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ABSTRACT

This paper is concerned with the evaluation of algorithms

used by passive infrared sensors to discriminate between signals

due to target sources and those due to background clutter. The

discussion is essentially restricted to the case of point tar-

gets.

The goal is to obtain a rough estimate of performance

against minimum standards. For this purpose the analysis as-

sumes a simple mathematical model for the background clutter

distribution: namely, that it is multivariate Gaussian over

the spatial and spectral data channels provided by the sensor.

The paper also discusses experimental evidence for and against

such a model, as well as certain more explicit statistical

models that have been proposed for the spatial distribution of

clutter.
i i, Other topics discussed are CFAR optimum processing, 

linear

filters, the effect of ,using ratios of spectral components for
processing in multi-color systems rather than the components,

themselves, and background normalization. Also discussed is the

erelationship between the effectiveness of tracking algorithms

and the preliminary screening of targets by CFAR detection

algorithms.
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EXECUTIVE SUMMARY-

Separating targets from their backgrounds is a signal pro-

cessing problem that is a major concern tb infrared sensors.

This paper reviews several of the approaches that are now under

serious consideration for use by infrared surveillance systems

to deal with the problem--particularly for the case of point

targets.

In the course of the review certain observations and con-

clusions scattered throughout the text may have more value for

those who have a general interest in evaluating alternative

approaches to the infrared target discrimination problem than

other parts of the text. The parts that contain the supporting

analysis must, of necessity, be somewhat drawn out and mathe-

matically formal in order to provide the rigor needed to make a

hard comparison between methods, or to disprove a common assump-

tion.. Thus some, perhaps most, of the material in this paper

consists of technical detail that, undoubtedly, will be largely

ignored by many readers whose interest in signal processing theory

is only peripheral.

Therefore, the following summary is presented in an attempt

to gather together the essence of this paper in the hope that

it may, thereby, be rendered more accessible to the reader whose

interests are less specialized. Each item is headlined and

annotated for easy reference to the pertinent analysis or dis-

cussion contained in the main body of the paper.

EXPERIMENTAL SUPPORT FOR STATISTICAL MODELS OF TERRAIN BACKGROUND

Empirical evidence indicates that infrared radiance from

natural terrain, such as a forest or a desert, is, to a good

S-1



approximation, normally distributed for a variety of wavelength

bands in both the solar and thermal regions of the spectrum.

This is less true of scenes that have been affected in some way

by protracted human intervention, e.g., farm land, proving

grounds, large cities. In general, the approximation is better

at night than during the day.

On the other hand, empirical evidence does not support

certain theoretical models that have been proposed for the

statistical spatial distribution of terrain background radiance.

Specifically, the data are inconsistent with the so-called two-

dimensional Markoff process distributions that are characterized

by exponential correlation functions. In fact, some versions

of this type of model are hot even theoretically self-consistent.

(More detailed discussions of these matters and supporting

analyses appear in Chapter II, Section D.)

SUB-OPTIMAL NATURE OF LINEAR FILTERS

J For Constant False Alarm Rate (CFAR) detection of point

targets, linear filters are sub-optimal in general. The linear

filter that, in theory, maximizes the signal-to-noise ratio for

a background whose spatial distribution is statistically homo-

geneous is a limiting case that the true, nonlinear, optimal

filter would approach if the temperature of the target were very

large compared to that of the background and the size of the

target were small compared to the Instantaneous Field Of View

(IFOV) of a single infrared detector. (The analysis supporting

these conclusions appears in Chapter III, Section B.)

THE VALUE AND LIMITATIONS OF TRACKING ALGORITHMS

- Target discrimination algorithms are of two types: those

whose purpose is clutter rejection and those, referred to as

tracking algorithms, that distinguish targets by their charac-

teristic trajectories. Most infrared systems use both types.

S-2
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Tracking algorithms, which are a form of Moving Target

Indication (MTI) technique are, in principle, the only hope for

achieving the very low false alarm rates that are typically re-

quired for the detection of point targets by Infrared Search

and Tracking (IRST) system specifications. Nevertheless, it

is also necessary for this purpose to provide preliminary clut-
ter rejection means, such as spatial filtering and adaptive

thresholding in one or more spectral channels, to reduce the

number of false detections before invoking tracking algorithms.

System designers often attribute the reason for requiring

a preliminary clutter rejection process to limitations the

available computer capacity, i.e., memory size and comr r

speed. This would seem to imply that technological adv -es,
e.g., the introduction of VHSIC and VLSIC, will eventua

make such a procedure unnecessary.

However, the requirement is actually independent of com-
puter capacity. That is, tracking algorithms will work only

if, initially, the expected number of false detections is below

a certain critical value. Moreover, the effectiveness of a

tracking algorithm is extremely sensitive to errors unless the

a priori false detection probability can be made small by those

other, preliminary, signal processing techniques. (The analysis

supporting these conclusions appears in Chapter III, Section C.)

THEORETICAL IMPLICATIONS AND POSSIBLE IMPROVEMENT

OF BACKGROUND NORMALIZATION

A common form of adaptive thresholding, sometimes known

as "background normalization," which is an averaging process

implemented with a two-dimensional linear filter, is equivalent

to a least-square-error fit of a linear function to data ob-

tained from measurements of the background radiance distribution.

It follows that the next order improvement would be a quadratic

S-3
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1.ast-square-error fit. The quadratic fit can also be accom-

plished by means of an averaging (weighted in this case) process

that is implemented with a two-dimensional linear filter.

(The derivation of these results appears in Chapter IV, Section B.)

THE FALSE ALARM PENALTY IMPOSED BY THE USE
OF SPECTRAL COMPONENT RATIOS

For multi-color or spectral discrimination systems it is

sometimes the practice to work with ratios of spectral components

rather than the components themselves. For example, a two-

color system with radiance measurements J and J, in the two

spectral bands would use a one-dimensional target discrimination

algorithm operating on the ratio J /J rather than a two-dimen-
1 2

sional algorithm operating on the pair J 1 J2 " This usually

results in significantly higher false alarm rates, sometimes

by several orders of magnitude, than would be generated by the

equivalent two-dimensional process. (The proof of these con-

clusions appears in Chapter IV, Section C.)

S
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I. INTRODUCTION

This paper is concerned with algorithms used by passive

infrared (IR) sensors to discriminate between signals due to

target sources and those due to background clutter. The pri-

mary objective is to formulate a simple methodology for evalu-

ating such algorithms.

The goal has been to develop an evaluation procedure that

is easier to implement and is less specific than a detailed

computer simulation, which is the usual approach to this ob-

Jective. The purpose here is not to supplant computer simula-

tion as a means of evaluating a signal processor's logic design.

Rather, it is to provide an analytical tool that can be used for

a rough, preliminary assessment of the feasibility or the poten-

tial of different processing schemes.

The scope of this paper is essentially restricted to the

case of non-imaging systems, i.e., those, such as the infrared

search and tracking system (IRST), for which targets behave as

point sources under ordinary operating conditions.* The point

target assumption implies that discrimination algorithms must

be of an abstract nature, relying upon certain target and back-

ground signatures that are not associated with easily identified

geometric attributes, such as size and shape, that would be

available to an imaging system. However, signatures may be

derived from any combination of spectral and temporal, as well

as certain limited spatial, properties of targets and backgrounds.

The term "non imaging" seems appropriate in the present context
even if the system in question is capable of providing an image
of the backgrcund (although not of the target) as long as it
does not, in fact, make use of such an image for target dis-
crimination.

1
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The proposed algorithm evaluation methodology depends upon
a mathematical model that is based on the possibility of pre-
dicting statistically the distrivution of measured data over

some number of channels. Every IR sensor system defines these

channels in a natural way, according to the discriminants that

it is designed to use. Each pixel in the spatial distribution

of an observed scene, the observed signal from each spectrally
resolved wavelength band, and each time frame in the temporal

sequence of observations constitutes a separate data channel
in this sense.

The mathematical model assumes a signal processing logic
that divides the decision process for discriminating between

targets and background into two steps. The first is the detec-

tion phase, which eliminates as many false alarms as possible

by means of one or more preliminary target detection algorithms.
The second is the declaration-phase which generates the final
decision as to the presence or absence of a target in a given

direction.
A preliminary detection algorithm, used in the first phase,

is a linear or nonlinear digital filtering operation followed
by thresholding. Tracking algorithms, which distinguish be-

tween the resulting target and clutter detections by means of

their supposedly different trajectory characteristics observed

over time, provide the final, second phase, decision whether

or not to declare that a target is present.

For the preliminary detection phase the mathematical model

assumes that the statistical distribution of IR radiance over

the data channels is adequately approximated by an N-variate

Gaussian probability distribution.* There are several argu-

ments to justify this assumption.

This is a generalization of a similar model'proposed in Ref. 2
for spectral discrimination.

2



First, experimental evidence suggests (Refs. 8 and 9) that

for a variety of. terrain backgrounds,* although by no means all,

in selected spectral channels distributed over a band between

2 U and ll.4 U Gaussian distributions fit measurement data
remarkably well. This is true for data taken over background

regions that comprise as many as two-hundred-thousand pixels.

Second, although, as R. A. Steinberg has pointed out, the

mean background radiance can be expected to vary over space and

time, the variation is usually gradual except for cases in

which glint dominates. ** Thus, the assumed N-variate Gaussian

distribution can be regarded as a local approximation to the

actual N-channel background distribution, valid to the second

order in terms of moments of the corresponding density functions.

It is sometimes argued that, although a distribution may

be approximately Gaussian out to 2 or 3 a, acceptable IR sensor

system false alarm rates in practice are so low that the tail

of the distribution is also significant. This would be true if
an attempt were made to meet the false alarm specification with

preliminary detection algorithms alone.*** However, in most

cases those algorithms are used primarily to thin out the false

Unfortunately, the argument is limited in scope by the fact
that similar data for cloud backgrounds does not exist in
the literature at the present time.

In Ref. 18, Steinberg, taking into account photon fluctu-
ations, analyzes the design of optimum filters for threshold-
ing against different spatial variations of a background.
His design concepts, as well as other adaptive thresholding
techniques, some of which have been implemented in existing
IR systems, depend by implication on the assumption that the
background variation will be gradual for the most part.

Reference 2, in fact, proposes a 12-color spectral detection
processing scheme that would do Just that if the target and
background distributions happen to fit certain models that
the authors of the report have generated synthetically and
which assume N-variate Gaussian distributions over the 12
channels.

! 3



alarms during the preliminary detection phase, and the respon-

sibility for the final target declaration is reserved for track-

ing algorithms. The burden of satisfying the false alarm rate

requirement then rests ultimately on the tracking algorithms.

Perhaps the most important argument for assuming Gaussian

distributions, however, is that they furnish a minimum standard

of acceptance. That is, a signal processing scheme ought to be

regarded as unacceptable if it does not perform well against a
Gaussian distributed background. Of course, the converse

statement is false; therefore, even if the scheme does meet

the standard there may still be cause to reject it, at least

fir some applications.

In this connection, it should be noted that it is possible

to include in an evaluation based on such a minimal acceptance

standard the effect of different scenarios which may imply not

only a change in the background, e.g., from sky to terrain, but

changes in other environmental factors as well. For example,

Ref. 4, using calculations obtained from a computer program

(5 cm- 1 LOWTRAN5) for estimating propagation effects, discusses

the influence that range and the altitudes of both the target

and the sensor platform may have on spectral discriminants.

This influence, it is pointed out, would necessarily be reflected

in the evaluation of a target detection algorithm, particularly

one that relied upon data from multiple spectral channels.

Chapter II of this paper describes in more detail the pro-

posed mathematical model for evaluating discrimination algo-

rithms, as well as some of the model's ramifications when

applied to spatial discriminants in particular. The discussion

in Chapter II covers the explicit form of the model for both

spatial and spectral channels when targets are present or ab-

sent. It also indicates how the extensive measurement data

presented in Ref. 9 can be used to test the validity of a class

of occasionally encountered hypotheses concerning the nature

of background spatial distributions for natural scenes.
4



Chapter III deals with optimum constant false alarm rate
(CFAR) detection. It also considers the relationship between
the effectiveness of preliminary CFAR detection algorithms and
the effectiveness of tracking algorithms used for the final
target declaration.

The general optimum CFAR processing rule presented in
Chapter III is essentially that found in Ref. 19, which, how-
ever, refers to an earlier reference for its derivation. For
the sake of completeness an independent derivation of the rule

is given in Appendix A.*

Chapter IV analyzes two signal processing techniques that
are sometimes encountered in IR processor system designs. One
is a method for adaptive thresholding against spatially varying
backgrounds; the other is a device to reduce the number of
degrees of freedom to be considered in spectral discrimination.

* This paper does not include numerical applications to
specific cases, except for one or two examples provided to
illustrate a point. However, the analysis that is applied to
developing the methodology for evaluating discrimination algo-
rithms leads naturally to some conclusions of a general nature

! which are noted in the text as they occur. These conclusions
also appear in Chapter V. along with a summary of the principle
ideas introduced in the earlier chapters.

r

A-!

I
This might also have been done for a fundamental theorem, in-
troduced in Chapter II, concerning the probability distribu-
tion that results from a linear transformation of variables
having an N-variate Gaussian distribution. The theorem, how-
ever, is reasonably well-known and is heuristically evident.

5
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II. MATHEMATICAL MODELS

A. DATA CHANNELS

An IR sensor with multiple detectors provides data that
are separated naturally into discrete channels, each of which

is associated with the output signal from one of the detectors.
For signal processing purposes, however, it is useful to sepa-

rate the data into channels that are defined in terms of the
discriminants used by the sensor system for distinguishing be-

tween target and clutter sources.

Multi-color systems, i.e., systems that rely upon spectral

signatures with components in two or more distinct wavelength

bands, are the usual examples in which data are treated from
this point of view. However, it can be equally useful to re-

gard data as separated into spatial as well as spectral channels,

a point of view which this paper will adopt to some advantage,

*for example, in discussing the effects of linear spatial filter-

ing.

The individual pixels in the background radiance scene

mapped by an !R sensor will determine the spatial channels as

perceived here. Actually, the number of such channels will

generally be limited by an n by n pixel sliding window.* The

* window defines n2 spatial channels, one for each pixel contained

within it, and is itself defined by whatever spatial filtering

algorithms the sensor may use for signal processing.

The-window could Just as easily be rectangular. The implicit
assumption here that it is square is made for convenience, to
simplify to some extent the algebraic treatment of two-dimen-
sional arrays of channels.

V £m 5ainuSw nuQmI- -
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It is convenient to require that n be an odd number because

the pixel at the center of the array will have a special role

in the mathematical model to be proposed here for characterizing

spatial discriminants. Specifically, if a target signal occurs

in the central channel the data in the full complement of n 2

spatial channels will be regarded as due to the presence of a

target. Otherwise, the target will be regarded as absent.

