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DRAG INSTABILITY IN THE MODIFIED BETATRON
I. Introduction

Currently, there are studies at several laboratorieal'13 to assess the
feasibility of developing ultra high current electron accelerators. Such
devices have potential applications in several areas including high energy
physics, the fusion program and the generation of coherent, short wavelength
electromagnetic radiation.

Prominent among the various contemplated devices that are suitable for
the generation of ultra high current electron beams is the modified
betatton.4'13 This device consists of a conventional betatron magnetic field
configuration as well as a strong toroidal magnetic field. In general, the
toroidal field has a number of important beneficial effects on the stability
of the circulating electron ring. However, there are a number of drawbacks
associated with the addition of the toroidal magnetic field, one among them is
the instability analyzed and discussed in the present paper.

When an electron ring is confined in a modified bet;tron field
configuration within perfectly conducting walls, the centroid of the
relativistic ring can experience, in addition to magnetic forces that are
related to the external flelds, forces that are associated with the induced
charges and currents on the conducting wall as well as hoop stresses. The
hoop stresses have their origin in the finite radius of curvature of the
electron orbits and have been treated previously.8'17 In the present
analysis, the hoop stresses are neglected, i.e., the torus is unwrapped into a
straight infinite long cylinder. i

When the resistivity of the circular cross=-section wall surrounding the

electron ring is zero, the induced charge and current forces are directed

transverse to the wall. However, when the resistivity is finite the decay of

the wall currents produce an additional magnetic field component that is

Manwscript approved January 26, 1983.
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directed towards the wall. As shown in Fig. 1, the force, Fy =
- Iclvenp. associated with the additional component of magnetic field is

always directed opposite to the velocity vector of the slow rotation of the

centoid (!B- Py = bounce velocity) and thus can be called a drag force. If
both the toroidal magnetic field (Boe) and the bounce frequency wg are

2

8 is negative and thus the

positive, the drift velocity V = = (F x goe)/lel B,

, drag force results in a stable, inward spiraling motion of the beam’s

F centroid. However, when 8°e> o but mn< , the drift velocity is positive

resulting in an instability and the beam”s centroid spirals outward. ¢

] The drag force has its origin in the decay of wall currents and more

j specifically in the polarity change of the wall currents at the end of the
beam pulse. This may be seen by considering the simpler case of a straight
beam propagating along and near the surface of a plane conductor. The wall

3A
T where Ae is

<D

currents are driven by inductive electric fields E6 - -'%

Q

the magnetic vector potential. Integrating this equation and using Ohm“s law,

we get I.Jedt = 0, provided Ae(t =0) - Ae(t = ») = 0, Thus, as the electron
o

.
L

beam passes near a certain section of the conductor, the image current has the

I’
i A ot———r e L

T by

opposite polarity of the beam current. However, the polarity of the image
, A currents on the section of the cylindrical conductor near which the rotating
electron tean passed earlier is the same as that of the beam. As a result a

drag force is developed that is directed opposite to VB

L]
~]

The drag instability discussed here is a special case of the resistive

wall 1nocab111ty.17’18 This instability is characterized by uniform density
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Figure 1 ~ Minor cross section of modified betatron showing beam center
motion, image charge, image current, induced magnetic field and

drag force on the beam. The drag instability is stable if

ol uy B o/ IB gl > O and unstable 1f w B_glB gl < O.
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in the direction of propagation and is present even when the toroidal magnetic

field is zero.19

With a magnetic field along the direction of propagation,
the instability has been treated? in the limit § << b - a, where & is the
skin depth and b ~ a is the thickness of the conducting wall. In the present
paper, we have studied the drag instability over a wide range of parameters.
Special attention was focused on the limit § > (b-a). This limit is relevant

to the proof-of-principle modified betatron accelerator presently under design

at the Naval Research Laboratory.

