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ABSTRACT

This paper 1is concerned with the evaluation of algorithms
used by passive infrared sensors to discriminate between signals
' due to target sources and those due to background clutter. The
{ ' : discussion is essentially restricted to the case of point tar-
gets.

The goal 1s to obtaln a rough estimate of performance
against minimum standards. For this purpose the analysis as-
sumes a simple mathematical model for the background clutter
distribution: namely, that it 1s multivariate Gaussian over
the spatial and spectral data channels provided by the sensor.
The paper also discusses experimental evidence for and against
such a model, as well as certain more explicit statistical

models that have been proposed for the spatial distribution of
clutter.

to

Other toples discussed are CFAR optimum processing, linear W
filters, the effect of using ratios of spectral components for
processing in multi-color systems rather than the components,
themselves, and background normalization. Also discussed 1s the
relationship between the effectiveness of tracking algorithms

and the preliminary screening of targets by CFAR detection
algorithms.
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EXECUTIVE SUMMARY-

Separating targets from thelr backgrounds 1s a signal pro-
cessing problem that is a major concern to infrared sensors.
This paper reviews several of the approaches that are now under
serious conslideration for use by Infrared survelllance systems |
to deal with the problem--particularly for the case of point
targets.

In the course of the review certain observations and con-
clusions scattered throughout the text may have more value for
those who have a general interest 1n evaluating alternative
approaches to the infrared target discrimination problem than
other parts of the text. The parts that contain the supporting ?
analysis must, of necessity, be somewhat drawn out and mathe-
matically formal in order to provide the rigor needed to make a
hard comparison between methods, or to disprove a common assump-
tion. Thus some, perhaps most, of the material in this paper
consiSts of technical detail that, undoubtedly, will be largely
ignored by many readers whose interest in signal processing theory
is only peripheral.

Therefore, the following summary is presented in an attempt
to gather together the essence of this paper in the hope that
it may, thereby, be rendered more accessible to the reader whose
interests are less specialized. Each item 1s headlined and
annotated for easy reference to the pertinent analysis or dis-
cuséion contained in the main body of the paper.

EXPERIMENTAL SUPPORT FOR STATISTICAL MODELS OF TERRAIN BACKGROUND

Empirical evidence indicates that infrared radiance ‘ron
natural terraln, such as a forest or a desert, 1s, to a good
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approximation, normally distributed for a variety of wavelength
bands in both the solar and thermal regions of the spectrum.
This 1s less true of scenes that have been affected in some way
by protracted human intervention, e.g., farm land, proving

grounds, large citles. In general, the approximation is better
at night than during the day.

On the other hand, emplrical evidence does not support
certain theoretical models that have been proposed for the
statistlcal spatial distribution of terrain background radiance.
Specifically, the data are inconsistent with the so-called two-
dimensional Markoff process distributlions that are characterized
by exponential correlation functions. In fact, some versions
of this type of model are hot even theoretically self-consistent.
(More detailed discussions of these matters and supporting
analyses appear in Chapter II, Section D.)

SUB:OPTIMAL NATU&E OF LINEAR FILTERS

For Constant False Alarm Rate (CFAR) detection of point
targets, linear filters are sub-optimal in general. The linear
filter that, 1n theory, maximizes the signal-to-nolse ratio for
a background whose spatial distribution 1is statistically homo-
geneous 1s a limiting case that the true, nonlinezr, cptimal
filter would approach i1f the temperature of the target were very
large compared to that of the background and the size of the
target were small compared to the Instantaneous Field Of View
(IFOV) of a single infrared detector. (The 2nalysis supporting
these conclusions appears in Chapter III, Section B.)

THE VALUE AND LIMITATIONS OF TRACKING ALGORITHMS

- Target discrimination algorithms are of two types: those
whose purpose 13 clutter rejection and those, referred to as
tracking algorithms, that distingulish targets by their charac-
teristic trajectories. Most infrared systems use both types.

S=2




Tracking algorithms, which are a form of Moving Target
Indication (MTI) technique are, in principle, the only hope for
achieving the very low false alarm rates that are typically re-
quired for the detection of point targets by Infrared Search
and Tracking (IRST) system specifications. Nevertheless, it
is also necessary for this purpose to provide preliminary clut-
ter rejection means, such as spatial filtering and adaptive
thresholding in one or more spectral channels, to reduce the
number of false detections before invoking tracking algorithms.

System designers often attribute the reason for requiring
a8 preliminary clutter rejectlon process to limitations the
avallable computer capacity, i.e., memory size and comp eor
speed. This would seem to imply that technological adv ~es,
e.g., the introduction of VHSIC and VLSIC, will eventus
make such a procedure unnecessary.

However, the requirement;is actually independent of com-
puter capacity. That 1s, tracking algorithms will work only
if, initially, the expected number of false detections i1s below

a certain critical value. Moreover, the effectiveness of a
tracking algorithm is extremely sensitive to errors unléss the
a priori false detection probability can be made small by those
other, preliminary, signal processing techniques. (The analysis
supporting these conclusions appears in Chapter III, Section C.)

THEORETICAL IMPLICATIONS AND POSSIBLE IMPROVEMENT
OF BACKGROUND NORMALIZATION

A common form of adaptive thresholding, sometimes known
as "background normalization," which is an averaging process
implemented with a two-dimensional linear filter, is equivalent
to a least-square-error fit of a linear function to data ob-
tained from measurements of the background radiance distribution.
It follows that the next order improvement would be a quadratic

N
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least-square-error fit. The quadratic fit can also be accom-
plished by means of an averaging (weighted in this case) process
that 1s implemented with a two-dimensional linear filter.

(The derivation of these results appears in Chapter IV, Section B.)

THE FALSE ALARM PENALTY IMPOSED BY THE USE
OF SPECTRAL COMPONENT RATIOS

For multi-color or spectral discrimination systems it 1is
sometimes the practice to work with ratios of spectral componsasnts
rather than the components themselves. For example, a two-
color system with radiance measurements Jl and J2 in the two
spectral bands would use a one~dimensional target discrimination
algorithm operating on the ratio Jl/J2 rather than a two-dimen-
sional algorithm operating on the pair Jl’ J2. This usually
results in significantly higher false alarm rates, sometimes
- by several orders of magnitude, than would be generated by the
equivalent two-dimensional process. (The preocf of these con-

clusions appears in Chapter IV, Section C.)
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I. INTRODUCTION

This paper 1s éoncerned with algorithms used by passdive
infrared (IR) sensors to discriminate between signals due to
target sources and those due to background clutter. The pri-
mary objectlve 1ls to formulate a simple methodology for evalu-~
ating such algorithms.

The goal has been to develop an evaluation prccedure that

1s easier to implement and 1s less speciflc than a detailed

computer sinulation, which 1is the usual approach to this ob~-
Jective. The purpose here is not to supplant computer simula-
tion as a means of evaluating a signal processor's logic design.
Rather, 1t is to provide an analytical tool that can be used for
a rough, preliminary assessment of the feasibility or the poten-
tial of different processing schemes.

The scope of this paper 1ls essentlally restricted to the
case of non-imaging systems, l.e., those, such as the infrared
search and tracking system (IRST), for which targets behave as
point sources under ordinary operating conditions.* The point
target assumption implles that discrimlnation algorithms must
be of an abstract nature, relying upon certain tezrget and back-
ground signatures that are not associated with easily identified
geometric attributes, such as slze and shape, that would be
avallaktle to an imaglng system. However, signatures may be
derived from any combination of spectral ancd temporal, as well
as certain limited spatial, prcpertles of targets and backgrounds.

®

The term "non imaging" seemns appropriate in the present context
even 1f the system 1n question 1s capable of providing zn image
of the backgrcund (although not of the target) as long as it
does not, in fact, make use of such an image for target dis-
crimination.

1
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The proposed algorithm evaluation methodology depends upon
a mathematical model that 1s based on the possibility of pre- -
dicting statistically the distrivutlon of measured data over
some number of channels. Every IR sensor system defines these
channels in a natural way, according to the discriminants that
it is designed to use. Each pixel in the spatial distribution
of an observed scene, the observed signal from each spectrally
resclved wavelength band, and each time frame in the temporal
sequence of observaticns constitutes a separate data channel
in this sense.

The mathematical model assumes a signal processing logic
that divides the decision process for discriminating between
targets and background into two steps. The first i1s the detec-
tion phase, which eliminates as many false alarms as possible
by means of one or more preliminary target detectlon algorilithms.
The second is the declaratlion phase which generates the final
decision as to the presence or absence of a target in a given
direction.

A preliminary detectlion algorithm, used in the first phase,
is a llnear or nonlinear digital filtering operation followed
by thresholding. Tracking algorithms, which distinguish be-
tween the resulting target and clutter detections by means of
thelr supposedly different trajectory characteristics observed
over time, provide the filnal, second phase, declsion whether
or not to declare that a target 1s present.

For the preliminary detection phase the mathematical model
assumes that the statistical distribution of IR radlance over
the data channels 1s adequately approximated by an N-variate
Gaussian probability distribution.® There are several argu-
ments to Justify this assunption.

®
This 1s a generalization of a similar model proposed in Ref. 2
for spectral discrimination.




First, experimental evidence suggests (Refs. 8 and 9) that
for a variety of terraln backgrounds,* although by no means all,
in selected spectral channels distributed over .2 band between

| 2 uw and 11.4 y Gaussian distributions fit measurement data
remarkably well. This 1s true for data taken over background
regions that comprise as many as two-hundred-thousand pixels.

Second, although, as R. A. Steinberg has pointed out, the {
mean background radliance can be expected to vary over space and
b time, the variation is usually gradual except for cases in

which glint dominates.** Thus, the assumed N-variate Gaussian
' distribution can be regarded as a local approximation to the
actual N-channel background distribution, valid to the second
order in terms of moments of the corresponding density functions.

It 1s sometimes argued that, although a distribution may
{ be approximately Gaussian out to 2 or 3 o, acceptable IR sensor
‘ system false alarm rates in practice are so low that the tail
| of the distributilon is alsc significant. Thils would be true if
an attempt were made to meet the false alarm specification with
preliminary detection algorithms alone.*** However, in most
' cases those algorithms are used primarily tc thin out the false

*

Unfortunately, the argument 1s limited in scope by the fact
that similar data for cloud backgrounds does not exist in ‘
the literature at the present time.

L In Ref. 18, Steinberg, taking into account photon fluctu-

- ations, analyzes the design of optimum fllters for threshold-
ST ing against different spatial varlatlons of a background.

His design concepts, as well as other adaptive thresholding
techniques, some of which have been implemented In existing
IR systems, depend by implication on the assumption that the

***background variation will be gradual for the most part.

Reference 2, in fact, proposes a l2-color spectral detecticn
processing scheme that would do just that 1f the target and
background distributions happen to fit certain models that
: . the authors of the report have generated synthetically and
] { which assume N-variate Gaussilan distributions over the 12
= channels. v

* %




E alarms during the preliminary detection phase,.and the respon-
sibility for the flnal target declaration is reserved for track-
ing algorithms. The burden of satisfying the false alarm rate
requirement then rests ultimately on the tracking algorithms.

| Perhaps the most important argument for assuming Gaussian
distributlons, however, 1s that they furnish a minimum standard
of acceptance. That is, a signal processing scheme ought to be
regarded as unacceptable 1f 1t does not perform well against a
Gaussian distributed background. Of course, the converse ’
statement 1is false; therefore, even if the scheme does meet

the standard there may still be cause to rejJect it, at least
for some applications.

In this connection, it should be noted that i1t 1s possible
to include 1n an evaluatlon based on such a minimal acceptance
standard the effect of different scenarios which may imply not
only a change in the backgrouhd, e.g., from sky to terrain, but
changes in other environmental factors as well. For example, ‘
Ref. U, using calculations obtained from a computer program

i (5 cm"'l LOWTRANS) for estimating propagation effects, discusses
, the influence that range and the altltudes of both the target
. and the sensor platform may have on spectral discriminants.

This influence, 1t 1s pointed out, would necessarily be reflected 1
{ in the evaluatlon of a target detectlion algorithm, particularly
’ one that relied upon data from multiple spectral channels.

posed mathematical model for evaluating discrimination algoe-

rithms, as well as some of the model's ramifications when
‘. applied to spatial discriminants in particular. The discussion
in Chapter II covers the explicit form of the model for both ’
spatial and spectral channels when targets are present or ab-
sent. It also indicates how the extenslve measurement data
presented in Ref. 9 can be used to test the validity of a class
of occasionally encountered hypctheses concerning the nature

of background spatial distributions for natural scenes.
4

‘ Chapter II of this paper describes in more detail the pro- 1
]
!
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Chapter III deals with optimum constant false alarm rate
(CPAR) detection. It alsc considers the relationship between
the effectiveness of preliminary CFAR detection algorithms and
the effectiveness of tracking algorithms used for the final
target declaration.

The general optimum CFAR processing rule presented in
b Chaptér III 1is essentially that found in Ref. 19, which, how=-
ever, refers to an earlier reference for its derivation. For
g' the sake of combleteness an 1ndépenden€ derivation of the rule
is given in Appendix A.#*

'

Chapter IV analyzes two signal processing techniques that
are sometimes encountered in IR processor system designs. One
1s a method for adaptive thresholding against spatially varying
backgrounds; the other is a device to reduce the numbter of
degrees of freedom to be considered in spectral discrimination.

This paper does not .include numerical applications to
_ ) specific cases, except for one or two examples provided to

| ' illustrate a point. However, the analysis that is applied to

developing the methodology for evaluating discrimination algo-

' rithms leads naturally to some conclusions of a general nature
! - which are noted 1in the text as they occur.” These conclusions
also appear in Chapter V, along with a summary of the principle
idegs introduced in the earlier chapters.

T
¥
This might also have been done for a fundamental theorem, in-
troduced in Chapter II, concerning the probability distribu-
tion that results from a linear transformation of variables
. . having an N-variate Gaussian distribution. The theorem, how-
) { ever, 1s reasonably well-known and is heuristically evident.
5
| :
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I1. MATHEMATICAL MODELS

A. DATA CHANNELS

An IR sensor with multiple detectors provides data that
are separated naturally into discrete channels, each of which
is assoclated with the output signal from one of the detectors.
For signal processing purposes, however, 1t 1s useful to sepa-
rate the data into channels that are defined in terms of the
discriminants used by the sensor system for distinguishing be-
tween target and clutter sources.

Multi-color systems, 1.e., systems that rely upcn spectral
signatures with ccmponents in two or more distinct weavelength
bands, are the usual examples in which data are treated from
this point ¢f view. Eowever, it can bte equally useful to re- )
gard data as separated into spatiai-as well as spectral channels,
a point of view which this paper will adopt to some advantage,
for examplé, in discussing the effects of linear spatial fillter-

ing.

The individual pixels in the background radiance scene
mapped by an IR sensor will determine the spatial channels as
perceived here. Actually, the number of such charnnels will
generally be limited bty an n by n pixel sliding window.® The
window defines n2 spatial channels, one for each pixel contained
within 1t, and is itself deflned by whatever spatial filtering
algorithms the sensor may use for signal processing.

¥
The window could just as easily be rectangular. The implicit
assumption here that it 1s square is made for convenience, %o
gsimplify to some extent the algebraic treatment of two-dimen-
sional arrays of channels.
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It 1s convenlent to require that n be an odd number because

~the pixel at the center of the array willl have a specilal role

in the mathematical model to he proposed here for characterizing
spatial discriminants. Specifically, if a target signal occurs
in the central channel the data iIn the full complement of n2
spatial channels will be regarded as due to the presence of a
target. Otherwlse, the target will be regarded as absent.

It is assumed that the detection algorithm, to the extent that
i1t 1s based on accurate knowledge of the target and clutter
background statistics, 1s dellberately designed to announce

that a detection has occurred if, and only if, the target sig-
nal is in the central channel.

