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I. INTRODUCTION

This investigation is part of an ongoing research program to improve

the structural response modeling capabilities at the Terminal Ballistics

Division of the Ballistic Research Laboratory. Among the computer programs

used to model structural response at the BRL, the ADINA finite element code

has been used intensively since its acquisition in 1978, It is a well

i documented!,2,3  and widely wused 13,6 general purpose program for
calculating the static and dynamic responses of complex structures, with the

j . capability of modeling both geometric and material nonlinearities, In
t
!
i
1
!

| . particular, concerning the elastic-plastic behavior _of materials, the code

. ! employs the Prandtl-Reuss theory of plastic flow! with either the vonm
. Mises yield condition or the Drucker-Prager yield condition. Using the von
. Mises condition, linear isotropic hardening or kinematic hardening can be

modeled, while only elastic-perfectly plastic behavior can be modeled with
the Drucker-Prager condition. Although linear hardening is adequate for
situations where small amounts of plastic strain are involved, its use in
predicting the large strain response of materials exhibiting nonlinear
plastic behavior can result in considerable error. Hence, in order to
improve the modeling of strain hardening in the ADINA code, the task of
incorporating the Besseling-White sublayer model into the ADINA plasticity
' formulation was undertaken.

1. K.-J. Bathe, "ADINA - A Finite Element Program for Automatic Dynamic
Incremental Nonlinear Analysis,' Report 82448-1, Acoustic and Vibration
Lab, MIT, Dept of Mechanical Engineering, Sep 75 (rev. Nov 79).

; 2. K.-J. Bathe, "Static and Dynamic Geometric and Material Nonlinear
Analysis Using ADINA,'" Report 82448-2, Acoustic and Vibration Lab, MIT,
Dept of Mechanical Engineering, May 76 (rev. May 77).

H _ 3. M.D. Snyder and K.-J. Bathe, "Formulation and Numerical Solution of
' Thermo-Elastic-Plastic and Creep Problems," Report 82448-3, Acoustic and
Vibration Lab, MIT, Dept of Mechanical Engineering, Jun 77.

4. K.-J. Bathe (ed.), "Applications Using ADINA," Proceedings of the ADINA
Conference August 1977, Report 82448-6, Acoustic and Vibration Lab,
MIT, Dept of Mechanical Engineering, Aug 77.

et vt BT OGP

“ . 5. K,-J. Bathe (ed.), "Nonlinear Finite Element Analysis and ADINA," Pro-
e ceedings of the ADINA Conference August 1979, Report 82448-9, Acoustic
b4

and Vibration Lab, MIT, Dept of Mechanical Engineering, Aug 79.

IS 6. K.-J. Bathe (ed.), "Nonlinear Finite Element Analysis and ADINA," Pro-
! § ceedings of the 3rd ADINA Conference, MIT, 10-12 Jun 81 or Computers
R & Structures, _1_3: No. 5-6, 1981,

;
% 7. R. Hill, The Mathematical Theory of Plasticity, Oxford University Press,
; London, 1950, pp. 38-45.
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The Besseling-White model, also called the mechanical sublayer model,

has been employed for some time in a number of structural response

codes®~11 a4nd in particular in the PETROS series of shell response
codesl2-15 developed for the BRL. This model simulates nonlinear
strain hardening by summing the stresses from an array of elastic-
perfectly plastic elements, called sublayers, for the material stress at a
point. Nonlinear hardening is modeled in a piece-wise linear manner by each
sublayer yielding at a different stress intensity, with the sublayer yield
strength being determined by a polygonal fit to the uniaxial stress-strain

i - curve. .
¢
i
{
]
)

———

8. H.A. Balmer and E.A. Witmer, "Theoretical-Experimental Correlation of
Large Dynawic and Permanent Deformations of Impulsively-Loaded Simple
Structures," Tech Docu Rpt No. FDL-TDR-64-108, Jul 64, Air Force Flight
Dynamics Lab, Wright-Patterson AFB, Ohio.

9. J.M. Santiago, H.L. Wisniewski and N.J. Huffington, Jr., "A User's
Manual for the REPSIL Code,' BRL Rpt No. 1744, Oct 74, USA Ballistic
Res Lab, APG, MD (AD A003176).

10. B. Hunsaker, Jr., D.K. Vaughn and J.A, Stricklin, "A Comparison of the

| Capability of Four Hardening Rules to Predict a Material's Plastic

{ Behavior," Second National Congress on Pressure Vessels and Piping,
ASME, San Francisco, CA, 23-27 Jun 75.

11. R.W.H. Wu and E.A. Witmer, "Analytical and Experimental Studies of Non-
linear Transient Responses of Stiffened Cylindrical Panels," AIAA
Journal, Vol. 13, No. 9, Sep 75, pp. 1171-1178.

12. L. Morino, J.W. Leech and E.A. Witmer, "PETROS 2: A Finite-Difference
Method and Program for the Calculation of Large Elastic-Plastic

Dynamically-Induced Deformation of Multilayer Variable-Thickness Shells"
BRL Contract Rpt No.l12, Dec 69, USA Ballistic Res Lab, APG, MD (AD 708774).