It is assumed that the detection algorithm, to the extent that

it is based on accurate knowledge of the target and clutter

background statistics, is deliberately designed to announce

that a detection has occurred if, and only if, the target sig-

nal is in the central channel.

This convention implies a desirable, although not neces-

sarily achievable, precision in the location of a target by the

IR system. That is, as the array window scans the background

a true detection occurs only when the target coincides with the

central pixel.

.B. NOTATION FOR THE SPATIAL DISCRIMINANT MODEL

In general, data divided among several channels will be

treated as a vector each of whose components is the signal

strength associated with one of the channels. Unfortunately,

the single subscript notation ordinarily used in dealing with

a vector V in terms of its components V i conflicts with the

*double subscript matrix notation that is more natural in deal-

*ing with the two-dimensional array of signal strengths S

associated with an n by n array of spatial channels.

-i Reference 1 (p. 128) handles this problem by providing a

so-called stacking transformation that reorders the elements

of the array so that they constitute a one-dimensional sequence

which can be treated as the components of a vector in the con-

ventional format. Since the transformation is linear and inver-

tible, it is p6ssible to apply standard algebraic manipulations

to the vector and change back to the two-dimensional array for-

mat whenever it is convenient to do so.
- - -8
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For the purpose of this paper, however, the stacking trans-

formation seems an unnecessary complication that would obscure

certain geometric patterns or effects that result, for example,

when two or more linear filtering processes are combined. In-

stead, a two-component vector subscript will be introduced in

place of the pair of subscripts ordinarily used to designate an

array element. That is, Sij becomes Sk, where the subscript k

is regarded as a vector with the components i and J.

In this notation a sum over k will mean a double sum taken

independently over all values of i and J. Also, the usual

conventions that apply to vectors apply to vector subscripts.

Thus, if two vector subscripts are equal it will mean that their

corresponding components are equal, and when the vector sub-

script is 0 it will mean that both subscript components are

zero.

It is then possible to represent the linear transformaticn

of an array In the usual manner as a multiplication of a vector

by a matrix. That is, a linear transformation from the arrayI

with elements S., to one with elements S will take the form

ii.1 Sk'I~ Mid Sl
1!

where k and 1 both represent two component vector subscripts.
14

The matrix with elements Mkl then actually has n elements,

and the symbol Mkl may be understood to have four sca.ar sub-

scripts.

Sometimes it is necessary to deal with array vectors, or

transformations of the type just described, whose algebraic

representations depend in some explicit way on their subscripts.

When this happens it is usually possible to express such quan-

tities in dyadic form, so that despite the use of vector sub-

scripts it is no more difficult to perforr. explicit algebraic

i
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manipulations with them than would be the case if their sub-

scripts represented ordinary scalar integers.

In order to emphasize its key role, the central channel in

an n by n array will be designated by the zero vector subscript,

which is equivalent to two zero scalars. Then, with scalar sub-

scripts ordered in the standard manner, with the conventional

reference to an array element's position by row and column,

negative subscripts will be used to designate elements to the

left of or abdve the center. That is, for an element Sip i

and J will both range over the integers from 1 to n 2 For

example, in the case n=3, that is, for a 3-by-3 or 9-element

array, the array would have the form

S_l1-1 , S_ 10, S.11

SI , Soo , Sll

S 1- 1 Sio l

C. PROBABILITY DISTRIBUTIONS

One way to interpret the problem of detecting the presence

of a target against a clutter background is to regard it as the

problem of estimating the probability that the target is present,

given the information acquired from the data provided by IR

measurements. On the basis of this concept Ref. 2 has intro-

duced a minimum error criterion* for multi-color systems to

distinguish between targets and clutter by means of their spec-

tral characteristics.**

A minimum error criterion in this context is one that classi-
fies each signal as due either to the target or to clutter
alone with the smallest possible probability of an erroneous
classification. Cf. Ref. 3, p. 269ff.

See also the discussion in Ref. 4, Appendix B.

10
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In many applications, especially those involving point tar-

gets, however, the false alarm rate is a major concern. It is

a primary objective of the present paper to formulate a method

for evaluating target detection algorithms when~this is, in fact,

the case. Accordingly, a related but slightly different approach

will be taken here. The concepts underlying this approach can

be summarized as follows.

For an N channel system each measurement set produces an N

component vector which may be thought of as representing a point

in N dimensional data space. The set of all such data points

that might be produced by clutter in the absence of a target has,

at least conceptually, an N-variate joint probability distribu-

tion defined by a probability density function P', (Z), where

is a vector having components J' 1 '. JN that may, individually,

range over all positive and negative real values. Similarly,

there is another such probability distribution, and a corre-

sponding density function PT (J) that is associated with the

presence of a target source.

Suppose that there is an algortthm whose purpose is to de-

cide whether a given measurement set, i.e., data point, was

produced in the presence or absence of a target. The algorithm

then has the effect of separating all of data space into two

complementary regions.

One of the regions R will consist of all points designated

by the algorithm as due to a target. The other will consist of

all points designated as due to clutter in the absence of a

target.

The probability of false alarm (PFA) for any measurement

set is then equal to the integral of P (J) over R; i.e.,

PFA -fPF (P ) dJ1 ... d J (1)
R

-E



Also, the probability of detecting a target (PTD) by means of

the algorithm applied to a single measurement set is equal to

the integral of PT () over R; i.e.,

PTD fPT (J) dJ1 ...d JN (2)

R

Throughout this paper it will be assumed that PC (J) and
PT (J) are both N-variate Gaussian probability density func-

tions.* That is, each will have the form

P(J) = (2r) exp (J-J)t M-1 (J-j (3

where M is the covariance matrix of the particular distribution,

IMI is the determinant and M the inverse of M, J is the mean
vector of the distribution, and the superscript t denotes the

transpose. In (3) ordinary matrix multiplicaticn is implied,

so that a vector without a superscript is to be regarded as a

column vector while one that has the superscript t is to be

regarded as a row vector.

The covariance matrix and mean vector are the parameters

that specify a particular N-variate Gaussian distribution.

Therefore, when specific reference is made to PC or to PT in

the expression for the density given by (3) M and will bear

the appropriate subscript, C or T.

There are several arguments in favor of assuming Gaussian

probability distributions for the measured signal strengths.

Since a major objective of this paper is to devise a method

for testing clutter rejection algcrithms analytically, the prin-

cipal argument is that the very least one might expect from such

an algorithm would be satisfactory performance when the target

and clutter signal strengths are Gaussian distributed.

For properties cf N-variate Gaussian probability distributions
see, for example, Ref. 5, C>ns. 21-24 or Ref. 6.

12
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There are certainly a number of environments for which

existing empirical data suggest that the assumption of Gaussian

statistics may be surprisingly accurate. Examples occur in the

data consiaered by Ref. 7--notably, that taken from Ref. 8 and

particularly that from Ref. 9, which will be discussed in the

next section.

D. EXPERIMENTAL DATA AND EXISTING STATISTICAL MODELS

The amount of data collected through IR measurement over

the years is voluminous. Measurement programs for this purpose

have covered a variety of targets and clutter backgrounds in

virtually all spectral bands of practical interest. Reference 7

contains an in-depth survey of the most important experimental

results derived from such programs and also provides a detailed

analysis of how the data may be affected by environmental factors.

Unfortunately, of the many sources available in the litera-

ture, only Ref. 9 offers data processed in a form that is directly

applicable to the mathematical models used in this paper. What

is needed particularly are means and covariance matrices, the
elements of which depend upon the standard deviation for each

channel and the correlation coefficients between all pairs of
channels. It is unfortunate that data for cloud backgrounds
have not been published in a similar form.

Reference 9 provides all of these parameters for several

spectral channels* generated by a number of different terrain

backgrounds, each observed during four time periods--predawn,

noon, sunset, and midnight. The observations were made from

an airborne platform at 90 deg and 35 deg depression angles with

instantaneous fields of view (IFOV) ranging from 2 to 5 mrad

at altitudes from 1,000 ft to 1,750 ft. However, only terrain

backgrounds were measured; no examples of sky, clouds or ocean

are included in the collection.

Of course, the measurements were made in a particular set of
fixed wavelength bands. However, Ref. 9 recommends a method
of interpolating the measured data to derive equivalent approxi-
mate data for other choices of spectral decomposition.

13
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Aside from the first and second moment statistical param-

eters, for each case Ref. 9 also presents the data in several

other forms. These include: (1) a histogram for each spectral

band, along with an overlay of the Gaussian probability density

curve defined by the mean and standard deviation associated with

the histogram, (2) area diagrams showing the size and orientation

of all subregions with radiance above a 2a and above a 3a thresh-

old, (3) both the cross-track and in-track power spectral den-

sities (sometimes called the Wiener spectra) for the measured

region. Figures 1-6, taken from Ref. 9, are examples of all

three graphic forms of data.

In many of the cases presented in Ref. 9 the Gaussian den-

sity curve fits the corresponding histogram wth remarkable

accuracy out to the 2, 3, and sometimes even the 4a level. This

is especially true for midnight scenes that are natural in ori-

gin, such as a conifer forest or a desert, as distinguished from

land or cities. Figures 1 and 2 show that the fit is fairly

good for a conifer forest even at noon.

Other histograms are multi-modal and skewed. However, for

many of these, in the accompanying area diagrams that display

the thresholded subregions of maximum radiance, the high-tempera-

ture zones appear to be relatively isolated and confined to one

or two small areas in the overall background.* When this is the

case it seems likely that the lesser modes appearing in the

histogram tail would not be present if the scene were broken up

into smaller regions and a separate histogram of the radiance

distribution were constructed for each of the newly formed regions.

For other cases, e.g., the city of Baltimore, Maryland and

Fort A.P. Hill, Virginia, to name the most extreme examples, the

multi-mcdal character of the histogram is evidently not the re-

sult of isolated effects in the background. insteal, the high-

temperature zones are distributed throughout the scene, and

therefore it must be concluded that a Gaussian distribution will

not adequately represent these data.

Cf. Figs. 3 and 14. l
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Reference 2 details the construction of a set of quasi-

synthetic statistical models for the spectral distribution of

radiance due to a variety of potential targets and clutter

sources. These models were developed by means of analysis based

on physical principles and what appear to be reasonable assump-

tions combined with empirical data gathered from a number of

different references, including Ref. 9.

An important application of this work is embodied in a

computer program called PALANTIR, which Ref. 2 also describes

in some detail. From a given set of narrow band spectral chan-

nels PALANTIR chooses a prescribed number of channels, picking

those that will provide the least error when used in connection

with a minimum error algorithm for discriminating between tar-

gets and clutter. The basis for this choice is a test which

depends upon the means and covariance matrices associated with

the statistical models.

In an attempt to construct a theoretical model for spatial

channels, Ref. 10 postulates statistical homogeneity for terrain

backgrounds, citing as evidence for this assumption IR measure-

ments taken by the Lincoln Laboratory at 20 natural settings in

New England. Statistical homogeneity in this case means that

for the radiance distribution spatially the cross-correlation

between any two pixels depends only on the amount of their

separation and not on the position of either in the scene.

A further assumption of Ref. 10, for which the same evi-

dence is cited, is that the cross-correlation is an exponential

function of the separation. That is, for radius vectors X and
r' that determine two points in the plane of the radiance dis-

tribution it is assumed that the cross correlaticn K(r, r')

between the radiance values at the two points has the form

K r,) exp _ x-x1 1 y' (4)

19y
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*

where L and L are correlation distances in the x and yx Y
directions and (x,y) and (x', y') are the respective components

of r and r'.

The model recommended by Ref. 10 for spatial correlation is

general enough to provide for anisotropic behavior; however, its

functional form obviously depends upon the choice of the coor-

dinate system. If the spatial distribution were also assumed

to be isotropic the correlation function would be independent

of the coordinate system. If it were also exponential it would

have the form

K~,r') - exp ( ~i 5

which is completely determined by a single correlation distance L.

It is interesting to note that Ref. 10 assumes the aniso-

tropic form (4) for the cross-correlation because the cited

supporting data were measured at a depression angle of 20 deg.

The argument is that one might expect a scale change from in-1I
track to cross-track linear distance measurements relative to

a statistically homogeneous two-dimensional distribution be-

cause of the distortion created in the cross-track direction by

the depression angle.

However, if the appropriate form of the cross-correlation

to account for this distortion were indeed (4) as assumed, then

for a 90-deg depression angle the cross-correlation would be

given by

K (r, r') exp - + l
xJy 0" OW L

which is still anisotroplc despite the single correlation dis-

tance parameter L.

20



The two-dimensional Fourier transform of either correla-

tion function, given by (4) or (5), is the corresponding power

spectral density or Wiener spectrum, W (Z) or W (k), in terms

of a vector wave number k. The two densities are given by*

W (k) 4 L 2xL 2

W(k) - 2wL 2  (7)

where-k and k y are the Cartesian components and k is the mag-

In principle, (6) or (7). might be used to check whether

either of the corresponding correlation functions is a good
model for a given background when the data obtained from measure-

ments of the background include linear components of the Wiener

spectra in at least two different directions. In fact, Ref. 9
I does provide data in this form for every case considered and for

correlations in both cross-track and in-track directicns rela-

tive to the scanning motion of the sensor. However, there is
no reason to believe that the track direction coincides with

either the x or y direction, both of which may be at least

partially determined by the physical properties of the back-
ground distribution rather than by the motion of the sensor.

Nevertheless, a comparison of the cross-track power spec-

trum curve with the in-track curve affords at least a preliminary
check on the possibility that the radiance distribution is

isotropic, i.e., by observing whether the curves are nearly the

same. Examples of distributions that may be isotropic do exist
in the Ref. 9 data, e.g., for a conifer forest background ob-

served at a 90-deg depression angle at noon.

See Appendix B. 21 -
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Figures 5 and 6, taken from Ref. 9, contain Wiener spectra

for this case. Curves for the 3.5-3.9 p and 4.5-5.5 4 bands

roughly approximating the in-track spectra depicted in Fig. 6

are shown as dashed lines in Fig. 5 to illustrate the point.

However, an examination of the conifer forest power spec-

trum curves presented in Ref. 9 fails to disclose any that might

correspond to the functional behavior indicated by (7). In

every case the spectral density either decreases too rapidly or

too slowly with increasing wave number.