This convention implies a desirable, although not neces-
sarlily achievable, preclslion in the location of a target by the
IR system. That 1s, as the array window scans the background
a true detection occurs only when the target coincides with the
central pixel.

B. NOTATION FOR THE SPATIAL DISCRIMINANT MODEL

In general, data divided among several channels will be
treated as a vector each of whose components is the signal
strength assoclated with one of the channels. Unfortunately,
the single subscript notation ordinarily used in dealing with
a vector x in terms of its components V1 conflicts with the
double subscript matrix notatlon that is more natural in deal-
ing with the fwo-dimensional array of signél strengths Sij
associated with an n by n array of spatial channels.

Reference 1 (p. 128) handles this problem by prcviding a
so-called stacking transformation that reorders the elements
of the array'so that they constitute a one-dimensional sequence
which can be treated as the components of a vector in the con-
ventional format. Since the transformation i1s linear and inver-

tible, it 1is péssible to apply standard algebraic manipulations
to the vector and change back to the two-dimensional array for-
mat whenever 1t is convenient to do so.

8




——— e _

For the purpose of this paper, however, the stacking trans-
formation seems an unnecessary complication that would obscure
certain geometric patterns or effects that result, for example,

when two or more linear flltering processes are combined. In-
stead, a two-component vector subscript will be introduced in
place of the palr of subsceripts ordinarily used to designate an
array element. That 1is, siJ becomes Sk’ where the subscript k
i1s regarded as a vector with the components 1 and j.

In this notation a sum over k will mean a double sum taken
independently over all values of 1 and jJ. Also, the usual
conventions that apply to vectors apply to vector subscripts.
Thus, 1f two vector subscripts are equal it will mean that their
corresponding components are equal, and when the vector sub-
script is 0 it will mean that both subscript components are
zero.

It 1s then possible to represent the llnear transformaticn
of an array in the usual manner as a multiplication of a wvector
by a matrix. That is, a linear transformation from the array

!
with elements S,, tc one with elements Sij will take the form
-

?
Sk 'Z Me1 510
T

where k and 1 both represent two component vector subscrirts.
The matrlix with elements Mkl then actually has nu elements,
and the symbol M may be understood to have four scalar sub-
scrirts.

kl

Sometimes it is hecessary to deal with array vectors, or
transformations of the type just described, whose aigetralc
representations depend in some explicilt way on their subscripts.
When this happens 1t is usually possible to express such quan-
tities 1in dyadic form, so that despite the use of vector sub-
scripts it is no more difficult to perforr exgplicit algebralc
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manipulations with them than would be the case i1f their sub-
scripts represented ordinary scalar integers.

In order to emphasize 1ts key role, the central channel in
an n by n array wlll be designated by the zero vector subscript,
which 1s equivalent to two zero scalars. Then, with scalar sub-
scripts ordered in the standard manner, with the conventional
reference to an array element's position by row and column,

negative subscripts will be used to designate elements to thé

left of or above the center. That is, for an element Si s 1
and J will both range over the integers from ;52 to E%i . For

example, in the case n=3, that is, for a 3-by-3 or 9-element
array, the array would have the form

S S

-1-1° S_.10° S.na

gy » S S

01 .

———

00 °?

’l S1-1 » S50 0 511

C. PROBABILITY DISTRIBUTIONS

One way to interpret the problem of detecting the presence

of a target against a
problem of estimating
given the information
On the
duced a minimum errcr

! measurements.

clutter background 1s to regard it as the
the probabllity that the target 1s present,
acquired from the data rrovided by IR
basls of this concept Ref. 2 has intro-
criterion® for multi-color systems to

distinguish between targets and clutter by means of theilr spec-
tral characteristics.*#

»

A minimum error criterion in this context 1s one that classi-
fies each signal as cue either to the target or to clutter
aione with the smallest possible probability of an erroneous
classification. Cf. Ref. 2, p. 269ff.

1]
See also the discussion in Ref. 4, Appendix B.

10
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In many applications, especially those involving point tar-
gets, however, the false alarm rate 1s a major concern., It is
a primary objective of the present paper to formulate a method
fof evaluating target detection algorithms when.thils 1s, in fact,
the case. Accordingly, a related but slightly different approach
will be taken here. The concepts underlying this approach can
be summarized as follows.

For an N channel system each measurement set produces an N
component vector which may be thought of as representing a point
in N dimensional data space. The set of all such data points
that might be produced by clutter 1in the absence of a target has,
at least conceptually, an N-variate Joint probabllity distribu-
tion defined by a probability density function PC (I), where J
1s a vector'having components Jl’ ooy JN that may, individually,
range over all positive and negative real values. Similarly,
there 1s another such probability distribution, and a corre-
sponding density function Pr (g) that 1is asscciated with the

presence of a target source.

Suppose that there is an algorithm whose purpese 1s to de-
clde whether a glven measurement set, 1.e., data point, was
produced in the presence or absence of a target. The algorithm
then has the effect of separating all of data space into two
comrlementary reglions.

One of the regions R willl consist of all polnts designated
by the algorithm as due to a target. The other will consist of
all points designated as due to clutter in the absence of a
target.

The probability of false alarm (PFA) for any measurement
set 1s then equal to the integral of PC (g) over R; 1i.e.,

PFA -fpc (1) a7, ...da 7y . (1)
R
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Also, the probability of detecting a target (PTD) bty means of
the algorithm applled to a single measurement set 1s equal to
the integral of Py () over R; f.e.,

~ PTD =fPT (J) dJ; ...d Jy . (2)
R

Throughout this paper it will be assumed that P, (J) and
Pp (J) are both N-variate Gaussian probability density func-
ticns.* That 1s, each will have the form

exp [-% (:\I_-:z)t M-t

[ and
P

N+

_ N
P(z) = (2m) 2

Lngl (g-i)] , (3)

where g 1s the covarlance matrix of the particular distribution,
|M] 1s the determinant and g'l the inverse of M, E is the mean
vector of the distribution,~and the superscrip? t denotes the
transpose. In (3) ordinary matrix multiplicaticn is implied,

so that a vector without a superscript is to be regarded as a

column vector while one that has the superscript t is to be
regarded as a row vector.

The covarlance matrix and mean vector are the parameters
that specify a particular N-variate Gausslan distribution.
Therefofe, when speciflc reference 1s made to Pc or to PT in
the expression for the density given by (3) g anc J will bear
the appropriate subscript, C or T.

There are several arguments 1n favor of assuming Gaussian
probabllity distributions for the measured signzl strengths.
Since a major otjective of this paper is to devise z method
fcr testing clutter rejection algerithms analytically, the prin-
cipal argument 1s that the very least cne might expect from such
an algorithm would be satisfactory pérformance when the target

and clutter signal strengths are Gaussian distributed.

—
For properties cf N-variate Gaussian probability distributions

see, for examgle, Ref. 5, Ciis. 21-24 or Ref. 6.
12
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There are certainly a number of environments for which
existing empirical data suggest that the assumption of Gaussian
statistics may be surprisingly accurate. Examples occur in the
data consiaered by'Ref. T--notably, that taken from Ref. 8 and
particularly that from Ref. 9, which will be discussed in the
next section.

D. EXPERIMENTAL DATA AND EXISTING STATISTICAL MODELS

The amount of data collected through IR measurement over
the years 1s voluminous. Measurement programs for this purpose
have covered a variety of targets and clutter backgrounds in
virtually all spectral bands of practical interest. Reference 7
contains an in-depth survey of the most important experimental
results derived from such programs and alsc provides a detailled
analysis of how the data may be affected by environmental factors.

Unfortunately, of the many sources avalilable in the litera-
ture, only Ref. 9 offers data processed in a form that is directly
applicable to the mathematical models used in this paper. What
is needed particularly are means and covariance matrices, the
elements of which depend upon the standard deviation for each
éhannel and the correlation coefficients between all pairs of
channels. It is unfortunate that data for cloud backgrounds
have not been published in a similar form.

Reference 9 provides all of these parameters for several
spectral channels* generated by a number of different terrain
backgrounds, each obtserved durlng four time periods-~-predawn,
noon, sunset, and midnight. The observations were made from
an airborne platform at 90 deg and 35 deg depression angles with
instantaneous filelds of view (IFOV) ranging from 2 to 5 mrad
at altitudes from 1,000 ft to 1,750 ft. However, only terrain
backgrounds were measured; no examples of sky, clouds or ocean

are included in the collection.

—
Of course, the measurements were made in a particular set of
fixed wavelength bands. However, Ref. ¢ recommends a method
of interpolating the measured data to derive equivalent approxi-
mate data for other choices of spectral decomposition.

13




Aside from the flrst and second moment étatistical param-
eters, for each case Ref. 9 also presents the data in several
other forms. These include: (1) a histogram for each spectral
band, along with an overlay of the Gaussian probability density
curve defined by the mean and standard deviation associated with
the histogram, (2) area -diagrams showing the size and orientation
of all subregions with radiance above a 20 and above a 30 thresh-
old, (3) both the cross-track and in-track power spectral den-
sities (sometimes called the Wiener spectra) for the measured
region. Figures 1-6, taken from Ref. 9, are examples of all
three graphic forms of data.

In many of the cases presented 1n Ref. 9 the Gausslan den-
sity curvé fits the corresponding histogram with remarkable
accuracy out to the 2, 3, and sometimes even the 4o level. This
1s especlally true for midnight scenes that are natural in ori-
gin, such as a conifer forest or a desert, as distinguished from
land or cities. Figures 1 and 2 show that the fit is fairly
good for a conifer forest even at noon.

Other histograms are multi-modal and skewed. However, for
many of these, in the accompanying area diagrams that display
the thresholded subregions ¢of maximum radiance, the high-tempera-
ture zones appear to be relatively 1solated and confined to one
or two small areas in the overall background.* When this 1s the
case 1t seems likely that the lesser modes aprearing in the
histogram tail would not be present if the scene were broken up
into smaller regions and a separate histogram of the radlance

distribution were constructed for each of the newly formed regions.

For other cases, e.g., the city of Baltimore, Maryland and
Fort A.P. Hill, Virginia, to name the most extreme examples, the
multi-mcdal character of the histogram 1s evidently not the re-
sult of 1solated effects in the background. Instead, the high-
temperature zones are distributed throughout the scene, ard
therefore 1t must be concluded that a Gaussian distribution will
not adequately represent these data.

- .
Cf. Filgs. 3 and 4. 1l
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Pixel #

\Ug
Scanline #

123 33 $23

384

Area: CONIFERS
Temperature Threshold
= Ave, + 2.00 o
Wavelength = 3.5 - 3.9 um

1-6-83-2

FIGURE 3. Equivalent elliptical areas for
Michigan winter scene - noon
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% > Pixel 4

Scanline #

123 323

Area: CONIFERS
Temperature Threshold
= Ave. + 2.79 ¢
Wavelength = 4.5 - 5.5 um

1-8-83-4

FIGURE 4. Equivalent elliptical areas for
Michigan winter scene - noon

18




——

Reference 2 detalls the construction of a set of quasi-
synthetlc statistical mbdels for the spectral distribution of
radiance due to a variety of potential targets and clutter
sources. These models were developed by means of analysis based
on physical principles and what appear to be reasonable assump-
tions combined with empirical data gathered from a number of
different references, including Ref. 9.

An important application of this work 1s embodied in a
computer program called PALANTIR, which Ref. 2 also describes
in some detail. From a glven set of narrow band spectral chan-
nels PALANTIR chocses a prescribed number of channels, picking
those that will provide the least error when used in connection
wilth a minimum error algorithm for discriminating between tar-
gets and clutter. The basis for this choice is a test which
depends upon the means and covarilance matrices associated with
the statistical models.

In an attempt to construct a theoretical model for spatilal
channels, Ref. 10 postulates statistlical homogenelty for terrain
backgrounds, citing as evidence for this assumption IR measure-
ments taken by the Lincoln Laboratory at 20 natural settings in
New England. Statistical homogeneity in this case means that
for the radiance distribution spatially the cross-correlation
between any two plxels depends only on the amount of their
separation and not on the position of either in the scene.

A further assumption of Ref. 10, for which the same evi-
dence 1is cited, is that the cross-correlation 1s an exponentlal
funetion of the separation. That is, for radius vectors p and

~f' that determine two points in the plane of the radiance dis-

tribution it 1s assumed that the cross correlaticn K(z, z')
between the radiance values at the two points has the form

'Y = X=-x'
Kx,y (r, r') = exp ( | I Ier_J) , (W)

19
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where L. and L_ are correlation distances in the x and y
directigns and (x,y) ané (x', y') are the respective components
[ of r and 2’.
The model recommended by Ref. 10 for spatial correlation 1s
, general enough to provide for anlsotroplic behavior; however, its
; functional form obviously depends upon the cholce of the coor-
dinate system. If the spatial distribution were also assumed
to be 1isotropic the correlation function would be independent
of the éoordinate system. If 1t were also exponential it would
have the form

Pep!
K(r, £') = exp (— I~L£ () , (5)

\ which 1s completely determined by a single correlation distance L.

_ It is interesting to note that Ref. 10 assumes the aniso-
' tropic form (4) for the cross-correlatiocn because the cited
supporting data were measured at a depression angle of 20 deg.
The argument is that one might expect a scale change from in-
track to cross-track linear distance measurements relative to
a statistically homogeneous two-dimensional distribution be-
cause of the distortion created in the cross-~track direction by
the depression angle.

However, 1f the appropriate form of the cross-correlation
to account for this distortion were indeed (4) as assumed, then
for a 90-deg depression angle the cross-correlation would be
given by

K (r, 21) = exp [_ (lx-x'l Z L.V‘JYL‘)]

x,y (o d

which is still anisotropic desplte the single correlation dis-
tance parameter L.

20
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The two-dimensional Fourier transform of either correla-
tion function, given by (4) or (5), is the corresponding power
spectral density or Wiener spectrum, wx,y (k) or W (k), in terms
of a vector wave number k. The two densities are given by#*

W, (k) = Xy (6)
X,y '~ (l“‘i Li)(1+k§ Ls) ’

2
2nL
W(k) =
~ (l+k27L2)3/2

(7)

where~k‘ and ky are the Cartesian components and k 1is the mag-
nitude of the wave number vector.

In principle, (6) or (7) might te used to check whether
either of the corresponding correlation functions is a good
model for a given background when the data cttained from mezsure-
ments of the background include linear components of the Wiener
spectra in at least two different directions. In fact, Ref. 9
does prdvide data in this form for every case considered and for
correlations in both cross-track and. in-track directicns rela-
tive to the scanning motion of the sensor. However, there 1s
no reason to believe that the track direction coincides with
either the x or y direction, both of which may be at least
partially determined by the physical properties of the tack-
ground distribution rather than by the motion cf the sensor.

Nevertheless, a comparison of the cross-track rower spec=-
trun curve with the in-track curve affords at least a preliminary
check on the possibility that the radlance distribution 1s
isotropic, i.e., by observing whether the curves are nearly the
‘'same. Examples of distributions that may be isotroplc do exist
in the Ref. ¢ data, e.g., for a conifer forest background ob-
served at a 90-deg depression angle at noon.

—
See Appendix B.
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Figures 5 and 6, taken from Ref. 9, contain Wiener spectra
for thils case. Curves for the 3.5-3.9 p and 4.5-5.5 u bands
roughly approximating the in~track spectra depicted in Fig. 6
are shown as dashed lines 1n Fig. 5 to illustrate the point.

However, an examination of the conifer forest power spec-
trun curves presented in Ref. 9 falls to disclose any that might
correspond to the functional behavior indicated by (7). In
every case the spectral density elther decreases too rapidly or
too slowly with increasing wave number.

It 1s possible that by changing exponents i1n the denomi-
nator of (7), e.g., replacing the exponent % with 2 or with-%
a better fit to the experimental Wliener spectra might be ob-
tained; Appendix B shows how to calculate the corresponding
correlation functions explicitly. Some numerical experimenting
with new exponents 1ndicates for the conifer forest data, how-
ever, that although changing exponents in (7) can improve the
fit somewhat, at best it can onliy be made close at two points
on a given curve.

