2128 251 THE DEVELOPMENT OF A" PROGRAMMING SUPPORT SYSTEM FOR 1/l
RAPID PROTOTYPING{U) SOFTWARE OPTIONS INC CAMBRIDGE MA
20 APR 83 S0-01-83 N0QG14-82-C-0173

INCLASSTFIED F/G 9/2

B

T et s p—————

flLe

=

22 s e

FFEFEEEE

EEEE
EEE

er
r
[

@®

s
16

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

ADA128251

DTIC FILE COPY

The Development of a Programming Support System
for Rapid Prototyplag

Final Report for Task 1
8$0-01-83

Prepared for

M. Joel Trimble
Office of Naval Research
Department of the Navy

800 No. Quiacy Street
Arlington, Virginia 22217

Vo000 /¥~ §R-C~ 0/73

DTIC

ELECTE
By N MAY 1 3 1983

Software Options, Inc. B
22 Hilliard Street
Cambridge, Mass. (2138
Tel. (617) 497-5054 -

i DISTRIBUTION STATEMENT A

Approved for public release)

20 April 1983 \ Distribution Unlimited

83 04 25 08%

{

Table of Contents

Summary 1
1. Enhancement of existing tool 3
1.1 The print tool 3

1.2 The package tool 3

1.3 The analysis tool 4

1.4 The analyze utility 5

2. Recommended modifications to the PDS 7
2.1 Specifying relationships among modules 7
2.2 User interface 8

3. A lifecycle support system 9
3.1 Elements of LISUS 10
3.1.1 Modules and sets of modules 10

3.1.2 Agents and organizations 10

3.1.3 Messages 10

3.1.4 Tools 11

32 Activities and protocols - 11
3.3 Rules 12

4, Conclusions 15

Accesston For
TNTIS CRAKI Z
DTIC TAB
Unsnnounced

Justirieni 1W

BY o
Dlﬂ.r;butlon/]

F Availability Codes
[~ lavall and/or
Dist Spacial

l
|

_ Summary

" With a sufficieatly large software project, the time between the development of the
requiremmuforthesoﬁwuemdtheavaﬂabﬂityofmopunﬁonﬂwoductkofm
measured in years. The longer this time, the less likely it is that the product will match
the desires and expectations then prevalent among the user community. The idea of
npidprﬂotypingismshormtheﬁme‘beweenthedwdopmtofmqnirementmd
the availability of a prototype operational system. (frvorze Do o T

-

!

i

|

i

!

i

i This report describes the results of work on Task 1, a part of the first year of work |
on a five-year project to develop a programming support environment and a collection

' of tools that support rapid prototyping. The’wrem@r@ggntisbuedonthel’!)sﬁ
a system developed at Harvard University [Cheatham 79], [PDS 82) and will include the

| tools provided by the PDS§ plus a mumber of new ones specifically supporting rapid
prototyping. -

' S OISR

Thegoalsof’l'asklwere(l)toimprovetwotoolsintthDs~y€neededto

' impmetheeﬁcimcyofmandgenerﬂhetheotbcr;&)mdmrminewhatneedsw
be done to the PDS to turn it into a production system, and (3) to assess how to

' conventhePDs&omasingle-wsymwamny-umsystem.rWesummaﬁum
resuits in these areas in the following paragraphs. The subsequeut sections of this

' document contain more detail.

|

i

|

|

|

|

We improved three tools of the PDS. In one case, we first implemented a prototype
to test the design of the tool and then, when satisfied with the prototype, we
implemented a production version that is embedded in the PDS. In another case, we
needed to modify a utility shared by several tools. We began with a single
implementation of the utility and realized we needed diverse implementations for the
several tools. We modified the abstract model for the utility and developed the several
impbmentaﬁombyreﬁnmtofthemodekprodudng:mfamﬁy.Wedhm
these various enhancements to the PDS in section 1.

Wediacuinucﬁonzmemodiﬁaﬁomtothermwemommdbem
andinncﬁm3wedincuutheiuuuthat:mulﬁple-wdevebpmtmm

?

to move forward on the iatter project, we have submitted a proposal for support to
continue the study and to implement a prototype of one component.

.,.,--_~ o
-

i) Gy ag ooy MR N D DI G O s oww S SAn I NP &BE W

e

P P TR I

1. Enhancement of e:ustmg tools

Tsklaﬂsforarevwwoftheihrvard?mganevdopmentSym(herafm
called the PDS) and the tools it provides. In light of the results of this review and
within the time constraints of the contract, we were -to design and implement
modifications to the tools found lacking and to determine whether any modifications to
the basic PDS were deemed advisable. The tools on which we worked, the problems
identified, and solutions implemented for euch are discussed below.

1.1 The print tool)

The print tool takes a collection of modules and prepares a file that includes a table
of contents and formatted ("pretty-printed™) program text for the attributes of the
entities in the modules. The problem was that the comment atm‘butuwer'eprintedu
strings in the format the user input them. Consequently, users usually kept the
comments short and kept the longer descriptive material in a separate text file. We felt
that the user would be more likely to keep the documentation up to date if it were part
of the code module. For this to be an attractive aiternative, we would have to have a
text procesor format the comments. A solution, the one being implemeated, is to
provide an option in the print tool to produce a stream of text for a text formatter,
with the program text "protected.” The PDS support group at Harvard is modifying the
print tool in this way, so that it will haod the comments to the text formatter, Scr ibe.

L2 The package tool
The package tool takes a collection of concrete modules and prepares the entities

contained therein for loading (for interpretive execution) or compilation. Its major task
is to order the entities so that each is defined (bound) before it is used. It also
identifies sets of mutually recursive mode definitions and groups them together in such a
way that they get defined correctly. The original package tool was built in a relatively
ad hoc fashion with the result that it was difficult to understand and modify. We
therefore proposed that it be rewritten. The result is a new package tool that is
described ss an abstract model and then transformationally refined into an appropriate
concrete implementation. In fact, two separate refinements were done: one was for a

test bed environment that is independent of the PDS and the second is the production
tool integrated into the PDS. Appendix A contains a description of the package tool
and listings of the set of modules that describe the abstract model and the refinements
that produce the two concrete implementations. The documentation of the package tool
(in contrast with the others) is a collection of program listings attached to a document
that describes the tool and references various entities in the program listing; the latter

was prepared using Scr ibe.

1.3 The analysis tool
The analysis tool (named FUI, shortened from "Find Undefined Identifiers") provided
by the PDS scans the entities in a module and produces
1. a list of the ideatifiers occuring within an entity that are "undefined” in the
sense that they are not system names, not names of entities declared to be
global, and not local variables, and _

2. a list of the global user procedures called by the entity. This list is optional.

Two problems were identified with FUI. The first was that it could (usefully)
analyze only concrete modules. To better support rapid prototyping, we proposed
extending FUI to accept partial specifications of abstractions and to analyze the abstract
modules. Then, for example, one could certify that an abstract module includes
definitions (at least in English) of the constructs it uses without having to refine the
abstract model into a concrete program. For FUI to be able to analyze an abstract
program construct, we must provide some means for the user to “explain" the behavior
of the comstruct in terms that FUI can understand. For example, for an abstract
iterator

ForEachQueueE |ement @ In Q Do body End
we would like to state that its behavior, from the point of view of finding undefined
identifiers, is similar to the concrete construct

FOR e FROM Q REPEAT body END

We call such an explsnation an analogy. An analogy is a new entity attribute in the
PDS; it has a form very much like a rewrite. For the above case we would provide the

[U eI — - ,__a

analogy
ForEachQueueE ement $8 e In $8 Q Do ?? body End

<>
FOR $8 e FROM $8 Q REPEAT ?? body END

] The left (pattern) part of the analogy (preceeding "<~>") tells us how to identify
instances of the abstract construct; the right (replacement) part tells us how to interpret
the match variables from rhe point of view of finding undefined identifiers. For the
above example, we would infer that the expression matching $$ Q must be defined at
the time we encounter the construct and that the expression matching $$ e must be an
identifier and that it is a local variable in the context of analyzing the list of statements
matching ?? body.

’)

The second problem identified with FUI was that it did not provide any context to
help the user find the unknown identifier. We solved this problem by returning, in
addition to the unknown identifier, a template that, by indicating blocks and loops
eantered and giving statement counts of the statements preceding that containing the
unknown ideatifier, provides sufficient comtext to locate the comstruct comtaining the ‘1
identifier. Because of insufficient time, this part of the model is not as readable, not as
good an abstract model, as the other parts of the FUI implementation.

Appendix C contains the abstract model of FUI. In this instance the commentary
and program entities are in a single module.

1.4 The analyze utility
There are 2 number of tools that analyze a program comstruct to locate, and assess
the meaning of, identifiers occuring in that construct.
1. The package tool looks for the interdependencies among a collection of
program entities.
2. The synosym tool systematically replaces all occurrences of some identifier
(that refers to a globally defined entity) by a new name.

3. FUI finds and records occurrences of undefined ideatifiers.

W

T

.

.
\
RN T

AEIETIYE %)

--u--mu—.n/—o—»--—-’

Prior to extending FUI to use analogies to explain abstract constructs, a single PDS
utility, called Anaiyze, did all these tasks. Analyze recursively evaluated a program
eatity, maintaining as a "current context” the set of ideatifiers that name local variables.
When it encountered a variable name not local and not a global system name, it called
upon a procedure supplied by its client — that is, FUI, the package tool, or the synonym
tool — that kept whatever records the client needed. With the changes to FUI, however,
the old Anaiyze was no longer able to do the job. It would have had to be extended
to deal with analogies and to maintain sufficient contextual information to build a
template. Except for this additional functionality, the bulk of the recursive evaluator of
the Analyze would remain uachanged. In order to produce the two similar but distinct
instances of Analyze for the two different kinds of client tools, we proceeded as
follows. First we developed an abstract model of the recursive evaluator, deferring the
issues of what records should be kept and how to keep them. We then developed two
refinements of the abstract model, one_producing an analyzer for FUI and the other
producing an analyzer for the other two client tools. Appendix B describes this two
member -family.

2. Recommended modifications to the PDS

The overall organization of the PDS and the tool set presently available provide good
support for the transformational refinement paradigm for developing and maintaining
programs and program families. There are, however, a number of areas where
modifications to the PDS would significantly enhance it, particularly for use in projects
that involve a number of people working together.

In the paragraphs below we comment on three broad areas in which modifications are
recommended.

2.1 Specifying relationships among modules
In the present PDS, the relationships among modules are specified by

1. the wses attribute, which indicates that one module uses the entities exported
by another, and -

2. the Aistory attribute, constructed for a module produced by the merge tool
or the transform tool

Neither of these provides enough information. For example, the user might want to
inform an analyzer that two modules are later to be combined.

We recommend that these mechanisms be replaced by a single specification attribute.
Specifications would include

1. the name (partition, and so on) of the module,

2. the tool to be used to produce the module, and

3. the sets of other modules to which this module is related.

The sets, in the last instance, would depend upon the tool used to derive the module.
For example, if the edit tool is used, the set of associated modules of interest is that of
the modules that supply imported syntax. If the analysis tool is used, there would be
several sets: the set of modules to be co-analyzed, the set supplying imported syntax, and
the set containing entities assumed to be bound globally.

) 3 i vV R Ay . 3 p , S {_(“'s..g > -vl - . g :
Ol oad oty ui (o S D TN AR NN AN ew Aaw o oup OGN G N BB

2.2 User interface

The user interface to the PDS is a simple command language designed when the only
terminals available were the relatively slow line-at-a-time devices. With the availability
of high resolution graphics terminais capable of supporting multiple windows and
multiple fonts and providing various kinds of pointing devices, a much more imaginative
user interface is in order.

Sae

TR S —— T ,__’_“1

3. A lifecycle support system

The development and subsequent maintenance and/or enhancement of large
application programs and program families often involves a number of agents — analysts,
programmers, test engineers, managers, documentation specialists, and end users. The
activities of the agents require various kinds of coordination. For example, suppose that
an agent has the task of modifying a program module. Before incorporating the results
of his modifications into a new release, we would like to ensure that certain tests have
been performed satisfactorily, that the changes are logged appropriately, that any
relevant documentation is updated, and, finally, that the agent obtains the approval of
an appropriate manager before releasing the resuit.

The PDS supports a subset of these lifecycle activities, those of the programmers and
analysts developing and modifying software. The only coordination the PDS provides is
through its version comtrol and derivation history mechanisms. That is, one can
determine the elements of the PDS software database that are up to date and those that
are not because each module bears 2 version number; additionally, because each module
contains a derivation history that indicates what tool was employed to derive it and
what other (parent) modules were involved in its derivation, it is possible to update
automatically a collection of modules following changes to one or more of them. The
PDS provides relatively little support for the coordination suggested above; it is left to
the agents communicating informally and to managers overseeing the process to ensure
that a release protocol such as that sketched above is followed.

The basic framework of the PDS (the software database, the explicit representation
of the relationships amongst its elements, and the integrated toolset for exploring and
augmenting the software database) can be extended to provide facilities and services for
a wider range of the software lifecycle activities. In addition an extended PDS could
provide the mechanisms for coordinating the activities involved in carrying out tasks
such as the one sketched above. In the following paragraphs we sketch the overall
organization of such a system; to name this sytem, we tentatively put forward the
acronym: LISUS - to suggest a Llfecycle SUpport System. (We have used the name
MUPDS in previous documents, standing for Multiple User PDS.)

¥ e
b SO I _ s

10

3.1 Elements of LISUS
The PDS handles modules, sets of modules, and tools. LISUS will interact with these
classes of objects, as described below, plus some new ones.

3.1.1 Modules and sets of modules

As with the PDS, LISUS will deal with a collection of modules ~ the containers for
the information that constitutes the software database. The software database will be
organized into hierarchically related collections of modules. As with the PDS, the
creation, modification, and deletion of files used to represent modules will be entirely
under control of LISUS.

3.1.2 Agents and organizations

By an qgent we mean a person in an organizational hierarchy who has a role in the
current set of activities being carried out-with LISUS. A human being will play the role
of an agent by "logging in" as that agent and issuing commands to LISUS. An l
orgamization is a collection of agents and (sub-) organizations. The set of agents and
organizations at a given point in time provides an organization chart for the projects
guided by LISUS.

3.1.3 Messages

Messages provide the means for communication among ageats and organizations. A
message will typically have a relatively short lifetime — it will be created by an agent
(possibly on behalf of an organization) and dispatched to an agent or organization. It
will eventually be accepted by some agent who may then take certsin actions on the
basis of the message. There will be several types of messages, including those described
below.

1. A comment is a message that offers information with no expectation of a
response.

2. A guery is a message sent to elicit a response. A query would be sent to
determine, for example, the status of a module or a problem (bug) report.

3. A reply refers to a query and provides the answer.

g o g ped) bt SEE D R WD D e e dand GEd GEM WD BB BB

~—

»
)
1

.v: i
N
;
*
]
4
)
A

!
|
z
|
i
|
|
}
{ -
{
|

11

4. A reguest for permission is sent by an agent to another agent or organization
when he wishes to take a step that requires authorization. The agent who
receives the request (perhaps on behalf of the recipient organization)
responds with a message that constitutes a grant or denial of the request.

5. A grant of permission refers to a request for permission and conveys the

permission requested. The agent suppiying a grant must, of course, have the
authority to do so. A grant of permission may include constraints, for
example, to ensure that the requesting agent follows a certain procedure.

6. A denial of permission refers to a request for permission and constitutes a
refusal to grant the permission requested.

Messages in LISUS will have a type (per the above list) and references to other
elements of the system, such as the sending agent, a previous message, one or more
modules, or a protocol. (Protocols are described in section 2.3.2 below). An audit trail
will be kept for each currently active message.

3.1.4 Tools

The tools available in LISUS will include those in PDS. Additionally, there will be
tools for creating, distributing, and tracing messages and for developing and testing
protocols.

3.2 Activities and protocols

At any time there will be a set of activities that LISUS knows about. The goal of
each ongoing activity is for some agent to accomplish some task. Examples of such
tasks range from answering a query to generating a new application program release.

Each ongoing activity will have associated with it the ageat or organization that is
eagaged in carrying out that activity. Also associated with an activity is a set of states;
at any point a given activity is in exactly one state. Associated with each state is a set
of choices of actions that are available to the agent. Certain choices may result in a
transition to a new state, while others would result in the activity remaining in the same
state. For example, a choice to dispatch a request for permission may result in a
transition to a "wait" state awaiting the grant or denial of the request. The arrival of,

At

12

for example, a grant of the request will then result in the transition to a state in which
the agent will have available a number of new choices that are enabled by the grant of

isgion.

A choice may be constrained by a predicate that must be true in order for the choice
to be valid. The truth (or falsity) of a predicate is established in accordance with a set
of rules that describe how to evaluate predicates.

An activity may be divided into a set of subactivities that can be carried out in
parallel. For example, the task of modifying a program module may involve doing the
modification and then submitting the modified module to 2 set of tests. It might also
involve logging the changes made and modifying the documentation to reflect the
changes. It thus might be convenient to consider the program modification/test, the
logging of changes, and the document modification to be three (sub) activities that can
be carried out in parallel. -

The set of states, the choices for each state, the transitions, and the predicates
constraining a transition are collectively terrned & profocol. A protocol may be general
in the sense that it has parameters that may be bound to particular objects (agents,
organizations, modules, messages, or other activities) for each instance of use.

o 2 ghimma o o
. = oy

The current state of an activity and the trace of the comtrol path through the
protocol underlying that activity to the current state provide the basis for answering
questions regarding the status of that activity and its history. Projecting possible future
states may also provide a basis for developing a program for the future of the activity.

33 Rules

There are two kinds of rules proposed for LISUS. One kind, the specific rules are
(ground) predicates that describe the fixed relationships among the various elements of
the system. Examples of specific rules include the following:

Ageat Sam works for organization Able.
Organization Able owns directory S.
Module Foo is in directory §.
Here "works for," "owns," and "is in" are (two place) predicates, and Sam, Able, S, and

------—-.—-'--?

-
b &
. W“ " . - -
o Y S Y
S - T T "‘“'*‘—-—..’--—-—-——!—v—--:—-“’ -
* o, T TS R A

13

N
s
=L S

r,
., N
e oo JUCRNIY v me .- A

.
P
I
|
o
i
3
|
|

b
}
-
{
\

Foo are names of specific elements (an agent, an organization, a directory, and a
module, respectively). It could be advantageous to think of the specific rules as deriving
from a set of relations contained in a relational database. The query and update
facilities could be used to inspect and modify the specific rules.

The second kind of rule, the general rule, is a rule that includes variables and thus
may be true for a set of elements in the system. The following is an example of a
general rule:

Forall(@zagent, g:organization, d:directory, m:module)
Assert a can modify m
If a works for g and

‘g owns d and

misin d

Here g, g, d, and m are variables that range over the set of agents, organizations,
directories, and modules, respectively. Given this general rule plus the specific rules
cited earlier, the predicate

Sam can modify Foo
is demonstrated to be true by binding the variables occurring in the general rule as
follows:

a Sam
& Able
a S

m: Foo

\
o a—b—

A geaeral rule can also provide a strategy for progressing through an activity. An
example is
Forall (zagent, m:module)
Assert q can modify m
If a works for Able and
m is in S and
CanObtainPermission ToModify(a,m,John)
Suppose that, using this rule, we wish to establish that Sam can modify Foo. The
predicates a works for Able and Foo is in § are established as true by appealing to two
of the specific rules cited earlier. Satisfaction of the predicate

s T
F N 3

-~ ——— e,
[AV

(

14

CanObtainPermissionToModify(am,JoAn) would result from the success of a request to
the agent named John for permission for Sam to modify Foo.

Yet another use of a general rule is to coordinate the modification of a module.
Such a rule would include premises that established pre-conditions and a final premise
that established a protocol for the user to follow in doing the modification, effectively
specifying a set of subactivities that the user is constrained to carry out.

To summarize, we propose to control and coordinate activities through

- lock and key mechanisms described by a set of specific rules,

- formal procedures as described by a set of general rules, and

- formal permission messages, to monitor and control activities for which the

control procedures could not be (or have not been) sufficiently formalized to
be represented as a set. of general rules.

The general and specific rules that can be stated (and thus the relationships among
elements that can be established) are powerful (technically, any formula in a mildly
restricted and typed first order predicate caiculus). We note that the basis for the rules
discussed above is the PROLOG language. (PROLOG systems have been popular in
Europe for several years and are gaining in popularity in the US. The Japanese have
taken PROLOG as the basis for their fifth generation computer project.) There are
well understood techniques for implementing PROLOG interpreters (programs that,
given some base set of specific and general rules, determine whether a predicate is true
or false with respect to the base set) and compilers.

~ 7"’5—)‘57‘.&&3’; PR

|

. e

15

4. Conclusions

Thethreegennﬂmofchangethatmpropaequﬁudiﬂmtinthdreffm
on the usefulness of the PDS in large programming projects. The ability to specify
rdnﬁmhipsamongmoduluwouldbemasetmdmimprovedwimetfmvaﬂdbe
an asset, each would enhance a user’s productivity. By contrast, the LISUS proposal
wouldreaﬂtinasymmappropdateforhrgewdeprojecminvolvingmypeoph
working simultaneously. With it, the high payoff of using a system like the PDS in
small and medium scale projects could be realized in large scale projects.

N
])
:
-u-muﬂ---a—a—n—---g:
. -
i

| 9 e s v

\

16

References

{Apt 81] Apt, K., Emden, M.H.. Contributions to the theory of logic programming,
Erasmus University, The Netherlands, 1981.

