ARE STR1fNGS OF CHARACTERS;

WHERE 1,2,3,4,5,6,7,8,9,100.50,36,200,450 ARE CONSTANT IATURALS;

File-name(l,file catalog) - Fl;

Flle-naine(2,file catalog) - F2;

File..name(3,file catalog) - F3;

Flle-name(4,file catalog) =F4;

File-name(5,file catalog) = L;

File-name(6,file catalog) - A;.

File-name(7,flle catalog) =D

File-name(8,file catalog) - SWD;

File-name(9,file catalog) = SWC;

Record-slze(l,file catalog) = 100;

Record-slze(2,file catalog) -100;

Record-size(3,file catalog) - 100;

Record-size(4,file catalog) - 100;

Record-size(5,file catalog) - 50;

Record-size(6,file catalog) = 36;

Record-size(7,flle catalog) - 200;

Record-size(8,flle catalog) a 450;
Record-slze(9,file catalog) = 450;

END file catalog;

FiguJre 13: HOSpecffication of a Specific File Catalog

* 26

WHERE Cpu IS A DEVICE TYPE;

WHERE 1.2 IS A CONSTANT RATIONAL;

WHERE central processor IS A CONSTANT DEVICE;

Device-type (central processor) =cpu;

Rate (central processor) 1.2;

END central processor;

Figure 14; HOS Specification of a Specific Device

27

WHERE 20,30 ARE CONSTANT NATURALS;

WHERE disk IS A DEVICE TYPE;

WHERE disk1 IS A CONSTANT DEVICE;

Device-type (disk1) disk;

Rate (disk1) = 100;

Seek (disk,) = 20;

Revolution-time (disk1) - 30

Device-map (disk1) = (Fl,SWD);

END disk1 ;

WHERE disk 2 IS A CONSTANT DEVICE;

Device-type (disk2) = disk;

Rate (disk2) = 100;

Seek (disk2) = 20;

Revolution-time (disk2) = 30;

Device-map (disk2) = (F2,SWC);

END disk2;

WHERE disk3 IS A CONSTANT DEVICE;

Device-type (disk3) = disk;

Rate (disk3) - 100;

Seek (disk3) - 20;

Revolution-time (disk3) = 30;

Device-map (disk3) = (F3,L,A);

* IIEND disk3

WHERE disk 4 IS A CONSTANT DEVICE;

Device-type (disk4) disk;

Rate (disk4) = 100;

Seek (disk4) = 20;

Revolution-time(disk 4) = 30;

Device-map (disk4) = (F4,D);

END disk 4 ;

Figure 15: HOS Specification of Some Specific Disks

28

WHERE disks IS A CONSTANT CLASS;

Rate (disks) - 100;

Seek (disks) = 20;

Revolution-time (disks) = 30;

END disks;

Ir WHERE disk1 , disk 2, disk 3, disk 4 ARE CONSTANT DEVICES;

Device-type (disk,) = disk;

Device-type (disk2) = disk;

Device-type (disk3) - disk;

Device-type (disk4) - disk;

Class (disk,) - disks;

Class (disk2) = disks;

Class (disk3) = disks;

Class (disk4) = disks;

Device-map (disk1) (FlSWD);

Device-map (disk2) = (F2,SWC);

Device-map (disk3) - (F3 L,A);

Device-map (disk4) (F4,D);

END disk1 , disk 2, disk 3, disk 4;

Figure 16: HOS Specification of the CLASS of Disks in Figure 14

29

T-4

WHERE 5 and 10,000 ARE CONSTANT NATURALS;

WHERE 70% and 30% ARE (."ISTANT ?:ERCcNTS;

WHERE data base ,sa,_ IS A CONSTANT WORKLOAD;

Workljad-type (data base usage) transaction;

lMpl (Data base usage) = 5;

Arrival-rate (data base usage) = 10,000;

Job-stream (data base usage) = ((Retrieve-record, 70%),

(Update-record, 30%)),

END data base usage;

Figure 17: HOS Specification of a Specific Workload

4 30

w-

modules might require more knowledge about the details of the data

structures involved and perhaps other information as well that is only

implicit in the POD example. In contrast to the POD module specifica-

tion, an AXES defined structure definition makes explicit data, func-

tions, control structures, and so on that are implicit in the POD

specification's meaning, but not expressed in the notation. An AXES

specification has two components in a user defined structure. The

first is a simple use oriented syntax (as in Figure 9) stating tile

missing variable information needs of the full definition (as in

Figure 10). The first is comparable to the POD module specification.

