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DRAG INSTABILITY IN THE MODIFIED BETATRON

1. Introduction

Currently, there are studies at several laboratories1-13 to assess the

feasibility of developing ultra high current electron accelerators. Such

devices have potential applications in several areas including high energy

physics, the fusion program and the generation of coherent, short wavelength

electromagnetic radiation.

Prominent among the various contemplated devices that are suitable for

the generation of ultra high current electron beams is the modified

betatron.4- 13 This device consists of a conventional betatron magnetic field

configuration as well as a strong toroidal magnetic field. In general, the
I 'toroidal field has a number of important beneficial effects on the stability

of the circulating electron ring. However, there are a number of drawbacks

associated with the addition of the toroidal magnetic field, one among them is

the instability analyzed and discussed in the present paper.

When an electron ring is confined in a modified betatron field

configuration within perfectly conducting walls, the centroid of the

relativistic ring can experience, in addition to magnetic forces that are

related to the external fields, forces that are associated with the induced

charges and currents on the conducting wall as well as hoop stresses. The

hoop stresses have their origin in the finite radius of curvature of the

electron orbits and have been treated previously. 8'17 In the present

analysis, the hoop stresses are neglected, i.e., the torus is unwrapped into a

straight infinite long cylinder.

tWhen the resistivity of the circular cross-section wall surrounding the

I "electron ring is zero, the induced charge and current forces are directed

transverse to the wall. However, when the resistivity is finite the decay of

the wall currents produce an additional magnetic field component that is

Mmniait appoved Januur7 25, 1988.



directed towards the wll. As shown in Fig. 1, the force, 7d 

- 'e1~eB0, associated with the additional component of magnetic field is

always directed opposite to the velocity vector of the slow rotation of the

centoid (B" PwiB a bounce velocity) and thus can be called a drag force. If

both the toroidal magnetic field (B o) and the bounce frequency ft are

2
positive, the drift velocity (F d (tx B oe)IIeI Bo is negative and thus the

drag force results in a stable, inward spiraling motion of the beam's

centroid. However, when Bo6> o but wB< , the drift velocity is positive

resulting in an instability and the beamos centroid spirals outward.

The drag force has its origin in the decay of wall currents and more

specifically in the polarity change of the wall currents at the end of the

beam pulse. This may be seen by considering the simpler case of a straight

beam propagating along and near the surface of a plane conductor. The wall

I
currents are driven by inductive electric fields E8 . where A. i

the magnetic vector potential. Integrating this equation and using Ohm's law,

we e Jedt - 0, provided A (t - 0) - A (t m) -0. Thus, as the electron

* 0

beam passes near a certain section of the conductor, the image current has the

opposite polarity of the beam current. However, the polarity of the image

'' currents on the section of the cylindrical conductor near which the rotating

electron beam passed earlier is the same as that of the beam. As a result a

drag force is developed that is directed opposite to VB.

The drag instability discussed here is a special case of the resistive

wall instability.1 7'18 This instability Is characterized by unifors density

2
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Figure 1I Minor cross section of modified betatron shoving beau center

motion, image charge, image current, Induced magnetic field and

drag force on the beam. The drag instability is stable If

1% %ellt 'e' 0 and unstable if ai3 D0el~0e1 < 0.



in the direction of propagation and is present even when the toroidal magnetic

field is zero.19 With a magnetic field along the direction of propagation,

the instability has been treated2 0 in the limit 6 << b - a, where 6 is the

skin depth and b - a is the thickness of the conducting wall. In the present

*paper, we have studied the drag instability over a wide range of parameters.

Special attention was focused on the limit 6 > (b-a). This limit is relevant

to the proof-of-principle modified betatron accelerator presently under design

at the Naval Research Laboratory.

The drag instability in the modified betatron is distinct from the beam

orbit instability, which may arise even for an infinite chamber wall

conductivity. The origin of the beam orbit instability8 ,10 is due to an

imbalance in the various confining forces, resulting in a net transverse drift

velocity of the beam's center and occurs even in the absense of dissipative

forces. On the other hand, the drag instability arises from dissipative

effects, i.e., finite conductivity. For a linear beam propagating through a

straight chamber of finite conductivity the drag Instability is always

unstable. The forces responsible for the stabilization of this instability

.. arise from curvature effects.