[Balzer 76] Balzer, R., Goldman, N., Wile, D.. On the transformational implementation
approach to programming. Proc. 2n0d Int. Conf. on Software Engineering, IEEE,
San Francisco, CA, 1976.

[Cheatham 79] Cheatham, T.E., Jr, Holloway, G.H., Townley, JA. A system for
program refinement. Proc. 4th Int. Conf. on Software Engineering, Munich, 1979.

[Cheatham 81) Cheatham, T. E, Jr., Holloway, G. H, Townley, J. A. Program
refinement by transformation. Proc. 5th Int. Conf. on Software Engineering, IERE,
San Diego, 1981.

[ECL 74] ECL Programmer’s Manual, Harvard University, Center for Research in
Computing Technology, 1974. -

{(Kowalski 74] Kowalski, R. Predicate logic as a programming language. IFIP 74
Information Processing, 1974,

[PDS 81] PDS User’s Manual, Harvard University, Center for Research in Computing
Technology, 1981.

p

4

il 4% ST

it Ul R T

!
i
|

)

|

!

5
'

1

b

Appendix A
Implementation of the PDS Package Tool

L Overview

Given a set of “events” the purpose of Package is to order or schedule these events so that
if event F depends upon E having aiready occured then event E will precede eveat F in the
ordering. That is, Package does a topological sort of a set of events with respect to a
“depends upon” relation. There are three sorts of events that we shall consider: Type,
Binding, and Initialization. These correspond to the typing (i.e., the mode definition) the
binding, and the initialization of top-level EL1 program quantities. As an example, consider
the set:

Type(0, M) Binding(O, CONST(M SIZE N))
Type(M, MODE) Binding(M, SEQ(INT))
Type(N, INT) Binding(N, CONST(INT)) Initialization(N<-£(6))

Type(f, PROC(INT; INT)) Binding(f EXPR(xINT; INT)DxLT1=>1x(Q
In general, the Type event for some quantity, x, must precede the Binding =vent for x and
that, in turn, must precede the Initialization event for x. Further if event E depends upon
the quantity x, then the Type, Binding, and Initialization eveats for x must precede E. Thus,
in addition to Type before Binding before Initialization, the above example set is constrained
so that Binding(M) precedes Type(O), Initialization(N) precedes Binding(O), Binding(f)
precedes Initialization(N), and so on. One acceptable ordering of these events is

Type(M). Type(N), Type(f), Binding(M), Type(O), Binding(f), Binding(N),

Initialization(N), Binding(O).
There are, of counse, a number of other orderings that are acceptable. There are two uses
of an ordering of events that is produced by Package. The first is to control the loading of
a collection of (top-level) bindings and associated initializations into an ECL environment.
(For this application the Type events can be effectively ignored.) The second use is by the
compiler. If we are compiling the program entities in some module, C, and that module uses
module M (in the sense that Uses(--M,~) is an attribute of module C) then the compiler
must evaluste the type (mode) of all the entities in M so that references to them by the
entities of C being compiled can be type checked. Thus for the above example, the first five
events are of interest to the compiler for this purpose and the remasining four are not. A
special event, called the “ResdyToCompile” event is inserted into the output sequence to
signal the end of events of interest to the compiler. Package has one further job, namely to
deal with sets of mutually recursive mode bindings by coalescing such sets into a single
“twiddle” event. For example, the classic pair

Y
ﬁ

{
]

2 . ath e i cndnaat ti Lt adtta i

-,',

.
H

- ey

--u—_---é—-t—ts—-.—-—-——-!

Table of Contents
1. Overview

2. The Abstract Model for Package

2.1. Scope(MasterControl)
22. Scope(Scheduling)
2.3. Scope (Scanning)
2.4. Scope(Eveats)
2.5. Scope(EventTemplates)
2.6. Scope(ModulesAndEntities)
2.7. Scopes(SetOfModules, SetOfEvents,
QueueOfEvents, StackOfEventEntries)
2.8. Scopes(AttributeValues, TwiddleEvents)
3. Implementation of Package
3.1. The Source of Event Templates
3.2. Globals
3.3. Events
3.4. Stack of Event Entries
4. A Prototype of Package
4.1. The Source of Event Templates and Globals
4.1.1. Scope(ModulesAndEntities)
4.1.2. Scope(SetOfModules)
42. Globals
4.3. Events
4.3.1. Scope(Events)
4.3.2. Scope(EventTemplates)
4.3.3. Scope(SetOfEvents)
4.3.4. Scope(QueueOfEvents)
4.4. Stack of Event Eatries
5. Package as a PDS Tool
5.1. The Source of Eveat Templates and Globals
5.1.1. Scope(ModulesAndEntities)
5.12. Scope(SetOfModules)
5.2. Globals
5.3. Events
5.3.1. Scope(Events)
3.3.2. Scope(MasterControl)
3.3.3. Scope(Events)
3.3.4. Scope(SetOfEvents)

3.3.5. Scope(QueueOfEvents)
3.4. Stack of Event Entries

SetOfEntityNames,

|

NSNS uvwoNO

ey

.
- =D . i Xz e - AY N gl el 4) /
2t aall .

{

-

,
e

List <- PTR(ListElement)

ListElement <- STRUCT'(E:INT, Next:List)
is to be coalesced into the single twiddle binding:

< List, ListElement > <~

< PTR(<~ ListElement), STRUCT(E:INT, Next:<~ List) >.

The basic method of scheduling some event, E, is to scan the value of the event and insure
that for each quantity, x, referenced in that value, the Type, Binding, and Initialization
events for x are scheduled before E (recursively). We therefore introduce a stack of events
that are curreatly being scheduled. If in scheduling some event, E, we note that it requires
an event, F, that is aiready stacked, we note the mutual dependence. This may lead to a
“twiddle” event or it may signal an unresolvable circularity as for example with the pair:

Binding(N, CONST(INT LIKE K))

Binding(K, CONST(INT LIKE N)).
If events E and F are stacked with E below F then E clearly depends upon F (perhaps not
directly). We record the dependence in the other direction by providing a field in the stack
eatry fo: an event, say event E, in which we record the lowest index in the stack that is for
an event that is prior to E in the stack and upon which E depends. The scanning of the
value of an event is carried out by a general purpose analysis tool. Given some FORM, f, to
be scanned this tool basically does a weak interpretation of f, constructing a local names
environment. For each identifier, x, that is not local to the current point of evaluation and
is not an EL1 system name, it calls a special procedure (supplied by the call on the Analyzer
tool) which, in the Package application, will, in turn, call for the scheduling of the Type,
Binding, snd Initialization events for x. The remainder of this document is organized as
follows. Section 2 describes the abstract model for Package. Section 3 then discusses two
basic strategies for implementing Package. One is concerned with obtaining a prototype in
which we can study the scheduling algorithm; we will not be particularly concerned with
efficiency in this implementation. The second implementation is as a fully integrated PDS
tool. This implementation is concerned with efficieacy. Section 4 then discusses various
detsils of the implementation of the prototype Package and section S is concerned with the
implementation of Package as a PDS tool. A listing of all the modules involved is included

in appendix A.

3

A2

2. The Abstract Model for Package
The abstract model for Package is provided by the module named Package. This module
countains several scopes which we discuss below.

2.1. Scope(MasterCoatrol)

In addition to providing notations for iterators and for adding elements to and testing for
membership in sets, this scope has two eatities: Package, the top-level event scheduling
routine, and SchedulingSuccessful, a BOOL that will be set TRUE initially and subsequently
set to FALSE if any difficuities (e.g. an unaccountable circularity among events) sre
encountered,

Package{1-2]

Note: bracketed pairs of oumbers, a3 “[1-2]", key to
the entity number in the corresponding listing.

Package takes two arguments:
Bases: Set(Module) — the set of modules whose entities provide the set of events to be
scheduled.

PackagesReferenced: Set(Module) — the set of modules whose (exported) eatities are
to be assumed as globals in the environment when the events of Bases are loaded
or are compiled.

Package returns a Queune(Event); if SchedulingSuccessful is TRUE this Queue(Event)
provides one acceptable ordering of .)¢ events in Bases (plus the ReadyToCompile event
marking the end of events of interest to the compiler when it is compiling some other
module that uses this package). The several stages of Package are as follows:
(2) We introduce

Events:Set(Event) — the set of events (initially empty) to be scheduled.

Globals: Set(EntityName) — the set of names (initially empty) of entities assumed to
be in the environmeat.

3R 0 SN BN B o ow aew Sun N N D &N

(b) For each module B in Bases, each entity E in B, and each event template T for E we
determine whether there is aiready an event v for T, and if not, add a aew event to Events
coeresponding to T. Here an event template provides a bridge between the representation of
an event within an entity of 2 module and the represeatation of that eveat particular to
Package. It will be refined in different ways for the two implementations.

(¢) For eack module P in PackagesReferenced and each entity E in P, we add the name of E

JEI, Te——— Y- T
PR . . I
g AR LR . BT e

to the set Globals.
(d) We introduce:
2 - PRI ———— = ¢ - 3 j_:a,.,u«*{i-;;‘, RN

T e e ————— gt — L
e e e S ——et pr— s .~ . .. - - -

- - R 3

.

rr

-y

H

A-3

ScheduledEvents:Quene(Event) — a queue of events (initially empty) to which will be
added the elements of Events as they are scheduled.

StackedEvents:Stack(EventEntity) — a stack in which we will record the collection of
events currenty being scheduled and their interdependence. .
Top:INT — the index in StackedEvents of the current top-most element.

These three quantities will be manipulated by ScheduleEvent{2-2] and SchedulePerStack(2-3]
(to which they are passed SHARED as arguments).

(¢) We now schedule the Type events and the Binding events that correspond to mode
bindings.

(f) The ReadyToCompile event is then added to the queue of scheduled events to mark the
last event of interest to the compiler.

() The remasining (unscheduled) Binding events and the Initialization events are then
scheduled and ScheduleEvents returned as the result of Package.

2.2. Scope(Scheduling)
In addition to introducing some notation for iteration and for adding events to the queue,
the Scheduling scope presents the several routines that have to do with scheduling an event.

ScheduleEvent{2-2]

ScheduleEvent takes as argument E, the Event to be scheduled, and shares the quantities
ScheduledEvents, StackedEvents, and Top introduced in Package. The several stages of
ScheduleEveat are as follows:

(a) If E is a null event or is already scheduled we exit immediately.

(b) Otherwise we determine if E is already stacked and, if so, record that the event that is
currently being scanned (ie., the one that is topmost on the stack) depends upon E by
setting its LowestReference field to the index of the stack entry for E (unless it already
references an event preceeding E). If E is stacked, we then exit.

(c) Otherwise, we insure that the type event precedes the binding event and that it precedes
the initialization event for the quantity associated with E. We also introduce the local
variables CurrentScanEventAttribute and CurrentScanEventName. These variables are used
by UnknownAtomError [3-5] when it announces undefined identifiers.

(d) If E is an event binding an explicit procedure (EXPR) we schedule E immediately since
any modes upon which it depends have already been scheduled (because ity type event

A4

preceeded its binding event) and nothing else is required in order to load or to compile an
EXPR.

(e) We increment the current topmost stack index (i.e. Top); the construct Increment (Top)
is employed to force any storage management activities required to insure a sufficiently large
stack. We then install event E as the new top element in StackedEvents and initialize its
LowestReference field to be Top + 1; if the event is self dependent (as in "L <-
PTR(STRUCT(E:INT, Next:L))") this field will eventually be set to Top and if the eveat
depends upon eveats preceeding it in the stack it will be set to the index within the stack of
the earliest of these. If it depends only on events that are scheduled ahead of it, the
LowestReference field will remain set to Top + 1.

(f) We then call ScanEvent(E) to scan the value of event E and schedule any eveats that E
depends upon ahead of E (or note mutual interdependencies).

(g) If Top is now zero the stack is empty and we are though. Top can be zero because the
events that are stacted may be scheduled in “clumps” of mutually dependent events. (See
discussion of SchedulePerStack{2-3]). -

_——

(h) Otherwise, we will locate the current set of events to be scheduled. We initiglize the
variable First to Top and then proceed down the stack to find the lowest index referenced
by Top or by any entry between Top and its lowest reference, recursively. Following the
loop, First will index the earliest and Top the latest in 2 set of mutuaily interdependent
stack eatries. We then call SchedulePerStack to do the checking and actual scheduling. We
note that one side effect of the call on SchedulePerStack is that Top will be set to First - 1
to reflect the fact that the First through Top elements have been taken care of.!

We observe that ScheduleEvent is called recursively as new dependencies are detected (see
Scope(Scanning) for details) by ScanEvent. The actual scheduling of events (by
SchedulePerStack) is done in “clumps” of mutunally interdependent entries.

SchedulePerStack{3-2)

SchedulePerStack takes four arguments; it shares ScheduledEvents, StackedEvents, and
Top (introduced in Package and passed shared through ScheduleEvent who is the only caller
of SchedulePerStack) and takes First, the index in StackedEvents of the first event (Top
being the last) in a set of mutually interdependent events to be scheduled.

R i
PR R YO

SchedulePerStack splits into two cases: First = Top and First < Top. (First > Top being
impossible) as follows:

IRor tachnical reasons (see SchedulePerStack[2-3]) this is not done by ScheduleEvent directly.

. . . -t
. - 23 . 4 .

-
+
a

I_”‘:—: e —— — o o gp—— e T T T -
-~ 3) .

i

A-S

(a) First = Top: Here we have a single (possibly self dependent) event, E. If E has aiready
been scheduled (for example because it is an EXPR binding) then we have nothing further
to do and so reset Top and terminate SchedulePerStack. If it is a self dependent mode
binding (as for example with L <- PTR(STRUCT(.., Next:L))) we replace E by an
appropriate twiddle event (in the above exsmple by <L> <~ PTR(STRUCT(.. Next:<~
L))). We then add E to the quene ScheduledEvents. Finally, if E is a mode binding event,
we call ScheduleQuotedBehaviorFunctions(E) to schedule the Type, Binding, and
Initiglization of the quoted behavior functions (those naming functions that implement the
various user defined behavior elements) associated with E.

(b) First < Top: Here entries First through Top in StackedEvents are a set of mutually
interdependent events. Included among them may be certain eveats that have already been
scheduled and we simply ignore these. If each non-scheduled event is a mode binding event
we coalesce them into a single twiddle event, E, add it to the queue, and schedule any
behavior functions associated with the modes of E. If there is at most one non-scheduled
event in the set, we simply schedule it, Otherwise we have an unacceptable circularity and
CircularityError is called to deal with this. _

ScheduleQuoted BehaviorFuactions[24]

ScheduleQuotedBehaviorFunctions takes as argument sn event, E, that is a2 mode binding
event (and, possibly, a twiddle type mode binding of a set of individual mode binding events
that have been coalesced into a single twiddle event). We make two passes over the set of
behavior functions. The first insures that the type, binding, and initialization events
associated with each are scheduled. On a second pass we then scan the binding event to
insure that any quantites it requires get scheduled since the behavior functions may, of
course actually be called during the loading or compilation process once the mode with
which they are associated is in the environment.

CircularityError{2-5]

We announce the offending events and set SchedulingSuccessful to FALSE unless

F2ilOnCircularity has been set to false.

2.3. Scope (Scanning)

This scope contains ScanEvent, the procedure that interfaces to the general purpose
analysis tool, the three routines that particularize that tool to the Package application, and
UnknownAtomError, the procedure used to announce that unknown identifiers have been
encountered.

'r

i
EEN U S

G o oy o o o N R S SN BN o o oEn SEy oY G N NS

ScanEvent[3-1]

ScanEvent(E) is called by ScheduleEvent after E has just been stacked; the function of

ScanEvent is to determine those quantities that E depends upon and insure their scheduling
prior to (or concurrent with) the scheduling of E. There are two circumstances in which the
value of event E is to be scanned:
(a) It is a procedure (EXPR) binding of a procedure that may be called during loading; if so
NoteMustScanValueOfEvent(E) will have been previcusly called (either by
ScheduleBehaviorFunctions{2-4] or by PackageProcessUserProcedureApplication{3-3]) and as
a result MustScanValueOfEvent(E) will return TRUE.

(b) It is not a constant nor a procedure; in this case EventRequiresScanning(E) will return
TRUE.
If E is to be scanned we call ProcessAttributeValue with the value of E pius the three

procedures that particularize ProcessAttributeValue to the requirements of Package.

PackageHaveUnknownAtom{3-2]

This procedure will be called by the Analyze tool exactly when it has a FORM that is an
identifier not local tc the form being sCanned and not an ECL system name. If its
argument, atom, is a global name, nothing need be done. Otherwise we must schedule the
Type, Binding, and Initialization events for atom.

PackageProcessUserProcedureApplication{3-3]

This procedure will be called by the Analyze tool exactly when it has a form that
represents p(argl...) where p is an identifier that is neither local nor an ECL system
procedure name. If p is global nothing need be done regarding p. Otherwise we schedule
the Type, Binding, and Initialization events for p and, further, note that the value of p's
binding must be scanned (as p may be called during loading).

Following this, we process the arguments of p via the call ProcessList(F.args) as required
by the Analyze tool.

PackageProcessBehaviorFunctions{3-3]

This procedure is called by the analysis tool exactly when it has a2 form that represents
the first argument to the :: operator; for each "evalnated” behavior function providied, we
can ProcessAttributeValue on its arguments. Note that the processing of the “quoted”
behavior functions is handled by ScheduieQuotedBehaviorFunctions,
UnknownAtomError{3-5]

The purpose of this procedure is to announce the occurrence of identifiers that are
non-local, not ECL system names, not giobal, and do not have associated Binding events.

<
R i, .

A7

The variables CurrentScanEventAttribute and CurrentScanEventName are introduced by
ScheduleEvent exactly so that UnknownAtomError can announce the sort of event and the
name of the entity whose value contains the unaccountable identifier.

2.4, Scope(Events)

Recall that an Event is, essentailly, a triple <Attribute, Name, Value> where Attribute is
(escept for the special "ReadyToCompile” event) either "Type”, "Binding”, or
"Initialization".

This scope includes the procedures and descriptors that provide the behavior expected of
an Event plus three procedures concerned with mapping from an Event or an EntityName to
the corresponding (Type, Binding, or Initialization) event.

2.5. Scope(EventTemplates)

An EventTemplate is an explicit triple <Attribute, Name, Value> that bridges between
the source of events (ie. the various attributes of entities of modules) and an Event as
manipulated by Package. =

2.6. Scope(ModulesAndEntities)
This scope simply introduces the concepts of Module, Entity, and EntityName pius the
mapping from an Entity to its EntityName,

2.7, Scopes(SetOfModules, SetOfEvents, SetOfEntityNames, QueueOfEvents,
StackOfEventEntries)
These scopes provide the required analogies for the Set, Quene, and Stack types
manipulated by Package.

2.8, Scopes(AttributeValues, TwiddleEvents)
These scopes introduce the several mappings concerned with the (EL1) attribute values
and coalescing a set of mutually dependent modes into a single “twiddle™ event.

3. Implementation of Package

As we noted earlier, we propose to do two implementations of Package. The first will be
a relatively simple implementation that basically provides us with the means to supply
Package with a set of events and to inspect the result of its scheduling of these events. In
this first implementation efficiency will be of little concern. The second implementation
will be as an integrated PDS tool that accesses modules to obtain the events and global
names and produces a module containing the result of Package. With this implemeatation
we will be concerned with efficiency both in the sense of the cost of various operations and
in the sense of attempting to minimize dependence on ECL heap memory management.

In this section we want to overview the major implementation decisions that we shall
have to make; sections 4 and 5 provide the details for two particular implementations.

3.1. The Source of Event Templates

The abstract mode! postulates Bases and PackagesReferenced, each a Set(Module), as
supplying the templates for the events to be scheduled and the names of quantities presumed
global. We must choose a specific implementation for Set(Module) and implement the two
iterations (a triple iteration over Bases and a double interatior: over PackagesReferences) at
the beginning of the Package procedure.

3.2. Globals

Globals is postulated to be a Set(EatityName); the required operations are those of adding
an element to Globals (within the body of the double iteration in Package) and of testing
whether some atom resides in Globals (the — atom IslnSet Globals — construct appearing in
the procedures PackageHaveUnknownAtom and PackageProcessUserProcedureApplication).

3.3. Events

Events are, conceptually, triples of the form <Attribute, Name, Value>; a number of
mappings to do with the behavior of events are postulated in the abstract model (summarized
in Scope(Events) of Package). In addition, Package postulates Events, a Set(Event), and
ScheduledEvents, a Queue(Event). There are a number of specialized iterations over Events
and the requirement that we provide a mapping from an entity name (or event) plus an
Attribute (Type, Binding, or Initialization) to the entry for the corresponding Event in
Events.

We must also be able to add events to the queue ScheduledEvents and to determine
whether or not some event is already scheduled (i.e. is already in the queue). Finally, we
must provide some means to display the result of scheduling the events.

A9

3.4. Stack of Event Entries

The stack behavior of StackedEvents, introduced in the abstract model as a
Stack(EventEntry), is implemented directly in the sense that there are no push or pop
operations involved but only indexing of the stack. The single interface to some possible
underlying memory management operations to insure that there is sufficient space in the
stack is Increment(Top) which provides the index of a new top element superseding the old
Top.

