. AD-A128 232 DIANA REFERENCE MANLAL REVISIUN 41U TAKIAN LABS INC
PITTSBURGH PA A EVANS ET AL. 28 FEB 83 TL-83-4
. MDAS03-82-C-0148
UNCLASSIFIED F/G 9/2

3

R
. . -

il o~
R I B
a1

i EEE

O a3
JAA3339443

fl2

I
I

1.4

I

125

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

. - . .

TARTAN LABORATORIES INCORPORATED

DIANA REFERENCE MANUAL

Revision 3

Arthur Evans Jr.
Kenneth J. Butler

Tartan Laboratories Incorporated
Editors. Revised Diana Reterence Manuail

ADA128232

Q. Goos
institut fuer Informatik li. Universitaet Karisruhe
Wm. A. Wulf N
Carnegie—Melion University
Editors. Original Dlana Manual

-

Preopared for
Ada Joint Program Office
. 801 North Randolph Street DT!(:
Arlington Virginia 22203
Contract Number MDAS03-82-C-0148 ELECTER
MAY 131983 :
Prepared by
Tartan Laboratories |ncorporated B
477 Melwood Avenue

Pittsburgh PA 15213
1983 February 28

DISTRIBUTION STATEMENT A

TL 83-4 Apptoved for public teleass;

Distnibution Unbmuted

DTIC FILE COPY

|

!

Dlana Is being maintained and revised by Tartan Laboratories Iinc. for the Ada
Joint Program Ofilfice of the Department of Defense under contract number
MDAQ03-82-C-0148 (expiration date: 1983 February 28). The Project Directer ot
Disna Maintenance for Tartan Laboratories is Arthur Evans, Jr.

The views, opinions. and flndings contained in this report are those of the
authors and should not be construed as an officlal Department of Delence
position. policy. or decision, unless designated by cther officlai documentation.

o

B

et i

e T — -
B |

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE - ’ B"g“!"mgwfm
T REPORT NUMBER 7. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER |

| TL 83-4 A).A4/248 U3~

4. TITLE (and Subtitie) S. TYPL OF REPOART & PENIOD COVERED

ar DIANA REFERENCE MANUAL, Revision 3 , Contract deliverable 0002AC]
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) §. CONTRACT OR GRANT NUMBER(s)

! Arthur Evans Jr., Kenneth J. Butler, editors MDA903-82-C-0148

—

o 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
A 1T NUMBERS

. AREA & WORK UN
Tartan Laboratories Inc.
477 Melwood Ave.
Pittsburgh PA 15213
1. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
‘ Ada Joint Program Office 1983 Feb 28
' ‘ 801 North Randolph Street . 3. NUMBER OF PAGES

Arlington VA 22203 viii + 201
4. MONITORING AGENCY NAME & AODORESS(I! different from Controlling Office) 1S, SECURITY CLASS. (of this report)

> DCASMA Pittsburgh
1610-S Federal Building {Unclassified
1000 Liberty Avenue —ns..'gc': f'z' ﬁfgucnuonlooﬂ?immo

A_ 15222
76. DISTRIDUTION STATEMENT (of this Report)

1 DISTRIBUTION STATEMENT A

- ‘ Approved for public release;
Distribution Unlimited

Cem e e

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il difterent from Report)

2 .-

- - cumg—_—
g S
o

18. SUPPLEMENTARY NOTES

S R =
,‘S: { kB :

s

e

19. KEY WORDS (Continue on reverse side il y and identily by block number)

Diana, Ada, compiler, programming language

20. ABSTRACT (Continue on reverae side il y and |dentity by block number)
D> This document describes [iana, a Descriptive Intermediate Attributed Notation
for Ada, being both an introduction and reference manual for it. Diana is an
' ! ' abstract data type such that each object of the type is a representation of an
j intermediate form of an Ada program. Although the initial uses of this form

3 were for communication between the Front and Back Ends of an Ada compiler, it
' is also intended to e suitable for use with other tools in an Ada programming

environment. Diana resulted from a merger of the best properties of two

earlier similar intermediate forms: TCOL and AIDA. &<——~—_

PORM
DD , 5%y, 1473 coimion oF 1 nov 6315 owsOLETE \
SECURITY CLASSIFICATION OF THIS PAGE (When Bﬂ. Entever”

e —— A —— e —— 7 < ..
B}

-»
d>»

e —

DIANA Reference Manual

TABLE OF CONTENTS

Abetract
Acknowiedgments
Preface

1. Introduction

1. 1. Oesign Principles

1. 1.1, Original Design

1.1.2. Principies Governing Changes
1.1.3. What is a 'OaNA User’
1.1.4. Specification of DIANA
Structure of the Document

Attribution Principles of DIANA

1.3.1. Static Semantic Information
1.8.2. What'is "Easy to Recompute’?
1.8.3. Other Princlples

3.4, Examples

P
.« .
w n
b

1.
1.4. N
1.4.1. Example of the IDL Notation
1.4.2. Specification of Representations
1.4.3. Example of a Structure Refinement
1.4.4. DiaNA Notational Conventions

2. Definition of the Diana Domain

3. Rationale

3. 1. Comparison with the Abstract Syntax Tree
3.1.1. Semantic Distinctions of Constructs

3.1.2. Additional Concepts
3.1.3. Tree Normaliizations
3.1.4. Tree Transformation According to the Formal Definition
3.1.5. Changes to the AST
3.2. Consequences of Separate Compiiation
3.2.1. Forward References
3.2.2. Separately Complied Generic Bodies
3.3. Name Binding
3.3.1. Oefining Occurrences of Identifiers
8.3.2. Used Occurrences of \dentifiers
3.3.3. Muitiple Defining Occurrences of Identifiers
3.3. 4. Subprogram Calls

Page |

85
85
86
87
87

D1 tribution/
P——‘

Ava ;}abi}}ty Codes
Avail and/or
Dist Special

Page il DaNA Reference Manual

3.4. Treatment of Types
3.4.1. Machine Dependent Attributes

3.4.2. Type Specifications

.4.2.1. Structural Type Information
.4.2.2. Subtype Specifications
4.2.3. Derived Types
.4.2.4. Incomplete and Private Types
.2.5. Anonymous Array Types
. 8. Anonymous Derived Types

@ Specifications In Expressions

.3.1. Examples for Constraints of Expressions
.4.3.2. Type Specifications for Names

3.5. Entities with Several Declaration Points

l ’ 3.5.1. Type Declarations

[3.5.1.1. Incomplete Type Declarations
!
§

3.4.3

o=t oo
@B M

VW PVORRW®

3.5.1.2. Private Types
3.5.1.3. Discriminant Parts

5.2. Deferred Constants
5.3

3.
3. Subprograms

-t ol qub b ol il b ad wnd el add
c32833 3233 8 8228888288883

3.5.3. 1. Declaration and Body in One Declarative Part
3.5.3.2. Declaration and Body In Different Compllation Units
3.5.3.3. Subprogram Bodies as subunits
3.5.3.4. Entries and Accept Statements
| 3.5.3.5. Subprogram Formals 110
3.5.4. Packages m
y 3.5.5. Tasks N2
\ 3.5.5.1. Task Types and Task Bodies 113
- 3.5.5.2. Single Tasks and Task Bodies 113
;! 3.5.6. Qeneric Units 14
; 3.68. Treatment of Instantiations 118
3.6. 1. Instantiation of Subprograms 116
3.6.2. Instantiation of Packages 118
3.7. Treatment of Renaming 118
3.7.1. Renaming of Subprograms 118
3.7.2. Renaming of Packages 118
N 3.7.3. Renaming of Tasks 221
i 3.8. Implementation Dependent Attributes 121
14 3.8.1. Evaluation of Static Expressions 121
B 3.8.2. Representation of identifiers and Numbers 122
t 3.8.3. Source Positions 122
¥ 3.8.4. Comments 122
% 3.8.5. Predefined Operators and Bulit-in Subprograms 123
¥ 3.9. Equality and Assignment 123
‘ * 3.10. Summary of Attributes 124
. i 3.10.1. Lexical Attributes 124
S 3.10.2. Semantic Attributes 125
3.10.3. Code Attributes 128
3.10.4. Unnecessary Attributes . 128

g

mwmmvm” .7

__-é”l. _

LT

S

-

Ay

™

DIANA Reference Manual

4. Definition of the Diana Operations

4.1, The ODANA Qperations

4.2. DIANA’'s Use of Other Abstract Data Types

4.3. Summary of Operators

4.4. General Method for Derlving a Package Specification for DIANA
4.5. Deriving a Specific ADA Package

4.6. The DIANA Package in ADA

5. External Representation of DIANA
6. Implementation Options

). The Predefined Environment

1.1. Universal Types

1.2. The Predefined Language Environment
1.3. Attributes

{.4. Pragmas

§i. The Abstract Parse Tree

fii. Reconstructing the Source

General Principles

Examples

Normalizations of the Source
Commaents

POD~

V. Diana Summary
V. ODlana Names
Vi. Diana Attributes

Vi. 1. Structural Attributes
V1. 2. Lexical Attributes
Vi.3. Semantic Attributes
Vi.4. Code Attributes

Index

Page il

129

129
130
130
13
132

183

145
183

157

187
187
158
158

161
165
165
166

167
168

mn
185
193

198
194
195
196

199

DiaNA Reference Manual

Page iv

- v —

ek OWNA Reference Manual Page v
'\ usT OF FIGURES
Lg J Figure 1-1: Typographic Conventions used In this Document 21
-y Figure 1-2: Example of IDL Notation 26
Figure 1-8: Some Trees in ExpressionTree 27
' Figure 3-1: Examplie of a Necessary Tree Transformation 83
. Figure 3-2: Call of Implicitiy-Defined Inequality 89
;I Figure 3-8: Float constraint created by DIANA 92
! Figure 3-~4: DIANA Form of type/subtype Specification 94
“ : Figure 3-5: An Example for Derived Enumeration Types 95
! Figure 3-8: Constraints on Slices and Aggregates 99
; Figure 3-7: Constraints on Silices and Aggregates 100
Figure 39-8: Constraints on String Literals 101
: Figure 3-9: Example of an Incomplete Type 104
Figure 3-10: Example of a Private Type 108
. Figure 3-11: Example of a Deferred Constant 107
Figure 3-12: Subprogram Structure 108
Figure 3-18: au?tgrogram Declaration and Body in Different Compilation 109
\ n
5 Figure 3-14: Example of a Subprogram Body as a subunit () 110
\ Figure 3-15: Example of a Subprogram Body as a subunit (i) mm
Figure 3-16: Example of a Package Body as a subunit 112
Figure 3-17: Example of a Task Type and Body 113
. Figure 3-18: Example of Single Tasks 114
Figure 3-19: Example of a Generic Body as a subunit 11§
Figure 3-20: instantiation of a Generic Procedure 117
Figure 3-21: Instantiation of a Qeneric Package 119
4 Figure 3-22: Renaming a Procedure 120
' Figure 3-23: Renaming a Package 120
} Figure 4-1: Sketch of the DIANA Package 134
i Figure 5-1: External DIANA Form 146
Figure 5-2: Example ExpressionTree of IDL Notation 147
S Figure 5-3: Example AnotherTree of DL 149
| _ Figure 1-1: Example of a Pragma 160
! .-
F |
!

g W g .»)a

-

W P

g P YA g

LEst L br i

T —m
4 > ‘ = - - e e o A ..,7. — o - !

