
-26 21 THE SEVELOPMENT 0F A PROGRAMMING SUPPORT SYSTEM FOR I;
20APR 35 R OS4 2 PROT0 PINO U) SOFTWARE OPTIONS INC CAMRIDGE MAJNLSIID 20 APR 83 SO-01-83 N00014-82-C 0173 FG92 N

7NCLASS'E ESG 09/2 NLIIIIIIImIII.
IIIIIIIIIIIIII
IIIIIIIIIIIIIu
IIEIIIIIIEEI
IIIEIIEEEIIIIE
E//////////I/u

Ir I

III25j L411111 10 !f 128 6

...... 13

I .

IllU 1 1111-___.o ___

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

11 6 i

I

I The Developmeat of a Programming Support System
for Rapid Prototyping

I Final Report for Task 1
- S-01-83

Phireprc for

I Mr. Joel TrimbleOffice of Naval Researc

Depertient of the Navy
S0 No. Quincy Street

Arlington, Virginia 22217

DTIC
ELECTE

By S MAY13 1983
3 stwareOptions, B

n2 Eilard Street

Cambridge, Mm. 02138
Tel. (617) 497-54 -

C)| DISThUTION STATEMENT A

Lii Approved im public eleca"I

LLJ 20 April 1983 Diattibution UnlimitOdr
-. j

83 04 25 087,

I Table of Contents
Summary 1

1 1. Emkaacement of existing tool 3

1.1 The print tool 3

ii1.2 The package tool 3
1.3 The analys tool 4

1A The Analyze utility 5

2. Recoimmded modiLrcations to the PDS 7

2.1 Specifying relationhips among modules 71 2.2 User interface 8

3. A lfecycle support system 9

3.1 Elements of L1WS 10
3.1.1 Modules and sets of modules 10
3.1.2 Agents and organizations 10

3.1.3Mauages 10
3.1.4 Tools 11

3.2 Activities and protocols - 11
m 3.3 Rules 12

4. Conclusions 15

'I

A~ccOSSiofl Yor

SNTIS (Cr.&l
DTI;C Ti 0

U U I nCan ced El

Availabilt Coes
Avail and/or

I Dist Speoial

1: 1

.I Summary
>With a sufficiently large software project, the time between the development of the

requir em for the software and the availability of an operational product is often
measured in years. The longer this time, the leai ly it x that the product will match
the desires and expecations then prevalent among the user community The idea of
rapid prototyping is to shorten the time betwe the development of requirements and
the availability of a prototype operational system. re -I

SThs report descrbes the results of work on Task 1, a part of the first year of work
on a five-year project to develop a prgmming support environment and a collection
of tools that support rapid proto The spport environment is based on the P1)6
a systm developed at Harvard University [Cheatham 791 [M) 82] and will include the
tools provided by the PD8 plus a number of new ones specifically supporting rapid

prototy s.ng-

The goals of Task I were (1) improve two tools in the PD6 - p needed to5improve the efficiency of one and generalize the other, (2) to determine what needs to

be done to the PDS to rnitinto a production -, and(3) to as how to
g convert the PDS from a single-user system to a many-user system We summarize our

results in these are in the following paragraphs. The subsequent sctions of this
document contain more detml

SWe finproved three tools of the P16 In one case, we firt implemented a prototype
to test the desn oth totadhewhsen satisfied with the prototype we

ia production version that is embedded in the PDI6 In another cas, we
needed to modify autility shared by several tools. Webegawith a
implementati of the utility and realized we needed diverse ipleme atios for the

I meral tools. We modified the abstract model for the utility and developed the several
i mentations by refinement of the model producing a gra family. We discus

these variou enhancements to the PI) in section I.

We discus in section 2 some o tios to the PD6 we recommend be considered,
and in section 3 we discus the issues that a multiple-urnw development syste presents

9. 2
to move forwad on the latter pro*ect we have sulnuitted a poposal for sapport to

cntinue the "tuy and to implement a prow"yp of one component.

IV

3

| 1. Enhancement of existing tools
Task I calls for a review of the Harvard Program Development System (hereafter,

called the PDS) and the tools it pr6vides. In light of the results of this eiew and

within the time constraints of the contract we were -to design and implement

I mo atns to the tools found lacking and to deterine, whether any modifitions to

the basic PDS were deemed advisable. The tools on which we 'worked, the problems

identified, and solutions implemented for exch are discussed below.
I

, M Th print tool

The print tool takes a collection of modules and prepares a file that includes a table
of contents and formatted ("pretty-printed") program text for the attributes of the
entities in the modules. The problem was that the comment attributes were printed asII
strings in the format the use input them. Consequetly, users usually kept the

" Icomments short and kept the longer des~iptive material in a separate text file. We felt
that the user would be more likely to keep the documentation up to date if it were pat

gof the code module. For this to be an attractive alternative, we would have to have a
tut proceuor format the comments. A solution, the one being implemented, is to

Sprovide an option in the print tool to produce a stream of text for a text formatter,

with the progrown text "protectedL" The PDS support group at Harvard is modifyid g the
print tool in this way, so that it will hand the comments to the text formatter, 6cr- i be.

1.L2 The lnedoa tool

The package tool takes a collection of concrete modules and prepares the entities
c ontained therein for lodi (for intepetv exeution) or compilation. Its major task

is to order the entitis so that eac i defie (bound) before it is used. Itals
; I identifies sets of mutually recursive mode ddfintiou and groups them toleather in such a
Sway that they set define corretly. The ordinal Pak, tool was built in a relatively

Iad hoc fashion with the result that it was dicultt to unestn and modify. We

therefore proped that it be rewritten. The result is a new package tool that is

described as an absot model and then tza, formationaily refined into an appropriate
conceeimpmatatio. nact, two separate refinements were done one was for a

,J

4

test bed environment that is independent of the PDS and the second is the prodtion

tool integrated into the PDS. Appendix A contains a description of the pacage, tool3 and lirtings of the set of modules that describe the abstract model and the refinements

that produce the two concrete p nertations. The documm of the package tool
S(in contrast with the others) is a collection of program listings attached to a document

that describes the tool and references various entities in the program listing the ba

j was preparedusing Scrlbe.

1 1.3 The analysis tool
The analysis tool (named FUI, shortened from "Find Undefined Identifirs") provided

£ by the PDS scans the entities in a module and produces

* 1. a list of the identifiers occuring within an entity that are "undefine" in the
sense that they are not system names, not names of entities declared to be
global, and not local variables, and

' 5 2. a ist of the global user procedures called by the entity. This list is optional

3 Two problems wee identified with FUI. The first was that it could (usefully)

analyze only concrete modules. To better support rapid prototyping we proposed

7 £ extending FUI to accept partial speficao of abstractions and to analyze the abstract
modules. Then, for example, one could certify that an abstract module includes

I definitions (at least in English) of the constructs it uses without having to refine the
abstract model into a concrete program. For FU I to be able to analyze an abstract
program construct, we must provide some means for the usa to "explain" the behavior

of the construct in terms that FUI can understand. For example, for an abstract

I iterator
ForEachQueueElement a In 0 Do body End

fwe would like to state that its behavior, from the point of view of finding undefined
identfies is similar to the concrete constructft FOR . FROM Q REPEAT bodU END

We call such an explanation an edlog. An analogy is a new entity attribute in the

PfI it has a form very much like a rewrit For the above ce we would provide the

!A

For-EachQueueElement SS 9 In SS 0 Do ?? body End

a FOR SS a FROMI SS Q REPEAT ?? body END
T1e left (pattern) part of the analogy (precueding "<->-) tells us how to identify

instances of the abstract construct; the- right (elcm t)part tells us how to interpret
I the match variables from the point of WOW of finding undefined idtiiiflwi For the

above example, we would infer that the expression matching S$ Q must be defined at
5 the time we encounter the construct and that the expression matching $$ e must be an

identifier and that it is a local variable in the context of analyzing the list of statements1 matching ?? body-

The second problem identified with FUI wa that it did not provide any context to
help the user find the unknown identifier. We solved this problem by returning. in
addition to the unknown identifier, a template that, by indicating blocks and loops

entered and giving statement counts of the statements preceding that containing the
i9unknown identifier, provides sufficient context to locate the consruct containing the

identifier. Because of insufficient time, this part of the model is not as readable, not a
good an abstract model, as the other parts of the FU I plmnaon

3 Appendix C contains the abstract model of FULI In this instance the commentary

and program entities are in a single module.

Thea reanme ftoi that naye rogam coustruct to locae and asumi

the mneaning of, identifie rs n nta cntut

1 ~1. Ile package tool looks for the itdeeecesaoga collection of
programi entities.

1 2. The synonym tool systematically replaces all occurrences of some identifier
(that refers to a globally defined entity) by a now name.

5 3. FU I finds and records occurrences 'of undefined identifiers.

' I 6

I Prior to extending FUI to use analogies to explain abstract coostruc, a single PDS
utility, called Analyze, did all these task. Analyze recursively evaluated a program

Sentity, maintaling as a "current context" the t of identifiers that name local variables.
Wen it encountered a variable name not local and not a global system name, it called
upon a procedure supplied by iu client - that is, FUI, the package tool, or the synonym

tool - that kept whatever records the client needed. With the changes to FUI, however,
• Ithe old Ana lyze was no longer able to do the job. It would have had to be extended

to deal with ansles and to maintain sufficient contextual information to build a

3 template. Exept for this additional functionality, the bulk of the recursive evaluator of
the AnaI yze would remain unchanged. In order to produce the two similar but distinct

I instances of AnalIyze for the two different kinds of client tools, we proceeded as
Mfoo& Fiut we developed an abstract model of the recursive evaluator, deferring the

I issues of what records should be kept and how to keep tbern We then developed two
refinements of the abstract model, one.producing an analyzer for FUI and the other

5 producing an analye for the other two client tools. Appendix B desm this two

member -family.

'Si!I

* #1

1 7

1 2. Recommended modifications to the PDS
The overall organization of the PIS and the tool set presently available provide good

support for the 1ranformational refinement paradigm for developing and maintaining

programs and program families. There are, however, a number of arm where

Smodifcations to the PDS would significantly enhance it, particularly for use in projects
that involve a number of people working togethe.

In the paragraphs below we comment on three broad areas in which modifications are

fr commended.

II 21 Spedfying relatlombip among modules
In the present PDS, the relationships among module ae specfied by

1. the um attribute, which indicates that one module uses the entities exported
by another, and

2. the history attribute, constructed for a module produced by the merge tool
or the trusform tooL

Neither of these provides enough information. For example, the user might want to
inform an analyzer that two modules are later to be combined.

We recommend that these mechanisms be replaced by a single specficaion attribute.
I M would include

I. the name (partition, and so on) of the module,

2. the tool to be used to produce the module, and

1 3. the se of other modules to which this module is related.

The set in the last instance, would depend upon the tool used to derive the module.

For exampe, if the edit tool is used, the set of associated modules of intrest is that of

3the modulo that supply imported synta. If the analysis tool s used, there would be

several sets the set of modules to be co-analyzed, the set supplying imported synta , and

the set containing entities asumed to be bound globally.

'W ____ -i.

3 2.2 Usr hdtefac.
The user interface to the PDS is a simple command language designed when the only

5 terminals available were the relatively slow line-at-a-time devices. With the availability

of high resolution graphics terminals capable of supporting multiple windows and

j multiple fonts and providing various kinds of pointing devices a much more imaginative

user interface is in order.

I

I
I

I

I

* 9

U 3. A lifecycle support system
The development and subsequent maintenance and/or enhancement of large

U application programs and program families often involves a number of agents - analysts,

* programmers, test engineers, managers, documentation specialists, and end users. The

activities of the agents require various kinds of coordination. For example, suppose that

an agent has the task of modifying a program module. Before incorporating the results

I of hs modifications into a new release, we would like to ensure that certain tests have

been performed satisfactorily, that the changes are logged appropriately, that any

relevant documentation is updated, and, finally, that the agent obtains the approval of
an appropriate manager before releasing the result.

The PD8 supports a subset of these lifecycle activities, those of the programmers and

I analysts developing and modifying software. The ony coordination the P1) provides is
through its version control and derivalon history mechanisms. That is, one can

5 determine the elements of the PDS software database that are up to date and those that

are not because each module bears a version number, additionally, because each module

I contains a derivation history that indicates what tool was employed to derive it and

what other (parent) modules were involved in its derivation, it is possible to update

3automatically a modules following changes to one or more of them. The

PD6 provides relatively little support for the coordination suggested above, it is left to

I the agents communicating informally and to managers overseeing the process to ensure

that a release protocol such as that sketched above is followed.

The basic framework of the PD (the software database, the explicit representation

3 of the relationships amongst its elements, and the integrated toolset for exploring and

augmenting the software database) can be extended to provide facilities and services for

3 a wider range of the software lifecycle activities. In addition an extended PDS could

provide the mechanism for coordinating the activities involved in carrying out tasks

Ssuch a the one sketched above. In the following paragraphs we sketch the overall

oof such a system; to name this sytem, we tentatively put forward theuacronym LEU - to suggest a Llfecycle SUpport System. (We have used the name

MUPDS in previous documents, standing for Multiple User PDS.)

| ..

iF 10

31 Elements of LISUS
The PI) handles modules, sets of modules, and tools. LISUS will interact with these

5 classes of objects, as described below, plus some new ones.

3.1.1 Modules and sets of modules

As with the PDS, LISUS will deal with a collection of modules - the containers for

J the information that constitutes the software database. The software database will be

organized into hierarchically related collections of modules. As with the PDS, the

I creation, modification, and deletion of files used to represent modules will be entirely

under control of LISUS!
3.1.2 Agents and organizations

I By an agt we mean a person in an organizational herarchy who has a role in the

current set of activities being carried out-with L S. A human being will play the role

i of an agent by "logging in" as that agent and issuing commands to LSUS. An
org zaton is a collection of agents and (sub-) organizations. The set of agents and

3 at a given point in time provides an organization chart for the projects

guided by lUS.

3.1.3 Messages
ges provide the means for communication among agents and gaizos. A

message will typically have a relatively short lifetime - it will be created by an agent

I (possibly on behalf of an organization) and dispatched to an agent or organization. It

will eventually be accepted by some agent who may then take certain actions on the

I basis of the messag. There will be several types of messages, inchling those described

below.

I 1. A cemment is a message that offers information with no expectation of a
respoame

2. A q uay is ent to elicit a response. A query would be sent to
determine, for example, the status of a module or a problem (bug) report

3. A repo, refer to a query and provides the answer.I

1w

4. A reat for pemission is sent by an agent to another agent or organization
when he wishes to take a step that requires authorization. The agent who
receives the request (perhaps on behalf of the recipient organization)
responds with a message that constitutes a grant or denial of the request.

5. A gmrt of permission refers to a request for permission and conveys the
permission requested. The agent supplying a grant must, of course, have the
authority to do so. A grant of permission may include constraints, for
example, to ensure that the requesting agent follows a certain procedure.

6. A denial of permitsion refers to a request for permission and constitutes a
refusal to grant the permion requested.

Messages in LISUS will have a type (per the above list) and references to other

elements of the system, such as the sending agent, a previous message, one or more

modules, or a protocol. (Protocols are described in section 2.3.2 below). An audit trail

will be kept for each currently active message.

3.1.4 Tools

The tools available in LISUS will include those in PDS. Additionally, there wi]l be

tools for creating, distributin& and tracing messages and for developing and testing

protocols.

3.2 Activities and protocols
At any time there will be a set of activities that LISUS knows about The goal of

each ongoing activity is for some agent to accomplish some task. Examples of such

tasks range from answering a query to generating a new application program release.

Each ongoing activity will have associated with it the agent or organization that is

engaged in carrying out that activity. Also associated with an activity is a set of statar
at any point a given activity is in exactly one state. Associated with each state is a set

of choices of actions that are available to the agent. Certain choices may result in a

transition to a new state, while others would result in the activity remaining in the same

state. For example, a choice to dispatch a request for permission may result in a

transition to a "wait" state awaiting the grant or denial of the request. The arrival of,

3 for example, a grant of the request will then result in the transition to a state in which

the agent will have available a number of new choices that are enabled by the grant of

I A choice may be constrained by a predicate that must be true in order for the choict
to be valid. The truth (or falsity) of a predicate is established in accordance with a set

of ruinr that describe how to evaluate predicates.

An activity way be divided into a set of subact/vities that can be carrici out in

I parallel. For example, the task of modifying a program module may involve doing the

and then submitting the modified module to a set of tas It might also

Iinvolve logging the changes made =0 modifyig the documentatm to reflect the

It thus might be convenient to consider the program modification/test, the

logging changes, and the document modification to be three (sub) activities that can

be carried out in parallel.

The set of states the choices for each state, the trmstion, and the predicates

constraining a tAnsition are collectively tmed a protocol. A protocol may be general

in the sense that it has parameters that may be bound to particular objects (agent,

3 organization, modules, m ages, or other activities) for each instance of use.

The current state of an activity and the trace of the control path through the

protocol underlying that activity to the current state provide the basis for anwerig

Squestons regarding the status of that activity and its history. Projeting posible future

states may also provide a basis for developing a program for the future of the activity.

3.3 RuWO

There are two kinds of rules proposed for LBO. One kind, the specific rules are

(round) predicates that describe the fixed relationships among the various elements of

I the syu. Examplu. of specific rules include the following:
A&t Son works for organization Able
Organato Able owns directory
Module Foo is in directory S.

Here "wos for," "owns," and "is in" are (two place) predicates, and Sam, Ab;e S and

L
P

I

S13

FoO are names of specific elements (an agent, an organization, a directory, and a

module, respectively). It could be advantageous to think of the specific rules as deriving

from a set of relations contained in a relational database. The query and update

facilities could be used to inspect and modify the specific rules

The second kind of rule, the geral rule, is a rule that includes variables and thus
Smay be true for a set of elements in the systm The following is an ezample of a

-e rule-

J Forall(zagent, r organization, 4directory, m:odule)
Assert a can modifymn
If a works for g and

g owns d and
m is in d.

. !tere a, g. d, and m are variables that range over the set of agets,
directories, and modules, respectively. Given this general rule plus the specific rules

cited earlier, the predicate

S m can modify Foo

is dmntrae to be true by binding the variables occurring in the general rule as

follows:

SAble

m Foo

j A general rule can also provide a strategy for progressing through an a=vity. An

example is

Forall (ezagent, mm-odule)
Assert a can modify m
If a works for Able and

m is in S and
CanObUdnPermiionToModify(MJohn)

Suppe that, using this rule, we wish to establish that Sam can modify Foo The

3I predicates a works for Able and Foo is in S are established as true by appealing to two

of the specific rule. cited earlier. Satsfaction of the predicate

|II
* 14

I CanObuanPermimsonToModify(4tm,John) would result from the success of a request to

the agent named John for permission for Sam to modify Foo.

I Yet another use of a general rule is to coordinate the modification of a module.

Such a rule would include premises that established preconditions and a final

that established a protocol for the user to follow in doing the modifiction, effectively

i specifying a set of subactivities that the user is constrained to carry out

To summariz, we propose to control and coordinate activities through

I- lock and key mechanism described by a set of specific rules,

- formal procedures as described by a set of general rules, and

- formal permission messages, to monitor and control activities for which theI control procedures could not be (or have not been) sufficiently formalized to
be represented as a set of general rules.

, i The general and specific rules that can be stated (and thus the relationships among

elements that can be established) are powerful (technically, any formula in a mildly

Irestricted and typed first order predicate calculus). We note that the basis for the rules

discussed above is the PROLOG language. (PROLOG systems have been popular in

Europe for several years and are gaining in popularity in the U.S. The Japanese have

taken PROLOG as the basis for their fifth generation computer project) There are

well understood techniques for i ementing PROLOG interpreters (programs that,

i given some base set of specific and general rules, determine whether a predicate is true

or false with respect to the base set) and compilers.

t
!