4
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II. The Model

A cross sectional view of the electron beam within the conducting

cylinder is shown in Fig. 2. The inner and outer radius of the thin cylinder

is respectively a and b where b - a << a. The finite conductivity of the

cylinder is denoted by a. The number density no and current density

-lel n v e of the beam are assumed to be spatially uniform. In addition
-0 0 0 z

the electron beam is assumed to be in rigid transverse motion within the

cylinder. The position of the beam's center with respect to the center of the

cylinder is

A(t) - Ar(t) %x + Az(t) ey, (1)

where Ar(t) - A(t) cos a(t) and Az(t) - A(t) sin a(t). In what follows we

assume that the beam cross section remains circular with radius rb«< a.

4
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MAJO AXI ELECTRON BEAM

z

r rr

Figure 2 -Minor cross section of modified betatron showing polar coordinates

(P,*) and center of beam orbit (A(t), Q(t)). The cross section of

the torus is partitioned into three regions, 1, 11 and 111.
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I111. Induced Magnetic Wieold
The induced magnetic field at the center of the beam is derivable from

the vector potential in region 1. Only the axial component of the vector

potential will be considered here since it is assumed that the transverse beam

velocity is much less than c while the toroidal velocity (in the e-direction)

is close to c. The solution of the wave equation for the total vector

potential in region I, AT, consists of a particular solution as well as a

homogeneous solution. The information concerning the boundary cond$ )ns

along the inner surface, p - a, resides in the homogeneous solution I.
F

Furthermore, since the fields and therefore the forces associated w e

particular solution vanish at the beam's center, i.e., - A(t), we are only

interested in the homogeneous solution of the vector potential in region I.

However, to obtain the homogeneous solution in region I, the full solution is

needed together with the appropriate boundary conditions on AI and

3I/ / at p - a. Since the particular solution of the vector potential is

* needed only along the inner surface of the cylinder we may respresent the

electron beam by a line current. Neglecting the displacement current, the

particular solution becomes

I "21(t)k P t n ( e ,  (2)

Where

W -1 7



P A(0)I [P 2 + A 2 (t) -
2 pA(t) cos (~-1/2 * (3)

and I(t) - eln0v 0 fr b 2is the beam current. The homogeneous solution In

region I has the general form

1 10Ah (p, 0, t) a (t)(p/a) e e + c.c., (4)

where the time dependent coefficients a are to be determined by applying the

appropriate boundary conditions at p - a. The induced magnetic field

tcomponents, derivable from A h I, are

B (p,$,t)in- La a~ (t)(p/a)L eiO+ C.C.,

and

B (P, 0,t + a .&a(t)(p/a) 9- eitf + c.C.. (5a,b)
*~ itI

The induced magnetic field at the beam's center is obtained by setting

* ~P - AMt and a (t) in (5). Adding (2) and (4) ye find that the total

*vector potential in region 1, for a > p > A(t), can be written as

0 I

8

* -. ~ - ~ uu*: _



SaI~t (p) -1~t -lA(t) L e-it I e t (6)
+ + -aj e e + c.c..

fat (t (a C P

In obtaining (6) we made use of the expansion

in (p2+ A2  2pA cos

1 1 M - A z i__ t~ a
trip -  ei ( a+ c.c.,

which is valid for p > A.

In region II the axial component of the vector potential satisfies the

diffusion equation

2 11 4 M1a3A
1

VA 4  - (7)

C

iI

where the displacement current has been neglected. Since ae are considering a

thin cylinder, b - a << a, we can replace V2 with a 2p - a-2 a 2 2 , i.e., a

Cartesian representation is used within the cylinder. The vector potential

All may be represented by the form

II II e £  ~. 8

A (p, *, t) - 3 at  (p, t) ei I o + c.c..
I eZ=O

Substituting (8) into (7) and denoting the temporal Laplace transform of

a (p,t) by a11(p,s) we find that

....9



+1sinh [ u,(s)(b-p)/(b-a)1
a 'P.8 sinh Pj(s)

sinh [p,(s)(p'-a)/(b-a)]
+ a£I (bss sinh ji I(s) ()

where .(a) - (b-a) ( 4was/c 2+ j/a2 )1/2 and a is the Laplace transform

variable. In obtaining (9) we used the Castesian representation for V
2 and

the initial condition a (p, t-o) - 0. Using the same representation for the

vector potential in region III as was used In region II, i.e., Eq. (8) and

solving the vacuum wave equation, in polar coordinates, with the displacement

.6 current term included we find that 111(p,s) is

[(P'S) l ;1:ZC ,s ) Ki(spIc)lKI(sblc), (10)

where Kt is the modified Bessel function. The continuity of a(Ps) is

satisfied by (9) and (10). From (9) and (10), continuity of

3a (p,s)/ap across p - a implies

-- I

a. a (bs) - (a) (a,s), (11)

i II

where

10



-(b/(b-a)) u(s) sinh U 1(s)

c b (sb/c)/K (sb/c) -(b/(b-a))Ua coth 1 a

(12)