Abstract Page 1

ABSTRACT

This document describes Diana, a Descriptive Intermediate Attributed Notation
for ADA, being both an introduction and reference manual for it. DIANA is an
abstract data type such that each object of the type is a representation of an
intermediate form of an ADA program. Although the Initial uses of this form were
for communication between the Front and Back Ends of an ADA compiler. (t |s
also intended to tw sultable for use with other tools In an ADA programming

environment.

DWNA resuited from a merger of the best properties of two eartier similar
Intermediate forms: TCOL and AIDA.

Page 2 DIANA Reference Manual

Acknowledgments Page 3

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS FOR THE FIRST EDITION

DIANA is based on two eariler proposais for Intermediate forms for ADA
programs: TCOL and AIDA. It could not have been designed without the efforts
of the two groups that designed these previous schemes. Thus we are deeply
grateful to:

‘ * AIDA: Manfred Dausmann, Guido Persch. Sophia Drossopoulou. Qer-

' hard Goos. and Georg Winterstein—ail from the University of
Karisruhe.

e TCOL: Benjamin Brosgol (intermetrics) . Joseph Newcomer

(Carnegie~Mellon University). David Lamb (CMU), David Levine
(Intermetrics) . Mary Van Deusen (Prime), and Wm. Wulf (CMU).

The actual design of DIANA was conducted by teams from Karisruhe,

- Carnegie-Mellon, Intermetrics and Softech. Those involved were Benjamin Bros-

gol. Manfred Dausmann. Gerhard QGoos. Oavid Lamb., John Nestor. Richard

Simpson. Michael Tighe. Larry Weissman, Georg Winterstein, and Wm. Wull.

- Assistance in creation of the document was provided by Jeff B8aird, Dan
Johnston. Paul Knueven, Glenn Marcy, and Aaron Wohi—alil from CMU.

We are grateful for the encouragement and support provided for this effort by
) Horst Clausen (IABQ). Larry Druffel (DARPA). and Marty Wolfe (CENTACS). as
' . well as our various funding agencies.

Finally. the design of DiIANA was conducted at Eglin Alr Force Base with
substantial support from Lt. Col. W. Whitaker. We could not have done it
without his aid.

Dna’s original design was funded by ODefense Advanced Research Projects
Agency (DARPA). the Air Force Avionics Laboratory. the Oepartment of the
Army. Communication Research and Development Command, and the Bundesamt
fuer Wehrtochnik und Beschaftfung.

Qerhard Goos
Wm. A. Wult

Editors, First Edition

a

S

;
i

Page 4 DWUNA Reference Manual

Subsequent to DIANA’s original design., the ADA Joint Program Office of the
United States Department of Defense has supported at TARTAN Laboratories Incor-
porated a continuing effort at revision. This revision has been performed by
Arthur Evans, Jr.. and Kenneth J. B8utler. with considerable assistance from
John R. Nestor and Wm. A. Wuif, ali of TARTAN.

We are grateful to the following for their many useful comments and sugges-
tions. ’

e QGeorg Winterstein, Manfred Dausmann, Sophia Drossopoulou. Guido
Perach, and Juergen Uhi. all of the Karisruhe ADA Implementation
Group:

¢ Julie Sussman and Rich Shapiro of Bolt Beranek and Newman Inc.:
and to

e Charles Wetherell and Peggy Quinn of Bell Telephone Laboratories

Additional comments and suggestions have been offered by Grady Booch, Ben-
jamin Brosgol. Gl Hanson, Jeremy Holden, Bernd Krieg—Brueckner, David Lamb.
H.-H. Nagell., Terl Payton, and Richard Simpson.

We thank the ADA Joint Program Office (AJPO) for supporting DIANA’S revision.
and in particular Lt. Cofonei Larry Oruffel, the director of AJPO. Valuable
assistance as Contracting Officer’'s Tochnical Representative was provided first by
Lt. Commander Jack Kramer and later by Lt. Commander Brian Schaar: we are
pleased to acknowiedge them.

DIANA is being maintained and revised by TARTAN Laboratories Inc. for the ADA
Joint Program Office of the Department of Defense under contract number
MDA903-82-C-0148 (expiration date: 1983 February 28). The Project Director of
DWUNA Maintenance for TARTAN is Arthur Evans, Jr.

R s

e ¥ oy

Y

|3

{ gt

T T N W AT o T e

. Taveea

Preface Page §

PREFACE

PREFACE TO THE FIRST EDITION

This document defines Diana, an Intermediate form of ADA (7] programs that
is especially suitable for communication betwoen the front and Back Ends of ADA
compllers. it is based on the formal definition of ADA [6) and resulted from the
merger of the best aspects of two previous proposals: AIDA [4, 10] and
TCOL [2]. Although DIaNA Iis primarily intended as an interface between the parts
of a compller, it is also suitable for other programming support toois and
carefully retains the structure of the original source program.

The definition of DIANA glven here is expressed in another notation, DL, that
is formally defined in a separate document (9]. The present document is,
however, completely self-contained: those aspects of IDL that are needed for the
DIANA definition are informally described before they are used. Interested readers
should consuit the IDL formal description either if they are concerned with a
more precise definition of the notation or if they need to define other data
structures in an ADA support environment. In particular., implementors may need
to extend DIANA In various ways for use with the tools in a specific environment,
and the IDL document provides information on how this may be done.

This version of DIANA has been ‘“frozen® to meet the needs ot several groups
who require a stable definition in a very short timeframe. We invite comments
and criticisms for a longer-term review, We expect 10 re-evaluate DIANA after
some practical experience with using it has been accumulated.

Page 6 DiANA Reference Manual

PREFACE TO THIS EDITION

Since first publication of the DIANA Reference Manual In March, 1981, further
developments in connection with ADA and DIANA have required revision of DIANA.
These developments include the following:

e The original DIANA design was based on ADA as defined in the July
1980 ADA Language Reference Manual {7), referred to hereafter as
ADA-B0: the present revision Is based on AOA as defined in the July
1982 ADA LAM ([8]. referred to hereafter as ADA-82.

e Experience with use of DIANA has revealed errors and flaws in the
original design: these have been corrected.

This publication reflects our best efforts to cope with the confiicting pressures on
us both to impact minimally on existing Implementations and to cruvate a logically
defensible design.

TARTAN Laboratories Inc. Invites any further comments and criticisms on DIANA
in general., and this version of the reference manual in particular. Any cor-
respondence may be sent via ARPANet maill to DIANA-QUERYBUSC~ECLB. Paper
mail may be sent to

DIANA Manual

TARTAN Laboratories Inc.
477 Melwood Avenue
Pittsburgh PA 15213

We believe the changes made to DIANA make no undue constraint on any
DIANA users or potential DIANA users. and we wish to hear from those who
perceive any of these changes to be a problem.

Introduction Page 7

CHAPTER 1
INTRODUCTION

The purpose of standardization is to
aid the creative craftsman, not to
enforce the common mediocrity (11].

in a programming environment such as that envisioned for ADA', there wiil be
a number of tools—formatters (pretty printers), language-oriented editors, cross-
reference generators. test-case generators. and the like. In generai, the input
and output of these toois is not the source text of the program being developed:
instead it is some intermediate form that has been produced by another tool iIn
the environment. This document defines Diane. Descriptive Intermediate At-
tributed Notation for ADA. DiaNA is an intermediate form of ADA programs which
has been designed to be especially suitable for communication between two
aessential toois—the Front and Back Ends of a compiler—but also to be suitable
for use by other tools in an ADA support environment. OIANA encodes the results
of lexical. syntactic. and static semantic analysis. but it does not include the
results of dynamic semantic analysis. of optimization. or of code generation.

it is common to refer to a scheme such as DWNA as an Intermediate
representation of programs. Discussions of DiANA, including those in this docu-
ment. undoubtedly use this and similar terminoiogy. Unfortunately. too often the
word representation suggests a concrete realization such as a particular data
structure in primary memory or on a file. It is important for the reader to keep
in mind that DIANA does not imply either of these. Indeed. quite the opposite Is
the case: it was carefully defined to permit a wide variety of realizations as
different concrete data or file structures.

A far more accurate characterization of DIANA Is that it is an abstract data
type. The DIANA representation of a particular ADA program is an instance of
this abstract type. As with all abstract types. OIANA defings a set of operations
that provide the only way in which Instances of the type can be examined or
moditied. The actual data or file structures used to represent the type are

‘mlonmmmrrmmukdmmmmmm.wum.m
States Government.

C L

Page 8 / Section 1 DIANA Reference Manual

hidden by these operations. in the sense that the implementation of a private
type In ADA is hidden.

We often refer to a DIANA ‘“tree’., ‘abstract syntax tree’'. or ‘attributed parse
tree’: similarly, we refer 10 ‘nodes’ in these trees. In the context of DIANA as
an abstract data type. it is important to appreciate what /s and is not implied by
such terms. We are not saying that the data structure used to implement DIANA
is necessarily a tree using pointers and the like. Rather. we are using the
aotion of attributed trees as the abstract model for the definition of DIANA.

An abstract data type consists of (a) a set of values (the domain of the
type) together with (b) a set of operations on those values. The specification of
an abstract type must define both its values and its operations. The abstract
modeling method of specitying an abstract type provides these definitions by
defining the values in terms of some mathematical entity with which the reader is
presumed to be famillar; the operations of the type are then defined in terms of

their effect on the modeling entities. In the case of DIANA, for example. the
mathematical model is that of attributed trees. The reader should always bear in
- mind that the trees being discussed are merely conceptual ones: they are the

mode/ of the values in the OIANA domain. They may or may not exist as an
explicit part of an implementation of the DIANA abstract typez.

1.1. Design Principies

The design of DIANA is based on the collection of principles that are dis~
cussed in this section. As with any design intended tfor practical use., some
compromise of these principles has on occasion been necessary. The frequency
of deviations from the principles is extremely low. however. and an understanding
of the principles will help the reader to understand OIANA.

- ATy

R Section 1.1.1 presents those principles that motivated the original design of

1 DIANA, and Section 1.1.2 presents those principles that have governed changes
' made since. Section 1.1.3 defines what it means to be a DIANA user (l.e..
. producer or consumer) and Section 1.1.4 presents a /acuna of the entire DiaNA

definition effort.

— JU —

Introduction Section 1.1.1 / Page 9

1.1. 1. Original Design

The foliowing principles governed the original design of DIANA:

e Diana is representation independent. As noted above. we strove lo
avold Implying any particular implementation strategy for the DIANA
abstract type. For example. where implementation-specific infor-

. mation is needed in a OIANA representation (such as values on the

i target-machine). we make reference to other abstract types for

I representing these data. each Iimplementation is expected to supply

the implementation of these types. In addition. we strove to avoid

any implications for the strategles to be used in implementing Front
| or Back Ends of compilers, or., for that matter. any other environ-
| ment tools. Finally, we provide an explicit mechanism for implemen—
tations to extend or contract the DIANA form in a consistent manner to
cater to implementation-specific purposes.

e Diana Is based on ADA’s formal definition (6). referred to hereafter as
the AFD. In defining an Intermediate representation of ADA, we face
» three problems: what is the representation of a particular program.
L what does that representation mean (i.e.. what is the semantics of
the particular instance of the representational scheme). and when Is
the representation consistent (/.e.. meaningful)? Since the AFD
already provides the latter two of these”. we have chosen to stay as
close as possible to the definitional scheme used there—particularly to
the abstract syntax. Thus. in this document we can focus exclusively
on the first of these questions. namely how particular programs are
S represented.