It is possible that by changing exponents in the denomi-

nator of (7), e.g., replacing the exponent I with 2 or with-5
2a better fit to the experimental Wiener spectra might be ob-

tained; Appendix B shows how to calculate the corresponding

correlation functions explicitly. Some numerical experimenting

with new exponents indicates for the conifer forest data, how-

ever, that although changing exponents in (7) can improve the

fit somewhat, at best it can only be made close at two points

on a given curve.
* I

E. SIMPLE MODELS FOR TARGET STATISTICS

In principle, it is possible for a sensor to estimate the

mean and the covariance matrix elements for clutter statistics

by making sample measurements of the background before a target

-arrives and updating these estimates periodically. But it is

even conceptually difficult to imagine how this information

might be obtained for targets in general. The possibility of
using a predetermined catalogue of signatures for this purpose

seems limited because of the many variations in range, aspect,

altitude, velocity, and position of a target relative to the sun.

Fortunately, in the case of point targets it is usually

reasonable to assume that covariance matrix elements will be

dominated by background statistics. To the extent that this

is true, for discrimination purposes it is only necessary to

anticipate the mean values associated with the data channels

that define a target's signature.

22
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As remarked in Ref. 7, for spectral channels the observed

radiance is essentially the sum of two parts: the first is due

to the background except for the area occulted by the target;

the second is the difference between the radiance due to the

target and the background radiance that would result from the

occulted area if it were not obscured.

Included in the radiance there should be a part due to

atmospheric emissions along the propagation path. However, it

will be assumed here that this contributes a negligible amount

to statistical fluctuations about the mean.

In the case of a point target, which, by definition, occupies

only a small part of the sensor's footprint, the mean radiance ob-

served is that obtained from a calculation of the type suggested

, in Ref. 7. The calculation is equivalent to a weighted average

* T' given by

JT = WC C + WTT (8)

where T is the radiance supplied by the target, J C is the mean

clutter radiance, and the two coefficients WT and W are fractions

of the total footprint area within and without the occulted area.

According to a well-known theorem,* if the components of

an N-dimensional vector J have an N-variate Gaussian Joint prob-

ability distribution with the mean vector J and the covarlance

matrix M, then the components of the M-dimensional vector Y

resulting from the linear transformation obtained when J is

multiplied on the left by an M by N matrix T (i.e., Y - T)

will have an M-variate Gaussian Joint probability distribution

with the mean vector Y given by

Y - TJ (9)

and the covariance matrix

M TMTt

Ref. 6, p. 86. 25
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Given the present assumptions, the background radiance J

and the target radiance JT may be regarded as having a Jcint

bivariate Gaussian probability distribution for which the mean £

vector has the components J and the mean of J and the covari-
C T

ance matrix has the form

M C . (10)
,0)

In (10) it is, of course, implicit that the target and back-

ground radiances J and J are uncorrelated. Also, (10) repre-

sents a limiting case in which the standard deviation of ̂ T isTI
vanishingly small, so that there are no fluctuations of JT

about its mean.

In accordance with (8) and the first equation in (9) the

vector with the components WC and WT corresponds to a 1 by 2

transformation matrix T. Then, according to the cited theorem

and (10), the combined target and background radiance will have

a univariate Gaussian probability distribution with a mean JT2i

given by (8) and a variance a given by

a 2 = W2 a 2(1
T C C (11)

A

In the case of multiple spectral channels J., T and, in-

ferentially, JC would all be replaced by vectors in (8). Then

(11) would be unchanged in form except that a2 would be replaced
2 C

by a matrix; aC, in fact, would be replaced by the background

covariance matrix associated with the multiple channels. That

is, for N spectral channels

T WC ;C+WT ;T
2 (12)

T= WC MC

26



where JT C and J. are N component vectors, Mc is the N by N

background covariance matrix, and M is an N by N matrix that

may be regarded as the effective target covariance matrix.

Acccrding to (12) the target and background covarilance matrices

are proportional.

A similar model can be devised for spatial channels that

form an N by N pixel array. Using C to denote a clutter source,

T to denote a target source, and the case N = 3 for illustration,

when the target is absent the pixel array will have the form

C, C, C

C, C, C

C, C, C

and when the target is present the form

i C, T, C

i C, T, C

The case of a target source in the array but not at the

center will be regarded as a case in which the target is absent.

It will be assumed that the probability that a target will be

anywhere within the array at any given time is small. Thus, the

cases for which it is present but not at the center may be

neglected as consisting of an insignificant number of events in

comparison with the number of events for which it is absent

altogether. That is, such events will have a negligible effect

on the clutter probability distribution.

It will also be assumed that the target source is uncorre-

lated with any background clutter source. Consider, for example,

the ideal case in which the target exactly occupies the central

27
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pixel so that the clutter is completely occulted. When this

happens the covariance matrix M associated with presence of a

target must be such that the cross-correlation between the cen-

tral pixel and every other pixel in the array is zero.

Then

M = M -~,(13)ZT AZC

where M has the elements MA J and AM has the elements

=M 6 + Mi 67 M 6 6. 2 Jo (4
Aij jo. io io o oo io Jo T 6T o (1 4)

In (14) the notation described earlier, according to which the

subscripts are all two-component vectors, is to be assumed. The

quantities 6 ij are Kronecker deltas, which vanish except when

the vectors i and j are identical.

It is easily verified that (13) and (14) define a target

covariance matrix with the appropriate properties. That is,

when either i or J, but not both, is the zero vector the corre-

sponding pixel is being correlated with the center of the array,

and, as it should, the corresponding matrix element of M vanishes.

When neither i nor j is the zero vector neither of the pixels

is at the array's center, and, as it should be, the corresponding

element of A is identical with that of MC Finally, when both

i and j are the zero vector the pixel is at the array's center,
2

and the corresponding element of T is aT which, as it shculd be,

is the variance of the target source.

For the case in which the target source occupies only part

of the central pixel the terms in (14) will be weighted as in

(12). Analysis similar to that used to derive the weight factors

28



for spectral channels will provide the appropriate weight fac-

tors for spatial channels.*

One other concern in modeling the signal produced by an

IR sensor should be mentioned. Most systems provide contrast

rather than absolute measurements of the radiance distribution

in a scene.

Since the contrast is approximately the difference between

the radiance values observed at two successive pixels along a

scanline in the scene, its measurement is equivalent to apply-

ing a linear filter (high pass) to the spatial channels. The

'effect of linear spatial filtering in general is discussed in

Section B of Chapter III.

*If the region occupied by the target source is larger than the

central pixel, Aij should contain additional terms with fac-
tors of the form sil , Mii, and weights given b. the comoonents
of a vector associated with the rows and columns twice removed
from the central pixel.

29
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III. CFAR TARGET DETECTION ALGORITHMS

A. OPTIMUM SEGMENTATION

The term "segmentation" is used in image processing liter

ture to denote the process of separating different classes of

objects in a scene. Generally, this is done with the purpose

of minimizing the probability that there will be an error in

the classification. However, for the applications of interest

to this paper, in separating targets from clutter it is more

important to set a bound on the probability of false alarm.

This is equivalent to prescribing a constant false alarm rate

(CFAR), which is a goal common to many IR systems.

Given the CFAR condition, the problem of optimizing the

segmentation may be restated as follows. Among all possible

rules for detecting the presence of a target with a given fals

alarm probability, find the rule for which the probability of

the detection is a maximum.

Appendix A derives the general solution of this problem

in terms of the joint probability density PC (J) for the dis-

tribution of radiance values over the available data channels

in the absence of a target and the corresponding joint proba-

bility density FT (J) when the target is present. As in Chap-

ter II, J is an N-dimensional vector each of whose components

is the radiance value in one of the channels.

The solution is to declare that a target is present when

the measured components of J are such that J defines a point

a certain N-dimensional region RT. The boundary for this reg:

is a hypersurface that is determined by the equation

log PT (J) - log PC (J) - constant. (8)

31
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The constant in (8) is determined by the condition

f PC (J ) dJ,...dJN - (9)
RT

which is equivalent to the CFAR requirement that the probability

of a false alarm be equal to *.

For the case of N-variate Gaussian probability densities

PT (J ) and P (J) with mean vector JT and JC and covariance

matrix and MC, respectively, (8) and (9) reduce to

Q(j) 3 (J~j )t Ml '-T) _ 'cc -c - Y , (10)

where y is a positive constant determined by

1 exp (J-c )t M-1  (J- c) dJ,...dJN . (31)

J(2rr I

R(y)

In (10) Q(J) is obviously a quadratic function of the Ncompo-

nents of J, so that the hypersurface defined by (10) is a quad-

ric surface (e.g., a conic section in the case N=2). In (11)

the region of integration R(y) consists of all points J for

which

Q(J) <y . (12)

The reason why hkf) is defined by (12) instead of by

Q(J) >

32
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is that J-- J satisfies (12) (this follows from the fact that

M , and therefore MC, must be positive definite); therefore,

the mean vector for the probability distribution when a target

is present corresponds to a point in the region defined by (12).

Por a practical case, in which the probability of a target de-

tection, given by

PT (2r) 'T exp (~Ttl dJ,...dJN13

R(y)

is large enough to be of any use, the mean vector ZT would have

to represent a point in the region R(y) of integration in (13).

The use of (12), subject to the condition (11), as a test

to determine whether the presence of a target should be* declared

is a somewhat less formidable problem numerically when the co-

variance matrices and M are both diagonal. This will be

true only if all N data channels are mutually independent in

the statistical sense.

If the covariance matrices are not diagonal there exists

a linear transformation of the vector J to a vector P such that

the probability densities P (W') and P (W') will both have co-

variance matrices that are diagonal. This follows from the

theorem used to derive the expressions (9) in Chapter TI and

the well-known fact that there is always a linear transformation

that can diagonalize any two symmetric matrices simultaneously

as long as one of them is positive definite.' Appendix C de-

scribes the process of finding the required transformation and

carries it out in detail for the point target case in connection

with spatial channels.

Cf. Ref. 11, pp. 37-1.
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When and M are both diagonal, (10), which represents a

hypersurface, has the form

N N N

-+ - -i n _ 2j n + ', (14)n-i n Cn) E- aO# ni\Tn °On)

By setting all of the Jn in (14) equal to zero except for two
values, v and U, it is possible to obtain the two-dimensional
cross-section of the region bounded by the hypersurface (which
is, itself, an N-1 dimensional manifold) in the v9, plane.
This cross-section will be the region bounded by the curve

IV V V V I

where the Ki and Ci, i = v, i, in (15) are defined by

K1- -
aTi Ti Ci

and

K 3T- + + a+

CTv ev TU C

The cross-section determined by (15) is then clearly an

ellipse when

aTv > aCv and aTV > aCU

34

- -- - - - l



a parabola when either

aTv aCv oraT CU

but not both, an hyperbola if either

aT >aCV and GTU < aCC or aTv <a aC and aT > aC

and a straight line if

aTv ' aC0  and aT M a CU .

A case of particular interest is that for which the co-

variance matrices M and X are identical. When this is true

(10) becomes

-2-t CJ + it M1 J t M-1 J(16)

where

J - j - j^ .T ~C

and M is the common covariance matrix. Equation (16) has the

form

N

wt J W J constant, (17)

n-1

where W is the vector given by
O.-

W - -  . (18)
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The constant on the right side of (17) is to be determined

by the CFAR condition (ii). This suggests that a change of

variables such that one of the new variables J is given by

N

J = Wn W n (19)

nil

might be useful. Then the PFA given by (11) and the PTD given

by (13) will depend only on the respective C and T marginal

probability distributions for J.

According to the theorem, cited in Chapter II, concerning

the effect of a linear transformation on a multivariate Gaussian

probability distribution, the two probabiity distributions for

J are univariate Gaussian with means Ji, i = T, C, given by

N- t-
i t 21i .E Wn in' i -T, C (20)

n-l

and a common variance a2 given by

a 2 =W . (21)

The optimum target discrimination result for the univariate case

derived in Appendix A now applies. That is, with v defined by

the CFAR condition

_x 2

1 =e 7 ,x (22)

V
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if AJ > 0, then a target is declared to be present when

J>Jc + av ; (23)

if A3 < 0, then a target is declared to be present when

J < J - av. (24)

B. LINEAR FILTERS-

As observed in Section A, the optimum CFAR rule for target

detection is non-linear, in fact quadratic, unless the covariance

matrices M and M are identical. However, most detection algo-

rithms for spatial, or for that matter temporal, channels are

based on thresholding after the application of a linear filter.

The simplest example is, perhaps, the temporal filter that

is sometimes referred to as Moving Target Identification (MTI),

for which the basic idea is to detect a target's motion rela-

tive to what is presumed to be a stationary background. It is

usually proposed for a staring system.

In this connection a single temporal channel is a frame

that consists of the radiance distribution over the entire

scene at a given instant of time. A sequence of such frames

constitutes a set of temporal channels, just as an array of

pixels constitutes a set of spatial channels.

The first-order MTI. filtering process, the first differ-

ence, consists of subtracting one of two successive frames from

the other. If a moving target is present but the background is

fixed, this difference will be zero everywhere except at the

two target positions, one in each frame.

The major problem encountered by MTI is the difficulty of

maintaining registration for the background from one frame to

37



the next. Any motion of the sensor will cause an apparent move-

ment in the background.

From one point of view this is a problem of correcting

platform instability. However, for motion that is slowly vary-

ing or smooth (as.distinguished, for example, from jitter) more

complex temporal filtering may reduce or eliminate the error.

Common filters for this purpose are second- or higher-order dif-

ferences.

All such filters are linear and, in fact, are special cases

of a sliding window weighted average, also known as a convolu-

tion. The general sliding window temporal filter is a linear

transformation of the form

(N-1)
2

J n J (25)
n--(N-l)2

from a sequence of radiance values J at an arbitrary pixel

common to each frame to the sequence J." After the transforma-

tion is applied each term of the new sequence is usually thresh-

olded and averaged, or averaged and thresholded, to form a sim-

ple spatial distribution which can then be processed further,

as a spatial scene, to detect and locate possible targets.

Sliding window spatial filters that operate on a two di-

mensional array of pixels rather than a one-dimensional sequence

of frames define analogous convolution transformations:

Jv .. . Jn+v " (26)

n
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In (26) the subscripts are two-component vectors in accordance

with the notation introduced in Chapter II. The sum is taken

over all pixels in an N by N array, for which N is an odd in-

teger and the two-component vector v locates the pixel at the

center of the array.

In discussing either (25) or (26) it is convenient to set

v - 0, which is equivalent to choosing a particular coordinate

system for the discussion. A simple way to represent particular

examples of (25) or (26), one that has become conventional, at

least for the two-dimensional case, is to use a mask consisting

of the weights Wn ordered as in the sequence or as in the array.

Examples for the one-dimensional (temporal) case are:

(1) the first difference mask

(0, -i, 1),

(2) the second difference mask

(i, , 1),

(3) the third difference mask

(0, -1, 3, -3, 1)

These masks apply to a sequence of discrete instants or time

frames, which may be regarded as points along a temporal coor-

dinate axis.