E. SIMPLE MODELS FOR TARGET STATISTICS

In principle, 1t 1is possible for a sensor to estimate the
mean and the covariance matrix elements for clutter statistics
by making sample measurements of the background before a target
-arrives and updating these estimates periodically. But 1t is
even conceptually difficult to lmagine how this information
might be obtalned for targets in general. The possibility of
using a predetermined catalogue of signatures for this purpose
seems limited because of the many varlations in range, aspect,

altitude, velocity, and position of a target relative to the sun.

Fortunately, in the case of point targets 1t 1s usually
reasonable to assume that covariance matrix elements will te
dominated by background statistics. To the extent that this
18 true, for discrimination purposes it is only necessary to
anticipate the mean values assoclated with the data channels
that define a target's signature.

22
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As remarked in Ref. 7, for spectral channels the observed
radiance 1s essentially the sum of two parts: the first is due
to the background except for the area occulted by the target;
the second 1s the difference between the radlance due to the
target and the background radiance that would result from the
occulted area if 1t were not obscured.

Included in the radiance there should be a part due to
atmospheric emissions along the propagatlion path. However, 1t
will be assumed here that thils contributes a negligible amount
to statistical fluctuations about the mean.

In the case of a point target, which, by definition, occupies
only a small part of the sensor's footprint, the mean radiance ob-
served 1s that obtained from a calculation of the type suggested
in Ref. 7. The calculation 1is equivalent to a welghted average
ET’ given by

~

p = Wo Jg * Wy Tn (8)

J
where JT is the radlance supplied by the target, 3C is the mean
clutter radiance, and the two coefficients WT and wc are fractions

of the total footprint area within and without the occulted area.

According to a well-known theorem,* if the components of
an N-dimensional vector J have an N-variate Gaussian joirt prob-
abllity distribution with the mean vector E ané the covarlance
matrix 5, then the components of the M-dimensional vector E
resultiﬁg from the linear transformation obtained when g 1s
multipliec on the left by an M by N matrix T (i.e., ¥ =T J)
will have an M-variate Gaussian joint probability distrfgution
with the mean vector z given by

Y = T I (9)
and the covariance matrix
t
= TMT .
gy ~RR
-
Ref. 6, p. 86. 25




Given the present a§sumptions, the background radilance Jc
and the target radlance JT may be regarded as having a jecint
bivariate Gaussian probability distributlon fgr which the mean
vector has the components J . and the mean of JT and the covari-

C
ance matrix has the form

. (10)

In (10) 1t 1s, of course, implicit that the target and back-
ground radlances JT and JC are uncorrelated. Also, (10} repre-~
sents a limiting case in which the standard deviation OfAJT is
vanishingly small, so that there are no fluctuatlions of JT
about 1ts mean. ’

In accordance with (8) andé the first equation in (9) the
vector with the components wC and WT corresponds to a 1 by 2
transformation matrix T. Then, according to the cited theorem
and (10}, the combined~target and background radlance will have
a unlvariate Gaussian probability distribution with a mean 3T
given by (8) and a variance c% given by

02 = We ol . (11)
In the cgse of multiple spectral channels Jc, ET ard, in-
ferentially, JC would all be replaced by vectgrs in (8). Then
(11) would be unchanged in form except that 9 would be replaced
by a matrix; og, in fact, would be replaced ty the background
covariance matrix assoclated with the multirie channels. That

is, for N spectral channels

P Y S .__.__._.....rAJ




where Jm, JC and J are N component vectors, MC is the N by N
background covariance matrix, and MT is an N by N matrix that
may be regarded as the effectlve target covariance matrix.
Acccrding to (12) the target and background covariance matrices
are proportional. ’

A similar model can be devised for spatlal channels that
form an N by N pixel array. Using C to denote a clutter source,
T to denote a target source, and the case N = 3 for illustraticn,
when the target 1s absent the plxel array will have the form

c,

c, C
c, C, C
c, C, C

>

and when the target 1s present the form

The case of a target source in the array but not at the
center wlll be regarded as a case in which the target 1is absent.
It will be assumed that the protabillity that a target will te
anywhere within the array at any given time 1s small. Thus, the
cases for which it 1s present but not at the center may bte
neglected as consisting of an insignificant number of everts in
comparison with the numkber of events for which it is absent
altogether. That 1s, such events will have a negligible effect
on the clutter probabllity distribution.

It will also be assumed that the target source is uncorre-
lated with any background clutter source. Conslider, for esxample,
the 1deal case in which the target exactly occupies the central
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pixel so that the clutter is completely occulted. When this
happens the covariance matrix %E assoclated with presence of a
target must be such that the cross-correla*ion between the cen-

tral pixel and every other pixel in the array 1s zero.

Then

Mno= M. - 8N, (137

where M, has the elements M
P>

c 13 and AM ras the elements

2 s

Byg = Myo 840 * Myg Jo oo %10 %30 T Or

13 jor 810 (143

10 %30
In (14) the notation described earlier, according to which the
subscripts are all two-component vectors, 1s to be assumed. The

quantities dij are Kronecker deltas, which vanish except when
the vectors 1 and J are identical.

It i1s easily verified that (13) and (l4) define a target
covariance matrix with the appropriate properties. That is,
when either 1 or j, but not both, i1s the zero vector the corre-
sponding pixel 1ls being correlated with the center of the array,
and, asvit should, the corresponding matrix element of %T vanishes.
When neither 1 nor J 1s the zero vector neither of the pixels
1s at the array's center, and, as it should be, the corresconcding
element cf éT is identical with that of gC' ¥inally, whenr both
1 and J are the zero vector the pixel 1is at the array's center,
and the corresponding element of gT is c% which, as 1t shculd te,
1s the variance of the target source.

For the case in which the target source cccuples only part
of the central pixel the terms in (14) will te weighted as in
(12;. Analysis similar to that used to derive the weight factors




for spectral channels wlll provide the appropriate weight fac-

tors for spatial channels.,¥

One other concern in modeling the signal produced by an
IR sensor should be mentioned. Most systems provide contrast
! rather than absolute measurements of the radlance distribution

in a scene,

Since the contrast 1s approximately the difference between
the radiance values observed at two successive pixels along a 1
scanline in the scene, its measurement is equivalent to arply-
ing a linear filter (high pass) to the spatial channels. The
\effect of linear spatial filtering in general is discussed in
Section B of Chapter III.

*1f the region occupled by the target source is larger than the
central pixel, 44y shculd contain additional terms with fac-
tors of the form 843, Mil, and weights given by <he components
of a vector associated with the rows and columns twice removed
from the central pixel.

29




I11. CFAR TARGET DETECTION ALGORITHMS

A. OPTIMUM SEGMENTATION

The term "segmentatlion" 1s used in image procesuing liter
ture to denote the process of separating different classes of
obJects in a scene. Generally, this 1s done with the purpose
of minimizing‘the probabllity that there will be an error in
the classification. However, for the applicaticns of interest
to this paper, in separating targets from clutter it 1s more
important to set a bound on the probabllity of false alarm.
This is equivalent to prescribing a constant false alarm rate
(CFAR), which 1s a goal common to many.IR systems.

Given the CFAR condition, the problem of optimizing the
segmentation may be restated as follows. Among all possible
rules for detecting the presence of a target with a given fals
alarm probability, find the rule for which the probability of
the detection 1s a maximum.

Appendix A derives the general solution of thls problem
in terms of the Joint probability density Pc (J) for the dis-
tribution of radiance values over the available data channels
in the absence of a target and the corresponding Joint proba-
bility density PT (J) when the target is present. As in Chap-
ter II, J 1s an N-dimensional vector each of whose components
is the radiance value in one of the channels.

The solution 1s to declare that a target 1s present when
the measured components of J are such that J defines a point :
a certain N-dimensional region RT’ The boundary for thils reg:
i1s a hypersurface that 1s determined by the equation

log PT (i) - log Pc (J) = constant. (8)
31 '




The constant in (8) 1s determined by the condition

ch (J) aJ,...d3 = ¢ , (9)
Ry )

which 1s equivalent to the CFAR requirement that the probability
of a false alarm be equal to ¢.

For the case of N-varlate Gausslan probability densitiles
PT (I) and PG (g) with mean vector gT and £C and covariance
matrix Mn and M., respectively, (8) and (9) reduce to

- t -1
QD) = (I-3p)" My~ WL

-~

) = (3-3.)°

~~

where y 1s a positive constant determined by

—L exp [—% (3-35)° Mgt (2‘20)] a7,...d7; = ¢. (11)
yemY il

R(y)

In (10) Q(g) is obviously a quadratic function of the N compo-
nents of J, so that the hypersurface defined by (10) is a quad-
ric surface (e.g., a conic section in the case N=2). In (11)
the region of integratlon R(y) conslsts of all points J for
which

Q(g) <y . (12)
The reason why Kiy) is defined by (12) instead of by
Q(I) > v

32

b e A

P




" 1s that J.= J

o Satisfles (12) (this follows from the fact that
gC’ and therefore gal, must be positive definite); therefore,
the mean vector for the probability distribution when a target
is present corresponds to a point in the region defined by (12).
For a practical case, in which the probability of a target de-
tection, given by

1

¥ 2m) |4yl

PTD =

exp [—% (£-§T)t g;l (:I-ET)] dJ,.o-dJN, (13)

R(y)

is large enough to be of any use, the mean vector ET would have
to represent a point in the region R(y) of integration in (13).

The use of (12), subject to the condition (11), as a test
to determine whether the presence of a target should be declared
1s a somewhat less formidable problem numerically when the co-
variance matrices gT and gc are both dlagonal. This will be
true only 1f all N data channels are mutually independent in

the statistical sense.

If the covariance matrices are not dlagonal there exists
a linear transformation of the vector J to a vector J' such that
the probability densities P,(I') and PT(Q') will both have co-
variance matrices that are diagonal. This follows from the
theorem used to derive the expressions (9) in Chapter II and
the well-known fact that there is always a linear transformation
that can dlagonalize any two symmetric matrices simultaneously
as long as one of them i1s positive definite.* Appendix C de-
scribes the process of finding the required transformation and
carries it out in detail for the point target case in connection
with spatial channels.

F
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When MT and MC are both diagonal, (10), which represents a

hypersurface, has the form

N N 7 72
SE-DE (@ (EE) e
a g o o
n=l ' IR Cn n-l n=1 © 10 Cn

By setting all of the Jn in (14) equal to zero except for two
values, v and u, 1t 1s possible to obtain the two-dimensional
cross-section of the region bounded by the hypersurface (which
is, itself, an N-1 dimensiocnal manifold) in the v, u plane.
This cross-~section will be the region bounded by the curve

2 2
KJy + KuJu -2CJ -2 quu =k |, (15)

where the Ki and Ci’ 1 =v, u, in (15) are defined by

: 7 T
Sty  Y%c1 Or1  %¢i
and
Irv  Jov L Imw L Yo
] B ity ey el IR
Oy %y %7y Yy

The cross-section determined by (15) 1s then clearly an
ellipse when

UTv > va and °Tu > °Cu s
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a parabola when elther
Opy ™ gy OF 9, = %y

but not both, an hyperbola if either

| : 9ty > ¢y and Opy < °Cu or Spy < ey and Oy > °Cu »

and a straight line if

Ory = %y and Opy = acu .
A case of particular interest is that for which the co-
variance matrices M, and M, are identical. When this 1s true
(10) becomes ~ ~

I A R R

qeq
'
t ()

i vti, (16)

t
¢

' where

o = Ip - Io -

and M is the common covariance matrix. Equatiom (1€) has thre

ford‘
N
t =
- wJ = E ;wn J_ = constant, an
} n=1
r
ﬁ where W is the vector given by
-1 -
W=MTa7 . (18)
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The constant on the right side of (17) is to be determined
by the CFAR condition (11). This suggests that a change of
variables such that one of the new variables J 1s given by

J = Z WoT (19)

n=1

might be useful. Then the PFA given by (11) and the PTD given
by (13) will depend only on the respective C and T marginal
probability distributions for J.

According to the theorem, c¢ited in Chapter II, concerning

the effect of a linear transformation on a multivariate Gaussian'>-

probability distribution, the two probability distributions for
J are unlvarilate Gausslan with means Ji’ 1i=T, C, given by

N
I, =K giaz:wn.rin,i-w,c (20)

n=1
and a common varlance 02 given by

2

o~ = Et

oo (21)

n=

The optimum target discrimination result for the unilvariate case
derived in Aprendix A now applles. That 1s, with v defined by
the CFAR condition '

-x2
1 2
p— e dx = ¢ ,
v 2an
v
36
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ir AE > 0, then a target 1s declared to be present when

J>J, +ov (23)

if A3 < 0, then a target 1s declared to be present when

J <Jy =ov . (24)

B. LINEAR FILTERS"

As observed in Section A, the optimum CFAR rule for target
detection is non-linear, in fact quadratic, unless the covarlance
matrices %C and ﬂm are igentical. However, most detection algo-
rithms for spatial, or for that matter temporal, channels are
based on thresholding after the application of a linear filter.

The simplest example 1s, perhaps, the temporal filter that
1s sometimes referred to as Moving Target Identification (MTI),
for which the baslc ldea 1s to detect a target's motion rela-
tive to what 1s presumed to be a stationary background. It is
usually proposed for a staring system.

In this connectlon a single temporal channel 1s a frame
that consists of the radiance distribution over the entire
scerne at a given instant of time. A sequence of such frames
constitutes a set of temporal channels, Just as an array of
plxels constitutes a set of spatial channels.

The first-order MTI flltering process, the first differ-
ence, consists of subtracting one of two successive frames from
the other. If a moving target 1s present but the background is
fixed, this difference will be zero everywhere except at the
two target positions, one in each frame.

The major problem encountered by MTI is the difficulty of
maintalning registration for the background from one frame to




the next. Any motion of the sensor will cause an apparent move-
ment in the background.

From one point of view this is a problem of correcting
platform instability. However, for motion that 1s slowly vary-
ing or smooth (as.distimguished, for example, from jitter) more
complex temporal fllterlng may reduce or eliminate the error.
Common filters for this purpose are second- or higher-order dif-
ferences.

All such fillters are linear and, in fact, are specilal cases
of a sliding window weighted average, also known as a convolu-
tion. The general sliding window temporal filter is a linear
transformation of the form

(N-1) '
2
D nmy (25)
n=-(N=1)
2

from a sequence of radiance values J at an arbitrary pixel
common to each frame to the sequence J After the transforma-
tion 1s applied each term of the new sequence is usually thresh-
olded and averaged, or averaged and thresholded, to form a sim-
ple spatial distribution which can then be processed further,

as a spatial scene, to detect and locate possible targets.

Sliding window spatial filters that operate on a two di-
mensional array of pixels rather than a one-~dlmensional sequence
of frames define a2nalogous convolution transformations:

1
I, = E W T (26)

n
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In (26) the subscripts are two-component vectors in accordance
with the notation introduced in Chapter II. The sum is taken
over all pixels in an N by N array, for which N i1s an odd in-
teger and the two~component vector v locates the pixel at the
center of the array.

Ir discussing either (25) or (26) it is convenilent to set
v = 0, which 1s equivalent to choosing a particular coordinate
system for the discusslon. A simple way to represent particular
examples of (25) or (26), one that has become conventional, at
least for the two-dimensional case, 1s to use a mask consisting
of the welghts wn ordered as in the sequence or as in the array.

Exemples for the one-dimensional (temporal) czse are:
(1) the first difference mask
(0, -1, 1),
(2) the second difference mask
(1, -2, 1),
(3) the third difference mask

(0, -1, 3, -3, 1) .

These masks apply to a sequence of discrete instants or time
frames, which may be regarded as points along a temporal coor-

dinate axis.