13. S. Atluri, E.A. Witmer, J.W. Leech and L. Morino, "PETROS 3: A Finite-
Difference Method and Program for the Calculation of Large Elastic-
Plastic Dynamically-Induced Deformations of Multilayer Variable-
Thickness Shells,'" BRL Contract Rpt No. 60, Nov 71, USA Ballistic
Res Lab, APG, MD (AD 890200L).

14, S.D. Pirotin, B.A. Berg and E.A. Witmer, "PETROS 3.5: New Developments
and Program Manual for the Finite-Difference Calculation of Large
Elastic~Plastic Transient Deformations of Multilayer Variable-Thickness
Shells," BRL Contract Rpt No. 211, Feb 75, USA Ballistic Res Lab,

APG, MD (AD A007215).

15. S.D. Pirotin, B.A. Berg and E.A. Witmer, "PETROS 4: New Developments
and Program Manual for the Finite-Difference Calculation of Large
Elastic-Plastic, and/or Viscoelastic Transient Deformations of
Multilayer Variable-Thickness (1) Thin Hard-Bonded, (2) Moderately-Thick
Hard-Bonded, or (3) Thin Soft-Bonded Shells,” BRL Contract Rpt No. 316,
Sep 76, USA Ballistic Res Lab, APG, MD (AD B014253L).

8
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The sublayer model has been programmed in the ADINA code as an
additional material option (model 12). Presently, it is available for use
only with the explicit (central difference) time integration method. 1In
! order to insure that the sublayer model is correctly implemented in the code,
parallel calculations have been performed using the sublayer model, the
kinematic hardening model, and the isotropic hardening model to represent a
linear strain hardening material. The correlation of deflections using the
sublayer model and the kinematic hardening model 1is excellent. The
correlation between the sublayer model and the isotropic hardening model
although somewhat poor, as is to be expected, is still reasonable.

w-
vam -

This report describes the formulation of the sublayer model and its
. implementation in the ADINA code. It also gives the results of the

. comparison between the sublayer model, the ADINA kinematic hardening model,
and the ADINA isotropic hardening model. The material in this report has
been published in preliminarz form in the Proceedings of the First Chautauqua
on Finite Element Hodeling.l

— i —

II. FORMULATION OF THE MECHANICAL SUBLAYER MODEL

i The Besseling-White or mechanical sublayer model originated with the
| concept by Duwezl7,18 ,f modeling nonlinear plastic hardening and
unloading behavior by superposing the responses from a continuous aggregate
of elastic-perfectly plastic elements, First, Whitel9 and then
Besseling?0 in a more general setting extended Duwez's one-dimensional
model to three dimensions and 1laid the basis for using the mechanical
sublayer model as a computational procedure by proposing a discrete array of
elements or sublayers., The computational use of the mechanical sublayer
model was first carried out at MIT by Balmer and Witmer® in analyzing the
response of structures using the finite difference method.

——

16. A.D. Gupta, J.M. Santiago and H.L. Wisniewski, "An Improved Strain
Hardening Characterization in the ADINA Code Using the Mechanical Sub-
layer Concept," First Chautauqua on Finite Element Modeling, Harwichport,

I
bt
B MA, 15-17 Sep 80, pp. 335-351.
! E 17. P. Duwez, "On the Plasticity of Crystals," Physical Review, Vol. 47,
i 1935, pp. 494-501.

- | o

,;] f 18. H.F. Bohnenblust and P, Duwez, "Some Properties of a Mechanical Model

| of Plasticity," J. Appl. Mech., Vol 15, 1948, pp. 222-225.

1 ‘ 19. G.N. White, Jr., "Application of the Theory of Perfectly Plastic Solids
¥ ; to Stress Analysis of Strain Hardening Solids," Tech Report 51, Graduate
o Div of Applied Math., Brown University, Aug 50.
N
-

oo 20. J.F. Besseling, "A Theory of Plastic Flow for Anisotropic Hardening in
P Plastic Deformation of an Initially Isotropic Material," Report S. 410,
‘ i Nat. Aero. Rsch. Inst., Amaterdam (NLL), 1953.
| 9
y
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The mechanical sublayer model assumes that the physical stress ai' at a
point in the material can be decomposed into a weighted sum of N gublayer

stresses o°, :
1)

N
:2 : o o
°ij = w Cij (1)
a=1
with * the sublayer weighting factors. Sublayers are assumed to be
1 3
. elastic-perfectly plastic and to experience the same physical strain eij . .

They share identical elastic constants, but have distinct values for their
yield strengths. The values of sublayer yield strengths and weighting
j factors are determined from a polygonal fit to the uniaxial stress-strain
i curve (for example, see Figure 2), with the total number of sublayers N equal
to the number of nonzero slope straight-line segments employed.