Examples for the two-dimensional (spatial) case are the

so-called Laplacian filters:*

(1) the digital analogue of the Laplacian differential32 3 2
operator a-- + - is represented by the maska_ 2_ax y

Ref. 1, p. 482.
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(I, 1, 0)

0, -1, 0

(2) a rotationally symmetric modification by the mask

(-I, 8,

(3) the digital analogue of the differential operator
a4
2 by the mask

-2, 4, -2

i, -2,

These masks apply to a planar array of discrete pixels.

The Laplacian filters were designed to detect edges in

a scene. The second filter, because it is rotationally sym-

metric, is actually a point detector and is therefore of par-

ticular interest for applications involving point targets.

Starting with the assumption that the spatial correlation

function of the background distribution has the form (4) dis-

cussed in Chapter II, Ref. 10 derives the last filter as an

approximation for the one that maximizes the signal-to-clutter

ratio.

However, as observed in Chapter II, the correlation func-

tion (4) is that of an anisotropic background oriented fortui-

tously to conform with the track direction of the sensor as it

scans the scene. If the same derivation were applied after

assuming the isotropic correlation function (5) instead, a com-

pletely different type of filter, for which the continuous ana-

logue would be a differentio-integral operator, would result.
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Note that in each of the filter examples just presented

the sum of the weights shown in the mask array is zero. Fil-

ters with this property are termed high pass because they com-

pletely eliminate a constant background distribution; i.e., they

eliminate the DC component of the background distribution's

spatial frequency expansion.

For v = 0, (25) and (26) both have the form

J' Z W J (27)

n

except that the subscript n is a scalar in one case and a two-

component vector in the other. If the mean vectors J, and

and the covariance matrices andM are associated with N-vari-

ate Gaussian probability distributions for the J in the casen
when targets are absent and in the case when a target is present,

then according to the theorem of Chapter I the correspcnding

variables J have univariate Gaussian probability distributions

with means and variances given by

W ai = WMinm W, i = C, T. (28)

n n,m

According to Appendix A and Section A of this chapter the

optimum CFAR algorithm is non-linear except when the covariance

matrices M and C are identical. Therefore, the use of a linear
filter will be less than optimum unless this is, in fact, true.

When the two covariance matrices are identical a compari-

son of (20) and (21) with (28) shows that the weights corre-

sponding to the linear filter that prcvides CFAR optimlzation

will be the components of the vector W given by (18). It is

interesting to ncte that this filter is exactly the same as the

one that Ref. 1 (pp. 560-561) shows will maximize the signal-
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-t - 2
to-noise ratio if the signal power is identified with J -

2,
and the noise power with a

For the statistical model proposed in Chapter II for spa-

tial channels, when the target source exactly occupies a single

pixel the covariance matrices M and will never be equal,

however. Since the procedure detailed in Appendix C for diagona-

lizing M and M simultaneously in this case is easily imple-

mented, it may be simpler to use the true optimum CFAR detection

algorithm, which is quadratic, than it would be to obtain what

must necessarily be a sub-optimum linear filter.

Nevertheless, as observed in the discussion in Chapter II

of the model applied to spectral channels, the two covariance

matrices are at least proportional. If the proportionality

constant is nearly equal to one, as is usually the case for

spectral discrimination, and the magnitudes of the corresponding

mean vectors are sufficiently different, the linear filter whose

weights are given by (18) will provide near optimum CFAR dis-

crimination. This follows from the fact that the quadratic

term in (A-19) of Appendix A can then be neglected in comparison

with the linear term.

C. TRACKING ALGORITHMS

For IR systems that detect point targets the false alarm

rate is the specification that usually dominates the signal

processing requirements. The desired rate may be as low as one

per hour, implying false alarm probabilities as small as 10
- 10

whenever a target is declared.

Only an algorithm composed of a number of tests that are,

in effect, guaranteed to be mutually independent has any hope

of achieving so small a PFA. Such a guarantee may be possible

for an algorithm based on temporal discrimination if the inter-

val between successive time frames is sufficiently large. That

is, the interval must be larger than any correlation time asso-

ciated with spatial or spectral discriminants.

Cf. also Ref. 10. 42



For a staring system, MTI differencing, as described in

Section B, will tend to remove whatever correlated fal.se alarms

may result from preliminary target detection algorithms that are

applied to the spatial or spectral channels. Scanning systems,

on the other hand, generate false alarms that are spatially

correlated when they are separated by less than a correlation

distance associated with the background radiance distribution.

One method of eliminating this kind of dependence has been to

treat any group of detections that cluster so closely as a

single detection located at the centroid of the group.

Most of the detections resulting from the CFAR algorithms

will, of course, be false alarms. The final decision that a

target is present will be referred to here as a target declara-

tion to distinguish it from the CFAR detections established

before this decision process is invoked.

Systems that are required to maintain very low false alarm

rates usually rely upon tracking algorithms to provide target

declarations. Those are algorithms that distinguish between

target and clutter sources by means of the presumed trajectory

characteristics of such sources when they are observed in mo-

tion over several time frames.

A tracking algorithm must deal with two types of trajec-

tories: the non-accidental, which is due to the real motion

of a source relative to the IR sensor, and the accidental, which

is due to a random juxtaposition of clutter sources. Because

the first type occurs in great variety, according to the sce-

nario, the environment, and the system configuration, the effec-

tiveness of an algorithm in dealing with it is difficult to

evaluate except on a case-by-case basis.* However, it is

Ref. 3 (pp. 310-330) describes a number of tracking algorithms
that have been used for image processing. The list is far from
exhaustive, however; recent IR system designs, for example,
have introduced tracking algcrithms based on trajectory charac-
teristics that do not seem to have been exploited previously.
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possible to estimate with some generality an algorithm's effec-

tiveness in dealing with the second type of trajectory.

First of all, to the extent that the preliminary CFA) a-go-

rithms perform their assigned function, it may be assumed that

every false alarm occurs with the same specified CFAR probabil-

ity 0. Suppose that, in order to declare a target, the tracking

algorithm requires the formation of some spatial pattern by a

minimum of r detections, one from each of r different time

frames. Suppose also that n is the total number of possible

detection combinations that can form such a pattern. Then the

probability that the algorithm will generate a false target

declaration because of random false detections is given by

P - I - (1-€r)n (29)

Suppose that the system's false alarm rate specification

implies a probability of false target declaration no greater

than Po" Then from (29) it follows that r, which is the mini-

mum number of detection' required to establish a target track,

will be determined by the inequality

r [ 10 (30)

log (

Since the original reason for invoking the tracking algo-

rithm was the premise

P << 10

(30) is essentially equivalent to

log P -log n

log c (31)
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The right side of (31) approximates the right side of (30) with

an error whose absolute value will certainly be less than 0.5;

thus, the two inequalities will lead to the same bound when

rounded off to the nearest integer.

The number n has a simple estimate which can be derived as

follows. Suppose that each time frame contains a total of m

pixels and that from one frame to the next each detection may

be followed by a detection at any of k different pixels. If k

is the same for each successive frame in the set that deter-

mines the admissible track, then

n = mkr -  (32)

If k varies it can be replaced by an average (geometric) value

* estimate, or, if the aim is to be conservative, by an upper

*bound.*

A substitution from (32) into (31) leads to

log P -log m - (r-l) log k
log

which, in turn, provides the result

log Po-log m + log k
0r • log k + log '(

provided that

k < (34)

Unless (34) is satisfied no positive value of r is possible.

In that case the algorithm cannot meet the false alarm rate goal.

*It is certainly a tracker objective to make k a rapidly
decreasing function of r.
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The number k is a measure of the amount of branching per-

mitted by the tracking algorithm, usually in order to allow for

trajectory turns and an error tolerance. Therefore, the con-
dition (34) implies that the complexity of -he tracking algo-

rithm will be limited by the CFAR specifica ion that the pre-

liminary detection algorithms are able to meet.

As an example, consider the case in which there are l07

pixels in the entire scene, the CFAR algorithms dispose of 99

percent of the background pixels, and it is required that the

probability of a false target declaration be less than 10 .

Then m - l07, 0 - 0.01, and P0 - 10- 10. If no branching is

allowed, so that k - 1, according to (33) the number r of detec-

tions that must be considered in the target declaration algc-

rithm's trajectory pattern before a target can be declared is

greater than 8.5, i.e., 9 or more. If two branches are allowed,

r must be 10 or more, if 3, 11 or more, and if 4, 12 or more.

Figure 7 contains a curve that depicts the lower bound on

r as a function of k. As the figure indicates, k must be less

than 100 because of the limitation imposed by (34).

Figure 7 also contains a second curve: for the case in

which * is equal to 0.001 (99.9% of the background pixels are
eliminated by the preliminary detection algorithms) but the

other parameters have the same values as in the first case.

An inspection of this curve reveals that the increase in effec-

tiveness of the detection algorithms permits a large increase

in the number of allowed branches for a given number of detec-

tions in the track pattern. For example, for 4 - 0.01 no track

with fewer than 9 pixels is satisfactory, and even if there are
9, only one branch is permitted; however, for 4 = 0.001 a track

with as few as 6 pixels is adequate, and if there are 9 pixels

as many as 17 branches are permitted.
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FIGURE 7. Minimum number of detections for a tracking
algorithm versus number of branches
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IV. AN EVALUATION OF TWO COMMON
IR SIGNAL PROCESSING TECHNIQUES

A. INTRODUCTORY REMARKS

This chapter will discuss two unrelated techniques that are

included in some IR signal processing approaches to target de-

tection. The first technique, which is sometimes called back-

ground normalization (Ref. 12), is a method of setting a detec-

tion threshold that is adapted to the spatial variation of the

background clutter. The second, which is incorporated in cer-

tain two- and three-color spectral discrimination algorithms, is

a way of reducing the number of degrees of freedom in the data

by using ratios of the spectral components rather than the com-

ponents themselves.

The aim of the discussion will be to compare the effective-
ness of the techniques with that of alternative approaches.

The analysis that addresses this question here is actually an

extension of the analysis in Appendices A and B of Ref. 4,

which deal with the same topics in a more general way.

Appendix A of Ref. 4 characterizes background normaliza-

tion in terms of an idealized version of the process. The

present chapter will consider the specific process as it is

ordinarily implemented.

Appendix B of Ref. 4 derives some general implications of

the use of spectral component ratios in three-color systems.

Here the concern will be with the probabilities of false alarm

and target detection. For simplicity, the discussion will con-

centrate on two-color discrimination algcrithms, although it is

reasonable to suppose that the conclusions hold, at least quali-

tatively, for multi-spectral algorithms in general.
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The treatment of both tcpics Is self-contained in this

paper. Nevertheless, there is not much overlap with the material

in Ref. 4, which, therefore, might well furnish certain insights

that the present discussion fails to provide.

B. BACKGROUND NORMALIZATION

Background normalizaticn is a particular implementation

of a general process called adaptive thresholding (cf. Ref.

13-18). The fundamental objective of signal processing, of

course, is to set a detection threshold that is high enough to

reject background clutter but low enough to pass a target sig-

nal. When the threshold selection varies with the local back-

ground distribution, i.e., is spatially adaptive, under CFAR

conditions the target detection probability can be made larger

than would be possible if the threshold were fixed for a whole

scene.

Background normalization is essentially a method of esti-

mating the clutter that would be observed at a given point P

in the absence of a target. This estimate then provides a

basis for setting a separate CFAR threshold for each point in

the scene.

The prescribed estimate is just the average of the radi-

ance, or of some function of the radiance (e.g., its square),

measured at points surrounding P in a symmetrical pattern. For

the scene as a whole the process amounts to a transformation of

the background distribution by means of a sliding window average,

which is a special case of the linear transformations discussed

in Chapter III.

A simple example is the transformation defined by the mask

1/16, 1/16, 1/16, 1/16, 1/16

1/16, 0, 0, 0, 1/16

1/16, 0, 0, 0, 1/16

1/16, 0, 0, 0, 1/16

1/16, 1/16, 1/16, 1/16, 1/16
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The point P corresponds to the central pixel in the window, and
its eight neighbors are reserved as a guard against a possible

overlapping signal from a target source that might have more

spatial extent than was anticipated.

It is convenient in discussing the general case to intro-

duce a Cartesian coordinate system chosen so that the point P

is located at the origin; i.e., P will always have the coordi-

nates (0,0). It will be assumed that the coordinates (x,y) of

any other pixel in the window are integral multiples of a fixed

quantity Ax in the horizontal direction and a fixed quantity Ay

in the vertical direction.* Then, in an m by n window the pixels

will be located at the points (x,, y ), for which

=v 1-n n-1

(35)

y =2 1-2, m-l

If the continuous background spatial distribution is given

by a function S(x,y), the measured radiance (or a given function

of the radiance) at each point (x,, y ) will be S(x , y ) in the
absence of a target. Then background normalizaticn consists of

the assignment

SS(x, YQ (36)

where the sum is taken over a particular set of M points

(x , y ) out of the m n points in the window.

The set must satisfy just two conditions: (1) P is not a

member; i.e., if (x , y ) is in the set then either x 0 or

Usually Ax and Ay will be the same, but there is no particular
advantage in assuming this restriction here.
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yp 0 0; (2) the points that are members are located symmetri-

cally with respect to P; i.e., if (xv, y ) is in the set then

so is (x, y). It is evident from the second condition that

x =~* ' 0 and y = 0

V .

where the barred quantities are averages of the indicated coor-

dinates, calculated with respect to all points in the set.

The assignment (36) amounts to an interpolation of the back-

ground distribution to the point P from measured values observed

at the M selected points (xv, y3 ). It was demonstrated in

Appendix A of Ref. 4 that background normalization is consist-

ent with a power series approximation that is valid, in gen-

eral, up to the linear order. Therefore, it is natural to ask

how it compares with an optimum linear interpolation from the

given data.

1 An obvious choice for the comparison would be the estimate

obtained from the linear function

S(x,y) = ax + by + c (38)

that fits the given data with the least square error. That is,

the coefficients a, b, and c in (38) are to be determined from

the condition that

= [a x + b y + c - S(xv, yP) 2  (39)
V,)

be a minimum, where again the sum is taken over the M sample

data points.

The standard method of calculating the coefficients, i.e.,
differentiating e with respect to a, b, and c separately and
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setting each derivative equal to zero, leads to the system of

equations

x: [a x + b y + c - S(xV, y )] C'

y [a x + b y + c - S(xV, yQ] - 0 (40)

[a x + b y + c - S(xV, y)] = C

V d'

Because of (37) the last equation reduces to

c = 1 1 S(x , YQ) (41)

But according to (38) the linear interpolation for the back-

ground at P is given by

I S(0, 0) = c . (42)

A comparison of (36), (41), and (42) shows that the least-

square-error linear interpolation for the radiance (or a given

function of the radiance) at P is identical with the estimate

given by background normalization.