1 15

1 4. Conclusions
-he thre genera arm of change that are propose are quite differet in their effect

I ~on the usefulnes of the PDS in larg prpmming proect.. The abilit to speify

reltinshpsamong modules would, be an asse and an improved user hnterface would be

I ~ ~~ an & asswah would enhanc a user's productivty. fy contrast the LMSU propos

would result in a systm appropriat for larg scale project ivolving many peol

I ~woking simultneousy. Wth it. the hWO paO of using a syste lik the PDS in

small and medium scae projct Could be realized in larg scae projets

* 16

3 Ref grea

SI
[Apt 811 Apt K., Efmden, M.H.. Onffftdons to the Awy of logjc Pr8ranmhrg,

Erasmus Unversity, The Netherlands, 1981.

[BaLzer 76] Balzer, R. Goldn, N., Wile, D.. On the transformational implementation
Sapi ch to prommm roc. 2d nt Conf. on Software Engineering, MM

San Francinco, CA, 1976.

S[Cmeatham 79] Cheatham, Ty., Jr, Hoiloway, GJL Townley,]-A.. A system for
program refinement Proc. 4th Int Coaf. on Software Engineering, Munich, 1979.

[Cheatham 81] Cheatham, T. E., Jr., Holloway, 0. H., Townley, J. A. Program

refinement by transformation. Proc. Sth Int Cod. on Software Engineering, ME,
San Diego, 1981.

"ECL 74] ECZL Programmers M~4al, Harvard University, Center for Research in
Computing Techmology, 1974.

[Kowalskd 74] Kowalski, R. Predicate logic as a proramnming languag& IFIP 74
Information Proceming, 1974.

[PDS 81] PDS User's Maual, Harvard University, Center for Rearch in Computing
Technology, 1981.

I .I., I

iI

!
!.-

U Appendix A

I Implementation of the PDS Package Tool

L Oveview
Given a set of "eventC the purpose of Package is to ordeF or schedule these events so thatI if event F depends upon E having already occured then event E will. precede event F in the

ordering That is, Package does a topological sort of a set of events with respect to a
j depends upon" relation. There are three sorts of events that we shall consider Type,

Binding, and Initialization. These correspond to the typing (Le, the mode definition) the
binding. and the initialization of top-level. ELI program quantities. As an example, considerI the set.

Type(O, M) Binding(O. CONST(M SIZE N))
Type(M, MODE) Binding(M SEQ(INT))I Type(N, INM Binding(N, CONST(INT) linitialization(N<-f (6))
Type(f, PKOC(INT; INM) Blnding#-fM.XR(z*JINT)OM x LT 1 => 1; x CD)

-. ~. 3 In general, the Type event for some quantity, z, must precede the Binding ivent for z and
that, in turn, must precede the Initialization event for z. Further if event E depends upon
the quantity z, then the Type Binding, and Initialization events for x must precede E. Thus,
in addition to Type before Binding before Initialization, the above example set is constrained
so that Binding(M) precedes Type(O), Intalization(N) precedes Binding(O), Dinding)
precedes Initialization(N). and so on. One acceptable ordering of these events is

Type(M Type(N), Type(f), Binding(M), Type(O). Binding(f). Binding()
Initialization(N). Binding(O).

There are, of course, a numnber of other orderings that are acceptable. There are two uses
3 of an ordering of events that is produced by Package. The first is to control the loading of
* a collection of (top-level) binding and ssociated initializations into an ECL environment
- (For this application the Type evena can be effectively ignored.) The second use is by the
3i' cml. IfV we aecompiling the program entities in som module, C. and that module uses

module M (in the sense that Uses(--..) is an attribute of module C) then the compiler
3 muest evaluate the type (mode) of all the entitles in Md so that references to them by the

entitle of C being compiled can be type checked. Thus for the above example. the first five
events are of interest to the compiler for this purpose and the remaining four are not. AI ~specia event, called the 'ReadyToCompilen event is inserted into the output seuneto
signal the and of events of interest to the compiler. Package has one further job, namely to
deal with sets of mutually recursive mode binding by coalescing such set Into a single
"twiddle' event. For example, the classic pair

.30

"-i~ ~ ~ ~ [UEII LU

11. ovriwTable of Contens0
2. The Abs~act Model for Package 2

5 2.1. Scope(MauterControl) 2
22- Scope(Scheduling) 3
2.3. Scope (Scanning) S

12.4. Scope(Events) 7
2.5. Scope(EventTemplatus) 7* J2.6 coeMdA ndnais 7
27.3 uiTOL SetKfEvents, SetOfEntityNames, 7

Queue~fvents StackOfEventEntres)12.8. Scopus(AttributeValues, TwiddleEvents) 7
3. Imlmnainof Package 8

3.1. The Sourc of Event Templates 8I3± Globals 8
3.3. Events 8

*3.4. Stack of Event Entries 9
U4. A Prototype of Package 10

4.1. The Source of Event Templates and Globals 10
*4.1 .1. Scope(ModulesAndEntities) 10

4.1.2. Scope(SetOffVodules) 10
4.2Globais 10
4.3. Events 11I I 4.3.1. Scope(Events) 11

*4.3.2. Scope(EventTemplates) 1
* 34.3.3. Scope(SetOfEvents) 11

4.3.4. Scope(QueueOfEvents) 12
*4.4. Stack of Event Entries 12

U5. Packap as aPDS Tool 12
5.1. The Source of Event Templates and Global. 13

5.1.1. Scope(ModulesAndEntities) 13
5.1.2. Scope(SetOfModules) 13

5.2. Globals 13J5.3. Events 13
5.3.1. Scope(Events) 14
5.3.2. Scope(MuterControl) 1
5.3.3. Scope(Bvents) 16
5.3.4. Scope(SetOfEvents) 16
5.3.5. ScoWeQueue()fEvents) 17

5.4. Stack of Event Entries 17

C&No
kk1

I I

List <- TI(Listlement)
ListElement <- STMUCT(E-1IT. Next-List)

is to be coalesced Into the ingle twiddle binding

< List, Liselement > <-
< T(<- ListElement), STRUCT(EIDNT. Next-~ List) >.ITh basic method of scheduling some event, E, Is to scan the value of the event and insure

that for each quantity. x, referenced in that value, the Type, Binding and Initialization
j events for z are scheduled before E (recursively). We therefore introduce a stack of events

that are currently being scheduled f in scheduling some event. E, we note that it requires
an event. F. that is already stacked, we note the mutual dependence. This may lInd to a

I "twiddle event or it may signal an unresolvable circularity a for example with the puw.
Binding(N, CONSTQNT LM X))
Dinding(K CONST(INT LIKE N)).

ff events E and F ar stacked with E below F then E clearly depends upon F (perhaps not
directly). We record the dependence in the other direction by providing a f ild in the stack

SI entry tow an event, say event E, in which we record the lowest index in the stack that is for
an event that is prior to E in the stack and upon which E depends. The scannin of the

' 5value of an event is carried out by a general purpose analysis tool. Given some FORM f, to
be scanned this tool basically does a weak interpretation of f. constructing a local names

3 senvironment. For each identifier, x, that is not local to the current point of evaluation and
Sis not an ELI system name, it calls a special procedure (supplied by the call on the Analyzer

-A tool) which, in the Package application, will, in turn, call for the scheduling of the Type,

I Binding and Initialization events for x. The remainder of this docament is organized as
follows. Section 2 describes the abstract model for Package Section 3 then discumses two

3 bc strategies for implementing Package. One is concerned with obtaining a prototype in
which we can study the scheduling algorithm we will not be particularly concerned with

* efficiency in this implementation. The second implementati is a fully integrated PDS
ool. This pmentation is concerned with efficiency. Section 4 then discuses various

detais of the implementation of the prototype Package and section 5 is concerned with the
3 implementation of Package as a PDS tool. A listing of all the modules involved is included

in appendix A.

IZ

I
I
I

I -I- --- -- li "__ _ _ - -

• .,. - •-

A-2

3 2. The Abstract Model for PAckage
The abstract model for Package is provided by the modnle named Package. This module

i contains several scopes which we discus below.

2.1. Scope(MaterCentrol)
In aition to providing notatiom for iterators and for adding elements to and testitg for

membership in sets, this scope has two entities: Pwaa, the top-level event schedulingJ routhe, and c ul. a BOOL that will be set TRUE initially and subsequently
set to FALSE if any difficulties (e.& an unaccountable circularity among evnt) are

, I encountered.

1 Paekage(1-2]
SMA- bracketed pairs of numbers, a 11-2r, key to

the ctity number in the corresponding lising

I Packae takes two arguments

Bae Set(Module) - the set of modjies whose entities provide the set of events to be
scheduled.

F aI eferenced: Set(Module) - the set of modules whose (exported) entities are
to be assumed as globals in the environment when the events of Bases are loaded
or are compiled.

Package returns a Quene(Event); if ched --inguceusul is TRUE t Queue(t)3 provides one acceptable ordering of .'ie events in Bases (plus the ReadyToCompile event
marking the end of events of interest to the compiler when it is compiling some other
module that uses this package). The several stages of Package are as follows:

1(a) We introduce

Eventu:(Event) - the set of evemts (iniWtilly empty) to be scheduled.

I Globals Set(EntityName) - the set of names (initially empty) of entities assumed to
be in the environment.

(b) For each module B in Buos each entity E in B, and each event template T for E we
deturmine whether there is already an event v for T, and if not, add a new event to Events

to T. Hem an event template provides a bridge betw the repesentatio Of
an event within an entity of a module and the representation of that event particular to
Pack e It will be refined in different ways for the two implementatiom.

(C) For each module P in Packgsm eeced and each entity E in P. we add the name of E
~II to the set Olobes.

(d) We introduce

r i A-3

ScheduledEventwQueue(Event) - a queue of events (initially empty) to which will be
added the elements of Events as they are scheduled.

Sucikedvensutck(EventEntity) - a stack in which we will record the collection of
U events currenty being scheduled and their interdependence.

TbplI - the index in StackedEvents of the current top-most element.

I ~These three quantities will be manipulated by SchaduleEvent[2-2J and Schedul ei tck23]
(to which they are passed SHARED as arguments).

U (e) We now schedue the Type events and the Binding events that correspond to mode

(f) The ReadyToCoinpile event is then added to the queue of scheduled events to mark the

I last event of interest to the compiler.
(g) The remaining (unscheduled) Binding events aind the Intialization events are then
scheduled and ScheduleEvents returned as the result of Package.

NI 2.2. Scape(Sckedualin)U In addition to introducing soenotation for iteration and for adding events to the queue,
the Schedulingt scope Presents the several routine that have to do with scheduling an event.

SIeza~ed22U ScheduleEvent takes as argument E. the Event to be scheduled. and share the quantities
ScheduledEvents, StackedEvents, and Top introduced in Package. The several stages of3 Sce deEvent are as foilows

()If E is a null event or is already scheduled we exit immediiately.

j (b) Otherwise we determine if E is already stacked and, if so. record that the event that is
cretybeing scanned (L~e.. the one that is topmost on the stack) depends upon E by

J setting its LowestReference fid to the index of the stack entry for E (unless it already
rferences an event preceeding E). If E is Stacked, we then exit

I (C) Otherwise~ we insure that the type event precedes the binding evet and that it precedes
the initialton event for the quantity associated with E. We also introduce the local
variables CurrentSanmygntAttribute and CUrrentScan ventName. Thee variables are used
by UnknownAtomError [3-5] when it announe undefined identifiers.

I (d) If E is an event binding an explicit procedure (MRP) we schedule E immediately since

any mdsupon wbich it depends have already been scheduled (because Its type event

I A4

Spreceeded its binding event) and nothing else is required in order to load or to compile an
EXPIL

3 (e) We increment the current topmost stack index (Le. Top); the construct Increment (Top)

is employed to force any storage management activities required to insure a sufficiently large
3 stack. We then install event E as the new top element in StackedEvents and initialize its

LowestReference field to be Top + 1; if the event is self dependent (as in "L <-

PTR(STRUCT(EINT, NextL))") this field will eventually be set to Top and if the event

depends upon events preceeding it in the stack it will be set to the index within the stack of

the earliest of these. If it depends only on events that are scheduled ahead of it, the
3 LowestReference field will remain set to Top + 1.

(f) We then call ScanEvent(E) to scan the value of event E and schedule any events that E

depends upon ahead of E (or note mutual interdependences).

(g) If Top is now zero the stack is empty and we are though. Top can be zero because the

(1 events that are stac.ed may be scheduled in "clumps" of mutually dependent events. (See

discussion of SchedulePerStack[2-3D.

. 1 (h) Otherwise, we will locate the current set of events to be scheduled. We initialize the

variable First to Top and then proceed down the stack to find the lowest index referenced
by Top or by any entry between Top and its lowest reference, recursively. Following the

loop. First will index the earliest and Top the latest in a set of, mutually interdependent
stack entries. We then call SchedulePerStack to do the checking and actual scheduling. We

note that one side effect of the call on SchedulePerStack is that Top will be set to First - 1

to reflect the fact that the First through Top elements have been taken care ofl
*We observe that ScheduleEvent is called recursively as new dependencies are detected (see

Scope(Scanning) for details) by ScanEvent. The actual scheduling of events (by3 SchedulePertck) is done in clumps" of mutually interdependent entries.

SchedulePerStack3-2]

SSchedulePerStack takes four arguments, it shares ScheduledEvents, StackedEvents, and

Top (introduced in Package and passed shared through ScheduleEvent who is the only caller

of SchedulePerStack) and takes Fiat, the index in Stacked'Events of the first event (Top
being the last) in a set of mutually interdependent events to be scheduled.

3 SchedulePerStck splits into two case First = Top and First < Top. (First > Top being

impossible) as follows:

IFo twhKiA re1m (w Seh*duISwtaek[2-3D this is not dora by SchSdUOEvmt dirstlY.

L A~~ Z~- -

3 A-5

3 (a) First = ToP: Here we have a snl (Possibly self dependent) event. E. If E has already
been scheduled (for example because it is an EXPR binding) then we have nothing further

to do and so reset Top and terminate SchedulePerStack If it is a self dependent mode

binding (as for example with L <- PR(STRLUCT(.... Next:L))) we replace E by an
appropriate twiddle event (in the above example by <L> <- PTR(STRUCT(-. Next<-

3 L))). We then add E to the queue ScheduledEvents. Finally if E is a mode binding event,

We call SchedulelotedfehaviorFunctfuns(E) to schedule the Type, Binding, and
mnitization of the quoted behavior functions (those naming functions that implement the

various defined behavior elements) associated with E.

(b) First < Top- Here entries First through Top in StackedEvents are a set of mutually
interdependent events. Included among them may be certain events that have already been

scheduled and we simply ignore these. If each non-scheduled event is a mode binding event

we coalesce them into a single twiddle event, E, add it to the queue, and schedule any
behavior functions associated with the modes of E. If there is at most one non-scheduled3 event in the set, we smply schedule it. Otherwise we have an unacceptable circularity and

CircularityError is called to deal with this.

5 I ScheduleQuotdBeaUvoructos[2-4

hSceduleQuotedBehaviorFunctions takes as argument an event, E, that is a mode binding

event (and, possibly, a twiddle type mode binding of a set of individual mode binding events

that have been coalesced into a single twiddle event). We make two passes over the set of
behavior functions. The first inmur that the type, binding, and imtialization events
asociated with each ar scheduled. On a second pass we then scan the binding event to

insure that any quantites it requires get scheduled since the behavior functions may, of5 course actually be called during the loading or compilation process once the mode with

which they are ssociated is in the environmenat

5I ClrcularltyError[2-5]

We announce the offending events and set ScheduingSuccessful to FALSE unless3 FalOnCrcularity has been set to false.

1 2.3. Scope (Scaning)
This scope contains ScanEvent, the procedure that interfaces to the general purpose

analysis tool, the three routines that particularize that tool to the Package application. and

.UnknownAtomarror, the procedure used to announce that unknown identifiers have been

encountered.

L ,_- -~~ - - - -. - -

"I

3 A-6

I ScauEvent[3-1]
ScanEvent(E) is called by ScheduleEvent after E has just been stacked; the function of

ScanEvent is to determine those quantities that E depends upon and iumme their scheduling

prior to (or concurrent with) the scheduling of E. There are two circumstances in which the
value of event E is to be scanned:

I (a) It is a procedure (EXPR) binding of a procedure that may be called during loading if so
NoteMustScanValueOfEvent(E) will have been previously called (either by

! ScheduleBehaviorFunctions(24] or by PackageProcessUserProcedureApplicaon[3-3D and as
a result MustScwanValueOfEvent(E) will return TRUE.

I (b) It is not a constant nor a procedure;, in this case EventlequiresScanning(E) will return
TRUE

If E is to be scanned we call ProcesAttributeValue with the value of E plus the three
procedures that particularize ProceaAttributeValue to the requirements of Package.

PackaxeHaveUnknownAte (3-2]

This procedure will be called by the Analyze tool exactly when it has a FORM that is an
identifier not local to the form being scanned and not an ECL system name. If its

argument, atom, is a global name, nothing need be done. Otherwise we must schedule the
Type, Binding, and Initialization events for atom.

PackageProcessUserProcedreApplcatloa[3-3]

This procedure will be called by the Analyze tool exactly when it has a form that
represents p(argl,...) where p is an identifier that is neither local nor an ECL system
procedure name. If p is global nothing need be done regarding p. Otherwise we schedule

* the Type, Binding, and Initialization events for p and, further, note that the value of p's
binding must be scanned (as p may be called during loading).

3 Following this, we process the arguments of p via the call ProcessList(F.args) as required

by the Analyze tooL

3 PackageProcesBehavlerFuctons[3-3]

This procedure is called by the analysis tool exactly when it has a form that represents
j the rst argument to the :: operator; for each "evaluated" behavior function providied, we

can ProcessAttributeValue on its arguments. Note that the processing of the "quoted"
behavior functions is handled by ScheduleQuotedBehaviorFunctions.

UakawnAteuErrerf3-5]

The purpose of this procedure is to announce the occurrence of identifiers that areI

--.

A-7

The variables CurrentScanEventAttribute and CurrentScinEventName are introduced by
ScheduleEvent exactly so that UnknownAtonError can announce the sort of event and the
name of the entity whose value contains the unaccountable identifier.

2.4. Scope(Eveuts)

Recall that an Event is, essentailly, a triple <Attribute, Name, Value> where Attribute is
(e=ept for the special "ReadyToCompile" event) either "Type, "Binding", or
".atialization".

Thi scope includes the procedures and descriptors that provide the behavior expected of
an Event plus three procedures concerned with mapping from an Event or an EntityName to
the corresponding (Type. Binding, or IWitialization) event

2.5. Scope(EventTemplates)
An EventTemplate is an explicit triple <Attribute, Name, Value> that bridges between

the source of events (ie. the various attributes of entities of modules) and an Event as
manipulated by Package.

2.6. Scope(ModulesAadEntittes)
This scope simply introduces the concepts of Module. Entity, and EntityName plus the

mapping from an Entity to its EntityName.

2.7. Scopes(SetOfModules, SetOfEvents, SetOfEntityNaues, QueueOfEvents,

StackOfEventEntries)
These scopes provide the required analogies for the Set Queue. and Stack types

manipulated by Package.

2.8. Scopes(AttrlbuteValugs, TwiddleEvents)
These scopes introduce the several mappings concerned with the (ELI) attrbute values

and coalescing a set of mutually dependent modes into a single "twiddle" event.

S W -

A-8

I 3. Ipemetation of Package
As we noted earlier, we propose to do two implementations of Package. The first will be

a relatively simple implemetation that basically provides us with the means to supply

Package with a set of events and to inspect the result of its scheduling of these events. In
this fit implementation efficiency will be of little concern. The second implementation

I I will be as an integrated PDS tool that accesses modules to obtain the events and global
names and produces a module containing the result of Package. With this implementtio

we will be concerned with effiiency both in the snse of the cost of various operations and

in the sense of attempting to minimze dependence on ECL heap memory management.

1 In this section we want to overview the major implementation decisions that we shall

have to make;, sections 4 and 5 provide the details for two particular implementations.I
3.1. The Source of Event Templates

J The abstract model postulates Bases and PackasReferenced, each a Set(Module), a
supplying the templates for the events to be scheduled and the names of quantities presumed
global. We must choose a specific implementation for Set(Module) and implement the two

3 iterations (a triple iteration over Bases and a double interatio: over Packageukeferences) at

the beginning of the Package procedure.