The second is a full system definition which is hidden to simplify the

actual usage of that definition. This second component, the defini-

tion of the meaning, must be available for a user to really understand

what these POD module specifieations really do.

In general, performance information can be derived from a control

map in conjunction with information about the hardware and resident

software (and so on) on which it is to be implemenited, £63 in accor-

dance with the general operation template

performance information = POD-RAT(control map, hardware, resident software,...).

(expressed in POD notation) (all expressed in HOS/AXES)

For the control map in Figure 18, for example, the INCLUDE structure

in the lower right indicates the possibility of a parallel implemen-

tation. If the hardware and resident software permit this possibility

to be realized, then the structure can be implemented in that way;

otherwise, the two functions Access-record and Succ can be implemented

in sequence, and in either order, because the possibility of

-4 parallelism implies non-dependence. In either case, performance time,

say, of these two primitive operations can be determined from the

hardware/software input and that of Do-access-record determined from

that and the choice of implementation of the structure. Similarly, the

U lit I!

3 ~ /
I

ii

- 'a
I I

I i
/ '4-.

r

'4-.
C

* 5
C r -~ -~ - o

I . . -
-S S. .4J
3

U

(4~

K - U

i -5 (.~1
L

~1~
* - *~~-..0 0

- .

* - ~

- -
.2 - 5-

I - :1

- 2
- .. ~

.21 LJ.

g
* S

V // I

11/2' * /

* >1
I

I

4

32
a

la

-Ii

I0
/ -1

Ao

/ -l

oil

mlI

U 01

/ .l

/ 01

5 1l

01

.4 .- 33

COOR structure on the lower left tells us that only one of the sub-

functions is ever run on a particular performance pass and thus that

only one processor need ever be made available for executing the

structure as a whole, i.e., the compound operation Stopor_go_on.

Once everything involved is expressed clearly in HOS/AXES--i.e.,

system specification, hardware, resident software, and so on--, all of

the relevant information concerning performance time, efficiency,

etc., can be readily determined by a RAT and expressed in POD for-

malism for processing as usual by the POD tool.

I."

Rather than writing systems directly in POD, one can write them

instead in HOS and then generate the POD code automatically. The

advantage of this way of doing things is that the same HOS specifica-

tions can also be input to other RATS, such as those for FORTRAN,

PASCAL, or other programing languages. Once a single HOS specifica-

tion is completed, any number of other versions of it can be automati-

cally generated, for any language for which a RAT has been built.

Furthermore, the POD tool can be used to evaluate which RAT should

be used to implement a particular system, since RATs themselves can be

taken as inputs to the POD-RAT function. A system that involves a lot

of concurrency, for example, should be RATted into an implementation

language that best supports that facility, whereas one that has none

should be RATted into a language that does not, in order to optimize

both resource usage and performance characteristics. The use of a POD

RAT in making these decisions would optimize those decisions, thereby

enhancing system performance [6,73.

3.4 RECOMMENDATIONS FOR FUTURE WORK

The single most important task that should be undertaken as a

further development of the HOS-POD interface is the construction of a

POD RAT. Such a RAT would make possible the automatic evaluation of

systems expressed in HOS/AXES in order to determine their optimal

34

K

implementation environment by generating POD descriptions to be input

to the POD tool. Writing systems in HOS would liake further coding

unnecessary, since a single specification could be used both for

evaluating and for implementing systems, as well as for choosing the

optimal implementation.

A second task would be developing a complete HOS specification of

the full POD semantics, both in order to make explicit the full power

of POD and also to enhance the building of a POD RAT. A POD RAT could

be built without such a full specification, but its existence would

simplify and enhance the building of a RAT. Ideally, this task would

be included as a major subtask in the beginning stages of a RAT deve-

lopmnent.

L

35

REFERENCES

[1] J. P. Buzen, G. B. Giacone, D. E. Hall, P. S. Mager,
R. T. Williams, "Performance Oriented Design POD Reference
Manual," BGS Systems, Inc., P.O. Box 128, Lincoln, MA,
September, 1981.