The drag instability in the modified betatron is distinct from the beam
orbit instability, which may arise even for an infinite chamber wall

8,10 is due to an

conductivity. The origin of the beam orbit instability
imbalance in the various confining forces, resulting in a net transverse drift
velocity of the beam”s center and occurs even in the absense of dissipative
forces. On the other hand, the drag instability arises from dissipative
effects, i.e., finite conductivity. For a linear beam propagating through a

straight chamber of finite conductivity the drag instability is always

unstable. The forces responsible for the stabilization of this instability

arise from curvature effects.




II. The Model

A cross sectional view of the electron beam within the conducting
cylinder is shown in Fig. 2. The inner and outer radius of the thin cylinder
is respectively a and b where b - a < a. The finite conductivity of the
cylinder is denoted by o. The number density n, and current density
I, -lel n v, ;z of the beam are assumed to be spatially uniform. In addition
the electron beam is assumed to be in rigid transverse motion within the

cylinder. The position of the beam”s center with respect to the center of the

cylinder is
A(E) = ax(e) e +az(t) e, (1

where Ar(t) = A(t) cos a(t) and Az(t) = A(t) sin a(t). In what follows we

assume that the beam cross section remains circular with radius rh<< a.
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Figure 2 - Minor cross section of modified betatron showing polar coordinates
(P, ¢) and center of beam orbit (4&(t), a(t)). The cross section of

the torus is partitioned into three regions, I, II and III.




III. Induced Magnetic Field

The induced magnetic field at the center of the beam is derivable from )
the vector potential in region 1. Only the axial component of the vector

potential will be conasidered here since it is assumed that the transverse beam

I: ‘ velocity 1s much less than c¢ while the toroidal velocity (in the g-direction)
is close to c. The solution of the wave equation for the total vector

potential in region I, ATI, consists of a particular solution as well as a

homogeneous solution. The information concerning the boundary conds ins

B

along the inner surface, p = a, resides in the homogeneous solution e
! (Jé Furthermore, since the fields and therefore the forces associlated w e
; % particular solution vanish at the beam”s center, i.e., g = A(t), we are only
' ‘ interested in the homogeneous solution of the vector potential in region I.
..H 7é; However, to obtain the homogeneous solution in region I, the full solution is
needed together with the appropriate boundary counditions on QTI and
;.‘ ; aATI/Qp at p = a. Since the particular solution of the vector potential is
: :
?é needed only along the inner surface of the cylinder we may respresent the
f% electron beam by a line current. Neglecting the displacement current, the
& 23
s particular solution becouwes
S 1 -21(t) -
1 A, (ps 4 t) = ——=1tn lg = act)le,, (2)
4 T
| where
3 7
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lg = a(e)] = [02 +a (t) - 2pA(t) cos (4 - a(;))]l/z (3)

and I(t) = - |e|n°v°nrb2 is the beam current. The homogeneous solution in

region I has the general form

A 6, 0 0 = T 2, (t)(p/a) e e+ c.c., (4)

=0

where the time dependent coefficients a L

. are to be determined by applying the

appropriate boundary conditions at p = a. The induced magnetic field

components, derivable from éhI. are

B (o, 0 ) == T ta M)/t e+ cue.,
o] 2-1
and
By(ps 6, £) =+ 5, La,f(e)p/a)* et 4 coe.. (5a,b)

The induced magnetic field at the beam”s center 1s obtained by setting
p = A(t) and ¢ = a(t) in (5). Adding (2) and (4) we find that the total

vector potential in region I, for a 2> p > A(t), can be written as

NSRRI G IR U LTI
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+ zzl {azl(t) (2,2 + I(z) z-l(A(;))l e itay o0 ;e +coen. (6)
In obtaining (6) we made use of the expansion
fn (92+ AZ' 2pA cos (¢-¢))1/2
- % fmp = ’} jl "-1(_2—)2 elt(oma), CsCs,

which 1s valid for p > A.