3.2. Globals
Globals is postulated to be a Set(EntityName); the required operations are those of adding

an element to Globals (within the body of the double iteration in Package) and of testing
whether some atom resides in Globals (the - atom IsInSet Globals - construct appearing in

the procedures PackageHaveUnknownAtom and PackageProcessUserProcedureApplication).

1 3.3. Events
Events are, conceptually, triples of the form <Attribute, Name, Value>; a number of

j mappings to do with the behavior of events are postulated in the abstract model (summarized
in Scope(Events) of Package). In addition, Package postulates Events, a Set(Event). and
ScheduledEvents, a Queue(Event). There are a number of specialized iterations over Events
and the requirement that we provide a mapping from an entity name (or event) plus an
Attribute (Type, Binding. or Initialization) to the entry for the corresponding Event in

j Events.

We must also be able to add events to the queue ScheduledEvents and to determine

whether or not some event is already scheduled (i.e. is already in the queue). Finally, we
must provide some means to display the result of scheduling the events.

- -- MIN- u - - " _______,,___--

'I
* A-9

3.4. Stack of Event Entries
The stack behavior of StackedEvents, introduced in the abstract model as a

Stack(EventEntry), is implemented directly in the sense that there are no push or pop
operations involved but only indexin of the stack. The single interface to some possible
underlying memory management operations to insure that there i sufficient space in the

I stack is Increment(Top) which provides the index of a new top element supernedinS the old
Top.

The implementation decision are reflected in a set of modules each named PI (shorthand
for Package Implementation) but with differing partition. All the

I implementation modules use a module named Utilities which provides a number of notations
for dealing with list structure (eg. f.Largl, HasOneArgument(f), and so on) plus facilities for
variadic arrays, connections to various PDS components, and so on. In addition, there is a
module. PI(Miscellaneous). It has two scopes as follows

I Scope(AttributeValues)

Here an AttributeValue is defimed as a FORM and the several procedures that deal with
an AttributeValue as an ELI FORM are explicated. In addition the iterator that produces
each behavior function (i.e. the FORMs UFN(Name) contained in the fu arguments of the

operator in some value that is a mode binding or a 'twiddle" binding) is defined.
Scole(TwiddleEvents)

Here the two procedures, MakeSingleTwiddleEvent and MakeMultipieTwiddleEvent, are
implemented. In addition we have a definition of MakeTwiddleEvent, a procedure called by
these two procedures to force the name change from L to <- L for each mode being

3 defined by the twiddle. This name change is done by the same Analyze tool that is used to
*scan the values of events, but with the three procedures that specialize the analysis tool to a

particular application being those appropriate to this name change application.

. We observe that a new procedure, CompleteTwiddleEvent, is introduced to do whatever is

required to convert the twiddle value produced by MakeTwiddleEvent plus the (first) eventI giving rise to the twiddle value to an event. The details of this are, of course, dependent
upon the implementation of events.

I
I

II

A-10

1 4. A Prototype of Package
As a frs implementation of Package we want a system to which we can submit a set of

events and a set of global identifiers and from which we can obtain the ordered set of

events. For this prototype syste we specifmiclly want to avoid interfacing to the PDS and
real modules rather uuing at set of <AttribueW Nam Value> triples to describthevnso

I be scheduled. As outlined in section 3, there are four basic sets of issues concerning which
we must make implementation choices. Our discussion will be organized into four parts.

I reflecting these four sets of issues; the corresponding implementation choe are organized
into four separate modules that will later be merged with Package to provide the complete

4.1. The Source of Event Templates and Globals1 As the source of event templates and globals. we propose to employ list structure. Thus
the Bases argument to Package will be a list whose elements are triples (that is. three
element lists) encoding an <Attrbute, Name, Value> triple. The Pcae~frne

aruetwill also be a list whose elements name the quantities presumed glbal.

I These decisions are implemented by the module PY(Entity~ource is Form). It contains
two scopes, us follows:

I 4.1.1. Scope(ModulesAndEntities)
We define Entity as a FORM, provide the mapping NameOfEntity(E) as E (the only useI ~of this construct being to extract the name of a global), and an ipentiO f

CountEntities that counts the number of elenmts in its lis argument.

4.1.2. Scope(SetOfModules)
if A Set(Module) is implemented as a FORM Also, we provide impementains of the two

iterators over a Set(Module) reflecting the decisio that Bases be a list of <Attribute, Name,
Value> triples and Pakgseferenced be a list of entity names.

4.2. GlobuisI ~A staigtfrwr way to implement Olobals-Set(EntityName) is to use a list of names.

MouePI(Olobals is Form) implements Global. as such.

IL7

3 A-l1

1 4.3. Events
A natural way to implement an event would be to employ a triple to encode the

Attribute, Name, and Value. However, lookin at the behavior required we observe that weI must, for each event, be able to set and test a Boolean that determines whether the waue of
a particular event must be scanned (this being TRUE when the event is a procedure binding

I for a procedure that may be called during loading). We therefore chooe aquadruple
<Attribute. Name, Value., MustScan> to implement an Event

A goW but possibly inefficient, way to implement a Set(Event) and a
Queue(Event) would be to employ a list of Evens with the obvious functions for adding

I new elements and testing for membemhp.

1The above decision are implemented in module PI(Events is List); a discusion of someI of the details of the implementation follows.

4.3.1. Scope(Events)
The implementation of an Event as a quadruple recorded and then the several mappip

i dealins with events are provided. A coupl~of theme may require comment

SameEvents[2-12]

Two events are taken to be the same if they are of the same sort and name the same
entity.

I CompleteTwiddleEventP 13]

We chooe to produce an event whose attribute (Twiddle) indicates a twiddle event and
~ I with no name and the twiddle binding as value.

J 4.3.2. ScOlp(EvetTelplates)
Observe that we indicate that the scheduling is unsuccessful if a given event occurs more

I tha once.

4.3.3. Scope(SetOfEvents)
A Set(Event) is implemented as an Evendet that is simply a list of Event entries. The

three iftrator over Events and the addition of a new Event to Events are staightforward.
I Note that by adding a new Event at the end of Events we have opted to keep the order of

Events comistent with the order of the EventTemplates provided by the source of such.
SObsere that there is no explicit test for membership in Events so that there is no

Implementation provided for $$ E IainSet Events.

!
I A-12

4.3.4. Scope(QueOfEvents)
A Queue(Event) is implemented as an EventQueue that is simply a list of Event entries.

Here we have provided a print function to handle pretty printing of the result of scheduling

a set of events.

Observe that the membership test (Le. SS e Is~nQueue SS Q) is complicated by the fact

that the bidings for recursive mode sets are coalesced into a single event

4.4. Stack of Event Entries
A very straightforward way to implement a Stack(EventEntry) and the associmted

prcedufr Increment(Top) is to employ a reasonably large array and, if Package requires a

largr stack than we have provided, to break indicating an error. The module
i P(StackOtEventEntries is Fixed) provides such an implementation.

I Package a aPDSToo
Having done a "quick and dirty" implemenato of Package that can be used to study and

asess the basic algorithm for scheduling a set of events, we now turn our attention to a
"re implementation as an integrated PDS tool.

In order to interface with PD6 this variant of Package must take as the source of events
the collection of entities and attributes supplied by a given set of modules (Bases); it must, as

well, produce a module containing the results of the packaging. In addition, th re must be a
copneat of PackAge that takes the comm.,,,,a supplied to PD6 to invoke the Packase tool

and decodes that command to yield the two sets of modules (Bases and Pcerenced)
I supplying inputs. It must also imure that the modules in these two sets are up to date and,

if not, invoke the appropriate tools to derive up-to-date versions of them before proceedingg with thepackaging.

In addition to the constraints induced by the need to interface with PDS. we must also
€3 consider the queat of eff'cency of the operation. By efficiency her we have in mind
the usual space/time measures but we are also concerned with the underlying storag
management mechanism of ECL and, for example, attempt to minimize the use of heap
storage when possible to avoid the garbage collection costs that are associated with the use
of the heap.

IThe first four subsections following parallel those of the previous two sections and discuss

the four sets of implementation imum introduced in section 3. The fifth subsection deals
Swith the remaining issues in interfacing with PDS.

* 1*0~-~~

A-13

U 5.1. The Source of Event Templates and Globafs
Aj noted above. the source of both event templates va globals as the collection ofgattributes of entities of the modules of Bases and Packgedeferenced. Thse module

PI(EntitySource is Modules) supplies the required refinements via two scopes:

5.1.1. Scope(Modue nd tii)
The mapping from an Entity to its name is defined by the field selection on -Name;

entity counting employs the standard PDS function TotalEntityCount

5.1.2. Scope(Set~fModuleu)
j We implement a Set(Module) as a SEQ(Module). The triple iteration to produce each

EventTemplate, T. of each Entity, E. of each Module, B, of Bases xs then implemiented as aJ triple iteration over the attributes of entities of modules of Dames The details of the
organization of entities ad attribues in a module and thewr sem and manipulation as
described elsewhere and will not be repeated here-

Similarly. the double iteration to produce each Entity. E. of each Module. P. of
3 ~ ~C Pakge -Fe-ced is recast as an iteration over the SEQ(Module) and then an iteration

S over the set of entities of each.

5 5.2. Global.
The name of each entity of each module of Pakgseeecds placed in Globals and,

3 for each identifier of each event being scanned that is not a local variable. system name, or
the name of an event to be scheduled, we must determine whether or not that name is a

fl member of Globsis. We chos to use the ECL built-in basthing functions to implement
* Olobuls. Thbe module PI(Olobals is HashTable) documents the refinements that result

5.3. Events
Recall that there are two collections of Events manipulated by Package: Events is a

Set(Event) in which we initially place each event to be scheuled and Sceue~ets is a
Queue(Event) that contain the (ordered) result of the scheduling of the elements of Events.

I In order to motivate our chie for rpresentation of these two collections, let us review the
various kinds of functionality they must suapport

3 ls~WyveEvent(E) - returns TRUE iff E is a "Type event; similarly for aininEvent.
etc.

E IslnQuene ScheduledEvents - returns TRUE 1ff E has already been schedule (by
5 being added to ScheduledlEvents).

NostUustScanVlueOlveut(E) - insures that MustScanValueOfEvent(E) subsequently

iI A-14

I returns TRUE.

TypeEventfor(z) - (x being either an Event or an EntityName) returns the "Type"
event for x (or the NullEvent), and similarly for BindingEventFor(x), etc.

SameEvents(E, F) - returns TRUE iff E and F are the same events.

ForEachTypeEvent t in Event ... - iterates over the "Type" events in Events. and
j similarly for "Binding". etc.

Add E ToQueue ScheduledEvents - insures that E is in the queue ScheduledEvenssa
Sfollowing the events already there.

We noe particularly that the predicate E IalnQue ScheduledEvent and the mapping

j TypeEventFor(x) (and its counterparts BindingEventFor(x), etc.) may be called many times

for the same event (in fact. each time the event name i encountered (and not local) when

we are cannin the value of some event). Thefore these operations should be particularly
I efficient

Our choice for implementation of the Set(Event) and Queue(Event) is a table containing
an entry for each event (and. in addiion, some entries not actually used for technical

reasons discussed presently). An Event wM then be an index into this table and the entry
* for a given event will contain various DOOLs to record such facts as MustScanValueOfvent

and IsScheduled. The Queue(Event) will be the same table and there will be an indez field

for each entry that takes us to the table entry for the next event in the queue.

The fist entry will be a dummy entry used only to index the entry for the firs event in

3the queue The table will be partitioned so that the Type events are in one block, the

Binding events in another, and so on. A collection of variables (e.g. TypeEventBase.
SBiningEventBase, and so on) will encode this partitioning of the tables.

In order to quickly find, say, the Type event given some name, N. we will employ, in

*addition to the table of event descriptions, a hashtable that is entered with the name of some

event and provides a triple containing the indices corsponding to the Type, Binding. and

SInitaliation events with that name (zero representing the NullEvent).

The modul PI(Events is Array) provides the implementaton of events as sketched above.
I Several aspects of these implementation ls probably require some further comments:

5.3.1. Scope(Evets)
We defi an Event3-l] a an TIT (meaning. of course, an index into the table

postulated above and to be described presently).

£ We next introduce EventDescriptor(3-2]. the table entry for each event. The non-obvious

fields include

'L _ _

A-I5

TwldlbOOL -TRUE iff the event results from replacing some binding event (or
an element of a set of mutually dependent mode binding events) by a twiddle

Ignore:BOOL - TRUE iff the event is to be ignored (becuse it is a moebinding
event mutually dependent upon other mode binding events that have been
coalesced into a twiddle event).

Next:-WT - the next event in the resulting queue, Scheduled'Events.

Before continuing with the other entities in Scope(Events), let us conside Event[5-1]
in Scope(SetOfEvents): EventSet is the mode of the Set(Event) snd the underlying
representation of Queue(Event) as well. Its first four components index the first entry in
the table describing the events for, respectively, Type. Binding, Initialization, and
ReadyToCompile events thus encoding the partitioning of the table. The fifth entry.
EventsSEQ(EventDescriptor), is the actual table of entries describing the Set(Event) and/or
Queue(Event). The local variable, Events, will be an EveniSet and the variable

*ScheduledIvents will be an <"EventQueue" EventSet (the bane mode being extended to
* U provide for a distinct print function for the table when it is viewed as a Queue(Event) rather

than a Set(Event)).

S With these notions understood, we can now consider the remaining entities in PI(Events
is Array).

5.3.2. Scope(MssterControl)3 The declaration of Events.Set(Event) in Package is replaced by several declarations, to
wit.

EntityCountMINT - the total number of entities in Bases (giving an upper bound on
the number of Type, Binding, and Initialization events that might be added to

j Events:EventSet SEZE 3 * EntityCount + 2- The size of (the Events component of)
Events is sufficient to acconmiodate the maximum number of each sort of event
that may be encountered (Le. EntityCount) plus a first entry used only to find

I the first element of the Eventet when it is viewed as a Quene(Event). plus an
entry for the ReadyToCompile eventI TypeEventBaselNT

Junding ventBseDff

IntialIzAtionEventBasedNTI RadyToComlleventIN - We introduce local variables (shared with their
r crpndz; ing entries in Events) that encode the partitioning of the set of emu.~

I CurrentTypeEventMflf

3 A-16

3 Cur~etflindingvetlZNT

CurrentlnilzationEvetflNT - Three more variables that indicate the current last
Type. etc.. event entered into Events are initialized.

| NameToEventAp:HASHTABLE - initiali the HASHTABLE that will provide the
mapping from an entity (or event) name to the Type, Binding, and Initialization
events for it.

5.3.3. Scope(Events)

luTypeEvet[3-3]

I IsTypeEvent(E) is implemented as a test on the value E to see whether it is within the
partitioning of the table of event descriptors esponding to a Type event. Observe that
the variables TypeEventBase and BindingEventBase are introduced into the environment
(and appropriately initialized) when Events is declared (see PackageChanges(2-1D.

NoteMastScauVaeOfEvent[3-7]

I The MustScan component of the EventDescriptor in the table of EventDescriptors
associated with the variable Event is set to IUE.

S 4kCompleteTwiddleEvent[3-12]

3 CompleteTwiddieEvent(Binding. E) is called when the event, E. that is in
StackedEven*7First] plus the events in positions First to Top of StackedEvents have been

coalesced into a twiddle binding (that is, the argument name and Binding). It modifies
event E to be the Twiddle binding event, and notes that it and the other mutually

dependent events coalesced are to be cusidered as scheduled and, further, that all but E are
Snow to be ignored (because they are together coalesced into the value for event E).

5.3.4. Scope(SetOfEvents)

Evetlterater(5-2]

The iteration over Type, etc., sorts of events commencs at the first entry in the table of
event descriptors component of Events and proceeds through the entry that is current for
that sort of event.

Set~lpritlens5-31

Adding a new Type, etc event corresponding to an EventTempla, T. amounts to
incmenting the current index for that sort of event and installing an EventDescriptor in
Events.Events at that position initialized with the appropriate Name a=d Value components
(the other components being, appropriately, the default values for those fields). Also, the
NameToEventMap entry for that sort of event is set to provide the mapping from the event

A-17

3 name to the oresnding in EvenutEvents.

1 5.3.5. Scope(QueueOfEvents)

FackageChanges(6-1]

I The declaration of I-edled vents:Queue(Event) is implemented by declaring
*ScheduledEvents to be an EventQueue shared with Events; also the local vriable, LastEvent

is initialized to index the last event scheduled.

PriatEvetValu[6-3]

A BOOL. normally TRUE, that is consulted by PrintEventQueuElement to determine

whether the triple <Attribute, Name, Value> or just the pair <Attribute, Name> is to be
printed. The FALSE setting might be used during debugging when we want to avoid seeing

j values and just inspect the sort and name of events in a Queue(Event).

PrlntEvemtQueaeElemet[6-5]

Given an EventQueue. Q, and index, i into Q.Events, and a PORT, P,
PrintEventQueueElement prepares an appropriate representation of the triple <Attrbute,
Name, Value> or the pair <Attribute, Name> and outputs it

unesu6-6]

Addingt a new event. E. to cedldvents is implemented by adding the new entry to
the thread that orders the events in the queue (the Next field of the appropriate entry of3 Event.Events (nee ScheduledEvents.Events)) and setting the h ,Scheduled bit to reflect the
scieduling

i 5.4. Stack of Event Entries
* Here we choose a variadic array to implement the Stack(EventEntry) and employ the
- Extend operation available in Utilities to extend the stack whenever Increment produces an

index that exceeds the current allotiont. The details are presented in
I PI(StackOfEventEntries is Variable).

I]

q. I
I
I Appendix B

(A Family of EL 1 Program Analyzers

L Introduction
There are a number of tools that need to analyze some program consruc in order to

Idiscover and assess the meaning of identifiers that occur free in that cosrc Included

are the following tools:

- Package - The Package tool has the job of determining an ordering among
some collection of program entities that insures that a quantity is defined
before it is used. It must therefore find all the inter-dependencies among
some set of programs entities as a basis for determining an acceptable
ordering (or finding that there are inherent circularities that preclude such
an ordering).

5 - Synonym - The Synonym tool has the job of systematically replacing all
occurences of some identifier (that refers to a globally define variable) by a
new identifier.

n - FindUndefinedldentifiers - The FindUndefinedIdentifiers (FUI) tool scans a
set of program entities and, for each identifier that is undefined, reports on
that fact and reports on the context in which the undefined identifier
occurred. The Package and Synonym tools deal with concrete (that is,
executable) ELI constructs but the FUI tool must be able to deal with

I abstract constructs and appeal to a set of analogies to "explain" abstract
constructs in terms of certain (more) concrete constructs.

3 The analyzers required for the three tools are, abstractdy, quite similar. They basically

do a recursive evaluation of a program construct and maintain a stack of identifiers that

I are local to each context Upon encountering an identifier that corresponds to a

program variable they must determine whether that identifier names a local variable, a

I built-in ELI construct, or a global and take the appropriate action. Thus, it would

certainly be appealing to have a single analysis tool that was capable of doing all three

j functions Despite the similarities, however, the analyzer required for the FUI tool s

rather more complex than the others since it must detect those (abstract) constructs for

1 which there are analogies provided and it must also deal with the analysis of rewrites

'i__ _ _

fI -
i B-I

I and keep account of the match variables that occur in their patterns and replacements.

In addition, it must keep sufficient records to enable reporting on the context in which

some undefined identifier occurs.

The strategy that we have employed to develop the analyzers required is to developSI
first a sinle abstract analyzer that contains the basic logic required to do the recursive

evaluation of some program construct We then develop two distinct refinements of this

abstract analyzer. One refinement yields an analyzer that is appropriate for the Package

and Synonym tools and a second refinement yields an analyzer appropriate for the FUI

tool. The resulting analyzers are called, by the client tools, with a set of procedure

parameters that further specialize the analysis task to the particular requirements of the

I three different tools.