£2] M. Hamilton and S. Zeldin, "Higher Order Software, Inc. - A
Methoeology for Defining Software," IEEE Transactions on
Software Engineering SE-2 (1), 9-32. 1976.

[3] M. Hamilton and S. Zeldin, "The Relationship Between Design and
Verification," The Journal of Systems and Software, Elsevier
North Holland, Inc. New York, New York, Volume 1, No. 1, 1979.

[4] Higher Order Software, Inc., Cambridge, Massachusetts, "USE.IT
Reference Manual," Reference Manual No. 6, May 1982.

[5] S. Cushing, "Algebraic Specification of Data Types in Higher
Order Software (HOS)," Proceedins Eleventh Hawaii International
Conference on System Sciences, Volume 1, University of Hawaii,
Honolulu, Hawaii, January 5 - 6, 1978.

[6] M. Hamilton and S. Zeldin, "Properties of User Requirements",
Formal Models and Practical Tools for Information Systems
Design; edited by Hans-Jochjen Schneider, North Holland
Publishing Co., April 1979.

[7] M. Hamilton and S. Zeldin, "A Functional Approach To The Life
Cycle Model: Towards a Development Support System for DOT,"
(Part 1 of 2 Parts), prepared for SOC Integrated Services, Inc.
McLean, Virginia, August 1981.

3

i~i "L37

.°

-v~r
-~ -T

-

DEMONSTRATINg POD FUcTfONALITY

(FROM C)

APPENDIX A: DEMONlSTRATING POD FUNCTIONALITY

Background

This example involves the analyst-s of an A43alizei on-line system for

information retrieval and updating. Systems of thiz ::rpe are used within

the Navy for such purposes as maintaining infzr-a;ion on the occation f.

ships, the status of personnel, the "vailability of i upport

facilities, and so on.

We assume in this particular example tnat the information within the

system is organized into four files: F1, F2, F., F4. An operator at a

terminal can, in a single transaction, either retrieve or change (update) a

record from one of these files. Thus, the system supports eight separate

transaction types:

R1 Retrieve a record from file Fl
R2 Retrieve a record from file F2
R3 Retrieve a record from file F3
R4 Retrieve a record from file F4
C1 Change (update) a record in file F1
C2 Change (update) a record in file F2
C3 Change (update) a record in file F3
C4. Change (update) a record in file F4

In transaction types RI - R4, the operator types in a record

identifier (a key), and the system retrieves the appropriate record and

displays its contents on a screen. Thus, files F1 - F4 function as indexed

files.

In order to process a transaction, it is necessary to swap the

appropriate processing routines into main memory, access one of the four

1 data files (F1 - F4), and also access a log file (L), an accounting file

(A) and a display file (D). The average number of accesses per transaction

to each of the files is given below:

'.-1

. F4 ". A - SWD SWC

R20 2 3 0 2
R3 0 0 2 2

0--

File accesses,.ransac-ior.

Note that there are two swat files: the data swap f4le, SWD, and the

code swap file, SWC. Upon initiation of 2 transection both data (from ZwD)

and code (from SWC) are swapped in. Upon termination of a transaction cmly

the data is swapped out (to SWD) since zhe code is pure. Thus eact

transaction accesses SWD twice and F'4C once.

In the case of the "retrieve" transactions - - R4'), the two ac-.esses

" to the data files (F1 - F4) represent one access to the index and one'r nanc- trnacin (C C)

access to the data itself. In the case of chang transactions (CI - C4)

the system is designed so that a change must always follow a retrieve and

will always alter the record that has jus t been retrieved. Thus, the

access to the index is eliminated. However, it is necessary in this case

to carry out a second read access after the record has been written tc

.*. verify the fact that there were no errors in the write operation. The

value that is actually read from. the disk after vring is displayed on the

screen as part of the "change" transaction.