Substituting (11) Into (9) gives

-I - ~ ~ " ~ ''sinh ( -~- ts)s) sinh UX(s)) aIas

where 1 0,1~,2 .....

We now impose the necessary boundary condition that A and L be
ka

j continuous across the boundary at p - a. Applying the boundary condition

across p - a to the fields in regions I and II the following relationships

between the coefficients are obtained

a(t) - 1ct in a& a (a.,t)
0 c0

I) a 1(t) + .TSA2 j 1( &(t)%)t *itaOt) a (a1 t
tc a (at

- ( a) (P,t)

ac

and

11



a - 0 0 I (14a-d)

vhere t - 1,2, . Taking the Laplace transform of (14) and using (13) ye"i+ find the folloing relationships

-ots 10 - ii

a ( -) - n a - a (a,s)
0 sc 0

(a)+ O -1 Ar(s) Aiis)Lg -I

i C: s) - ( -.-- ".--.-- at

c a a a

-j i
-10 ( ) aoO ),

-2 & (S) - Ai~(s)t F (a) a 1 (a,s) (15a-d)£ c a a £ I

where t1,2, and

a i~)( ) cosh Cs)).(6IW (b-a) sinh 4 1(a) ~ -~(6

In obtaining (15) we have taken the beam current to be of the form

where e is the usual Reaviside unit step function and 10 is the current

amplitude. Solving (15) for the coefficients of the homogeneous part of the

vector potential in region I gives

12
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a z(s) = .()( 'e "iA()e )'(17)
a *I a a

where

5- (i.n a- -(s)) for 1-o

t(s) - (18a)

(a) + (a)/( (s) - t) for 1-1,2,

and

z coth + u(s)
(s) e= - .(a) tnh (s) x+b (a) (18b)

Using (17), the induced magnetic field given by (5) becomes

B ( , ,t) - L = .LA e t~ r j & ~ ) i z r

it a f G (t - ____ - )t dT + c.c.,

B (p,1,t) e + G (t--r)(&I 'AztG rX i ~c.,

*C 0 a a a )d'+cc.

(19a,b)

where G (t) is the inverse Laplace transform of (a) and Ar(t), A:(t) areI£
. Ithe coordinates of the bean's center. In order to study the beau dynamics, it

is convenient to express the induced fields in a coordinate system defined by

the uni vectors er and eZ* In this systeu r  
3  cos - h sin. and B

B sin + B cos a and using (19) we find that

18



F_(r,z,_) 0 - _ _ f _ G__+_c__.

0- o (20a)

cn o" )- a it )fLgtx)A a a -x )d +c.c

and

12 (rzt)= W . ( et A ) G L t"d. + .c
Aw1 0 (2Ob)

where P - ((r-o0)2+ z2)1/2 and * - tan-1 (z/(r-r0 )). Since we are primarily

concerned with small displacements of the beam's center we consider only

the t -1 term in (20). Thus, induced fields in (20) reduce to

a c o

(21)

121 t
B z (t) - +~-2 Gl(t-T)j&r(T)dr,

where the transform of G1(t) is given by (18).