We can briefly describe how the sublayer model simulates nonlinear
hardening by examining the case of uniaxial stress. Upon initial loading,
. ' all the sublayers respond elastically, but as loading proceeds sublayers will
sequentially become plastic as they each reach their yield limit. Overall,
this results in progressively diminishing values of the stress-strain modulus
as the total stress increases, as illustrated in Figure 1. Upon unloading
and reversal of loading, all the sublayers initially become elastic and
remain elastic until the sublayer with the lowest yield stress again becomes
plastic, whereupon the process repeats itself in the reverse direction, but
with one significant difference: Straight-line segments are now twice the
length of the corresponding segments on the initial loading curve due to each
sublayer stress having to change from a given value of the yield stress to
its negative value rather than from zero to the given value. Thus, the
sublayer model exhibits a type of kinematic hardening behavior firat proposed
by Masing2l that has subsequently achieved acceptance in modeling
cyclic loading.22,23

-"3 21. G. Masing, "Eigenspannungen und Verfestigung beim Messing," Proceedings
| 2nd Intern. Congress for Appl. Mech., Zurich, Sep 1926.

a 22. 2. Mroz, "On the Description of Anisotropic Workhardening,” J. Mech Phys
, Solids, Vol. 15, 1967, pp. 163-175.

23. Z. Mroz and N.C. Lind, "Simplified Theories of Cyclic Plasticity,” Acta
Mech., Vol. 22, 1975, pp. 131-152,

10
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A. Derivation of tle Sublayer Equations

An incremental nlasticitv law is used to calculate the sublaver

o

stresses. For a given sublayer «, the sublayer stress increment Aoij is
related to the elastic strain increment Ae?5 through the isotropic Hooke's
law for the material,
a E €a v S
.. = —— | A€ + ..
AOIJ 1+v ij 1-2v Aekk 613 (2)

where £ is Young's modulus and V is Poisson's ratio. The strain increment

. . . . €
A is the sum of the elastic sublaver strain increment Ae?. and the

€. .
ij o
plastic sublaver strain increment Agij’

_ [Ca Po
Aeij = Aeij + Aeij (3)

where, as already mentinned, the total strain increment Aeij is the same for

all sublayers at the noint. Each sublaver is assumed to obev the von Mises
vield condition:

2

s*. s® ) (8)

ij "ij

¢ )

2
= -5-(0y

where o; is the sublayer vield stress and
=% -1 % 6 (5)
. 3 Ok 05

is the sublaver deviatoric stress. Should the material exhibit strain rate
sensitivitv, the vield stress for each sublaver can be made rate dependent
through the relation

o 1/Na

g = % 1+ (é/Da)

o
y (6)

where og is the atatic sublaver vield stress, ¢2 is the second invariant of

the deviatoric strain rate tensor, and N®, N* are empiricallr determined

constantsza which generally are assumed to be identical for all sub-
layers. To complete the set of equations, the associative flow rule is
aprended in order to determine the plastic strain increment:

24, N. Perrone, "Response of Rate-Sensitive Frames to Impulsive Load," J.
Engr. Mech. piv., ASC¥ Vol. 97, No. EMl, Proceedings Paper No. 7890,
Feb 71.

12
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.= A% s%, (7)

where AAa is the usual plastic flow parameter that is adjusted to keep the

stress atate at the vield value. Comhining equations (2}, (3), and (6) we

obtain the incremental equation used by the sublaver model to determine the
sublayer stresses:

' . Q E \Y) _ Ja o
| 805 = Tov | 2845 * Toov Bekk Sij ar" Sy, (8)
- where for convenience we replace A% by
o _ E o
AL = Tov ANT . 9)

Equations (1), (4), (5), (8), and, when treating a rate sensitive
material, equation (6) are the basis for the mechanical sublayer plasticitv
calculation. When the sublaver stress rate lies inside the vield surface, as
determined by (4), A% in (8) is set equal to zero: otherwise AX® is detera
mined by the requirement that the resulting stress state satisfy the vield
condition. The details of determining the sublaver weighting factors w® and

the static sublaver vield stresses dg from the polygonal fit to the uniaxial

stressn.strain curve are described in References 8 and 12.

B. Computational Procedure

The computational procedure assumes that at a given time sten or cycle n

in the code's computational algorithm the strain increments Aeij from the
previous to the current cvcle and the sublayer stresses ogj (n-1) at the
previous cycle are known for all Gaussian integration points. Using this
information the sublayer model computes first the current sublayer stresses

® (n) and from these the current phvsical stresses O, ij {n) bv means of the

ij
algortthmzs which we now outline.

25. J.M. Santiago, "Formulation of the Large Neflection Shell Equations for
lIse in Finite,Difference Structural Response Codes," RRL Rpt No. 1571,
Feb 72, VISA Rallistic Res Lab, APG, MD (AD 740742).