Examples for the two-dimensional (spatial) case are the
so-called Laplacian filters:*#

(1) the digital anal%§ue of the Laplacian differential
3

2
operator §—§-+ 53 is represented by the mask
X y

®
Ref. 1, p. 482.
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0, -l, 0 :
‘1’ 14, -1 ’ :
i 0, -1, ©
(2) a rotationally symmetric nodification by the mask 1
t
‘ -1, -1, -1
i
] "19 8: -1 ’
| -1, -1, -1 q
5 (3) the digital analogue of the differential operator
Y
'—fi—_? by the mask
Ix JYy 4
1, -2, 1
"2’ L‘, —2 .
1, =2, 1

These masks apply to a planar array of discrete pilxels.

The Laplacian filters were designed to detect edges in
a scene. The second filter, because 1t is rotationally sym-
metric, 1s actually a point detector and 1s therefore of par-
ticular interest for applicatlons involving point targets.

Starting with the assumption that the spatial correlation
function of the background distribution has the form (4) dis-
cussed in Chapter II, Ref. 10 derives the last filter zs an
approximaticn for the one that maximizes the signal-to-clutter
ratio.

However, as observed in Chapter II, the correlation func-
tion (4) is that of an anisotropic background oriented fortui-
tously to conform with the track direction of the sensor as it
scans the scene. If the same derivation were applied after
assuming the isotropic correlation function (5) instead, a com-
pletely different type of fllter, for which the continuous ana-

logue would be a differentio-integral operator, would result.
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Note that in each of the filter examples just presented
the sum of the welghts shown in the mask array 1s zero. Fil-
ters with this property are termed hilgh pass because they com~-
pletely eliminate a constant background distribution; i.e., they
eliminate the DC componrnent of the background distribution's
spatial frequency expansion.

For v = 0, (25) and (26) both have the form

J' = E wn Jn ’ (27)

n

except that the subscript n is a scalar in one case and a two-
component vector in the other. If the mean vectors ic and ET

and the covariance matrices gc and gT are associated with N-vari-
ate Gaussian probability distributions for the Jn in the case
when targets are absent and in the case when a target 1s present,
then zccording to the theorem of Chapter II the correspcnding
varlables J’ have univariate Gaussian protability distributions
with means and variances glven by

e E T 2 t 2 .
L 7 = W 1 = W =
ij W JI N O'! ) !:L! W : M! 1 N i C, T. (28)

n n,m

According to Appendix A and Sectlion A of this clhapter the
optimum CFAR algorithm is non-linear except when the covariance
matrices %T and %C are ldentlical. Therefore, the use of a llnear
fllter will be less than optimum unless this 1s, 1in fact, *“rue.

When the two covariance matrices are identical a ccmpari-
sen of (20) and (21) with (28) shows that the weights ccrre-
spor.ding to the lirnear fllter that prcvides CFAR coptimization
will be the components of the vector W glven bty (18). It is
irnteresting to note that this filter is exactly the same as the
one that Ref. 1 (pp. 5€60-561) shows will maximize the signel-

41




- to=-noise ratio if the signal power is identified with (3; - 3&)2
and the noise power with o . ¥

For the statlstical model proposed 1n Chapter II for spa-
tial channels, when the target source exactly occupies a single
pixel the covarlance matrices MC and MT will never be equal,
however. Since the procedure detailed in Appendix C for diagona- 1
lizing MC and MT simultaneously 1n this case 1is easily imple-
mented, Tt may be simpler to use the true optimum CFAR detection
algorithm, which 1s quadratic, than it would be to obtain what

must necessarily be a sub~-optimum linear filter.

Nevertheless, as observed in the dlscussion in Chapter II
of the model applled to spectral channels, the two covariance
matrices are at least proportional. 1If the proportionality
constant 1s nearly equal to one, as 1s usually the case for
spectral discrimination, and the magnitudes of the corresponding

¢ mean vectors are sufficlently different, the linear fllter whose
' weights are given by (18) will provide near optimum CFAR dis-

crimination. This follows from the fact that the quadratic
term in (A-19) of Appendix A can then be neglected in comparison
with the linear term.

C. TRACKING ALGORITHMS

For IR systems that detect polnt targets the false alarm
rate is the speciflcation that usually dominates the signal
processing requirements. The desired rate may be as low as one
per hour, 1lmplying false alarm probabllities as small as 10"lo
whenever a target 1s declared.

Only an algorithm compnsed of a number of tests. that are,
in effect, guaranteed to be mutually independent has any hope
of achieving so small a PFA. Such a guarantee may be possible
for an algorithm based on temporal discriminatlion if the inter-
val between successive time frames 1is sufficlently large. That
1s, the interval must be larger than any correlation time asso-
clated with spatial or spectral discriminants.

®
Cf. also Ref. 10. L2




For a staring system, MTI differencing, as described in
Section B, will tend to remove whatever correlated false alarms
may result from preliminary target detection algorithms that are
applied to the spatlal or spectral channels. Scanning systems,
on the other hand, generate false alarms that are spatially
correlated when they are separated by less than a correlation
distance associated with the background radiance distribution.
One method of eliminating this kind of dependence hés been to
treat any group of detections that cluster so closely as a
single detection located at the centrold of the group.

Most of the detections resulting from the CFAR algorithms
will, of course, be false alarms. The final decision that a
target is present will be referred to here as a target declara-
tion to distingulsh it from the CFAR detectlons established
before this decision process 1s invoked.

Systems that are required to maintain very low false alarm
rates usually rely upon tracking algorithms to provide target
declarations. Those are algorithms that distinguish between
target and clutter sources by means of the presumed trajectory
characteristics of such sources when they are observed in mo-
tion over several time frames.

A tracking algorlithm must deal with two types of trajec-~
tories: the non-accidental, which 1s due to the real motion
of a source relative to the IR sensor, and the accidental, which
1s due to a random juxtapositlion of clutter scurces. Because
the first type occurs in great variety, according to the sce-
nario, the environment, and the system configuratlon, the effec-
tiveness of an algorithm in dealing with 1t is difficult to
evaluate except on a case-by-case basis.* However, 1t is

r
Ref. 3 (pp. 310-330) describes a number of tracking algorithms
that have been used for image processing. The list is far from
exhaustive, however; recent IR system designs, for example,
have introduced tracking algcrithms based on trajectory charac-
teristics that do not seem to have been explolted previously.
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possilble to estimate with some generality an algorithm's effec-~ ‘
tiveness in dealing with the second type of trajectory. J

First of all, to the extent that the preliminary CFAl a. go-
rithms perform thelr assigned function, it may be assumed that
every false alarm occurs with the same specified CFAR probabill-
] . i1ty ¢. Suppose that, 1n order to declare a target, the tracking 1
algorithm requires the formation of some spatial pattern by a
minimum of r detections, one from each of r different time
frames. Suppose also that n 1s the total number of possible
detection comblnations that can form such a pattern. Then the
probability that the algorithm will generate a false target
declaration because of random false detections is given by

A

P=1- (160)" . (29) 1

Suppose that the system's false alarm rate specification

implies a probability of false target declaration no greater
than Po‘ Then from (29) it follows that r, which is the mini-
mum number of detectlons required to establish a target track,
will be determined by the inequality

log [1- (l-Po)l/n]

se (30)

r <

Since the original reason for invoking the tracking algo-
rithm was the premise

P, << 1 ,

(30) 13 essentially equivalent to

log Po-log n
log ¢

4y
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The right side of (31) approximates the right side of (30) with
an error whose absolute value will certainly be less than 0.5;
thus, the two inequalities will lead to the same bound when
rounded off to the nearest integer.

. The number n has a simple estimate which can be derived as
follows. Suppose that each time frame contains a total of m
pixels and that from one frame to the next each detection may
be followed by a detection at any of k different pixels. If k
1s the same for each successive frame in the set that deter-
mines the admissible track, then

n = mk1 (32)
If k varies 1t can be replaced by an average (geometric) value

estimate, or, if the aim 1s to be conservative, by an upper
bound.*

A substitution from (32) into (31) leads to

log P -log m - (r-1) log k

T2 Tog ¢ )

which, in turn, provides the result

log Po-log m + log k

r log k + log ¢ ? (33)
provided that
1
= 4
k <3 - (34)

Unless (34) 1s satisfied no positive value of r is possible.
In that case the algorithm cannot meet the false alarm rate goal.

*Tt is certainly a tracker objective to make k a rapidly
decreasing function of r.
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The number k 1s a measure of the amount of branching per-
mitted by the tracking algorithm, usually in order to allow for
trajectory turns and an error tolerance. Therefore, the con-
dition (34) implles that the complexity of “he tracking algo-
rithm will be limited by the CFAR speclfica ion that the pre-
liminary detection algorithms are able to meet.

As an example, consider the case in which there are 107
pixels in the entire scene, the CFAR algorithms dispose of 99
percent of the background pixels, and it 1s required that the
probabllity of a false target declaration be less than 10'10.
Then m = 107, ¢ = 0.01, and P, = 107%, 1f no branching 1is
allowed, so that k = 1, according to (33) the number r of detec-
tions that must be considered in the target declaration algc-
rithm's trajectory pattern before a target can be declared is
greater than 8.5, 1.e., 9 or more. If two branches are allowed,
r must be 10 or more, if 3, 11 or more, and if 4, 12 or more.

Figure 7 contains a curve that deplcts the lower bound on
r as a function of k. As the figure 1indicates, k must be less
than 100 because of the limitation imposed by (34).

Figure 7 also contains a second curve: for the case in
which ¢ 1s equal to 0.001 (99.9% of the background pixels are
eliminated by the prellminary detection algorithms) but the
other parameters have the same values as in the first case.

An inspectlon of this curve reveals that the ilncrease in effec~
tiveness of the detection algorithms permits a large increase
in the number of allowed branches for a given number of detec-
tions in the track pattern. For example, for ¢ = 0.01 no track
with fewer than 9 pixels is satisfactory, and even if there are
9, only one branch 1s permitted; however, for ¢ = 0.001 a track
with as few as 6 plxels is adequate, and if there are 9 pixels
as many as 17 branches are permifted.
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FIGURE 7. Minimum number of detections for a tracking
algorithm versus number of branches
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IV. AN EVALUATION OF TWO COMMON
IR SIGNAL PROCESSING TECHNIQUES

A. INTRODUCTORY REMARKS

This chapter wlll discuss two unrelated techniques that are
included in some IR signal processing approaches to target de-
tection. The first technique, which 1is sometimes called back-
grourd normalizztion (Ref. 12), 1s a method of setting & detec-
tion threshold that 1is adapted to the spatial variation of the
background clutter. The second, which 1s incorporated in cer-
tain two- and three-color spectral discrimination algorithms, is
a way of reducing the number of degrees of freedom in the data
by usiling ratlos of the spectral components rather than the com-
ponents themselves.

The alm of the discussion will be to compare the effective-
ness of the techniques with that of alternative approaches.
The analysis that addresses this question here is actually an
extension ¢f the analysls in Appendices A and B of Ref. 4,
which deal with the same topics in a more general way.

Apprendix A of Ref. 4 characterizes background normaliza-
tion in terms of an ldealized version of the process. The
present chapter will consider the specific process as it 1is
ordinarily implemented.

Appendix B of Ref. 4 derives some general Iimplications of
the use of spectral component ratlos in three-color systems.
Here the concern will te with the probabilities of false alarm
and target detectlion. For simplicity, the discussion will con-
centrate on two-color discrimination algcrithms, although it 1s
reasorable to suppose that the conclusions hold, at least quali-
tatively, for multi-spectral algorithms in general.
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The treatment ¢f both tcpics i1s self-contained in this
paper. Nevertheless, there 1s not much overlap with the material
in Ref. 4, which, therefore, night well furnish certain insights
that the present discussion falls to provide.

B. BACKGROUND NORMALIZATION

Background normalizaticn 1is a particular implementaticn
of a general process called adaptive thresholding (cf. Ref.
13-18). The fundamental objective of signal processing, of
course, 1s to set a detection threshold that is high enough to
reject background clutter but low enough to pass a target sig-
nal. When the threshold selection varies with the local back-
ground distribution, i.e., 1s spatially adaptive, under CFAR
conditions the target detection probabllity can be made larger
than would be possible if the threshold were fixed for a whole
scene.

Background normalization 1s essentially & method of esti-
mating the clutter that would be observed at a given point P
In the absence of a target. Thils estimate then provides a
basis for setting a separate CFAR threshold for each point in
the scene.

The prescribed estimate 1s Just the average of the radi-
ance, or of some function of the radiance (e.g., its square),
measured at points surrounding P in a symmetrical pattern. For
the scene as a whole the process amounts to a transformation of
the background dlstribution by means of a sliding window average,
which 1s a special case of the llnear transformations discussed
in Chapter III.

A simrle example 1s the transformation defined by the mask

1/16, 1/16, 1/16, 1/16, 1/16
1/16, 0, 0, 0, 1/16
1/16, 0, 0, 0, 1/16 .
1/16, 0, 0, 0, 1/16
1/16, 1/1€, 1/16, 1/16, 1/16




The point P corresponds to the central pixel in the window, and
its eight neighbors are reserved as a guard against a possible
overlapping signal from a target source that might have more
spatial extent than was anticipated.

It 1s convenlient 1n discussing the general case to intro-~
duce a Cartesian coordinate system chosen so that the point P
is located at the origin; i.e., P will always have the coordi-
nates (0,0). It will be assumed that the cocrdinates (x,y) of
any cther plxel in the window are integral multiples of a fixed
quantity Ax in the horizontal direction and a fixed quantity Ay
in the vertical direction.* Then, in an m by n window the pixels
will be located at the points (xv, yu), for which

-n n=1
x, = vex, I sv s D2,
(35)
l-m m=1
yy = Wby, T oSw =5

If the continuous background spatial distribution is given
by a function S(x,y), the measured radiance (or a given function
of the radiance) at each point (xv, yu) will be S(xv, yu) in the
absence of 1 target. Then background normalizaticn consists of
the assignment

5= § D stk vy (36)
V,H

where the sum 1s taken over a particular set of M points
(xv, yu) out of the m n points in the wirdow.

The set must satisfy Just two conditions: (1) P is not a
member; 1.,e., if (xv, yu) is in the set then either xv ¥ C or

-
Usually Ax and Ay will be the same, but there 1s no particular
advantage 1n assuming this restriction here.
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yu # 0; (2) the points that are members are located symmetri-

Y B

5 cally with respect to P; l.e., if (xv, yu) is in the set then "
i so 1s (x_,, y_u). It is evident from the second cordition that ;
| :
| - 1 . - 1 . |
k=g %, =0andy=gy y, =0, (37) ’,

v u ‘

where the barred quantities are averages of the indicated coor- i
dinates, calculated with respect to all points in the set.

The assignment (36) amcunts to an interpolation of the back-
greound distrilbution to the point P from measured values observed
at the M selected points (xv, yu). It was demonstrated in
Appendix A of Ref. 4 that background normalization is consist- ‘
ent with a power series approximation that is valid, in gen-
eral, up to the linear order. Therefore, %t i1s natural to ask
how it compares with an optimum linear interpolation from the
given data. [

. I An obvious choice for the comparison would be the estimate
: obtained from the linear function

i §(x,y) = ax + by + ¢ (38)

that fits the gilvern data with the least square error. That is,
the coefficients a, b, and ¢ in (38) are to be determined from
the condition thet

€ = Z [a x, + b ¥y +¢c - S(x\,, yu)J2 (39)
V,u

be a mirimum, where again the sum 1s taken cver the M szample
data points.

The standard method of calculating the coefficlents, f.e.,
differentlating ¢ with respect to a, b, and ¢ separately and
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setting each derivative equal to zero, leads to the system of
equations

:E: X, (a X, + b Yy + ¢ - S(xv, yu)] =0,

:E: Y, [a x, + D Y, + c - S(xv, yu)] =0, (40)
V,H
E [a x, +b v, +c - S(xv, yu)] = C
V,H
Because of (37) the last equation reduces to
c = L S(x. ., yv.) (41)
! M v Yy :
\ V,d

Eut according to (38) the linear interpolation for the back-
ground at P 1s given by

S(0, 0) = ¢ . (42)

A comparison of (36), (41), and (42) shows that the least-
square-error linear interpolation for the radiance (or a given
function of the radiance) at P 1s identical with the estimate
given by background normalization.