In region II the axial component of the vector potential satisfies the

diffusion equation

(D A T e

where the displacement current has been neglected. Since we are considering a
2 2,.2 =22, 2
thin cylinder, b ~ a << a, we can replace vV~ with 3°/3p"- a = 3°/3¢", L.e., a

Cartesian representation is used within the cylinder. The vector potential

&II may be represented by the form

I

. Lo, vy e e +coc.. (8)

A% G, 00 = T a 6

=0

Substituting (8) into (7) and denoting the temporal Laplace transform of

azn(p,t) by ;lll(p,s) we find that

L AT
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sinh {4 (8)(b=p)/(b-a)]

~« I1 ~ I
al (D: g) = al (a, 8) sinh uz(s)

sinh [uz(s)(pma)/(b'a)]

sinh uz(s) ’ 9

+ EZII (b,s)

where "2(8) = (b-a) ( 6wcs/c2+ 22,a2)1/2 and s is the Laplace transform
variable. 1In obtaining (9) we used the Castesian representation for v2 and
the initial condition azII(p, t=0) = 0. Using the same representation for the
vector potential in region III as was used in region II, i.e., Eq. (8) and
solving the vacuum wave equation, in polar coordinates, with the displacement

1 current term included we find that Ezlll(p,s) is

;zrn(p,s) - ;znr(b,s) K (sp/c)/K (sb/c), (10)

} where Kl is the modified Bessel function. The continuity of ;z(p,s) is

’ satisfied by (9) and (10). From (9) and (10), continuity of
azz(p,s)/ap across p = a implies

i

|

|

i b,0) = £,00) §, (a0, (1)

where

10

b




£ (ay o D) 4 (8) sinh 'y (s)
g) = .
: (4 = £k, (8b/c)/K (sb/c) - (b/(b-a))u, coth y,(s)

SR (12)

Substituting (11) into (9) gives

oIt sinh (-%Es— u!(s)) + fl(s) sinh (—%E%— uz(s)) . II i
lz (p,8) = sinh ul(s) a!. (a,s), i

13)

where £ = 0,1,2,....

——

We now impose the necessary boundary conditiomn that A and %% be

el

continuous across the boundary at o = a. Applying the boundary conditiom

across p = a to the fields in regions I and II the following relationships

between the coefficients are obtained

T ——— g~
- N "~ —_

: 2 aol(t) - lﬁ%l finam= aOII(a,t)

; all(t) +-£§£l 2-1(-A§£L)2 e1ralt), .211 (a,t)
a RO b8, (0,t)
ac 3 p - ’
{
and
11

AP ——— - -
| vl




I(t)

L I, .
2% (t) ac

where 2 = 1,2, . Taking the Laplace transform of (14) and using (13) we

k find the following relationships

. 1
e I [+] ~ II .
i a (s) scilna=a, (a,s)

I - S b4 -~
| EzI(s) +-Eg ! ( A:(s) -1 Azis) )t - azll(a,t) T
|
/ :Eg -F (s) a (a,s)
'( sc o o 7?

1 - -
L Zzl(s) -2 sr(s) _ 4 Az(s))z

~ ~ 11
= = = - Fz(s) al (a,s) (15a~d)

where £ = 1,2, and

# a “z(“) P
+(®) = To=ay sIah U (8) (£,(8) = cosh y (s)). 16

In obtaining (15) we have taken the beam current to be of the form
I(t) = Ioe(t),

where © is the usual Heaviside unit step function and I° is the current

amplitude. Solving (15) for the coefficients of the homogeneous part of the

vector potential in region 1 gives

A A T
. .A.‘ -, 5

o




~1 T z
‘l, (3) - 52(.) (-—A.l_.ﬁ'—)- -9 A.!é!-)—-)z. (17)
L where
{ st a- fz-l(s)) for g=o
1 G, (s) = (18a) :
T HF o) + 2)/(F (o) - 1) for 2eL,2, .
and i
b
% coth y +—=——y (8)
F (s) = - g u (s) tanh u (s) ( L2t ). (s
£ tanh “z+'b_-'a' u’.(l)
‘ 3 Using (17), the induced magnetic field given by (5) becomes
‘ )
I o
——1 12 pye-1 1124 (t _ _yrAr(r) _ 1az(a)q0
e R AT (A - 2820t g g e,
I o
a4 07 2 -1 124 (t ae(r) _ 1az(r) (2
B,(ps6,t) +°_zzl & e £ G, (t-1) (=5 ——)" dr + c.c.,
(1%,b)