13
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Starting with the sublaver having the smallest value of the yield stress,
a trial elastic stress increment Ag.j is computed bv assuming that no plastic

flow occurs during the increment so that AA* = 0 and equation (8) becomes:

e _E v
8935 = Ty [Aeij * T2y A6 Gij] : (10)

Adding the elastic stress increment to the previous sublaver stress, a trial

sublayer stress for the current cycle is obtained

Ta a e
oij = oij(n-l) + Acij . (11)

Writing the von Mises yield function for the sublaver as

a, a6, _a o 1 ,.0.2 2, 42

¢ (°ij) =035 %45 - 3 (040 - 3 (oy) (12)

the trial sublayer stress is checked by substitution in the von Mises yield.
T .. . . e

1f ¢a(0§j) <0, then the addition of the elastic stress increment Aoij

results in a stress state inside or on the yield surface, and hence the trial

sublayer stress has given the correct sublaver stress for the current cycle:

T
o _ la
oij(n) = Uij . (13)

T
If, however, ¢a(o?j) > O,then vielding occurs, and according to (8) the
trial sublayer stress needs to be corrected to obtain the current sublayer

stress:

a _ Ta Yo o0
oij(n) = 0,. - A\ Sij(n-l) . (14)

) ]

To determine the flow parameter A)X* , equation (14) is inserted in the von

Mises vield function (12) and, in order to insure that the resulting sublayer

stress state is on the yield surface, the function is set equal to zero; 1i.e, q
¢°(o?j(n)) = 0. This determines a quadratic equation in ARQ (Reference

25), which is solved for the smallest positive root:

14
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M- 3 - (%) -5 (15)
where

- & (s}
A = §3;(n-1) s§5(n-1)

T
B = %, s% (n-1)
ij “ij

(@]
n

a, Ta
¢ (oij) .

In some instances when the strain increment is too large, the discrimi-
nant under the radical in equation (15) can become negative due to the trial
sublaver stress causing a state too far outside the vield surface. 1In such
instances a subincremental iterative procedure described in Reference 9 is
employed to reduce the strain increment to a number of subincrements in order

to obtain a real solution for AX“.

Once the plastic flow parameter A% s determined, the sublayer stress
o?j (n) is computed from (14) and is stored for the next computational cvecle.
This orocedure is repeated until all the current sublaver stresses at the
given integration point are found, and then these are summed with the
approoriate weighting factors to determine the physical stress at that point
for the current cycle

N

g..(n) = Zw“ a‘;j (n) . (16)

1
a=1

C. Program Implementation

The ADINA code is structured to accept nonlinear material models not
currently included in the material librarv. No changes to the program are
necessary except for inserting the user supplied material model subroutine in
terms of the appropriate source program call variables described
in Reference 1.




— e ——
-

The sublayer model has been inserted as material model 12 (subroutine
EL3D12), which is intended for triaxial states of stress. As presently
programmed the sublayer model can only be used for explicit time integration.
The subroutine calculates the current stresses from the strain increments and
the previous stresses as explained earlier, but has not as yet been
programmed to calculate the stress-strain matrix (subroutine MIDEP3) needed
to determine the stiffness matrix required for implicit time integrationm.
Because the sublayer stresses at each cycle must be stored in order to
perform the stress calculation for the subsequent cycle, provision for
storage must be made in accordance with the number of sublayers used. This
means that when more than one sublayer is employed the sublayer model will
require more storage than the ADINA kinematic hardening model.

I1I. DYNAMIC RESPONSE ANALYSIS OF PLATE

In order to evaluate the ability of the mechanical sublayer model as
implemented in the ADINA code to reproduce the dynamic response of structures
with nonlinear material characteristics, calculations have been undertaken to
compare code predictions with known experimental results. Some preliminary
results from this investigation are now available concerning a comparison
between the sublayer model and the existing ADINA hardening models.
Employing each plasticity model, the code was used to solve a problem
involving the large transient deflection of an impulsively 1loaded,
clamped-edge, circular flat plate.

The problem is taken from an experimental report26 and concerns a
plate 6.35mm thick with a radius of 63.5mm, made of 2024-0 aluminum. This
material exhibits a considerable degree of nonlinear hardening which can be
closely approximated by the sublayer model as illustrated in Figure 2.

However, for purposes of comparing the sublayer model (model 12) to the
isotropic hardening model (model 8) and the kinematic hardening model (model
9), ve need only consider the following material responses: purely elastic,
elastic-perfectly plastic, and elastic-linear strain hardening. Hence, for
this purpose the following values of the material properties were used:

o (yield stress = 85.5 MPa
g (Young's modulus) = 73.7 GPa
Ep (strain hardening modulus) = 6.85 GPa
v (Poisson’s ratio) = 1/3
p (mass density) = 2775 Kg/m3

The deformation was initiated by subjecting the plate to a uniform impulse
velocity of 53.09 m/s.

26. E.A. Witwmer, F. Merlis and S.D. Pirotin, “Experimental Studies of
Explosively-Induced Large Deformations of Flat Circular 2024-0 Aluminum
Plates with Clamped Edges and of Free Thin Cylindrical 6061-T6 Shells,"
BRL Contract Rpt No. 134, Jan 74, USA Ballistic Res Lab, APG, MD
(AD 917518L).
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By passing a symmetry plane through a diameter, only half the plate had
to be treated. Twenty 3-dimensional brick elements were used to model half
the plate, as illustrated in Figure 3. Fach element used 16 nodes except for
those bounding the pole which used only 12 nodes, giving a total of 142 nodes
for the problem. Two Gaussian integration points were employed along each
coordinate direction, making a total of eight points per element. All nodes
along the circular boundary were assumed to be fixed. Explicit time
integration was used for all calculations and the total Lagrangian
formulation was used for the nonlinear geometric analysis.