Since there are only three parameters to be determined for
the linear fit indicated by (38), it can be accomplished as long
as there are more than three neasured values of S(x,y). Gener-
ally, there will be more--e.g., eight in the case of a 3 x 3
element window, or at least sixteen in the case of a 5 x 5 ele-
ment window.
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This suggests the possibility of improving the background
normalization technique by using an interpolation based on a
square error fit of the data to a quadratic instead of a linear
polyncmial. That is, (38) would be replaced by

S(x,y) = c + ax + b y + Apq x" 4 2 Ay Xy + Ay VO, (42) {

and the coefficlents ¢, a, b, All’ A12’ A22 would be determined
s0 as to minimlize the square error

|
€ = [S(x ) - S(x )12 (4s4)

hd v? yu v? yU .

v U :

!

Tre resulting value of c¢, once agaln, would be the least square 1

error estimate S(0, 0) of P.
The argument (based on the symmetrical distribution of

data points about P) used to cbtain (37) also implies that {

B =yl=0 . (u5)

It will be fcund, as a result, that, on setting the derivatives
of € with respect to each of the six coefficients in (43) equal
to zero, only three of the slix least-square-error equations for
the coefficients will contain ¢. Those equatlons are, in fact,

-2 2 _
CH XA Y Ay =S,
2 o 2.2 2
x“ e 4 x Ajy + xTyT A, = xS, (46)
;‘7 c + x2y° Ay, ¥ ;‘1: Ay, = yzs R

where all barred quantities zre averages over the M sample
data points, e.g.,

5l

——— e e o T Tgpta——




v,u

If the coefficlent determinant A of (U€) is cifferent from
zero, Cramer's rule wlll provide an explicit solution for c, A

and A22. However, only ¢ is of interest here. It 1s given by
R PO by
c=FS~-GxS-Hys |, a7y
where
TT T73°
X Yy =XY
F = A .
2T 2.2
___XY"}XY u8
G = , (48)
R
H = 2 s
and A 1s given by the determinant
- -
l, x7, ¥y
A = ;ﬁ, ;E, xzyz . (kg)
2 22 T
Y » XY » ¥

Since ¢ 1s the least square error estimate of S(0, 0),
it is evident from the form of (47) thet the least-square-errcr
estimate 52 of guadratic order (replacing the linear-order

= §) will be a weighted average; i.e.,

= = E Q [~

VU

estimate Sl

11°
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The welghts wvu’ obtained from an inspection of (47), are
given by

(51)
Ay

As an example, consider the case, introduced earlier, of
a 5 by 5 pixel window for which only the 16 border pixels are
sample data points. For this case the ordinary background
normalization, or linear, estimate consists of the average

sl=2ww8(xv,yu) , V=t2oru=¢t2 ,
V,u

with equal weights,

_ 41
w\)u-R .

For the quadratic interpolation estimate it 1s necessary,
first, to calculate the averages ;7, ;5, ;E, ;F, ;5;5, which
can be done without much difficulty by using the mask introduced
earller as a gulde. The results are

2 2 2 2
S(x2 + x_2) + 2 (x1 + x_l)

—
x = 15
5(4+#)7;62 (1+1) Ax2 = 2,75 sz ,
56
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v = 2.75 ay? ,

4, 4, 4 4
= S(xy+x_,) + 2 (xq+x_;) = 10.25 &x ",

"o

;K = 10.25 Ayu s

x2y2 = (x24x2)) (354y2,) + (x54x2,) (v34y2)) + (x54x2,) (354y2))

16

2 2

= 6 AX® Ay .

The determinant A, defined by (49), is therefore given by

A = 4.78125 ax” ay’ .

Then the calculations indicated by (48) provide the results

F = 14,4444y
l G = g;ﬂﬂgﬂi , (52)
; Ax
2.44448Y
‘ H=——A—2-—-.
y

Finally, the weights can be obtained by substituting from (52)
into (51). The results are

2
. F-4Gax
wiEO a w0:2 = __ZE___.. 0.29167 ,
, 2 2 '
- . F-GAx~ - UHAy® _
Weas1 We1s2 16 0.13889 , (53)

2 2
. F=4GAx~ - 4HAy
wtth 1% = -, 3104Y , )
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The corresponding mask will be

-.31944, 0.13889, 0.29167, 0.13889, -.31944

0.13889, 0, 0, 0, 0.13889.
0.29167, 0, 0, 0, 0.29167 .
0.13889, 0, 0, 0, 0.13889

-.31944, 0.13889, 0.29167, 0.13889, -.31944

C. MULTI-COLOR ALGORITHMS BASED ON SPECTRAL COMPONENT RATIOS

An N-color IR system collects data in N spectral channels
defined by N distinct, non-overlapping wavelength bands which
are presumably chosen because the spectral signatures that they
provide for targets differ as much as possible from those that
they provide for backgrounds. As is customary 1n this paper,
N-component vectors £T and gc willl represent the radiance dis-
tribution over the channels, the first for the case in which a
target 1s present and the second for the case in which targets
are absent.

Some two- and three-ccolor target detection algerithms that
have been proposed do not operate directly on the components
Ji’ 1=1,...,N of the vectors iw and QC’ but rather on the ratios

of N-1 of the Ji’ i=1,...,N=1, to a single component JN. That
is, the ratio variables
Ji
X, = 3;, 1=1,...,N=1 , (54)

replace the variables Ji’ i=1,...,N, and it 1is the Xi that
enter into the target detection algorithms. As a result,

there must be a certain loss of information since the number of
free variables will then be reduced by one. The question 1is:
how does thilis use of ratios in a target detection algorlthm

affect the false alarm probability?
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For simplicity the dilscussion will be confined to two-
color systems, although similar conclusions may te expected in

the case of systems that employ three or more colors. For two

colors it 1s possible tc construct a simple graphical represen-

tation of the pair of measured spectral components Jl anc J2.
This i1s illustrated by Fig. 8§ which depicts a planar coor-
dinate system for polnts that are defined when Jl and J2 are

regarded as cartesian ccordinates. The filgure represents a

data plane in which every polnt corresponds to a palr of measure-

nents in the two spectral bands of interest, and every pair of

such measurements corresponds to a point 1n the plane.

Assume that there is a distinct bivariate jolnt probability
distribution for (J1, J2) corresponding to the target source
and another such distritution corresponding to the clutter. 1In

terms of 1ts probability distribution a mean point (31, 32) will
be defined for the target and another will be defined for clutter.
These are indicated by the labels "target" and "clutter" in the

figure.

To each point in the data plane there Is an associated line
through the polnt and the origin c¢f the ccordinate systerm. The

ratlc of the ccrrespcnding spectral comporents will be equal to

the slope of the line or the reciprocal of the slope, depending
upon how the ratio is defined. Figure 8 shcws the lines (solid)

asscciated Iin this way with the target and clutter means.

A stralghtforward discrimination criterion is providec by

the rollowing rule.¥ If fcr a pair of measurenrents Jl ard J2
the value of the probability density function (PDF) corresgond-

ing to the target 1s greater than the value of the FDF corres-

ponding to clutter, the source 1ls presumed tc be the target.

Otherwlse, the scurce i1s presumed toc be clutter.
»
This rule 1s introduced here instead of one based on a CFAR
requlirement tc simplilfy the calculations that illiustrate the
major points of interest. It also makes it pcssible to nor-
mallze the evaluation to one for which the false alarm prcba-
bility 1s the flgure of merit.
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Then the curve defired by the equation that 1s formed when
the target PDF 1s set equal to the clutter PDF divides the data
rlane into two regions: one consisting of points regarded as
due to the target and the other consisting of points regarded
as due to clutter. This boundary is indicated in Fig. 8 by
the line labeled "2D discrimination line".

Although the boundary 1s shown 1n the flgure as straight,
in general it will be a curve or, 1n féct, it may even consist
cf two distinct branches of a curve. If the PDFs are both
bivariate gaussian the boundary will be a conic section (Chapter
III, Section A), i.e., a parabola, zn ellipse, or a hyperbola.
If the covariance matrix for the target PDF and that for the
clutter PDF are ldentical, in the case of gaussian distributions
the boundary will be a straight line. Aprendix A contains a
detalled discussion of these and related matters.

The target and clutter probability distributlons will each
induce a corresponding univariate distribution for the ratio of
spectral components.* A discriminaticn criterion similar to
that based on the bivariate PDFs can be formulated in terms of
che ratio PDFs.

When the target and clutter ratlio PDFs are set equal the
solution of that equation provides a boundary between the re-
glon consisting of points designated as target and the region
consisting of polnts designated as clutter by the ratio dis-
crimination criterion. Thils boundary i1s a4 iine or lines, with
slopes glven by the solution of the equaticn, passing through
the origin of the coordinate system, and it defines regions
that are angular sectors. This 1s 1llustrated in Fig. & by a
line lateled "ratic discrimination line".

It 1s evident that the 2D discrimiration rule and the
rztic rule do not always agree. The region labeled "excess
false alarms" 1in the flgure consists of points that are false

¥
See Appendix D for a derivation of the FDF.
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alarms from the point of view of the 2D rule, and the region
labeled "excess missed targets" consists of points that are
missed target detections frcm the same point of view. From
the ratlo rule point of vliew the same regions would be appli-
cable with the labels reversed.

Figure 9 1llustrates a similar data plane configuration, 2
except that in this case the target and clutter means have the
same ratio, although the mean points are still separated by a
considerable margin. Note that the ratio boundary between
desighated target and clutter points consists of two lines in J
this example.

The triangular region labeled "ratio false alarms" con-
sists of polnts that are false alarms from the point of view
of the 2D rule. The two angular sector regions labeled "2D
excess false alarms" consist of points that sre false alarms
from the polnt of view of the ratic rule. The actual false
alarm probabllitles are determined not by the areas of these ‘
regions but by the result of integrating the bivariate clutter
EDF over the regions.

Figure 10 1llustrates graphically several cases of a bi- 1
variate Gaussian distribution. The solid-line ellipse repre-
sents a curve of constant protabllity for the case of uncorre-

lated spectral components with the standard deviation of one
component equal to ten times that of the other. Also, the ratlio
corresponding to the mean point is defined to be 31/32 and 1is
equal to 2/3.

The dashed-line elllpses in Fig. 10 are lines of constant
probability for dlstributions that are obtained from the orig-
inal distribution by rotating the coordinate system about the
mean point through varlous angles as indicated. This provides
cases iIn which the covarilance matrix is not diagonal, 1l.e.,
in which the spectral ccmponents are correlated.
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Figure 11 shows curves that represent the ratio PDF#¥
corresponding to each bivariate PDF illustrated in Fig. 10.
Note that each curve has a single mode which occurs near, but
not exactly at, the ratio of the mean components, 1l.e., 2/3.
Alsc note, by comparison with Fig. 10, that the largest mode
occurs for the case 1n which the major axls of the correspond-
ing bilvariate constant probability ellipse is colinear with the
line joining the mean point and the origin of the coordinate
system. Further, the smallest mode occurs for the case in
which 1t 1s the minor axis that is colinear with that 1line.

Tc calculate the probability of false alarm (PFA) for
either the ratio or the 2D rule, as observed in Chapter III, it
is cnly necessary to integrate the clutter PDF over the appro-
priate reglon for a bivariate Gaussian distribution. The
region willl always be bounded by straight lines whenever the
target and background covariance matrices are the same. Accord-
ing to the mathematical medel proposed 1in Chapter II, this will
generally be the case for spectral discriminaticn of point tar-
gets. Appendix D shows 1n detaill how such integrals can be
evaluated efficiently.

To make the false alarm probability calculation particularly
easy, cocnsider the simplest possitbtle case, in which the target
and clutter probability distributions are toth bivariate Gauss-
lan wilth uncorrelated spectral componentc having identical
standard deviations. In accordance with the mathematical mocdel
of Chapter II the standard deviaticn will be the same for the
target and clutter distributions, as well. For thils case
Table 1 provides false alarm prcbatilities due to the ratio
rule and to the 2D (bivariate) rule for three different sets
of means given in units of the common standard devizticn.

T .
Equation D-1& of Appendix D was used to plot these curves.
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TABLE 1. FALSE ALARM PROBABILITIES FOR RATIO
AND 2D DISCRIMINATION RULES
ARTIFICIAL DATA
SPECTRAL |CLUTTER|TARGET |STANDARD |CORRELATION it RULE

BAND MEAN | M&AN |DEVIATION|COEFFICIENT|0.5034 [Ratio

3 5 10 1 2x10°% |20

] 0

Jz 5 10 1 0.5032 |[Ratio (excess)
< 10'4 2D (excess
0.4948 |Ratio

3, 5 10 1 2x10°% |20

- 0

J2 6 11 1 0.4946 Ratio (excess)
<10°% |20 (excess

i 0.0339 |Ratio

3, 5 5 1 <10°% 20

- 0

J2 5 13 ] 0.0338 Ratio (excess)
< 10j 20 (excess)
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It is seen in the table that for the case in which the tar-
get and clutter means have the same ratio of spectral components,
as 1llustrated in Fig. 9, the ratio rule produces a false alarm
probability that is more than 50 percent, while the 2D rule's
false alarm probabillity 1is about 0.02 percent. When the means
are shifted slightly so that the target and clutter means are
no longer assoclated with identical component ratios the ratio
rule false alarm probability improves slightly to a little less
than 50 percent while the 2D rule false alarm probability
remains essentially the same. When the means are shifted by a
greater amount so that the ratio assocliated with the target
mean is somewhat greater than 2-1/2 times the ratio associated
with the clutter mean the false alarm probability due to the
ratlo test improves considerably. However, it 1s still more
than 3 percent, while the false alarm probability due to the
2D rule 1s less than 0.01 percent.

Tables 2, 3 and 4 contaln the results of similar calculations
based on data taken from Ref. 9 for natural terrain backgrounds.
Data for the targets were made ur by using equivalent temperature
means that are 30 or 5¢ above the corresponding background means
for one or both of the wavelength bands. One scene is a conifer

forest in Michigan and the other is a moun.ainous area in
Nevada.

An exarination of the tatles indicates that the ratio rule
produces consistently higher false alarm probatilities than
does the 2D rule. In many cf the examples the PFAs differ by
an order of magnitude or more.
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Background Type:

TABLE 2.