In section 2 we discuss the requirements imposed by the three clent tools in more

detail Secetion 3 provides an overview of the several modules that provide the

I implementation of the analyzer family (with two members) within the Harvard Program

Development System (PDS). Section 4 provides a listing of these modules, including

5 detailed explanations of the various program entities that are defined. The reason that

the program entities (that is, ELI program text) and the explanations (that is, English

3 text) are contained in the same modules is that we find that by so doing it is much

more convenient to keep the explanatory documentation up to date. That is, if an

I explanation of some construct is simply one attribute of that construct it becomes quite

naturak to modify the explanation at the same time the construct is modified, If on the

other hand, the explanation was contained in a separate document (a text file, say) it

has been our experience that updating the explanation after a change in the entity it

J explains often does not occur in a timely fashion - if it occurs at all. Merging of such

explanatory text with program entities has been made feasible by a recent change to the

Iprint tool in the PDS that interfaces it to the Scribe text justifier system. With this

intaface, the explanatory text is dealt with by Scribe and the program text is produced

| by a pretty-printer.

I

i B-2

5 2I The Client Tools
As noted above, the analyzers developed are to be used by three different client

j tools: Synonym, Package and FUI. In this section we discuss the requirements that

these three tools impose.I
2.1. Synonym

ISynonym has the simplest requirements of the three clients. It has a set of identifiers
that are presumed to name global variables and a corresponding set (actually, in general,

1expressions) of names that arc synonyms for these global variable names. The analyzer

is to provide Synonym with each occurrence of a variable name that is neither local nor

I the name of a built-in ELI construct, it will return the name that is actually to be used

(either the same name or a synonym for it).U
2.2. Package

The Package tool is used to prepare a set of program entites for loading into an ELI

interpretive environment and/or for subsequent compilatin. We can think of it as

3 being given a set of so-called events and its job is to order the events in such a way

that if an event, e, depends upon an event, f, then f proceeds e in the ordering. The

I events can be thought of as of two types: binding and initialization. A binding event
associates some (global) name and its value (an ELI expression). An initialization event

contains some ELi expression that is to be evaluated. Given some event, the associated

expression (that is, the expression to which some name is to be bound or the

Snitialization expression to be evaluated) must be analyzed to determine those events on

which the expression depends (for example, an initialization event may include aJ procedure call, say, f(), so that both f and a must be bound and initialized before the

initialization event can occur). Since an event, say f, in which some event, say e,f depends may also depend upon other events the analyzer may be called recursively.

Except for the possibility of being called recursively' , the task posed by Package is very

lThre e also several technical problems to do with handling recursive modes and with handling the

behavior functions associated with an extended mode, but then. are not relevant ber see the description
of the Package tool for further deaI

- -- -

B-3

similar to that posed in Synonym: given a non-local and non-built-in variable name, the

client tool must decide how to interpret the variable names.

2.3. FUI

The FUI tool imposes the most complex requirements of the three client tools,

although its end result i simply reporting on free-variables that occur in some program

construct. The complexity derives from the following considerations:

1. The FLI tool deals, in general, with abstract program constructs whose
definition (implementation) is still pending. in order to "explain" such
constructs, the user may supply analogies; an analogy takes the form

pattern <-> replacement

where pattern and replacement are ELI (possibly extended) expressions,
including the forms $$ x or ?' x where x is an identifier. If the pattern of
some analogy matches a program construct being analyzed, then the analyzer
is to process the replacement part of the analogy using the expressions that
matched the match variables in the pattern for all occurrences of match
variables in the replacement. The replacement, with substitution of
expressions matched for occurrences of match variables, is called the
interpretauion of the construct matching the pattern.

2. The program entities being analyzed may include rewrites. The analysis of a
rewrite involves keeping account of the match variables that occur in the
pattern part so that we can determine whether a match variable occuring in
the replacement part is defined or not and report on those that are not
Thus, in addition to the local program variable, the analyzer must keep
account of the local match variables.

3. The FUI tool has, as an option, reporting on all the (user) procedures called
by some construct being analyzed.

4. The FUT tool, when reporting on occurrences of free variables, has an option
of providing a certain amount of context to aid the user in determining just
where to look for some undefined variables. Thm context amounts to
indicating blocks, loops, cases exprs, and so on entered and providing an
indication of how many statements within each construct entered preceed
that containing the free variable occurrence.

B-4

3. Implementation of the Analyzer Family
There are five modules that provide the basis for the implementation of the two

|| member analyzer family. Their names, and a brief description of each is as follows:

- Analyze

The definition of the abstract analyzer that is the progenitor of the two
concrete analyzers that have been developed. The analyzer defined by
Analyze is described using notations that free the reader from having a
technical understanding of the details of the internal representation of ELI
program constructs.

- Analyzel(General)

This module contains several refinements that are commonn to both
analyzers being developed. By and large, they have to do with implementing

I the abstract iterators and the ies used in Analyze in terms of the actual
internal representation of ELI program constructs.

- AnalyzeI(Application is Concrete)1 This module contains the remaining (that is, those augmenting the
refinements contained in Analyzel(General)) refinements necesary to
produce the analyzer appropriate for use by the Package and Synonym tools.

U - Analyzel(Application is Abstract)

The remaining refinements necessary to produce the analyzer appropriate for
use by the FUI tool.

J ListUtilities

A collection of (general purpose) utilities useful for dealing with the list
structure internal representation of ELI program constructs

I The derivation of the two concrete modules, denoted ANLZC[3] and ANLZA[3] for

the concrete and abstract applications, respectively is depicted below.

I

II

Anlz nlyeCIrl

Analyzel(Applicatiofl is Concrete) Anlzj] Analyzel(Appiication ms Abstac)

(IANLZC[2] ANLZAf2J

Zocetize Concretize

IIANLZC[3] ANUZA3J

Module <Analyze@ 56> B - 6

< Analyze a 56, Analyzel(Application is Abstract) a 61,
Analyzel(Application is Concrete) a 40,
Analyzel(Goneral) a 34 >

I Module

IComment
The main procedure, named ProcessE.xprossion, basically does a recursive evaluation of

1some program construct (for example, a procedure, a mode definition, or the like) and
maintains a stack (named NameStack) of names of variables that are in the local
environment in each context.

The client tool interface is vim a procedure named ProcumAttributeValue to which the
client supplies the program construct to be analyzed plus several procedures that tailor
the analysis to his application.

I EndComment;

a Module has Uses(UstUtilities ,

I iii I:II,:::Ij.4=:...J. NameStack i:: :::

2-1 Scope

Comment

I This scope provides the several modes, data objects, and procedures required to set up
and manipulate NameStack, the stack of names of variables that are local to the current3 FORM being processed by ProcessExpression.

EndComment;

Scope has
ExportedSyntax(EquatePhrases(ForEchRlevantNameStackEntry 88 j',

'FOR 881'))

I Analogies
(ForEachRolevantNameStackEntry I8 j REPEAT ?? body END) <}>

REPEAT DECL # j-INT; ?? body END

EndA iena e

12-2 NameStack

Comment

The NaomeStack is Implemented as a pointer to a sequence of entries so that the stack can
be extended if the initial size estimate (provided by NameStackSize below) proves too

Jmodest.
EndComment;

I

IModule <AnalyzeS0 56> Scope(NameStack) B- 7

I NameStack C-

CONST(PTR(SE(NemeStackEritry)) B3YVAL
ALLOc(SEQ(NameStackEntry) SIZE NameStackSize));

2-3 NameStackSiz. <- CONSTONT UYVAL lo0ok

2-4 NoieStackEntry

NmewtackEntry isa Struct(NamewFORM)-
ifferent refinements may choose to provide for a variety of fields, but we assume that all
will provide a field named Name to store the variable name.

2-5 NP

j comment

NP will index the current topmost position on NameStack.

'I EndComment;
NP '- CONST(INTk;

2-6 PushLocalName

5 Comment

Provision is made, through Extend(NameStack) to extend the name stack if it proves to be3 too smnall.
EndlComment;

I PushLocaiName -

Isidentifier(Nome) .'> NonAtomicftme(Name);
(NP <- NP + 1) OT LENGT1KNameStack) -

Extorxl(NomeStack);

NamStack[MIP <- CONST(NameStockEntry OF Nkame);

J 2-7 NonAtomnicName

NonAtoml~cNoe isa Procedure(Nam.FORM) -

A non idantifier is about to be pushed onto the name stack.

Module <Analyze 0 56> Scope(NameStack) B -

2-8 IlaocalNam.

Coment

J Different refinements ay choose to partition the name stock in various ways and the
abstract iterstor ForEachieentrameStackEntry j will be refined to reflect such
pertltlonings.

J Enclommnt

IstocalName <-
EXPR(atom:fORM, 9001

ForEschRoleantNamneStackEntry j
REPAT

rim eStackfjlNet - atom -> RETURN(TRUIE)

4-4-44'4-4444--4--BasieProcessing:::II -- 4I4

3 3-1 Scope

Scope has
ExportedSyntax(PREF1(lnterpret"), INFCC*as),

EquatePhrasss(fforEachOECLElement $6 d in 8 f,~
'FOR 8 d FROM 88tf),

EquatoPhresesaforEachLoceiName $8 m in 8 d',
'FOR # nFROM 48 c).1 EquatePhrases(ForEchCASEArm 11 a in 88 f',
TFOR 1111a FROM f'),

EquatePhrasesCForEachControliemnt 8 a in IS a',
'FOR $1 aFROM 1a),

Equat.Phras(ForEachlteratorElement $8 e in 8 f',
'FOR $8 aFROIA$8f%)

3 EquatePhrasesC~or~achSTRUJCTkode 8 mn in 86 S',
5'FOR U m FROM IS S%

EquatoPhrasea(faorEachStatement 8 a in 86 V',
'FOR 886sFROM 88L%)

EquatePhrasaCfforEsctFormalMode 86 m in 86 f,
'FOR 8 mFROM6 f%)

EquetePtwes(fforEachormal 8 d in 8 f,

3-2 Process~xpression
TO 1dFM 1rh

I Commient

3 Proceesixpresion does a recursive evaluation of its argument, maintaining in NameStack
-I the set of variable noaes local to the current context. The paragraphs following describe

the processing of the various constructs done by ProcessExpression.

Module <Analyze 0 56> &*5 rcm g B -meiaey sytmprcdr

Gven a constant argument ProcessExpression eisImdaeyIIf f is an identifier, then we proceed as flosIffnaasytmpceueor is a

local variable we exit immediately. Otherwise the user supplied procedure,
l.avelkownAtom, is called to deal with the situation. (For example, it might consult some
table of global names to attempt to resolve the identlifier ocurring, reporting that
undefined if it was not.)

I Otherwise , the argument f is an expression; we do a case analysis of its operator (fop) to
determine the ELI construct that we have. Comments on several of the possibilitiesj follows;

BEGIN We do the bookeeping appropriate to enter a new block (for example, record
the current NameStack top so that it can be restored at the end of the block), process
each statement of the block (recursively), and then do the bookeeping appropriate to

bloc ext
DECL The mode and specification for each (parallel) declaration element are processed
and then the names declared by each declaration element are pushed onto NameStack.

II CASE We recall that in ELI the CASE statement takes the general form3 ~f - CASE(Relation(ll -.)[Argumentf 11 .

j Co~ntrol[k, 11 .., ControlNk n] -> Result~kli

3 where

Control~k, U]
(TestNkj 11 ., [Test~k, j, mflPredicate~k, j]

The processing of the CASE is as follows:
1. Proes the list of relations (Relatlonf I -X. Here Process~ist(L) is shorthand for
iterating over each element, a, of the list L and calling ProcessExpression(s).

2. Proess the list of arguments (Argument[1 1)

3. For each arm of the CASE, say the Y.-th, process each control element, Control~k,
)I and then process the result,' Resultfkj. The processing of Control~k, J] involves
processing the list of tests (Test~k, j. 11 ..jand then processing the predicate,
Predlcate(k. jj.

FOR: Recall that the general form of a for statement is f-
FOR var FROM low BY delta TO high REPEAT body ENDC

Module <Analyze @ 56> Scope(BauicProcessing) B- 10

We can think of the construct as consisting of a sequence of Iteration elements' , f-
(.1, 92, -) where el, e2, - are (FOR var), (FROM low), and so on. For present
purposes there are throe types of such elements corresponding to the following three

I lslterstorVariableSpeciie): Here we have a - (FOR var) and we process it by
capturing the variable name, var, to be pushed onto the name stack just before we

j process the body of the loop.

Isody(e). Here a - (REPEAT bodyY, we do the bookeeping appropriate for entering
a loop, push the iteration variable name, if any, onto th, name stack, process eachj statement in the body, and then do the bookieeping appropriate to exiting the loop.

Otherwise (here e - (FROM low), and so on) we process the specification (low, and
so On).

Here we have f -spec -: R If the first argument (spec) specifies user behavior
than the user supplied procedure, Process~ehaviorFunctions, is called to deal with the
specification; otherwise PsocessExpression is called. Finally the second argument (UIR)
Is processed

EXPR: We do the bookeeping appropriate to entering an EXPR and then process theII mode and specification of each formal parameter. Following this, we push the names of
the formals onto the name stack and process the result mode. We then do the
bookweping appropriate to entering the body, process the body, and, finally, do thej bookeeping appropriate to exit the body and then the EXPR as a whole.

Otherwise (that is, f is not one of the EUi consructs that requires special processing)
we proceed as follows:

1. If the construct does rot have the form g(al, -) with g an identifier, then we3 simply process each element of f.

2. If we have f - Z(al, -) where g names a system procedure, then we -all
ProcesaSystemPr-ocedureApplication.

&. Otherwise (that is, f - S(al, -)with g naming a user procedure) we call
ProceesUserProcedureopplication.

EndComment;

ProcessExpression <-
- EXPR~f FOR% FORM

BEMN
TIsConstant(f) -,

lsldentifier(f) -

BEfZN
IsSystemnProcedure(f) OR lsLocalfame~f) f;
HavWiknownAtom(f)

ModuL <Analyze 0 56> Scope(BasicProceusing) B -I1

CASE~f.0p]I (~BEGIN-1
BEGN

Enter~lock(f h
ForEachStatsment s in fI REPEAT ProcessExpression(s) END;

[DECL)I =>
BEGN

ForEachDECLE3*lenft d in f
A REPEAT PrmcsaModoAnSpecFor(d) END;

ForEschoECLE3*mflt d in f
REPEAT

ForEachLocal~ftib n in d
REPEAT PushLocaftnamn) END;

["STRUCT"WJ
BEGN$5 ForEchSTRC1'Aods m in f

REPEAT ProcesExpression(m) END

U END;
IS (1] -> Procas.Expression(f.*rgl)

CnCASF)-=>
BEGN

ProcessUst(fCASERelationsh
ProcessUst~f.CASEArgumefltsh
EnterCASE(fh
ForEachCASEArm a in fI REPEAT

FbrEschControIE~lmot 9 in a.Control
REPEAT

*1 Procssst(.TestsY,
Pr'oceaExprosion(e.Prodicat8);

END;
PrcesExprosion(.Rsut,

I! END;

BEGN
DEML NarrtfORM
ForEwchtertorElsmeflt s in f

REPEAT
BEGIN

7' IatrstorVeriabloSMC(o)
Narm <- sJtrtorVariabls;,

IsSody(s) -

BEGN
EntrLoop~fN

IIName NL -PushLoca*4NsName

L;I

3 odule <Analyze § 56> SC cprO teS " Bl12

I ForEschStutement s in o
REPEAT ProcessExpression(s) MND

LomvoLoop(;

I ProcessExpression<&.Spec)

END;

I ('COSTI ('ALLOCJ -

[) Proc9ssMod@AndSpecFor(f) f (I

BEGIN
BEGIN

Specifiesser~shavior(farZ 1) -
Process~ehaviorFunctions(f.arl 1

ProcssExprssion(f.arg%

D

BEGIN

ForEachFormalMode m in f
ProessExpression(farg2);
EPETNs~prsin~)E

BEGIN

ForEachFormal d in ferXR~)
REPEAT ProcssModeAndSpecFor(d) END;I ForEechFormal d in f
REPEAT PushLocaiName(d.Name) END

ProcessExpression(f.RsutM~de
EnterEXPRBodyQ)X
ProcessExpresionfBodyh
Lowv.EXPR9odyO,

I LoveEXPROh

BEGIN
HesOneArgumnt(f) -

D Proces prssion(fargl) f (I
-~ BEGIN

t.1.op- OR fmrslop 'QL
PrcessUst(fwag 1.@rgsi

- ProcessExpreuulon(farg 1)

- END;

. A

Module <Analyze § 56> Scope(Basicftoceusins) B- 13

HasOrmArgument(t) -> f
ProcessExpresaion(f.argl)

-~D ProcetsExpressionff.ar2), f (1;
TRM ->

BECIN
DEMi op-FORM UKE f.op;
lsldentifier(op) *> D ProcessUst~f) f (I
lsSystemProcedure(t.op) ->

ProcessSystemProcedureApplication(f)
Process~serProcedureApplication~f>,

ENDI

END;

3-3 Isldentifier

I isidentifier isa Procedure(fFO%4 BOOL) -
%eturns TRUE iff f is an identifier.

I3-4 I~ntn
IsConstant !so Procedure(f:FOR4 B00L) -

Returns MRE iff f is an constant.

3-5 Processust

Comment

1 Processf-ist(L) is shorthand for iterating over the elements, e, of L and calling
ProcessExpression(s) on each.

3 EndComment;

PracessUst <-
EXPR(LiORK4)I ForEachUstElement a in L

REPEAT ProceesExpression(e) MN

3-6 ProcessAttributeVolue

- Comment

ProcesaAttributeValue provides the user interface to the analysis tool. It Is called with thejfolowing arguments:

Value - the FOA to be analyzed

I HeveUknownAtom - the procedure to be called when the analyzer has an identifier

that is not a system name nor a local variable.

Modul1e <zAnalyze 0 56> Scope(BasiCProcensiWg B -14

Process~kerProcedureApplication - the procedure to be called when the analyzer hasI the construct f - g(a 1, -.) and £ is an identifier that is not a system name.

ProcessBehaviorFunctions - the procedure to be called when the analyzer has theIconstruct f - spec U.LR and spec has the form <shortname, -> to process spec.

ErrorPort - the PORT to which error co-mmtents are to be directed.

EndCommnt;

ProcessAttributeValue <-
EXPR(Value.fORM,

HaveUnnownAtomPROC(FORM, FORM),
a ProceesaerProcedureApplicationPROC(ORA FORM),

ProcessBehviorFunctions:PROC(FORM),
ErrorToUserPROCSTRING, FORK, STRING))j D laitializeNameStackQ Process~xpression(Vaslue) (I

Analogies
InitializeNameStack() <)> NOTH4NG;

5 EndAnsiogies;

5 3-7 Have~nownAtom

HeveUnknownAtom isa Procedure(atonrORA FORM) -
HaveUnknownAtom is a procedure supplied by the user on a call to ProcessAttributeVdue
to tailor ProcessExpression to his application. It is called when ProcessExpression has an1 : ' unkntown identifier (that is, one that is not a system name or a local variable name).

Analogies
lnitializeNameStack) <!> NOIMNG;

~1 EndAnalogies;

3-9 ProcesslsarProcedureApplication

ProcessUserProcedureAppllcation isa
Procedue(f.FORt.4 FORM) -

- Process~iserProcedureApplication is a procedure supplied by the user via his call on
ProceesttributsiValue to tailor ProcessExpression to his application. It is called when f
fn(al1, -, an) and fn is an identifier that does not name a system procedure

3-9 Process8ehaviorFunctions

- ProcesdehaviorFunctions isa Proceduraf fOIR11 -
ProcessehavorFunctions is a procedure supplied by the user via his call an
ProcessAttributeValue to tailor ProcessExpression to his application. It is called when f-
-cShortName, U)FI(NI), > (the left hand side of a soperator)

Module <Analyze § 56> Scope(BasicProcesing) B- 15

1 3-10 ErrorToUser

ErrorToUser isa
Procedure(Left.STRING, f.FORK, Rlght:STRING) -

Used to communicate a problem to the user; Left and Right typically comment on some
problem with the FORM f being processed.

: :.: : ::: i : ProcesModeAndComponentsSpecified .::i:::: .. :

4-1 ProceesUod*AndSpecFor

ProcessModeAndSpecFor is* Procedure(d:FORIA FORM) -

Here, d - versand BC spec[1] - or d - const(md BC spec[11 -) (where const is CONST
or ALLOC).

j Process the md and the specj).