A. Elastic Comparison

The purely elastic response was modeled by inéieasing the value of the
yield stress g to a level insuring elastic behavior only.(See Figure 2.) The

elastic calculations were performed using first a linear and then a nonlinear
geometric analysis.

For the linear analysis, the elastic response of the sublayer model
(model 12) was compared with the response of the ADINA linear analysis model
(model 1) and the elastic response of the ADINA strain hardening wmodel
(either model 8 or 9, since the isotropic and kinematic models coincide for
elastic response). The numerical results from the three models were found to
coincide exactly. This is illustrated in Figure 4 for the history of the
deflection at the pole.

For the geometric nonlinear analysis the elastic responses of the
sublayer model and the strain hardening model were compared. Again, it was
found that the models gave coincident numerical results, as shown in Figure 4.

Hence for both linear and nonlinear geometric analyses, the sublayer
model and the ADINA models are elastically consistent. Moreover, it is
observed that for the given problem, nonlinear geometric effects are already
subgtantial at levels of maximum deflection in the order of 60% of the plate
thickness,

B. Elastic-Perfectly Plastic Comparison

For the elastic-perfectly plastic comparison, the yield stress was
returned to the value of oy = 85.5 MPa and the strain hardening modulus Eq

was set equal to zero, as shown in Figure 2. The sublayer model (with omly
one sublayer), the isotropic hardening model, and the kinematic hardening
model were compared using the nonlinear geometric analysis.

Excellent correlation between the results of the three models was found
although they no longer coincided numerically, As portrayed in Figure 4,
the deflection history curves for the models overlap. Hence, for elastic-
perfectly plastic behavior, the sublayer model and the ADINA plasticity models
give the same results physically. Also, comparing the elastic-perfectly
plastic response with the purely elastic response, we see the dissipative
effects of plastic flow in the reduced and smoothed deflection peaks at late
times.
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C. RElastic-Linear Strain Hardening Comparison

To model strain hardening behavior, the strain hardening wmodulus was
reset at the value of By = 6.85 GPa. Two sublayers were used with the
yield stress of the second sublayer raised to a value high enough to insure
its elastic behavior, so that only the first sublayer could become plastic.
This insured that the sublayer wmodel would exhibit linear hardening behavior,
so that a meaningful comparison could be made with the standard ADINA models.
The nonlinear geometric analysis option was used for the comparison.

The correlation between deflections from the sublayer model and the
kinematic hardening model is still very good, as illustrated in Figure 5, but
the curves no longer overlap as they did for the perfectly plastic case. The .
agreement between the values of the stress components at Gaussian integration ;
points ranged in the order of one to three significant figures. ;

On the other hand, the deflection using the isotropic hardening model
vas only in fair agreement with the deflections from the other two models, ;
although still physically acceptable. However, this is hardly surprising i
since the isotropic model bases its plasticity calculation on the concept of
an expanding yield surface rather than a shifting yield surface as do the
other models. Hence, vhenever a significant amount of plastic flow reversal
occurs, the models can be expected to predict different responses.

Calculations were also performed using four sublayers to model the
stress—-strain curve as shown in Figure 2., However, for the level of loading
imposed on the plate, most of the plastic flow was experienced by the first
sublayer, so that the results were graphically indistinguishable from those
of the two-sublayer model.

IV. CONCLUSIONS

The wmechanical sublayer model has been implemented in the ADINA finite
element structural response code, extending its capability to wodel
elastoplastic constitutive behavior to nonlinear kinematically hardening
materials., The model is formulated to treat triaxial states of stress. It
is currently programmed for use in both the linear and nonlinear geometric
analyses of transient response employing explicit time integration. The
sublayer model subroutine has been exercised, and calculations using the
sublayer model and the standard ADINA hardening models show that results are
in close agreement and appear physically reasonable. {

A sublayer model for biaxial states of stress is currently being devised
to treat plane stress problems. When ready, this model will also be
implemented in the code. It now appears that the sublayer model can be
easily reformulated to permit implicit time integration. Further effort is
underway to validate the model with available experimental results and with
predictions from reliable finite difference response codes, such as REPSIL
and PETROS!4,15 Eventually, the sublayer model can be expected to
replace the existing kinematic hardening model, thereby considerably
extending the material modeling capabilities of the ADINA code.
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APPENDIX A

PROCRAM LISTING OF SURLAYER MODEL SUBROUTINE
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1. Flement Group Control Card (2014) Page X.5 (Ref. 1)