The implementation decisions are reflected in a set of modules each named PI (shorthand
for Package Implementation) but with differing partition specifications. All the
implementation modules use a module named Utilities which provides a number of notations
for dealing with list structure (e.g. f.argl, HasOneArgument(f), and so on) plus facilities for
variadic arrays, connections to various PDS components, and so on. In addition, there is a
module, PI(Miscellaneous). It has two scopes as follows:

Scope(AttributeValues)

Here an AttributeValue is defined as a FORM and the several procedures that deal with
an AttributeValue as an EL1 FORM are &xplicated. In addition the iterator that produces
each behavior function (i.e. the FORMs UFN(Name) contained in the first arguments of the
= operator in some value that is 2 mode binding or 2 “twiddle binding) is defined.

Scope(TwiddleEvents)

Here the two procedures, MakeSingleTwiddleEvent and MakeMultipleTwiddleEvent, are
implemented. In addition we have a definition of MakeTwiddleEvent, a procedure called by
these two procedures to force the name change from L to <~ L for each mode being
defined by the twiddle. This name change is done by the same Analyze tool that is used to
scan the values of events, but with the three procedures that specialize the analysis tool to a
particular application being those appropriate to this name change application,

We observe that a new procedure, CompleteTwiddleEvent, is introduced to do whatever is
required to convert the twiddle value produced by MakeTwiddleEvent plus the (first) event
giving rise to the twiddle value to an event. The details of this are, of course, dependent
upon the implementation of events.

A-10

4. A Prototype of Package

As a first implementation of Package we want a system to which we can submit a set of
events and a set of global identifiers and from which we can obtain the ordered set of
events. For this prototype system we specifically want to avoid interfacing to the PDS and
real modules, rather using a set of <Attribute, Name, Value> triples to describe the events to
be scheduled. As outlined in section 3, there are four basic sets of issues concerning which
we must make implementation choices. Our discussion will be organized into four parts,
reflecting these four sets of issues; the corresponding implementation choices are organized
into four separate modules that will later be merged with Package to provide the complete
impiementation.

4.1. The Source of Event Templates and Globals

As the source of event templates and globals, we propose to employ list structure. Thus
the Bases argument to Package will be a list whose elements are triples (that is, three
element lists) encoding an <Attribute, Name, Value> triple. The PackagesReferenced
argument will aiso be a list whose elements name the quantities presumed global.

These decisions are implemented by the module PI(EntitySounrce is Form). It contains
two scopes, as follows:

4.1.1. Scope(ModulesAndEntities)

We define Entity as a FORM, provide the mapping NameOfEntity(E) as E (the only use
of this construct being to extract the name of a global), and an implementation of
CountEantities that counts the number of elements in its list argument.

4.1.2. Scope(SetOfModules)

A Set(Module) is implemented as a FORM. Also, we provide implementations of the two
iterators over a Set(Module) reflecting the decision that Bases be a list of <Attribute, Name,
Value> triples and PackagesReferenced be a list of entity names.

4.2. Globals
A stnaightforward way to implement Globals:Set(EntityName) is to use a list of names.
Module PI(Globals is Form) implements Globals as such.

g b td e e B B BN TR BN e e eaw o oun BN N @D

A-11

4.3. Events

A nmatural way to implement an event would be to employ a triple to encode the
Attribute, Name, and Value. However, looking at the behavior required we observe that we
must, for each event, be able to set and test a Boolean that determines whether the value of
a particular event must be scanned (this being TRUE when the event is a procedure binding
for a procedure that may be called during loading). We therefore choose a quadruple
<Attribute, Name, Value, MustScan> to implement an Event,

A straightforward, but posesibly inefficient, way to implement a Set(Event) and a
Queue(Event) would be to employ 2 list of Events with the obvious functions for adding
new elements and testing for membership.

The above decisions are implemented in module PI(Events is Lists); a discussion of some
of the details of the implementation follows.

4.3.1. Scope(Events)
The implementation of an Event as a quadruple is recorded and then the several mappings
dealing with eveats are provided. A coupl® of these may require commeat:

SameEvents[2-12)

Two events are taken to be the same if they are of the same sort and name the same
entity.

CompleteTwiddleEvent{2-13]

We choose t0 produce an event whose attribute (“Twiddle) indicates a twiddle event and
with oo name and the twiddle binding as value.

4.3.2. Scope(EventTemplates)
Obeerve that we indicate that the scheduling is unsuccessful if a given event occurs more
than once.

4.3.3. Scope(SetOfEvents)

A Set(Event) is implemented as an EventSet that is simply a list of Event entries. The
three iterators over Events and the addition of a new Event to Eveats are straightforward.
Note that by adding a new Event at the end of Events we have opted to keep the order of
Events comistent with the order of the EventTemplates provided by the source of such.
Obeerve that there is no explicit test for membership in Events so that there is no
implementation provided for $$ E IsinSet Events.

P -

------ﬁl-—---fﬂ

i
{
L}

A-12

4.3.4. Scope(QueneOfEvents)

A Queue(Event) is implemented as an EventQueue that is simply a list of Event entries.
Here we have provided a print function to handle pretty printing of the result of scheduling
3 set of events.

Oteerve that the membership test (Le. $3 ¢ IsinQueune §$ Q) is complicated by the fact
that the bindings for recursive mode sets are coalesced into a single event.

4.4. Stack of Event Entries

A very straightforward way to implement s Stack(EventEatry) and the associated
procedure, Increment(Top) is to employ & ressonably large array and, if Package requires a
larger stack than we have provided, to break indicating an error. The module
PI(StackOfEventEntries is Fixed) provides such an implementation.

5. Package as a PDS Tool

Having done a “quick and dirty” implementation of Package that can be used to study and
amess the basic algorithms for scheduling a set of events, we now turn our attention to 2
“real” implementation as an integrated PDS tool.

In order to interface with PDS this variant of Package must take as the source of events
the collection of entities and attributes supplied by a given set of modules (Bases); it must, as
well, produce a module containing the results of the packaging. In addition, there must be a
component of Package that takes the command supplied to PDS to invoke the Package tool
and decodes that command to yield the two sets of modules (Bases and PackagesReferenced)
supplying inputs. It must also insure that the modules in these two sets are up to date and,
if not, invoke the appropriate tools to derive up-to-date versions of them before proceeding
with the packaging.

In addition to the constraints induced by the need to interface with PDS, we must also
consider the question of efficiency of the operation. By efficiency here we have in mind
the usual space/time measures but we are also concerned with the underlying storage
management mechanisms of ECL and, for example, attempt to minimize the wse of heap
storage when possible to avoid the garbage collection costs that are associated with the use
of the heap.

The first four subsections following parallel those of the previous two sections and discuss
the four sets of implementation issues introduced in section 3. The fifth subsection deals
with the remaining issues in interfacing with PDS.

ISR ,-__a

. __/ A

i

TR -

PO ey

r— ————— —

P

A-13

S.1. The Source of Event Templates and Globals

As noted sbove, the source of both event templates and globals is the collection of
attributes of entities of the modules of Bases and PackagedReferenced. The module
PI(EatitySource is Modules) supplies the required refinements via two scopes:

S.1.1. Scope(ModulesAndEntities)
 The mapping from an Entity to its name is defined by the field selection on "Name™;
entity counting employs the standard PDS function TotalEntityCount.

5.1.2. Scope(SetOfModules)

We implement s Set(Module) as a SEQ(Module). The triple iteration to produce each
EventTemplate, T, of each Entity, E, of each Module, B, of Bases is then implemented as a
triple iteration over the attributes of entities of modules of Bases. The details of the
organization of entities and attribues in a module and their access and manipulation is
described elsewhere and will not be repeated here.

Similarty, the double iteration to produce each Entity, E. of each Module, P, of
PackagesReferenced is recast as an iteration over the SEQ(Module) and then an iteration
over the set of entities of each.

5.2. Globals

The name of esch entity of each module of PackagesReferenced is placed in Globals and,
for each identifier of each event being scanned that is not a local variable, system name, or
the name of an event to be scheduled, we must determine whether or oot that name is a
member of Globals. We choose to use the ECL built-in hashing functions to implement
Globals. The module PI(Globals is HashTable) documents the refinements that result.

5.3. Eveants
Recall that there sre two collections of Events manipulated by Package: Events is a
Set(Event) in which we initislly place esch event to be scheduled and ScheduledEvents is a
Queue(Event) that contains the (ordered) result of the scheduling of the elements of Events.
In order to motivate our choices for representation of these two collections, let us review the
various kinds of functionality they must support:
IsTypeEvent(E) — returns TRUE iff E is a "Type" event; similarly for IsBindingEvent,
efc.

E IslnQueue ScheduledEvents — returns TRUE iff E has already been scheduled (by
being added to ScheduledEveats).

NateMustScanValueOfEvent(E) — insures that MustScanVaiueOfEvent(E) subsequently

T

-

£

«

‘
-

‘
%

0 T S WD SN O W D A P G e o v wnd 2 SN B &

A-14

returns TRUE.

TypeEventFor(x) — (x being either an Eveat or an EntityName) returns the "Type"
event for x (or the NullEvent), and similarly for BindingEventFor(x), etc.

SameEvents(E, F) — returns TRUE iff E and F are the same eveats.

ForEachTypeEvent t in Events ... — iterates over the "Type" events in Events, and
similarly for "Binding”, etc.

Add E ToQueue ScheduledEvents — insures that E is in the queue ScheduledEvents,
following the events aiready there.

We note particularly that the predicate E IsinQueune ScheduledEvents and the mapping
TypeEventFor(x) (and its counterparts BindingEventFor(x), etc.) may be called many times
for the same event (in fact, each time the event name is encountered (and not local) when
we are scanning the value of some event). Therefore these operations should be particularly
efficient,

Our choice for implementation of the Set(Event) and Queue(Event) is a table containing
an entry for each event (and, in addition, some entries not actually nsed for technical
reasons discussed presently). An Event will then be an index into this table and the entry
for a given event will contain various BOOLs to record such facts as MustScanValueOfEvent
and IsScheduled. The Queue(Event) will be the same table and there will be an index field
for each entry that takes us to the table entry for the next event in the queue.

The first entry will be a dummy entry used only to index the entry for the first eveat in
the quene. The table will be partitioned so that the Type events are in one block, the
Binding events in another, and so on. A collection of variables (e.g. TypeEventBase,
BindingEventBase, and so on) will eacode this partitioning of the tables.

In order to quickly find, say, the Type event given some name, N, we will employ, in
addition to the table of event descriptions, a hashtable that is entered with the name of some
event and provides a triple containing the indices corresponding to the Type, Binding, and
Initialization events with that name (zero representing the NullEvent).

The module PI(Events is Array) provides the implementation of events as sketched above.
Several aspects of these implementation details probably require some further comments:

5.3.1. Scope(Events)
We define an Event{3-1] as an INT (meaning, of course, an index into the table
postulated above and to be described presently).

We next introduce EveatDescriptor{3-2] the table entry for each event. The non-obvious
fields include

T . e e

A-15

Twiddle:BOOL — TRUE iff the event results from replacing some binding event (or
an element of a set of mutuaily dependent mode binding events) by a twiddle
event.

Ignore:BOOL — TRUE iff the event is to be ignored (becuase it is a mode binding
event mutually dependent upon other mode binding events that have been
coalesced into a twiddle event).

Next:INT — the next event in the resuiting queue, ScheduledEvents.

Before continuing with the other entities in Scope(Events), let us consider EventSet{5-1]
in Scope(SetOfEvents): EventSet is the mode of the Set(Event) and the underlying
representation of Queue(Event) as well. Its first four components index the first entry in
the table describing the events for, respectively, Type, Binding, Initialization, and
ReadyToCompile events, thus encoding the partitioning of the table. The fifth entry,
Events:SEQ(EventDescriptor), is the actual table of eatries describing the Set(Eveat) and/or
Queue(Event). The local variable, Events, will be an EventSet and the variable
ScheduledEvents will be an <"EventQueue®™ :: EventSet (the base mode being extended to
provide for a distinct print function for the table when it is viewed as a Queune(Event) rather
than a Set(Event)). -

With these notions understood, we can now consider the remaining entities in PI(Events
is Array).

5.3.2. Scope(MasterControl)
The declaration of Events:Set(Event) in Package is replaced by several declarations, to
wit:
EntityCount:INT — the total number of entities in Bases (giving an upper bound on
the number of Type, Binding, and Initialization events that might be added to
Events).

Events:EventSet SIZE 3 ¢ EatityCount + 2 — The size of (the Events component of)
Eveats is sufficient to accommodate the maximum number of each sort of event
that may be encountered (i.e. EntityCount) plus a first entry used only to find
the first element of the EventSet when it is viewed as a Queue(Event), plus an
entry for the ReadyToCompile event.

TypeEventBase:INT
BindingEventBase:INT
IntislizationEventBase:INT

ReadyToCompileEvent:INT - We introduce local variables (shared with their
corresponding entries in Events) that encode the partitioning of the set of events.

CurreatTypeEvent:INT

Ao

g g i Gmd S A0 AN O A DY W oo o ol SN SR O 4@

k¢

-

" A 4

. T S
. o e e mmmm - - gt t—tn e -
A o 2
rndline, - s, N . i L LS)

e L =

~—

‘mfle,- ..

G g ad vd Nay nd D WD) G P B 5w o e o S SN Iy @B

A-16

CurrentBindingEveat:INT
CurrentinitializationEvent:INT — Three more variables that indicate the current last
Type, etc., event entered into Events are initialized.

NameToEventMap:HASHTABLE — initialize the HASHTABLE that will provide the
mapping from an entity (or event) name to the Type, Binding, and Initialization
events for it

5.3.3. Scope(Events)

IsTypeEvent{3-3]

IsTypeEvent(E) is implemented as a test on the value E to see whether it is within the
partitioning of the table of event descriptors corresponding to a Type event. Observe that
the variables TypeEventBase and BindingEventBase are introduced into the environment
(and appropriately initialized) when Events is declared (see PackageChanges{2-1]).

NoteMustScanValaeOfEvent{3-7]
The MustScan component of the EventDescriptor in the table of EventDescriptors
associated with the variable Event is set to TRUE.

CompleteTwiddleEvent{3-12]

CompleteTwiddleEvent(Binding, E) is called when the event, E, that is in
StackedEventyFirst] plus the events in positions First to Top of StackedEvents have been
coalesced into a twiddle binding (that is, the argument name and Binding). It modifies
eveat E to be the Twiddle binding event, and notes that it and the other mutusally
dependent events coalesced are to be cnsidered as scheduled and, further, that all but E are
now to be ignored (becanse they are together coalesced into the value for event E).

5.3.4. Scope(SetOfEvents)

Eventlterators{S-2]

The iteration over Type, etc., sorts of events commences at the first entry in the table of
event descriptors component of Events and proceeds through the entry that is current for
that sort of event.

SetOperations{3-3)

Adding 2 new Type, etc. event corresponding to an EventTemplate, T, amounts to
incrementing the current index for that sort of event and installing an EventDescriptor in
Events.Events at that position initialized with the appropriate Name and Value components
(the other components being, appropriately, the default valunes for those fieids). Also, the
NameToEventMap entry for that sort of event is set to provide the mapping from the event

e T PN > -
T m ae man . s A el e, N a0 Y A -

—.4--‘

e ——

T eV ewe Wy T wer— -

P pog G e beed o TR T DA D BN ww o o B 0 D D

A-17

name to the corresponding index in Events Events,

5.3.5. Scope(QueneOfEvents)

PackageChanges(6-1]

The declaration of ScheduledEvents:Queue(Event) is implemented by declaring
ScheduledEvents to be an EventQueue shared with Events; also the local variable, LastEvent,
is initialized to index the last event scheduled.

PriatEveatValue[6-3]

A BOOL, normaily TRUE, that is consulted by PrintEventQueneElement to determine
whether the triple <Attribute, Name, Value> or just the pair <Attribute, Name> is to be
printed. The FALSE setting might be used during debugging when we want to avoid seeing
values and just inspect the sort and name of eveats in 2 Queune(Event).

PrintEveatQueuncElement({6-5]

Given an EventQueue, Q, and index, i, into Q.Events, and a PORT, P,
PrintEventQueuecElement prepares an appropriate representation of the triple <Attribute,
Name, Value> or the pair <Attribute, Name> and outputs it.

Quenes{6-6]

Adding a new event, E, to ScheduledEvents is implemented by adding the new entry to
the thread that orders the events in the queue (the Next field of the appropriate eatry of
Events.Events (nee ScheduledEvents.Events)) and setting the IsScheduled bit to reflect the

scheduling.

5.4. Stack of Event Entries

Here we choose a variadic array to implement the Stack(EventEntry) and employ the
Extend operation available in Utilities to extend the stack whenever Increment produces an
index that exceeds the current allocation. The details are presented in
PI(StackOfEventEntries is Variable).

— . : : .

Appendix B

A Family of EL1 Program Analyzers

1. Introduction

There are a number of tools that need to analyze some program construct in order to 1
discover and assess the meaning of identifiers that occur free in that construct. Included
are the following tools: '

- Package - The Package tool has the job of determining an ordering among
some coliection of program entities that insures that a quantity is defined
before it is used. It must therefore find all the inter-dependencies among
some set of programs entities as a basis for determining an acceptable
ordering (or finding that there are inherent circularities that preclude such
an ordering).

|
|

- Synonym - The Synonym tool has the job of systematically replacing all
occurences of some idestifier (that refers to a globally define variable) by a
new identifier. '

- FindUndefinedldentifiers - The FindUndefinedIdentifiers (FUI) tool scans a
set of program entities and, for each identifier that is undefined, reports on
that fact and reports on the context in which the undefined identifier
occurred. The Package and Synonym tools deal with concrete (that is,
executable) EL1 constructs but the FUI tool must be able to deal with
abetract constructs and appeal to a set of analogies to "explain" abstract
constructs in terms of certain (more) concrete constructs.]
The analyzers required for the three tools are, abstractly, quite similar. They basically
do a recursive evaluation of a program construct and maintain a stack of identifiers that
are local to each context. Upon eacountering an identifier that corresponds to a
program variable they must determine whether that ideatifier names a local variable, a
built-in EL1 construct, or a global and take the appropriate action. Thus, it would
certainly be appealing to have a single analysis tool that was capable of doing all three 7
functions. Despite the similarities, however, the analyzer required for the FUI tool is
rather more complex than the others since it must detect those (abstract) constructs for
which there are analogies provided and it must also deal with the analysis of rewrites

LI Y

B-1

P S ———

and keep account of the match variables that occur in their patterns and replacements.
In addition, it must keep sufficient records to enable reporting on the context in which
some undefined identifier occurs.

The strategy that we have employed to develop the analyzers required is to develop
first a single abstract analyzer that contains the basic logic required to do the recursive
evaluation of some program construct. We then develop two distinct refinements of this
abstract analyzer. One refinement yields an analyzer that is appropriate for the Package
and Synonym tools and a second refinement yields an analyzer appropriate for the FUI j
tool. The resulting analyzers are called, by the client tools, with a set of procedure !
parameters that further specialize the analysis task to the particular requirements of the
three different tools.

——— e —

In section 2 we discuss the requirements imposed by the three client tools in more
detail. Secetion 3 provides an overview of the several modules that provide the
implemeatation of the analyzer family (with two members) within the Harvard Program
Development System (PDS). Section 4 provides a listing of these modules, including
detailed explanations of the various program entities that are defined. The reason that
the program entities (that is, EL]1 program text) and the explanations (that is, English
text) are contained in the same modules is that we find that by so doing it is much
more convenient to keep the explanatory documentation up to date. That is, if an
explanation of some construct is simply one attribute of that construct it becomes quite
natural to modify the explanation at the same time the construct is modified, If on the
other hand, the explanation was contained in a separate document (a text file, say) it
has been our experience that updating the explanation after a change in the entity it
explains often does not occur in a timely fashion - if it occurs at all. Merging of such
explanatory text with program entities has been made feasible by a recent change to the
print tool in the PDS that interfaces it to the Scribe text justifier system. With this
interface, the explanatory text is dealt with by Scribe and the program text is produced
by a pretty-printer.

A ood end e o amy TN OGN AR AN AN e Sy e aww o N BN @B

k

ol e e opd o e A GE AR R S o ow ow v OGN o O o

2. The Client Tools

As noted above, the analyzers developed are to be used by three different client
tools: Synonym, Package and FUI. In this section we discuss the requirements that
these three tools impose.

2.1. Synonym

Synonym has the simplest requirements of the three clients. It has a set of identifiers
that are presumed to name global variables and a corresponding set (actually, in general,
expressions) of names that arc synonyms for these global variable names. The analyzer
is to provide Synonym with each occurrence of a variable name that is neither local nor
the name of a built-in EL1 construct; it will return the name that is actually to be used
(either the same name or a synonym for it).

2.2. Package -

The Package tool is used to prepare a set of program eatites for loading into an EL1
interpretive environment and/or for subsequent compilation. We can think of it as
being given a set of so-called gvents and its job is to order the events in such a way
that if an eveat, ¢ depends upon an event, f, then f proceeds e in the ordering. The
events can be thought of as of two types: binding and initialization. A binding event
associates some (global) name and its vaiue (an EL! expression). An initialization event
contains some EL1 expression that is to be evaluated. Given some event, the associated
expression (that is, the expression to which some name is to be bound or the
initialization expression to be evaluated) must be analyzed to determine those eveats on
which the expression depends (for example, an initialization event may include a
procedure call, say, f{a), so that both f and a must be bouand aad initialized before the
initialization event can occur). Since an event, say f, in which some event, say e
depends may also depend upon other events the analyzer may be called recursively.
Except for the possibility of being called recursivelyl , the task posed by Package is very

IThere ars siso several technical problems to do with handling recursive modes and with handling the
behsvior functions associsted with an extended mode, but thess are not relevant here; see the description
of the Package tool for further detsils,

S

i e

— s v

B-3

similar to that posed in Synonym: given a non-local and non-built-in variable name, the
client tool must decide how to interpret the variable names.