~ e

e Regularity Is a principal characteristic ot Diana. Regularity of descrip-
tion and notation was a principal goal. We believe that this regularity
is an important aspect of both understanding and processing a DiANA
intermediate form.

3 > « Diana must be efficiently i/mplementable. As noted above. DWNA Is

beat viewed as an abatract data type. its specification is more
! abstract than is directly supported by current programming languages,
; inciuding ADA. Nonetheiess., DIANA is intended to be used! Hence. it
' is essential that there exist an efficient Implementation of It (or
: actually, several difterent efficient implementations of i) in contem-
: porary languages—especially ADA itseif. Later chapters deal with this

T issue explicitly: for now. the important point is that implementability
' was a primary consideration and that such implementations do exist.

Ao g

' ' e Consideration of the kinds of processing to be done is paramount.
Although the primary purpose of DNA |s communication between the
Front and Back Ends of compilers. other environment tools wili use it

TR vy G TR T SRR e e

; S °ﬁmmmmummwmmmmmmm.an
pege 14,

e

. X B
— . ot E SR

i T T e e e s ety———

et Pl bt o Q - . B R e, T B

Fr T ’ —
" e e e t—r—— o ‘-—'-'——————g

" Page 10 / Section 1.1.1 DWNA Reference Manual

as well. The needs of such programs were considered carefully.
They influenced a number of the DIANA design decisions, Inciuding the
following:

* We define two trees—an Abstract Syntax Tree constructed prior
‘ to semantic analysis (see Appendix II), and an attributed tree
" (the DiANA structure) constructed as a result of static semantic
analysis. These two structures are. of course. closely related.
By defining both of them. we extend the applicability of DIANA to
include those toois that need only the parsed form.

. - We considerad the size of (various implementations of) DIANA
; representations., and we made careful tradeoffs between this size
] and processing speed. We envision that at least some ADA
i support environments will be implemented on small computing
' ’ systems. hence. we considered it essential that DiaNA be usable
on these systems.

- We never destroy the structure of the original source program:

except for purely lexical issues (such as the placement of

. comments) . it is always possible to regenerate the source text
from its DIANA form. See Appendix WI.

- We permit the possibility of extending the DIANA torm to allow the
inclusion of information for other kinds of processing. Of par-
ticular concern. for example. are extensions to encode infor-
mation needed by various optimization and code-generation

i strategies.

T

1 e In Diana, there is a single definition of each Ada entity. Each defin—
L ‘ able entity. e.g. variable. subprogram. or type. is represented by a
single defining occurrence in DIANA. Uses of the entity always refer
to this defining occurrence. Attributes at this definition point make It
possible for all intormation about the entity 10 be determined. Thus.

i aithough the defining occurrences are part of the program tree. the
_ 1 set of them plays the same rolg as a dictlonary or symbol table in
t conventional compiier terminciogy .

‘ Diana must respond to the Iissues posed by Ada’s separate
: compilation facility. 1t is not in the domain of DNa to provide the
o ~ library management upon which separate compilation of ADA is based.

t ’ Nonetheless. the possibility of separate compilation atfects the design

use a different ng oocurrence for references inside
are defined than they do elsewhere. See Section 3.5.1.2 on pege

) . “There is & single enception: Private types
, the peckege body in which they

¥

introduction Section 1.1.1 / Page 1

of DIANA in two ways:

+ The possibility of separate compilation places certain restrictions
on DWNA and requires the possibility of certain Indirect
references. We take care. for example, never to require for-
ward references to entifies whose definition may be separately
compiled.

- We recognize that many library systems may wish to store the
DuanNA form of a compilation unit—in order to support optimization
across compilation units, for example. Various design decisions
in DWNA were influenced by this possibility.

e There must be at /east one form of the Diana representation that can
be communicated between computing systems. We have defined in
Chapter 5 an externaily visibie ASCiHl form of the DIANA representation
of an ADA program. In this form., the ODIANA representation can be
communicated betwecn arbitrary environment toois and even between
arbitrary computing systems. The torm may aiso be useful during the
develiopment of the environment tools themseives.

1.1.2. Principles Governing Changes

The design principles just listed that governed the original design of DiANA
have been augmented during this phase of modification by additional principles.
it is important that these. too. be documented.

» Diana will be changed only when something is sufficiently wrong that it
requires change. We state this metric despite the fact it is such a
broad characterization that deciding when something is °sufficiently
wrong’ Is clearly judgmental, Nonetheless, the principle has utility.
For example. it implies that we not make cosmetic changes. no
matter how obvious it might be that the change would result in a
better product. OQur motto: ‘it it's not broken. don‘t fix it.’

o s We do not unduly impact existing Diana users. Thus we refrain from
: changes whose impact on existing implementations significantly ex-
: ceeds anticipated future benefits. Of course. changes with a large
4 enough savings down the road may be made even if doing so affects
B current implementations. Again. there is a judgmentai call here.

. e |t Is often necessary to make some decision. (n several cases. either
' " of two or more ways to proceed has seemed equaily plausible. and
‘ we have heen unablie to determine any significant advantage to any
decision. Nonetheless., In such cases we have made a decision,
since we judge a slightly incorrect decision to be better for the DIANA
' community than no decision. At least. there is a standard way for
‘ DWANA users 10 to proceed.

—

o Where possible we have preserved the style of the original Diana

e

[

~——

Page 12 / Section 1.1.2 DiaNA Reference Manual

design. Stylistic concerns include such issues as creating DL classes
for attributes. preserving the same naming conventions, and so on.

e Diana does not unnecessarily deviate from ADA’s formal definition.
Even though th% formai definition effort apparently Is no longer being
actively pursued . we continue to adhere to its style.

Unfortunately the guldelines just presented and those of the previous section
are sometimes in conflict. For example. consider a minor Inconsistency found
in the original design. The principle of consistency might suggest a change.
while the principte of sufficiently wrong might suggest leaving it alone. What we
have done is to be reasonable in considering changes. DIANA s intended to be
used. and we continue to strive to keep DIANA responsive to the needs of its
users.

1.1.3. What is a "DIANA User’

inasmuch as DWANA s an abstract data type. there is no need that it be
implemented in any particular way. Additionally, bocause DWNA Is extendable. a
particular implementation may choose to use a superset of the DIANA defined In
this DRM. In the face of innumerable variations on the same themc. we foel it
is appropriate to offer a definition of what it means to use ODIANA. Since |t
makes sense to consider DIANA only at the interfaces, it is appropriate to
consider two types of DIANA users: those which produce DIANA, and those which
consume it’. in addition. some implementations (particularly compilers) may
claim to employ DIANA as an intermediate form, even though neither interface to
external DIANA Is provided. We consider these three aspects in turn:

producer In order for a program to be considered a OIANA producer. it
must produce as output a structure that includes ail of the
intormation contained In DIANA as defined In this document.
Every attribute defined herein must be present. and each attribute
must have the value defined for correct DIANA and may not have
any other value. This requirement means. for example. that
additional values, such as the evailuation of non-static expres-
sions, may not be represented using the Diana-defined attributes.
An implementation is not preventod from defining additional at-
tributes. and in fact it is expected that most DIANA producers will

————————— -

ﬁmmmumum.wmumwnmuouwnum.

’Mmmmm;mm..mrmmmmmmu
reed Diana for seperate compilation purposes.

Panad o

-

- et

s wety A

e -~

v SR

Introduction

consumer

employer

Section 1.1.3 / Page 13

aiso produce additional attributes.

There Is an additional requirement on a DIANA producer: The
DIANA structure must have the property that it could have been
produced from a legal ADA program. This requirement is lkely
to impinge most strongly on a tool other than a compiier Front
End that produces DIANA. As an example of this requirement, In
an arithmetic expression. an offspring of a multiplication could
not be an addition but would instead have to be a
parenthesized node whose offspring was the addition. since ADA’s
parsing rules require the parentheses. The motivation for this
requirement is to ease the construction of a DIANA consumer,
since the task of designing a consumer is completely open-ended
uniess it can make some reasonable assumptions about its input.

in order for a program to be considered a DIANA consumer. it
must depend on no more than DIANA as defined herein. This
restriction does not prevent a consumer from being able to take
advantage of additional attributes that may be defined in an
implementation. however. the consumer must aiso be able to
accept input that does not have these additional attributes. It is
also incorrect for a program to expect attributes defined herein to
have values that are not here specified. For example. it is
wrong for a program to expect the attribute sm_vaiue to contain
values of expressions that are not static.

The definition of a DIANA employer Is moare difficult. The intent Is
that the intermediate form must be close to DIANA: the problem s
that we have no useful metric for close. In addition. the lack of
a visible external representation of the Iintermediate form ap-
parently preciudes application of any validation procedure. This
point is addressed further below.

There are two attributes that are defined herein that are not required to be
supported by a DIANA user: Ix_comments and Ix_srcpos. We believe that these
attributes are too impiementation specific to be required for all DIANA users.

It is instructive 10 examine the probiems suggested above of defining a DIANA

employer.

inasmuch as papers have begun to appear in the literature in which

a given implementation claims °to use DIANA’ or ‘to be DiANA-like’', we feel that
it is appropriate to offer a metric against which to judge such claims. Consider
the following three candidates for such a metric:

* A representation can properiy be cailled DWNA if it comtains ail the
same Information that DIANA contains.

o A representation can properly be called DIANA if one can provide a

reader/writer for transforming between the representation and DIANA,

Page 14 / Section 1.1.3 DiANA Reference Manual

e A representation can properly be called DnNa if it provides a package
equivalent to the one described In Chapter 4 for accessing and
moditying the structure.

Aithough the first two definitions have a certain appeal. it is unfortunately true
that neither of them is at all adequate. since a little thought reveails that the
original ADA source text meets either requirement. One repair possibility is to
attempt to tighten up the second definition by restricting the reader/writer to be
‘simple’. in some sense, but defining that sense appears to require Solomonic
wisdom.

The third definition aiso has appeal. though it is again hard to use as a
metric If the externai interface is not actually provided in a useful way.

it is our opinion that it is not proper to claim that a given impiementation
uses DIANA uniess either It meets the following two criteria:
* It must be able lo read and/or write (as appropriate) the externai
form of DIANA defined In Chapter 5 of this document.
* That DIANA must meet the requirements of a OIANA producer or
consumer as specified in this section.
or it meets this criterion:

+ The Implementation provides a package equivalent to that described in
Chapter 4.

We hope that writers of papers will give consideration to this discussion.