where Gl(t) is the inverse Laplace transfora of El(.) and Ar(t), Az(t) are
the coordinates of the beam”s center. In order to study the beam dynamics, it
is convenient to express the induced fields in a coordinate systeam defined by

the unit: vectors ;t and e, . In this system B, = Bp cos ¢ =B sin ¢ and B,

¢

cos ¢ and using (19) we find that

- Bpain o + B¢

13




I = - -
B_(r,z,6) = - 1 _{; ) f‘(ﬁﬂz 1 1(2-1)¢ Itcz(t_T)(Argr) - 1A: 1))zdT + coce,
g=1 ° (20s)

and

I =
Bz(r,z,t)- _% 5‘ a& (%)z 1 ei(l 1)¢Itcz(t.1)(Ar§T) - 1Az§T))zdt + c.c.’ i

2=1 ° (20b) .

vhere p = ((r-t°)2+ 22)1/2 and ¢ = tan-l(z/(r-to)). Since we are primarily

concerned with small displacements of the beam”s center we counsider only

the £ =1 term in (20). Thus, induced fields in (20) reduce to

! | 210 t
. Br(t) == - f Gl(t"t)Az(‘t)dT,
{ a“c o
(21)
21° t
’ Bz(t) -+ f Gl(t-t)Ar(r)dt,
ac o
» ? i where the transform of Gy(t) is given by (18). %
; !

14
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IV. Beam Dynamics

The externally applied fields, associated with the modified betatron

» accelerator, expanded about the center of the toroidal chamber (to. o), are

B, = Boz(l - “(""o)/"o)'

B = - Boznz/ro,

and

é ;g Be- Boe(l-(r-ro)/ro), (22a,b,c)

where Boz’ Boe are constant and n is the external field index associated with
' s the vertical field. Besides the external fields in (22) there are the induced
electric and magnetic forces acting on the center of the beam, which is

located at r = r, + Ar(t) and z = Az(t). The induced magnetic field is given

21 iy by (21). The induced electric field is not affected by a large but finite

wall conductivity. Assuming an infinite wall conductivity the induced

A s 1 electric field at the beam”s center is given by
L3 B (6) = o0 (AE(E) & 4 8%(E) § 2%
- =T ~ v,2 r r a g/°

Using the fields in (21), (22) and (23), it can be shown that the transverse

evolution of the beam”s center is governed by the :guntiono

18
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where a dot denotes the operation d/dt, Bo" volc, v, is the azimuthal velocity
2,-1/2 Y
of the unperturbed beam ceantared at r=r, and z = 0, Yo" (l-so) ,
2,2
,, lel Boz/noc, Qg lel Boelnoc, gol=-n=-2 (vlyo)(roln) /8° and

gt- a-~-2 (v/yo)(rolu)zlei. The constant vy is the Budker’s parameter and is

given by
2 2_ | . 2
v=lel N/(anoc r,) (mbrbIZc) ,

where mi - Anlelznofno. In (24), the term Ar, is the equilibrium radial

displacement of the beam”s center and is given by

§v/v,
o ¢

r = r ,

z
where §y = vy - Yo is proportionsl to the aismsatch in beam energy. For §y= 0

the beam”s center rotates about the center of the mirror cross—section of the
torus. Since we are concerned here with the relatively slow drift motion of

the beam, 1.e., la¥l << larla /v, and faz] << lasla /v,

we may neglect the term A; and A; in (24). Taking the Laplace transfora of

16




(24) in the drift approximation, i.e, A; - A; = 0, and rearranging terms we

find that

B Q
oz ‘oz ~
sAT(s) -Ar(t = 0) = - —Boe —Yo [ErAz(c) - roir(-)lnoz],

B Q
sAz(s) -Az(t=0)= r'y—- [¢,(ar(s)= ar /8) + ¢ o5, (8)/B 1, (258,b)
o8 ‘o

where
rz
~ v [ -
B (s)/B = -2 Y—o-? 61(a) az(s),
1,2
~ v [o] w
roBz(S)/Boz' 2 7{: :2- 51(8) Ar(s). (26)
Substituting (26) into (25) gives
~ 28oz noz v Toy2 -
sAr(s) - ar(t=0) = - [wy + g— — — () (Cl(o)-l)] Az(s),
o8 Yo Yo