14



IV. Beam Dynamics

The externally applied fields, associated with the modified betatron

accelerator, expanded about the center of the toroidal chamber (re, o), are

B B oz (1 - n(r-r )/r o),

Br - B oznZ/r ,

and

Bea B o(l-(r-r )/r ), (22abc)

where Boz, Boe are constant and n is the external field index associated with

the vertical field. Besides the external fields in (22) there are the induced

electric and magnetic forces acting on the center of the beam, which isj ;located at r - ro + Ar(t) and z - Az(t). The induced magnetic field is given

by (21). The induced electric field is not affected by a large but finite

wall conductivity. Assuming an infinite wall conductivity the induced

electric field at the bea*'s center is given by

12
(t -a.(f.r(t) a + 5t) ). (23)va', " t - -; ;r a 3

0

Using the fields in (21), (22) and (23), it can be shown that the transverse

evolution of the beam's center is governed by the V sations

15
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oeAr +-yrF; (r-Ars) &Z (

YO YO Yonono's 0

+z 0 A 0 +Ar.LI - oB (24)
YO0 00m

where a dot denotes the operation d/dt, on v /c, v is the azimuthal velocity

of the unperturbed beau centered at r-ro and z - 0, yo (l-B 2)/2
0 0

51 let Boz/aoC, oe= lei B o/aoC, Ez I - n -2 (yo)(r/a) 2/0 and

2 (v/y )(r /a) 2/2 . The constant v is the Budker's parameter and Is

given by

V M lei2 N/(2wm 0c
2r0 ) - (wbrb/ 2 c)2

where w - 4wlel2 n /2. In (24), the term Ar is the equilibrium radial
b 00 e

displacement of the bean's center and is given by

Are= roa--z 

where 6y y - ois proportional to the mismatch in beau energy. For 6y- 0

the bean's center rotates about the center of the mirror cross-section of the

torus. Since we are concerned here with the relatively slow drift motion of

the beam, i.e., Iafl << lArlQo,/y o and lAil << lAhlnoz/y o ,

we my neglect the term Ar and A; in (24). Taking the laplace transform of

16



(24) In the drift approximation, i.e, A - A = 0, and rea-ranging term we

find that

a() -Ar(t - 0) - - 0 [z (s) ror(s)/Bo.
BoO r

sAz(s) -&z(t-O)- f° l &° ,sa)- Ar + ro()/oz (25ab)

08 0

where 2
rr B_(s)/B -2 Vo0 (

2
r

r f(9)/Bm 2 -0 s A?(8). (26)
0 a

Substituting (26) into (25) gives

2B~ nz r )(,()2 ] a()
sa (s) - Ar(t-0) - - [wr oe  YO YO 2 + ---

- ..CA () - A3(ito) - [w,+ 2 lro e  o -

Bo g, A!
So Y0  a 020 2 ( ) - 1)]A (s) (27)

09 o

where

17



!O-- 20-x ( 2 r)2 y 0) 2 )

and

oz n 2 i(r 2  -2
B B-y-z11 -n-2 -2) (Sy)

Bs 0 y 00a

Solving (27) for hi(s) and hAi(s) with u - 1/2 and 6y - 0, we obtain

his [shr(tumO) -w,(l + (s))Az(tm0)1/M(s),

-is [sax(tuO) + wB(l + (s))Ar(tuEO)JI 5(s), (28)

where

~ 2 +2 - 2

13() -a +W B(I + C-(s))

and () v 3 Z% 2-

% 18 1/ 0 -2

08 0

18



V. Drag Instability

The temporal evolution of the beam's center is governed by the nature of

the zeros associated with the function DOs). We first note that for a perfect

conducting chamber wail, a - ,the function i(s) vanishes since ult(s) + and

hence du(s) + 1. In this case the zeros associated with 5(s) are a - + iuwE,

i.e., Ar(t) and bz(t) are oscillatory with frequency ul.. To analyze the

dynamics of the beam for finite conducting walls we assume that the frequency

shift and the growth rate are small in comparison with the bounce

frequency w1,, i.e., s w + icj3. This assumption implies that Z(S) << 1.

Expanding 13(s) - 0 about a - so + W, gives

8So- D(s~f~~ (29)
o 030

Substituting the expression for B(s) into the right hand side of (29) gives

9 - WB ,(so)/Sol (30)

where

0 9 0o

and [from (18)1,

19



-2(tanh Vl1(s0) + b ls /(-)

2b .a( 0)I(b-a) + (1 + (b iul(s )/(b-a)) )ah0(

We now define the skin depth 8, associated with a beam gyrating in the

transverse plane with frequency w., as

C

' B~f- W

In terms of 8, the function Uz1(s 0) is

~i( ~ b * 6 ~~ 0 1/2

The zeros of 13(s) are approximately

9 +± 'LO t (61(t Nw) -,(31)

where

and

*1 + ) -a (I1+

20
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The dispersion relation, given by (31) is readily evaluated in the limit where

6 < b - a and 6 > b - a.