1.1.4. Specification of DIANA

An Important problem faced by new users of DIANA is to determine. for any
particular ADA construct, just what DIANA (s to be produced from it. Although the
DiaNA specification In Chapter 2 specifies precisely what nodes must exist. which
attributes each node must contain., and what type the value of each attribute
must have. it often says very little about what value the attribute is to have.

This problem is addressed in this document in several ways. Often, com-
ments appear in Chapter 2 specifying or suggesting the intended value. in
addition. the lengthy discussion of design rationaie in Chapter 3 presents much
additional information. Unfortunately. still more heip is needed. and a compiete
solution o the problem of providing such help is beyond the capability of this
document. The remainder of this section is speculation about the form such
help might take.

LS AP IO

Introduction Section 1.1.4 / Page 15

What is needed Is is a formal way to determine., given an ADA source text
and a OWNA structure purported to be a correct representation of the source,
whether or not the DIANA s In fact correct. For example., suppose that a s
some ADA text and that 8 purports to be a DIANA representation of it. Needed is
a predicate w such that

ma, 0)
is true If. and only if, O correctly represents a.

ldeally, the structure of 7 should be such that it Is accessible to a human
reader who requires help In designing an ADA front end or other transformer
from ADA to DiANA. NoO such predicate now exists. The kinds of questions that
such a predicate should help to answer include the following:

1. Is a given abstract syntax tree (AST) correct for a given Ada
program?

2. What should be the value of each semantic attribute in a DIANA
structure?

3. When is sharing permitted in the AST?

4. May the same node appear in several sequences?

We believe that one way to meet these needs is by first specifying the
transformation from ADA to AST and then defining a predicate. say 7, on ASTs
and OIANA such that for an AST 7 and a DIANA structure O the predicate

n(7, O)
returns true iIf the DIANA structure O is a correct representation of the AST T,
This dichotomy appears useful.

Translation of ADA source to abstract syntax tree (AST) (s a two-step
process:

« Transiation of ADA source to parse tree (PT). The latter Is a tree in
which each node Iis labeled with the name of a non-terminal from
ADA’s BNF definition and has as many offspring as clauses appear in
the relevant definition of that non-terminal. Qiven a non-ambiguous
BNF for ADA., such a tree is uniquely defined. Although the BNF in
ADA’'s LRM s ambiguous. it is not difficuit to create a non-ambiguous
version that preserves all gssential structure.

* Transiation of PT to AST, This step, though somewhat harder to
specify than the previous one. Is not conceptually difficult.

We believe it |ls possible to describe the PT to AST transformation by using

- A

Cod et

=

T - ———— o e e = e —————— .~ e .l o0 T

cadnendibitd ool o iint., bt o 000 nni WP 1T ¢ NS T S _.u_;,-‘—

o

Fr

v ——

-

Page 16 / Section 1.1.4 DA Reference Manuail

an attribute grammar to specify the AST as an attribute of the root of the PT.
The specification of the AST to DIANA transformation (inciuding specification of the
semantic attributes) is a much harder problem and is still open. We are
exploring methods of attacking these problems.

1.2. Structure of the Document

Abstractly, an instance of the DIANA form of an ADA program is an attributed
tree. The tree’s structure is basicailv that of the abstract syntax tree defined in
the AFD. Altributes of the nodes of this tree encode the resuits of semantic
analysis. Opgrations defined on the ODWANA abstract data type (see Chapter 4)
provide the predicates., selectors., and constructors required to manipulate this
tree and its attributes. The structure of this document refiects the several facets
of the DIANA definition.

e First we define precisely the domain of the DIANA data type. We do
so by specifying the set of abstract trees. their attributes. and various
assertions about them (which actually appear as comments). This
definition is done in two steps:

* In Section 1.4 we describe the notation. called IDL. for exhibit-
ing DIANA’s definitinn.

* In Chapt%r 2. we use the notation to define the actual trees and
attributes .

s Second, we provide a rationale for some of the more subtle design
decisions— particularly with respect to the atiributes of nodes in the
abstract tree. This rationale appears in Chapter 3.

e Third, we define the operations on the DIANA abstract type. This
definition appears in Chapter 4, and again is done in two steps.
First. we describe generically the nature of these operations.
Second. we show how these operations can be realized in conven-
tional programming languages by showing how an interface can be
derived from the DiaNa definition and by showing the specification part
(except for the private part) of an ADA package that specifies just
such an interface. We aiso show here how th% intertace is altered
when additional attributes or nodes are introduced .

MM.mmmemmmn (additional attributes). What
we define here is a required and adequafe set.

on implementation may dofine additional operations. Again, we merely define a required
and adequate set here.

Introduction Section 1.2 / Page 17

e Fourth, In Chapter S, we define a canonical way to represent DIANA
structures external to a computer.

e Finally. in Chapter 8, we discuss implementation issues and lllustrate
some of the various options that are avallable.

There are aiso six appendices. Appendix | provides the definition of the
predefined environment for ADA compilations. in Appendix Il we define the
Abstract Syntax Tree from the AFD as a derivative of the OIANA representation.
o Appendix Ili describes how the source of an ADA program can be regenerated

from the DIANA representation and includes a discussion of the normailizations of
reconstructed source programs imposed by DIANA,

Appendices V. V. and VI provide three summaries of the DIANA definition.
These summaries provide an invaluable cross reference into the main definitions
and shouid be an important aid to the reader.

There is an extensive index that lists separately topics. DIANA attributes. and
OWWNA node names.

1.8. Attribution Principles of DIANA

This section describes the general principies used to decide on the details of
‘ DIANA. A more detalied rationale is given in Chapter 3.

The design of an Intermediate representation involves deciding what intor-
mation to represent explicitly and what information to recompute from the stored
information. There are two extreme positions one can lake:

e The source program (or its abstract syntax tree) contains ail the

\ necessary Information: other information can be recomputed when
necessary.

] e All information which can be computed should be computed and stored

! within the Intermediate representation.

DiaNA‘s underlying principles, which are a compromise between these extrema.
can be derived from DNA‘s intended role In an ADA Program Support Environ-
ment (APSE) (3). We envisage DIANA as created by an ADA Front End. used as
input to that Front End for separate compilation purposes. used as input to the
compiler’'s Back End. and used (produced or consumed) by a variety of other
; (tools of the APSE.

For all these tools DIANA should contaln Information that is both sufficient and

-—

Page 18 / Section 1.3 DIANA Reference Manual

appropriate. There are two questions relevant to deciding. about a given
attribute. whether or not to include it in the DIANA:

e Does the Information the attribute contains belong in the Intarmediate
representation?

e Should the Information be represented explicitly, or shouild it be
recomputed from the stored information?
We have used two criteria in declding of a given attribute whether or not to
include it:
e DiaNA should contain only such information as would be typically dis-

covered via static (as opposed to dynamic) semantic analysis of the
original program.

« |t information can be easlly recomputed. it should be omitted.

These two points are discussed at length in the following two subsections.

First, however. a point must be made. Although the original DIANA design
used the metric of ease of computation in deciding what attributes to Iinclude,
the concept has been considorably oxpanded In revisions of DIANA and of this
report. As a result, attributes now exist in DIANA which, according to this
criterion. ought not to be there. We have elected to let them remain for two
reasons: They are not sufficilently wrong to require fixing. and their removal
would likely unduly impact existing DIANA users. Note that these are the first twc
principies enunciated in Section 1.1.2 on page 11.

1.3.1. Static Semantic Information

We believe that it is appropriate for DIANA to include only that information that
is determined from static semantic analysis, and that DWNA should exciude
Information whose determination requires dynamic semantic analysis.

This decision affects the evaiuation of non-static expressions and evaijuation of
exceptions. For example. the attribute sm_value should not be used to hoid the
value of an expression that is not static. even if an implementation’'s semantic
analyzer is capable of evaluating some such expressions. Similarly. exceptions
are part of the executlon (/.e.. dynamic) semantics of ADA and should not be
repraesontod n DIANA, Thus the attribute sm_velve is no longor used to
represent an exception to be raised, as it was in an earlier version of DNA.

Of course. an implementation that does compute these additional values may
record the Information by defining additional attributes. However. any DWNA

Introduction Section 1.3.1 / Page 19

consumer that relies on these attributes cannot be considered a correct DIANA
‘user’, as defined in Section 1.1.3 on page 12.

1.3.2. What is "Easy to Recompute’?

Part of the criterla for iIncluding an attribute In DIANA is that it should be
omitted if it is easy to rocompute from the stored information. We feel it is
imporiant to avoid such redundant encodings If DIANA is to remain an usefully
Implementabie internal representation. Of course this guideline requires that we
define this phrase. and we suggest that an attribute is easily computed if

e It requires visits to no more than three to four nodes; or

e It can be computed in one pass through the DIANA tree., and all
nodes with this attribute can be computed in the same pass.

The first criterion is ciear: the second requires discussion.

Consider first an attribute that is needed by a compiier front end (FE) to do

semantic analysis. As the FE does its work, it is free to create extra
(non—-DiANA) attributes for its purposes. Thus the desired attributes can be
created by those who need them. To require them is an imposition on

implementations which use algorithms that do not require these particular
pointers. it we add every attribute that anyone requires. everyone will be
overwheimed.

Consider now an attribute needed by a back end (BE) to do code genera-
tion. As iong as the attribute can be determined in a single pass. the routine
that reads In the DIANA can readily add it as it reads in the DIANA. Again, some
implomentors may not need the attribute. and it is inappropriate to burden
everyone with it.

it is for these reasons that we have rejected suggestions for pointers to the
anclosing compilation unit, pointers to the enclosing namescope. and back
pointers in general. These are altributes that are easily computed in one pass
through the DIANA tree and Indeed may not be needed by ail implementations.

Of course. a DIANA producor can croate a structure with extra attributes
beyond those specifiad for DIANA. Nevertheless, any DIANA consumer that relies
on these additional attributes Is not a DIANA user, as that concept is defined in
Section 1.1.3 on page 12.

m \ - ; B S

A ' Lo » ’ ohiamicn S
E i. 1

Page 20 / Section 1.3.3 DiaNA Reference Manual

1.3.3. Other Principles

There are other reasons why particular classes of attributes are present in
! DIANA,

‘ e A tree-like representation of the source program is well-suited for
] ; many of the tools that will exist in an APSE. such as semantic
i analyzers, optimizers, and syntax-directed editors. The tree structure
is represented in DIANA via the structural/ attributes: we use the same
abstract syntax tree as given by the AFD. with a few differences
‘ described in Section 3.1 on page 80.

! o lexical attributes (such as symbol and literal representations and
source positlons) are needed by the compiler (e.g.. for error
messages). They are aiso useful to other APSE tools for referring
back to the source or for regenerating source text from the inter-
mediate representation.

s ADA provides the attribute ‘SIZE to determine the minimum number of
bits needed to represent some object or subtype. If this attribute is

L applied to a static type. the resuit is static and is therefore required
: by ADA’'S semantics to be known at compile time. it represents a
\ target-machine . property properly computed by a code generator.

However, as it can be used in static expressions, the Front End must
know its value in some contexts. For example, the selection of a
base type for a derived integer type depends on a range constraint.
Without this information, the semantic analyzer cannot perform one of
its most important tasks., type and overioad resolution. Since the
value must be known to the Front End. it is recorded as the value of
an attribute to avoid the need for recomputation by the Back End.