(I
oiAftoffim4ffiiii&&+4+++++4. Statementiteration i ++-M*++44 ii- 4-++

5-1 Scope

Analogies
(ForEachStatement $8 s in SS f REPEAT ? body END) <)>

REPEAT DECL 8 sfORM SHARED I f; .? body END;

I EndAnalogies;

• I :::::::::::::::::::::::ProcessBEGN :::::::

6-1 EnterBlock

I EnterBlock isa Procedure(f:FORM) -
Do the record keeping appropriate to entering a block.

" 6-2 LeaveBlock

LeavoBlock isa Procedura) -
62 the record keeping appropriate to block exit (including restoring the NameStack).

Doth

..I. . , ,

Module <Analyze @ 56> Scope(ProcessDECL) B - 16

++++++4--...... ProcessDECL +4-'+4+44-ie..

7-1 Scope

J Comment

The FORM being processed is
jf - DECL x1, yl, .- md(1] BC spec(1]

DECL xn, yn, -.:mdtn] BC spec(nj

EndComment;

17-2 Ieao
Analogies

(ForEachOECLElemenmt $8 d in 8S f REPEAT 9? body END) <)>
REPE-AT DECL S8 d:FORM SHARED 8S f;?r body M;~

(ForEachl-ocalName 88 m in U8 d REPEAT ?? body END) '
REPEAT DECL 111 mAY LIKE 88d- ? bodyM1* EndAnalogies;

.........................++ ProcaSTRUCT...... tti&

8-1 scope

(ForEachSTRUCT~ode 88 mn in 88 f REPEAT 7? body END) <}>3REPEAT DECL $$m:FORMKE SSf; ??body END

1 Comment

1 t -f CASE(Raeationfl 13-.)[Argument(11 -

3 Control~k, 11 .,Control~k, m] - Result~ki

Module <Analyze @ 56> Scope(ProcessCASE) B - 17

EndCommnt;

9-2 tterator

Analogies
(ForEachCASEArm N a in $8 f REPEAT ?? body END) <}>

REPEAT DECL $ a.FORM SHARED 1 f; ?? body END;

(ForEachControl~ement $8 * in ($ a).Control
REPEAT ? body END) <}>

REPEAT DECL $$ e:FORM SHARED $ a; ?? body END;

EndAnalogies;

9-3 EnterCASE

EnterCASE isa Procedure(f:FORM) -
Do the booKeeping appropriate to entering a CASE statement.

I 9-4 LeaveCASE

LeaveCASE isa Procedure() -
Do the bookeeping necessary to leaving a CASE ststement.

.... :.....-... Processiterator 4-++ +.+t

1 10-1 Scope

Analogies
(ForEachlteratorEJement $8 e in $8 f REPEAT body END) <)>

REPEAT DECL $ e:FORM SHARED $8 f; ?? body END;,

ls(teratorVariableSpec($ s) <}- S s;

IsBody(N$ b) <}> $ b;

I EndAnalogies;

10-2 EnterLoop

EnterLoop isa Procedure() -
Do the bookeeping appropriate for entering a loop.I

I
I

. _..__ - -----------.--.---- '

g Module <Analyze @ 56> Scope(Processlterator) B - 18

1 10-3 LeaveLoop

LeaveLoop isa Procedure() -
i Do the bookeeping appropriate for returning from a loop.

I ++.,..:+.:++.+i-.+.++++.: lProcessDoubeColon imomiiii: &:...

1 11-1 SpecifiesUserBehavior

SpecifiesUsrBehavior isa Procedure(f -FORM BOOL) -

Returns TRUE iff f -< ShortName, UF1(nl), .I
I+-+-+-4+++++++,1++++1-,++++++ ProcessPROC ++i ...++++++. ++++++. +

12-1 Scope

. I Analogies
(ForEachFormalMode $8 m in P f REPEAT ?? body END) <}>

REPEAT DECL I m.FORM SHARED $$ f; ? body END;

I EndAnalogies;

++.4. ++,+:: +++4-4-4-4.44+44 ProcessDXPR *.++.... .+.....++ .*

I 13-1 Scope

Analogies
(ForEachForma $ h in $i f REPEAT ? body END) c}>

REPEAT DECL S h:FORM SHARED $P f .?? body END;

EndAnalogies;

13-2 EnterEXPR

EnterEXPR isa Procedure(f:FORM) -
Do the booMping appropriate for entering an EXPR.

13-3 LaveEXPR
~LesveEXPR iss Procedure() -

Do the bookeeping appropriate for returning from an EXPR.

I
I

! I

Module <Analyze @ 56> Scope(ProcessEXPR) B- 19

j 13-4 EnterEXPRBody

EnterEXPRody isa Procedure(f:FORM) -
Do the bookeping appropriate to entering the body of a procedure.

13-5 LeavoEXPRBody

I LoaveEXPRBody isa Procedure() -
Do the bookeeping necessary to leave an EXPR body.

14-1 IsSystemProcedure

IsSystemProcedure isa Procedure(atomFORM; BOOL) -
Returns TRUE iff atom names an EUi system procedure.

14-2 ProcessSystemProcedureApplication

Proce"sSystemProcedureApplication isa
3 Procadure(f:FORM; FORM) -

j U It has been determined that f has the form f - P(al, _) where P names a system
procedure; do the processing appropriate.

II

I
I
1
I
I
I

I Module <Analyzel(Application is Abstract) @ 61> B- 20

1
1 Module

IComment
There are several issues in developing an analyzer appropriate for use by the FLU tool:

(a) The program constructs being analyzed include, in general, abstract constructs not
defined in base EL.-I The user may supply various analogies to "explaino certain of
these abstract constructs. If so, the analogies are to provide the basis for interpreting
each instance of the abstract construcL We therefore need to provide mechanism to
discover when some construct that is being analyzed has a corresponding analogy and
to interpret the abstract construct in accordance with the analogy.

(b) The entities being analyzed may include rewrites. If so, we must analyze the
replacement part knowing what match variables have been defined in the pattern part.
The bookeeping of match variables is rather similar to bookeeping the current set of
local variables. We will employ the NameStack for both kinds of bookeeping,
partitioning it appropriately to permit lookup of either kind of variable.

(c) The FLU tool needs, in addition to the fact that some variable name occurs free,
sufficient information to report to the user the context in which the free variable
occurred. For this purpose we will maintain a control stack and retain in that stack the
contextual information required. This stack will have an entry for each block,

* Iprocedure, loop, and so on entered.

EndComment;

I Module has Uses(Analyze, Utilities);,

1~ ++++ Name Stack4....4.I4.......

2-1 Scope

Comment

* A major difference in the analyzer for FLA and the one for Package and Synonym is that
we will have a control stack (named ControlStack) that will record the control structures
entered and not yet exitted. Also, we will keep on the NameStack the match variables
currently known (in addition to the local variables).

EndComment;

2-2 ControlStack <-
CONlST(PTR(SEQ(ControlStackFntry)) UYVAL

ALLOC(SE(ControlStackEntry) SIZE ControlStckSize))

2-3 ControlStackSize <- CONST(INT UKE 40);

A

Module <Analyzel(Application is Abstract) @ 61> Scope(NameStack) B - 21

12-4 ControlStackEntry

Comment

The fields of a control stack entry are interpreted as follows:

Type - the type of entry, among which are "Block, "Loop", "EXPR", "EXPRBody',
"Rwrite", "Interpretation", and so on.

NP - the name stack index current when the control context was entered.

f - the FORM being analyzed in the current context.

StatementCount - counts the statements in a block or loop in order to provide the
client tool information necessary for reporting on the context of a free variable
occurrence.

EndComment;

1 iControlStackEntry <-
" STRUCT(Type:SYMBOL, NPdNT, f:FORI, StatementCountdNT);

2-5 CP

, Comment

I CP will index the current top of the control stack.

EndComment;

CP <- CONST(INT);

2-6 NameStackEntry

Comment

In addition to the Name field, we add a field (named inding) to permit association of match
variables of analogies and the constructs that they match.

SEndComment;

SNameStackEntry <- STRUCT(Nam:FORM, Bnding:FORM)

2-7 PushNsmeAndlinding

Comment

A variant on PushLocalName that pushes both a name and an associated binding onto the
I NameStack.

~ndComment;

3Module <AnaiYzel(Application is Abstract) @ 61> Scope(Nameftck) B - 22

-c< BEGIN
~ldentifier(Namo) +> NonAtomicName(Name);.1 (NP'<- NP + 1) GT LENGTH(NameStack) -

I CONST(NameStackEntry OF Name, BOnding);

- 2-8 IteratorWs

J Comment

The iteration over the Orelevant* entries in the name stack (that ithe entries
corresponding to local variables) is implemented by consulting the control stack to
determine those ranges of NameStack indices that are associated with local variables
(rather than match variables). To simplify the loep a "guard' entry is installed above the
current topmost entry on the control stack- all ci istructs that push entries onto the3 control stack are obliged to insure that there is room for the guard.

EndComment;

I Rewrites
(ForEachRe~evantNameStackEntry $8 j REPEAT P? body END) <->

EGIN
ControlStackCP + 1) 4-

CONST(ControlStackEntry OF NIL, NP);
FOR c FROM CP BY - I

REPEAT
c -0 -> FALSE.,ii LocalNmesType(ControlStackfc]Type) -

FOR SS j FROM ControlStack(c + IJNiP BY - I
TO ControlStackclf + 1 REPEAT?"? body END

END;

EnclRewrites;

2-9 LocalNemesType <-I MACRO(Type:SYMO W001
Type * "Rewrit** AND Type "I~nterpretation';

3-1 ProceeaExpressionChangesMe

j Comment

There are two changes that awe required to adapt ProcessExpression to be appropriate for

Ii~ o

Module <Amalyzel(Application is Abstract) § 61> Scope(Basicprocauing B - 23

the FU application. First, we must consider the possibility that there is some analogy for
the FORK, f, being analyzed that prov;des an Interpretation that is to be analyzed ir llu of
f. Second, the (descriptor) constructs Struct(-.) and KnownFrees(-.) are to be analyzed
exactly like STRUJCT(-.) and the constructs MACRO(-.)-. and Procedure(-)-. analyzedI exactly like EXPR(-.J..

EndCommewnt;

I Rewrites
BEGIN

IsConstant(f) f;
I l~sldentifier(f) -

?? tail;
END <->BEI

lsConstant(f) -> f
DECL Tinterpretation UKE FindlnterpretationForf)
T * NullInterpretation -~Interpret f as T;
Isldentitier(f) -~Ui;

??tail;

I CASE[-.]
V? head;

I. (DECL1 ->111d;
II *V middlel;

["STRUCfl) -> s;
V~ middle2;

("EPRJ - 8 e;

V? tail;I END
CASE[-]Jii &V head;

MD~CL *Jwore $11 d;
V? middlel1;

[USTRUCT*I ["Struci [3KnownFreft"] s; 8
V? middle2;,
["D(PRj E"Procedure'l [*MACRO'] $8 a;

V? tail;* i~I EMI
EndRawrites;

7J

3Module <AnalyzeI(Application is Abstac) 0 61> Scop(BasicProceuing) B - 24

1 3-2 ProcessAttributeValueiCtanges(*)

Comment

j This rewrite tailors the body of ProcessAttributeValue, (in particular, the construct
lnilizeNam.StackO) to properly initialize the control and name stacks. Since the
initialization of these stacks is done by the FU tool, none need be done by

1 ProcessAttributeValue. Note, however, that the variable named CurrentStatement is
I initialized to be the construct being analyzed; it will be modified as we go along to keep

track of the then current statement as the analysis progresses.

I EndlComment;

Rewrites
RAISE D) lnitializeNameStack()(]O

RAISE D DECL CurrentStatment.FORM UKE Value (1)
j EndRewrites

I I ::in~i::StatementIteration

Ii 4-1 Iterator(*)

U Comnment

In addition to stepping through the statements, the variable named CurrentStatement is
kept up to date and the counter StatementCount (for the current control stack entry)

EndComment;

Rewrites
(ForEach~tatement 8$ s in 8 f REPEAT ?? body END) <->

3 93EGIN

REPEAT

f\.C[DR mML -> NOT14N

Ir CurrentStatement <- f\.CAR%
4 DECI 8 s:fORM SHARED f\.CARh

??body;
(8$ s).op * 'Doclare"-

ContralStack[CPJ.StatementCount <-j ControiStack[CPJ.StatementCount + 1;

I EndRewritWs

Module <Analyzel(Application is Abstract) 0 61> Scope(ProceuiBEGIN) B - 25

44++9.+.+44.-9.++9.~.4.ProcessBEGlN .-... +..+. ,-..+..+....

5- 1 EnterAndLeave(s)

Comment

Bock entry requires making an appropriate control stack entry and exit requires popping
the control stack after resetting the name stack top (NP). Observe that we insure that
there is a position on the controol stack for the 'guard" entry required by the name stack
lookup mechanism described in [2-71

EndComment;

Rewrites
D Enter~lock(f) ?? body; LsaveockO; f (] <->
BEGIN

(CP <- CP + 1) + 1 GT LENGTH(ControlStack) ->
Extend(ControlStack);

ControlStack(CP] <-
CONST(ControlStackEntry OF "Bock", NP, f)

DECL CurrentStatement:FORM SYVAL f;
??body;

I NP <- ControlStack[CP.NP
CP <- CP - 1;
f;

EndRewrites;

I

* T

- -i

1Module <AnalyzeI(Application is Abstract) 0 61> Scope(Procealterator) B - 26

J :iii:ii ma to o Hiio ii Processiterator ++

6-1 ErterAndLeave(s)

j Comment

Similar to entering and leaving a block.

I EnclComment;

RewritesI D Enterl-oop(f); ?? body-, Leav*Loop() Q. <-
BEGN

(CP c- CP +' 1). +1 GT LENGTHControlStack) -f Extend(ControiStackh
ControlStack[CP) 'C-

CONST(ControlStackEntry OF "Lop*, NP, f)
DECL CurrentStatementFORlJ SYVAL f;
r body;INP Cnro.-k[PW

EndRewrites;,

3 :..:I::I:Ig::::+~-4 .--... ProcessCASE :Ii:,:

7-1 EnterAndLeave(e)

Rewritesa BEIMN
?? head-
EnterCASE(t)N
~?middle-,
LeeCASEO;
"? tail;

??heed4
(CP <- CP + 1) + 1 OT LENGTI4CntrolStack) -

Extend(ControiStack);
ControlStack[(IP] <-

COST(ControStackEntry OF 'Cue*, NP, A.

DE L CurrentStatenment:FORM BYVAL f-,
?? middle;
CP <C- CP - 1;,
9.? tail;

I EndRewrites;

Module <AnalyzeI(Application is Abstract) 0 61> Scope(ProceCASE) B - 27

1 7-2 Iterator(s)
Rewrites

(ForEnchCASEArm S a in $8 f REPEAT'?? body END) <->
BEGAN

(N8 a)Result <-> ($8 a)arg2;
(ForEachControtlement SS. in ($8 a).ontrol

REPEAT?9? inner\body END) <->*I I BEGIN
($9 W)ests -> t\.CAR;

J DECL t\.FORM BYVAI. ($$ a)argliargs;
REPEAT

t- NIL -> NOTHINg
?iniwr\body;

\<-t\.cm~cmR

DECL. S\FORM BYVAL (IS f)CR.CDR.CDR;
REPEAT

&- NIL -> NOTNNg~
CurrentStatement <- g\.CAJR

DECL N8 a-FORM SHARED g\VCAR,
Croy-, CP.tt~wtout<
ControlStackCPStatementCount 1;

3 END;

U EndRewrites;

....I

Module <Analyzel(Application is Abstract) @ 61> Scope(ProcessEXPR) B - 28

I ~+ s.. u ii 1: I+ ++ ProcessEXPR

8-1 EnterAndLeave(s)

I Comment
In order to provide context for the client tool, we here provide a control stack entry for

I both the O(PR as a whole (when we are processing the formals and the result mode) and

for the body itself.

EndComment;

Rewrites
BEGN

EnterEXPR(f)
??hood;
EnterEXPRBody(f)

LoayeEXPRody&
LavOEXPRO

END <->I BEGN
(CP <- CP + 1) + 1 GT LENGTH(ControlStack) -

Extend(ControlStack%
ControlStack[CP] <-

CONST(ControlStackEntry OF "aPR, NP, f ,
DECL CurrentStatement:FORM ErYVAL fi;

CP <-CP +1) GTLENGTI40antrolStack) -

ControlStack[CP] <-
3 CONST(ControlStackEntry OF "Pffody, NP, f.ar&3h
U CurrentStatement <- far&3;

?? body;
NP <- ControlStack[CP - 1j.PP
CP <- CID - 2;

END

In~wrt

g Module <Analyzel(Application is Abstract) @ 61> Scope(SystemNames) B - 29

z ii oa ai ai iA-i+ ii 0i i# ii - SystemNames ++.-e.q++ .+-i+++ ++.-

9-1 ProcessSystemProcedureApplication

Comment

This procedure is called when f - g(al, ., an) and g names a system defined procedure.
1 If g is a quoting operator we simply return f and if g is not a rewrite operator we process

the list of arguments and return f.

If f - $ x or f - 7? x, we procure the binding of the match variable and process it.

If f is a rewrite, we verify that we are not currently processing an interpretation (rewrites
not being permitted within analogies) and, if not, note that we are entering a rewrite (via a
control stack entry), process the pattern to introduce the match variables occurring in the
pattern into the environment, and then call ProcessExpression on the replacement (that is,
f.arg2). CurrentStatement is also set to be the rewrite being processed.

EndComment;

ProcessSystemProcedureApplication <-
EXPR(ftFORK FORM)

CASElf.op]
["<al rQL'$ [QUOTE") ->1; -

,ProcessExpression(atchfindingFor(f)), f (I

ForEachStatement s
Tin CONS(NIL, MatchBindingFor(f))

REPEAT ProcessExpression(s) END;

['<.>' ["<-->"3.>
BEGIN

Withiniterpretation ->
BEGINErrorTo~lserC"

A rewrite is not permitted within an analogy; it is being ignored')
ML;

EnterRewritef)
ProcessRewritePattern(f.arg 1)h
OECL CurrentStatementFORM BYVAL f;
ProcemExpreaion(f.arg2);

SLeaweRewrite(O

END;
TRUE -> D ProcaaUst(f.args) f (I

I

-..-. - •-

I
Module <Analyzel(Application is Abstac) @ 61> Scope(Interpretations) B - 30

.+++..++..+.++ Interpretations +.++++++++++ ++++

13-1 Scope

Comment

Recall that by an uinterpretation" we mean the construct that, in accordance with some
analogy, is to be processed in Iiu of the abstract construct that actually apopeared. In
order to determine whether a given construct being processed is, in fact, explained by
some analogy, we employ the facilities available in the REWRITE package to do the job. If
the pattern part of some analogy does match the current construct, the match variables of
the analogy will be pushed onto the name stack in a partition associated (via the control
stack) with the current interpretation. Detailed comments regarding the several constructs
involved follow.

EdComment;

10-2 Interpretation

Comment

By an interpretation we mean a FORM that is being treated specially; thus an extende mode
based on FORM is employed.

I1 EndComment;

Interpretation <- "nterpretation' .FORM;

10-3 NullInterpretation <- CONST(nterpretation);

10-4 FindinterpretationFor

Comment

To determine whether the current construct , f, has an interpretation (that is, is matched
by the pattern part of some currently active analogy) we call on LookUpRewrite (exported
by the REWRITE package) giving it both the current FORM, f, and the set of analogies
currently applicable. It is here assumed that the client tool (FLI) creates and manages the
set of analogies currently spoplicable and has the variable named CurrentAnalogies
appropriately bound. If the match is not successful, LookUpRewrites returns NOTHING and,
if successful, returns the replacement part of the analogy matched. FindnterpretationFor
then either returns the Nullnterpretation or lifts the replacement part to be an
Interpretation.