Since there are only three parameters to be determined for

the linear fit indicated by (38), it can be accomplished as long

as there are more than three measured values of S(x,y). Gener-

ally, there will be more--e.g., eight in the case of a 3 x 3

element window, or at least sixteen in the case of a 5 x 5 ele-

ment window.
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This suggests the possibility of improving the background

normalization technique by using an interpolation based on a

square error fit of the data to a quadratic instead of a linear

polynomial. That is, (38) would be replaced by

2 2
S(x,y) = c + ax + b y + All x + 2 A12 xy + A2 2 y, ()

and the coefficients c, a, b, All, A 1 2 , A 2 2 would be determined

so as to minimize the square error

= [S(x , y ) - S(xV, Y )]2 (44)

The resulting value of c, once again, would be the least square

error estimate S(0, 0) of P.

The argument (based on the symmetrical distribution of

data points about P) used to obtain (37) also implies that

x y7 = 0 (145)

It will be found, as a result, that, on setting the derivatives

of c with respect to each of the six coefficients in (43) equal

to zero, only three of the six least-square-error equations for

the coefficients will contain c. Those equations are, in fact,

c + x A1 + y A2 2 = S

x c + x A11 + x y A 22  x S , (46)

-Ty c + xy A 11+ yA2

where all barred quantities are averages over the M sample

data points, e.g.,
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-S x 2 S(x , yu)

V,U

If the coefficient determinant A of (46) is different from

zero, Cramer's rule will provide an explicit solution for c, A1 l,

and A2 . However, only c is of interest here. It is given by

c = F - x S- H Y , (47)

where

F =X Y - XY

X V -Y xy , (48)

A

H = y x x Xy~A

and A is given by the determinant

1, x , y

A XXX- y (L9)

y,xy,y

Since c is the least square error estimate of S(O, 0),

it is evident from the form of (47) that the least-square-error

estimate S2 of quadratic order (replacing the linear-order

estimate S= ) will be a weighted average; i.e.,

S2  c E W VP S(x , y ) (50)
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The weights W, obtained from an inspection of (47), are

given by

2 -H 2

WVU M

(51)

F-G v2 Ax2 -H U2 AY2
M

As an example, consider the case, introduced earlier, of

a 5 by 5 pixel window for which only the 16 border pixels are

sample data points. For this case the ordinary background

normalization, or linear, estimate consists of the average

S= W. S(x,, y) , v = _ 2 or U - 2

with equal weights,

! : 1

For the quadratic interpolation estimate it is necessary,

first, to calculate the averages x7, y2 , -x7, y7" x2y2 , which
can be done without much difficulty by using the mask introduced

earlier as a guide. The results are

2 2 2~ 2- 5(x2 + x_2 + 2 (x12 + X~l

x 5- 2) " x1  1 )

5 (4+4) .+2 (1+) Ax2  2.75 Ax2
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-"/ 2
y 2.75 Ay,

4 44 4 4 4x 5(x2+x_2) + 2 (x 1 +x) 10.25 Ax

-7 4
y - 10.25 Ay
22 (+2) 2 2 2+2 22x+22) (2Y2)

x 2 2 . _(x2+x1 ) (y2+Y 2 ) .+ (x 2 +x 2 ) (y+y21) + (x 2 +x 2  2+Y2

16

- 6 Ax Ay2

The determinant A, defined by (49), is therefore given by

4 4
A = 4.78125 Ax Ay

Then the calculations indicated by (48) provide the results

F = 14.44444 ,

G = 2.44444 (52)2
Ax

2.44444
Ay2

Finally, the weights can be obtained by substituting from (52)

into (51). The results are

F-4GAx
2

W+ W016 0.29167,

F. 2 _Hy 2

WF±2±1 W±1±2 16 4A 0.13889 (53)

= F-4GAx2  4HAy -.31944W12±2 16
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The corresponding mask will be

-.31944, 0.13889, 0.29167, 0.13889, -.331944

0.13889, 0, 0, 0, 0.13889

0.29167, 0, 0, 0, 0.29167

0.13889, 0, 0, 0, 0.13889

-.31944, 0.13889, 0.29167, 0.13889, -.31944

C. MULTI-COLOR ALGORITHMS BASED ON SPECTRAL COMPONENT RATIOS

An N-color IR system collects data in N spectral channels

defined by N distinct, non-overlapping wavelength bands which

are presumably chosen because the spectral signatures that they

provide for targets differ as much as possible from those that

they provide for backgrounds. As is customary in this paper,

N-component vectors J andZ. will represent the radiance dis-

tribution over the channels, the first for the case in which a

target is present and the second for the case in which targets
are absent.

Some two- and three-color target detection algcrithms that

have been proposed do not operate directly on the components
Ji' i-l,...,N of the vectors J and J

~T and but rather on the ratios
of N-1 of the J., i=l,...,N-1, to a single component JN* That

is, the ratio variables

Ji
X = N, i-l,...,N-l , (5 4 )

replace the variables Ji' i-l,...,N, and it is the Xi that

enter into the target detection algorithms. As a result,

there must be a certain loss of information since the number of

free variables will then be reduced by one. The question is:

how does this use of ratios in a target detection algorithm

affect the false alarm probability?
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For simplicity the discussion will be confined to two-

color systems, although similar conclusions may be expected in

the case of systems that employ three or more colors. For two

colors it is possible to construct a simple graphical represen-

tation of the pair of measured spectral components J1 and J2'

This is illustrated by Fig. 8 which depicts a planar coor-

dinate system for points that are defined when J1 and J2 are

regarded as cartesian coordinates. The figure represents a

data plane in which every point corresponds to a pair of measure-

ments in the two spectral bands of interest, and every pair of

such measurements corresponds to a point in the plane.

Assume that there is a distinct bivariate Joint probability

distribution for (J,, J 2 ) corresponding to the target source

and another such distribution corresponding to the clutter. In

terms of its probability distribution a mean point (2l' J2 ) will

be defined for the target and another will be defined for clutter.

These are indicated by the labels "target" and "clutter" in the

figure.

To each point in the data plane there is an associated 7ine

through the point and the origin cf the coordinate system. The

ratio of the corresponding spectral components will be equal to

the slope of the line or the reciprocal of the slope, depending

upon how the ratio is defined. Figurp 8 shows the lines (solid)

associated in this way with the target and clutter means.

A straightforward discrimination criterion is provided by

the following rule.* If for a pair of measurements J and J,

the value of the probability density function (PDF) correspond-

ing to the target is greater than the value of the FDF corres-

ponding to clutter, the source is presumed to be the target.

Otherwise, the source is presumed to be clutter.

This rule is introduced here instead of one based on a CFAB
requirement to simplify the calculations that illustrate the
major points of interest. It also makes it possible to nor-
malize the evaluation to one for which the false alarm proba-
bility is the figure of merit.
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Then the curve defined by the equation that is formed when

the target PDF is set equal to the clutter PDF divides the data

plane into two regions: one consisting of points regarded as

due to the target and the other consisting of points regarded

as due to clutter. This boundary is indicated in Fig. 8 by

the line labeled "2D discrimination line".

Although the boundary is shown in the .figure as straight,

in general it will be a curve or, in fact, it may even consist

of two distinct branches of a curve. If the PDFs are both

bivariate gaussian the boundary will be a conic section (Chapter

III, Section A), i.e., a parabola,. an ellipse, or a hyperbola.

If the covariance matrix for the target PDF and that for the

clutter PDF are identical, in the case of gaussian distributions

the boundary will be a straight line. Appendix A contains a

detailed discussion of these and related matters.

The target and clutter probability distributions will each

induce a corresponding univariate distribution for the ratio of

spectral components.* A discrimination criterion similar to

that based on the bivariate PDFs can be formulated in terms of

L he ratio PDFs.

When the target and clutter ratio PDFs are set equal the

solution of that equation provides a boundary between the re-

gion consisting of points designated as target and the region

consisting of points designated as clutter by the ratio dis-

crimination criterion. This boundary is d line or lines, with

slopes given by the solution of the equation, passing through

the origin of the coordinate system, and it defines regions

that are angular sectors. This is illustrated in Fig. 8 by a

llne lateled "ratio discrimination line".

It is evident that the 2D discrimination rule and the

ratio rule do not always agree. The region labeled "excess

false alarms" in the figure consists of points that are false

See Appendix D for a derivation of the PDF.
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alarms from the point of view of the 2D rule, and the region

labeled "excess missed targets" consists of points that are

missed target detections frcm the same point of view. From

the ratio rule point of view the same regions would be appli-

cable with the labels reversed.

Figure 9 illustrates a similar data plane configuration,

except that in this case the target and clutter means have the

same ratio, although the mean points are still separated by a

considerable margin. Note that the ratio boundary between

designated target and clutter points consists of two lines in

this example.

The triangular region labeled "ratio false alarms" con-

sists of points that are false alarms from the point of view

of the 2D rule. The two angular sector regions labeled "2D

excess false alarms" consist of points that are false alarms

from the point of view of the ratio rule. The actual false

alarm probabilities are determined not by the areas of these

regions but by the result of integrating the bivariate clutter

PDF over the regions.

Figure 10 illustrates graphically several cases of a bi-

variate Gaussian distribution. The solid-line ellipse repre-

sents a curve of constant probability for the case of uncorre-

lated spectral components with the standard deviation of one

component equal to ten times that of the other. Also, the ratio

corresponding to the mean point is defined to be J1/J 2 and is

equal to 2/3.

The dashed-line ellipses in Fig. 10 are lines of constant

probability for distributions that are obtained from the orig-

inal distribution by rotating the coordinate system about the

mean point through various angles as indicated. This provides

cases in which the covariance matrix is not diagonal, i.e.,

in which the spectral components are correlated.
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Figure 11 shows curves that represent the ratio PDF*

corresponding to each bivariate PDF illustrated in Fig. 10.

Note that each curve has a single mode which occurs near, but

not exactly at, the ratio of the mean components, i.e., 2/3.

Also note, by comparison with Fig. 10, that the largest mode

occurs for the case in which the major axis of the correspond-

ing bivariate constant probability ellipse is colinear with the

line joining the mean point and the origin of the coordinate

system. Further, the smallest mode occurs for the case in

which it is the minor axis that is colinear with that line.

To calculate the probability of false alarm (PFA) for

either the ratio or the 2D rule, as observed in Chapter III, it

is cnly necessary to integrate the clutter PDF over the appro-

priate region for a bivariate Gaussian distribution. The

region will always be bounded by straight lines whenever the

target and backgiound covariance matrices are the same. Accord-

ing to the mathematical model proposed in Chapter iI, this will

generally be the case for spectral discriminaticn of point tar-

gets. Appendix D shows in detail how such integrals can be

evaluated efficiently.

To make the false alarm probability calculation particularly

easy, consider the simplest possible case, in which the target

and clutter probability distributions are both bivariate Gauss-

ian with uncorrelated spectral components having identical

standard deviations. In accordance with the mathematical model

of Chapter -I the standard deviaticn will be the same for the

target and clutter distributions, as well. For this case

Table 1 provides false alarm prcbabilities due to the ratio

rule and to the 2D (bivariate) rule for three different sets

of means given in units of the common standard deviaticn.

Equation D-lL of Appendix D was used to plot these curves.
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TABLE 1. FALSE ALARM PROBABILITIES FOR RATIO
AND 2D DISCRIMINATION RULES

ARTIFICIAL DATA

SPECTRAL CLUTTER TARGET STANDARD CORRELATION PFA RULE

BAND MEAN MEAN DEVIATION COEFFICIENT 0.5034 Ratio

1 5 10 1 2xO 4  2D

2 10 1 0.5032 Ratio (excess)
2< 10 -

4  2D (excess)

- 0.4948 Ratio

1 5 10 1 2x0 "4  2D

52 6 11 1 0.4946 Ratio (excess)

S10 2D (excess)

__0.0339 Ratio

1 < 10-7 20

___ 5 13 1 0.0338 Ratio (excess)

j< 10- 4  120 (excess)
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It is seen in the table that for the case in which the tar-

get and clutter means have the same ratio of spectral components,

as illustrated In Fig. 9, the ratio rule produces a false alarm

probability that is more than 50 percent, while the 2D rule's

false alarm probability is about 0.02 percent. When the means

are shifted slightly so that the target and clutter means are

no longer associated with identical component ratios the ratio

rule false alarm probability improves slightly to a little less

than 50 percent while the 2D rule false alarm probability

remains essentially the same. When the means are shifted by a

greater amount so that the ratio associated with the target

mean is somewhat greater than 2-1/2 times the ratio associated

with the clutter mean the false alarm probability due to the

ratio test improves considerably. However, it is still more

than 3 percent, while the false alarm probability due to the

2D rule is less than 0.01 percent.

Tables 2, 3 and 4 contain the results of similar calculations

based on data taken from Ref. 9 for natural terrain backgrounds.

Data for the targets were made up by using equiValent temperature

means that are 3a or 5c above the corresponding background means

for one or both of the wavelength bands. One scene is a conifer

forest in Michigan and the other is a moun;ainous area in

Nevada.