1.3.4. Examples

A few examples illustrate these principles:

» The structure of a type (whether it is an integer. an array. a record,
and so on) can be deduced by searching backward through the chain
of derived types and subtypes. This chain could be of arbitrary
length. and so the search s not tolerable. Thus, a subtype
specification (a OIANA constrained node) has an attribute

- sm_type_struct to record this information.

e The parent type of a derived type is identical to the base type of the
subtype Indication given in the derived type definition. and this infor-
mation is already recorded in the sm_base_type attribute of the
constrained node which is a chiid of the derived node. Thus no
parent type indication is needed in the derived node.

e Some DIANA users have suggested adding an attribute to each
DEF_OCCURRENCE node to denote the node for the enclosing
namescope. Although locating the enclosing namescope (if the at-

introduction Section 1.3.4 / Page 21

tribute is not avallable) can invoive visits to more than three or four
nodes. a DIANA reader can readily compute this attribute and decorate
the tree with it as the DIANA I8 read in. Since this attribute contains
information that may not be useful to every Implementation and fur-
thermore is easy to compute in the above sense. it is not provided in
DIANA,

1.4. Notation

As we have stated several times, DIANA is an abstract data type that can be
modeled as an attributed tree. In this document we are concerned with defining
this abstract type—both its domain and its operations. The domain of the DIANA
type is a subset of the (mathematical) domain known as attributed trees. In
order to specily this subset precisely, we introduce some special notation, a
subset of a notation called IDL (91. A knowiledge of IDL is not necessary to read
or understand this document—all necessary information about the notation is
defined in this section. (A few additional features are defined in Appendix |l as
they are used only there.)

To assist the reader in understanding this material. certain typographic con-
ventions are followed consistently throughaout this document. as illustrated in
Figure 1-1.

DECL OP DEF_QCCURRENCE iDL class names

constant var const_id IDL node names

Ix_srcpos sm_address as_exp IDL attributes

Structure TRoot ‘Type reserved word in IDL

begin case pragma ADA reserved words

INTEGER 'SIZE BOOLEAN identifier defined by ADA
Tax_rate Walkl Tree identifier in an ADA program

Figure 1-1: Typographic Conventions used in this Document

The set of abstract trees used to mode! the DIANA type can be viewed as a
language. one whose terminal sentences happen to be attributed trees rather
than strings of characters. The definition of this language can. therefore. be
given in a form similar to BNF. In particuiar, we use two definitional forms that

Page 22 / Section 1.4 DianA Reference Manual

resemble the production rules of BNF. The first of these defines non-terminals
of the description. Consider, for example., the following definition:
EP ::=)leaf | tree ;

As is customary, this definition may be read. °‘The notion of an EXP is defined
to be either a leaf or a tree.” Symbois such as EXP are cailed class names;
names of nodes in the ‘tree language’ are called node names. In this case,
both aiternative definitions for EXP are node names. Class names, like non-
terminails in BNF. never appear in the sentences of the language:. their only use
Is In defining that language. Node names. on the other hand. appear in the
sentences (that is the trees of our tree language). Notice. by the way, that
each definitional rule is terminated by a semicolon.

The use of this form of definition is more restricted than in usual BNF. The
right hand side of the production may be only an alternation of one or more
class or node names and may not be a concatenation of two items (as it may
be in BNF). In addition, class names may not depend upon themselives (in a
circular fashion) invoiving only the °"::=' form of definition ruies. Thus a
directed graph constructed with an edge from each class name on the left to
each aiternate on the right wili be acyclic: that is, it will be a DAG.

As is usual with BNF, thero may be more than one such production with the
same left hand side (class name):. definitions after the first merely introduce
additional alternatives. Thus., the effact of the two definitions

EXP ::= leaf ;

[

EXP ::= ¢tree ;
is no different from that of the single definition given earlier.

The definition of the node names must specify the attributes that are present
In that node, as well as the names and types of these attributes. We again use
a BNF-like form for such definitions. To prevent confusion. this form is slightly
different from the definition of class names: for exampie
tree => o0Op: OPERATOR, /eft: EXP, right: EXP ,
Here we define the node tree and associate with it three attributes with their
names (op. left. and right) and their respective types (OPERATOR, EXP. and
EXP). Uniike BNF (or record deciarations). the order of attribute specifications
does not matter.

The right hand side of a production defining a node name is aiso restricted:
it may be only a sequence of zero or more attribute specifications separated by

introduction Section 1.4 / Page 23

commas and terminated by a semicolon. Multiple detinitions of a node name
are permitted: definitions after the first add additional attribute specifications—
they are not alternatives but, rather, define additional atiributes of the node.
Thus. for example.

=> Op: OPERATOR ;

left: EXP, right: EXP ;
and

i i

=> 0p: OPERATOR ;

=> right: EXP ;

i

= floft: EXP ;

are both identical in effect to the single definition given earlier. Note aiso that
the order of both the '::=' and "=’ definition ruies is irrelavant. all orders are
equivalent (as in BNF). In particular, we reversed the order of definition of the
- leit and right atwributes in the last exampie above: doing so has no effect.

On occasion it is useful to specity a node which has no attributes. as for
example
foo = ;
i Nodes so defined are used much like enumeration literals in ADA. See. for
example. the nodes pius. minus, times. and divide in Figure 1-2 on page 26.

' There are two kinds of permissible attribute types: basic types defined by the
iDL notation., and private types. The basic types are:

Boolean These are the conventional boolean type: the only permis-
sible values of such an attribute are true and false.

Integer This is the ‘universal integer’' type.
Rational This is the ‘universal rational number’ type. which includes

alt values typically found in computer integer, fioating point
and fixed point types.

-t

String These are ASCIHl strings.
Seq Of T This is an ordered sequence of objects of type T.
‘ name> The <name> must be that of either a node or class name
defined eisewhere. Use of <name> as an attribute type

denotes a reference to either an instance of that node (in
;- the case of a node name) or any of the nodes that can be
\ derived from it (in the case of a ciass name). Note that

Rt Y W
.

e e e e e - e a————— . i i e = e —— e —————

Page 24 / Section 1.4 DANA Reference Manual

a relerence here does not necessarlly mean a pointer In
the concrete impiementation: direct inline inclusion of the
node is permitted. as well as a number of other implemen-
tations. (See Chapter 8 for a discussion of some of the
implementation aiternatives.)

A private type names an implementation-specific data structure that is in-
appropriate 1o specify at the abstract structure fevel. For exampie. In DIANA we
want 10 assoclate a source_position attribute with each node of the abstract tree.
This attribute Is useful for reconstructing the source program. for reporting
errors. for source-level debuggers, and so on. It is not a type. however, that
H : should be defined as part of this standard since each computer system has

idiosyncratic notions of how a position in the source program is encoded. For
that matter. the concept of source position may not be meaningful If the DWANA
arises from a syntax editor. For these reasons., attributes such as source
position are merely defined to be private types.

A private type Is Iintroduced by a type declaration. The declaration of the
private type ‘MyType’ would be
Type MyType;
Once such a declaration has been given, the type name may be used in an
attribute specification. For example.

' tree => x: MyTYpe ;

-

Before proceeding. we need 0 make a few remarks about the lexical struc-
ture of the IDL notation. First. as in ADA 2 comment is Introduced by a double
hyphen '--' and is terminated by the end of the line on which it appears.
Second, the notation is case sensitive: that is. identifiers that are spelled
identicaily except for the case of the letters in them are considered to be
different ldonmlors'o. Finally, names (identifiers). as In ADA, consist of a letter
followed by an optional sequence of letters. digits, and isolated underscore

. characters (°_’).

The final point to be made about the notation is that the definitional rules
lllustrated above are enclosed In a syntactic structure that provides a name for
the entity being defined together with the type of the goal symbol of the
. grammar. For example. the IDL text

' “mmumwmuamwm;mmmnm
adepted to support a direct correspondence with the AFD (which is case sensitive) .

" s PR ST %
e - . o

Introduction Section 1.4 / Page 25

Structure SomeName Root EXP Is
-— gome sequence of definitional rules
End

asserts that the cotlection of production rules defines an abstract type (or
Structure in (DL terminology) named °SomeName’ and that the root of this
structure is an EXP. where EXP is defined by the set of definitional ruies. In
the case of DIANA we are defining a single abstract type. so there is a single
occurrence of this syntax that surrounds the entire DIANA definition: other uses of
IDL may require several Structure definitions. Expanding on the analogy that
IDL is like BNF. the Root defined here is the °"goal symbol’ of the grammar. ail
valid instances of the type defined by the IDL specification are derived by
expanding this symbol.

1.4.1. Example of the IDL Notation

The foliowing example lllustrates the use of the notation. It is Intentionally

chosen not to be DIANA to avoid confusion. Suppose. then. that we wish to

‘ describe an abstract type for representing simple arithmetic expressions. We
might use a delinition such as the one shown in Figure 1-2 on page 26.
Although this example is quito simple. [t does illustrate the use of alt of the
i features of the (OL notation that are used to define DIANA. Two class names are
' defined: EXP and OPERATOR. Since they name classes and not nodes (as
indicated by our typographic conventions). neither appears in the trees in the

3 abstract type (structure) ‘'ExpressionTree’. There are six node names defined:.
treo. leaf, plus. minus, times. and divide. Each of these may appear as a
node in the trees. Of the nodes. only trees and leafs have attributes., and the
names and types of these attributes are given. An implementation-defined
private type. Source_Position, (s defined: both trees and leafs have attributes of
this type. Finaily, the fact that the root of the tree must be an EXP. that is,
either a tree or a leaf node. Is specified. Figure 1-3 on page 27 lllustrates

e

‘ several trees that are defined members of ExpressionTree: for expository reasons
the names of the attributes and the source position attribute have been deieted
§ o from these pictures. Similar conventions are used in the figures in Chapter 3.

; ' 1.4.2. Specification of Representations

IDL can be used 1o define a refinement of a structure as well as an abstract

; data structure. A refinement is treated the same as any other absiract structure
specified in DL, A refinement of a structure is used to provide more detail

about the abstract structure. In this document we define a refinement of DiANA

Fs - —

L A
P AT L% 1 AT N
e] —_ o

e e o

TP

Page 26 / Section 1.4.2 Dna Reference Manual

Structure ExpressionTree Root EXP Is
— Pirst we define a private type.

Typs Source_Position;

— Next we define the notion of an expression, EXP.

EXP ::= Jleaf | tree ;

— Next we define the nodes and their attributes.

tree => Op: OPERATOR, left: EXP, right: EXP ;
tree =» src: Source_Position ;

leaf => name: String ;

lesaf => 3rc: Source_Position ;

— Pinally we define the notion of an OPERATOR as the

— union of a collection of nodes; the null s> productions
— are needed to define the node types since

— node type names are never implicitly defined,

OPERATOR ::= plus | minus | times | divide ;
plus => ; mninus => ; times => ; divide = ;

Figure 1-2: Exampie of IDL Notation

that provides representation information for the private types defined in DiaNa,

IDL can be used to define the package that contains the internal represen-
tation of a private type. and can specify the externai representation of a private
type. We add this Information to the OIANA abstract type In the structure
Diana_Concrete in Chapter 2 on page 77.