Case (i) Skin depth less than wall thickness (6 < b - a)

In this limit (31) becomes

s +(32)

and the growth rate is

r x . (33)

SI [i.e., is inversely proportional to the conductivity.

Case (ii) Skin depth greater then wall thickness (6 > b - a)

For this limit (31) becomes

(14+ i =-~ (b - a)b/6)

+2 'us (34)
1 + ((b - a)b/2 2 

(

and the growth rate is

WB 8 (b - a)b/6 2

( (I + (b -a)b26)

For /(b -a)b > 6 > b -a, the Srowth rate is

21



wB 2(
r = - I-(b - a)b ' (35)

and is inversely proportional to the conductivity while for 6 > / (b - a)b it

is

r x (b.-a)b (36)

and is proportional to the conductivity. In order for the beam to be unstable

the bounce frequency must be negative, i.e., wB< 0. From the definition of

UB we find that the drag instability is stable if v/yo< (a/r 2oX /4, whichB 0 0 0 h

limits the beam current to

S crit 4 (a/ro)2 y [kA]. (37)

The general form of the growth rate as a function of the skin depth is

depicted in Fig. 3.

The various expressions for the growth rate associated with the drag

instability given by Eqs. (33), (35) and (36) can be conveniently expressed in

terms of the parameter x - Io/Icrit, where I o is the beam current and Icrit is

given in (37). For 6/(b - a) < 1, the normalized growth rate is

b /x- 1

22
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rr

0

roc 8

b -a b(b-a)

SKIN DEPTH
Figure 3 -General form for the growth rate of the drag instability as a

function of the skin depth in the modified betatron.

23



for /b/(b-a) > 6/(b-a) > 1,

"2DO (-b a
r 0rlc - xocLo (Lj- ) 77-T

and for S/(b - a) > /b/b - a),

0 b
ror/c -- ' x(x - I),

CL
0

0.2(Bo /Bo)(ro/a) 2 Y-1 K]

where 6/(b - a) - al -I , o 0.12 o oz oe 0 0 crit (kA]

0- (w a(Boz/Boe) c/ro)0-/ 2 c/(b -a) and x > I.

The NRL modified betatron is designed to operate at a beam current less

f than the critical current given in (37). This is necessary to avoid the drag

instability, which could be severely destructive, as becomes apparent from the

following numerical example. For x - 2, a/ro a 1/10, ro M 100 cm, Yo M 6,

(b - a) - 0.05 cm, B oz/Boo 1/10 and a - 2.5 x 1015 sec- 1, the growth rate is

approximately 8 x 106 sec
- 1, i.e., the beam will strike the wall in less than

a bounce period.

24



VI. Summary and Conclusions

The drag instability in the modified betatron is distinct from the beam

orbit instability, which may arise even for an infinite chamber wall

conductivity. The origin of the beam orbit instability8 ,1 0 is due to an

imbalance in the various confining forces, resulting in a net transverse drift

velocity of the beam's center and occurs even in the absense of dissipative

forces. On the other hand, the drag instability arises from dissipative

effects, i.e., finite conductivity. The instability condition associated with

the beam orbit instability can be obtained from (27) by noting that

for a - ., unstable solutions occur for Br z < 0. However, if n - 1/2,

'Br 'z is always equal to or greater than zero and the mode is stable. 
On

the other hand, if a * - and n - 1/2 the drag instability is stable only if

WB < O, i.e., v/y0 < (a/r 0)2 
2Y 2 /4. In a straight chamber, i.e., ro  ,

this mode is always unstable.

In this paper we have investigated the drag instability in a modified

betatron geometry over a wide range of the parameter 5/(b - a). The maximum

growth rate of the instability in high current accelerators could be much

* greater than the bounce frequency and thus the beam could strike the wall of

the vacuum chamber on a time that is comparable to the bounce period.

However, the drag instability is suppressed when the bounce frequency is

positive, i.e., when > 0. Therefore, it is necessary that during

injection2 1 the parameters of the experiment should be chosen in such a way

25

.-



that wB >0. It is important to point out that neither acceleration nor the

diffusion of the self magnetic field can change the polarity of a.

For w B O, the beam moves inward, i.e., toward the center of the minor cross-

section of this torus. This property might be used to drive the beam near the

minor axis of the torus in a short relatively period of time after

21injection
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