An examination of the tatles indicates that the ratio rule

produces consistently higher false alarm probabilities than

does the 2D rule. In many of the examples the PFAs differ by

an order of magnitude or more.
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TABLE 2. FALSE ALARM PROBABILITIES FOR RATIO
AND 2D DISCRIMINATION RULES

Background Type: Mountainous Terrain (Nellis AF Base, Nevada)
CondItions: AM (1100, 2-26-78), high overcast, light haze, visibility 15 ml
Aircraft: Altitude 1000 ft, ground speed 200 ft/sec, flight direction East
Area Covered: 1750 ft x 6750 ft; Depression Angle: 35 deg; IFOV: 2.5 mrad
Radiance Units: deg k

SPECTRAL CLUTTER TARGET STANDARD CORRELATION PFA RULE
BAND MEAN MEAN DEVIATION COEFFICIENT 0.0453 Ratio

3.0-4.2 u 285.68 303.93 3.65 0.539 2.2x10"3 20

4.5-5.5 u 283.12 290.62 1.5 0.0440 Ratio (excess)

9xlO 4  2D (excess)

1.6x10"3 Ratio
3.0-4.2 285.68 303.93 3.65 1 .xl "  2D

3.0-4.2______ 0.539 .xO

4.5-5.5 1 283.12 283.12 1.5 j 3xO "  Ratio (excess)

2x10 "4  2D (excess)

0.1174 Ratio

3.0-4.2 1 285.68 285.68 3.65 0.539 1.5x10 3 2D
4.5-5.5 1 283.12 1290.62 1 1.5 0.1165 Ratio (excess)

7x10 "4  20 (excess)

__0.0388 Ratio

3.0-4.2 u 1285.68 296.63 3.5 0.539 0.0375 2D
4.5-5.5 u 1283.12 1283.12 1.5 5.2x10 "3 Ratio (excess)

3.9x10 "3 2D (excess)

0.1545 Ratio
3.0-4.2 p 285.68 296.63 3.65 0.539 0.0436 2D
4.5-5.5 i 283.12 287.62 1.5 0.1276 Ratio (excess)

0.0167 20 (excess)

0.2381 Ratio

3.0-4.2 v 1285.68 1285.68 3.65 0.539 0.0375 2D
,4.5-5.5 U L283.12 1287.62 1.5 0.2166 Ratio (excess)

0.0159 12D (excess)
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TABLE 3. FALSE ALARM PROBABILITIES FOR RATIO
AND 2D DISCRIMINATION RULES

Background Type: Mountainous Terrain (Nellis AF Base, Nevada)
Conditions: AM (0930, 2-25-78), high thin scattered clouds, visibility 15 mi

Aircraft: Altitude 1750 ft, ground speed 200 ft/sec, flight direction West
Area Covered: 1750 ft x 6750 ft; Depression Angle: 90 deg; IFOV: 2.5 mrad
Radiance Units: deg k

SPECTRAL CLUTTER TARGET STANDARD CORRELATION O"4
BAND MEAN MEAN DEVIATION COEFFICIENT 1 Ratio

3.0-4.2 u 291.12 355.57 8.89 0.894 < 10 "4  20
4.5-5.5 4 283.73 307.08 4.67 < 10-4  Ratio (excess)

< 10-4  '2D (excess)

< 10-4  Ratio

3.0-4.2 1 291.T2 355.57 8.89 0.894 < 0-4 20
4.5-5.5 1 283.73 283.73 1 4.67 < 10-4 Ratio (excess)

< 10"T 2D (excess)

0.0144 Ratio

3.0-4.2 u 291.12 291.12 8.89 0.894 < 0-4  2D
4.5-5.5 U 1283.73 307.08 14.67 0.0144 Ratio (excess)

< 10"4 2D (excess)

0.1180 Ratio
3.0-4.2 U 291.12 317.79 8.89 0.894 0.0616 '20

4.5-5.5 U 1283.73 297.74 4.67 0.0758 Ratio (excess)
0.0194 20 (excess)

0.0 911 Ratio

3.0-4.2 u 291.12 1291.12 889 0.894 4xl0 "4  20
4.5-5.5 u 283.73 1297.74 4.67 0.0909 Ratio (excess)

2x10 2D (excess)

3.4x10 "3 Ratio

3.0-4.2 1 291.12 1317.79 1 8.8-9 0.894 4xlO "4 - 2D

4.S-5.5 1 283.73 1283.73 14.67 32x10 "3 ato(eces

2xlO "4 12D (excess)
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TABLE 4. FALSE ALARM PROBABILITIES FOR RATIO
AND 2D DISCRIMINATION RULES

Background Type: Conifer Forest (Michigan)

Conditions: 1230 (Winter, 4-3-79, 4-4-79), no clouds, snow-covered ground, air
temperature - 2 deg C

Aircraft: Altitude 1750 ft, ground speed 202 ft/sec, flight direction NNW

Area Covered- 1650 ft x 1750 ft; Depression Angle: 90 deg; IFOV: 2.5 mrad
Radiance Units: deg k

SPECTRAL CLUTTER TARGET STANDARD CORRELATION PFA- RULE

BAND MEAN MEAN DEVIATION COEFFICIENT 0.0190 Ratio

3.5-3.9 u 281.77 300.115 3.6689 0.169 5x0 .-4  2D

4.5-5.5 y_ 277.58 280.751 0.6341 0.0187 Ratio (excess)

2xlO " 4  12D (excess)

5.6_0_ 3 Ratio

3.5-3.9 1 281.77 300.115 3.6689 0.169 5.6xlO_- 20

4.5-5. 5 12 7 7 . 5 8 1277.58 1 0.6341 1 x O"4  Ratio (excess)
lxlO 4  2D (excess)

T10.3322 Ratio

3.5-3.9 V. 281.77 3.6689 0.169 5"6x1O-3 2D

j4.5-5.5 W1277.58 1280.7511 0.6341 _0.3293 Ratio (excess)
0.0027 20 (excess)

I . 0.1064 Ratio

3. -3.9 1281.77 1]92.777 3.6689 O.169 0.0250 20

4.5-5.5 1277.58 1279.482 0.6341 0.0910 Ratio (excess)

0.0095 12D (-excess)

0.0643 Ratio

3.5-3.9 1281.77 292.777 3.6689 0.169 0.0641 2D

4.5-5.5 1277.58 1277.58 0.6341 6xlO "4  Ratio (excess)

4xlO "4  2D (excess)-

0.4058 Ratio
3.5-3.9 U1 281.77 281.77 1 3.6689 0.169 0.0643 2D
4.5-5.5 V 277.58 279.4821 0.6341 0.3710 Ratio (excess)

0.0295 2D (excess)
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V. SUMMARY AND CONCLUSIONS

A. SUMMARY OF TOPICS COVERED

Based on the assumption that IR measurement data separated

into N distinct channels have an N-variate Gaussian probability

distribution, this paper formulates a mathematical model for the

background radiance in the presence and in the absence of targets.

The formulation includes both spectral and spatial discriminants

for the case of point targets.

According to the model as proposed, if the N data channels

are defined as spectral bands it is usually the case that the

probability distributions associated with the presence of a

target and with the absence of any target differ significantly

* Ionly in their N dimensional mean vectors. That is, their N
by N covariance matrices are assumed to be nearly identical.

This will be true as long as the target occults only a small

fraction o' the sensor's footprint.

On the other hand, if the N data channels are defined in

terms of the spatial discriminant, i.e., so that each channel

represents the radiance level at a single pixel in an N pixel

window, the covariance matrices associated with the presence

or absence of a target will differ unless the target occupies

just a small fraction of a pixel. in fact, the model assumes

an explicit form (Chapter II, Section E) for the difference of

the two rmatrices when the target exactly fills a single pixel.

For certain calculations it is convenient tc change coor-

dinates by means of a principal axis transformation relative to

the covariance matrix associated with an N-variate Gaussian

probability distribution. Appendix C shows in detail how this
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can be done simultaneously for the two covariance matrices asso-

ciated with spatial data channels in the presence and in the

absence of a target.

The purpose of the model is to provide a means for obtain-

ing rc-igh evaluations of proposed target discrimination schemes

on the basis of what may be regarded as a minimal acceptance

standard. The analysis (Chapter III) covers optimum CFAR dis-

crimination and also includes a consideration of the effective-

ness of tracking algorithms (Chapter III, Section C) after CFAR

discrimination algorithms have been applied.

In addition to these topics and some related detail on

linear filtering (Chapter III, Section B) and how to calculate

various quantities of interest, this paper also deals (Chapter

IV) with two special subjects. One is a method of adaptive

thresholding known as background normalization. The other is

the question of whether it is useful or harmful for multi-

color systems to use ratios of spectral components, rather than

the components themselves, in target discrimination processing.

The ordinary background normalization process amounts to

a linear least-square-error interpolation of local measurement

data to predict the value of the background radiance, or some

function of the radiance, in a given direction in the absence

of a target. This paper shows how to extend the interpolation

to include terms of cuadratic order by means of a special linear

filter. As an example, the weights that define the filter mask

for the case of a 5 by 5 pixel window are calculated.

The analysis required for the multi-color question involves

a calculation of the probability distribution for spectral com-

ponent.ratios. Properties of the corresponding probability den-

sity for the two-color case are discussed in detail.

Chapter IV contains tables of false alarm probabilty cal-

culatilons for the two-color case for two discrimination algorithms,

one based on the one-dimensional distribution for the ratio of
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the two spectral components and the other on the two-dimensional

bivariate Gaussian distribution for the components themselves.

The tables answer the question concerning the relative merit of

the two approaches. Most of the data used for the calculations

are taken from Ref. 9, which provides resu±ts of radiance measure-

ments over several wavelength bands for a variety of terrain

backgrounds.

B. CONCLUSIONS

(1) Experimental data (Ref. 9) for a variety of terrain

backgrounds, especially those unaffected by human intervention,

exhibit radiance distributions that are well approximated (out

to 2a, 3o or more) by Gaussian probability density functions.

This may be adequate for realistically estimating the effect of

preliminary detection algorithms for which the false alarm rate

requirements are relatively modest. However, for some scenes

that have been affected by human intervention, notably A.?. Hill,

Virginia and Baltimore, Maryland, the approximation is poor.

At any rate, the assumption of a Gaussian distributed background

provides a minimal standard against which to measure an algo-

rithm's clutter rejection performance.

(2) The data in Ref. 9, provided by the Environnental

Research Institute of Michigan (ERIM), is presented in a form

that is well-suited to mathematical modeling of the spectral

distribution of terrain background radiance. It is also useful

for testing hypotheses concerning the spatial alstribution f

the radiance. Data for other types of backgrcund, e.g., clouds,

would be similarly useful if gathered and presented in the same

form.

(3) The ERIM data supports the assumpti -- :at a -'ural

(e.g., a conifer forest) scene is spatially .sot27i -  " t

the assumption that the cross-correlation fur-t1 e- -

tial. In fact, the Wiener spectra given In ."r a c:.ifer

forest are not consistent with any simple power law generalization
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of the spectrum associated with an exponential cross-correlation

function. The isotropic character of the spatial distribution

obtained for a conifer forest in the ERIM data contradicts a

model that is sometimes assumed (cf. Ref. 10) for the cross-

correlation.

(4) If the distribution of IR background radiance over

N channels (spectral, spatial or temporal) is N-variate Gaussian

when targets are present and when they are not, the optimum CFAR

target discrimination criterion is an inequality involving a

quadratic function of the measured data unless the covariance

matrix for the background in the absence of any target is iden-

tical with that for the background when a target is present.

(5) When the two covariance matrices are identical the

optimum discrimination algorithm is equivalent to applying a

linear digital filter and then thresholding. This optimum

linear filter is the same as the well-known filter that maxi-

mizes signal-to-noise if the signal power is identified with

the square of the difference between the mean target and mean

background signals and the noise power is identified with the

variance of the background distribution.

(6) For spectral channels the two covariance matrices

approach equality when the target occults a small fraction of

the-sensor's footprint, as is usually the case. For spatial

channels the two covariance matrices approach equality when the

target occupies just a small fraction of a pixel. The optimum

filter will be approximately linear if this happens, particularly

if the mean target signal differs from the mean background

signal by several standard deviaticns. When the target size is

of the order of a pixel the spatial covariance matrices will

differ, and the optimum spatial filter will not be linear.

(7) If a tracking algorithm is used for the final decisicn

whether a target is or is not present after the application of

one or more preliminary CFAR detection algorithms has eliminated
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most of the candidate detections, the effectiveness of the track-

ing algorithm will depend upon the effectiveness of the prelim-

inary algorithms. In fact, unless the false alarm probability

after the preliminary detection phase is below a certain critical

value, no tracking algorithm can satisfy a given false alarm

rate requirement. Moreover, the sensitivity of a tracking algo-

rithm to error or to unpredicted target accelerations will

increase rapidly with an increase in the false alarm probability

for the preliminary detection phase.

(8) When ratios of spectral components are used by multi-

color systems to discriminate between targets and background

rather than the components, themselves, the discrimination

algorithm will be less effective. In particular, for the two-

color case applied to typical natural background data obtained

by ERIM (Ref. 9), when an algorithm based on the ratio of the

two spectral components is used instead of one based on the two-

dimensional distribution of the components the calculated false

alarm probability is consistently larger, often by an order of

magnitude or more.
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APPENDIX A

OPTIMUM CFAR DISCRIMINATION

A. THE GENERAL CASE

It will be assumed that there are N data channels, each

providing a radiance measurement proportional to a signal J.,

i = 1, ..., N. The Ji will be regarded as the components of a

vector Z and as coordinates of a point in an N dimensional space.

It will also be assumed that an admissible discrimination

process will determine a region RT in the data space such that

all measurement sets representing points in RT will be regarded

as due to a target source and all other measurements as due to

clutter. Further, it will be assumed that there is a function

Vp(Z) and a quantity T such that the region RT consists of points

J that satisfy the inequality

(J < T (A-l)

Suppose that there is a joint probability distribution for

the components of J, conditioned on the presence of a target,

and an associated probability density P. (W). Suppose also that

the complementary joint probability distribution conditioned on

the absence of a target has the density P (J). Then the false

alarm probability will be given by

FFA = f P,(Z) dJ , (A-2)

RT
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where the notation is understood to indicate a volume integral

over the n dimensional region RT. Similarly, the probability

that a target will be detected if it is present is given by

PTD = T (7) d . (A-3)

RT

For a constant false alarm rate (CFAR) it is necessary to

choose the region RT so that PFA, given by (A-2), is equal to

some prescribed constant *. Then the optimum discriminaticn be-

tween targets and clutter will occur when PTD given by (A-3) is

maximized subject to the condition that PFA is equal to *.

That is, the problem is to choose the functicn P(Z) so as

to maximize PTD, the choice being restricted to those functions

for which PFA is equal to . This leads to the variational

equation

6 [PTD + X ( -PFA)] = o , (A-4)

subject to the condition

PFA= , (A-5)

where X is the usual Lagrange multiplier and the variation is

taken with respect to (R).

The variation calculated by means of the standard procedure

in the calculus of variations after substituting from (A-l),

(A-2) and (A-3) leads to the equation

SP() 6(J) dJ o . (A-6)
BM
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where the integral is taken over the hypersurface BT determined

by

= (A-7)

The equation (A-6) must hold for all admissible functions

Sip(J); hence, in accordance with the standard argument,

P (J) = X P (J) (A-.8)

for all points satisfying (A-7).

The equation (A-8) may be regarded as equivalent to (A-7);
hence the relations

= log ) - log PC(J)

(A-9)
T= log X

provide a satisfactory solution of the variational problem.

The constant X, and therefore T, can then be determined by solv-

ing the equation (A-5) after substituting from (A-2) and (A-9).

B. THE N-VARIATE GAUSSIAN DISTRIBUTION

An important special case, which often has at least an

approximate validity, is the case in which PT(J) and P (J) are

both N-variate Gaussian probability densities, having the form

11 - M-1

P(J) = e (A-10)
/(2v)n J f

A-3



where Z is the mean vector defined by

f I P (J) dZ ,(A-II)

M is the covariance matrix whose elements M are defined by
ij

Mu = f(Jr-i) (Jj) P(J) dJ , (A-12)

IMI is the determinant of M, and the superscript t in (A-10)

indicates the transpose (row) vector. The symbol in (A-11)

and (A-12) means that the integration region for the integrals

so labeled is all n space. The densities PT(J) and P,(J) are

determined completely by their respective means J and J and

their covariance matrices M and M in accordance with.the form

(A-10).