2.3. FUl

The FUI tool imposes the most complex requirements of the three client tools,
aithough its end result is simply reporting on free-variables that occur in some program
construct. The complexity derives from the following considerations:

1. The FUI tool deals, in general, with abstract program constructs whose
definition (implemeatation) is still pending. in order to “explain” such
constructs, the user may supply analogies; an analogy takes the form

pattern <~> replacement

where pattern and replacement are EL1 (possibly extended) expressions,
including the forms $3 x or ?? x where x is an identifier. If the pattern of
some analogy matches a program construct being analyzed, then the analyzer
is to process the replacement part of the analogy using the expressions that
matched the match variables in the pattern for all occurrences of match
variables in the replacement. The replacement, with substitution of
expressions matched for occurrences of match variables, is called the
interpretation of the construct matching the pattern.

2. The program entities being analyzed may include rewrites. The analysis of a
rewrite involves keeping account of the match variables that occur in the
pattern part so that we can determine whether a match variable occuring in
the replacement part is defined or not and report on those that are not
Thus, in addition to the local program variable, the analyzer must keep
account of the local match variables.

3. The FUI tool has, as an option, reporting on all the (user) procedures called
by some construct being analyzed.

4. The FUI tool, when reporting on occurrences of free variables, has an option
of providing a certain amount of context to aid the user in determining just
where to look for some uondefined variables. This context amounts to
indicating blocks, loops, cases, exprs, and so on entered and providing an
indication of how many statements within each construct entered preceed
that containing the free variable occurrence.

' B-4
‘ 3. Implementation of the Analyzer Family

There are five modules that provide the basis for the implementation of the two
i member analyzer family. Their names, and a brief description of each is as follows:

- Analyze

The definition of the abstract analyzer that is the progenitor of the two
. concrete analyzers that have been developed. The analyzer defined by
{ Analyze is described using notations that free the reader from having a
technical understanding of the details of the internal representation of EL1
program constructs.

- Analyzel(General)

—

This module contains several refinements that are commonn to both
analyzers being developed. By and large, they have to do with implementing
the abstract iterators and the likes used in Analyze in terms of the actual
internal representation of EL1 program coastructs.

- Analyzel(Application is Concrete)
This module contains the remaining (that is, those augmenting the
refinements contained in Analyzel(General)) refinements necessary to
produce the analyzer appropriate for use by the Package and Synonym tools.
-~ Analyzel(Application is Abstract)

The remaining refinements necessary to produce the analyzer appropriate for
use by the FUI tool.

- ListUtllities

A collection of (general purpose) utilities useful for dealing with the list
structure internal representation of EL1 program constructs

The derivation of the two concrete modules, denoted ANLZC[3] and ANLZA[3] for
the concrete and abstract applications, respectively is depicted below.

el e eed emd send oo AN G e BN wNm

. . *éﬁa‘ﬁ‘ﬂ
e it e e - . ———— ot o —— g+ = - [RN o s Wi

.-‘ Y SR T———— se——— ___q
i
B-5
|
l Analyze Analyze(Geaneral)
| | -
“ Analyzel(Application is Concrete) Analyze{l] Analyzel(ﬁghcauon is Abstract)
I \ ' e
; | Merge Merge
| ; [
| | |
| (ANLZC[2] ANLZA[2]

| |

ANLZA[3]

———

) d i o e omg OEE W wd N Omm

N S
. - NP R A AT i Sy g
S ——— e pr s v .. L .

Module <Analyze @ 56> B-6

< Analyze @ 56, AnalyzelApplication is Abstract) & 61,
Analyzel(Application is Concrete) @ 40,
AnalyzeGeneral) @ 34 >
1 Module
Comment
The main procedure, named ProcessExpression, basically does a recursive evalustion of
some program construct (for example, a procedurs, a mode definition, or the like) and
msaintains 8 stack (named NameStack) of names of variablas that are in the local
environment in each context.
The client tool interface is vis a procedure named ProcessAttributeVaiue to which the
client supplies the program construct to be analyzed pius several procedures that tailor
the analysis to his application.
EndComment;

Module has Uses{ListUtilities);

bbbttt bbbt bbbt NIMOSLACK 4ttt b bbb bbbttt
2-1 Scope
Comment
This scope provides the several modes, data objects, and procedures required to set up
and manipulate NameStack, the stack of nsmes of variables that are local to the current
FORM being processed by ProcessExpression.
EndComment;

Scope has
ExportedSyntax(EquatePhrases(‘'ForEachRelevantNameStackEntry $$ °,
FOR L)
Anasiogies
{ForEachRelevantNameStackEntry $8 j REPEAT ?? body END) <>
REPEAT DECL $$ j:INT; ?? body END;

EndAnslogies;

2-2 NameStack
Comment
The NameStack is implamented as a pointer to a saquence of entries so that the stack can
bhe extended if the initisl size estimate (provided by NameStackSize bslow) proves too
modest.

EndComment;

P

i

G md by beed) omgd B O O I W e

Module <Analyze @ 56> Scope(NameStack) B-7

NameStack <~
CONST(PTR(SEQ(NameStackEntry)) BYVAL
ALLOC(SEQ(NameStackEntry) SIZE NameStackSize));

2-3 NamaStackSize <~ CONST(INT BYVAL 100)%

2-4 NameStackEntry
NameStackEntry isa Struct(Name:FORM) —

Different refinements may choose to provide for a variety of fieids, but we assume that all
will provide a field named Neme to store the variable name.

2-5 NP
Comment

NP will index the current topmost position on NameStack.
EndComment;
NP <- CONST(INT); -

2-68 PushlLocalName

Comment

Provision is made, through Extend{NameStack) to extend the name stack if it proves o be
too small.

EndComment;

PushiLocaiName <-
EXPR{Name:FORM)
BEGIN
lsidentifier(Name) +> NonAtomicName(Name); ,
(NP <~ NP + 1) GT LENGTH(NameStack) -> i
Extend(NameStack);
NameStack[NP] <- CONST(NameStackEntry OF Name);

END;

2-7 NonAtomicName

NonAtomicName isa Procedure(Neme:FORM) -
A non identifier is sbout to be pushed onto the name stack.

1 m‘w«w N

o

G G o domi Sy oup BED B0 G B W end s ey s aue aad O oW

Module <Analyze @ 56> Scope(NameStack) B-8

2-8 isl.ocaiName
Comment

Differsnt refinements may choose to partition the name stack in various ways snd the
abstract iterator ForEachRelevantNameStackEntry | .. will be refined to reflect such
partitionings.

EndComment;

lsLocaiName <-
EXPR(atom:FORM; BOOL)
<< BEGIN

ForEachRelevantNameStackEntry j

REPEAT
NameStack[jJName = atom => RETURN(TRUE);

END

FALSE;

END;

bbb bbbt bbbt bbbbb ittt BaSiCPTOCRSSING +4+++444rt bttt it tbbttts
3-1 Scope

Scope has
ExportedSyntax(PREFIX("Interpret™), INFIX(*as®),
EquatePhrasas("ForEachDECLElement $8 d in §8 ',
‘FOR $8 d FROM 88 "),
EqustePhrasas("ForEachLocaiNeme $8 n in $8 o,
FOR $$ n FROM 88 d),
EquatePhrases("ForEachCASEArm $8 2 in $$ 1",
FOR “ a FROM -] f').
EquatePhrases('ForEachControiElement $8 ¢ in $8 a',
FOR $8 o FROM 88 @),
EquatePhrasss("ForEachiterstorElement §8 e in §§ ',
FOR $$ o FROM S),
EquatePhrases('ForEachSTRUCTMode $$ m in §8 S°,
FOR $ m FROM 88 S,
EquatePhrases("ForEachStatement $8s in S8 L,
‘FOR $8 s FROM 88 L),
EquatePhrasas(ForEachFormalMods $8 m in 88 f',
FOR $8 m FROM $8),
EquatePhrases('ForEachFormel $$ d in $3 1,
FOR 48 d FROM 88 "))

3-2 ProcessExpression
Comment

ProcessExpression does s recursive evsluation of ite argument, maintaining in NameStack
the set of varisble names locs! to the current context. The paragraphs following describe
the procsesing of the verious constructs done by ProcessExpression.

Module <Analyze @ 56> Scope(BasicProcessing) B-9

Given a constant argument ProcessExpression exits immediately.
it § is an identifier, then we procsed as follows: It f names a system procadure or is a

local varisble we exit immedistely. Otherwise the wuser supplied procsdure,
HaveUnknownAtom, is called ta deal with the situation. (For example, it might consult some
table of giobsl names to sttempt to resolve the identiifier ocurring, reporting that
undefined if it was not.)

Otherwise , the argument f is an expression; we do a case analysis of its operator (f.op) to
determine the EL1 construct that we have. Comments on ssveral of the possibilities
foliows:

BEGIN: We do the bookseping sppropriate to enter a new block (for sxample, record
the current NameStack top so that it can be restored at the end of the block), process
each statement of the block (recursiveiy), and then do the bookseping appropriate to
block exit.

DECL: The mods and spociﬁc:tio; for each (parailel) daclarstion siement are processed
and then the names deciared by each declaration element are pushed onto NameStack.

CASE: We recall that in EL1 the CASE statement takes the generasl form
f == CASE(Relation{1], - Argument[1], ..]

Controi[k, 1 ., Control[k, n] => Result[k}

END;

where

Controifk, j] ==
[Testfk,j, 11 -, [Test(k, j, m[IPredicate(k, j]

The processing of the CASE is as follows:
1. Process the list of relstions (Reiation[1] ..). Here ProcessList(L) is shorthend for
iterating over sach element, s, of the list L and calling ProcessExpression(s).

2. Process the list of arguments (Argument[1] .).

3 For each arm of the CASE, say the x-th, process sach control siement, Controilk,
j} and then process the resull, Result{kl The procsssing of Controllk, j] invoives
processing the list of tests (Test[k, j, 1] -Jand then processing the predicate,
Pradicate(k, j1

FOR: Recall that the general form of a for statement is f ==
FOR var FROM low BY delts TO high REPEAT body END

G Gud v) I G O GHE O O o aae oewm e ew ol 8 O

Module <Analyze @ 56> Scope(BasicProcessing) B-10

We can think of the construct as consisting of a sequence of "iteration elements” , f w=
(o1, 82, .) where el, 62, .. are (FOR var), (FROM low), and sc on. For present
purposes there are three types of such elements corresponding to the following three
preadicates:

IsiteratorVariableSpec{(e): Here we have & == (FOR var) and we process it by
capturing the variable name, var, to be pushod onto the name stack just before we
process the body of the loop.

isBody(e): Here @ == (REPEAT body); we do the bookeeping sppropriate for entering
8 loop, push the iteration variable name, if any, onto the name stack, process each
statement in the body, and then do the bockesping appropriate to exiting the loop.

Otherwise (here ¢ == (FROM low), and so on) we process the specification (low, and
s0 on).

= : Here we have f == spec = UR if the first argument (spec) specifies user behavior
then the user supplied procedure, ProcessBehaviorFunctions, is called to deal with the
specification; otherwise PsocessExpression is called. Finally the second argument (UR)
Is processsd.

EXPR: We do the bookeseping appropriate to entering an EXPR and then process the
mode and specification of each formal parameter. Following this, we push the names of
the formals onto the name stack and procass the resuit mode. We then do the
bookeeping appropriste to entering the body, process the body, and, finslly, do the
bookeeping appropriste to exit the body and then the EXPR as a whole.

Otherwise (that is, { is not one of the EL1 consructs that requires special processing)
we proceed as foilows:
1. if the construct does not have the form g(al, ..} with g an identifier, then we

simply procsss each slement of f.

2 if we have f == g(al,) where g namas a system procedurs, then we -all
ProcessSystemProcsdureApplication.

3. Otherwise (that is, f == g(al, ..) with g naming a user procedure) we call
ProcessUserProcedureApplication.

EndComment;

ProcessExpression <~
EXPR(f:FORM; FORM)

BEGIN

IsConstant(f) => f;
isidentifier(f) =>
BERIN
lsSystemProcedurs(f) OR lsLocaiName(f) => f;
HaveUnknownAtom(f)}

ENO;

o
.
| e

ey OGS G SEm O G 2 —

5:\“'."

oA
T

Module <Analyze 8 56> Scope(BasicProcessing)

CASE[f.op]
["BEGIN"] =>
BEGIN
EnterBlock(f);
ForEachStatement s in f
REPEAT ProcessExpression(s) END;
LeaveBlock();
f
ENG;
["DECL"] =>
BEGIN
ForEachDECLElement d in f
REPEAT ProcessModeAndSpecFor(d) END;
ForEachDECLElement d in f
REPEAT
ForEachLocalName n in d
REPEAT PushLocsiName(n) END;
END;
;
END;
["STRUCT™] =
BEGIN
ForEachSTRUCTMode m in f
REPEAT ProcessExpression(m) END;
5 -
ENG;
["."] => ProcessExpression{f.argl)
["CASE™] =>
BEGIN
ProcessList(f.CASERelations);
ProcessList(f.CASEArguments);
EnterCASE(f)
ForEachCASEArm a in f
REPEAT
ForEachControlElement e in a.Control
REPEAT
ProcesslList(e.Tests);
ProcessExpression{(e.Predicata);

ENG;
ProcessExpression{a.Result);

END;
LesveCASE();
f;
END;
["FOR"] =
BEGIN
DECL Name:FORM;
ForEachiteratorZlement & in f
REPEAT
BEGIN
IsiterstorVarisbleSpec(e) =>
Name <- e.lteratorVariable;
sBody(e) =>
BEGIN
EnterLoop(f)
Name » NIL -> PushLocsiName(Name);

—

Module <Analyze @ 56> Scope(BasicProcessing) B-12

ForEachStatement s in e
REPEAT ProcessExpression(s) ENDs
Laavel.oop();

END;
ProcessExpression(s.Spec);
END;
END;
fi

END;
["CONST™], [FALLOC"] =>
D ProcessModeAndSpecFor(f); f (}
[="] =
BEGIN
BEGIN
SpecifissUserBehaviar(f.argl) =>
ProcessBehaviorFunctions(f.argl)
ProcessExpression({f.argl);
. END;
! ProcessExpression(f.arg2)
! £

%

END;
["PROC"] =
BEGIN
ForEachFormaiMode m in f
REPEAT ProcessExpression{m) ENG;
ProcessExpression(f.arg2);
5
END;
["EXPR"] =>
BEGIN
EnterEXPR(f);
ForEachFormai d in f
REPEAT ProcessModeAndSpecFor(d) ENG;
ForEachFormal d in f
REPEAT PushLacaiName(d.Name) END;
ProcessExpression{f.ResultMode);
EnterEXPRBody{f)
ProcessExpression(f.Body)
LesveEXPRBody();
LeaveEXPR();
f
ENDs
['«'] -
BEGIN
HasOneArgument(f) =>
D ProcessExpression(f.argl); f (3
BEGIN
t.argl.op = “<" OR f.argl.op = Q" =>
ProcessList(f.argl.args)k
ProcessExpression{f.argl);
END;
ProcessExpression(f.arg2)
f

END:
[/e7) [ET] =
BEGIN

ey oy oI W wm OGN

& il
b

e

=t

Module <Analyze @ 56> Scope(BasicProcessing) B-13

- HasOneArgument(f) => f;
l ProcessExpression{(f.argl);
f;

END;
{"s/™] => [) ProcessExpression(f.arg2); f (3
TRUE =>
! BEGIN
DECL op:FORM LIKE f.op;
Isidentifisr{op) s> [) ProcessList(f); f (}
lsSystemProcedurs(f.op) =>
ProcessSystemProcsdureApplication(f);
ProcessUserProcedureApplication(f);
ENDy
ENG;
END;

3-3 Isidentifier
i isidentifier isa Procedure(f:FORM; BOOL) —
Returns TRUE iff f is an identifier.
3-4 isConstant
i1sConstant isa Procedure(f:FORM; BOOL) ~-
Returns TRUE iff f is an constant.
3-5 ProcesslList

Comment

ProcessList(l) is shorthand for iterating over the elements, e, of L and calling
ProcessExpression(s) on sach.

EndComment;

Procasslist <-
EXPR(LFORM)
ForEachListElement e in L
REPEAT ProcessExpression(s) ENG;

ed wmg OB G o W e

3-6 ProcessAttributeValue
- Comment

ProcessAttributeValue provides the user interface to the analysis tooi. It is called with the
1 folowing srguments:

Valus -~ the FORM to be analyzed
I HevelnknownAtom - the procedurs to be called when the snaiyzer has sn identifier
1 thet is not & system name nor a local variable.
f *
R - . -
LL . ‘_i: T T T - - . = T
— smaeni, o — e e _

r—

oy ol O e TN ey ~—-

]

Module <Analyze @ 56> Scope(BasicProcessing) B-14

ProcassUserProcedursApplication - the procedure to be called when the analyzer has
the construct f == g(al,) and g is an identifier that is not a system name.

ProcessBehaviorfunctions - the procedurs to be cailed when the anslyzer has the
construct f == spec = UR and spec has the form <shortname, > to procass spec.

ErrorPort - the PORT to which error comments are to be directed.

EndComment;

ProcessAttributeValue <-
EXPR(Vaiue:FORM,
HaveUnknownAtom:PROC(FORM; FORM), |
ProcessUssrProcsdureApplication:PROC(FORM; FORM),
ProcsssBehaviorFunctions:PROC(FORM),
Error ToUser:PROC(STRING, FORM, STRING))
D initislizeNameStack(); ProcessExpression(Value) (3

Analogies
InitializaNameStack() <}> NOTHING;

EndAnaicgies;

3-7 HaveUnknownAtom

HavelnknownAtom isa Procedure{atom:F ORM; FORM) —
HaveUnknownAtom is a procedure supplied by the user on a call to ProcessAttributsValue
to tailor ProcsesExpression to his application. it is called when ProcessExpression has an
unknown identifisr (that is, one that is not a system name or a local variable name).

Analogies
initializeNameStack() <}> NOTHING;

EndAnaslogies;

3-8 ProcessUsarProcedureApplication

ProcessUserProcedureApplication isa
Procsdure(f:FORM; FORM) —
ProcessUserProcedursApplication is a procedurs supplied by the user via his call on
ProceesAttributeVaiue to tailor ProcessExpression to his application. it is called when f ==
fn(al, _, an) and fn is an identifier that doas not name a system procedure

3-9 ProcessBehaviorfunctions

ProcessBahaviorFunctions iss Procedure{f:FORM) —
ProcsssBehavorFunctions is a procedure supplied by the user via his call on
ProcessAttributeVaiue to tailor ProcessExpression to his application. It is called when { a=
< ShortName, UF1(N1), .. > (the left hand side of a = operator)

I -
7 |

Module <Analyze @ 56> Scope(BasicProcessing) B-15

3-10 ErrorTolUser

ErrorToUser isa
Procedure(Laft:STRING, f:FORM, Right:STRING) ~-
Used to communicate a problem to the user; Left and Right typically comment on some
problem with the FORM f being processed.

sbrtrretttit++ ProcessModeAndComponentsSpecifiad ++ttttttttttiits

} 4-1 ProcessModeAndSpecFor

ProcessModeAndSpecFor isa Procedure(d:FORM; FORM) — .
Here, d == vars:nd BC spec[1] .. or d == const(md BC spec{1] ..) (where const is CONST |
or ALLOC).

Pracess the md and the spec[j]l

bbbttt bbb+ Statementiteration +++ttrrtrt et bbb ettt

5~1 Scope

Analogies
(ForEachStatement $8 s in $8 f REPEAT ?? body END) <}>
REPEAT DECL $3 s:FORM SHARED $$ f; ?? body END;

—— - T———

EndAnalogies;

Pt td b bbbttt btttbttt ProcassBEGIN ettt dtttdddititbttdittttts

6-1 EnterBlock

EntarBlock isa Procedure(f:FORM) -
Do the record keeping appropriats to entering a biock.

-t ouy GHE W N R O

6-2 LesveBlock

4

LesveBlock isa Procedure() —
Do the record keeping sppropriste to block exit (inciuding restoring the NameStack).

——

Gl o e o ond ong GO G P W

Module <Analyze @ 56> Scope(ProcessDECL)

bbbttt bbbt bttt bbbt ProcassDECL ++ttttbddttittittttitttitss
7-1 Scope
Comment

The FORM being processed is
f == DECL x1, y1, ..: md[1] BC spec{1]

DECL xn, yn, :md{n] BC spec(n}

EndComment;

7-2 Iterator
Analogies
(ForEachDECLEIement $8 d in $8 f REPEAT ?? body END) <}>
REPEAT DECL 88 d:FORM SHARED $$ f; ?? body END;

(ForEachLocaiName 88 n in $8 d REPEAT ?? body END) <}>
REPEAT DECL $8 m:ANY LIKE $8 d; ?? body END;

EndAnalogies;

Fe bbbttt bbbttt bttt PrOCASSSTRUCT ++tttdbdtitttbstsrtttetits
8-1 Scope
Analogies
(ForEachSTRUCTMode $8 m in $8 f REPEAT 7? body END) <}>
REPEAT DECL $8 m:FORM LIKE $$ f; 7? body END;

EndAnalogies;

bbb dtrb bbbt bbb bbb bbbttt PrOCOSSCASE +t bttt bt bbbttt bbbt

9-1 Scope
Comment
f == CASE(Relation[1] _YArgument[l1] -]
Eantrol[k. 1} -, Controifk, n] => Resuit[k}
END
T— - e ———— - -

Module <Analyze @ 56> Scope(ProcessCASE) B-17

EndComment;

9-2 Rerator

Analogies
(ForEachCASEArm $$ a in $8 f REPEAT 7? body END) <}>
REPEAT DECL 88 a:FORM SHARED $$ f; ?? body END;

{ForEachControlElement 388 & in (38 a).Control
REPEAT ?7? bady END) <}>
REPEAT DECL $8 ¢-FORM SHARED $8 a; 7? body END;

EndAnalogies;

9-3 EnterCASE

EnterCASE isa Procedura(f:FORM) —-
Do the bookseping appropriate to entering a CASE statement.