The internal representation ot a private type Is described by a definition of
the form
For MyTYpe Use MyPackage)

BTy

s

- T et el —— ~— o e

Yeaf
"xyz*®

tree

' /1IN

leaf plus leaf
"abc" “def"

a tree
leaf times tree

- VRN

F tree plus leaf

N SN

leaf minus leaf
b & ngw

]
1

: Figure 1-3: Some Trees in ExpressionTree

e ———

-

!
]
i
o

S

Page 28 / Section 1.4.2 DNa Reference Manual
This detinition intraduces the name of the package (' MyPackage’ in this case)
where the definition of a private type (" MyType’ in this case) is found.

The way a private type is to be represented externally can be described in a
definition ot the form
Poxr MyType Use External ExternType;
This definition asserts that the private type MyType Is represented by the type
‘ExternType’ externailly. The external type may be one of the basic IDL types or
a node type.

The refinement of a structure is specified with the following syntax

Structure AnotherTree Refines ExpressionTree Is
-— Additional IDL statements to further define the
-~ structure ExpressionTree, such as a specification of the
—— intermal and extermal representations for private
— types in the abstract structure ExpressionTree.
— New nodes may be defined.

End

1.4.3. Example of a Structure Refinement

The following example illustiretes the use of the structure refinement notation.
To continue with our example. suppose we wished to refine the abstract type
ExpressionTree by adding an internal and externai representation to be used for
the private type Source_Position. We might refine the structure:

Structure AnotherTree Renames ExpressionTree Is
- first the internal representation of Souxce_Position
For Source_Position Use Source_Package;

— next the external representation of Source_Position
-— is given by a new node type, source_external rep

PFor Source_Position Use External source_external _rep;
- finally, we define the node type source_external_rep

source_external_xep => flle t+ String,
line : Integer,
char : Integer;

R

ot .‘ i
R S LAt Vo T S

e ¥ o

introduction Section 1.4.3 / Page 29
This example completes the discussion of IDL. Notice that in the second
H’ exampile the internal representation and the external representation for the private

type are both given. The internal representation is described in a separate

package calied Source_Package. The external representation Is defined as a
! node. source_external_rep. that has three attributes, a file name. represented

externally as a string. and a line number and character position. both of which
, are represented externally by the basic type ‘“Integer’. At the end of Chapter
2 we present a refinement Diana_Concrete of DIANA. In Chapter 5 we define the
canonical external representation of DWNA.

i 1.4.4. DIANA Notational Conventions

The definition of DIANA given in the next chapter observes some notational
conventions that are intended to improve the readability of the presentation.
These inciude:

s Wherever reasonable. both nodes and classes are named as in the
AFD.

« Typographic conventions are adhered to for class names. node

. names. and attributes to assist the reader. These conventions,

which are are listed In Figure 1-1 on page 21, are that class names

{ appear in all upper-case leiters. nodes names in all lower case, and
attribute names italicized.

’ e A class name or node name ending in '_S' or ‘_s’' respectively is
always a sequence of what comes before the "_'. Thus the reader
can be sure on seeing a class name such as FOO_S that the
definitions

OO _S =) foo s ;
foo_s => as_list: Seq of PFOO ;

appear somewhere.

e A class name ending in '_VOID' always has a defini-
tion such as

POO_VOID => FOO | woid ;

wvoid -y 3
The node void has no attributes.
] o There are four kinds of atiributes defined in DIANA: structural,

lexical, semantic., and code. The names of these attributes are
lexically distinguished in the definition as follows:

as__ structural attribute. The structural attributes define the
abstract syntax tree of an ADA program. Their names are

N
o ALER AT

. e e e

e e o &

Page 30 / Section 1.4. 4 DiANA Reference Manual

those used in the AFD. prefixed with ‘as_’.

Ix_ lexical attributes. These provide Iinformation about the
source form of the program. such as the spelling of
identifiers or position in the source file.

3 am_ semantic attributes. These encode the results of semantic
analysis—type and overioad resolution. for example.

cd_ code attributes—there is only one. This provides infor-
mation from representation specifications that must be ob-
served by the Back End.

e Although 0L is insensitive to the order of attribute definitions
with "= rules. we have preserved the order used in the AFD.
Additionally. for emphasis we have grouped structural, lexical.
semantic. and code attributes. always in that order,

e The DIANA definition is organized In the same manner as the
ApA LRM. To establish the correspondence. each set of DIANA rules
begins with a comment that gives the corresponding section number
of the ADA LRM and the concrete syntax defined there.

R e e L i

Lo dihaasit)

-

-

p—

Definition of the Diana Domain Page 31

CHAPTER 2
DEFINITION OF THE DIANA DOMAIN

This chapter is devoted to the definition of the domain of the DIANA abstract
type -- that is., to the definition of the set of attributed trees that model the
values of the DIANA type. The definition is given in the notation discussed in
section 1. 4.

A simple refinement of the DIANA abstract structure folfows the definition of the
DIANA domain. This refinement defines the external representation of the private
types used.

Before beginning the definition. which constitutes the bulk of this chapter, we
make two observations about things that are not defined here.

e First, there are six private types used in the definition. Each of
thase corresponds to one of the kinds of information which may be
installation or target machine specitic. They include types for the
source position of a node. the representation of identifiers. the
representation ot varlous values on the 1target system, and the
representation of comments from the source program. The DIANA
user must supply an impiementation for each of these types.

e Second., as is explained in the ADA reference manual. a program s
assumed to be compiled in a ‘standard environment’. An ADA
program may explicitly or Implicitly reference entities defined in this
environment, and the DIANA representation of the program must reflect
this. The entities that may be referenced include the predefined
attributes and types. The DIANA definition of these entities is not
given here but is assumed to be available. See Appendix | for more
details.

With these exceptions. the foilowing compietely defines the OIANA domain.

Page 32 / Section 2 DIANA Reference Manual

Structure Diana
Root COMPILATION (s

Diana Reference Manual

Vaersion of 17 Pebruary 1983

SRR ERE

Type source_position;

— detines source position in originaf

—~ 30Urce program; used for efror messages.
Typs commaents;

— representation of comments; used tor

— source reconstruction.
Type symbol_rep;

— representation of identitiers,

- strings, and characters

Type value;

— implementation detined

— gives value of a static expression;

- can ndicate that no value is computed.
Type operator;

— enumerstion type for all operators
— used in implementation

Type number_rep;
— representation of numeric literais

h ’ — 2. lexical EZlements
[] .

Symtax 2.0
has no equivalent in concrete syntax

b

voild => H — has no attributes
— 2.3 ldentifiers, 2.4 Mummric Literals, 2.6 String Literals

-~ Syntax 2.3
- not of intersst for Diana

10 ::2 OEF_ID | USED_(0;
- OoP ::3 DEF_OP | USED_OP;
DESIGNATOR ::= 01 OF;
“) OEF_OCCURRENCE ::= DEF_ID | DEF_OP | DEF_CHAR;

| — 200 4.4 tor numaeric_literal

Definition of the Diana Domain Section 2 / Page 33

2.8 Pragmas
These productions do not correspond to preductions in the
concrete syntax.

Syntax 2.8.A
pragma ::=
pragma identitier [(argument_association {, argument_association})};

PRAGMA :.:= pragma;

pragma => as_id : 1D, — a ‘'used_name_id’
as_param_assoc_s PARAM _ASSOC_S;

pragma => Ix_srcpos : source __poottbon.
Ix_comments : comments;

PARAM_ASSOC_S ::= param_assoc_s;

param_assoc_s => as_list : Seq Of PARAM_ASSOC;

param_assoc_s > ix__srcpos : source_position,
Ix_comments ;. comments;

Syntax 2.8.8

argument_association ::=
[argument_identitier =>] name
| [argument_identitier =>] expression

b

— see 6.4 for associations

3. Declarations and Types
3.1 Declarations '

Syntax 3.1
deciaration ::=
object_declaration
| type_declaration
| subprogram_declaration

number_deciaration

gmﬂc —instantiation

%.
:
;

| renaming_declaration deferred__constant_deciaration

DECL ::= constant | var — object_declaration (3.2.A)
| number — number_declaration (3.2.8)
| type — type_deciaration (3.3.1)
| subtype -— subtype_declaration (3.3.2)
| subprogram_decl — subprogram_deciaration (6.1)
| packege_deci — package_declaration (7.1)
| task_deci — task_deciaration (9.1)

b | generic - _deciaration (12.1)

i — ion_declaration (11.1)
— See 12.3 for generic_instantiation,
— See 8.5 for renaming_daciaration,
| deferred_constamt; - dmrm_mmm_mmon (7.4)

DECL ::= pragma; — pragma allowed as declaration

ADA Section 2.3

e

page 34 / Section 2

|

Syntax 3.2.A
object_declration ::=

P il

3.2 mjmanﬂmdm

identitier_list - (constant] subtype_indication [:= expression];

| identitier_list : (constant] constrained_srray_definition {:= expression};

DIANA Reference Manual

OBJECT_DEF ::= EXP_VOID;
ExpP_VOI0 ::3 eXP | void;
TYPE_SPEC ::= CONSTRAINED;
constant => as_jd_s . 10_S, -— sequence of ‘const_id’
as_type_spec . TYPE_SPEC,
aa_object_det . OBJECT_DEF:
constant => Ix_arcpos : source_ position, .
Ix_comments 1 comments; j
var 3> as_jd_3 . 1D_S, -~ A sequence of ‘var_id’
as_lype_3spec 1 TYPE_SPEC,
as_object_def : OBJECT_DEF;
var => Ix_3rcpos : source_position,
Ix_comments : comments;
DEF_I0 ::= var_id;
var_id => ix_srcpos . source_ position,
ix_comments . comments,
Ix_symrep ; symbol_rep;
vear_id => sm_obj_type . TYPE_SPEC,
sm_address . EXP_VOID,
sm_obj_det : OBJECT_DEF;
OEF_1D ::= const _id:
— see rationsle Saction 3.5.2 %, . discussion of deterred constants
const_id => Ix_srcpos : source_position,
Ix_comments . comments,
ix_symrep . symbol_rep;
const_id => sm_address : EXP_VOID,
am_obij_type . TYPE_SPEC,
sm_obj_det . OBJECT_DEF,
sm_tfirst . DEF_OGCCURRENCE; — ysed tor deferred

ADA Section 3.1

Definition of the Diana Domain

Syntax 3.2.8
number_declaration ::=

number => as_jd_s
as_exp
number => ix__srcpos
Ix_comments
OEF_ID ::= aumber_id;
number_id => ix_srcpos
In_comments
ix_symvrep
number_id => am_obj_type
sm_jnit_exp
Syntax 3.2.C

b
5
3
i
g

112 identifier {, identitier})

0_S ::= id_s;
id_s => as_Jist
id_s => Ix_srcpos

Ix_comments

A
|

Syntax 3.3.1.A
type_deciaration :

:= tli_type_declaration

full_type_declaration ::=

Section 2 / Page 35

identitier_list : cometant := universal_static_expression;

: g?s. —- always a sequence of ‘number_id"

mr'eo_po.mon.
: comments;