According to (A-10), (A-9) and (A-1) the optimum CFAR al-

gorithm for declaring a target detection when an N channel

measurement set consists of the components of J is the rule:

for a prescribed false alarm probability € a target is present if

(_)t < (A-13)

where Y is a constant determined by the condition

- 2 t M- (
2 ~C '-C -

Ie d (A-14)

A-~4



y-7

The integration region R(y) in (A-14) consists of points .

that satisfy (A-13).

The left side of (A-13) is the difference between two quad-

ratic forms in the quantities J-ZT and ;-Z.. It can be simpli-

fied somewhat by a small amount o" algebraic manipulation which

will reduce it to the sum of a quadratic form in J, a linear

form in j and a constant. In fact, (A-13) can be written

At AM 2 Lt j < K (A-15)

where AM is a matrix given by

AM - - M (A16-i~ -i(A-16)

is a vector given by

L (A-17)

and K is a constant given by

-t + -t c -  * (A-18)

In deriving (A-15) the fact that the covariance matrices, and

therefore their inverses, are symmetric is used.

If AP is not zero the region in n dimensional space defined

by (A-15) is bcunded by the n dimensional version of a quadric

surface. If n is 2 the boundary is a conic section, i.e., an

ellipse, a parabola or a hyperbola.

If the regihon RT is prescribed by the form (A-15) then it is

the constant K that must be determined by (A-1L).

A-5



If the target and clutter covariance matrices are identical,

hcwever, &M is zero. in that case the region defined by (A-15)

is a half space bounded by a hyperplane, i.e., the n dimensional

version of a plane.

C. THE UNIVARIATE GAUSSIr,, DISTRIBUTION

As an example of how the pvimum discrimination algorithm

can be formulated in practice it may be useful to consider a

special case in detail. The univariate Gaussian distribution is

obviously the simplest special case. It is also a useful one

to consider because it plays a fundamental role in the construc-

tion of optimum linear filters.

When the probability distribution is univariate the mean

vector and covariance matrix are actually scalar cuantities.

Thus, the means associated with the target and clutter distri-

butions are constants JT and JC and variances aT and C

both of which are also constant, replace the covariance matrices

MT andM

Then (A-15) becomes

1j1 2) J2 -2 LJ < K ,(A-19)

where, because of (A-17),

L - T -C (A-20)
cT

After a substitution from (A-20) the relation (A-iS) may be

replaced by

j2 -28J-y ,0 (A-21)

A-6
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where

C -t  T -r T Cc 2 _ 2  (A-22)

and y is a new constant, replacing K, to be determined by (A-14).

It follows from (A-21) that

8 < J <8 + (A-23)

The interval defined by (A-23) is the cne dimensional version of

the region that was labeled RT in the general case and R(y) in

the n-variate Gaussian case discussed in Sections A and E of

this appendix. That is, (A-23) gives the criterion for declar-

ing that the measurement J is due to a target.

However, before the criterion (A-23) can be used it is still

necessary to determine the constant y. This can be done by using

the CFAR condition (k-1!4), which takes the form

-(J- C'
2C2

e dJ
aC

A-7



or, equivalently because of (A-22),

edx2
e dx -(A-2 4 )

where

a - i 2 2)aC (A-2a)

aC -aT

and

vr~T7(A-26)

Actually, the simplest procedure now is tc determine '

frcm (A-2L) and (A-25) in terms of the CFAR value €. Then,

instead of using (A-2'), the interval that contains the target

declarations can be expressed in terms of u and S, which is de-

fined in terms of th . given probability distribution parameters

by (A-22); i.e., a target is declared if

a-ua C < J ( + G/
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From the more general definitions (A-3) and (A-10) it

follows that

2 2

PTD e IJ
a T f d

With the aid of (A-22) this can be written somewhat more con-

veniently as

t x
~-2

e dx , (A-28)

where

i - I (A-29)

and

^~ ( aT

2_ 2 (A-30)
a -aC T

A-9
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The result of this section can be summarized as follows.

Given a required PFA value *, with parameters a defined by
(A-25), 0 defined by (A-22), and V determined by the equation

(A-24), the optimum criterion for a target declaration in the

sense of maximizing the PTD is given by (A-27). The correspond-

ing PTD is given by (A-28) in terms of quantities u defined by

(A-29) and A defined by (A-30).

If aT = then (A-19) becomes the trivial ccndition that

the interval of possible values of J be divided into two com-

plementary sub-intervals. That is, a constant T divides the

interval

- w <J <w

into two intervals

- < J < r , T < J < cp

one of which, it will be assumed by the target discrimination

rule, contains all values of J; and only those values, that may

be attributed to a target source.

If Aj > 0 the value of T is to be determined by the.CFAR

condition

-. f (J- )2

1 2 2  dJu."L dxe,
" C

A-lO



where a is the common value of acC and aT ' That is, for v such

that

2

e-- dx = (A-31)

V

T will be determined by

T -av + JC " (A-32)

Then a target is declared whenever

J > T.

If AJ < 0 then v is still defined by (A-31) but (A-32)

must be replaced by

T -OV + JC (A-33)

Then a target is declared if

J < .

In either case the PTD can be calculated by integrating

2
T)

22
'~~~~ PT(J)-----•

A-Il
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over the interval in which targets are declared. The result

is given by

x2

PTD 1 e dx .(A-3
14)

- r-

A-12
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APPENDIX 8

POWER SPECTRAL DENSITY CALCULATIONS

Chapter II discusses two correlation funlctionls that are

sometimes suggested as models for the spatial distribution of

background clutter. One is

K -~ exp Lx9(B-i)

which is anisotropic even when Lx = L . The other is

K(r,,r') ( ~p(.."~ B-2)

which is isotropic.

The power spectral density (or Wiener spectrum) for

K (r,r') is given by the Fourier transform
x~y

w (kW -f exp, + 1kt--v- dudv, B-3
x,y. f y o

where kc is the wave number vector with componenits (k 9 k )and0%. x y
u is the displacement vector with components

B-1



Since

tk u- k u + k v

the double integral in (B-3) is a product of two single inte-

the evaluation is

4 ~W (k) \lk~ ~ ~ 1i +iLxy - x x+IkyLy

4L L

2 Xv 2
(1+k X L X) (1+k y L yxy

The power spectral density for K (r,r') is given by the
Fourier transform

W(k) - exp (4 + ikt dudv (B-5)

which, after changing variables to polar coordinates (P, o),
becomes

f 2n ikpcos(e-)

W(k) - e e depd0 (B-6)
of 0

where (k, *) are the polar coordinates of the vector . The
inner, angular, integral is independent of * because the

B-2

- --- ~Ad_



integration interval is exactly one period of the integrand
which, of course, is periodic in e; therefore, * can be set
equal to zero. The integral over 9 can then be recognized as
a well known representation for the Bessel function of order
zero. Thus, (B-6) may be written

W(k) 2w f e J0 (k;) pdp

0

With the aid of a standard table of integrals (e.g., Ref. B-l,

p. 712) this can be recognized as equivalent to

2 L

W(k) = 2L (B-7)
(l+k2L

2 )3/2

As Ref. B-2 points out, if the background distribution
appears to be isotropic when viewed at a 90 deg depression
angle (i.e., vertically), when it is viewed at an angle that
is less than 90 deg it should appear to be anisotropic. This
is because there will be an apparent change of scale in the
cross-track but not in the in-track direction. In such a case
the natural generalization of the correlation function K(rr')

given by (B-2) is a function of the form

Ky- exp - (x-x')2+a2(y_y,)2 (B-8)

B-3



The corresponding power spectral density will be given by

Wyk J exp [ik tU- dudv

which, after a change of variable, becomes

iA

Wy(,' exp ~ - 4) dud; , (B-9)

(4k

where k is the vector with components kx P a) and u is the

vector with components (u, c v). Since (B-9) has exactly the

form of (B-5) its value can be obtained by inspection of (B-7).

Thus,

W 22 L2 (B-10)( +cLk +L k 2 )3/2  (
x y

Isotropic background distributions with Wiener spectra for

which the functional forms differ from that in (B-7) apparently

occur more frequently than not. A natural generalization of

the Wiener spectrum given by (B-7) that produces an infinite

class of possible correlation functions can be obtained by re-

placing the exponent I in the denominator on the right side
2

with any positive number v. The corresponding correlation

function would then be given by

B.-4



ac ao

I,

' (1'£ V)I '' / exp E-i' (r-r')J].

K(rr'; V) L2L2 dkx dky
(1k L )V

L 2 f W kdk
o2

0

The integral in (B-i) can be evaluated with the aid of

a formula on p. 488 of Ref. B-3. The result is

i1

K (r,r' ;v) = (Irr \ I (B-12)

where the function on the right having the form K_(x) is a

modified Bessel function. The modified Bessel function Kn (x)

can be expressed in terms of elementary functions when the order

n is an odd multiple of.! (cf. Ref. B-3 , p. 444); e.g.,

K 1(x) ,KI(x) e-x

2

B-5
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APPENDIX C

CANONICAL VARIABLES FOR SPATIAL CHANNELS

The mathematical model for spatial channels that was intro-

duced in Chapter II assumes a target covariance matrix Z

given by

M c - &-

where Yc has the elements Mij and AM has the elements A,,

given 
by

A ii = Mjo 6io + Mio 6Jo - M 0 !o J T2 . (C-2)

In (C-2) and throughout this Appendix the subscripts are under-

stood to be two component vectors, and quantities 6ik are

Kronecker deltas which are equal to one if the subscript vec-

tors i and k are identical in both of their components but are

otherwise zero. A zero subscript represents the zero vector,

both of whose components are zero. Any sum that is indicated

over a subscript will mean that a double sum is to be taken

independently over both components of the subscript vector.

In the case of an n by n pixel window there will be n

channels, one for every pixel. Each of the subscript vector

components independently takes on n values, so that the vector,
2

itself, takes on n values, one for every channel.

As observed in Chapter III, for optimum CFAR discrimination

in general it is sometimes useful to transform the variables

C-i
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associated with the natural channels to new variables in terms

of which the target and ciL *er covariance matrices are both

diagonal. This can be done by solving the eigenvalue problem*

(M - X Mm Y 0 (C-3)

The purpose of this Appendix is to derive algorithms for calcu-2
lating the n eigenvalues Am and eigenvectors Y for the spatialm ~M
channel model defined by (C-1) and (C-2) in the case of an n by

n pixel window.

First of all, it is evident from (C-I) and (C-3) that any

set of linearly independent vectors Y that satisfy~M

AM =0 (C)

will be a set of distinct eigenvectors asscciated with the

common eigenvalue

m

In fact, by using (C-2) explicitly in (C-a) one finds that any

vector with components Yk that satisfy the equations

Yo =0
(c--)

M Mko k 0

k

will be such an eigenvector. For an n by n pixel window the

sum in (C-5) contains at most n2-l non-zero terms since the terrm

corresponding to k - o vanishes.

Cf. Ref. (C-1), pp. 37-41.

C-2
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If it is assumed that the clutter probability distribution

is non-degenerate the covariance matrix L-r is non-singular.
2 %

Then the n column vectors of M are linearly independent.

From the column vectors £i, i # o, whose components are

Mki' if there are not already n 2 -2 values of i for which Moi
is zero, it is possible to form n 2-2 new linearly independent

vectors V by defining the components of' V by

V M Mki i#o i#J (C-6)ki ki - W MkJ ,

where j is any fixed subscript vector such that Moi is not zero.

The vectors V defined by (C-6) all have the component Voi equal

to zero. Together with the vector 20 whose components are Mko

for k~o and zero in place of M the vectors 2 form a set ofn~2_
- linearly independent vectors, all having zero for the com-

ponent labeled with the subscript o.

Applying the Gram-Schmidt orthogonalization process* to

the n 2-1 vectors 2, leads to a set of n 2-2 orthogonal vectors

Y i' each of whose components provide a different solution of

the equations (C-5). These vectors Y are therefore n2-2

linearly independent eigenvectors of (C-3), all corresponding

to the same eigenvalue, one.

The Gram-Schmidt process is equivalent to a. recursive al-

gorithm that is computationally efficient and easy to inplement.

Given a set of H linearly independent vectors X and a defined~n

inner product (Q, V) for any pair of vectors U and V, the fol-

lowing recursion relation generates a set of N vectcrs Y that#_n

* are mutually orthogonal with respect to the inner product and

such that Y is equal to the vector identified as X in the~O

original set:

Cf. Ref. (C-2), p. 230.
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"Z "X

~0 u 1 0  ~x

m-i
Z m X - j (ZC, Y Y ri . N (C-7)

V"o

z m
Y a , m-l, ... , N-I

To calculate the eigenvectors of (C-3) it is only necessary

to identify X with the vector whose components are defined to"'0 2
be Mko, to identify the number N with n -1, and to define

the inner product as the usual scalar product of two vectors;

i.e., in terms of column vectors C and K the inner product will

t be defined by

(C, K) = CtK - C , (C-8)

where the superscript t means "transpose".

The eigenvalue equation (C-3) has two additional eigenvalues

for that are not equal to one, with corresponding eigenvec-

tors U and V. Together with the n2-2 vectors Y , mro, U and V

complete a set of n2 linearly independent eigenvectors that

satisfy (C-3) when the corresponding eigenvalues are used for

m
To deal with the problem of finding the two new elgenvalues

and eigenvectors it is convenient to define a new inner product

by

(Z, K) jZ , MK

C-4



which is a bilinear form relative to the covariance matrix Mc.

Since M C must be positive definite the inner product defined

by (C-9) has all of the properties that are necessary for the

inner product operation. In particular, it follows from the

standard argument* that, relative to the new inner product,

U and V will each be orthogonal to all of the eigenvectors Y

and to each other, i.e.,

(Jj, ) - (J, Y) (V, Y ) , mo0 . (c-10)

The orthogonality of two different eigenvectors in the

sense of (C-10) in terms of the inner product defined by (C-9)

depends upon the corresponding eigenvalues being different.

Therefore, it does not necessarily hold among the first n2-2

eigenvectors Ym"

The orthogonality property (C-10) can be used to find V

and V and the corresponding eigenvalues. First, it is necessary

to define two vectors P and Q which are orthogonal to the Y
and to each other. Then P' Q and the Y form a set of n linearly

independent vectors which span the n dimensional vector space.