:)

B
saZ(s) - az(t=0) = [w, + 2 ;——i%- (—) (?.1(.) - 1)])ar(s) (27
o8

B
'r;;—ﬁ =




(- e

B Q r
z z 042 -2
Bge™ i_o__;g_ (n -2 $_ ()7 (8575) )
08 ‘o o

and
Q 14
0oz 02 v 0,2 -2
Ygz r—(l n ZTO-(T) (BoYo) )
Solving (27) for Ar(s) and AZ(s) with n = 1/2 and 6y = 0, we obtain

AT(s) = [sar(t=0) -wy(l + €(s))az(t=0)]/B(s),

bZ(s) = [88z(t=0) + wy(1 + £(s))ar(t=0)]/B(s), (28)
where
B(s) = 82 + w21 + Js0)?,
B 2 T
c(s) = s > 0% 0% —°25(s)'1/ ,
Yo Bog 7, ()76, ) wg 1
and

B Q T
28 oF -2 (2?2 -2
Wy Upp” Ypg LI (/2 -2 Y, (a ) (8,7,) ).
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v. Drag Instability

The temporal evolution of the beam”s ceater is governed by the nature of
the zeros associated with the function D(s). We first note that for a perfect
conducting chamber wall, ¢ = =, the function e(s) vanishes since uy(8) + = and
hence 51(3) +> i. In this case the zeros associated with D(s) are s = + imB,
i.e., Ar(t) and Az(t) are oscillatory with frequency g To analyze the
dynanics of the beam for finite conducting walls we assume that the frequency
shift and the growth rate are small in comparison with the bounce
frequency wys i.e., 8~ + 1“’3‘ This assumption implies that c(s) << 1.

Expanding 3(s) = 0 about s = s, = + lug glves

g 3B (29)

98

8 =58 D(so) .
%8,

Substituting the expression for D(s) into the right hand side of (29) gives
8 =8 -l c(s )/s (30)
o “B "0’ %0’

vhere

B_Q T
~ -2 V__Oz "oz . 0,2 - -1
C('o) 2 —Yo —oe —Yo (—‘) (61(.0) 1) NB ’

and [from (18)],




- 2(tanh y,(s ) + b ul(so)/(b°a))

26 u (s, )/(b-a) + (L + (b u (s )/(b-a))7) tanh y (s )

51(.'0) -1=

We now define the skin depth §, associated with a beam gyrating in the

transverse plane with frequency wgs 88

C

vInalugl

. §d =

In terms of §, the function “1('0) is

- 8
* ; uy(sg) = /I (252) (@)”2.

The zeros of D(s) are approximately

}
; ' 8=+ tuy + 12 (6 (% fwp) 1), (31)
. where
X - B r
‘ Y - -2 __5. 042
8 . A Y, T;Y ( ) ’ ‘
S
: -)1 ;
l and

w2 tuy) = B2 (1 + tuy/luyl).




The dispersion relation, given by (31) is readily evaluated in the limit where

§<{b=~-~aand § > b - a.

Case (1) Skin depth less than wall thickness (5§ < b - a)

|
L : In this limit (31) becomes
4
" § § s

‘ ' s =+ i(w=2A ) -2 ¢ (32)

E “B" 1 % b Tugl °

i

\

! and the growth rate is
! s “B
) I ) (33)
! b T, |
{ “s

i.e., is inversely proportional to the conductivity.