: source__position,

. commaents,

: symbol_rep;

: EXPTYPG_Q‘EC. — always refers to a universal type

: Seq Of 1D;
: source_position,
: comments;

| incompiete_type_declaration | private_type_declaration

type identifier [discriminant_part] is type_definition;

- see 7.4 for private_type_deciaration
~— see 3.8.1 for incomplete_type_deciaration
type => as_jid 10, — a type_id",
— 9_private_type_id* or
— e_type_id'
as_dscrmt_ver_s DSCRMT_VAR_S, — discriminant list, see 3.7.1
as_type_spec TYPE_SPEC;
type => Ix_srcpos source_position,
Ix_comments comments;
' OEF_ID ::= type_id;
, type_id => Ix_srcpos 1 source_position,
Ix_comments 1 comments,
' Ix_symrep : symbols_PEng;
type_id => am_type_s, : ’
sm_tirst pec : %an; — used for muitipie def
ADA Section 3.2. A
e B .] Ceoepaet T '..’ _ o

‘7

Page 38 / Section 2

- enumeration_type_definition | integer_type

— | real_type_definition

— | record_type_definition

— | derived_typa_detinition

TYPE_SPEC ::= onum_literal_s

| integer
{ fixed | Hoat
| array
{ record
| access
| derived;

— 3.3.2 Subtype Declaratiomns

— Symtax 3.3.2.A
- sublype_declaration :

subtype => as_jd
as_conasirained
subtype => Ix_srcpos
Ix_comments
OEF_ID ::= subtype_id;
sybtype_id => Ix_srcpos
ix_comments
ix_symrep
subtype_id => sm_type_spec
- Syntax 3.3.2.6
— subtype_indication ::= type_mark [constraint)
-— typs_mark ::= type_name | sublype_name

CONSTRAINED ::= constrained;
CONSTRAINT ::= void;
constrained => as_name
as_constraint
constrained => ix_srcpos
Ix_comments
constrained => sm_type_struct
sm_baese_type
sm_conestraint
constrained => cd_impl_size

ADA Section 3.3.1.A

DIANA Reference Manual

type__definition

| array_{type_definition
| access_type_definition

enumaeration_type_definition (3.5.1)
integer_type_ definition (3.5.4)
real_type_definition (3.5.6)
array_type_detinition (3.6)

roeord _type__definition (3 7)

ss_type_ detinition ' (3.8)

domod _type_detinition’ (3.4)

= subtype identifier is subtype_indication;

: 1D,

: CONSTRAINED;
: source_position,
: comments;

1 source_ position,
: comments,

: symbol_rep;

: CONSTRAINED;

Definition of the Diana

Symtax 3.3.2.C

congtraint ::=
| index_constraint

CONSTRAINT ::=

— Symax 3.4

derived_type_definition ::

Domain

range_constraint | Hoating_point_constraint

3.4 Derived Type Definitions

derived => as_constrained
derived => Ix_srcpos
Ix_comments
derived => am_size
sm_aclusl_deNa
. sm_packing
sm_controlied
sm_gstorage_»size
derived => cd_impl_size
" -~ 3.5 Scalar Types
-— Syntax 3.5
- range_constraint ::= range range
-— nngo 1= range_attribute

- dmph __eXpression

RANGE ::=
range 3>
range z>
range =>

.. simple_expression

Section 2 / Page 37

| tined_point_constraint

| discriminant_constraint
RANGE - m\go constraint (3.5)
| Hoat - _congtraint (3.5.7)
| fined — tined _point constraint (3.5.9)
| decrt_range_s - index_constraint (3.6.C)
| descrmt_aggregate; — discriminant_constraint (3.7.2)

new subtype_indication

: CONSTRAINED;

: |ntogor

range | attribute] attribute_call;

as_exp1
as_exp2
Ix_srcpos
Ix_comments
sm_base_type

| - 3.5.1 Emmeration Types

Syntax 3.5.1.A

enumeration_type_definition :
{enumeration_literal spocmation {, enumeration_literal_specitication})

enum_literal_s => as_Jist : Seq Of ENUM_LITERAL;
enum_iteral_s => Ix_srcpos : source_position,
Ix_comments : comments;
onum_Kteral_s 3> sm_size : EXP_VOID;
enum_literal_s 2> cod_impl_size : Integer;
t ADA Section 3.3.2.8B
. L R

Page 38 / Section 2

— 3.5.6 Real Types

- tax 3.5.6
) - s!onll_typo_doﬂnmon 1=
1 —

— 200 3.5.7, 3.5.9

PPy

E ADA Section 3.5.1.A

Hoating_point_constraint | tixed_point_constraint

DIANA Reference Manual

— _Iiteral_specification ::= enumeration_literal
— enumeration_literal ::= identifier | character_literal
‘ ENUM_UITERAL ::= enum_id | del_char;
DEF_D ::= enum_id;
DEF_CHAR ::= def_char;
: enum_id => Ix_arcpos : source__position,
! Ix_comments : comments,
ix_symrep : symbol_rep;
enum_id => sm_obj_type : TYPE_SPEC, — refers to the 'enum_literal_s’
sm_pos H lnlogor - consecutive poomon (bese 0)
sm_reop : Integer; — yser supplied representation value
def_char => Ix_srcpos : source_position,
Ix_comments : commaents,
Ix_symrep 1 symbol_rep;
def_char => am_obj_type : TYPE_SPEC, — refars to the ‘enum_literal_s'
sm_pos : Int.gor. ~-- congecutive position " (base 0)
sm_rep : integer; -— yser sypplied representation veive
— 3.5.4 Integer Types
~— Symtax 3.5.4
— integer_type_detinition ::= range_constraint
- integer => as_range : RANGE;
integer => Ix_.srcpos 1 source_position,
, Ix_comments : comments;
t integer => am_size : EXP_VO'D.
am_type_struct : TYPE_SPEC,
am_base_type : TYPE_SPEC; — ‘derived’
3 integer => cd_jmpi_size . integer;

. M

Definition of the Diana Domain Section 2 / Page 39

floating__point_constraint
floating_aocuracy_ doﬂnnton [range__constraint)

floating_accuracy_definition ::= digits static_simple_expression

RANGE_VOID ::= RANGE | void;

fioat => as_exp
as_range_void : RANGE_VOID;

fioat => In_srcpos 1 source_position,
Ix_comments : comments;

float => am_gsize : EXP_VOID,
am_lype_struct TYPE_SPEC,
sm_base_type : TYPE_SPEC; — “

float => cd_impl_size . Integer;

— 3.5.9 Pixsd Point Types

Syntax 3.5.9
fixed_point_constraint ::=
tixed_accuracy_definition [range_constraint]

fixed_accuracy_detinition ::= deita static_simple_expression

fixed 2> as_exp . EXP,
as_range_void : RANGE_VOID;
tixed => Ix_srcpos . source_position,
Ix_comments : comments;
tixed => am_gsize : EXP_VOID,
am_ ac!ud delta : Rational,
sm_bis : integer,
am_base_type : TYPE_SPEC; —— ‘derived’
tixed => cd_impl__size : integer;

ADA Section 3. 5.6

Page 40 / Section 2 DIANA Reference Manuai

mty_ty.po'_doﬂnmon L
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array (index__subtype_definition {, index_subtype_definition}) of
component_subtype__indication

constrained__array_definition ::=
arvey index_constraint of component_subtype_indication

array => as_dscrt_range_s . DSCRY_RANGE_S, — index subtypes or constraint
as_constrained : CONSTRAINED; - component subtype
arrgy =»> Ix__srcpos 1 soyrce_position,
Ix_comments : comments;
array => am_gsize : EXP_VOID,
am_packing : Boolean;
DSCRT_RANGE_S ::= dscrt_range_s;
dscrt_range_s => as_Jist : Seq Of DSCRT_RANGE;
dscrt_range_s => Ix_srcpos : source_position,
Ix_comments : comments;
— Syntax 3.6.8

— index_subtype_definition ::= type_mark range <>

DSCRT_RANGE ::= index;

index 3> a8_name : NAME;

index 3> Ix_srcpos : source_position,
Ix_comments : comments;

Syntax 3.6.C

index_constraint ::= (discrete_range {, discrete_range)})

b

discrete_range ::= discrefe_subtype_indication | range

DOSCRT_RANGE ::= constrained | RANGE;

ADA Section 3.5.9

- _ _ | |
5 - 1

Definition of the Diana Domain Section 2 / Page 41

!

3.7 Record Types

| — Syntax 3.7.A
‘ -~ record_type_definition ::=
i —_ recard
-— component__list
' —_ ond record
: a
| REP_VOID ::= REP | void; J
‘ \ record => as_list : Seq Of COMP;
' record => Ix_srcpos : source_position, i
ix_comments : comments;
: record => am_size 1 EXP_VOID,
: sm_discriminants : DSCRMY_VAR_S,
am_pecking : Boolean,
sm_record_spec : REP_VOWD;
Syntax 3.7.8
component_list ::=

component_declaration {component_declaration)
: '[z:mpomm_dodumon) variant_part

component_declaration ::=
identifier_list : component_subtype_definition [:= expression];

component_subtype_datinition ::= subtype_indication

COMP ::= var — component_declaration (3.2) where (D is ‘comp_id*
| veriant_part - variant_part (3.7.3.A)
| nuli_comp; ~ null (see below)
1 i COMP ::= pragma; ~— pragmas are aliowed in component declarations
null_comp => Ix_srcpos : source_position,
Ix_comments . comments;
OEF_ID ::= comp_id;
COMP_REP_VOID ::= COMP_REP | void;
comp_id 3> ix_srcpos 1 source_ position,
In_comments 1 comments,
ix_symrep : symbol_rep;
comp_id => am_obj_type 1 TYPE_SPEC,
am_jinid_exp : EXP_VOID,
am_comp_spec : COMP_REP_VOID;

ADA Section 3.8.C

Page 42 / Section 2

— 3.7.1 Discriminants

NENERE

RN

Syntax 3.7.1
discriminant

{discriminant apodﬂemon {; discriminanmt_specitication})

discriminant

meiﬁation
identifier_list : type_ mm [:= expression]

DSCRMT_VAR_S ::

dscrmt_var_s =>
decrmt_var_s =>

OSCRMT_VAR ;:=

dascrmt_var =>

dscrmt_var 3>

DEF_ID ::=
dscrmt_id =>

dscrme_id =>

3.7.2 Discrixinant Constraints

Syntax 3.7.2

discriminant_constraint ::

dscrmt_var_s;

as_Jist
Ix_srcpos
Ix_comments

dscrmt_var;

as_id__3
as_name
as_object_def
Ix_srcpos
Ix_comments

dscrmt_id;

Ix_gsrcpos
Ix_comments
ix_symrep
am_obj_type
sm_jnit _exp
sm_lirst
3m_comp_3spec

.
.
.
.
.