EndComment;

FindlnterpretationFor <-
EXPR(f:FORM; Interpretation)
<< BEGIN

DECL I:ONEOF(NONE, FORM) UKE
LookUpRewrite(f, CurrentAnalogies)

I - NOTHING -> Nulllnterpretation;
UFT(I, Interpretation)

I

module <Analyzel(Application is Abstract) @ 61> Scope(Interpretations) B - 31

MN

10-5 Interpret

Comment

A control stack entry is made to record the fact that we are within an interpretation. The
match variables and their associated bindings are returned by LookUpRewrite as a list (of
OTPR% named GlobalBindlist) whose CARS point to a OTPR whose respective CAR and CDR
are the match variable narm and the matching construct. These are pushed onto the name
stack and GlobalBlind~ist set to NIL We then process the interpretation (with special
consideration for the Raised block construct). Finally, we pop the control and name stacks.

EndComment;

Interpret <

EXPR(tf:ORM, T:Interpretation; FORM)
BEGIN

(CP <- CP + 1) + I GT LENGT1-IControStack) -

Extend(ControlStack),
ControlStack[CPJ <-

ClNST(ControlStackEntry OF "Interpritation, NP, f),
ForEachUst~lement e in GlobalBind~ist

REPEAT PushNameAnd~inding(e.CAR, e.COR) END;
GlobelFindList <- NIL;
BEGiNI IsRaisedBlock(T) -

BEGIN
T.argl.argl.op * "Analogies" =

ProcessList(T.Raised~lockContents);
DECL TomporaryAnalogies:AnaiogySet;
AddToAnalogySet(Temporary Ajialogies,

T.arg 1.arg Largs);I PushAnalogies(TemporaryAnalogies,
CurrentAeialogiesh

Process Li st(T.arg 1.args.args);
PapAnalogies(CurrentAnalogies),

T-op a BEGIN"OR T.argl.op * Analogies"-

DECL TomporaryAnalogies.AnalogySet,
AddToAnalogySet(TemporaryAnalogies, T.argl.args);
PushAnmloies(TemnporaryAnaiogies, CurrontAnr2.ouiesh,
ProcessUst(T.args.argsh,
PopAnalogies(CurrentAnalogies);

W <- ControlStack(CP1NP
C'- Cs' - 1;

Rewrites
Interpret $8 f as $4 T <- Interpret(f, T)

Module <Analyzel(Application is Abstract) @ 61> Scope(lnterpretatioas) B - 32

EndRewrites,

10-6 R

RewritesI lsRaised~tock($8 T) c->
kO(VAL(I8 T)) - DTPR ANM ($I T).CAR - *RAISE";

(8 T).Raised~locikContents <- (88 ThC.CAR.CDR;

WithinInterpretation <->
FOR c FROM CP BY-I1

REPEAT
c - 0->FALSE,
ControlStackclType "I~nterpretation"- TRUE;

EndRewrites;

e+.+~e.+ ...++...... ProcessRewr ite -+++....11 11-1 EnterAndLeave(s)

Rewrites
BEGIN

?? head;
EnterRewrite(fY,

?body;
LeaveRewrite(%
.? tail;

END <->*1 BEGIN
7? hea4d
(CP <- CP + 1) + 1 GT LENGTH(Control Stack) -f Extend(ControlStack);
ControlStack(CP] -

CX)NST(CotroIStaclAEntry OF *Rewrite, NP, f%;
?? body;
NP <- ControlStack[CP1NP
CP<-CP - 1;

END;
EndRewrites;

11-2 ProcessRewritePattern C

EC(PR(Ihs:FORM)
BEGIN

fte - NIL --- NOTN
IeOetcVariable(lhs) -

.............

Module <Analyzel(Application is Abstract) @ 61> Scope(Proc=s.ewrite) B - 33

HaveRewritelindingFor(Ihs.argl) +>

PushNameAnd~inding(Ihsar 1);
MVIh) * DTPR -> NOTHING
ForEach~istElement a in Ihs

REPEAT ProcessRowritePattern(e) M~

11-3 HavRewrite~indingFor-
E)PR(Nam*eFORM BOOL)

< BEGN
ControlStack[CP. +1 <-

CONST(ControiStackEntry OF M~L, NP);
FOR c FROM CP BY - 1

REPEAT
c - 0 -~ FALSE;
ControiStackcjType - 'Rewrite' -

FOR rip FROM ControlStack(c + 1].NP BY - Ij TO ControlStack(c).NP + 1
REPEAT

NameStack[np).Name -Name -

RE TI.RN(RUE);

END;

11-4 WithinRewrite

Rewrites
WithinRewrite <-

FOR c FROM CP BY - 1
REPEATI c - 0 -> FALS&-

ConrioStaclkcJ.Type -'Rewrite' -~TRUE;

EndRewrites;

J WithinRewrite, <-
MACRM- BOOL)

FOR c FROM CP BY - 1
REPEAT

c - 0 -~ FALSE,
ControiStack(c]Type " Rewrite" - TRUE,

11-5 IsMetchVariable <-
htACRO(t:FORMt BOOL)

g.D(VAL(f)) -DTPR AND (f.CAR O W OR f.CAR -?r

Module <Analyzel(Application is Abstract) @ 61> Scope(ProcessMatchVauiablft) 34

1 ~~ ~~ ProcessMatchVariables +e-++

12-1 Nonktomichlme <-
EXPR(Name:FORM)

j BEGNoe - OTPR AND Ngm.OP -

BEGIN
Wthininterpretation -41

Name - Match~indingFor(Name);
VithinRewrite -> NOT14Nr,
EM~I ErrorToUser('

Th. non-atomic quantity ', Name,

appears in a context where an identifier is required.),

1 12-2 MatchBindingFor <-
EXPfFORM; FORM)

FORM <<
BEGIN

ControlStack(CP + 1) <-
ONST(ControlStackEntry OF NIL, NP±.

a FOR c FROM CP BY-I1
3 REPEAT

c . 0 -> f) HvUnknownAtom(fY, NIL (I
BEGIN

ControIStck(c]Type - 'Interpretation'-I FOR np FROM ControlStack(c + 11* BY - 1
TO ControiStacktc.NP + 1
REPEAT3 NameStack~nplName - f.argl

f <- NameStack~np].Bnding;
IsMatchVariable(f) *> RETUJRN(f);

I ControiStack~clType - 'Rewrite'-
FOR np FROM ControfStacklc + l].NP BY - I

TO ControlStackfc).NP + 1f REPEAT
NmmeStack(npjNeme -fargl1-

Module <Analyzel(Application is Concrete) @a 40> B -35

1 Module

Comment

This module provides a refinement to Analyze (plus Analyzel(General)) that is appropriate
for analyzing concrete ELL and is usable by the Package and Synonym tools. No record of
the current context will be kept (other, of cause, than the stack of names local currently
local) but we will permit the analyzer to be called recursively (as is necessary for the
Package tool). This is accomplished by mechanisms that protect the local nme"
environment of one call from subsequent recursive calls on ProcessAttributeValue. Further
commentary is provided with the various constructs being defined.

EndCommenh,

Module has Uses(Anslyze, UstUtilities),

... NameStack +-...... ..+++

1 2-1 NaneStackEntry <- STRUCT(Name:FORM),

2-2 Iterator(s)

Comment

To accomodate recursive calls on the analyzer, a variable named NPBottom will be
introduced to hold on to the current *bottom* of the NameStack. The iteration over the
*relevmnt" NameStack entries is therefore over those indexed by NP~ottom, NP~ottom + 1,

I EndComment;

Rewrites
(ForEachRelevantNameStackEntry 88 j REPEAT'?? body END) -

FOR j FROM NP 13Y - I TO NPBottom REPEAT ?? body ErA

J EndRewrites;

2-3 NonAtomicName <-
MAtCRO(tom:FORM)

ErrorTo~lser('
The non-atomic quantity ', atomn,

appears in a concrete context where an dcentifier is required.')

Module <AnalyzeI(Application is Concete) @ 40> Scope(BasicProceusing) B - 36

4*.... i asicProcessing4.

3-1 ProcessExpressionChanges(*)

Rewrites
SEGIN

?? heed
DECL Tdnterpretation UKE FindlnterpretationFor~f);
T * NulInterpretation -> Interpret f as T;
?? tail;

END <-> D ?? heed;?? tail (I

EndRewrites;

3-2 ProcessAttributeValueChanges(s)

Rewrites
D D?9 head; InitializeNanmeStack(N ?? tail Q <->

I BEGN
??head;
OECL NPBottomdJT BYVAL NP + 1;
?9 tail;
N~P<- NPBttom - 1;

I ' EndRawrites;

i &~'- Statementiteration i +4-4-4*+++... .4

I 4-1 Iterator(s)

Rewrites3 (ForEachStatement 8$ s in $8 f REPEAT ?? body END) <-
BEGI1N

DECL f\~fORM SYVAL 8 f;
3 REPEAT
U f\.CDR - NL-> NOTHI

fN - t\.COR
DECI 88 s:FORM SHARE f\.CAR;j ?? body;

1 EndRewrites;

i Module <AnalyzeI(Application is Concrete) @ 40> Scope(ProcessBEI3N) B - 37

5-1 EnterAndLeave(*)

IRewrites
D Enterfock(f) ?? body; LeaveIock(f (] <->

BEGN
DECL SavedNPdNT BYVAL N
r. body;
NP <- SavedNP;

END;

EndRewrites;

6-1 EnterAndLeeve()

11 Rewrites
D EnterLoop(f); ?v body; LeaveLoopO (] <->

D OECL SavedNPNT BYVAL NP; ?? body;W9P <- SavedNP (I

EndRewrites;

I 7-1 EnterAndLeave()

3 Rewrites
* BEGIN

?? h@44
EnterCASE(f)

1? middle;
LeaveCASEO;
?I tail;1END <-> D ?? head; ? middle; '? tail (I

EndRewrites;

'I
I
J

!1

_I -a. . .. ,- -

IModule <AnalyzeI(Application is Concrete) @ 40> Scope(ProcessCASE) B- -38

1 7-2 Iterator(*)
Rewrites

(ForEachCASEArm 88 a in 8Sf REPEAT ?? body END) <->
BEGIN

(88 &)Ameult <--: (88 a).arg2;
(ForEvchControlElement $8 e in ($8 a).Control

REPEAT ?? inrior\body END) <->1 BEGIN
($8 .).Tests <- t\.CAJR

I DECL t\:FORM B'YVAL ($6 a).argl.args;

A- NIL -> NOTI4NG;
?? inner\body;

DECL gWfORM BYVAL ($8 t).CDFRCDR.CDRF
REPEAT

g\ NIL => NOTHING;3 DECL $$ mmFORM SHARED &\.CAR;
5~ ?body;

EndRawrites;

module <Analyzel(Appication is Concrete) @ 40> Scope(ProcemEXPR) B - 39

1 *+~~..ee.+... ProcsEXPR 4+'.+4 *-4 is

8-1 EnterAndLeave(*

I Rwrites

?? head;

I EnterEXPRBody(f h

I LeaveEXPRO

BEGIN
I DECL SavedNP:INT BYVAL NP;

?9 head;
?9 body,
NP <- SavedNP;,

(I EndRewrites;

444: I :o ...:.:...+o.~ System~uames off lot 4'+++-+E-'

9-1 PrcAssSystemProcdureAppliction <-
EXPR(fFORM~ FORM)

CASEf.op]
(U<W1 MQ1(UT1-

D)NonConcrteConstructft) (I
TRUE -> D Proce siist(fargs); f (IIK

* 9-2 NonConcreteConstruct 'C-

* &MARf:ORh* FORM)
ErrorTaUserf(

The following non-concrots construct is being ignored:'

fModule <AnalyzeI(General) @ 34> B -40

1 Module

Comment

This module provides a collection of refinements for various of the abstract constructs
employed in Analyze. By general, here, we mean refinements that will be appropriate
independent of the particular application for which we are refining the model. For the
most part these refinements have to do with defining the abstract iterators and selectors
in terms of the concrete internal representation of ELI. In addition, there are refinements
fo dealing with system namess; these are commented upon when they are defined.

EndComment;

Module has Uses(Analyze, ListUtilitieshi

4+~ BasicProcessing ++

2-I IsConstant(*) <-(I MACRO(f:FORM 800W

f - NL-a> TrRUE,
I. DECL M.MOOE UKE KO(VAL(f~h

U U M- INOR U-REAL ORM -REFORM -DDE%

1 2-2 Isldentifier(*) <- MACRO(f:FORt4 BOOL) MO(VAL(f)) - ATOM

............. ProcessWd@AndCornponentsSpecified i i i+.~++

3-1 Process~d*AndSpocFor(*) ~
MACROWd'.ORM)

BEGN
I/ I' d - (vars md BC sl snY;
* ProcesExpresion(d.CDRCAR);

d.COR.OR M NL ->Process' ist(dCR.CDRh

Module <Analyzel(Gencral) @ 34> Scope(Processterator) B -41

.*...+ Processiterator 4.. +. +. . .+

4-1 Iterutor(s)

I Rewrites
U (ForEachiterstorElement U . in $8 f REPEAT ?? body END) <->

BEGIN

la lterstorVarlableSpec(SO a) -c-~ (35 .)CAR 'FR"
(It ody<#a)o~ral <- (8 8 .))CA r g

(88 .. Spoc <-v(88 Q.jrgl;
DECL 88 e:FOR4 BYVAL (88 t)CDR,
U e - NIL -NOTHING;
REPEAT

?body,I (88 *).CAR - REPEATWa NOTI4NG;
$ a <- (88 .).CDR.CDR,

EPA

EndRewrites;

I 4++++44+................. rocessDECL 4 ++++M++-

5-1 Iterator

U Rewrites
(ForEachDECLEIement S$ d in 48 f REPEAT ?? body END) -
BEGIN

(ForEachLocaINam. $11 m in 88 dI REPEAT ?v inner\body END) <-
BEGIN

DECL n\;FORZM!YVAL (M d).CAR,
REPEAT

n\-ML nFORM SHARED n\.CAR,

n\< n\.CDR
* ?9 inmor\body;

EM
EM

DECL f\:FORM BYVAI ($8).CDR,

r body-
f\ - f \.CDR;

EfA

EndRawrites

Module <-Anayzel(General) @ 34> Scope(ProcessDECL) B -42

..+.+.+........... Process STRUJCT +.....................-

j 6-1 tterator(*)

Rewrites
(ForEachSTRUCTMode $1 m in 89 S REPEAT ?9 body END) <->

DECL m\:FORM BYVAL ($1 S).CR;
REPEAT

m\ NIL m> NOTHIN4
DCCL SS m:FORhI SHARED m\VCAP-argi;
?body-,

m\-- m\.CDR,

I EndRewrites;

1 4+4-4-.-+.---.44-.4 ProcessCASE ++++++++'-

1 7-1 GefieralNs

RewritesI ($8 f).CASERelations M 8)argl;

(8 f).CASEArguments <- (8f.r2

3 EndRewrites;

.......4+....... ProcessDoubleColon+.e. --.

3 8-1 SpecifiesUsr~havior
MACROfORM BOOL)

MV(f) - DTPR AND (f.CAR - OR M.AR Q-'

I

Module <Analyzel(General) @ 34> Scope(ProcessPROC) B - 43

...............+++ ... ++.++ ProcessPROC ..+++.+++++++ ++ +++++

9-1 Iterator

Rewrites
(ForEachFormailode 5$ m in $ f REPEAT body END) <->

BEGIN

DEC. q-FORM BYVAL (U f).CDR.CAR,
REPEAT

q = NIL a> NOTHING,
DECL $$ m:FORM SHARED q.CAR.CAR;

??body;
q <- q.CDR,

END;

EndRewrites;

i 44,+;-4-+++++:4+++ .44.: ++ ProcessEXPR +++++++++++++++++ ++..+

10-1 Iterator

Rewrites
(f).ResultMode < (<- f).arg2

(8 f).Body <-> ($ f).arg3;
(ForEachFormal U d in S Sf REPEAT ?? body END) <->

BEGIN(SI d).Name <-> ($S d).CAR;

3 DECL h\FORM BYVAL (U f)argi;
REPEAT

h\ - NIL -> NOTHING
DECL $11 d.FORM SHARED h\.CAR
?? body;
h\ <- h\.CDR,

* END;

I EndRewrits;

j ::::::::::::1::1 SystemNames scopeI-4+++++++

• -I 11-1 Scope

Comment

I This scope provides an implementation of the handling of system names via a hash table.

EndComment;

I

IModule <Analyzel(General) @ 34> Scope(Sy-.temNames) 4

11-2 IsSystemProcedure <-
MACRO(p:FORM BOOL) FiNDHASH(SystemNamos, p, TRUEN

11-3 SystemNames

I SystemName*s <- CONST(HASHTABLE),

Inetiatizatior,I Initiafiz9SystsmNsamssQ

Endinitialization;

Module <Analyzel(General) @ 34> Scope(SystemNames) B-45

11-4 InitializeSystomNamnes <

EYPR()
BEGIN

SystemNarres <- MAKEHASH(FORM, BOOL, 150, 80);
DECL LFORM UIKE

UST("<", "QL", "QUOTE", Ws,?","-,

a> i" FOR, "FINDROASH", "MAKEHASH",
"MEMBHASH", "FLUSHASH", *REHASH", 'SIZE",
"MD", "VAL*, "+", *SUM", *-", "01FF", "**,
'PRODUCT", '/o, "QUOTIENT", *-", "EQUAL', "
"NEQUAL-, -AND-, -OR-, "NOT" -RETURN-, -GE-,

-GT-, -LE-, -LT-, -AR-, "CDR-, "PRINT-,
PFORMl-, -READ-, "MAKEPF-, "INCHAR",

-OtJTCHAR-, " NOBJ", "OUTOBJ-, -BASIC\STR-,
100X, "PARSE", "INFIX", "PREFIX', "NOFIX",
"FLUSHFIX-, -RETURN-, -HASH-, "LENGTH-,
-OVERS, -CHAR\IfT", INR\CHAR", -LIFT-,
-LOWER-, -SINT", "STREAL", -REAL\STR",
"DRAIN-, "PORT\STR-, -OPEN-, "CLOSE-, -LOAD-,
"LOADBr, "ASSERT", "RECLAIM", "RTIME-,
"GCT1ME", "SAVE", -RESTORE", "COMPLETE",
-TECO", "MAKE", 'BREAK-, "CSREC-, "NSREC-,
"PEEK', *POKE", "FLUSH", "LOCATE", "RESET-,
"CONT", "STACKS", "STEP", "RETBRK",

-CONSTRUCT-, "DIMENSIONS-, "STRUCT", "PTR-,
"ONEOF", "PROC", -SEQ-, "VECTOR": -SELECT-,
"RENAME", "SETSYTE", "MATCHFIX", -PACKOBJ",
"REVIVEPORT", "CONS", "MAKEFORWt, -USTCOPY-,
"UJSTEQUAL", "USTAPPEND", -LUST",
"LISTSUBST", "SYNFIX", "CIPORT", "COPORT",
"PIPORT", "POPORT")

REPEAT
L - NIL -> NOTHING;
FINDHASKSystemNames, LCAR) <- TRUE.
L - LCDR,

END;

Table Of Contents B - 46

J As1~zalAppicamn Abstract) 0 61 2-2 - Cmiti'oltadc of NammStack
2-4 - ControlltadcEntry of NamteStack
2-3 - Coutroted Sa of NameStack
2-5 - CP of NemeStadi
11-1 EnturAndLeewe of Pvaesswwrits

AnsaelApplication is Concrete) a 40 8-1 EnterAndLeave of oesEP

6-1 ntarndse ofPvacesafteator
5-1 EnterAndLwev of ProaoBEGINIAnelvzsKApplication we Abstract) a 61 5-1 EntsrAndamte of PfaosmSEGIN
3-1 EntarAndmvee of PvocesUPR
7-1 EntsrAndLesvs of Procm*sCME
8-1 EntarAndlmv of Proceslerator

M Aaly=e * 56 6-1 EnterB~od of PvocaesSEDIN
9-.3 EntwCASE at ProcaesAE
13-2 EnterEXPR of PVocess.ER
13-4 EmtaEXPRBody, of PmroessEPR
10-2 Emtsdroo of Proceslitarator
3-10 ErrorToI~se of SesiclProcassing

Almi(Appcation is Abstract) 0 61 10-4 -FindtntarpratationFor of Interprtation*
Askehrzl(General) a 34 7-1 General of ProcasaCASE
Anal"We(Application ie Abstract) 0 61 11-3 . MhvaRewdefindingFor of ProcaeRwrit.I Am"lyza 56 3-7 ~Hv*UmnenownAtom of aSwicNvocsanr
Anslymal(Gmnrvao 34 11-4 . Intia=~Stem--eu of SystemNames
Ansial(Application is Abstract) a 61 10-S . Interpret of Interprtt ons

10-2 * Interpretation of Interpresttions
Analyzea 56 3-4 IsConstant of BawicPmoceeing
Analyzsl(Gmnmsal) a034 2-1 . IsConstant of BsicPracamsna

2-2 . Wsdsntifis of BamiclPmocssing
Analyze a056 3-3 Isidentifuer of UeeicProcwsn

2-4 P IsLocagism of NamesStackIAnetyzs(Appication is Abstract) 0 61 11-S . isMaeheriabis of Piecsa rite

AmlaIe 56 14-1 "syetamProcsdur of Systs No-ms'IAnlyzaGensa m 34 11-2 * IsSystemPfre of SystemNasis
Anstyzel(Application in Abstract) 0 61 4.1 Iturata of Stataenttaration
AwuymsKGnersl) a 34 10-1 Iterator Of ProassXPI

fl-I fteto tr of ProcasaPROC
Anslyzo(Applicatioi s Abstract) a 61 2-3 itaratr of NammeStack

7-2 ht-rtor of ProsmaCAE
Anelyzel(GsnaraD a 34 6-2 its.or of ProcassSTRUJCT

7-2 tterstor of ProcassOECi.