9-4 LesveCASE

LeaveCASE isa Procedure() —~
Do the baookesping necessary to leaving a CASE ststement.

bbb bbb bbbt bbbt er Processiterator ++tettte sttt bbbttt
10~1 Scope
Analogies
(ForEachlteratorEiament $8 & in $8 f REPEAT ?? body END) <}>
REPEAT DECL $8 o:FORM SHARED 8 f; 7? body END;

isiteratorVariableSpec($$ s) <}> 88 s;

isBody($$ b) <}> 8§ b;

EndAnalogies;

10-2 Enterioop

EnterLoop isa Procedure() —
Do the bookseping appropriate for entering a loop.

Module <Analyze @ 56> Scope(Processlterator)

10-3 Leaveloop

Lesaveloop isa Procedure() —
Do the bookeeping appropriate for returning from a loop.

St bbbttt bttt ProcessDoubleColon ++t+tttttdtddttttsdtstrts
11-1 SpecifiesUserBehavior

SpecifiesUserBehavior isa Procedure(f:FORM; BOOL) --
Returns TRUE iff f == < ShortNams, UF1(nl), ..>.

bbb bbbt bbbt bbb bbb bbb bt ProcessPROC e e s e e e L S S e e s o o
12-1 Scope
Analogies
(ForEachFormaiMode $8 m in 38 f REPEAT 7? body END) <}>
REPEAT DECL $8 m:FORM SHARED $$ f; 77 body END;

EndAnaiogies;

bbb bbb bbbt bbdbitt bbbttt Proc@SSEXPR #idtttdtt ittt ddttdtdt etttd
13-1 Scope
Analogies
(ForEachFormal $8 h in $8 f REPEAT ?? body END) <}>
REPEAT DECL $$ h:FORM SHARED $8 f; 7? body END;

EndAnalogies;
13-2 EnterEXPR
EnterEXPR isa Procedure(f:FORM) —

Do the bookeeping appropriate for entering an EXPR.

13-3 tLeaveEXPR

LasveEXPR isa Procedure() —
Do the bookeeping appropriate for rsturning from sn EXPR.

) Guyd eed eed ed omf GED N S O W

Module <Analyze @ 56> Scope(ProcessEXPR) B-19

13-4 EntsrEXPRBody
EnterEXPRBody iss Procsdure(f:FORM) —~
Do the bookeeping appropriats to entering the body of a procedure.
13-5 LeaveEXPRBody

LeaveEXPRBody isa Procedure() ~-
Do the bookeeping necessary to leave an EXPR body.

bbbt bbb bbbt bbb ries SystamNames +++trtttirt bbbttt it ibr et
14~]1 IsSystemProcedure
isSystemProcsdure isa Procedure(atom:FORM; BOOL) --
Returns TRUE iff atom names an EL1 system procedure.
14-2 ProcessSystemProcedureApplication
ProcessSystemProcedureApplication isa
Procedure(f:FORM; FORM) —

it has been determined that f has the form f == P(al, ..) where P names a system
procsdure; do the pracessing appropriate.

Module <Analyzel(Application is Abstract) @ 61> B-20

1 Module
Comment

There are several issues in developing an analyzer appropriate for use by the FUI tool:
{a) The program constructs being analyzed inciude, in general, abstract constructs not
defined in base EL1.-] The user may supply various anslogies to "explain® certain of
these abstract constructs. If so, the analogies are to provide the basis for interpreting
oach instancs of the abstract construct. We therefore need to provide mechanisms to
discover when some construct that is being analyzed has a corresponding anaiogy and
to interpret the abstract construct in accordance with the analogy.

(b) The entities being analyzed may include rewrites. If so, we must analyze the
replacement part knowing what match variables have been dsfined in the pattern part.
The bookeeping of match variables is rather similar to bookeeping the current sst of
local varisbles. We will employ the NameStack for both kinds of bookseping,
partitioning it appropriatsly to permit iookup of either kind of variable.

{c) The FU tool needs, in addition to the fact that some varisble name occurs free,
sufficient information to report to the user the context in which the fres variable
occurred. For this purpose we will maintain a control stack and retain in that stack the
contextual information required. This stack will have an entry for esch biock,
procedurs, loop, and so on entered.

EndComment;

Module has Uses{Anaiyze, Utilities);

bbbt bbb bbb bbbt bbbttt NEMEStack +rtttttt ittt bttt ttt ittt
2-1 Scope
Comment
A major difference in the analyzer for FUl and the one for Package and Synonym is that
we will have a controi stack (named ControlStack) that will record the control structures

entered and not yet exitted. Also, we will keep on the NameStack the match variabies
currentty known (in addition to the local variables).

EndComment;

2-2 ControlStack <-
CONST(PTR(SEQ(ControiStackEntry)) BYVAL
ALLOC({SEQ(ControiStackEntry) SIZE ControiSteckSize))

2-3 ControiStackSize <- CONST(INT LIKE 40)

S e o e ;Y

E—— T - a - . J S P N

! l Module <Analyzel(Application is Abstract) @ 61> Scope(NameStack) B-21
] 2-4 ControiStackEntry
Comment
1 ‘] The fields of a control stack entry sre interpreted as follows:

Type - the type of entry, among which ars "Block”, "Loop", “EXPR", “EXPRBody",
l ,’ "Rewrits”, "Interpretation®, and so on.

NP - the name stack index current when the control context was entered.
f - the FORM being analyzed in the current context.

StatementCount - counts the statements in a block or loop in order to provide the
client tool information necessary for reporting on the context of a free variable
occurrence.

EndComment;

ControiStackEntry <~
STRUCT(Type:SYMBOL, NP:INT, f:FORM, StatementCount:iNT);

2-5 CP
Comment
CP will index the current top of the control stack
EndComment;
CP <- CONST(INT)

2-6 NameStackEntry

Comment

varisbles of ansiogies and the constructs that they match.
EndComment;

NameStackEntry <- STRUCT(Nsme:FORM, Binding:FORM);

2-7 PushNameAndBinding

Comment

A varisnt on PushLocaiName that pushes both a name and an associsted binding onto the
NameStack.

EndComment;

' In addition to the Name fisid, we add a fieid (nemed Binding) to permit association of match
m—

]
i
]
{
!
i
|
1
i

‘[‘
|

.

Module <AnalyzeI(Application is Abstract) @ 61> Scope(NameStack) B-22

PushNameAndBinding <-
EXPR(Name:FORM BYVAL, Binding:FORM)
<< BEGIN

isidentifisr(Name) +> NonAtomicName(Name);

(NP <- NP + 1) GT LENGTH(NameStack) ->
Extend(NameStack);

NameStack[NP] <-
CONST(NameStackEntry OF Name, Binding);

END;

2-8 lterator(s)
Comment

The iteration over the “relevant” entries in the name stack (that is, the entries
corresponding to local variables) is implemented by consulting the control stack to
determine those ranges of NameStack indices that are associated with local variables
(rather than match variables). To simplify the locy a "guard® entry is instailed sbove the
current topmost entry on the control stack; all constructs that push entries onto the
control stack are obliged to insure that there is room for the guard.

EndComment;
Rewrites '
(ForEachReievantNameStackEntry $8 j REPEAT ?? body END) <->
BEGIN
ControiStack{CP + 1] «
CONST(ControlStackEntry OF NIL, NP);
FORc¢ FROMCP BY - 1
REPEAT
¢ = 0 => FALSE;
LocaiNamesType{ControiStack[c]Type) >
~OR 88 j FROM ControiStack[c + 1JNP BY - 1
TO ControiStack[cINP + 1 REPEAT 7? body END;
ENG;
END;

EndRewrites;
2-9 LocalNamesType <-

MACRO(Type:SYMBOL; BOOL)
Type » "Rewrite” AND Type » "Intarprstation®;

et bttt bbbttt bttt BagicProcessing ettt bt bt r bbbt
3-1 ProcessExpressionChanges(s)
Comment

There sre two changes that are required to sdapt ProcessExpression to be appropriste for

if"""'""'""""'"""""'"’""""""'""

Module <Analyzel(Application is Abstract) @ 61> Scope(BasicProcessing) B-23

the FUl application. First, we must consider the possibility that there is some analogy for
the FORM, f, being analyzed that provides an interpretation thast is to be analyzed ir liu of
f. Second, the (descriptor) constructs Struct(.) and KnownFrees{(..) are to be analyzed
oxactly like STRUCT(.) and the constructs MACRO(.).. and Procedure(.).. analyzed
exactly like EXPR(..)- .

EndComment;

l Rewrites
BEGIN
. lsConstant(f) => f;
| Isidentifier(f) => §$ i;
‘ 7 tail;
END <->
BEGIN

isConstant(f) => f;

DECL T:interpretation LIKE FindinterpretationFor{f);
: T » Nullinterpretation => interpret f as T;
| ‘ lsidentifier(f) => $8 i;

7 tail;

END;

CASE[.-]
&? head;
("DECL"] => 88 ¢;
&? middis};
["STRUCT™] => 88 s;
&? middle2;
[TEXPR"] => 88 e;
&? tail;
END <~>
CASE[-]
&? head;
{"DECL"] ["Deciare™] => 8 d;
&? middlel;
[*STRUCT"], ["Struct™}, ["KnownFrees™] => $§ s;
&? middle2;
["EXPR™], ["Procedure”], ["MACRO"] => §§ &;
&2 tai);
END;

EndRewrites;

G o el el ol ol DB DR N NE

— EEREE——

Module <Analyzel(Application is Abstract) @ 61> Scope(BasicProcessing) B-24

3-2 ProcessAttributeValueChanges(s)

Comment

This rewrite tailors the body of ProcessAttributeValue (in particular, the construct
| InitializeNameStack()) to properly initialize the control and name stacks. Since the
.q initialization of thess stacks is done by the FUl tool, none need be done by
ProcessAttributeValus. Note, however, that the variable named CurrentStatement is
initislized to be the construct being analyzed; it will be modified ss we go along to keep
| track of the then current statement as the analysis progresses.

‘ EndComment;

Rewrites
: RAISE [) InitializeNameStack() (] <->
RAISE [) DECL CurrentStatement:FORM LIKE Value (3

EndRewrites;

Sebbbbbbtbbi bbb tt+e+ Statementiteration ++ttttttttitribtbbtbbb bttt

4-]1 Iterator(s)
Comment
In addition to stepping through the statements, the variable named CurrentStatement is

kept up to date and the counter StatementCount (for the current control stack entry)
incremented as well.

EndComment;

Rewrites
(ForEachStatement $8 s in $8 f REPEAT ?? body END) <->
SEGIN
DECL f\:FORM BYVAL §$ f;
REPEAT
f\.COR = NIL => NOTHING;
f\ <- f\.CDR;
CurrentStatement <~ f\.CAR;
DECL $8 s:FORM SHARED f\.CAR;
7 body;
(88 s).op s "Declare” >
ControlStack[CP] StatementCount <-
ControlStack[CP) StatemantCount + 1;
ENDy
END;

EndRewrites;

(=== mmmm -

]
]
{
|
i

' Module <Analyzel(Application is Abstract) @ 61> Scope(ProcessBEGIN) B-25

ProcessBEGIN

35-1 EnterAndLeave(s)
Comment

Block entry requires msking an appropriste control stack entry and exit requires popping
the controi stack after resetting the name stack top (NP). Observe that we insure that
: ' _ there is a position on the controol stack for the "guard® entry required by the name stack
! ‘ lookup mechanism described in [2-7]

EndComment;

Rewrites
D EnterBiock(f); ?? body; LeaveBlock(); f (] <>
BEGIN
(CP <- CP + 1) + 1 GT LENGTH(ControiStack) ->
Extend(ControiStack);
ControiStack{CP] <-
! CONST(ControlStackEntry OF “Block”, NP, f);
DECL CurrentStatement:FORM BYVAL &
7 body;
NP <~ ControiStack[CPINP;
CP<-CP-1;
f; -
END;

EndRewrites;

'vadd IS el eommg DO S

»

.
g
—

Module <Analyzel(Application is Abstract) @ 61> Scope(Processiterator)

Processitarator +++ttttidttitdbdttdibtitss

6-1 EnterAndisave(s)
Comment
Similar to entering and leaving a biock.
EndCamment;

Rewrites
[) EnterLoop(t); 7 body; LeavelLoop() (J <~>
BEGIN
{CP <~ CP + 1) + 1 GT LENGTH(ControlStack) ->
Extend(ControiStack)
ControiStack{CP] <-
CONST(ControiStackEntry OF “"Loop”, NP, f)
DECL CurrentStatement:FORM BYVAL f;
7 body;
NP « ControiStack[CP1NP;
CPe«CP-1;
END;

EndRewrites;

Ftbbt bbb bbb b bbbbbte+ 4+ ProcesSCASE +4+tittttttdtttitttttdpitst
7-1 EnterAndLeave(s)

Rewrites
BEGIN
7 head;
EnterCASE(f)
7 middle;
LeaveCASE();
7 tail;
END <->
BEGIN
7 head;
{CP <- CP + 1) + 1 GT LENGTH(ControiStack) =>
Extend(ControlStack);
ControiStack[CP] <~
CONST(ControiStackEntry OF "Case®, NP, f);
DECL CurrentStatementFORM BYVAL f;
7 middie;
CP<-CP-1;
7 tail;
END;

EndRewrites;

B-26

o Gug by b oom wng TR B T W B

T s g i v e i St Pt i«

Module <Analyzel(Application is Abstract) @ 61> Scope(ProcessCASE)

7-2 iterator(s)

Rewrites
(ForEachCASEArm $8 a in §8$ f REPEAT 7? body END) <->
BEGIN
(83 a).Resuit <-> ($3 a).arg2;
{ForEachControlElement 8 e in ($8 a).Contral
REPEAT ?7? inner\body END) <->
BEGIN
(83 ¢).Tests <> t\.CAR;
(88 o).Predicate <-> t\.argl;
DECL t\:FORM BYVAL (88 a).argl.args;
REPEAT
t\ = NIL => NOTHING;
7 inner\body;
t\ <- 1\.COR.CDR;
END;
END;
DECL g\:;FORM BYVAL (83 f).CDR.CDR.COR;
REPEAT
g\ = NIL => NOTHING;
CurrentStatement <- g\.CAR;
DECL 3% a:FORM SHARED g\.CAR;
7 body;
ControiStack[CP]1StatementCount <- =
ControiStack[CP1StatementCount + 1;
8\ <- 8\.COR;
END;

END;
EndRewrites;

™

Module <AnalyzeI(Application is Abstract) @ 61> Scope(ProcessEXPR) B-28

.

Pttt bbbt bbbt bbb bbbt bttt PrOCOSSEXPR 444ttt ttttttttbtbtbdtbtitdt
8-1 EnterAndLsave(s)
Comment
In order to provide context for the client tool, we here provide a control stack entry for
both the EXPR as a whole (when we are processing the formais and the result mode) and
for the body itself.

EndComment;

Rewrites
BEGIN
EnterEXPR(f);
7 head;
EnterEXPRBody(f);
7? body;
LeaveEXPRBody();
LeaveEXPR();
f;
END <->
BEGIN
(CP <~ CP + 1) + 1 GT LENGTH(ControiStack) ->
Extend(ControiStack); -
ControlStack[CP] <-
CONST(ControlStackEntry OF "EXPR", NP, f)
DECL CurrentStatement:FORM BYVAL f;
1 head;
(CP <~ CP + 1) GT LENGTH(CantraiStack) ~>
Extend{ControiStack);
ControlStack[CP] <-
CONST(ControlStackEntry OF "EXPRBody", NP, f.arg3)
CurrentStatement <- f.arg3;
2 body;
NP <- ControlStack[CP - 1]N\P;
CP<-CP -2
f;
END;

EndRewrites;

Ol o ond oed sond GEf TN WE N W B >

Module <Analyzel(Application is Abstract) @ 61> Scope(SystemNames) B-29

bbbttt bbbttt bttt t+ SystamNames +++tt ittt it ittt ittt rii it
9-1 ProcessSystemProcsdureApplication
Comment

This procedurs is called when f == g(al, ., an) and g names a system defined procedurs.
If g is a quoting operator we simply return f and if g is not a rewrite operator we process
the list of arguments and return f.

If f == §§ x Or f == 7? x, we procure the binding of the match variable and process it.

if {is a rawrite, we verify that we are not currently processing an interpretation (rewrites
not being permitted within analogies) and, if not, note that we are sntering a rewrite (via a
control stack entry), process the pattern to introduce the match variables occurring in the
pattarn into the environment, and then call ProcessExpression on the replacement (that is,
f.arg2). CurrentStatement is aiso set to be the rewrite being procsssed.

EndComment;

ProcessSystemProcedursApplication <-
EXPR(f:FORM; FORM)
CASE[f.op]
("<*} ["QL"] ["QUOTE"] => f;
(887 =

[) ProcessExpression(MatchBindingFar(f)); f (3
M) =
BEGIN
ForEachStatement s
in CONS(NIL, MatchBindingFor(f))
REPEAT ProcessExpression(s) END;
f;

f<->"} ['<-->'] ->
BEGIN
Withininterpretation =>
BEGIN
ErrorToUser("
A rewrite is not permitted within an analogy; it is being ignored's;
NIL;
END;
EnterRewrite(f);
ProcessRewritePattern(f.argl);
DECL CurrentStatement:FORM BYVAL f;
ProcessExpression(f.arg2);
LasveRewrite();
f
END;
TRUE =>) ProcessList(f.args)k f (}
ENG;

o0 ond e ooy ong TN DD OGN N G Ssvvy oo ewe eosw o S SO G

- WH G e WP W

——— [y

ol end

Module <Analyzel(Application is Abstract) @ 61> Scope(Interpretations) B-30

+rrrrb bttt bbb btrtbrtet+ Intorprotations s+ttt tritt ittt bibtrieit
13-1 Scope
Comment

Recail that by an “interpretation® we mean the construct that, in accordance with some
analogy, is to be processed in liu of the abstract construct that actually apapeared. In
order to determine whether a given construct being processed is, in fact, explained by
some analogy, we employ the faciiities available in the REWRITE package to do the job. If
the pattern part of some anaiogy does match the current construct, the match variables of
the ansiogy will be pushed onto the name stack in a partition associated (via the controi
stack) with the current interpretation. Detailed comments regarding the several constructs
invalved follow.

EndComment;

10-2 Interpretation
Comment

By an interpretation we mean a FORM that is being treated specially; thus an extende mode
based on FORM is employed.

EndCommaent;

Interpretation <~ "Interpretations” z FORM;
10-3 Nullinterpretation <- CONST(Interpretation)

10-4 FindinterpretationFor
Comment

To dstermine whether the current construct , f, has an interpretation (that is, is matched
by the pattern part of some currently active analogy) we call an LookUpRewrits (exported
by the REWRITE package) giving it both the current FORM, f, and the set of analogies
currently applicable. It is here assumed that the client tool (FUI) creates and manages the
set of analogies currently apopilicable and has the variable named CurrentAnaiogies
appropriately bound. If the match is not successful, LookUpRewrites returns NOTHING and,
if successful, returns the repiacement part of the analogy matched. FindinterpretationFor
then either returns the Nuilinterpretation or lifts the replacement part to be an
interpretation.

EndComment;

FindinterpretationFor <-
EXPR(f:FORM; Interpretation)
<< BEGIN
DECL 1XONEOF(NONE, FORM) LIKE
LookUpRewrite(f, CurrentAnaiogies)
| = NOTHING => Nullinterpretation;
UFT(, interpretation);

. o —a

- - s s e - = - - -

Module <Analyzel(Application is Abstract) @ 61> Scope(Interpretations) B-131

END;

10-5 Interpret
Comment

A control stack entry is made to record the fact that we are within an interpretation. The
match variables and their associated bindings are returned by LookUpRewrite as a list (of
OTPRs named GlobaiBindList) whose CARs point to a DTPR whose respective CAR and CDR
are the match variable name and the matching construct. Thess are pushed onto the name
stack and GlobalBindList set to NILL We then process the interpretation (with special
consideration for the Raised block construct). Finally, we pop the control and name stacks.