FALSE ALARM PROBABILITIES FOR RATIO
AND 2D DISCRIMINATION RULES

Mountainous Terrain (Nellis AF Base, Nevada)

Conditions: AM (1100, 2-26-78), high overcast, light haze, visibility 15 mi
Aircraft: Altitude 1000 ft, ground speed 200 ft/sec, flight direction East
Area Covered: 1750 ft x 6750 ft; Depression Angle: 35 deg; IFOV: 2.5 mrad
Radiance Units: deg k
SPECTRAL [CLUTTER|TARGET [STANDARD |CORRELATION|{—-F3 ALE
BAND MEAN MEAN DEVIATION|{COEFFICIENT{0.0453 Ratio
3.0-4.2 285.68 1303.93 3.65 0.539 2.2x107°| 20
4,5-5.5 u 1283.12 |290.62 1.5 0.0440 Ratio (excess)
9x10°% |20 (excess)
1.6x107°[Rat1o
3.0-4.2 u |285.68 1303.93 3.65 0.539 1.5x107°|2D
4.5-5.5 y (283.12 [283.12 | 1.5 3x10~%  [Ratio (excess)
2x10°% |20 {excess)
0.1174 Ratio
3.0-4,2 p 1285.68 1285.68 3.65 0.539 1.5x1077]2D
4.5-5.5 p 1283.12 [290.62 1.5 0.1165 [Ratio (excess)
7x10°% |20 (excess)
0.0388 Ratio
3.0-4.2 285.68 [296.63 3. 65 0.539 0.0375 20
4.5-5.5 y 1283.12 [283.12 | 1.5 5.2x10°3|Ratio (excess)
3.9x10°7[2D (excess)
0.1545% Ratio
3.0-4,2 285.68 (296.63 3,65 0.539 0.0436 2D
4.5-5.5 u [283.12 [287.62 1.5 0.1276 |Ratio (excess)
0.0167 2D (excess)
0.2381 Ratio
3.0-4.2 y 1285.68 [285.68 3.65 0.539 0.0375 2D
5-5.5 y |283.12 |287.62 1.5 ) 0.2166 Ratfo (excess)
0.0159 20 (excess)
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TABLE 3. FALSE ALARM PROBABILITIES FOR RATIO
AND 2D DISCRIMINATION RULES

Background Type: Mountainous Terrain (Nellis AF Base, Nevada)
Conditions: AM (0930, 2-25-78), high thin scattered clouds, visibility 15 mi
Aircraft: Altitude 1750 ft, ground speed 200 ft/sec, fiight direction West

Area Covered: 1750 ft x 6750 ft; ODepression Angle: 90 deg; IFOV: 2.5 mrad
' Radiance Units: deg k

SPECTRAL |CLUTTER|TARGET |STANDARD |CORRELATION |—trhy _RULE
BAND MEAN | MEAN | DEVIATION[COEFFICIENT| < 10 Ratio
3.0-4.2 u [291.12 [365.57 | 8.89 0894 L 1o'§;7 20
4.5-5.5 u |283.73 {307.08 4.67 <10~ Ratio (excess)
<10°% 2D (excess)
<10”% [Rratio
3.0-4.2 y [291.72 [355.57 | 8.89 0.894 < 10'2' 20
4.5-5.5 u [283.73 {283.73 4.67 < 10° Ratio (excess)
<10”% J2p {excess)
0.0144 Ratio
‘ l 3.0-4,2 p 1201.12 [291.12 | 8.89 0.894 <10°% (20
.5-5.5 u [283.73 (307.08 4.67 0.0144 Ratjo lexcess)
' <10°* |a2p (excess)
0.1180 Ratio
3,0-4.2 u 291,12 [317.79 | 8.89 0.894 0.0616 |20
4.5-5.5 u 1283.73 1297.74 1.67 0.0758 |[Ratio (excess)
0.0194 [2D (excess)
0.0911 [Ratio
3.0-4.2 y [291.12 [291.12 | 8.89 0.894 ax10”% (20
5-5 283.73 {297.74 4.67 0.0909 Ratio (excess)
2x10°%  [20 (excess)
3.4x10"°[Ratio
' ax10”* [2p

.0-4.2 u l201.12 [317.79 8. 89 0.894
5-5.5 u |283.73 [283.73 | 4.67 3.2x10"°'Ratio (excess)
2x10°r TEB‘jexcess)
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TABLE 4. FALSE ALARM PROBABILITIES FOR RATIO
AND 2D DISCRIMINATION RULES

Background Type: Conifer Forest (Michigan)

Conditfons: 1230 (Winter, 4-3-79, 4-4-79), no clouds, snow-covered ground, air
temperature - 2 deg C

Afrcraft: Altitude 1750 ft, ground speed 202 ft/sec, flight direction NNW

Area Covered: 1650 ft x 1750 ft; Depression Angle: 90 deg; IFQOV: 2.5 mrad
Radiance Units: deg k

SPECTRAL |CLUTTER|TARGET [STANDARD |CORRELATION [—hCA RULE
BAND MEAN | MEAN |DEVIATION|COEFFICIENT!0.0190 |Ratio
3.5-3.9 u 1281.77 |300.115] 3.6689 0.169 5x10”% |20
4.5-5.5 y 1277.58 |280.751] 0.6341 0.0187 |Ratio (excess)

2x10°% |20 {excess}

3

5.6x10"“{Ratio
5.6x10°° |20
1x10'l¥7 Ratio (excess)

1x10°% 20 (excess)

0.3322 Ratio
5.6x10°°]2D

0.3293 lRatio (excess)
0.0027 120 (excess)

.1064 Ratio

. 0250 20

.0910 |Ratio .(excess)
.0095 2D (excess)

o O o o

0.0643 Ratio

0.0641 2D

6x10"% |Ratio {excess)
ax10”% 20 (excess)

0.4058 Ratio

0.0643 20

0.3710 Ratio (excess)
0.0295 (2D (excess)
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V. SUMMARY AND CONCLUSIONS

A. SUMMARY OF TOPICS COVERED

Based on the assumption that IR measurement data separated

inteo N distinct channels have an N-variate CGaussian protability

distribution, thls paper formulates a mathematical model for the
background radiance in the presence and 1n the absence of targets.
The formulation includes both spectral and spatial discriminants
Jor the case of point targets.

According to the model as proposed, if the N data channels
are defined as spectral bands it 1s usually the case that the
prcbability distributions associated with the presence of a
target and with the absence of any target differ significantly
only in their N dimensional mean vectors. That is, their N
by N covariance matrices are assumed to be nearly identical.
This will be true as long as the target occul*ts only a small
fraction of the sensor's footprint.

On the other hand, if the N data channels are defined in
terms of the spatial discrimlinant, 1.e., so that each channel
represents the radiance level at a single pixel in an N pixel
window, the covariance matrices assoclated with the presence
or abéence of a target will differ unless the target occupiles
Just a small fraction of a pixel. In fact, the model assumes
an expliclt form (Chapter II, Secticn E) for the difference of
the two rmatrices when the target exactly fills a single pilxel.

For certain calculations it is convenient t: change coor-
dinates by means of a principal axis transformation relative tc
the covariance matrix associated with an N=-variate Gauscsian
probabllity distributlon. Appendix C shows in detall how this
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can be done simultaneously for the two covarilance matrices asso-
clated with spatlal data channels in the presence and in the
absence of a target.

The purpose of the model 1s to provide .a means for obtain-
ing rcigh evaluations of proposed target discrimination schemes
on the basis of what may be regarded as a minimal acceptance
standard. The analysis (Chapter III) covers optimum CFAR dis-
criminaticn and also includes a consideration of the effective-
ness of tracking algorithms (Chapter III, Section C) after CFAR
discriminaticn algorithms have been applied.

In addition to these topics and some related detail on
linear filtering (Chapter III, Section B) and how to calculate
various quantities of interest, this paper also deals (Chapter
IV) with two special subjects. One is a method of adaptive
thresholding known as background normalizetion. The cther is
the question of whether it 1s useful cor harmful for multi-
color systems tc use ratlos of spectral components, rather than

l the components themselves, in target discrimination processing.

The ordinary background normalization process amounts to

’ a linear least-square-error interpolaticn cof local mezsurement
data to predict the value of the background radiance, or sone
function of the radiance, in a given direction in the absence
of a target. Thls paper shows hcw to extend the interpolation
to 1include terms of guadratic order by means of a special linear
filter. As an example, the welghts that define the filter mask
for the case of a 5 by 5 pixel window are calculated.

The analysis required for the multi-color guestion involves
a calculaticn of the prcbability distribution for spectrzl com-
ponent _ratlos. Properties of the corresponding probability den-
sity for the two-coleor case are discussed in detail.

Charter IV contains tables of false zlarm probabtility cal-
culations for the two-color case for two discrimination zlgerithms,

crie tased on ﬁhe one-dimensicnzl distribution for the ratio of
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the two spectral components and the other on the two-dimensional
bivariate Gaussian distribuvtion for the components themselves.

The tables answer the question concerning the relative merit of
the two approaches. Most of the data used for the calculations
are taken from Ref. 9, which provides rssults of radiance measure-
ments over several wavelength bands for a variety of terrain
backgrounds.

B. CONCLUSIONS

(1) Experimental data {(Ref. 9) for a variety of terrain
backgrounds, especlally those unaffected by human intervention,
exhibit radiance distributlons that are well approximated (out
to 20, 30 or more) by Gaussian probability density functions.
Thls may be adequate for realistically estimating the effect of
preliminary detection algorithms for which the false alarm rate
requirements are relatively modest. However, for some scenes
that have been affected by human interventicn, notably A.F. Hill,
Virginia and Zaltimore, Maryland, the approximation 1s poor,

At any rate, the assumption of a Gaussian distributed background
provices a minimal standard agalnst which to measure an algo-
rithm's clutter rejectlon performance.

(2) The data in Ref. 9, provided by the Envircnmental
Research Institute of Michigan (ERIM), 1s presented in a form
that 1s well-sulited to mathematical modeling of the spectral
distribution of terrain background radiance. It is alsc useful
for testing hypotheses coiticerning the spatial distribution of
the radiance. Data for other types of backgrcund, e.g., clouds,
would te similarly useful if gathered and presented in the sarme

form.

(3) The ERIM data supports the assumptic- ~:3t a --%ural
(e.g., a conifer forest) scene is spatially .sot '~ .~ .-t
the assumption that the cross-correlation fur~tl-r = evpirer-
tial. In fact, the Wiener spectra given in T. ' - r a .c:’fer

forest are not consistent with any simple power law generaliczaticn
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of the spectrum associated with an exponentlal cross-=correlation
function. The 1isotropic character of the spatial distributilon
obtained for a conifer forest in the ERIM data contradicts a
model that is some‘lmes assumed (c¢f. Ref. 10) for the cross-
correlation.

(4) TIf the distribution of IR background radiance over
N channels (spectral, spatial or temporal) 1s N-variate Gaussian
when targets are present and when they are not, the optimum CFAR
target discrimination criterion 1s an ineguality involving a
quadratic function of the measured data unless the covariance
matrix for the background in the absence of any target 1s iden-
tical with that for the background when a target 1is present.

(5) When the two covariance matrices are identical the
optimum discrimination algorithm Is equivalent to applying a
linear digital filter and then thresholding. This optimum
linear filter Is the same as the well-known filter that maxi-
mizes signal-to-noise 1f the signal power is identified with
the square of the difference between the mean target and mean
background signals and the nolse power is identified with the
variance of the bazkground distribution.

(6) For spectral channels the two covariance matrices
approach equality when the target occults a small fraction of
the 'sensor's footprint, as is usually the case. For spatial
‘channels the two covariance matrices approach equality when the
target occuples Just a small fraction of a pixel. The optimum
filter will be approximately linear if this happens, particularly
if the mean target signal differs from the mean background
slgnal by several standard deviaticns. When the target size 1is
of the order of a pilxel the spatial covarlance matrices will
differ, and the optimum spatlial filter will not be linear.

{(7) If a tracking algorithm is used for the final decisicn
whether a target 1s or 1s not present after the app.icztion of
one or more preliminary CFAR detectiocn algorithms has eliminated
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most of the candidate detections, the effectiveness of the track-
ing algorithm will depend upon the effectiveness of tﬁe prelim-
inary algorithms. In fact, unless the‘false alarm probebillity
after the preliminary detection phase is below a certain critical
value, no tracking algorithm can satisfy a given false alarm

rate requirement. DMoreover, the sensitlvity of a tracking algo-
rithm to error or to unpredlcted target accelerations will
increase rapidly with an iIncrease in the false alarm probability
for the prellminary detection phase.

(8) When ratios of spectral components are uced by multi-
color systems to discriminate between targets and background
rather than the components, themselves, the discrimination
algorithm will be less effective. In partlicular, for the two-
color case applied to typical natural background data obtained
by ERIM (Ref. 9), when an algorithm based on the ratio of the
two spectral components 1s used instead of one based on the two-

dimensional distrilbution of the components the calculated false
I alarm probability is consistently larger, often by an order of

magnitude or more.
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APPENDIX A
OPTIMUM CFAR DISCRIMINATION

A. THE GENERAL CASE

It will be assumed that there are N data channels, each
providing a radiance measurement proporticnal to a signal Ji’
i1i=1, ..., N. The J1 will be regarded as the components of a

vector J and as coordinates of a point in an N dimensional space.

It will also be assumed that an admissible discrimination
process wlll determine a regilon RT in the data space such that
all measurement sets representing points in RT will be regarded
as due to a target source and all other measurements as due to
clutter. Further, it willl be assumed that there 1s a function
$(I) and a quantity T such that the region RT consists of points
J that satisfy the inequality

p(J) <7t . (A-1)

Suppose that there 1s a joint probabllity distribution for
the comporents of J, conditioned on the preserce of a target,
and an assoclated probability density P. (J). Suppose also that
the complementary Jjoint probability dis%ribution conditiocned on
the absence of a target has the density PC(Q). Then the false
alarm probabllity will be given by

PFA = J' P,(I) 4 (A-2)

A-1
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where the notation 1s understood to indicate a volume integral
} over the n dimensional regilon RT. Similarly, the probablility = |
that a target willl be detected if it 1s present is giver by

PTD = s Pp(l) 4 . (A-3)
R
T

For a constant false alarm rate (CFAR) it 1s necessary to
choose the region RT sc that PFA, given by (A-2), 1s equal to
some prescribed constant ¢. Then the optimum discriminaticn be-
tween targets and clutter will occur when PTD given by (A-3) 1is
maximized subject to the condition that PFA is ecual to ¢.

That is, the problem is to choose tke functicn ¢(R) so as d
to maximize PTD, the cholce being restricted to those functions
for which PFA 1s equal to ¢. This leads to the variational
equation

( § [PTD + A (¢~PFA)] = o , (A=)

) subject to the condition

i PFA = ¢ (A-5)

where A 1s the usual Lagrange multiplier and the variation is
taken with respect to Y(R). ﬂ

The variation calculated by means of the standard procedure
in the calculus of variations after substituting from (A-1), .
(A-2) and (A-3) leads to the equation ﬁ

L]

j [Pp(2) = A Po(D)] 8w() af
By,

o , . (A-6)




where the 1integral 1s taken over the hypersurface BT determined
by

W(i) =T . (A_—?)

The equation (A-6) must hold for all admissible functilons
é¢(J); hence, in accordance with the standard argument,

Pp(I) = A B (I) (A-8)

for all points satisfying (A-T7).

The equation (A-8) may be regarded as equivalent to (A-T);
hence the relations

¥(I) = log Pp(J) - log Po(L)
(A-9)
T = log A

provide a satisfactory solution of the variational problem.
The constant A, and therefcre t, can then be determined by solv-
ing the equation (A-5) after substituting from (A-2) and (A-9).

B. THE N-VARIATE GAUSSIAN DISTRIBUTION

An important special case, which often has at least an
approximate validity, is the case in which PT(i) and Pc(g) are
both N-variate Gaussian probability densitles, having the form

1 -3 @Dt @D

P(J) = e ’ (A=10)
ECLILITY
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where J 1s the mean vector defined by

L= J-i P(J) 4 , (A=-11)
g is the covariance matrix whcse elements MiJ are defined by

My, = J'<J1-Ji) (1,-33) B(D) 4T (A-12)

M| 1s the determinant of M, and the superscript t in (A-10)
indicates the transpose (row) vector. The symbol = in (A-11l)
and (A-12) means that the integration region for the integrals
so labeled is all n space. The densities PT(Q) and Pc(g) are
determined completely by thelr respective means QT and gc and
theilr covariance matrices %T and gc in accordance with the form
(A-10).

According to (A-10), (A-9) and (A-1) the optimum CFAR al-
gorlithm for declaring a target detection when an N channsl

measurement set conslsts of the components of J 1s the rule:
for a prescribed false alarm probability ¢ a target 1s present 1if

MU (I-E) <Y, (A-13)




\ The integration region R(y) in (A-14) consists of points J
that satisfy (A-13).