Performance Data

Assume that the system being evaluated has four high speed disk

drives, each with a trnnsfer rate of 100 byt ,sec, an avere seek time

"*l of 20 msec and a revolutjr timc of 30 msec. 2,sc o :at :e f

* are mapped onto the disks as follows:

DISK I: Pl, SUM
DISK 2: F2, SWC
DISK 3: F3, L, A
DISK A: F4, D

6

Assume that the following infern.ation is also known:

Transaction arrival rat, - I0000 Der hour
Retrieval percentage - 70%

(RI - R4 all occur in equal proportions)
Change percentage - 30%

(Cl - C4 all occur in equal proportions)
Number of message regions

Initial POD Specification

The facilities of POD will bj iemonstrated by addressing he following

questions:

I
1. someone has suggested that it n ight be po~s*!-e :o im-ro',e

average data base transaction. response time by n g he .ndex
portions of files F1 - F4 memory resident. Thi.3 would save one
disk access in transaction types RI - R4. 7n addition, by
eliminating the CPU overhead necessary to initiate the index
access (and carrying out other optimization steps while
modifying the code), assume it is possible to reduce the average
CPU time required for the module accessing the index by 901.
Assume also that it is necessary to reduce number of message
regions by two in order to make the index portions of the files
memory resident. How will this suggestion affect overall
response time?

2. Assume that the load on the system is expected to grow to 1450
transactions per hour in the next year. What will the response
time be at that time for both the memory resident and the disk
resident options?

3. Assume that a faster CPU will be available when the 14350
transaction per hour load is reached. The faster CPU will
execute instructions in an average of 105 faster than the
current CPU. What will the response times be for each option if
the faster CPU is used?

The following is a sample POD System Description File that iontains

.ufficient detail to address these issues. It should be noted that

liberties have been taken in selecting the CPU processing requirements of

the modules and the file organization characteristics. :n general, such

data would have to be collected and supplied by the us~:j.

3

GLOBAL. DECLARA:I1fl
PAR AMETER

71LE REQUEST 25

END

CONFIGURATION. SPEC IFICAT:;N
FILE CATALOG

nIM-p1, RECORD s::EuCoc
NAME-F2, RECORD S"ZE-i 00
NAME-?3, RECORD S-7-IZE1
NAME-F4, RECORD SIZE-i00
NAMEOL, RECORD 51"E=50
NAME-A, RECORD SIZE-36
NAME-D, R SCORb- SIZE- 200
NAAEwSWD, REc0dn SIZE=450
NAME-SWC, RECOR SIZoE-450

END-

DEVICE CENTRALPROCESSOR TYE CPU
RATE - 1.2 &MIP

DEVICE DISKI TYPE - DISK
RATE a 100 &KBYTES/SEC

SEK 20 0MSEC
REVOLUTION TIME *30 &MSEC
DEVICE MAP_- F1, S1WD

END

DEVICE DISK2 TYPE aDISK
RATE - 100 &ICBYTE~s/SEc
SEEK - 20 &MSEC
REVOLUTION TIME a30 &MSEC
D)EVICE MAP- F2, SWC

4 END

DEVICE DISK3 TYPE - rISK
RATE a 100 &K3YTErS,SEC
SEEK - 20 iiSEC
REVOLUTION T'.ME - 30 &MSEC
DEVICE mAPi F-3. L. A

END -

DEV:CE DISK4 TY?E - D:SK4
RATE A 100 &KBYTES/5E0
SEEK a 20 &XSEC
REVOLUTION TINE =30 iMSEc

4

--.-. --.----l-- -- s--,r-- - -
-

4 '4mJD -~~ .

*: WORKL,,AD. SPECIFICATIo
,-CRI.1OAd DATA BASE UJAJ, ---

ARRIVAL RATE ! COOC i/hR
JOB ST'A - ETR:EVE RECCRD"

UPDATE R "CC ;C.

END

i ~ D L :.gE .S? EC!'- I C C'.
iRETRIEVE A DATA BASE RECORD:

MODULE RETRIERECOR3RD
EST CENTRAL PROCESSC, uSA -,
CALL SWAP IN-
TEST FILE REQUEST

CASE 7i
CALL ACCESS INDEX'FI')
CALL ACCESR7SRECouD('F1')

CASE '72'
CALL ACCESS INDEX('F2')
CALL ACCESS-RECORD('F2)

CASE 'F3'
CALL ACCESS ISDEX('3'
CALL ACCESSRECOR2 'F3,

CASE '?4'
CALL ACCESS INDEX('F4')
CALL ACCESS_-RECORD('F4)