43 -1 LeIsCAS of P- roAS
AnaxmlAppicsionis oncete a 0 12 ItEXrao of PoceseEX

1- lw to of P vuet ssiXPRo

Anlz2a5 -2 lo Mactllro rof ProASE c~r~s
AnelymlAppicatin is Concrete) 0 40 2- hatbw f istm
Anabyzu(e ad 34 7- ftestiifi

~ulyzO 50 -2 * 14ms~odc of NamesstackN
AmhtzalAPlimtoe s Astrat) 01 -4 * NamsCSEt of NemeltackS
As eBO -3 emtadEntR of amEXta
Aadyad(Aplctio"a Cocree) 640-5 o* Emeseady of Nswtack
Aew~m*16 -3 * Nametdii of Tceeftersk

Amaowa(Appkation is Abstrac) a 61 2-3 * aLocsmYe Of PvocSest*~sial

Ansl(y lcau is Concrete) a 40 24 *NMtO&M~gemo st

Ame%'zw 0 56 2-27 NanIt-miate of NAStadi

£AmelpzagAppEatior is Concrete) 0 40 2-1 - vet ntvi of atc

Table Of Contents B -47

A*,.zl(Appriction i s Abetract) * 61 10-3 K in4aM protato of Inta'pretatiees
Anim e 56 3-a PocmAtu*V"e of Samicoeeag
Afly(pprmcmimi Astrct) a 6 3-2 Poastrbuekshes f simm "

I- Procaesxpresimn of SemitProcaoein
AneV, *Caot *403.1 ProcmesspressioC se of asmcprocoomi

Amfl(Appfictiol is Abstract)e & 6 3-I a aoninede~g s kofBemcsming
AWaeye 58 3-5 * PocmvwLwt of Boacpvocessing

4-1 P mipearof P, ------- 61Aaml(Ger~uaD a34 3-1 Pr For of P
ArulymulCApp",in uAbstract) a 61 11-2 *P~ovu~wftPttmn~ of Piocooinbwct

-- OFF", plimis ocee)a4 - proocemsyet.Po=&*eApic . yeuIof q)P Pe
Ana~m a 56 14-2 ocyemio*Apcmo of *Syztmim

AmlMI(pp in Abstract) -2.I -PocmsoytmPom*ndurApp"lic- of Symmamihmm

Anshmecop *f 56 -3ef "tackms
Scop of p bocA.OEcL

Aralv Gwww a 3411-1Scope of PysoeeaPROC
Ansymo(Apfictio isAbsrac) a61 0-1Scope of Pweiterrtom

2-1 Scowe of PvoeAS

Armlyza e 3 - Scope of akpvocEXPR
2-1 Scope of NmStaaenferto
1-1 Scpe f Pera** tofPoceeEblCooI I An~zeJ(Geneval) 634 &-I *Scpe fePhrflvooof PvoCeeOMeo

S1- Scopame of seielam~nme

Amlyzal(Applicatioo is Abstract) a 61 11-4 *WithiRewrite of P.uee erho

7.

Appendix C

I FUI: Find Undefined Identifiers

'c 'RU a 54 >

1 Module

Module has Usus(ANLZA[21 Utilities, ListUtilities);

Module has
ExpodedSyntax(EquatePhrases('$3 x IsIn 8$ S',

lIsX + $IS')A

Analogies
#ix lIsn $ S <}> D # x; $$ S 0)

111 EndAnalogies;

i & +-..... i++- lnterf ceroAnalyzfr ++++-++++++ o 6 4i+46 4 i-+

I 2-1 Analyze c-
J DPR(CurrentEntityNaitwEntityNameo,

Valu*:FORM,
G~obals:Set(EntitYNae)
Pre"sist.FORM SHARED
CalleesList:FORM SHARED)

BEGIN
(CP <- CP +1) GT LENG1h(ControiStack) -

Extenci(ControfStack);
ContralStack[CP] '-I CONST(ControiStackEntry OF NIL. NP, Value);
ProcssAttributeVlue(Value, Analyzel-av.UnknownAtom,

AnalyzeProcessUserProcedureApplication,
3 AnalyzeProcessBehaviorFunctions,
* AnalyzeErrorToUser);

NP- ControiStack(CPNP,

12-2 Asyeaennw~o
Anelyz.HaveUnknownAtomn <-

EXP(atom:FORMA FORM)
BEGIN

atom lisn Globals -~ atom;
Ma4aWreVariableEntryFor(FreesUst, atom);
atom

END

Module <FUI § S4> Scope(InterfaceToAnalyze) 1-

AnalyzaHavoUnknownAtom hasI KnownFrees(Gaoes:Sot(EntityName), FrsmsList:FRMA)

2-3 AnalyzeProcessUserProcedureApplication

AnalyzeProcossUserProceduroApplication <-
EXPR(fF0RM; FORM)ji BEGIN

DECI. op:FORM UKE fop;
AnalyzeHaveUnknownAtom(oph
Append op To Calles~st;

ProcessList(farssh

AnalyzeProcessLissrProcedureApplication has
KnownFrees(CalleeslistfORh

2-4 AnalyzaProcassBehaviorFunctions

AnalyzeProcessBehaviorFunctions <

EXPR(ffORM)
BEGIN

I/ /' f - < ShortNam., UP1(nl), ->'

U DECL ShortNanwFORM LiKE f.arg 1;

ForEach~istArgument a in tKargs
REPEAT

DECL opfORM LiKE aop;,
ValidBehaviorFunction(op) .

NoteUnKnownBshaviorFunction(FreesUst,
ShortName, op),I DECL stom:FORM UKE aargl;

BEGIN
Isdentifier(atom) -

AnslyzeHave~lnknownAtom(atom)
IsConstant(atom) -n' NQTNING4
ErrorOh

EOQ

END;

MAnlyzeProcesSelhaviarFunctions has
KnownFrees(FresList:FORMN

2-5 Valid8shaviorFunction

Valid8shaviorFunction isa Procedureop:FORI.4 8001)
Returns TRUE if f op names a behavior function.

AN4

' Mvodule <FUIj @ 50 Scope(InterfaceToAnalyze) C- 2

1 2-6 AmalyzeErrorTo~ker
AnalyzeErrorTo~ker <-

EXPR(Left:STRING, f:FORM, Right:STRING)
D PRINT(Let UNPARSFM~f) PRINT(Right) (I

AnalyzoErrarToUser has KniownFroes(Uf'FARSFM:ROUTNE)

2-7 Mk~e~ralEtyo

j Comment

MakeFreVariableEntryFor(FreesUst, atom) constructs and adds to FreesUst an entry
indicating that the identifier named atom occurs free in the construct currently being
analyzed. It does this by tracing back the control stack entries to construct a 'template"
for the current construct that indicates where in the construct atom occurs free. The
variable named CurentStatement is asumed bound to the particular statement currently

I being analyzed (tyhe control stack not having granularity finer than a block, loop, or case

EndComment;

MateFreeVariabeEntryFor <-
EXPR(FroesUst:FORM SHARED, atom.:FORM4)

ii ForEachUstArgument a in FreesList
REPEAT LS~tm)
aargl - atom-

Larg2 <- Abbreviate(a&arg2h
RETLURN

aarglop - atom -

a&argl.argl <- UST(VAL(a.arg1.argl) + 1);
RETURNO

DECL Result:FORM UKE UST(within", atom, ML);
3DECI FillFORM BYVAL Result.args;

<- 9EG~N
FOR c TO CPI REPEAT

S CASEtControiStack~clType]
[Mocka]-

BEGINI DECI R:FORM BYVAL ControlSteck[cJ~f;
c GT 1 AND

ControlStackfc - l].Type-
"Itepettin ->

R <- CortrolStackfc - 11~f;
OEML Count:IJT UKE

ControiStack~clStatementCount;
FlLargi <-

BEGN

-~ -- --- -~-~ &MAO,

Module <FTJI 0 54> Scope(InterfaceToAnalyze) C- 3

Count *O-'

UST(Rop,

ALLOC(INT UKE

UST(Rop, NILN n)),N

FOR j FROM c - 1 By - 1I REPEAT
j- 0 -> NOTHNGI

DECL t:SYMwBOL UKEI ControiStackoj3Typw,
BEGIN

DECL pfORM BYVAL
ControlStack[jJlarisargs.args;

To ControlStackfjlStatementCount
REPEAT p <- pargs U4~

UiTl'argl < -ag1

Filt <- Flu.argl-args;

t * wlnterpretationo - NOTHNG;

I I Fill <-
U BEGIN

Count * 0 -> Fill.arglargs,
Fil.argl;

END;

BEGIN
DECL R:FORM BYVAL ContralStack~cJlf;
c GT 1 AND

ControlStack~c - 1IType-
'Interpretation 0->
Rc- ControlStackfc - 11f;

DECL CountINT UKE
ControiStackl~StatementCount;I BEGIN
Count a 0 -

BEGIN
FilLargI <-

UST(wCASE", NIL, NIL.

I UIST(tT', NIL,
NIL),

UST(-, Count)),
CONSO)I Fil c-

END;
FIIIwagl <-.1UST(OCASE", NIL, NIL, CONSO),
Fill <- FillargIarsarpa;

Module <FUI @ 50t Scope(IaterfaceToAnalyze) C 4

BEI
I DECL R:FORM BYVAL ControiStack~c)f;

c Gr I AND
ControlStackfc - 1J.Type

'Interpretation' ->I R <- ControlStack(c - 11~f;
DECL Filer:fORM LIKE

LIST(R.CAR, R.COR.CAR);
DECL LF.ORM HYVAL Filler.XC6R
R 4- R-args;
REPEAT

L(V(R.CAR) - ATOM AND
I R.CAR.SBLK * NIL AND

R.CAR.SBLK.SINFO -
"REPEAT.SBUC.SINFO

NOTHNG
R <- R.MD
LF <- LP.COR <- CONS(R.CAR)

DECIL Count:INT LIKE
ContraiStack~clStatemfltcoult;

II BEGIN
U Count * 0 -

UST(UST(-*
ALLOCINT LIKE

LISTNIU, Count)), NIL%

END,
FOR jFROM c - 1 By - 1
REEAT

j - 0 -> NOTI4NG,
DECL t:SYMBOL LIKE

ControiStacktjjType;I ~ ~~~~t - Tan se" k gar~rf
BEGIN

TO ControiStacko.StatsmetCouflt
REPEAT p <- p.args EL

Filler <-
UST(->, pop.arS1,

Fillar);

t * "Interpretation' - NOTH-NG;

FiImerl <- Filler,

D Cout -~ LF; LP.COR 0~

I BEGIN
FiI~arg1 <-

Module <FUI 054> Scopc(InteifaceToAnalyze) c -5

UST("EXPR", NIL, NONE, N1L)
Fill <- Fill.argl.COR.CDR,

[MPR) c - CP -

BEGIN
Fllargi <-

USTAPPEM~ControlStack~clf),
Fili.argl.arg3 <-7.*
RETURN(O

CurrentStatemant * NIL
Filiargi <-

BEGIN
NOT IsMatchVariablg(Ci-rentStatement) -

Abbreviate(CurrentStatmmnth,
DEOI. ErrorTO~serPR=cSTRlNG,

FORM,

AnalyzeErrorToUser, LK
Abbreviate(MatchBindingFor(CurrentStatement));

Append Result To FreesUst;

hoakeFreeVariableEntryFor has

KnownFress(CurrentStatementFRM),

2-~8 Abbreviate <-3 (PRf -FORM FORM)
BEGIN

OEC2. ap:FORM LIKE f.op;
W.A(op) * ATOM - fI DECL SIFO.ANY LIKE

D) op.SBLK - NIL -> 0; op.SBLKSINFO (I
CASE[SINFO)

E'1EGIN'S.Si.SlNWOJI BEGIN
t.args - NIL -> UST(op)
LJST(Op, Abbrayvate(f.arg 1),)

L PE(SIK UW1[FOR-.SBLK.SINFO] -

BEGIN

DECL. LFORM LIKE CN~p

DLq:FORM BYVAI. f.COAR,
* REPEAT
*P p<- P.CDR <- CONS(Abbraviate(q.CAR))
* MV4qCAR) - ATOM ANDC q.CAR.SWJ(a NIL AND

qCAaSBI.X.SlNO - ORPEATOSBLSIW~O -

BEGIN
q"rgs e NIL ->

p <- UST(Abbrviate(clargl), "-"h)

'1411-0 -

Module <FUI @ 54> Scope(IaterfaceToAtalyze) C6

I END;
q <-. q.CDR,

EN;I (U[CASEO.SBLK.SINFO)

DECL LfORMA DYVAL
UST(op, Abbroviets(f.arg 1),

Abbrsvivte(f.argZ2,
f.args.args.args -MNL -> L,

UST(Abbreviate(farg3), .)

("DPR-SBL.SINFO]
LISTM"PR, NIL, NONE,

TRE ->f;
EINA

2-9 NotsUnknownBehaviorFunction <-
EXPRFreesUst:FORM SHARED, ShortName:FORM, optFORM)

Append LIST("n, UIST("8ehaviorFunctlon Op),3 ShortNam.) To Freetist;

2-10 DoAnalysisOf

DoAnalysisOf <-
E)PR(EiEntity, A.Attribute, GobalsSet(EntityName))

BEGIN
DECL FreesList.FORM BYVAL LIST(BEGIN"N
DECL CaIle"List:FORM. BYVAL UST("BEGIN*%
Anslyze(EName, AttributeValueOf(A), Giobals,

FreesUst, CaIIlesUst,
NswFre.VariabiesAttributeFor(E, A, FreesUst);
SaveProceduresCailedlAttri buts - I

NewProceduresCaliedAttributeFor(E A, CauessList);

DoAnslysisVf has
U KnownFrees(SaveProcedursCalldAttrbut:BOOL;

I"iiii0iIi 44 +++++ FindUndefinodIdentitiers P..++..+..++++ .

3-1 Scope

Scope has

ExportedSyntax(EquataPhrasesCTorEachEntity 8 E in $

EquatePhraun(TorEschScope $8 S ForModule $ M',

L :

Module <FIJI @ 54> Scope(FindUudefnedldentifiers) C 7

FOR IS FROM SIMW),
EquatePhrases(ortachEntity SStE WithinScope St S',

IFOR St E FROM $$ S'),
EquatePhrases('ForEachAttributo $8 A of $t EV,

9 FOR $ A FROM SSE),
EquatePhrassAdd #5 a ToSet St S',

'-$lI* + tSS'),

Analogies
(ForEachEntity SS E in $$ M REPEAT?9? body END) <}'

REPEAT Declare $$ E-ANY LIKE $$ I4A'? body END;

(ForEachScope 1$ S ForModule $8 M REPEAT ?? body END) <}>
RPAT Declare S11 S-ANY LIKE $$ 4 "body END;

(ForEachEntity SS E WithinScope $8 S REPEAT ?? body END) <1>
REPEAT Declare IS E.ANV LIKE IS S; ?? body END,

(ForEachAttribute SI A of $8 E REPEAT ?? body END) <}>i REPEAT Declare $$ A.ANY LIKE $1 E-?? body END;

Add $$te ToSet $$ S <)> $8 e+ $t S-,

EndAnalogios;

1 1 3-2 FindI.Indefineddentif lers

FindUndefirmdldentifiers <-I EXPR(Resutkcdule,
Parents:SEQ(Module),
OldResultMvdule,
OldParentDescriptors:SEQ(ModuleDescriptor),
ReDoAllhBOOL,
Module)

BEGIN
LoadAppropriatePackags>,

Announc.Tool(FindUndefinedldentifiers, Resut,
DECL GlobalAnalogisAnalogySet;
DECL CurrentAnalogies:AnalogyEnviromnt;
DECt. SaveProceduresCaledAttribut:SOOL LIKE

SaveProcedur.CalledAttributeFor(Resuth
DECL SMSyntax~vark LIKE MsrkSyntaxO
DECI. Globals.Set(EntityNameh
FOR j FROM 2 TO LENGTHPrsnts)

REPEAT
DECL Module LIKE ParentsDl
FetchEntitieeAndAttributa.For(M),
NmwSyntax(M.ExportadSymtax>,
SatupTo~sectChangsSince(OldParentDescriptorsUD
ForfachEntity E in M

REPEAT
AddToAnalogiesAndGIob*ls(E,

TRUE IE

1Module <FUI @ 54> &ope(FindUndefinedldentifiers) a-

I 'Va used module',
ReDoAIl, Globals,
GlobalAnalogies),

I Oloselvodule(M)

DECL Elasis.kModule LIKE "arents(1l
FatchEntitiesAndAttribuitssFor(Basis);I NewSyntax(Basis.ExiportedSyntaxh
NswSyntax(Basis.ocadSyntaxh
SetupToDetectChangesSinc(OldParntDscriptors(1)>,
ForEachErntity E in Basis

REPEAT
AddToAnalogiesAndGobals(E,

FALSE IEI 'the basis module',
Re~oAll, Globals.
GlobelAnaiogiesh

1 PushAnalogies(GlobalAnalogies, CurrentAnalogies);
InitializeResult~vodule(Result);
ForEachScope S For~lodule Basis

REPEAT

DECL RsDoScope:BOOL BYVAL ReoOA;
IIDECL Soemige:nlg~t

ForEachEntity E WittunScopeS
REPEAT

AddScoLocalAnalogiesAndNames(E, ReDoScope,
ScopeAnalogies);EI1D

PushAnalogies(ScopeAnalogies, CurrentAnalogies);
ForEachEntity E Wi thinScope S

REPEAT
DEOL KFA, BA, TA, QA, RAAttribute;
ForEachAttribute A of E

REPEAT
NOT A.Deleted -

CASE[AType]
I (EindingAttributeTypel
u [MbacroAttributeTypeJ -> BA <- A,

EKnownFroosAttributeType) - KFA '- A,
CRewritesAttributeType] -> RA <- A;
(TypeAttributeType] -> TA <- A.

[DescriptorAttributeType) -> DA <- A.