Columns Variable
Model 57-60 NPAR(15) 12, for sublayer model
» NCON 65-68 NPAR(17) 2, for sublayer model
: IDW 77-80 NPAR(20) (Number of sublayers x 6) + 7
: 2. Material Property Data Cards Page X.11 (Ref. 1)
¢ a. Material number card
No change
b. Material Property Card Page X.11 (Ref. 1)
Columns ' Variable %
1-10 PROP{1,N) Young's modulus, F %
11-20 PROP(2,N) Poisson's ratio, V i
3. Sublaver Data
a. (NSUBL(ILAY), ILAY = ], NUMMAT) (1615)
! where
NSURL(ILAY) = the number of sublavers in layer ILAY.
NUMMAT = NPAR(16) Number of different sets of material properties.

b. (SIG,DZ(ILAY,ISB), ISD = ] NSBL) (5E£15.6)

1SG,DZ = the magnitude of the ordinate of the l-dimensional stress-~
strain curve,

NSBL = Number of sublavers in the laver (material) in question.
ILAY = Material in question.
c¢. (EPS,PZ(ILAY,ISR), ISB=]1, NSRL) (5F15.6)

EPS,DZ = the magnitude of the abscissa of the l-dimensional stress-
strain curve,.

NSBL = Number of sublayers in the layer (material) in question.

FRECERING PAGE BLANK-MOT FI
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EVALUATE STRESS INCREMENTS AND STRESSES
MODEL =12
THE FOLLOWING VARIABLES ARF USED IN THIS SUBROUTINE

SI6 PREVIVUUS STRESSES
EPS PREVIOUS STRAINS

STRESS CUKRRENT STRESSES (TO 8t CALCULATED)
STRAIN CURRENT STRAINS (G I V E N)
IPEL = 1y MATEWRIAL FLASTIC (INITIAL VALLE) -
= 2¢ MATERIAL PLASTIC
DELEPS INCREMENTAL STRAINS
DELSIG INCREMENTAL STRESSESe CALCULATED ON THE ASSUMPTION
OF ELASTIC BEMAVIOK DUKRING STRAIN INCHEMENT (DELEFS)
L NO, OF SUR=INCWHEMENTS
LC CHECK ON SUB=INCREMENTS
PROP (L) YOUNGS MODULUS
PROP (2) POISSONS RATIO

AN DHTNAOOHNOAOO

TR TRIAL STRESSES
TC CORKECTOR STHFSSES
T™ STRESS PER/SURLAYER

DIMENSTON PHOP (1) sEPS(1)eSIGINSBL )
COMMON /EL/ IND¢ICOUNT4NPAK(20) ¢NUMEGINEGL sNEGNL 9 IMASS e TDAME

: 1 ISTAToNDOF oKL IN9 JIEIGeIMASSNy [IDAMPN

f COMMON /VAR/ NGyMODE X9 IUPDT oKSTEP ¢ ITEMAXy IEQREF 9 ITE9KPR]

* 1 IKEF o IEGUITy IPRIWKPLOTN9KPLOTE 4
COMMON /MTMDID/ D(36) +STRESS(6) «STRAIN(O) ¢ IPTINELSIPS

: COMMON /MATER/ COEFF (6) vSIGMA(A) oELET(6)
COMMON /MATEPI/ NSURL (4)¢SIG102(495) ¢EPSIDZ(4+5)
COMMGN /DISDR/ DISD(9)
COMMON /ELSTP/ TIME.IDTHF
DIMENSION DFLSIG(6) ¢DELEPS(6) TR (6)9TC(6)9TM(6)9STATE(2)
EQUIVALENCE (NPAR(3) ¢ INDNL)
DATA STATE /2H Ee2H*P/

IPELD=]PEL
IF(IPT «NE, 1)GOTO 30
L od eseee CALCULATION OF MATERIAL CONSTANTS 0000000000000 00000s
YMSPROP (1)
PVePKOP(2)
CALL MATPRO (MATP«PKOP)
SIGM=SIGMA(])

F ‘C’ORII [
AlsYM/(]l,¢PV)
Cl=al/2. y

AlzAl/(le=2,4PV)
bBlsA)l®pPV
Al=Al=R]
C 1o CALCULATE INCHEMENTAL STRAINS

30 DO 32 I=]e6
STRESS(I)=0.0
32 CONTIMNUE
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IF(INDNL LEQ, 3)6GOTO 36

c TOTAL LAGRANG]AN
DO 34 =146
34 DFLEPS(I)aSTRAIN(I)=EPS(])
GOTO &0
C UFDATELU LAGRANGIAM

36 D0 38 I=1l.6
' 38 DELEPS(I)=STRAIN(I)

; 40 JPLAST=0
: . DO 250 ISk=),NSBL
| C STRESS PER SUBLAYER SIG(1SB.I)
. 00 43 I=146
v TM(I)SSIG(ISK])
&3 CONTINUE
. C KPRI=0 SKIP CALCULATION JUST PHINT STRESS

! IF(KPR]I EQ, 0)GOTC 228

L=1

EL=l,

SIGMSU=SIGMA (ISR)®SIGMA(TISH)®FACTOR®FACTOR

2¢ CALCULATE TRIAL ELASTIC STRESS INCREMENTS

o000

; DELSIG(1)=A1#DELEPS(1) « H1%(DELEFS(2) sDELEPS(3))
\ DELSIG(2)=A1#DELFPS(2) + B1%(DELEPS (1) eDELEPS(3))