ENDTEST
CALL DISPLAY
CALL CLEANUP
CALL SWAP OUT

&UPDATE A DATA BASE RECORD:
-ODULE UPDATE RECORD

* EST CENTRAL PROCESSOR USAGE 50400 :"IS
CALL SWAP IN
TEST FMLE-REQUEST

CASE '71'
CALL WRITE RECORD('FY'
CALL VERIFY WR:TE(',

CASE 'F2'
CALL WRITE RECORD('F2-)
CALL VERIFY WRITE(@F2')

CASE ?3'
CALL WRITE RECORD(-FV')
CALL VERIFY ',RITE('F3',

4 CASE F4'
CALL "WRITE RECCRD(4' "

l 5

CALL VERFY WR!TE ''F4%

EN DTE S'T4 CALL DISPLAY

'ALL CLEANU?
CALSWA? CUT

TIN:

&ACCESS A PECZR. FRO:M. -t. 3ECFp'

MODULE ACCESS .-EO- OR2 --E.
EST CENTRAL ?RC7TZSSOR "'S AG = OC
TEST FZE

CASE 'Fl'

EST FU USAGE - I READ
CASE 'F2'

EST 72 JSAGE - REAZ
CASE 'F3'

EST F3 USAGE I READ
CASE 'F4'

EST F4 USAGE 1 1 READ
CASE 'D,

EST D USAGE I READ
ENDTEST

END

&ACCESS THE INDEX ON THE SPECIFIED FLE:
MODULE ACCESS INDEX(FILE)

EST CENTRAL_PROCESSOR USAGE - 90480 INS
TEST FILE

CASE 'Fl'
EST Fl USAGE - I READ

CASE 'F2'
EST F2 USAGE a 1 READ

CASE '73'
EST F3 USAGE - 1 READ

CASE 'F4'

EST 74 USAGE - I REAr
ENDTEST

END

&DISPLAY THE RETRIEVED RECORD:
MODULE DISPLAY

EST CENTRAL PROCESSOR USAGE - 16800 INS
LOOP 2 TIMES--

CALL ACCESS RECORD('D')
ENDLOOP

EN.-- N

'HE LOG A:,-- .C r...NG CILF: 0? THE TRANSAC- A.- . Ty
MODULE :LEANUP

-e..". ~ USAGE :Ns

6

I .,"

-Zfl

i*-RITf-r A iECORD TO -:-: 7
.!CDULE WRITE RECCRD(FlrF

EST. CENTRAL ?PRCCESS,.. 'A ;,"',,

TEST F:LE
CASE 'I

EST F! USAGE
CASE '~~~~EST 72J : =-

CASE ...
'EST .7 USAGE = It -

CASE 'A'
, EST 7 USAGE - -

CASE 'A'

EST L USAGE ,
* DENDTEST

. &VERIFY THAT THE CHANGE TO THE FLE
- ODULE VERIFY 'iRITE(FILE)

EST CENTRAL PROCESSOR USAGE - 29800 Z.NS
TEST FILE

CASE '71 '
EST F1 USAGE I READ

CASE 'F2'
EST F2 USAGE - 1 READ

CASE 'FY
EST F3 USAGE - READ

CASE '74'
EST F4 USAGE - I READ

* ENDTEST
END

. 3SWAP IN THE REQUIRED DATA AND CODE
MODULE SWAP IN

EST CENTRAL.PROCESSOR USAGE = 27900 :NS
EST SWD USAGE a I READ
EST SWC USAGE a I READ

END

&SWAP OUT THE DATA
MODULE SWAP OUT

EST CENTRAL PROCESSOR USAGE 2790(.NS

EST SWD USAGE 1 'dRTE

-END

!.7

Ii

The POD System Description File represents the basic spezification of

the sys;em wi'h the disk resident indices. Specf:ca_.y, the Global

Declara-ion Section defines FILE REQUET to account for the variability in

an arriving transaction's request to one of the files F1 - F4. The

Configuration Specification Section describes the organization of all of

the files, the mapping of the files to the disk:s, and :he characteristics
of the hardware. The Workload Specification Sectior je'nes a single

workload, DATA BASE USAGE, which has a load of 10,000 recuests/hour of

which 70' invoke module RETRIEVERECORD and 30% invoke module

UPDATE RECORD. This represents transactions RI-R4 and 71-C4 respectively.