It will be found that suitable candidates for P and Q are

the vectors whose components are given by

Pi a 6 io

(C-11)

Qi .Mio S 6 io - (Mko Mkl Yv i
vkl

where

lS Mmoo ko

k

Cf. Ref. (C-1), pp. 37-41.

C-5
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and the v are the components of the vectors Y. To verify

that P and S whose components are defined by (C-11) satisfy the

orthogonality conditions (C-10) when substituted for U.and V it

is only necessary to substitute from (C-l) into (C-10) and

make use of (C-5) and the symmetry of the covariance matrix M'.

It follows from the orthogonality property (C-10) of the

eigenvectors that ; and V must belong to the subspace spanned

by P and Q. That is, if P is not already an eigenvector, as is

usually the case, then either eigenvector can be written in

the form

U- P + Q , (C-12)

where a is a scalar constant to be determined.

Because of (C-1) the eigenvalue equation (C-3) can be

written

(1-X) M Y + XAMY - 0 .(C-13)

If U given by (0-12) is substituted for Y in (C-13) and the
t t

resulting equation is multiplied on the left by Pt or by Q
the first or the second of the two scalar equations

(1-A) (aIll + 1112) + x(ar + r 0

(C-14)

(1-X) (aII 1 2 + 1122) + x(ar1 2 + r22) - 0

results, where

111 U £t DC.' 1112 " t =Cq' 1122 O -t A ,

(C-15)

Pt t t
rn at , rl2 -P a!Q, r22 AQ M Q

F C-6



By eliminating a from (C-14), using

(A-i) (112 - II I1 + x (II r
12 111 - 11 ..12 1 2  (C-16)

X(II1 2 rll I 11l r12 )

obtained from the second equation to substitute into the first,

a quadratic equation in X,

a X 2 + b X + c a 0 (C-17)

results. After some tedious but straightforward algebra it will

be found that the coefficients of (C-17) are given by

2 2Ill 111 12 -112 + i 22 - 12 +2112 r12 - 1111l r22 '11l 1122 )

b a IU (11 r22 + rll 1122 2 1112 r12 + 2 1112 -2 1  122) , (C-18)

! ~ ~~ ~ c- 221(11112 I2

In the definition of a, b, c by (C-18) the copmon factor 111

can be omitted since it has no effect on the solution of (C-17).

With the aid of (C-2) and (C-i) the II ij and Tii can be

-calculated cplicitly from (C-15). The results are

11 M , S 2 M
11 i ,oo 1112 0 1122 Mio Mij Mo -S o

ij
(c-19)

2 2 2SM r - (Mo 2 2
r11  MO CT' F12  CT ' 0' r22 +aT (S-M 0 0 )

where S Is given by the last equation in (C-Il).

C-7

r[

_ _ __ __



It is of some interest to obtain, explicitly, the discrim-

inant d of the quadratic equation (C-17) after removal of the

common factor II1. The result, calculated from (C-18), is

d 2-a -(I r+r1)2+4 I (r 2 - r r(0d1- b2-4ac- M 222 + r1 1122 + 4 Ill 122 12 11 (c-20)

From the definitions (C-15) and the fact that M is a posi-

tive definite matrix it follows that IIl and 1122 are both

positive. Thus, if rI2 on the right side of (C-20) is replaced

by zero the effect will be to decrease the right side of the

equation. That is,

d a (l-(II r22-rll 122 )2, 0. (C-21)

In other words, according to (C-21) the discriminant is always

non-negative. Therefore, the quadratic equation (C-17) for the

eigenvalues X has only real roots, which is certainly a require-

ment. In fact, a fortiori, since M and AT are both positive

definite the equation (C-3) can only be satisfied for positive

real values of A.

A reference to the form of (C-20) and of (C-21) indicates

that the discriminant vanishes; i.e., the roots of (C-17) will
be equal, only if r is zero and II r =r II

12 11 22 11 22' or if
1122 and F 22 are both zero. A reference to (C-19) confirms

that the first pair of conditions either imply the second pair,

which are satisfied only when

S -Mo0 0 (C-22)

and

Mi Mi Mo M3

C-8
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or else they imply that

S -Moo (C-23)

and

M -a 2
00 T

Thus, the eigenvalues will be equal if and only if (C-22) or

(C-23) is satisfied.

If the eigenvalues are equal the corresponding independent

eigenvectors are P and Q defined by (C-ll). If the eigenvalues

are not equal their corresponding eigenvectors are given by

(C-12) with the respective values of a given by (C-16).

The n2-2 linearly independent vectors Yi that were obtained

from the V i defined by (C-6) are eigenvectors satisfying the

equation (C-3), all corresponding to the eigenvalue X. W 1.

They are also mutually orthogonal with respect to the usual

inner product defined by (C-8).

The set of all eigenvector solutions of (C-3) consists of

the and the two additional vectors U and V that are linear

combinations of and ., whose components are defined by (C-11).

However, in order to use these eigenvectors to construct a prin-
cipal axis transformation that simultaneously diagonalizes ZC

and MT, which was the original purpose of the analysis in this
appendix, a further step is necessary. The eigenvectors must
be mutually orthogonal with respect to the inner product de-

fined by (C-9).

This condition is satisfied by U, V and any one of the Y
because they correspond to different eigenvalues, but it is

not necessarily satisfied by the Y However, n2-2 linear

combinations of the Yi can be found that are mutually ortho-
gonal with respect to the inner product defined by (C-9).

C-9
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The Gram-Schmidt orthogonalization process, e.g., in the form

of the algorithm given by the recursion relations (C-7), will )

accomplish this objective when it is applied to the Yi' using

(C-9) instead of (C-8).

The vectors U, V and the resulting linear combinations of

the Y are then the column vectors of a matrix T which provides

the desired principal axis transformation. That is,

Tt M T and Tt M T

will both be diagonal matrices, as required.

C-10
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APPENDIX D

RATIOS OF MULTI-VARIATE GAUSSIAN DISTRIBUTED VARIABLES

1. Probability Density Functions

Reference D-1 contains a derivation of the joint probability

density of the ratios

J, JXI  F ' X2

22

when Jl, J 2 , J have a tri-variate Gaussian distribution. In
e 3

this appendix the derivation will be generalized to cover the

case of variables J1,...,JN with an N-variate Gaussian distri-

bution.

That is, it will be assumed that there is a joint proba-

bility density function given by

p(J) =e i(D-1)
(27) N1 I

where J is an N-dimensional vector, is the N-dimensional mean

vector, M is the N by N covariance matrix relative to the proba-

bility distribution for J and IM1 is the determinant of N. The

problem is to determine the joint probability density function

Pn(X) for the ratios

Ji

which are components of an (N-1)-dimensional vector X.

*D-1



The argument used in Ref. B-I for the case of three vari-

ables can be extended to cover the general case of N variables.

The first step is to define the change of variables

Ji = Uxi' i-1,...,N-1 '

(D-2)
JN =U

The Jacobean for the transformation (D-2) is then given by

,U,o,I. . ,0,X1
O' '0 (J ' 'N . ... ..O X

UN - 1  (D3)
a(X11 .. XN 1;U) . . . ... . .. (D 3

t0,0,. .. 0,i

The (N-1)-variate probability density function for theI ratios X is given by

i Q

P T P(;Z) dU(D4

Substitutions from (D-l), (D-2), and (D-3) into (D-4) then

lead to the result

t Q(Xi,Ji,U)

1R NI e IUI N - 1 dU (D-5)

D-2
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II

where

Q(Xi JiU) = Ai (UYJi- ) (UYj-jl

i,j=l

in *hich the coefficients A i are the elements of the inverse

covariance matrix M- 1 and, by definition,

Y = X i

(D-6)
YN= 1•

Then a straightforward calculation provides the result

_!ccc
(Xe - . AU2 +BU

P(X) ( 2) 2 2e IUI N - 1 dU (D-7)

where

A =Y t M- y, B t M-1 Y9 C 5t M-I a

in which Y is the N-dimensional vector whose components are

given by (D-6).

When N is an odd number (D-7) can be written

1 C AU 2+BU

12
P(X )  e- e- UN - 1 dU (D-8)(2r) N2/T

D-3
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However, when N is even

1 r- ro +=
.N/2/ [fe AU2 +BU dA e . AU+BUJ

(2 -) N -I
0

e[I AU2 +BU d-1 AU2-BU N- ](20N2/~eU - dU f e U N - dU

(D-9)

B 2-AC 2 AT (u-. )u_ dU 2,fe AjNId
e F e UN +N1 dU

(27)0 TW
o 0

B2-AC [f w
2A 12 B)N2N/2 ee + -  -W + e. NdW
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T

Similar steps taken with (D-8), for the case in which N is odd,

lead to the result

2B2-AC 1 12
- N-l

P T e dW . (D-10)

(21rA) 'h

Witthe aid of the binomial expansion theorem (D-10) can be
written

B2 -AC 1 2

e2A tWN- (N -1)) -(1-) f~~-N

SPR(X e / e r B A W dW

(2A)/ Eo

i ii - 1,II

B2-AC

2A N-1 1N-l) -r A1revn
e TDN-1-- r r

o.(21r)-= 11'- r-o

where u r is the r th moment of the standard normal probability

distribution, i.e., a Gaussian distribution with zero mean and
a standard deviation of one. According to Ref. D-2 (p. 208) the

moments of the standard normal distribution are given by

Ur 0, for r odd

13... (r-1) for r even.
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A comparison of the first integral with (D-1O) shows, after

a little manipulation, that for N even P (X) is given by (D-11)

plus a remainder term E(X) given by

B2 -AC 1 2

E(X)- 2C e W B dW . (D-12)
(2yrA)N/ 2 vr ( AY

B

By applying the binomial expansion to the integrand of (D-12)

it is possible to express E(X) as a finite linear combination

of incomplete gamma functions.

The simplest examples of even and odd N (except for the

trivial case of N-l) are N-2 and N-3. For N-3, which was con-

sidered in Ref. D-l, (D-11) provides the earlier result

B B2_AC

: ~ ~~2A iB _

P(X ) = e - + 2)A . (D-13)27R /Tz"

For N-2, (D-l1) and (D-12) provide the result

B2-ACA_

PR(X) , e BA 2 + E(X) , (D-14)
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where

B 2-AC2
2A B W2

ee -A f

B
X

For cases of practical interest C >> 1 because the means

J7 will be many standard deviations away from zero. This cani
be seen, for example, in the data of Ref. D-3, for which mean

equivalent temperatures in the thermal bands are all of the

order of 300 deg K while the standard deviations are at most

2 or 3 deg K. A similar observation can be made for the solar

bands, although the means at those wavelengths (1 U - 3 u)
differ from zero by amounts of the order of 10 standard devia-

tions rather than 100.

If C is, in fact, large and the quantity B is not, the
/W

exponential factor in (D-11) and (D-12) will guarantee that

PR(X) will be negligible in general. On the other hand, when

B is comparable to C in magnitude, i.e., when B >> 1, it is

/W /T
evident from (D-12) that E(X) will be negligible. Then (D-11),

which is exact when N is odd, will also provide a good approxi-

maticn to PRW when N is even.

2. Calculation of False Alarm Probabilities for Two-Color
Systems

As observed in Chapter IV, for a two-color system the
mathematical model proposed in this paper implies that in data

space the decision regions determined by an optimum two-dimen-

sional or ratio discrimination rule will always be bounded by

straight lines. In fact, for a two-dimensional rule the regions

D-7
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will be half planes, whereas for a ratio rule they will consist

of one or more triangles or angular sectors.*

According to (3) in Chapter II, the probability of false

alarm is given by

PFA 2 vIc ff exp [ (-2)t -1 )dxdy, (D-15)2w/7-T f f

R

where R is the region in which a point corresponds to a target

detection as defined by the discrimination rule. To evaluate

the integral in (D-15) it is convenient, first, to translate

the coordinate system so that the clqtter mean JC is at the

origin of the new system. This is done by setting

~ -OC ' (D-16)

whereupon (D-15) takes the form

PFA- - ffexp Q() dxdy (D-17)

R'

where

Q(r) atMC

An angular sector may be regarded as a triangle with one side
at infinity. For numerical purposes that side may have any
convenient orientation, and its intersections with the other
two sides of the triangle can be specified arbitrarily as
long as the cartesian coordinates of the intersections and
coordinate differences are large, e.g., of the order of 1000 a.

D-8
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and R' has been written in place of R as a reminder that the
analytic description of the region R will be different in the

new coordinate system. The next step is to change to polar

coordinates; then (D-17) becomes

1 rI] f, aexp _ QWe rdrd , (D-18)
2w /7Mf f ()

RV

where

Q(e) a A11 cos2e + 2 A12 sine cose + A22 sin2 . . (D-19)

* In (D-19) the coefficients Aij are elements of the inverse
covariance matrix 1given, in terms of the standard devia-
tions a,, 02 and the correlation coefficient p for clutter

statistics, by

A1 A A-- (D-20)
11 (1-p 2 2 2  (1-)2 1 2  (1_P 2 ) a a

For a triangular region R' (D-18) is a sum of three terms,
one for each side, of the form

Sii exp 1 r 2 Q(e) rdrde , (D-21)
± 2w =Mc JfL

e1

where 01 and e81+l are the angular coordinates of the end-points
of the side i and the equation of the line of which the side is

a segment is given in polar coordinates by

b1

r=r(e)= sine mi cos e  (D-22)

C D-9



In (D-22) bi is the y- intercept and mi is the slope of the line.

It does not matter whether the origin of the coordinate system

is inside or outside of the triangle as long as the integration

over the intervals from 6 to 01+1 proceeds around the triangle

in a counter-clockwise direction.

In (D-21) the integral over r can be evaluated explicitly.

The result is a single integral; in fact,

1 ei~j l-exp 1 r. r 2 (8) QO2P -"[_ 7 " dO ,(D-23)

0 1 j

where ri(8) is given by (D-22) and Q(e) by (D-19).

For the 2D rule the regions R and R' are half-planes. An

analysis similar to that used in deriving (D-23) leads, in this

case, to the result

1 l exp [I r r2(e) Q(e)
PFA - II ; U)de (D-24)

tan- m

where

r(6)b

r(e) -*sine b m cosO (D-25)

In (D-25) b is the y- intercept and m is the slope of the line

that separates the target. from the background data points

according to the 2D rule. The intercept b in (D-25) is defined

in terms of the coordinate system centered at the mean 5C"

D-10
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The formula (D-24), for the case of a 2D rule, is in terms

of a single integral that can be evaluated numerically without
difficulty. For the case of a ratio rule the false alarm

probability is given by

PFA - P1 + P2 + P3  , (D-26)

wherein each term Pi is given by a formula of the type depicted

in (D-23). A straightforward numerical integration will also

lead to the value of each term in (D-26).

I
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