The left side of (A-13) is the difference between two quad-
ratic forms in the quantities Q-ET and g-ic. It can be simpli-
3 fied somewhat by a small amount o algebralc manipulation which
will reduce it to the sum of a quadratic form in J, a linear
form in J and a constant. In fact, (A-13) can bte written

t t Fa 1

*
>
=
xy
]
n
)
ey
A
=
N
]
}.
8]

where AM 1s a matrix given by

N e (4-16)
L 1s a vector given by
A 7S (A-17)
and x is a constant given by
€=y - Ip gT‘l I+ 1.0 §C°1 Ze .* (A-18)

In deriving (A-15) the fact that the covarlance matrices, &nd
therefore their inverses, are symmetric is used.

If AM is not zero the region in n dimensioral space defined
by (A—lS)ﬁis tcunded by the n dimensional version of a guadric
surface. If n 1s 2 the boundary 1s a conic secticn, l.e., an
elllpse, a parabola or a hyperbola.

¥
If the region RT 1s prescribed by the form (A-1Ff) then it 1s
the constant x that must be determined by (4-1L),

A-5




If the target and clutter covarlance matrices are identical,
hcwever, AM 1s zero. In that case the region defined by (A-15)
is a half gpace bounded by a hyperplane, i.e., the n dimensional
version of a plane.

C. THE UNIVARIATE GAUSSIA. DISTRIBUTION

As an example of how the ' ptimum discrimination algorithm
can be formulated in practice 1t may be useful to consider a
special case in detall. The univariate Gaussian distribution is
obvliously the simplest special case. It 1s also a useful one
to censider because It plays a fundamental role in the construc-
tlon of optimum linear filters.

When the probability distribution is univarilate the mean
vector and covarlance matrix are actually scalar guantities.

Thus, the means associated with the target and clutter distri-
I 2
c b
both of which are also constant, replace the covariance matrices

butions are constants JT and EC’ and variances °T2 and ¢

%T and §C‘

Then (A-15) tecomes

(% - ——-12) 32 2Ly <k (A-19)
T c
T c

where, because of (A-17),

il

(] ]

(A=20)

t
[}
Q
-3
)
|
Q
2
™|

After a substituticn from (A-20) the relation (A-1¢; may be
replaced by

J°_28J-y<0 , (A-21)




where

(A-22)

and vy 1s a new constant, replacing x, to be determined by (A-14),

It follows from (A-2l) that

B -V aé+v <J <8 +NBS+y . (A-23)

The interval deflned by (A-23) is the cne dimensional version of
the region that was lakteled RT in the general case and R(v) in
the n-varlate Gausslan case dilscussed in Secticons A ard B of
this appendix. That is, (A-23) gives the criterion for declar-

ing that the measurement J 1s due to a target.

However, before the criterion (A-Z23) can te used it 1s still
necessary to determine the constant y. This can te done by using
the CFAR ccndition (4-14), which takes the form

B+ V 82+y

e e = O nmp—— 4 o

- —ge——— e - = - - ——— e s - —




or, equivalently tecause of (A-22),

o+u
1.2
1 T2
— e dx = ¢ , (A-24)
1 v 2n
a=-u
where
(Tp=Jn) ©
o= —2 L € (A-25)
9¢ =9
and
b= VEEL  (a-26)
1)

2 Actually, the simplest procedure now is tc determnine u
frem (A-2L) ard (A~25) in terms of the CFAR wvalue ¢. Then,
irstead of using (A-23), the interval that contains the target
declarations can be expressed in terms of u and 8, which 1s de-

fined in terms of thk:~» gilven probability distribution parameters
ty (A~22); 1.e., a target is declared if

B-uo,< J <B+uc, . (A=27)
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From the more gereral definitions (A-3) and (A-10) it
follows that 1

B+uoc
(7-3)2
26,1.z
PTD = —1 e a .
Uszﬂ'
B“ucc

With the aid of (A-22) this can be written somewhat more con-~
venlently as

+u
E
2

PTD = e dx (A-28)




\ The result of this section can be summarized as follows.

| Given a required PFA value ¢, with parameters a defined by
(A-25), B defined by (A-22), and u determined by the equation
(A-24), the optimum criterion for a target declaration in tre

‘f | sense of maximizing the PTD is given by (A;27). Trke correspond-

; ~i ing PTD 1is §1ven by (A-28) in terms of quantities ; cdefined by

|

{

(A-29) and B defined by (A~30).

If op = o, then (A-19) becomes the trivial ccndition that
’ the interval of possible values of J be divided into two com-
plementary sub-intervals. That 1s, a constant t divides the
interval

- o <J < ®

into two intervals

———

l -® <J <1 , T <J <>,

: one of which, it will be assumed by the target discrimination
rule, contains all values of J, and only those values, that may
be attributed to a target source.

If AZ > 0 the value of T 1s to be determined by the. CFAR

1 condition

I:

i

| ® 2 ®

e : (J-JC) 52
» 5 . - 2 - 2
4 . ¢ = 1 e ?o a7 = - e dx ,
3 S oV E‘N v §1r
1 . T t-J¢
o

|
B |
N i A-10
}
|
|
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where 0 is the common value of 9 and Orpe That 1s, for v such
that

2 e dx = ¢ (A-31)
yem

7 will be determined by

T =gv+J (A-32)

C *
Then a target 1is declared whenever

Jd >t .

If AJ <0 then v is still defined by (A-31) but (A-32)
must be replaced by

T = - 0ov + 30 . (A-33)

Then a target 1s declared 1if

Jd <t

In either case the PTD can be calculated by integrating

(3=Tg)?
-—

20
e

Pp(J) =

)




5
\
i
' cver the interval in which targets are declared. The result
\ is given by . {
| ’ ® x2
L 1 B ‘
: PTD = e dx . (A=34) -
/on - ’
i, / -
! Ve |AJ |
.f ° 1
P
|
' {
i .
l
y {

A=12
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APPENDIX B

POWER SPECTRAL DENSITY CALCULATIONS

Chapter II discusses two correlation functions that are
sometimes suggested as models for the spatial distribution of
background clutter. One is

- Jx-x" 'ygy'l
Ky,y EoE') = exp (= = == <5 =] (B-1)

which is anisotropic even when Lx = Ly. The other is

|z-z'|
K(r,r') = exp \- —3— s (B=2)

which 1s isotropic.
‘The power spectral density (or Wiener spectrum) for

Kx.y (r,r') is given by the Fourier transform
9 [,

lal vl
wx,y (k) = exp |- -L—;:--—L-;-*-il‘s u Jdudv, (B-3)

where k 1s the wave number vector with components (kx’ ky) and
u 1s the displacement vector with components )

U= X=x', v = yay' |




Since

'lstg-kxu+k‘v,

J
the double integral in (B-3) is a product of two single inte-
grals that are easy to evaluate individually. The result of
the evaluation 1s

' L L L L
W (k)s( X + X ) _.y—q.—_y__)
X,y '~ l—lkax 1+ikax l-ikyLy l+ikyLy

(B-4)
i
4LxLy

2
X

2

1+k
( y

2 2
L + L
) (1+k y)

The power spectral density for K (r,r') 1s given by the
Fourier transfo:m

|2| t .
W(k) = exp \-—t— + ik’ uf dudv , (B=-5)

which, after changing varilables to polar coordinates (P, o),
becomes

- & J[ ikpcos(8-¢)
W(E) - e e dépdp , (B-6)

(o) ]

where (k, ¢) are the polar coordinates of the vector k. The
inner, angular, integral is independent of ¢ because the

B-2

| |

1




integration interval is exactly one period of the integrand
»\ . which, of course, is periodic in 6; therefore, ¢ can be set

equal to zero. The integral over 6 can then be recognized as
a well known representation for the Bessel function of order
i zero. Thus, (B-6) may be written

L

W(k) = 21:/ e .Jo(kp) pdp .
o

With the aid of a standard table of integrals (e.g., Ref. B-1,
p. 712) this can be recognized as equivalent to

: 2
‘ 2nL
W(k) =
k R RN I

. (B=T)

As Ref. B-2 points out, 1f the background distribution
appears to be 1sotropic when viewed at a 90 deg depression
angle (i.e., vertically), when it is viewed at an angle that
is less than 90 deg it should aprear to be anisotropic. This
is because there will be an apparent change of scale in the
cross-track but not in the in-track direction. 1In such a case
the natural generalization of the correlation function K(£,£')
given by (B-=2) is a function of the form

Ky(Esx') = exp [' tl: \I(x'x')zﬂxz(y-y')z] . (B-8)




- - —— - —
S

1 ~t 81} o~ -
W (k) = y exp (1x'u - ——/ dudv , (B-9)

where ; 1s the vector wlth components (kx’ §¥) and u 1s the
vector with components (u, a v). Since (B-~9) has exactly the
form of (B-5) its value can be obtained by inspection of (B-7).:
Thus,

2naL?
(o + a°LK° + L2k§)3/2

Wy (k) = (B-10)

X

Isotropic background distributions with Wiener spectras for
which the functional forms differ from that in (B-7) apparently
occur more frequently than not. A natural generalization of
the Wiener spectrum given by (B-7) that produces an infinite
class of possible correlation functions can be obtained by re-
placing the exponent % in the denominator on the right side
with any positive number v. The corresponding correlation
function would then be given by




- -] . -] t
5 exp [-1k” (r-r')]
K(r,r'; v) = L dk_ dk
~ o~ X Y
- 00 - 00

(1+k2L2)v

(B-11)

J (kx|r-r'|)
= L2 jf oSS — kak .
(1+4k°L°)

The integral in (B-11l) can be evaluated with the aid of
a formula on p. 488 of Ref. B-3. The result is

L (e -z

v=1
K(E.’E';‘)) = Y\~ Kv-l ('—E'—> (B-12)

where the function on the right having the form K_(x) is a
modified Bessel function. The modified Bessel fu;ction Kn(x)
can be expressed in terms of elementary functions when the order
n is an odd multiple of_% (cf. Ref. B=3, p. 4ul); e.g.,

s -X
K (0 = K@) = g e™F
2 2

K (x) = K%(x) - Y& eFa+d
:
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APPENDIX C

CANONICAL VARIABLES FOR SPATIAL CHANNELS

The mathenatical model for spatial channels that was intro-
duced in Chapter II assumes a target covariance matrix MT

~~

given by
.gT =K. - Ag R (c-1)
where gc has the elements M1J and Ag has the elements Ai:
given by
by, =M, 6, +M, 6, =M & & =026 (c-2)

15 = Myo 840 * My 040 m Moo 846 %50 = 91 S4g G40 -

In (C-2) and throughout this Appendix the subscripts are urder-
stocd to be two component vectors, and guantities Gik are
Kronecker deltas which are equal to one if the subsecript vec-
tors 1 and k are identical 1n toth of their compcnents but zre
otherwlse zero. A zero subscript represents the zerc vecter,
both ¢f whose ccmpcnents are zerc. Any sum that is Iirdicated
over a suktscript will mean that a doutle sum is tc be taken
independently over both components of the subscript vector.

~

In the case of an n by n plxel wincdow there will te n®
channels, one for every plxel. Each of the subtscrirt vector
components indeperdently tzkes cn n values, so that the vector,
itself, takes on n2 values, one for every channel.

As observed in Chapter III, for optimum CFAR discrimlnaticn
in general It 1s sometimes useful to transform the variables

Cc-2
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assocliated with the natural channels to new variables in terms
of which the target and cli *ter covariance matrices are both
dlagonal. This can be done by solving the eigenvalue problem#

M, - A\ M) X =0 . (C-3)

The purpose of this Appendix 1s to derive algorithms for calcu-
lating the n2 elgenvalues Am and eigenvectors Xm for the spatial
channel model defined by (C-1) and (C-2) in the case of an n by
n pixel window.

First of all, it 1s evident from (C-1) ard (C-3) that any
set of linearly 1independent vectors Zm that satisfy

- -l
Ag xm 0 (C=U)

wlll be a set of distinct elgenvectors asscciated with the
common eigenvalue

A =1
m
In fact, by using (C-2) explicitly in (C-L) ore finds that any

vector wlith components Yk that satisfy the equations

(C--5)
will be such an elgenvector. For an n by n pixel window the

sun in (C-5) contains at most nz-l non-zero terms since the ternm
corresponding to k = o vaniches.

*cr. Ref. (C-1), pp. 37-41.




If it is assumed that the clutter probabllity distribution
is non-degenerate the covariance matrix MG is non-singular.
Then the n2 column vectors of EC are llnearly inderendent.

From the column vectors 215 1 # o, whose components are
Mki’ if there are not already n -3 values of 1 for which Moi
1s zero, it 1s possible to form n -2 new linearly independent
vectors Xi by defining the components of Xi by

M

~

V., =M, - o5&

g

(o)

where J 1s any fixed subscript vector such that M is not zero.

ﬂ
The vectors V, defined by (C- 6) all have the conponent v o equal

ox

to zero. Together with the vector Y, whose ccmporents are Mko
for k#o and zero in place of Mco’ the vectors Y, form a set of
n2-l linearly inderendent vectors, all hzving zerc for the com-

" ponent labeled with the subscript o.

Applying the Gram-Schmidt orthogonalization process¥®* to
the n -1 vectors Mi leads to a set of n2-2 orthogonal vectcrs
li’ each ¢of whose components provide a2 different solution of
the equations (C-5). These vectors xi are therefore n2-2
linearly indeperdent eigenvectors of (C-3), all corresponding

to the same eigenvalue, one.

The Gram-Schmidt process 1s equivalent “o a recursive al-
gorlthm that 1s computationally efficlient and easy to irmplement.
Given a set of N linearly independent vectors zn and a deflned
inner product (J, ¥) for any pair of vectors U and V, the fol-
lowing recursion relation generates a set of N vectcrs zn that
are mutually orthogonal with respect to the Inner product and
such that Xo is equal to the vector identifiled zs 50 in the
original set:

»
Cf. Ref. (C-2), p. 230.

C-3
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'\ Xo = Eo "%
m-1
| 2o Xn - 0, Xps .0 Xys m=l, ..., N (c-7)
' v=0
]
y/
m
i Y & ——m—— . N-1
§ m m ,mal, s
i m’ “m
To calculate the eigenvectors of (C-3) it i1s only necessary
to ldentify zo with the vector whose components are defined to
be M__, to identify the number N with n°-1, and to define
the inner product as the usual scalar product of two vectors;
' l.e., in terms of column vectors ¢ and X the Inner product will
{ be defined by
N-1
l (C, K) = C°K = cK. |, (C-8)
V=0
' where the superscript t means "transpose",.

The eigenvalue eguation (C-3) has two additional eigenvalues
for km that are not equal to one, gith corresponéding elgenvec-
tors U and V. Together with the n"-2 vectors zm’ m¥c, U and v
complete a set of n2 linearly indererdent eigenvectors that
satisfy (C-3) when the corresponding eigenvalues are used for
Am.

To deal with the problem of finding the two new elgenvalues
and elgenvectors it is convenilent to define a new inner product

by

(¢, K) =C" M. K, c=9)
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which is a bilinear form relative to the covariance matrix Mc
Since MC must be positive definite the inner product defined
by (C- 9) has all of the propertles that are necessary for the
inner product operation. In particular, it follows from the
standard argument® that, relative to the new inner product,

U and V will each be orthogonal to all of the eigenvectors zm
and to each other, 1i.e.,

a s ¥ = G Y) = (U, %) = 0, mé0 . (c-10)

The orthogonality of two different eigenvectors in the
sense of (C-10) in terms of the inner product defined by (C-9) -
depends upon the corresponding eigenvalues belng different.
Therefore, it does not necessarily hold among the first n2-2

elgenvectors zm’

{ The orthogonality property (C-10) can be used to find [
: and ¥ and the corresponding eligenvalues. First, 1t 1s necessary
‘l to define two vectors 2 and 3 which are orthogonal to the Xm
and to each other. Then z, 3 and the zm form a set of n2 linearly

independent vectors which span the n2 dimensional vector space.

It will be found that sultable candidates for P and Q are

o~

the vectors whose components are given by

(C-11)

Q =My =S 855 - 2 (Mko M1 Ylv) Yiv
vkl

where

-
Cf. Ref. (C-1), pp. 37-41.
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and the Y 24, are the components of the vectors zv‘ To verify
'\ that g and 9 whose components are defined by (C-11) satisfy the
orthogonality conditions (C-10) when substituted for g.and x it
is only necessary to substitute from (C-11l) into (C-10) ané
make use of (C-5) and the symmetry of the covariance matrix gc.