I CO Changos:BOOL LIKE
ReDoScope OR IsChanged(BA) OR

IsMhnged(KFA) OR IsChanged(RA) OR
BA - NullAttribtjte AND

(lsChanged(TA) OR
TA - NuflAttribute AND lsChanged(D)A)

3 BEGIN
3 NOT Changes - NOTHING;

InstailKncwnFrees(KFA);

Module <Ff31 @ 54> Scope(FindUndefineddentifiers) c-9

BEGIN
B3A * NullAttribute -

DoAaialysis~l(E, BA, Globalsh,
TA * NullAttribute ->

DoAnalysis~f(E, TA, globals),
DA * NullAttribute ->

DoAnslysis~f(E, DA, Globals)
RA * NullAttribute -I DoAnalysis~f(E, RA, Globals)
KFA * NtullAttributs ->

DoAnalysisOf(E, KFA, Globalsh
END;
RemovelKnownFrees(%

EN;I PopAnalogies(CurrentAnalogi@O),
RemovsScopeDependentAnalogiesAndNames(O

END;
PopAnalogies(CurrentAnalogies,
Closelviodule(Basis);
lrtstallNswModuie{Result);
RestoreSyntax(SM);
Result;

FindUnidofinedldentifiers has'I KnowmFroes(SsveProcedursCa~dAttribut:BOL,

I 3-3 AddToAnalogiesAndGlobais <-
EXPR(E:Entity,

ls~asishftdule:BOOL,
RaoAI:BOOL SHARED,
G31obals:Set(EntityName) SHARED,
(31abolAnaloges:AnalogySet SHARED)

BEGIN
DECL Know n.B00L BWVAL TRUE;
DECL Hasindin:BOOL BYVAL FALSE.
DECL AAkAttribute;,3 DECL ChangodAnalogy:BOOL BYVAL FALSE,

*DEQ. Changednig:8OOL
ForEachAtt r ibuts A of E

REPEATI CASE[A.Tye]
(BincingAttributeTypel

(MacroAttribut*TypoJ
[TypeAttributeTypolI (DescriptorAttributeType] -

BEGIN
NOT A.Deleted -> HasBinding <- TRUE,
A.Deleted AND

A.Version~umber GT OldBasisVersion~umber OR
A.CreationNumber GT OldBasisVersionNumber -

Changed8indina -- TRUE;.

[ModuleLocalAttributeType] -

Module <FUI @ 54> Scope(FindUndefinedldentifiers) C- 10

BEGIN
isChanged(A) .- ReDoAll <- TRUE;
NOT IsBasis~oduis AND NOT A-Deleted -

Known <C- FALSE;
END;

fScopoLocalAttributeType) -
BEGIN

IsChanged(A) -~ ReDoAII <- TRUE;
NOT ADleted -> Known C- FALSE;

(AnalogiesAttributeTypej -

BEGIN
IsChanged(A) - ChangedAnalogy <- TRUE;
AD.eted - NOTHING;
AA<- A;

DU~
END;

END;
Known AND Has~inding -

BEGIN
Add E.Name ToSet Globals;
Changed~inding -> ReDoAII <- TRUE,END

Known AND AA * NulAttribute -

AddToAnalogySet(GlobalAmaiogies,
AttributeValue~f(AA))

Known AND ChangedAnalogy ->ReDoAII C TRUE;

END

~OA2 5 RAPI0 PROTO PINO U) SOFTWARE OPTIONS NC CAMBRIDGE MA

UNLSIID 20 APR 83 00-01-3 O R 8 R2- CO- 73 FG92

UsSmmmGomom

f

1111
1.0 i E 1 28

&A j3. 14 2.

I liio

,I E E E. ImnI*|

1=
MICROCOPY RESOLUTION TEST CHART

NATOINAL BUREAU OF STANDARDS 1963-A

I*

Module <FUI 0 50 ~ Scp(Faune edldmntimr) C -li

3-4 AddScOpWocaAnuahti@Anddms -

R*OSopmO SHARED,
-'%"AaloleAndagySet)

MEM Scop*LocAhBOOL B3YVAL FAL.SE;
DEML ~HwedgiOOL S1AL FALSEo
OCci AAAttribut"
MMC ChawigLAnuIogy9OOL BYVAi. FALSE;.4 1 CO TAAttribute;
ForEschttribute A of EI REPEAT

CASE[A.Type]
[UningAfttbuteTyp4

1 fu[McrAftributeTypel
[DsecIptrAtrlbiit*Typ.J NOT A.D.Ited
H.mNding <- TRME

ETy,.AftributeTypel NOT A.Dleted -

D Hmsnding <- TRUE; TA <- A (I
[scope'LOcalAttrlbutoTyp.J -

BEGN
3 h~Whang"dA) -, RaDoScape <- TRUE,
U NOT A.Dsgted -> ScaoLocal -c- TRUE;

EAnsaogieAftributeTyp.J]
ii BEGN
I. igsOndA) - , ChangdAnoIogy <- TRUE;-

ADeoted => NOTIING
U AA <- A

I EM
* ScopeLacaI AND Has~nding -

U ~Pus*hLocaINafn.E.Nwme
* BECAN

TA - WulAttribut. - AW;
AttributsVlunOfTA)

ScopeLocul AND AA * NullAttribute -

I AddToAnmlogySst(Sccp*AnmIug,
Scope~ocAttlt uWANDC Aloy- hocpe-TRE

i iW a ADributepalueof(-, AA ocoe TRE

[~ ~~..........44Oq..--44q44- trbte-I:aIg:t;I:I

4-1 Attribut*Vslus@f

AttrlbutsValus* I"e PtocoureA.Attributs FORMW
Rotwmn the v*aLu of the affribute A

.L1

Module <FUI@0 540 ScopeAttrutas)C-1

4-2 NIiAifribots

NuIlAttributo isa Aftributo;

4-3 Atr!IbutType

* . AttributsType Ise MOCE.

4-4 mndirgAttributaTyp.

8*naiAttributType iss AtrlbuteTyps;

I 3 4-7 RswrtsatrbutType

RgWvit.trbutTyp is AttributeTyp;

4 Typneea ributeTyp s

3 Typ.rAttrIbut*Typ * isa AttributeType ;

4-7 RawrltsAttrbutType

Rartettiay is iiio~
OscptrttibuteType lea A rlbutTyp

II 4-10 AnaloglsAttrbuteType

A AuwlgimAttributoType Wa AttrlbuteTypus

4-10 AnduIogkoAttributType

- I.ModAeaftAttrbuteType lea AttributType

[4-12 ScpLmaI AttribIuteType

Scao.LoalAttrlbutType isa AU ribut*Typet

-IA I

Modl <Fui* 54> Scope(Attributes) C - 13

;Ii~pIII~~igIItt s InterfaceToPOS m41.4o-4-4.4-4-444g-.I...

j 5-1 Scope

Comment

Tis scope contains th, two procedures FMU and FLU that are colled directly through the
user Interface amid that have the responsibility of Interpreting the call arguments,

Following we a host of constructs that awe defined within the POS.

EXPR(GmnerteProcedureeCalledAttributelOOL,
ResultSpcfQRM LIEVAL,
BaesSpocfORM UNEVAL,
Module)3 R3O(GenarateProceduresCalledAttributa, RbsuftSpec,
D BasisSpec * NL --I %assSpeq ResultSpec Ok

P~r(GrnrateProcdursCaledKtribut*BOOL,
SRmsult:Modulefescrfptor BYVAL,5 ~ ~-- m~dioarptor BYVAL.

4 Module)

DECL Basis:Module S1VAL CurrenModule(B)

Wi~ki ow9as) -

3 PNIT('
There is no modlule for descriptor 1n

WIlModule;

'1 hIeatltleeAndAttributee(Siule, Cr, ATk

co=NWN LUIM MesulLetlo) + 1

[JL J-

Module <FUII 54SO Scope(JntwrfacTdPD8) C - 14

5 OdPwardntoscriptarstl] 4-
VwrsionFreoomcriptor(BSukh

NOT IHv~dtitlon -

RimiLPurtitlon #- lSni~.Pton
OMa JIdT BWVAL 11
ForEacMjstEemnt mn in Lum

REPEAT
£ O1clPerentouscriptorsO *- i + 134

nOONSTModuI.Osscriptor LIME StripComnunft(m)k

1 ~ ' DccM. PurwnteSEQ(MDai.) SIZE 1*
£Parnts12 *-Bais;

OMC AboriOOW
FOR j FROM 2 TO N

£ REPEAT
PmnentsuJ .

BEM
Iwc~~s - cdl(Waen~erpos)

Lacat.~smusFor oIO~~rnt~scriptaOrtl

NOT HavePurttion -

RsulLJurtitlon #-

' I Lhiio Prtso dpertton
IsWuIModum(Prents03) AND

3 AutomaticaIyGsnwratsWh~nPossible -TALE AND

Losd mkmW.CcR
ParentsfJ 4-CR(OdPw-*ntDscrlptorsDj~h

I SEWN

bitIPSyna(Oiwnt~cltr~

Abrt so, tdyt. L

I w~~~btiPSyntu*blEpn~~nu~

Sm S.Lcyntax a NL -

----- Og

Module <FUl O 50> ScopeJntpdaceToPDS) c 15

NswSyntwd(Bft"LocISYfltas)

OEQ. NswI~stary*JoduI@IstOry LIKE
M.JieI4toy"lndfinddefltmsf Parents,

SEWN
GseirdwR.Pr4GdusCI~dAttrbut

QWOTE(FALSE)I

Lugfisd d iniM ~oduIS(Bais),
OEM P.wit*Jmodl LIKE

NOT IricamptibleistrleftNw~ItofY

OsrweModuia(Olcd~ault~ OdRssL'sto~y)11 NOT GmnstsPrac*dur.CU~dAttrbuto AND
OIRoutilstory.ParanIeters - QUOTE(TRLE) AND

DECi H&Aoftlelistory SWVAt Nmwllstory;
ILParametes -e- QUODTE(TRLE)I
NOT hiaptbelsoiA

TRJ.Ol~
~toy

FALSE-

GaseroceduresUliAttributs <- TRLE;-
DWrivlodule(OlRsult, Oldlsu~tJstoryN

Asslorivation mber 4 WDuv*tw.u4

iI PwnWsflDrivat@*folubw OT
* ~RsuffMorivationNumbf -

RmsuIt.Drlvetlontkimer 4.
* 3 Parefts[JDDIvtIon'4Jmwr,

RmnuttlbrivtionMambOT 4

Ainst.iLvatontdumbr + 1;
* ' 5 Rwsut.Fwufbmber +

PndLbmdiwmddntfisFelOuthmbor;
Dsriv.odule(Rnsat. Newlistry, TR~lEk

RmoyntFSA

5-4 Entity

[Entity Is* MOOE

LLI

wofti-- MA. " M.

Module <FUI 0 50> Scpe(JnterfcToPDS C- -16

j 5-5Attrlbute

Attribue is& M=CE

I 5-6 module

module ina M=C

V 5-7 ModulaOascrptor a

j. 5-8 CurrentModule,

CurrentModule ina Procedur.(d~bdule~sciptor; Module) -J Returns the current (Le. the latest version) of the moodule, with descriptor d.

1 5-9 lsIsulmodule
*tdulModule is& Procedure(mModule; BOWL

Returns TRUE iff m is a null module.

i i 5-10 IhallModule

NuIliModule ism Module;

3 5-11 Null
Null We SYMBlOL.

5-12 Partition

3Partitionis OL

5-13 MaIlPartitloning
NuIlPwrtltonlnh Is Prtition

K I 5-14 I.InlonPurtltione

3 ~~Procedure(pliPartWf p2#Parktlo Partition)-
Tulethe union of P1 and P2.

Module <RUIl 4SO Soope(InfterfAceTOPDS) C -17

1 5-15 OerivationCount
DarivatlanCount Is MODE;

1 5-16 NullDerivationCotint

NiillerlvatlonCount iea DerivationCount;

v 5-17 Fan~utCount
I FanOutCount Ise MODE,

- 1 5-18 FindLrmdfinedidentlfiersFaniOutf~amber

FlndL~idefinedkientifiorsFanOutNumber iss FanOutCount;

5-19 Syntaxkhrk

j Syntaxlwark Is MODE;

5-20 MarkSyntax

MmrkSyntax Ise ProcadureGj Syntaxlark) -
- Returns a mark re the current topmost syntax definition entered by NewSyntax.

V ~~~~~~~ReseytxiaPrcdr&4yta~ r)52estoenal syntax entered by calls on NewSyntax since that corresponding to tye mark,

j~I m.
5-22 NewSyntax

1 lbwSyntax isa Procedure(sfOAM) -
* Adds the fixity definitions contained In the listsa to the syntax currently In plae.

, 2< 5-23 VersionFreeDeriptor

Veruo Dfescriptoris
P fo e fu -Idd4o duleDescrlptor; Module~escriptor) -

Returns a module descriptor for version V~ of the module corresponding to the descriptor

I ' d.

Module <MIH 54-> ScopeInterfaceToPDS C -18

5-24 DotactChanges

Analogies
SetupTo~tet~ha.~sSince(N8 x))> 88 x;

I Okd~sisV lnM br <)> 0;

J IsO. d(W) <13.a

1 5-25 COoseModule

loseModule isa Procedure(Mi~odule)-

Cks.. th. module k.

5-26 InstallNew~odule

Instail~ewModuie ise Procedure(M:Module)
* Install thea module M in the current system

5-27 StripComment

I StrnpComment isa Procedure~ff:ORM; FORM) -

Remove the comment component ot f, if any.

5-28 LocateOldConcretlzedModule

3 LocateOldConcretizedModuls, isa
.5 Procedure(d*4odulelescriptor; Module)-

Return the concrete module corresponcling to the descriptor d.

5-29 LocateSmIsForToolI LocateaslsForTool is*
Procedure(~Odule~escriptor, t4YhUOL Module)-

Return the module corresponding to that named by d derived by the tool named L.

i~ '~ 5-W0 LocatelFl.dlbtdsf iddentiflereModule

* .~ffLocatelFind~htdefneidentiflaeModule Ism5 Procedre~Ae16dula~escriptorl Module)-
* I Return the module corresponding to d that was derived by RL.

Module <FUI 0 54> Scope(InterfacToPfl8) C -19

J 5-31 AutomatlcailyGenerateWhenPossiblea

AtomatlcallyGenerateWhenPossible Ise BOCL;

.4 5-3M LoadPckae

71 Load~ackage Ise Procedure(pSYKBOL) -'I ILoad the package nonmed p.

5-n3CR
CR is Pr dure(m*Aodule; Module) -j Derive and return the concrete, module corresponding to modue m.

1 5-N4 InstailPOSSyntax

InstallPOSyntax Ise Procedur.() -
istall the syntax assumed generally applicable when using the P05.

1 5-35 InstallSpecialAttributee

lalSpecialAtributes We Procedure(m*.4odule) -
Read in the Uses, ExportedSyritax, and such like attributes far module m.

3 5-36 ModulelHstory
Modulelistory isa MOCE,

5-7 Makei~story

3 Mmkel~story Ise
Procedure(TOhSYU30L.

parentsSQmmodule),

I Module~story)Contruct the Moduleoitory per using Tool to derive, a module from Paret with

paramter p.

5-3B IncompatlbleHistories

~. hicopatiblellstories Is&
*Procedure(hi~ioU lelWsory, h2-1-10 4 iistoryl WWL -

111turne FALSE 1ff the histories hi and h2 ae compaibNl

Module <FUI@0 54> Scope(lnterfacToPflS) C -20

5-39 DrivModule

DeriveModule Ise Procsdur.(old~iodule, hsou.4tory)-

Derive the module with history h prvosyderived a old; tOW is, Incrementally rederiveI old.

giggg:g~jip::Igtg nterfaceToftwritePackage :w::I::ie:

6-1 AnslogySet

AnalogySet isa MODE;

6-2 AnalogyEnvironment

AnalogyEnvironment iss MOCE-

1 6-3 PushAnsaogies
PushAnalogies iss Procockure(S:AnalogySet) -

Adds S to the current analogy enviroAm nt

6-4 PopAnsagies

PopAnalogles its Procedure() -

Raemoves the most recent AnslogySet pushed Into the current analogy environment from

6-5 AddToAnalogySet

AddT*AnalogySet Ise
Procedure(AEnv.AnalogyEnvironment, WnORM) -

Add the analogy, a, to the environment, AEnv.

.7OW

Module <FUIS0 5A> C - 21cdiaeos

7-1 Mslima"ou

EroO <?. W.-

se($L n tpo Ifmsca()

±AeaT(4 8m) -)2- $8 n

Niwwsr*VuiesAttrbutFbr(W E. U A. $1 L) cP
SE +8 +IS.Lj

N~wProcadureswAflAibut9FcrIN E, it A, N Uc

Se"Pro@ecur~e~idttibutsor($11 mn) 'I> 3 nn

InitimlizoPlerSCOP.N 6) <p~ so

instaillnownFrome(W lit) <P~ N8 kh

f I ~uwovelKnnwFrsO c):, 1'.4

jI RsamsvScop.epndntAnoglsWAndfihmeO <)D, ML

InstallEntitlecAndAttributes(N n ET, AT) <P' 8nq

F~tchEntltl..AndAttribtiFor(IS m) ')' N

EdAulov!"

Table Of Contents C -22

FI a 64 2-8 * Mbrs~n 41 btwf~wTeAidm _______

0. AdIffemfa~uui.at4m O

4-10 Aum' a'm.tbisType of Afttrb~

*.1 Aiinh.6t of mit.ft.TIAW hp~d
2-1 *Ai.Ipw of *Aufueu1.AtI'm

22 hawal U AeI~. , - mAu of vhwf TAW
2-4 *Am~pmPvom3 S I uFuintim af hlmwfmToAnm

2-3 *AaI~Pmcosw vomiws- I. hN of IntwfauTeAmuI
5-5 Amrbft of htWfogTGMV
4-8 AttmtType of Attrbue
4-1 Atrtv~skabu of Attvbab.
5431 Asimtm GmaWh-PousAd of hntufageToPO
4-4 9 ~tv~T m of Attvbtmm
5-25 cbmuie" Of hsrfmTW
5_33 CA of htmrfaosTo0

54 CaWFmsM"d of huuwfusTaPI
6-16 Ouvtiucugmt of kdtraaToPW
5-=6 Owkvkb"d of kn.,ftTPC
4.3 OamuWoAtvbt@Typ of AttrbAt
5-24 Omftc$Mmngm of ~wfemToPC
2-10 * eArdlysimf of httwfinTeAaulyu
5-4 Ent of Wh=roT.P
5-17 FuuOUtCOVAt of hitWfa.ToPDS
3-2 * rAiiofwldW tiftw -of R IU ' Rfit fim'

5-19 Fi RI "f kvvfusommk fAt

5-2 * RI of WWufu.TPoM
U~- 54 -, F - - i . *t of lntuvfuoTePC

1-26 bwIhwMhO" = ramvf..P
s.." bhbwmymu of hiwfum@ToPC
5 -W5 Op 1 01i f IuerfmTePV
5-46*hhA&%" of ImtafasToMO
44 KaiAo 'uinAtbItTyp. of Attvb~t
1-8 1d, oPI f htufw9TPO
S-29 5~ ~ W~~Wo hifrmmTM C

" MwOAtrh"tTyps of Att,*uts
2-7 * riVw iA2 u. i Y~o of InwfuomT&Amlya
5.47 UdmItmv of kInt'fTaMO
S-20 Mmkvova of IntrmvfuToPV
7-1 MWNWM at mhomi~mu

54 ~abof %ftwfmo*ToPO
I M"i
5-7 mii*uaptu of hftufasTPOs
5.45 Mudul lmos'I of himvfmTPM
4-11 MuMVuoiSbbTypo of AttvAwn
942 N 21 f h ouw uTOPOS
2-S N 111u, wd.IWiFunotI of keawfMmT.Audyi
S-11 16A of hsiufuuToPO
4.2 *Aimtbi of Am tvb
5-1S NWDvuidgCWsm Of IugmfmoT.PO

* I5-10 Niwf Omf hfmTom
RN S54 5-12 Psliof hftm'foT.wI

"- PopAmbl"m of buIS. ~.WUa-- .
" P-3 AmqI.. of how m*.Tolwm i.Pm

* 5-21 0e dy of bftrvfmToPW
4-7 __ m,41a.AttviTyps of Attvbh

3.1 $On of hoftOOdMf
4-12 1 p.Ia 1 1m Typ of AwtbAw
5-27 9w~..mui of hewfuoT.PU

5-ag3g,~Miukof bif~P

Table Of Contents
C-2

4~* Tp.Att*UWTWof Attvbuum

711

DATE

FILMED

6 8

DTIC