EndComment;

Interpret <-
EXPR(f:FORM, T:interpretation; FORM)
BEGIN
(CP <- CP + 1) + 1 GT LENGTH(ControlStack) ->
Extend{ControlStack);
ControlStack[CP] <-
CONST(ControlStackEntry OF “Interpretation™, NP,)
ForEachlListElement & in GlobalBindList
REPEAT PushNameAndBinding(e.CAR, e.COR) END;
GlobaiBindList <- NIL;
BEGIN
IsRaisedBiock(T) =>
BEGIN
T.argl.argl.op # “Analogies” =>
Processlist(7.RaissdBlockContents);
DECL TemporaryAnalogies:AnalogySet;
AddToAnalogySet(Temporary Analogies,
T.argl.argl.args)
PushAnalogiss(TemporaryAnalogies,
CurrentAnalogies);
Processlist(T.argl.args.args)
PopAnalogies(CurrentAnalogies);

END;
T.op & "BEGIN® OR T.argl.op # "Analogies” =>
ProcessExpression(LOWER(T));
DECL TemporaryAnsiogiss:AnalogySet;
AddToAnslogySet(TemporaryAnalogies, T.argl.argsh
PushAnalogies(TemporaryAnalogies, CurrsntAnu.ogies)
ProcesslList(T.args.args)
PopAnalogies(CurrentAnalogies);
END;
MF <~ ControiStack[CPINP;
CP<-CP - };
fi
END;

Rewrites
Interpret 88 f as $8 T <-> interpret(f, T

- PR —— T

—— i e

— L ———

esd G GO e N N —

Y

Module <Analyzel(Application is Abstract) @ 61>

EndRewrites;

10-6 R

Rewrites
IsRaisedBlock($$ T) <->
MD(VAL($$ T)) = DTPR AND ($8 T).CAR = “RAISE";

(38 T).RaisedBiockContents <-> ($$ T).CCRCAR.CDR;

Withininterpretation <->
FOR ¢ FROM CP BY - |
REPEAT
c = 0 => FALSE;
ContraiStack{c]1Type = “Interpretation™ => TRUE;
END;

EndRewrites;

Scope(Interpretations)

bbb bbbttt bt bbb bbbttt ProcesSROWrite “Fattdtttrtttdibtb bbbttt

11-1 EnterAndlLsave(s)

Rewrites
BEGIN
7 head;
EntsrRewrite(f);
7 body;
LeaveRewrite();
7 tail;
END L=>
8EGIN
?? head;
(CP <~ CP + 1) + 1 GT LENGTH(ControlStack) ->
Extend(ControiStack);
ControlStack[CP] <-
CONST(ControiStackEntry OF "Rewrita”, NP,)
7 body;
NP <- ControiStack[CP1NP;
CP«<-CP-1;
7 tail;
ENG;

EndRewrites;

11-2 ProcessRewritePattern <-
EXPR{Ihs:FORM)
BEGIN
ths « NIL => NOTHING;
isMatchVariable(lhs) =>

B-32

— U NN ey W O ~—

s’

Module <Analyzel(Application is Abstract) @ 61>

HaveRewriteBindingFor(lhs.argl) +>
PushNameAndBinding(lhs.argl)
MV(ihs) = DTPR => NOTHING;
ForEachListElement e in Ihs
REPEAT ProcessRewritePattern(e) END;
END;

11-3 HaveRewriteBindingFor <-
EXPR(Name:FORM; BOOL)
<< BEGIN
ControliStack[CP + 1] <~
CONST(ControiStackEntry OF NIL, NP);
FORc FROMCP BY - 1
REPEAT
¢ = 0 => FALSE;
ControiStack[c]1Typs = "Rewrite” >
FOR np FROM ControiStack[c + 1JNP BY - |
TO ControlStack{cINP + 1
REPEAT
NameStack[np]Name = Name =>
RETURN(TRUE);
END;
END;
END; =

11-4 WithinRewrite

Rewrites
WithinRewrite <->
FOR ¢ FROMCP BY -}
REPEAT
c = 0 => FALSE;
ControlStack{c1Type = "Rewrite” => TRUE;
END;

EndRewrites;

WithinRewrite <~
MACRO(; BOCL)
FOR c FROMCP BY - 1
REPEAT
¢ = 0 => FALSE;
ControiStack{c]1Types = "Rewrite™ => TRUE;
END;

11-5 isMatchVarisble <-
MACRO(f:-FORM; BOOL)
MD(VAL(f)) = DOTPR AND (f.CAR = “$$" OR {.CAR = "7**);

Scope(ProcessRewrite)

B-33

T

e i -

Module <Analyzel(Application is Abstract) @ 61> Scope(ProcessMatchVariables) 34

ProcessMatchVariables +++++++

++

12-1 NonAtomicName <-
EXPR(Name:FORM)
BEGIN
MV(Name) = DTPR AND Name.op = "$$° =>
BEGIN
Withininterpretation =>
Name <- MatchBindingFor(Name);
WithinRewrite => NOTHING;
END;
ErrorToUser("
The non-atomic quantity °, Name,

ey wad SN U

appears in a context where an identifier is required.’);

END;

12~-2 MatchBindingFor <-
EXPR(f:FORM; FORM)
FORM <<
BEGIN
CantrolStack[CP + 1] <~
CONST(ControiStackEntry OF NIL, NP)
FORc FROMCPBY - |1
REPEAT
¢ = 0 => [) HavalinknownAtom(f); NIL (}
BEGIN
ControiStack[c]Type = “Intarpretation” =>
FOR np FROM ControiStack[c + 1JNP BY - 1

TO ControiStack[cINP + 1

REPEAT

NameStack[nplName = f.argl >
f <- NameStack[np]Binding;
IsMatchVariabie{f) »> RETURN(f);
END;
ControiStack[c]1Type = "Rewrite” =>
FOR np FROM ControiStack[c + 1JNP BY - 1

TO ControlStack[cINP + 1

Aeed e G BB w B OB

REPEAT
NameStack[nplName = f.argl =>
RETURN(NILY;
END;
END;
END;
- END;
E
[
k.

ol vy td e e oa W N = W e

Module <Analyzel(Application is Concrete) @ 40> B-35

1 Moduie
Comment
This module providss a refinement to Analyze (plus AnalyzeGeneral)) that is appropriate
for analyzing concrete £L.1 and is usabie by the Package and Synonym toois. No record of
the current context will be kept (other, of couse, than the stack of names local currentiy
local) but we will permit the analyzer to be called recursively (as is necessary for the
Package tool). This is accomplished by mechanisms that protect the local name

environment of one cail from subsequent recursive calls on ProcessAttributeVaiue. Further
commentary is provided with the various constructs being defined.

EndComment;

Module has Uses(Analyze, ListUtilities);

2-1 NameStackEntry <- STRUCT(Name:FORM);

2-2 iterator(s)
Comment

To accomodate recursive calls on ths analyzer, a variable named NPBottom will be

introduced to hold on to the current “bottom” of the NameStack. The iteration over the

“reiavant” NameStack entries is therefors over those indexed by NPBottom, NPBottom + 1,
NP,

—

EndComment;
Rewrites
(ForEachRelevantNameStackEntry 88 j REPEAT 7? body END) <->
FOR j FROM NP 8Y - 1 TO NPBoattom REPEAT ?? body END;
EndRewrites;
2-3 NonAtomicName <-
MACRO(atom:FORM)
ErrorToUser(
The non-atomic quantity °, atom,

appesrs in a concrete context where an .dentifier is required.");

- —

— s e ud ONE

A o

o G ooy od oy ong TR A o W0 Y

Module <Analyzel(Application is Concrete) @ 40> Scope(BasicProcessing) B-36
AaAaaans BasicProcessing +++tttttttttrtibibibbibss

3-1 ProcessExpressionChanges(s)

Rewrites
BEGIN
7 heed;
DECL Tinterpretation LIKE FindinterpretationFor(f);
T » Nullinterpretation => Intarpret f as T;
7 tail;
END <-> [) ?? head; ?? tail (}

EndRewrites;

3-2 ProcessAttributeVaiueChanges(s)

Rewrites
D 2 head; InitializeNameStack()s ?? tail (] <->
8EGIN
7 head;
DECL NPBottom:NT BYVAL NP + 1;
7 tail;
NP <- NPBottom - 1;
END; =

EndRewrites;

bbbt bbbttt Statementiteration +4ettbrrdttrt ittt s
4-~1 lterator(s)

Rewrites
{ForEachStatement 88 s in $§ f REPEAT ?? body END) <->
BEGIN
DECL f\:FORM BYVAL §$ f;
REPEAT
f\.COR = NIL => NOTHING;
f\ <- A\.COR;
DECL $8 s:FORM SHARED f\.CAR;
7 body;
END;
END;

EndRewrites;

Fe xsﬁgﬁ_. A
. b - el

LT o O SN SN SN SR

' Module <Analyzel(Application is Concrete) @ 40> Scope(ProcessBEGIN) B-37

' bbbttt bttt bbbttt ProcessBEGIN +rtttttt ittt st tsttdistist
§5-1 EnterAndLsave(s)

] Rewrites

D EnterBlock(f); 7 body; LeaveBlock(); f (] <->
BEGIN

' DECL SavedNP:INT BYVAL NP;

‘ ? body;

‘ NP <- SavedNP;
f;

ENG;

EndRewrites;

bbb bbb bbbbr bbb tbbbrttt Processiterator ++ttttttdttttetttbbidtis

' 6-1 EnterAndLeave(s)
Rewrites
D EnterLoop(f); ?* body; LeaveLaop() (] <->
[) DECL SavedNPINT BYVAL NP; 7? body; WP <- SavedNP (}

EndRewrites;

bbb b rbbbtbb bttt bbbbbttttt ProCessCASE +ttttttttbidbdtsdidttddibtd

7-1 EnterAndlLeave(s)

Rewrites

BEGIN
7 heads
EnterCASE(f)
7 middle;
LoaveCASE();
¢ tail;

END <-> [) 7 head; ? middle; ?? tail (3

EndRewrites;

g e bed vemd eeed omi W G S G wwe

—

St

) g med eeed s o W GEN G @B e

Module <Analyzel(Application is Concrete) @ 40> Scope(ProcessCASE)

7-2 iterator(s)

Rewrites

(ForEachCASEArm $8 a in §8 f REPEAT ?? body END) <~>

BEGIN
($8 a)Result <-> ($8 a).arg2;

(ForEachControiElement $8 e in (88 a).Control

REPEAT ?? inner\body END) <->
BEGIN
(88 o).Tests <-> t\.CAR;
(88 o).Predicate <-> t\.argl;
DECL t\:FORM BYVAL (88 a).argl.args;
REPEAT
t\ = NIL => NOTHING;
7 inner\body;
t\ <- t\.CORCDR;
END;

END;
DECL g\:FORM BYVAL (88 ¢).COR.COR.COR;
REPEAT

g\ = NiL => NOTHING;

DECL $$ a:FORM SHARED g\.CAR;

7 body;

g\ <- g\.COR;

ENDG; -

END;
EndRewrites;

f

a

Module <Analyzel(Application is Concrete) @ 40> Scope(ProcessEXPR) B-39

SErb bttt bbb bbbt bbb tbtt PrOCOSSEXPR 4ttt dtdddtdtbiditbdttt bttt
8-1 EnterAndLasave(s)

i Rewrites
3, BEGIN
¢ i Eﬂt.r EXPR(fk
{ 7 hesd;
I EnterEXPRBody(f);
7 body;
| LeaveEXPRBody()%
i LeaveEXPR()%;
f;
‘ END <->
BEGIN
DECL SavedNP:INT BYVAL NP; :
1? head;]
: . 7 body;
I NP <- SavedNP;

f;
ENG;

EndRewrites;

bbbt bbbttt bbbttt SystemNames +itetttttddbditttitittitts

9-1 ProcessSystemProcsdureApplication <~
EXPR(fFORM; FORM)
CASE[t.op]
("<"} (°QL"} ["QUOTE"] = £
(887 [77°) (<>} ["<—>"] =
D NonConcreteConstruct(f); f (3
TRUE => [) ProcesslList(f.args); f (}
END;

9-2 NonConcretsConstruct <~
MACRO(f:F ORM; FORM)
ErrorToUser(’
The following non-concrete construct is being ignored: °,
th

‘ Module <Analyzel(General) @ 34> B-40

1 Module
Comment

This moduls provides a collection of refinements for various of the abstract constructs
employed in Anslyze. By gensral, hers, we mean refinements that will be appropriate
independent of the particular application for which we are refining the model. For the
mast part these rafinements have to do with defining the abstract iterators and selectors
in tarms of the concrete internal representation of EL1. In addition, there are refinements
fo dealing with system names; these are commented upon when they are dsfined.

EndComment;

Module has Uses(Analyze, ListUtilities);

’ } bbbt bbb bbb bbbt bttt BasiCProcassing ++vretettiitbibib bbb et

| 2-1 IsConstant(s) <~
MACRO(fFORMs BOOL)
BEGIN
$ = NIL. => TRUE;
DECL M:MODE LIKE MD(VAL($)%
M = INT OR M = REAL OR M = REF OR M = DDB;
END;

2-2 Isidentifier(s) <- MACRO(f:FORM; BOOL) MIXVAL(f)) = ATOM;

+ebtbrbrtrtr+++ ProcassModeAndComponentsSpecified +4+4+++tttttitirrs

3-1 ProcessModeAndSpecfor(s) <-

——
eseey G G we=d @G =

MACRO(d:F ORM)
) BEGIN
o /s’ d == (vars md BC sl _ sn);
‘ ProcessExpression(d.COR.CARY);
d.CORCOR # NIL -> ProcesslList(d.CORCDR.CDR);
bt ENG;

PN

Module <Analyzel(General) @ 34> Scope(Processlterator) B-4]

bbb bbbt bbb bbbt bbb brts Procossitorator +++tttdstttttttrbrtttittss
4-1 iterstor(s)

Rewrites
(ForEachiterstorElement 88 o in $8 f REPEAT 7 body END) <->
BEGIN
sBody(§8 @) <-> (§8 ¢).CAR = "REPEAT™;
kiteratorVariabieSpec($$ @) <-> (88 #).CAR = “FOR";
(88 o).teratorVariable <-> ($$ e).2rgl;
(38 @).Spec <-> (88 @).argl;
DECL 8$ o:FORM BYVAL (88 1).COR;
$$ ¢ = NIL => NOTHING;
REPEAT
7 body;
(88 9).CAR = "REPEAT” => NOTHING;
$3 o <~ (38 o).CORCOR;
END;
END;

EndRewrites;

Fhrttb b bbb bttt bbb bbbttt ProcesSDECL 4+ttt tstttbdttbttddtttttes
5-1 Iterator

Rewrites
{ForEachDECLElement 88 d in §8 f REPEAT ?? body END) <->
BEGIN
(FarEachLocalName 38 n in 88 d
REPEAT 7? inner\body END) <->
BEGIN
DECL n\;FORM BYVAL (88 d).CAR;
REPEAT
n\ = NIL => NOTHING;
DECL 38 n:FORM SHARED n\.CAR;
n\ <- n\.COR;
7 inner\body;
END;
ENG;
DECL f\:FORM BYVAL ($8 f).COR;
REPEAT
f\ = NiL => NOTHING;
DECL $8 d:FORM LIKE f\.CAR;
7 body;
f\ <- f\.COR
ENDx
END;

EndRewrites;

Module <Analyzel(General) @ 34> Scope(ProcessDECL) B-42

ettt bbbt bbb bttt ittt ProcesSSTRUCT +adtdttttdtttdtdtitdtttttt
6-1 ftterator(s)

Rewrites
(For€achSTRUCTMode $8 m in §8 S REPEAT ?? body END) <->
BEGIN
DECL m\:FORM BYVAL (88 S).COR;
REPEAT
m\ = Nil. => NOTHING;
1 DECL $8 m:FORM SHARED m\.CARargl;
7 body;
m\ <- m\.COR;
END;
END;

EndRewrites;

Thbr bbb bbbt bbb bbbttt ProcesSCASE +++++ttttdtdttttitbtitttitt
7-1 General(s)

Rewrites
(88 f).CASEResiations <-> (§8 fl.argl;

(88 f).CASEArguments <-> ($$ f).arg2;

EndRewrites;

bbbttt bbb bbbt tbt+ ProcassDoubleColon ++ttttdttttt bttt ttbttis

8-1 SpecifiesUserBehavior <-
MACRO(f:FORM; BOOL)
MV(f) = DTPR AND (f.CAR = "<* OR f.CAR = "QL");

s ——— e = - - e e -
— e T o ga———— = - . s~ - - -
_—y
Seiciatemdtha i o, . B e

Module <Analyzel(General) @ 34> Scope(ProcessPROC)

‘ Pt bbbt r bt ettt t bbbt ttttdttt ProcessPROC +4+tttttdbttttttttttttsbtts
9-1 iterator

| Rewrites
: (ForEachFormaiMode $8 m in $8 f REPEAT ?? body END) <->
BEGIN
DECL q:FORM BYVAL (88 f).CDR.CAR;
REPEAT
q = NIL => NOTHING;
DECL $8 mFORM SHARED q.CAR.CAR;
j 7 body;
g <- q.COR;
END;
END;

EndRewrites;

Shrb bbbttt bt btrbtbitttt ProcassEXPR ¢+ttt tttbttdtbittttttbtttt
10-1 iterator

Rawrites
(38 f).ResultMode <-> (88 f).arg2;

(88 f).Body <-> ($8 f).arg3;

(ForEachFormal $8 d in $8 f REPEAT 7? body END) <->
BEGIN
(8 d).Name <-> ($8 d).CAR;
DECL h\:FORM BYVAL (8§ f).argl;
REPEAT
h\ = NIL => NOTHING;
DECL $8 d:FORM SHARED h\.CAR;
7 body;
h\ <- h\.COR;
END;
ENG;

EndRewrites;

4P E bbb bbbttt ib bttt SystomNames s+ttt bbbttt t ittt bbbt dbis
11-1 Scope
Comment
This scope provides an implementation of the handling of system names via a hash table.

EndComment;

o o e ooy oeod ol T N S OO BN

; e - v e —————————- - 1
- AP ————— ~ . _

L e T

——

ol et ows eonv oo ol N S S WH W e

Module <Analyzel(General) @ 34> Scope(SystemNames)

11-2 IsSystemProcedure <-
MACRO(p:FORM; BOOL) FINDHASH(SystemNames, p, TRUE);
11-3 SystemNames
SystamNames <- CONST(HASHTABLE);

Initialization
InitializeSystamNames();

Endinitialization;

Module <Analyzel(General) @ 34> Scope(SystemNames) B-45

11-4 InitializeSystemNames <-
EXPR()
BEGIN
SystemNames <~ MAKEHASH(FORM, BOOL, 150, 80)
OECL L:FORM LIKE
LIST("<", "QL", "QUOTE", “$8", "77", "<->",
.<—q>.. --‘.. .h.’ -<--’ .->., -->.' .’>l,
">, °[*, "FOR", "FINDHASH", "MAKEHASH",
"MEMBHASH", "FLUSHASH", "REHASH", "SIZE",
"MD", "VAL®, "+, "SUM", *-", "DIFF", "s",
“PROBUCT™, */%, "QUOTIENT™, "=", "EQUAL", "»",
“NEQUAL®, "AND", "OR", "NOT", "RETURN", "GE",
*GT", "LE", “LT", "CAR", "CDR", "PRINT",
“PFORM®, "READ", "MAKEPF", "INCHAR",
"OUTCHAR®, "INOBJ", "OUTOBJ", "BASIC\STR",
"LEX", "PARSE", INFIX®, "PREFIX", *NOFIX",
"FLUSHFIX"®, "RETURN", "HASH", "LENGTH",
"COVERS", "CHAR\INT™, “INT\CHAR", "LIFT",
"LOWER"®, "STINT", "STREAL", "REAL\STR",
"DRAIN", "PORT\STR", "OPEN", "CLQSE", "LOAD", o
“LOADB"®, "ASSERT", "RECLAIM", "RTIME", !
"GCTIME™, "SAVE", "RESTORE", "COMPLETE", :
“TECQ", "MAKE", "BREAK"®, "CSREC", "NSREC",
"PEEK", “POKE", "FLUSH", "LOCATE", "RESET",
“CONT", "STACKS", "STEP", "RETBRK",
“CONSTRUCT", "DIMENSIONS®, "STRUCT™, "PTR",
"ONEOF*, "PROC", "SEQ", "VECTOR", "SELECT™,
"RENAME", "SETBYTE", "MATCHFIX", "PACKOBJ",
"REVIVEPORT®, "CONS", "MAKEFORM", "LISTCOPY™,
"USTEQUAL", "LISTAPPEND"®, "LIST™,
"LISTSUBST™, "SYNFIX", "CIPORT", “COPORT",
"PIPORT", "POPORT™);
REPEAT
L = NIL => NOTHING;
FINDHASH(SystemNames, LCAR) <- TRUE;
L <- L.COR;
END;
END;

Table Of Contents

Analyzel(Application is Abstract) @ 61

Anslyzal(Application is Concrete) @ &

Anslyzei(Application is Abstract) @ 61

Analyze @ 56

Aralyzei(Application is Abstract) @ 6!
Analyzel(General) @ 34
Analyzel(Application is Abstract) @ 61
Analyze @ 56

Analyzei(Genera() @ 34
Analyzei(Application is Abstract) @ 61

Anslyze @ 56
Anslyzel(Genersl) @ 34

—

Ansiyze @ 58

Analyzel(Applicstion is Abstract) @ 61
Analyzs @ 56

Analyzei(Genersi) @ 34
Analyzai(Application i Abstract) @ 61
Analyzei(Ganersi) @ 34

Analyzei{Application is Abstract) @ 81

Analyze{(Genarsl) @ 34

Analyzei(Appiication is Concrete) @ 40

Amlyze @ 56
Analyzei(Applicstion is Concrets) @ 40
Aralyzs @ 56

Amalyze @ 58
Anslyzei(Appiication is Abstract) @ 81
Analyzel{Applicstion is Concrets) @ 40
Aralyzs @ 56
Anslyzel{Appiication is Cancrete) @ 40
Anslyze @ 58

2-2 « ControiStack of NameStack

2-4 + ControfStackEntry of NameStack
2-3 + ControiStackSize of NameStack
2-5 « CP of NameStack