The MPL parameter constrains the number of transactions the system

processes in parallel. The Module Specification Section represents the

system software. The function of each moduli i.i dcor'ib...d through the

comments in the System Description File.

Note, the above System Description File portrays tho system with the

disk resident index option only. In order to portray the system with the

memory resident indices, two changes to the System Description File are

required. First the workload specifications must indicate the reduced

number of message regions. Second, the ACCESS INDEX module need not

reference files Fl-F4 for the indices and incurs a savings of 90% in its

CPU processing requirement. These changes are depicted below.

M odified Workload Specification Section:

4 WORKLOAD.SPECIFICATION
WORKLOAD DATA BASE USAGE TYPE TRANSACTION

3
ARRIVAL RATT - I0000 &/HR
JOB STREAM RETF.IEVE RECORD 70

JDATE RfC0RD 301
END

-4

[,8

Modified ACCESS LNDEX Module:

MODULE ACCESS 1',IDEX
EST CENTRAL ?ROCESSOR USAGE -O48 "'S

END

Also, CALLs to the module ACCESS INDEX wer? chaiged to remove the

passed parameter since the parameter is no longer required.

Note, in order to distinguish between these two System Descri.tion

Files in the remainder of this discussion, we refer to the file

representing the disk resident option and the memory resident option by

file numbers 46 and 47 respectively. We are now in a position to invoke

the interactive facilities of POD to investigate the issues cited above.

The interactive session first investigates the performance of the system

t. with the disk resident index option and next with the memory resi.dent index

option.

9

:FT: FILZ CC" PLZTEZ

::PHICIPAL RESULTS :

WCRKLOAD REF::EDE ?S::ENCY -:X7~ URC'.G1FUT ^",

IDATABASE USA.GrE o"7 sE C Iv,000. ?v.R HOUF 64.60

-T.ZALI C?tJ Ur"lAT.?ON 646

SET DATA- BAEUSAGE ARRIVAL RATE 1 *4C

~''PRINCIPAL RESULTS :

WCRXL"OAD RESPONSE TII-:E REZ:IDEWJ'C Tv THFJUGHPUT c CPU

I DATA BASE USAGE 26.C4 SEC 1 F~ 1C ±50. ?tER HUR :12.75

TTCP? UTIL:iZATION 9 2. 7 le

SET E:~tl -PROCESSOR RATE

::r INCP_'AL RESULTS *

* ~ RLA A2~~3EL - P

SET DA4AR'A

'WM-A
RESPONSE

a -

STDATA BAE USAGE AaI L VT z4:51:

RINCZPAZ. RESULTS::

iW F. uL0AD RESPONSE :z- E S:DE::zT:M :!':: cucr G U j
1DATA EASE USAGZ O 0 SC 2.c . ~ ?E ~oI?

The data produced from this POD interactive session is summarized in Figure

A-I.

LOAD RESPONSE TIME CPU
ENVIRONMENT (per hr) (per sec) UTILIZATION

DISK RESIDENT INDEXES 10,000 1.16 64.6

MEMORY RESIDENT INDEXES 10,000. 1.01 51.4

DISK RESIDENT INDEXES 14,350 26.04 92.7

MEMORY RESIDENT INDEXES 14,350 20.09 73.8

DISK RESIDENT 1NDEXES,:: PUSCP UGRDE14,350 3.26 84.3
PLUS CPU UPGRADE

MEMORY RESIDENT INDEXES 14,'35 4.14 57.1
PLUS CPU UPGRADE

Figure A-!: Summ.ary nf hisulis

The results show:

o The system using disk recident indexes, while producing
acceptable levels of response currently, will be incapable of
.processing the expected future load with acceptable response
delay.

o 3light reduction in respcnse time is achieved by ur:ng memory
resident indexes over the disk resident indexes in op current
time frame. With the heavier workload anticipated in the future
0ime frame, thie reverse win bn exrected.

o 2. tne .:re time frn respons, time will be unac-e:tabie
unless :ne faster IPU z. cttainv.i. regartiozs of t:;e n6ex option
selec'1ei.

b 12