-
e e L

It follows from the orthogonality property (C-10) of the {
eigenvectors that [ and V must belong to the subspace spanned
i by 2 and Q. That 1s, if 2 is not already an eigenvector, as 1is
; usually the case, then elther eigenvector can be written in
the form

U=alP (C=12)

+
WO

where a 1s a scalar constant to be determined.

Because of (C-1) the eigenvalue equation (C-3) can be

———

written
‘ (1-3) ML + AAMY = 0 . (C-13)
* If U given by (C-12) is substituted for Y in (C- 13) and the
' resulting equation is multiplied on the left by P or by Q

the first or the second of the two scalar equat*ons

(1-1) (aII;, + II,,) + ‘(°r1; +T,,)=0,
(C~-14)

(1-2) (eI, + II,,) + A(aly, + P22) = 0

results, where

II,; = B" McRy 1@y, = B° Mo, TIp5 = Q7 MoQ




By eliminating o from (C-14), using

2

(C-16)

u’
MII o Tyq = 11y Typ)

.’ obtained from the second equatlon to substitute into the first,
2 quadratlc equation in 2,

TR e A ———— v -
.

arl+br+c=0 , (C-17)

) results. After some tedious but straightforward algebra it will
be found that the coefficients of (C-17) are given by

-T2 4+ L. T ré

12t T3 Tp = Tho r

a=1II., (II,, II +21II - II

1 22 12 T1p = oy Tpp = Tyy I00)

. 2
b =1L, (IIll Ty + Ty I, - 2 I1,, r12 +21I0,-21I, 1122) s (C-18)

———

2

In the definition of a, b, ¢ by (C-18) the common factor 1,4
can be omitted since it has no effect on the solution of (C-17).

i‘: With the aid of (C-2) and (C-11l) the IIiJ and T1J can be
calculated cuplicitly from (C-15). The results are

.
P = - 2
. I = Moo 11,5 = 0, 115, ':E: Mio Mgy My = 5" Moy s
T 13
§ , , , , (C-19)
Pip ® Moo = 9ps Typ = Op (8=Mj ), Foy = = (M +op) (S-M )7,

where S s given by the last equation in (C-11).

; c-17
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It 13 of some interest to obtain, explicitly, the discrim-
inant 4 of the quadratic equation (C-17) after removal of the

common factor II,,. The result, calculated from (C-18), 1is

Y

2
d = bdac = (11, T, + Ty 1122) + 4 11 I, <12 - Ty Tp) (c-20)

From the definitions (C~-15) and the fact that gc is a posi-
tive definite matrix it follows that II11 and II22 are both
positive. Thus, if r12 on the right side of (C-20) 1s replaced
by zero the effect will be to decrease the right side of the
equation. That is,

R

2 _ = r T 2
d 2 (IIy) Tpp + Ty T150° = 4 I0) ITy) Fpg Fpp = (I1gy Fppmlyy Typ)

20, (c-21)
In other words, according to (C-21) the discriminant is always
non-negative. Therefore, the quadratic equation (C-17) for the
eigenvalues X has only real roots, which is certainly a require-
ment. In fact, a fartiori, since gc and gT are both positive
definite the equation (C-3) can only be satisfied for positive

real values of A.

A reference to the form of (C-20) and of (C-21) indicates
that the discriminant vanishes; 1.e., the roots of (C-17) will
be equal, only if r12 1s zero and II11 P22 = rll 1122, or if
1I,, and F22 are both zero. A reference to (C-19) confirms
that the first pair of conditions either imply the second pair,
which are satisfied only when

S =M (C-22)

and
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or else they imply that
S =M (C-23)

and

Thus, the eigenvalues will be equal if and only if (C-22) or
(C-23) 1s satisfied.

If the eigenvalues are equal the corresponding independent
eigenvectors are P and Q defined by (C-11). If the eigenvalues
are not equal their corresponding eigenvectors are given by
(C-12) with the respective values of a given by (C-16).

The n2—2 linearly independent vectors zi'that were obtailned
from the Xi defined by (C-6) are eigenvectors satisfying the
equation (C-3), all corresponding to the eigenvalue xm = 1.

They are also mutually orthogonal wlth respect to the usual _
inner product defined by (C-8). '

The set of all eigenvector solutions of (C-3) consists of
the zi and the two additional vectors U and V that are linear
combinations of P and Q, whose components are defined by (C-11).
However, in order to use these elgenvectors to construct a prin-
cipal axls transformation that simultaneously diagonalilzes gc
and gT’ which was the origlinal purpose of the analysis in this
appendix, a further step is necessary. The eigenvectors must
be mutually orthogpnal with respect to the linner product de-

fined by (C-9).

Thls condition 1s satisfled by 2: X and any one of the 3
because they ‘correspond to different eigenvalues, but 1t is
not necessarily éatisfied by the zi' However, n2-2 linear
combinations of the zi can be found that are mutually ortho-
gonal with respect to the inner product defined by (C-9).

i’

C-9




The Gram-Schmidt orthogonalization process, e.g., in the form
of the algorithm given by the recursion relations (C-7), will
accomplish this obJjective when it 1s applied to the Zi’ using
(C=9) instead of (C-8).

! The vectors g, x and the resulting linear combinations of
the Zi

) are then the column vectors of a matrix T which provides
1 } the desired princilpal axls transformation. That is,

t t
go g g Frd

=

will both be diagonal matrices, as required.
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APPENDIX O

RATIOS OF MULTI-VARIATE GAUSSIAN DISTRIBUTED VARIABLES

1. Probabjlity Density Functions

Reference D=1 contains a derivation of the Joint probabllity
density of the ratios

J J
= 1 -
X :r;’xz 3‘3

when Jl’ JE’ J3 have a tri-varlate Gausslan distribution. In
this arpendix the derivaticn will be gereralized to cover the
case of varilables Jl""’JN with an N-variate Gausslan distri-
buticn.

That 1s, it will be assumed that there is a joint proba-
bility density function glven by

-1 g-DHE -0
P(J) = e ’ (D-l)
~ (2m)™ S K|

o

where J is an N-dimensional vector, z is the N-dimensional mean
vector, g 1s the N bty N covariance matrix relative to the proba-
bility distribution for J and |M| 1s the determinent of M. The
problem is to determine the Joigt probability density function
PR(E) for the ratiocs

L1 )
-~
-

[

]

-

-

=

|

-

Xi =

which are components of an (N-l)-dimensional vector X.




| .
3
j The argument used 1in Ref. B-1 for the case of three vari-
| ables can be extended to cover the general case of N variables. G
i The first step 1s to define the change of varlables
! Jy = UXy, i=1,...,N-1
j (D=2) 4
| U ;
|
| The Jacobean for the transformation (D-2) is then given by #
U,O,O,...,O,Xl
O,U,O,...,O,X2
i a(Jl,...,JN) . . . o " o . .
= . . . ) . . = UN_l . (D-B)
y: a—(xl,...,xN_l;U)
0,0,. ... 0,1
, The (N-1l)-variate probability density function for the
' ratios X, is given by
r ® 3 (T senesdy) :
Pr(X) = P s oo | (D-4)

Substitutions from (D-1), (D-2), and (D-=-3) into (D-4) then
lead to the result




| where

N
| Q(x,,3,,0) = :E: Ayy (UY-7) Wy,-T
i i:J=1

in vhich the coefficients Aid are the elements of the inverse

covarlance matrix E—l and, by definition,

L d

Y

i Xi (Y i.l’u..’N-l,

(D=6)

YN = 1.

Then a straightforward calculation provides the result

- -}
i l -1 - L avl+ny
P_(X) = e ° e ° lu¥-1 qu (D-7)
, -
R'~ (2“)W2/TET
- G0
where
A=ty B3 gty 0=ty

in which Y 1s the N-dimenslonal vector whose components are
given by (D=6).

When N 1s an odd number (D=7) can te written

-3¢ - £ av®enu
PRX) = —57» e N1 au . (D-8)
(2m™/ € /TN
D-3

B T, LA

N dath




However, when N is even

1 ® °
-3¢ - % AUC+BY - % AU2+BU
P_(X) e e N1 gy - e oN-1qy] €
R~ (2")N/2 /-[m
~ o - 0
[ ] ® J
1
-3¢ - %- AU2+BU - %- AU2-BU
= — e W lav + F e vt g
am
(2m) V2 THT i
(o] Q
(D=9)
B2-AC = ) =
- . A( ) 5) A(U,,B)2
2 A -2\’
. _e N1 N-1
N/2 e du + e 9] du
(2m) /TH]
= Lo A G
BZ-AC ® ®
2R 1.2 1.2 :
. -ZWW+BN-1dw -3V 5 \N-1
e — + e W dw
(2na)N2 /THT i /T) i /T)
7 /E ﬁ
D=l {

e e e A ) e
" M..——— ‘ .

— - i v e - - —
i st o
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Similar steps taken with (D-8), for the case in which N 1is odd,
lead to the result

2

B -AC © 4 5
2R - 3w p\N-1
PR(X) = ——7= e We = aw . (D-10)
(2ma)™ € /TH] /R

Witk the aid of the binomial expansion theorem (D-10) can be
written

B2_AC =
2R - N2 (N-l) N-1l-r %(r+1-N) r
Pp(X) = (2n:)N/2 e e :E: r /B A W aw
~ r=aQ
- 0
(D-11)
B2_AC
. A N-1 (N-l) N-l-r Z(r+l-N)
= N=T r B A Hp

n * gyl =

where U, 1s the rth moment ¢f the standard normal probability
distribution, i.e., a Gaussian distribution with zero mean and
a standard deviaticn of one. According to Ref. D=2 (p. 208) the
moments of the standard normal distribution are gilven by

uy 1,

v, for r odd
u =
r 13...(r=-1) for r even.

D-5
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A comparison of the first integral with (D-10) shows, after
a little manipulation, that for N even PR(E) is given by (D-11)
plus a rerainder term E(E) given by

B2-AC ® 1,
A - iy
E(X) = —=2C R —B-) o (D=12)
=~ V2 /i |
B
A

By applying the binomial expansion to the integrand of (D-12)
it is possible to express E(z) as a finite linear combiration

of incomplete gamma functions,

The simplest examples of even and odd N (except for the
trivial case of N=1) are N-2 and N-3. For N=3, which was con-
sidered in Ref. D-1, (D-11) provides the earlier result

B2_AC
T
o\ -
Po(X) = == (1+% )A % ) (D-13)
~ 2n /M|

~
~

For N=2, (D-11) and (D-12) provide the result

!;\;'
N SY

+ E(X) , (D-14)

D-6
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where

2 (-}
BT=AC )
2R _ B oWl
E(X) = == e X _ B e 2 4w/ .
TA /|E| YA
- B
VA

For cases of practical interest C >> 1 because the means
51 will be many standard deviaticns away from zero. Thils can
be seen, for example, in the data of Ref., D-3, for which mean
equivalent temperatures in the thermal bands are all of the
order of 300 deg K while the standard deviations are at most
2 or 3 deg K. A similar observation can be made for the solar
bands, although the means at those wavelengths (1 u - 3 u)

differ from zero by amounts of the order of 10 standard devia-
tions rather than 100.

If C is, 1n fact, large and the quantity f% is not, the

exponential factor in (D-11) and (D-12) will guarantee that

PR(E) willl be negligible 1in general. On the other hand, when
B 1s comparable to C in magnitude, i.e., when B >> 1, 1t 1s

/R /A
evident from (D-12) that E(X) will be regligible. Then (D-11),

which is exact when N 1s odd, wlll also provide a good approxi-
maticn to PR(z) when N 1is even.

2. Calculation of False Alarm Probabilities for Two-Color
~ Systems

As observed In Chapter IV, for a two-color system the
mathematical model proposed in this paper implies that in data
space the decision regions determined by an optimum two-dimen-
sional or ratio discrimination rule will always be bounded by
straight lines. 1In fact, for a two-dimenslional rule the regions

D=7




will be half planes, whereas for a ratio rule they will consist
| of one or more triangles or angular sectors.®

According to (3) in Chapter II, the probability of false
alarm 1s given by

— 1 7. 3 3t y=1 =
FrR = on VTNLT f f exp [' 37 @) K& <£-£c)]dxdy, (D-15)

where R 1s the region 1in which & point corresponds to a target
detection as defined by the discrimination rule. To evaluate
the integral in (D-15) it is convenient, first, to translate

the coordinate system so that the cluytter mean zc 1s at the ﬁ
origin of the new system. This i1s done by setting

£ = :\I--:Io » (D-16)

whereupon (D-15) takes the form

L 1 ]
PFA = ~—=— exp [- = Q(r)] dxdy , (D-17)
an /IE%I ‘{ ‘[ 2 °~

! where

An angular sector may be regarded as a triangle with one side
at iInfinity. For numerical purposes that side may have any
convenient orientation, and 1its intersections with the other
two sides of the triangle can be specified arbitrarily as
long as the cartesian coordinates of the intersections and

{ coordinate differences are large, e.g., of the order of 1000 o.




) and R' has been written in place of R as a reminder that the
analytic description of the region R will be different in the
new coordinate system. The next step is to change to polar
coordinates; then (D-17) becomes

i 2
A 1 r
. PFA & ———m— exp [- Q(e)] rdrde (D-18)
2n /TH] / .[ z ’
4 R' .
where
Q(6) = Ay, cos2e + 2 Ay, 81n0 cose + A, sine. . (D-19)

In (D-19) the coefficients Ayy are elements of the inverse
} \ covariance matrix gal given, in terms of the standard devia-
| tions 945 Oy and the correlation coefficient p for clutter

statistics, by

| 1 1
A, = ey Ayy ® ———, A, = - . (D=-20)
' 11 (1-p%) of " 22 (1-0%) o2 12 (1-95‘)! 0,9,

For a triangular region R' (D-18) 1is a sum of three terms,
one for each side, of the form

) 0,41 ri(e) L 2
. P, = —_— f f exp [- 5 r Q(e)] rdrdé , (D=21)
an /Igcl
~ o, o .

where ei and ei+1 are the angular coordinates of the end-points
of the side 1 and the equation of the line of which the side is
' a segment is given in polar coordinates by

b

. ; 1 N
A m, cos§ ° (D-22)




In (D=-22) b1 is the y-~ intercept and m, 1s the slope of the line.
It does not matter whether the origin of the coordinate system
is inside or outside of the triangle as long as the integration
over the intervals from 91 to 61+1 proceeds around the triangle
in a counter-clockwise direction.

In (D-21) the integral over r can be evaluated explicitly.
The result is a single integral; in fact,

0
1+1
L 1-exp [- § r2(®) a(0)]
P, = ——tr T D) ae , (D-23)
an /lﬂcl
%

where ri(e) is given by (D-22) and Q(€) by (D-19).

For the 2D rule the regions R and R' are half-planes, An
analysis similar to that used in deriving (D-23) leads, in this
case, to the result

tan"lpew L >
exp |- ¥ r-(6) Q(e)
PFA = =t ——[—-em-ﬂ-——l a8 , (D-24)
Zwuflﬁe[
-1

tan "m

where

' b
r(8) = sTae — m coss (D-25)

In (D-25) b 1s the y- intercept and m is the slope of the line
that separates the target. from the background data points
according to the 2D rule. The intercept b in (D-2%5) is defined
in terms of the coordinate system centered at the mean EC‘

D-10 -




The formula (D-24), for the case of a 2D rule, is in terms
of a single integral that can be evaluated numerically without
difficulty. For the case of a ratio rule the false alarm
probabllity is given by

PFA = P, + P, + P

wherein each term P1 is given by a formula of the type depicted

in (D-23). A straightforward numerical integration will also
lead to the value of each term in (D-26).
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