11-1 EnterAndLesve of ProcsssRewrite

13-2 EnterEXPR of ProcessEXPR

13-4 EnterEXPRBody of ProceseEXPR

10-2 Enterloop of Processiterator

3-10 ErrorToliser of BesicProcsesing

10-4 . FindinterpratstionFor of interpretations
7-1 Genersi of ProcessCASE

11-8 » HeveRewriteBindingFor of ProcessRewrite
3-7 HavelinknownAtom of BasicProcessing
11-4 . |nitisizeSystemNames of SystemNames
10-5 « Interpret of interpretations

10-2 « Interpretation of Interpretations

3-4 lsConstant of BucPwmg

2-1 «1sC t of BesicPro L 4

2-2 . isldentifier of BasicProcessing

3-3 isldentifier of BasicProcassing

2-8 + islocaiName of NemsStack

11-5 « lsMatchVarisbie of ProcsssRewrite
{4-1 isSystamProcedure of SystemNemes
11-2 + lsSystemProcedure of SystemNames
4-1 iterator of Statementiterstion

10-1 herator of ProcessEXPR

9-1 iterator of ProcessPROC

2-8 herator of NameStack

4-1 ltarator of Processiterator
7-2 herstor of ProcessCASE
4-1 hterator of Statementiterstion

6-2 LasveBiock of ProcessBEGIN

13-3 LewveEXPR of ProcessEXPR

13-8 LeaveEXPRBody of ProcsssEXPR

10-3 Lssveloop of Processiterstor

2-9 ¢ LocaiNameeType of NemeStack

12-2 « MatchBindingFor of ProcessMatchVariables

1 Moduie
1 Maduile
1 Madule
1 Moduls

2-6 « NameStackEntry of NemeStack

2-4 NameStackEntry of NemeStack

2-1 « NameStackEntry of NameStack

2-3 « NemsStaciSige of NameStack

12-1 « NonAtomicNems of ProcassilatchVerisbles
2-3 « NonAtomicNama of NemaStack

2-7 NonAtomicNeme of NemaStack

3-2 « NonConcreteCanstruct of SystemNames
2-8 « NP of NemeStack

Table Of Contents B-47

Anslyzel(Application is Abstract) @ 61 10-3 « Nuliintarpretation of interpratations

Analyze @ 56 3-8 « ProcessAttributeValue of BesicProcsesing
Arslyzsi(Application is Abstract) @ 81 32 P AttributeVakeChenges of BasicProcessing
Amlyzsi{Appiication is Concrate) @ 40 3.2 ProcsssAttributeVaiueChanges of BasicProcsssing
Anelyze @ 58 3-9 ProcsesBehaviorfunctions of BasicProcessing

3-2 ¢ ProcessExpr of BasicPn ing
Anslyzel(Application is Cancrete) @ 40 3-1 ProcessExpressionChenges of BasicProcessing
Analyzel(Applization is Abstract) @ 61 3-1 ProcessExpressionChenges of BasicProcessing
Analyze @ 58 3-5 « Processlist of BasicProcessing

4.1 ProcsssModeAndSpecFor af ProcssshiodeAndCamponentsSpecified
Anslyzel(Genarsi) @ 34 3-1 «+ ProcsssModeAndSpecFor of ProcessModeAndComponentsSpecified
Analyzel{Application is Abstract) @ 61 11-2 « ProcsssRewritePattern of ProcessRewrite
AnslyzsiApplication is Concrete) @ 40 -1 s+ ProcessSystemProcadureAppiication of SystemNemes
Anslyzs @ 56 14-2 ProcessSystemProcadureApplication of SystemNames
Anslyzei(Application is Abstract) @ 81 3-1 « ProcessSystemProcadureAppiication of SystsmNames
Anslyze @ 56 3-8 ProcessUserProcedursiApplicstion of BesicProcassing

2-8 + PushloceiNems of NameStack
Anslyzei{Appiication is Abstract) @ 81 2-7 « PushNameAndBinding of NemeStack

10-8 R of Interpretations
Analyzel{General) @ 34 11-1 Scope of SystemNames
Analyzei(Appiication is Abstract) @ 61 10-1 Scope of Interpretations

2-1 Scope of NameStack
Anziyze @ 58 3-1 Scope of BasicProcessing

Anslyzel{Genersl) @ 34 8-1 -« SpecifissliserBehavior of ProcessDoubleColon
Anslyzel(Application is Abstract) @ 61 11-4 « WithinRewrite of ProcessRewrite

Appendix C
FUI: Find Undefined Identifiers

<FUlaS4>

1 Module

i Module has Uses(ANLZA[2] Utilities, ListUtilities);

: Module has
. ExportedSyntax(EquatePhrases(’$$ x Isin 88 S°,
BWx + 8
Anaslogies

BxsinsS<P DS

———

EndAnalogies;

bbb b ettt IntOrfaca TOANalYZE +++tdddtdtddttttiitrttt

2-1 Analyze <-
EXPR{CurrentEntityName:EntityName,
Value:FORM,
Globais:Set(EntityNsme),
FressList:FORM SHARED,
CalleesList:FORM SHARED)
BEGIN
{CP <- CP + 1) GT LENGTH(ControlStack) ~>
Extend(ControiStack);
ControlStack{CP] <-
CONST(ControiStackEntry OF NIL, NP, Valus)
ProcessAttributeVaius(Value, AnailyzeHavetinknownAtom,
AnalyzsProcessUserProcadureApplication,
AnalyzeProcessBehaviorfunctions,

- ——————— —_——— .

. AnalyzetrrorTolser);
NP <- ControlStack[CP1NP;
i CP<«CP-1;
END;

2-2 AnalyzeHaveUnknownAtom

AnealyzeHaveUnknownAtom <-
EXPR(atom:FORM; FORM)
BEGIN
atom isin Globals => atom;
MakefreseVariableEntryFor(FreesList, atom);
atom;
END;

T ————
G ey ooy wwy oed ol SR N AN N

" ! - n-.m

'
e i

Module <FUI @ 54> Scope(InterfaceToAnalyze) C-1

AnaiyzaHaveUnknownAtom has
KnownFrees(Globals:Sst(EntityName), FreesList:FORM);

2-3 AnalyzeProcessUserProcadureApplication

AnalyzsProcessUserProcedureAppiication <-
EXPR(f:FORM; FORM)

BEGIN
DECL op:FORM LIKE f.op;
AnalyzeHaveUnknownAtom{(cp)
Append op To CalleesList;
ProcessList(f.args);
]

END;

AnalyzeProcessUssrProcsdureApplication has
KnownFrees(CalleesList:FORM);

2-4 AnalyzeProcessBehaviorFunctions

AnalyzeProcessBehaviorFunctions <-
EXPR(f:FORM)

BEGIN -
[#° t == < ShortName, UF1(nl), . >
DECL ShortName:FORM LIKE f.argl;
FortachListArgument a in fargs

REPEAT
DECL op:FORM LIKE a.op;
ValidBshaviorfunction(op) +
NoteUnknownBehaviorFunction(Freeslist,
ShortName, op);
DECL atom:FORM LIKE a.argl;
BEGIN
lsldentifisr(atom) =>
AnsiyzeHaveUnknownAtom(atom);
IsConstant(atom) => NOTHING;
Error();
END;
END;
END;

AnslyzeProcsssBehaviorFunctions has
KnownFrees(FreesList:FORM);

~—~ wupi W NER T R A eew e oaw ay SN SN W R

4 2-5 ValidBehaviorFunction

ValidBshaviorFunction isa Procsdure{opFORM; BOOL) -~
Returns TRUE iff op names a behavior function.

L

—d

ST T T—— Y T

R e eayd e o ond U GO N B A ——

Module <FUI @ 54> Scope(InterfaceToAnalyze) C-2

2-6 AnalyzeErrorToUser

AnaslyzeErrorToUser <- ‘
EXPR{Laft:STRING, f:FORM, Right:STRING)

[) PRINT(Laft); UNPARSFM(f); PRINT(Right) (3

AnalyzeErrorToUser has KnownFraes(UNPARSFM:ROUTINE);

2~7 MakeFreeVariableEntryfor
Comment

MakeFreeVarisbleEntryFor(FreesList, atom) constructs and adds to Freeslist an entry
indicating that the identifier named atom occurs free in the construct currently being
anslyzed. 1t does this by tracing back the control stack entries to construct a “template”
for the current construct that indicates where in the construct atom occurs free. The |
variable named CursniStatement is asumed bound to the particular statement currently
being analyzed (tyhe control stack not having granularity finer than a block, loop, or case.

EndComment;

MsakeFreeVariableEntryFor <-
EXPR(FreesList:FORM SHARED, atom:FORM)
<< BEGIN -
ForEachListArgument a in FreesList
REPEAT
aargl = atom =>
BEGIN
aargl <- LIST(atom, 2)%
aarg2 <- Abbreviate(a.arg2);
RETURN);
END;
aargl.op = atom =>
BEGIN
aargl.argl <- LIST(VAL(a.argl.argl) + 1)
RETURN();
END;

END;
DECL Result:FORM LIKE LIST("within®, atom, NIL);
DECL Fill:FORM BYVAL Resuit.args;
<< BEGIN
FOR ¢ TO CP
REPEAT
CASE[ControiStack[c]Type]
[Block™] =>
BEGIN
DECL R:FORM BYVAL ControlStack[clf;
¢ GT 1 AND
ZTontroiStack[c - 11Type =
“Intsrpretation” ->
R <- ControiStack(c - 11f;
DECL Count:NT LIKE
ControiStack[c] StatementCount;
FilLargl <-
BEGIN

ol om) owy oy oud BE NN A R TR o

Module <FUI @ 54> Scope(laterfaceToAnalyze)

Count 8 0 =>
UST(R.op,
LIST("..",
ALLOC(INT LIKE
Count)), NiL);
LIST(Rop, NIL)

END;
FORjFROMc -1BY -1
REPEAT
j = 0 => NOTHING;
DECL t:SYMBOL LIKE
ControlStack[j} Type;
t = "Case” =>
BEGIN
DECL p:FORM BYVAL
ControiStack[j]1f.args.args.args;
TO ControlStack[j] StatementCount
REPEAT p <- p.args END;
Fillargl <~
UST("=>", p.op.argl,
Fill.argl)
Fill <- Fill.argl.args;

ENG;
t » "Interpretation” => NOTHING;
END; -
Fill <~
BEGIN
Count » 0 => FillLargl.args;
Fill.argl;
END;

END;
["Case”] =>
BEGIN
DECL RFORM BYVAL ControiStack[c]f
¢ GT 1 AND
ControiStack[c - 11Type =
“Interpretation® ->
R <- ControiStack[c - 11
DECL Count:NT LIKE
ControlStack[c]StatementCount;
BEGIN
Count » 0 =>
BEGIN
FilLargl <-
LIST("CASE", NIL, NiL,
us-r(lo-,
UST(T", NiL,
NL),
LIST("..", Count)),
CONS())
Fiill <-
Fill.argl.args.args.args;
END;
Fitl.argl <-
LIST("CASE", NIL, NIL, CONSOX
Fill <- Fillargl.args.args;

Module <FUI @ 54> Scope(InterfaceToAnalyze) C-4

b Em;
s END;
("Loop”] =
BEGIN
DECL R:FORM BYVAL ControiStack[c}f;
¢ GT 1 AND
ControiStack{c - 11Type =
“Intarprestation” ->
R <- ControlStack(c - 11f;
DECL FillersFORM LIKE
LIST(R.CAR, RCOR.CARY
DECL LF:FORM BYVAL Filler.COR;
R <- Rargs;
REPEAT
MV(RCAR) = ATOM AND
RCARSBLK » NIL AND
RCAR.SBLK.SINFO =
"REPEAT".SBLK.SINFO =>
NOTHING;
R <- RCDR;
LF <- LF.CDR <- CONS(RCAR)

END;
DECL Count:INT LIKE
ControlStack[c].StatamentCount;
LF.CDR <- =
BEGIN
Count » 0 =>
UST(LIST("..",
ALLOC(INT LIKE
Count)), NIL)
LIST(NILY
END;
FOR j FROMc -1 BY - 1
REPEAT
j = 0 => NOTHING;
DECL t:SYMBOL LIKE
ControiStack[j1 Typs;
t = "Case” =>
BEGIN
OECL p:FORM BYVAL
ControlStack[j1f.args.args.args;
TO ControiStack{j} StatementCount
REPEAT p <- p.args END;
Filler <~
UST("=>", p.op.argl,
Filler);
ENG;

t » "Interpretation™ => NOTHING;

END;
Fill.argl <- Filler;
Fill <-
D Count = 0 => LF; LF.COR (3
END;
("EXPRBody"] =>
BEGIN
Fill.argl <-

indmatnaliach L aathd e

—r
S o b et oud et UE TR B S W0

Module <FUI @ 54> Scope(InterfaceToAnalyze)

LIST("EXPR", NIL, NONE, NIL)
Fill <~ Fill.arg1.CORCDR;
ENG;
["EXPR™] ¢ = CP =>
BEGIN
Fill.argl <~
LISTAPPEND(ControlStack[c].f);
FillLargl.arg3 <- ".%
RETURN();
END;
END;
ENG;
CurrentStatement « NiL ->
Fill.argl <~
BEGIN
NOT IsMatchVariable{Ci:-rentStatement) =>
Abbreviate(CurrentStatement);

DECL ErrorTolUser:PROC(STRING,
FORM,
STRING) LIKE

AnalyzsErrorTolUser;
Abbreviate(MatchBindingFor(CurrentStatement))
END;
END; -
Append Result To FraeslList;
END;

MakeFreeVariableEntryFor has
KnownFrees{CurrentStatement:FORM);

2-8 Abbreviats <-
EXPR(f:FORM; FORM)
BEGIN
DECL op:FORM LIKE f.op;
MV(op) ® ATOM => f;
DECL SINFO:ANY LIKE
[) op.SBLK = NIL => 0; op.SBLK.SINFO (}
CASE[SINFO]
{ BEGIN®.SBLK.SINFQ] =>
BEGIN
f.args = NiL = LIST(op);
LIST{op, Abbreviste(f.ergl), “.."%
END;
["REPEAT".SBLK.SINFQ], ["FOR".SBLK.SINFO] =>
BEGIN
DECL LFORM LIKE CONS(op)
DECL p:FORM BYVAL L;
DECL qFORM BYVAL 1.CDR;
REPEAT
p <~ p.COR <- CONS(Abbreaviate(q.CAR)}
MV(g.CAR) = ATOM AND q.CAR.SBLK » NIL. AND
Q.CARSBLK.SINFO = "REPEAT".SBLK.SINFO =>
BEGIN
qargs s NiL >
p <- LIST(Abbreviste{q.argl), "™

T —————— T T T Y

———

g aay s ow oo enf 99 U 9 WP W8 0 —-

Module <FUI @ 54> Scope(lnterfaceToAnalyze) . C-6

L
END;
q <~ q.COR;
END;

END;
["CASE".SBLK.SINFO] =>
BEGIN
DECL L:FORM BYVAL
LIST(op, Abbreviate{f.argl),
Abbreviate(f.arg2))
fargs.args.args = NIL = L;
Largs.args.args <-
LUST(Abbreviate(f.arg3), ".."%
L
END;
["EXPR".SBLK.SINFO] =>
LIST("EXPR", NiL, NONE, "_."%
TRUE => f;
END;
END;

2-9 NoteUnknownBehaviarfunction <-
EXPR(FreeslList:FORM SHARED, ShortName:FORM, op:FORM)
Append LIST("in", LIST("BehaviorFunction®, op),
ShortName) To Freesiist;

2-10 DoAnalysisOf

DoAnaiysisOf <-
EXPR(E:Entity, A:Attribute, Globals:Set(EntityName))

BEGIN
DECL Freeslist:FORM BYVAL LIST("BEGIN");
DECL CaileesList:FORM BYVAL LIST("BEGIN™;
Analyze(EName, AttributeValueQf(A), Globals,

Fresslist, CallessList);
NewFreeVariablesAttributeFor(E, A, FreasList);
SaveProceduresCailedAttribute ->
NewProceduresCalledAttributeFor(E, A, CalleeslList);
END;

DoAnalysisOf has
KnownFrees(SaveProceduresCalledAttribute:B00L);

bttt ristrt+++++ FindUndefinedidentifiars +++e+tttttitdtstststis

3-1 Scope

Scope has
ExportedSyntax(EquatsPhrases(ForEachEntity $8 E in §8 M),
* FOR $$ E FROM 88 M),
EquatePhrates('ForEachScope $8 S ForModuie $§ M',

—~e GEN S wed W oo

Module <FUI @ 54> Scope(FindUndefinedIdentifiers)

* fOR $$S FROM 8 M),
EquatePhrases("ForEachEntity $8 E WithinScope 88 S°,

' FOR $$E FROM $85),
EquatePhrases('ForachAttribute $8 A of $$ £,

’ FOR $8 A FROM 88 E7),
EquatePhrases("Add $8 e ToSet $8 S°,

- $8e + S

Anslogies
(FarEachEntity $$ € in $8 M REPEAT 7? body END) <}>
REPEAT Declare $8 E:ANY LIKE $8 M; 7? body END;

(ForEachScope $8 S ForModule $8 M REPEAT 7? body END) <}>
REPEAT Deciare $$ S:ANY LIKE 8¢ M; ?? body END;

(ForEachEntity 88 E WithinScope $8 S REPEAT 7 bedy END) <}>
REPEAT Declare 88 E:ANY LIKE §8 S; 7? body END;

(ForEachAttribute $8 A of $8 E REPEAT ?* body END) <}>
REPEAT Declare $3 A:ANY LIKE $8 E; ?? body END;

Add $$ e ToSet $8S <}> 38 e + 83 5;

EndAnalogiss;

3-2 FindUndefinedidentifiers

FindUndsfinadidantifiers <-
EXPR(Result:Mcdule,
Parents:SEQ(Moduls),
OldResuit:Module,
OldParentDescriptors:SEQ(ModuteDescriptor),
ReDoAll:BOOL;
Module)
BEGIN
LoadAppropriatePackages();
NP <- Q;
CP <- 0;
AnnounceTool(FindUndefinedidentifiers, Rasuit);
DECL GlobalAnalogies:AnalogySet;
DECL CurrentAnalogiss:AnalogyEnvironment;
DECL SaveProcsduresCalledAttribute:800L LIKE
SaveProceduresCalledAttributeFor(Result);
DECL SM:SyntaxMark LIKE MarkSyntax();
DECL Globals:Set(EntityName);
FOR § FROM 2 TO LENGTH(Parents)
REPEAT
DECL M:Module LIKE Parents(j}
FetchEntitiesAndAttributesFor(M)
NewSyntax(M.ExportadSyntax);
SetupToDetectChangesSince{OldParentDescriptors[j];
ForEachEntity E in M
REPEAT
AddToAnslogiesAndGlabals(E,
TRUE i€

Module <FUI @ 54> Scope(FindUndefinedIdentifiers) C-8

’*a used module’,
ReDoAll, Globals,
GlobalAnalogies);
END;
CloseModule(M);
END;
DECL Basis:Module LIKE - ‘arents[1};
FetchEntitiesAndAttributesFor(Basis);
NewSyntax(Basis.ExportedSyntax);
NewSyntax(Basis.LocaiSyntax)
SetupToDetectChangesSince(OldParentDescriptors[1]);
ForEachEntity E in Basis

REPEAT
AddToAnalogiesAndGlobals(E,
FALSE IE
*the basis module’,
ReDoAll, Globals,
GlobsiAnafogies);
END;

PushAnalogies(GlobalAnalogies, CurrentAnalogies);
InitislizeResuitModule(Result);
ForEachScope S ForModule Basis
REPEAT
InitializePerScope(S); -
DECL ReDoScope:BOOL BYVAL ReDoAll;
DECL ScopeAnalogies:Analogy Set;
ForEachEntity £ WithinScope S

REPEAT
AddScopelocalAnalogiesAndNames(E, ReDoScope,
ScopeAnalogies);
END;

PushAnalogies(ScopeAnalogies, CurrentAnalogies)
ForEachEntity £ WithinScope S
REPEAT
DECL KFA, BA, TA, DA, RA:Attribute;
ForEachAttribute A of £
REPEAT
NOT ADeleted ->
CASE[A.Type]
{BindingAttribute Type],
[MacroAttributeType] => BA <- A;
[KnownFreesAttributeType] => KFA <- A;
[RewritesAttributeType] => RA <- A;
(TypeAttributeType] => TA <- A;
[DescriptorAttributeType] => DA <- A;
END;
END
DECL Changes:BOOL LIKE
ReDoScope OR isChanged(BA) OR
isChanged(KFA) OR IsChanged(RA) OR
BA = NullAttribute AND
(IsChanged(TA) OR
TA = NullAttribute AND IsChanged(DA));
BEGIN
NOT Changes => NOTHING;
InstaliKnownfFrees(KFA)

SN SN omd onv omg o GUE A N O W o

isatu, b sttt i anton i sl e . >

e g

Module <FUI @ 54> Scope(FindUndefinedIdentifiers)

BEGIN
BA s NuliAttribute ->
DoAnalysisOf(E, BA, Globais);
TA » NullAttribute ->
DoAnalysisOf(E, TA, Globais);
DA » NullAttribute >
DoAnalysisOf(E, DA, Globais);
RA » NullAttribute —>
DoAnalysisOf(E, RA, Globals);
KFA s NuilAttribute ->
DoAnalysisOf(E, KFA, Globais);
END;
RemoveKnownFrees();
END;

END; :
PopAnalogies(CurrentAnalogies);
RemoveScopeDependentAnalogiesAndNames();

END;
PopAnalogies(CurrentAnalogies);
CloseModule(Basis);
instailNewModule(Result);
RestoreSyntax(SM);

Resultl;
END;

FindUndefinadidentifiers has
KnownFrees{SaveProzeduresCalledAttribute:B00L);

3-3 AddToAnalogiesAndGlobais <-
EXPR(E:Entity,
isBasisModule:BO0L,
ReDoAIlI:BOOL SHARED,
Globals:Set(EntityName) SHARED,
GlabalAnaiogies:Analogy Set SHARED)
BEGIN
DECL Known:B00L BYVAL TRUE;
DECL HasBinding:B00L BYVAL FALSE;
DECL AA:Attribute;
DECL ChangedAnalogy:BOOL BYVAL FALSE;
DECL ChangedBinding:800L;
ForEachAttribute A of E
REPEAT
CASE[A.Type]

[BindingAttributeType],
(MacroAttributeType],
[TypeAttributeType]}
{[DescriptorAttributeType] =>
BEGIN

NOT A.Deleted -> HasBinding <- TRUE;
ADeleted AND
AVersionNumber GT QOidBasisVersionNumber OR
ACreationNumber GT OidBasisVersionNumber ->
ChangedBinding <- TRUE;
ENG;
[ModuleLocalAttributeType] =>

l Module <FUI @ 54> Scope(FindUndefinedIdentifiers)

BEGIN
isChanged(A) -> ReDoAll <- TRUE;
NOT isBasisModule AND NOT ADeisted ->
Known <- FALSE;

END;
[ScopeLocalAttributeType] =>

BEGIN
IsChanged(A) -> ReDoAll <- TRUE;
NOT A.Deleted => Known <- FALSE;

END;

{AnalogiesAttributeType] =>

BEGIN
IsChanged(A) -> ChangedAnalogy <- TRUE;
ADeleted => NOTHING;
AA <- A;

ENG;

END;
END;
‘ Known AND HasBinding ->
BEGIN
Add EName ToSet Giaobals;
ChangedBinding -> ReDoAll <~ TRUE;
ENG;
Known AND AA @ NullAttribute ->
AddToAnalogySet{GlobalAnalogies,
AttributeVaiueOf(AA)%
Known AND ChangedAnalogy -> ReDoAll <- TRUE;
END;

Ol e ewd i e o weed SN D eam A aEm

C-10

AD-A128 251 THE DEVELOPMENT OF A PROGRAMMING SUPPORT SYSTEM FOR 37
RAPID PROTOTYPING(U) SOFTWARE OPTIONS INC CAMBRIDGE MA
. 20 APR 83 SO-01-83 NO0014-82-C-0173
UNCLASSIFIED F/G 9/2 NL

END
oate
Fmen

bTIc

-
>

- —
a

o

!