Case (ii) Skin depth greater then wall thickness (§ > b - a)

For this limit (31) becomes

T e e c—— s—

| : (aFi '!%B‘I' (b - a)b/sd)
| 4 s =+ lug 312 > T (34
A 1+ ((b - a)b/s”)
-}
o g
,-;f 2 and the growth rate is
i .1 1
o
L Fmey B (b - /sl )
: N{ log] (L+ (b~ aii;fksk)

For /(b -a)b > 4§ >b - a, the growth rate is




I -

T e et e e o ——e -« -

A

A v e p———
Il

——

w
B 8 (35)

l"'*lmﬂl ® = a)b *

and 1s inversely proportional to the conductivity while for § >/ (b - a)b it

is

oy B (b -a)
r A Tag] = (36)

and is proportional to the conductivity. 1In order for the beam to be unstable

the bounce frequency must be negative, {.e., mB( 0. From the definition of
22 2

wy ve find that the drag instability is stable if v/y°< (a/ro) 8, 70/4, which

limits the beam current to

I, ¢ Ty, = 4425 (alr 2762 v2 [kl (37)

o crit

The general form of the growth rate as a function of the skin depth is

depicted in Fig. 3.

The various expressions for the growth rate associated with the drag

instability given by Eqs. (33), (35) and (36) can be conveniently expressed in

terms of the parameter x = Io/Icrit' where I° is the beam current and Icrit is
given in (37). For &/(b - a) < 1, the normalized growth rate is

{ b~-a x

! tT/e=xra ( )

| o oo b sy

| 22

‘ -

| R - xR

i S T . <
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Figure 3 - General form for the growth rate of the drag instability as a

function of the skin depth in the modified betatron.




f for /b/(b-a) > &/(b=a) > 1,

onN

r I/c =@ (b ; 2) ;—é-r.

{ and for &§/(b - a) > /b/b - a),

e

A
e rle = 25 (52—g) =(x - 1),

%

where §/(b - a) = a°//|x - 11, A, = 0.12 (Bozlnoe)(rola)2 yo-l | S (kaA],

ay = (v o(B,,/Bq) c/ro)"”2 ¢/(b - a) and x 2 1.

The NRL modified betatron is designed to operate at a beam current less

than the critical current given in (37). This is necessary to avoid the drag

M .
’
————

. instability, which could be severely destructive, as becomes apparent from the
following numerical example. TFor x = 2, a/r° = 1/10, r, = 100 cm, Yo " 6,
(b - a) = 0.05 cm, Boz/Boe = 1/10 and ¢ = 2.5 x 1013 sec'l, the growth rate is

o approximately 8 x 106 sec-l, i.e., the beam will strike the wall in less than !

a bounce period.




Vi. Summary and Conclusions

The drag instability in the modified betatron is distinct from the beam
orbit instability, which may arise even for an infinite chamber wall

conductivity. The origin of the beam orbit 1nstability8'1° is due to an

i ' imbalance in the various confining forces, resulting in a net transverse drift
g' ' velocity of the beam”s center and occurs even in the absense of dissipative
forces. Omn the other hand, the drag instability arises from dissipative
' effects, i.e., finite conductivity. The instability condition associated with
the beam orbit instability can be obtained from (27) by noting that
j for ¢ = », unstable solutions occur for wg, Wp, < 0. However, if n = 1/2,
Wpr Wpg is always equal to or greater than zero and the mode is stable. On

‘ | the other hand, if ¢ *+ = and n = 1/2 the drag instability is stable only if

' wg < 0, i.e., v/yo < (a/ro)zsozyozlb- In a straight chamber, i.e., r, = =,

this mode is always unsgtable.

In this paper we have investigated the drag instability in a modified

4

3 g betatron geometry over a wide range of the parameter 5/(b - a). The maximum
.
; % growth rate of the instability in high current accelerators could be much
; = )
o ! L4
# ;! 3 greater than the bounce frequency and thus the beam could strike the wall of
Lo
': f the vacuum chamber on a time that is comparable to the bounce period.
L
; : However, the drag instability is suppressed when the bounce frequency is
S
! H
g positive, i.e., when mB> 0. Therefore, it is necessary that during

21

-

injection

the parameters of the experiment should be chosen in such a way




e

e e -

that mB) 0. 1It is important to point out that neither acceleration nor the
diffusion of the self magnetic field can change the polarity of wg e

For mB> 0, the beam moves inward, i.e., toward the center of the minor cross—
gsection of this torus. This property might be used to drive the beam near the
minor axis of the torus in a short relatively period of time after

injectionZI.
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