DELSIG(3)=A1#LELEPS(3) ¢ B1%(DELEPS (1) +DELEPS(2))
, DELSIG(4)=C1#DELEPS (4)

DELSIG(5)=C1#DELEFS (5)

DELS16(6)=C1#DELEPS (6)

50 SUBINC=1./EL

45 LC=]
' C 3, CALCULATE TRIAL ELASTIC STRESSES

D0 60 Ixzl.64

TRII)=TM(I) +NELSIG (1) *SUEINC
60 CONTINUE

TAUR=ZTR(1)¢TR(2)+TR(3)

6, CHECK THROUGH VON MISES=HENCKY YIELD CRITERIA
YIELD PHI
CZ2TR(1)#924TR(Z2)#R24TR(3) 48242 ,00(TR(A)#R2eTR(S)®®24TR(6) 87 )=
1 (TAUR®#242,08S16M50) /3,0

(g NeXel

TEST YIELD CONDITION

OO0

HLAMDA=(0,0
IF(CZeLESD, JAND, L +EQ41)GOTO 215
IF(CZ +LE. 0,)GOTO 110

Se COMPUTE NECESSARY CORRECTOR

(s Nalel

! : SME(TM(1)eTM(2)eTM(3)) /3,0
TC(1)=TM(]) -SM
TC(2)aTM(2) =8M

31




TC(I)BTM(3) =SM
TC(a)mTM (L)
TC(5)=TM(S)
TCle)sTM(A)
TAUCSTC(1)eTC(2)+TC(I)

-

6o CALCULATE PLASTICITY PARAMETER FROM WUFFINGTOM MOODEL

(2 X oNg]

: AZsTC(1)®®2eTC(2) %024 TC(3)P#202,0%(TC4)92eTC(5)%024TC(6)882)
' 1  =(TAUC®®2/3,0) .
B2=TC(I)®TR(1)STC(2)9TR(2)¢TC(I)TK(3)¢2,00(TH(4)®TC (&)

! N 1  TR(5)®TC(S)+TR(6)*TC(6))=TAUC®TAUR/3,0

LISCREBZ#K2=a24C2 -

TEST A7

IF AZ IS NEGATIVE = PWINT FRRUK MESSAGE
IF AZ 1S ZEW®O e SUR=INCREMENT

IF AZ 1S POSITIVE « CONTINUE

QOO ON

IF(AZ) 8041505100

B0 WRITE (€090)

90 FORMAT(930404Xe%A2 NEGATIVE AT/)
GOTO 180

TEST DISCHIMINANT
IF DISCR IS NEGATIVE SUH=INCRENMENT

100 IF(DISCR LY, 0.0)60T0 150

TEST RZ
IF BZ IS NEGATIVE Ok ZERO SUB=INCREMENT

IF(BZ JLEe 0,0)60T0 150
COMPUTE MHLANRDA
HLAMDARCZ/ (RZ2¢SQRT(DISCR)Y)
Te EVALUATE SUBLAYER RELIEVED BLASTIC STKESSES

A ——
OO0 O 0000 OO0 0

110 00 120 I=1.6
TM(I)STR(I)=HLAMDASTCI(])
120 CONTINUE

c
l c o
c CHECK THE SUB=INCREMENT NUMRER
L c
il IF(LC.EQ,L) GOTO 210 .
LCulLCel
60 Y0 SO
c
¢ MAKF SUA=INCREMFNTS SMALLER
c
150 Lsie]
ELsL
c
; \ c CHECK MAXIMUM NUMBEK OF ALLOWABLE Sub=INCREMENTS
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IF(L +LE., 100)GOTO 45
WRITE(64170)
170 FORMAT (*3STRESS CALCULATIUM UNSATISFACTORY (100 SUR=INCHEMENTS)
1 /)
160 WRITE(6+3000) ISBeLoLCINELeIPTSTIME
3000 FORMAT (' SURLAYERSY,J4y? SLUB=INCREMMENT LEtyJés? LCug]6,
1% ELEMENT NUMBEFRE'3J69? JTPOINTEYoJaue? TIMES?eE])15,8)
WRITE(0e3008) CZoA2.R2
3005 FORMAT(? CZ39¢F )50 AZm0,£ 15,800 RZ=eE]5.H)
WRITE(6¢3010) (SIG(ISBel)e]=1e6)
3010 FORMAT (v SIG(ISBel) 46F15H.H)
PRITE(603020) (TR(I)oI=len)
3020 FORMAT (' Tk 0,6E15,K)
' WRITE(Ae3021) (TC(1)eI=1e6)
302]1 FORMAT (v TC ¢,6E15.8)
WHITE(603022) (TM(I)el=leb)
3022 FORPAT(® Tk 1,6L]15,.,8)
WRITE (6¢3023) (DELSIG(I)eI=lse)
3023 FORMAT (v DELSIG *96E15,.8)
STOP ¢STRESS CALCULATION UNSATISFACTORY?