FEEFEEE E

EEEE
EFE

' .
ﬁ ""L

: t

| i

2

—

.

—
-

er

[

£

Illll

M
o

2 flid B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

|98

Module <FUI @ 34> Scope(FindUndefinedldentifiers) C-11

DECL Scopelocal:BOOL BYVAL FALSE;
DECL HesBinding:BOOL BYVAL FALSE;
DECL AA:Attributes
DECL ChangedAnalogy:BOOL BYVAL FALSE;
DECL TA:Attribute;
ForEachAttribute A of E

REPEAT

CASE[A.Type]

[BindingAttributeType}
[NacroAttributeTypel
[DescriptorAttributeType] NOT ADeleted =>
HesBinding <~ TRUE;

[TypeAttributeType] NOT ADeleted =>
D HesBinding <- TRUE; TA <- A (3

[ScopeLocalAttributeType] =>
BEGIN

isChanged(A) -> ReDoScope <~ TRUE;
NOT ADeleted -> Scopelocal <- TRUE;

—
i
I
|
|
|
l
I
I
. L So—
: s
E:
o
|
i
1
[
[
|
|
I

END;

Scopelocal AND HasBinding ->
PushLocaiName{E.Name,

BEGIN
TA = NullAttribute => ANY;
AttributeValusOt(TA)

e R s

END)
Scopelocal AND AA «» NullAttribute >
AddToAnslogy Set(ScopeAnaiogies,
AttributeVsalusOf(AA))
ScopeLocal AND ChangedAnasiogy -> ReDoScope <~ TRUE;
ENDs

S bbbt bib b tbbbbbtt bt AHTIDULSS +44drbtt bbbttt bttt ts
4-1 AttributeVaiueOf

AttributeValusOf isa Procedurs({A:Attribute; FORM) —
Returns the vaiue of the ettribute A

Module <FUI @ 54> Scope(Attributes)

4-2 NullAttribute
NullAttribute isa Attribute;

4-3 AttributeType
AttributeType isa MODE;

4-4 BindingAttributeType
BindingAttributeType isa AttributeType;

4-5 MacroAttributeType
MacroAttributeType isa AttributeType;

4-6 KnownFreesAttributeType
KnownFressAttributeType isa AttributeType;

4-7 RewritesAttributeType
RewritesAttributeType isa AttributeType;

4-8 TypeAttributeType
TypeAttributeType isa AttributeType;

4-9 DescriptorAttributeType
DescriptorAttribute Type isa AttributeType;

4-10 AnslogissAttributeType
AnslogissAttributeType iss AttributeType;

4-11 ModuleLocsiAttributeType
ModuleLocalAttributeType isa AttributeType;

4-12 ScopelocelAttributeType
Scopel.ocalAttributeType iss AttributeType;

cab

Module <FUI @ 54> Scope(Attributes)

Interfaco TOPDS +4+tttttttittttttttitdtitit
5-1 Scope
Comment

This scope contains the two procsdures FUIQ snd FUI that are calied directly through the
user interface and that have the responsibility of interpreting the call arguments,

determining the modules invoived, and so on.
Following are a host of constructs that are defined within the PDS.
EndComment;

5-2 FUQ <-
EXPR(GenerateProcedurssCalledAttribute:B00L,
ResultSpec:FORM UNEVAL,
BasisSpec:FORM UNEVAL;
Module)
FUKGsnersteProceduresCalledAttributs, ResultSpec,
D BasisSpec # NIL => BasisSpec; RasultSpec (Jx

5-3 FU <-
EXPR(GeneratsProcedurssCaliedAttribute:B00L,
Result:ModuleDescriptor BYVAL,
B:ModuieDescriptor BYVAL;
Module)
BEGIN
%&L Basis:Module BYVAL CurrentModule(B)%
ConcreteCase:BO0L;
lsikdiModule(Basis) =>
BEGIN
PRINTC
There is no moduls for descriptor ")
PRINT(B)
NuliModule;

END;
DECL Uses:FORM LIKE
BEGIN '
Besis.Uses = Null ->
BEGIN
instaliEntitiesAndAttributes(Basis, ET, AT
ClossModule(Besis)
END;
Besis.Uses;
END
OECL HevePertition:B00L BYVAL
Resuit.Partition & NullPertitioning;
CONST(NT LIXE Result.Partition) = 1 >
Result.Partition « NullPartitionings -
DECL NiNT LIKE NoArgs{Uses) + 1;
DECL OldParentDescriptors:SEQ(ModuleDeecriptor) SIZE

Module <FUI ¢ 34> VMWTOPDS) C-14

N
OldParentDescriptors{1] «

VersionFreeDescriptor(Besis)
NOT HavePartition >

Result.Pertition « Basis.Partitiory
DECL JiNT BYVAL |;
ForEachListElement m in Uses

REPEAT

OldParentDescriptors[j « j + 1] «
CONST(ModuleDescriptor LIKE StripComment(m))

END;
DECL Psrents:SEQ(Module) SIZE N;
Parents[1] + Basis;
DECL Abort:BOOL;
FOR j FROM2 TON

REPEAT

Parents{j] ~
ConcrsteCase =>
© LocateOldConcretizedModule(OldPerentDescriptors[j]s
LocateBesisFor Tool(OldPsrentDescriptors{j]l
“Concrstize™);

END;
NOT HavePartition -> -
Resuit.Pertition «
UnionPartitions(Result.Partition,
Parents{j)Pertition)
isNullModule{Psrents[j]) AND
AutomaticellyGenerateWhenPossible = TRUE AND
ConcreteCase ->
BEGIN
LoadPackage("CR™)
Parents{j] « CR(OIdPsrentDescriptors{j];

END;
IsNuliModule(Perents(j] -
BEGIN

PRINT(
Thers in no module for descriptor %
PRINT(OldParentDescriptors[ils
Abort « TRUE;
END;
END;
Abort =
GEGIN
PRINT(C
Aborting FindUndefinedidentifiers *)
NuliModules
ENDy
DECL FSMSyntexMerk BYVAL MerkSyntax(}
installPOSSyntax(h
ConcreteCase
-
InsteliSpecislAttributes(Besis)
Sesie.ExportedSyntax o NIL ~>
NowSyntax(Besis.ExportedSyntax)
Besis.LocalSyntax o NIL >

G OGNS O o oy GE) UED D G W W bew beed b e e Buewl GBS OB

Ry A

RIS T L
DT VR el R T

G i

"
A e o ——
Mocule <FUI @ 54> Scope(InterfaceToPDS) C-15

NewSyntax(Bssis.LocalSyntax)

END; :
DECL NewHistory:ModuieHistory LIKE
MeksHistory("FindUndefinedidentifiers®, Psrents,
BEGIN
GenerateProcedurssCalledAttribute =>

LocateFindUndefinedidentifiersModule(Basis);

DECL Resuit:Module LIKE
BEGIN

! NOT incompstibleHistories(NewHistory,

: OldResult.History) =>

DeriveModule(OldResult, OldResult.\istory)

NOT GenerateProcsduresCalledAttribute AND
OldResult Mistory Parameters = QUOTE(TRUE) AND
BEGIN

Juscd Poand Puei ey Omm GEN

DECL H:ModuleHistory BYVAL NewHistory;

HPsrsmeters <~ QUOTE(TRUE)

NOT incompatibieHistories(H,
OldResult.History) =>

TRUE; -
FALSE;
END =
BEGIN
GenerateProcsduresCailedAttribute <- TRUE;
DeriveModule(OidResult, OldResult History);

END; .
Result.DerivationNumber « NullDerivationCount;
FORjTON

REPEAT

Parents[j}DerivationNumber GT
Resuit.DerivationNumber ~>
Result.DerivationNumber +

I
I
i
i
!
.
ik | Parents[j}DerivationNumber;
g
I
[
i
|
I

.
AT e e —— s < .
[T "

END; :
Resuit.DerivstionNumber +
Result.DerivationNumber + 1;
Result.FanQutNumber «
FindUndefinedidentifiersFanOutNumber;
WWL NewHistory, TRUE)
RestoreSyntax(FSM)
Result;

ENDy

5-4 Entity

R S P,
e b . Y
S I US,.',:'}L’? ’.}'_’%L—‘P}'\ﬂx'

N ‘4-=; 4

— — T ' e ——

Module <FUI @ 54> Scope(Interface ToPDS) C-16

5-5 Afttribute
Attribute ise MODE;

5-6 Module
Module isa MODE;

§-7 ModuleDescriptor
ModuleDescriptor isa MODE;

5-8 CurrentModule
CurrentModuls iss Procedure{d:ModuleDescriptor; Module) —

Returns the current (Le. the latest version) of the module with descriptor d.
5-9 IsNullModule
isNuliModule isa Procedure(m:Module; BOOL) —
Returns TRUE iff m is a null module.
5-10 NullModule
NuliModule iss Module;

5-11 Null
Null iss SYMBOL;

5-12 Partition
Partition isa MODE;

5-13 NullPsrtitioning
NullPartitioning iss Partition

8-14 UnionPartitions

UnionPartitions iss
Procedure(plPertition, p2:Pertition; Partition) —
Takes the union of pl and p2.

Module <FUI @ 54> Scope(InterfaceToPDS) C-17

e g
it}

5-15 DerivstionCount
DerivationCount iss MODE;

wwo—-!

[
L

5-16 NullDerivationCount

1

NediDerivationCount isa DerivationCount;

j ST
*

B §
v

|
{

i ! . , 5-17 FanQutCount
! FanOutCount isa MODE;
|

5-18 FindUndefinedidentitiersFanOutNumber

& sasoten §

.

FindUndefinedidentifiersFanOutNumber isa FanQutCount;

5-19 SyntaxMark
SyntaxMark isa MODE;

5-20 MarkSyntax

MarkSyntax isa Procadure(; SyntaxMark) ~—
Returns a mark re the current topmost syntax definition entsred by NewSyntax.

§~21 RestoreSyntax

RestorsSyntax isa Procedure(m:SyntaxMark) —
Removes sll syntax entered by calls on NewSyntax since that corresponding to tye mark,
m

§~22 NewSyntax

NewSyntax isa Procedure(sFORM) -~
Adds the fixity definitions contsined in the list s to the syntax currently in place.

5-23 VersionFreeDescriptor

VersionFreeDescriptor isa

Procedure(d:ModuleDescriptor; ModuleDescriptor) -
Raturns a module descriptor for version "0° of the moduls corrssponding to the descriptor
d

GER wn oy pey ey un) OHE 0 OGN0 B OB

. e o e ————— e+ e - .

F
|
|
|

—— e

l

GIR oMy g oy U OnE O AN BN GEN GBS buni bed G S md ey O OEB

Module <FUI @ 54> Scope(InterfaceToPDS)

5-24 DeteciChanges

Anslogies
SetupToDetactChangesSince($$ x) <}> $8 x;
OldBesisVersionNumber <}> 0;
isChenged($8 2) <> §8 &

EndAnsiogies;

5-25 ClossModule
ClossModule isa Procsdure(M:Module) --
Close the moduis M.
5-26 instaliNewModule
instaliNewModule iss Procedure{M:Moduls) —
install the module M in the current system.
5-27 StripComment
StripComment isa Procsdure(f:FORMs FORM) —
Remove the comment component of f, if any.
5-28 LocatsOldConcretizedModule
LocsteOldConcretizedModule isa
Procsdurs{d:ModuleDescriptor; Moduls) —
Return the concrste module corresponding to the descriptor d.
5-29 LocateBasisForTool
LocateBasisForTool isa
Procedure({diModuleDescriptor, t:SYMBOL; Module) —
Return the madule corresponding to that named by d derived by the tool named t.
5-30 LocsteFindUndefinadidentifiersModule
LocsteFindUndefinedidentifiersModule isa

Procedure{d:ModuleDescriptor; Module) —
Return the moduls corrssponding to d that was derived by FUL .

C-18

GE GEN N peny o o) UHE AU GO O D Sus e bl Beed e ey OEe OEN

Module <FUI @ 54> Scope(InterfaceToPDS) C-19
5-31 AutomaticallyGenerateWhenPossible
AutomaticallyGenerateWhenPossible isa BOOL;

5-32 LoadPackage

LoadPackage isa Procedure(p:SYMBOL) —
Load the package named p.

5-33 CR

CR isa Procadure(m:Module; Module) —
Derive and return the concrets module corresponding to modus m.

5-34 installPDSSyntax

InstallPDSSyntax isa Procsdure() ~
Install the syntax assumed generally spplicablse when using the PDS,

5-35 instaliSpecialAttributes

InstaliSpecialAttributes isa Procedure{m:Moduls) —
Resd in the Uses, ExportedSyntax, and such like attributes for module m.

5-36 ModuleHistory
ModuleHistory isa MODE;

5-37 MakeHistory

MaksHistory iss
Procedure(Tool:5YMBOL,
Perents:SEQ(Module),
p:BO0L;
ModuleHistory) —
Comstruct the ModuleHistory per using Tool to derive s module from Perents with
perameter p.

5-38 incompatibleHistories

incompatibleHistories isa

Procedure(h12:ModulsHistory, h2:ModuleHistory; BOOL) —
Returns FALSE ift the histories hl and h2 sre compatible.

B

-
> v
o

Module <FUI @ 54> Scope(Interface ToPDS) C-20

5-39 DeriveModule

DeriveModule isa Procedure(cid:Module, h:ModuleHstory) —
Derive the module with history h previously derived ss oids thet is, incrementaily rederive
old.

bbb bbb b htMmTobwﬁhm. e manmans oy o ST

6~1 AnalogySet
AnaslogySet isa MODE;

6~2 AnsiogyEnvironment
AnalogyEnvironment isa MODE;

6-3 PushAnasiogies
PushAnasiogies isa Procedurs(S:AnslogySet) —
Adds S to the current anslogy envirofiment.
6-4 PopAnalogies
PopAnaslogies isa Procedure() — :
Removes the most recant AnslogySet pushed into the current ansiogy environment from
that snvironment.
6-5 AddToAnslogySet
AddToAnaslogySet isa

Procedure(AEnv:AnslogyEnvironment, a:FORM) —
Add the ansiogy, s, to the environment, AEnv.

Module <FUI @ 54> Scope(Miscelianeous) Cc-21

Tt bbbttt bbbtbdbtibbitbt MISCOIANOGOUS ++tttiiitdbbdtdbdbbi bbbt

7-1 Miscellansous

Anslogies
Error() <}> NIL;
Set($$ m) <}> $$ m;
LoadAppropristePackages() <}> NiL;
AnnounceTool($8 t, $8 m) <> $8 m;

NewFreeVarisblesAttributeFor($8 E, 38 A, $8 L) <>
SE+SSA+BL

NawProceduresCalledAttributeFor($8 E, 88 A, 88 L) <}>
SE+SSA+SSL;

SaveProceduresCaliedAttributeFor($8 m) <}> §8 m;
initializeResultModuie($8 m) <P 8§ m;
initislizePerScope(38 s) <P 88 5
instaliKnownFrees($8 kf) <}> 88 kfs
RemoveKnownFrees() <}> NI;
RemoveScopsOependentAnsiogiscAndNames() <}> NI
instailEntitiesAndAttributes($$ m, ET, AT) <P §8 m;

~ .
e s et et e
"

—

FetchEntitiesAndAttributesFor(38 m) <}> 88 m;
EndAnasiogies;

Table Of Contents

FUla54 2-8 .« Abbreviate of interfaceToAmiyze
3-4 .« AddScopelocaiAnsiogissAndNemes of FindUndefinedidentifiers
3-3 « AddToAnsiogissAndGlobals of FindUndefinedidentifiers
6-5 AddTeAnsiogySet of intarfaceToRewritePackege
4-10 AnslsgiasittributeType of Attributes
8-2 AmlogyEnvironment of interfaceToRewritePackage
&1 AnslogySet of interfeceToRewritePeckege

2-1 .« Analyzs of interfaceToAnsiyas

2-8 + AnslyzaErrorTollser of interfacsToAnalyze

2-2 « AnslyzeHsvelinknownAtom of interfaceToAnslyze

2-4 + AnalyzeProcessBehaviorfuactions of interfaceToAnelyze

23 of interfaceToAnslyze

5.5 Attrbute of interfaceToPDS
4-83 AttrbutaType of Attrbutes
41 AttributeValusOf of Attributes
5-31 AutomaticallyGensratsWhenPossibie of interfacaToPDS
1 4-4 BindingAttrbuteType of Attributes
f 5.25 Clossdloduly of interfeceloPDS
; 533 CR of interfacsToPDS
5-8 CurrentModuls of interfaceToP0S
8-15 DerivationCount of interfaceToPDS
5.39 Derivaliodule of interfaceToPDS
4-8 DescriptoritirbuteType of Attributes
5-24 DetectChanges of interfeceToPDS
2-10 » DeAnelysisOf of interfacaToAnalyze
8-4 Entity of imerfacaToPDS
$-17 FanOutCount of interfeceToPDS
3-2 « FindUndefinadidentifiers of FindUndefinadidentifiers
8.18 FindlndefinedidentifiersFanOutNumber of daterfecsToPDS
5.3 « FUI of imerfaceToPOS
5-2 = FUK) of imterfecsToPDS
5-38 lncompetbisifistorias of InterfaceToPOS
5.26 instaliNewiloduis of interfaceToP0S
5.34 InewiiPOSSyntax of interfaceToPDS
5-35 inetaliSpacisiAttrinnes of mterfaceToPDS
5-0 lsNuliMuduie of intarfacaoPDS
4-§ KnownFressAttrivieType of Attributes
5-32 LoadPackage of interfaceToPDS
- 5.29 LocateBasisForTool of interfaceToPDS
: 5.30 LocateFindUndefinadidentifisrsModule of interfaceToPDS
.- 3-28 LecatsOldConcretizadMaduls of IntarfaceToPDS
45 MecroAtriuteType of Attributes
- 2-7 « MakeFresVarishisEntryFor of InterfaceToAnalyze
) 5.37 Makelfistory of interfscaToPDS
- 5-20 MarkSyntax of interfaceToPOS
7-1 Misoslianscus of Miscellansoue
S-8 Moduls of interfaceToPDS
1 Medule
. 5.7 MeduleDescriptor of imerfaceToPDS
.t S-38 Moduiaiistory of interfeneToPDS
411 MadulsLocsiMtrinaeType of Attributes
$-22 NowBynisx of interfeceToPDS
2-8 + NotallnknownBehavierfunction of InterfaceToAnalyze
S-11 Null of interfaseToPDS
42

fee ammg —

- ——
1

i et N

T

Table Of Contents

48 TypehtrbuteType of Attributes

5-14 UnionPurtitions of interfaceToPDS

2-8 VelidBelmviorFunction of interfaceToAnsiyze
%-23 VersionFresDescriptor of InterfeceToPOS

END
DATE
FILMED

6 —=83
DTIC