o REACHED PLASTIC SOLUTION
210 IPLAST=IPLAST])
6OTO 225
C ELASTIC T £QUALS TRIAL TR PER SUBLAYER

215 00 220 I=1.h
T™(I)=TRID)
220 CONTINUE
C STRESS ROTATION [S APPLIED IN LARGE DISPLACEMENT/STRAIN
C
225 IF (IMNUNL.NE,.3)GOTO 226
OMEGAL=sDISN (4)=D1ISD(8)
OMEGAZsUDISD(S)=D]ISD(#)
OMEGAJ3=DISD(7)=D1SD(Y)
TM(1)aTM(])eSIG(ISReA)SUMEGAL*SIG(ISHIS) ®*UMEGAR
TM(2)aTM(2)=S1G(ISR4)*OUMEGAL*SIG(]ISA6) ®*OMEGAS
TM(I)BTM(3)=SIG(ISheS)®0MEGAR=SIG(ISBe6) ®OMEGAD
TM(4)aTM(4)+,50 (OMEGAL®(SIGLISA2)=S1G(1SBe1))e
1 OFEGAI®SIG(ISReS) sOMEGAR®SIG(ISBe6))
TM(S)BTM(5) 6,5 (OMEGA2®(SIGIISEeI)=SIG(ISRe)) )@
)| OMEGAL®SIG(ISHI6) =OMEGAI®SIG(]ISBes))
TM(6)STM(6) ¢ 5@ (OMEGAI® (STIG(1ISReI)=SIG(ISEBe2) )~ d
1 OMEGA2®SIG(IShebs) =OMEGAL®SIG(ISBeY))
226 IF (JUPDT ,NE, 0)GOTO 228

STORE SURLAYER STRESS TM(l) IN SIG(IS8eI) FOR NEXT STEP

OO0

00 227 Is=l.h
SIG(ISheI)mTM(])
227 CONTINUE

8¢ CALCULATE TOTAL STWESSES FROM SUBLAYEKR STRESS

OO0

226 DO 230 I=].6
STRESS(I1)sSTRESS(I)eTM(I)SCOEFF (ISKH)
230 CONTINUE
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o0 o000 (2]

C

250 CONT]INUE

vseeee CALCULATION OF ELASTIC=PLASTIC STRESSES oseselE N D
IF(KPRI ,tQ, 0)GOTO 700

IPELD=)

IF(IPLAST .GY. O0)IFELD=2

UPDATING

IF (JUPDT.NFE,0)GOTO 615
IPEL=IPELD
'O 610 1=1+6

Al EFS(I)=STRAIN(]Y

615 FRETURN
PRINTING OF STPESSES

700 IF (IFKIFU,N 4ANDs IPT,FL.l) WHITE (6¢2100) NEL
9. CALCULATE HYDROSTATIC AND DEVIATORIC STRESSES

SM= (STRESS (1) +STRESS(2)+STFESS(3))/3.0
SX=STHESS (1) =SM

SY=STHFSS(2) =M

SZ2=STKESS(3) =SN

FTAZ & & (Sxod#zeSY®#aze57007) o

1 STHESS(4)*#2 o STRESS(L)®®2 o STRESS(6)*e2
FTAZSOQRT (3.,#FTA)

IF (INUNL.NE,?) 6O TO 800

IN TOTAL LAGPANGIAN FONMULATION CALCULATE CAUCHY STRESSES
1IF (1FK]IEQ.0)

1 WRITE (6e¢2200) IPTeSTATE(IPELD) oSTRESSeFTAGLeLC

CALL CalCH)

800 IF (IPKI.EQ.N)
1 WRITE (642200) IPTeSTATF(IPELD) ¢STRESSeFTAsLILC

RETUKRN

2100 FOWMAT (/16H ELEMENT STHESSeYUXol0HEQUIVALENTY
1 131h NUM/IPY STATE STRESS=XX STRESS=YY
25~22 STRFSS=XY STRESS=X?2 STRESS~Y2 STRESS
3¢ LC /1s)

2200 FORMAT (53 0JP o1 XeA2¢OHLASTICIIXo6E]1 0060l ReF)lo,693X0]13¢5Ne]3)
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LIST OF SVMROLS

empirically determined constants in the strain rate equation.
Young's modulus (GPa).

tangent strain hardening modulus (GPa).

deviatoric stress tensor at the ath sublaver.

Xronecker delta.

second invariant of the deviatoric strain rate tensor.
physical strain at a point,

hydrostatic comnonents of atrain.

Poisson's ratio.

mass density (Ke/mJ).

physical streas at a point (MPa).

hydrostatic components of the sublaver stress (MPa).

sublayer stress at the ath sublaver at the current cycle (MPa).
sublayer stress at the ath sublaver at the previous cycle (MPa).
trial sublaver stress (MPa),

sublaver vield stress (MPa),

static sublayer vield stress (MPa).

von Mises yield function.

sublayer weighting factor.

strain increment.

plastic flow parameter.

sublayer stress increment (MPa).

elastic stress increment (MPa).
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