~ where "D’ is always a ‘dscrmt_id'

: Seq Of DSCAMT_VAR;

source_position,
comments;

ID_S, — a sequence of ‘var_id'
AME

NAME,
OBJECT_DEF;
source_position,
comments;

source__position,

1 comments,
1 symbol_rep;

TYPE_SPEC,
XP_VoI0,

DEF_ OCCURRENCE,

COMP_REP_VOID;

(discriminant_association {, discriminant_association})

discriminant_association ::
{ discriminant_simple_name (| discriminant_simple_name} =>] expression

dscrmt_aggregate
dscrmt_aggregate

dscrmt_aggregate
— gsoe 4.3.8 for discriminant association

=
>

ADA Section 3.7.8

>

as_Jist : Seq Of COMP_ASSOC;
Ix_srcpos . source_position,
Ix_comments : comments;
am_normalized_comp_.s : EXP_S;

DIANA Reference Manual

t
§
;
%
|
?

Definition of the Diana Domain

— 3.7.3 vVariant Parts

— Syntax 3.7.3.A
— variant_pert ::=
_ case discriminant__simple_name is
-— variant
-— {variant}
bt ond case;
-— varant ::=
- when choice {1 choice} =>
- component_list
variant_pert => as_neme 1 NAME,
as_veriant_8 : VARIANT_S;
variant_pant => ix__srcpos 1 source_position,
Ix_comments : comments;
VARIANT_S ::= variant_8$;
variant_s => oy_Jist : Seq Of VARIANT;
variant_s => ix_srcpos : source_position,
. ix_comments : comments;
)
VARIANT ::= variant;
CHOICE_S ::= choice_S,;
INNER_RECORD ::2 inner_record;
choice_s 3> as_lJist : Seq Ot CHOICE;
choice_3 => ix_srcpos . source_position,
ix_comments : comments;
variant 2> as_choice_3 : CHOICE_S,
as_record ; INNER_RECORD;
variant 3> Ix_srcpos : soyrce_position,
ix_comments : comments;
inner_record => as_fist : Seq Of COMP;
inner_record => ix_3rcpos : soyrce_position,
1x_comments : comments;
-~ Syntax 3.7.3.8
— choice ::= simple_expression
- | discrate_range | others | component_simple_name

CHOICE ::= EXP | DSCRT_RANGE [others;

others => fx_grcpos : source_position,
ix_comments : comments;

Section 2 / Page 43

ADA Section 3.7.2

e e

Page 44 / Section 2 DInNA Reference Manual

- .8
| - access_type_definition ::= acosss subtype_indication

! ; access => aa_constrained : CONSTRAINED;
, access <> Ix_srcpos : source_position,
| ix_comments ;. comments;

(1 access > m_gsize : EXP_VOID,
am__storage_size ¢ EXP_VOID,
am_controlied : Boolean;

~— See 4.4.C for null acceas vaive

— 3.8.1 Incomplete Type Declarations

Syntax 3.8.1
incomplete_type_declaration ::= type identitier (discriminant_part];

TYPE_SPEC ::= void;
— incomplete types are described in the rationale Section 3.5.1.1

“ 3.9 Declarative Parts

!

Syntax 3.9.A
declarative_part ::=
{basic__declarative_item) (later_declarative_item}

basic_declarative_item ::= basic_declaration
| representation_clause | use_clause

e

NERERN

‘ DECL ::= REP | vuse; —~representation is declarstive item

Symtax 3.9.8

later_declarative_item ::= body
| subprogram_deciaration | package_deciaration
{ task_deciaration | generic_deciaration
| vse_clause | generic_instantiation

body ::= proper_body | stub
proper_body ::= subprogram_body | package_body | task_body

bbb

ITEM_S ::= tem_s;
ITEM ::= DECL | subprogram_body | package_body | task_body;
- -— 300 3.1, 6.1, 7.1, 9.1, 10.2 (studb included in _body definitions)
item_s => as_Jist : Seq Ot ITEM;
item_s => Ix_srcpos : soyrce_position,
Inx_comments : comments;

ADA Section 3.7.3.8

S ———
S ST TSI RN :
- B -
v ——— e w w—— -~ - e ————— . | T e | AA———— R = = - -
P . i
Besehdibbatie, . — et S300 s i 0 PSR T N .

Definition of the Diana Domain Section 2 / Page 45

— 4.1 Names
Syntax 4.1.A
name ::: sim| name
| character_literal | operator_symbol
: indexed_component | slice

selected_component | attribute

simple_name ::= identitier

NAME ::= DESIGNATOR — identitier and operator (2.3)
| vsed_char — character_literal (see below)
} indexed - indexed_component (4.1.1)
| slice - slice (4.1.2)
| selected | al -- selected_component (4.1.3)
| attribute | attribute_call; — attribute (4.1.4)
USED_ID ::= used_object_id | used_name_id | used_bitn_id;
used_object_id => Ix_srcpos ! source_position,
Ix_comments : comments,
ix_symrep 1 symbol_rep;
used_object_id => sm_exp_type TYPE_SPEC,
sm_detn : DEF_OCCURRENCE,
am_valve : valve;
used_name_id => Ix_srcpos i source_ position,
Ix_comments : comments,
Ix_symrep 1 symbol_rep;
used_name_id => sm_detn : DEF_OCCURRENCE;
used_bitn_id => Ix_srcpos : source_position,
Ix_comments 1 comments,
Ix__symrep 1 symbol_rep;
used_bitn_id => am_operator : operator;

— 300 3.8.5 of rationaie for & discussion ot built-in subprograms

USED_OP ::= vsed_op | used_bitn_op;
vsed_op => Ix_srcpos : source__position,
ix_comments : comments,
Ix_symrep . symbol_rep;
used_op => am_deln : DEF_OCCURRENCE;
used_bitn_op =» ix_srcpos : source_position,
Ix_comments 1 comments,
ix_symrep ¢ symbol_rep;
vsed_Dbitn_op => am_operator 1 operator;
veed_char => Ix_srcpos 1 soyrce_position,
Ix_comments ! commants,
ix_symrep 1 symbol_rep;
used_char => am_deln : DEF_OCCURRENCE,
sm_exp_type : TYPE_SPEC,
sm_vealue ! value;
-— Syntax 4.1.8
— pretix ::= name | function_call
NAME ::= function_call; - %00 6.4
ADA Section 3.9.B
— S A N '__ o
o Mttt DO il it e o S o _Lm‘_i—‘ e

Page 46 / Section 2 DiANA Reference Manual

— 4.1.1 Indexed Components

Syntax 4.1.1
indexed_component ::= prefix(expression {, expression})

ihi

EXP_S ::= °>p_s;

oxp_s => as_list : Seq Of ExP;

o°p_s 3> Ix__srcpos . source_position,
ix_comments : comments;

indexed => as_name . NAME,
as_exp_3 : EXP_S;

indexed => Ix_srcpos 1 source__position,
Ix_comments : comments;

indexed => sm_eoxp_lype : TYPE_SPEC;

— 4.1.2 Slices

— Syntax 4.1.2
-~ slice ::= prefix(discrete_range)
slice => as_name : NAME,
as_dascri_range : DSCRT_RANGE;
slice => Ix_srcpos : source_position,
Ix_comments : comments;
slice => sm_eoxp_type : TYPE_SPEC,
sm_constraint : CONSTRAINT;

; 4.1.3 Selected Components

Syntax 4.1.3
selected_component ::= praefix. selector

selector ::= simple_name
| character_litera)) operator_symbol | al

NN

DESIGNATOR_CHAR::= DESIGNATOR | used_char; — character literals aliowed as selector
selected => as_name 1 NAME,
as_designator_char : DESIGNATOR_CHAR;
selected => Ix_srcpos 1 source_position,
Ix_comments : comments;
selected => sm_exp_type . TYPE_SPEC;
all => as_name : NAME; — used for name.all
al => In_srcpos 1 source_position,
Ix_comments ;. commens;
- ail => sm_exp_type . TYPE_SPEC;

ADA Section 4.1.8B

<~ B el R T v g

] R sy 0 : . insa e - e

Detinition of the Diana Domain Section 2 / Page 47

— 4.1.4 Attributes

Syntax 4.1.4
attribute ::= prefix'attribyute_designator

Py

attribute_designator ::= simple_name [(universal_static_expression)]

attribute => as_name 1 NAME,
as_id H 1 H — always a ‘used_name_id’,
- whose attributes point to
= a predefined ‘attr_id’
attribute => Ix__srcpos 1 soyrce_pasition,
Ix_comments 1 comments;
attribute => am_exp_type : TYPE_SPEC,
s sm_value : valye;
attribute_call => as_name : NAME, — used for attributes
- with arguments
== NAME can only be attribute
as_exp : EXP;
attribute_cait => Ix_srcpos 1 source__position,
ix_comments : comments;
attribute_call => am_exp_type : TYPE_SPEC,
sm_value : valve;

— 4.2 Literals

-- Refer to 4.4.C for numeric_literal, string_literaf,
- and aull_access.
-~ Refer to 4.1 for character_literai

— The enumeration_literal is represented as a ‘used_object_id’ or a
, — 'used_char' whose attributes point to an 'enum_id" or a ‘def_char'.
' \ -— See¢ 3.5.1.8

4.3 Aggregates

!

~— Syntax 4.3.A
— aggregate ::=
- (component_association {, component_association})
EXP ::= aggregate; ﬁ
aggregate => as_list : Seq Ot COMP_ASSOC;
aggregate => Ix_srcpos 1 source_position,
Ix_comments : commaents;
aggregate => sm_exp_type : TYPE_SPEC,
sm_constraint : CONSTRAINT,
sm_normalized_comp_. . EXP_S;
- Syntax 4.3.8

component _association ::=
{choice (| choice} =>] expression

bt

COMP_ASSOC ::= named | EXP;

named => a8_choice_g : CHOICE__S,
as_oxp : EXP;

named => Ix_srcpos 1 source_position,
Ix_comments . comments;

ADA Section 4.1.3

- v v = e o

Page 48 / Section 2 DIANA Reference Manuat

4.4 Expressions

Syntax 4.4.A
expression ::
relation {and relation)

| relation {or relation}

| relation {xor relation}

| relation {and then relation}
| relation {or eise relation}

EEEEN

EXP ::= binary; -— onty for short—circuit
— expressions; see 3.3.4 of rationale
binary => as_exp1 : EXP,
as_binary_op : BINARY_QOP,
as_exp2 : EXP,
binary => Ix_.srcpos : source_ position,
Ix_comments : comments;
binary => sm_exp_type : TYPE_SPEC, — always the TYPE_SPEC
— of a Boolean type
sm_value 1 valve;

BINARY_OP ::=
SHORT_CIRCUIT_OP ::=

SHORT_CIRCUIT_OP;
and_then | or_eise;

and_then => Ix_srcpos : source_position,
Ix_comments 1 comments;
or_else => Ix_srcpos : source_ position,
Ix_comments : comments;
Syntax 4.4.8
H relation ::=

simple_exprassion [relational_operator simple_expression]
{ simple_expression {not] in range
} simple_expression {not] in ‘ype_mark

Frb b

EXP ::=
TYPE_RANGE ::=

membership =>

membership

U}
v

membership

"
v

MEMBERSHIP_OP ::
in_op =

not_in =>

ADA Section 4.3.8

membership;
RANGE | NAME;

as_exp
as_membership_op
as_type_range
Ix_srcpos
Ix_comments
sm_exp_type

sm_value

in_op | not_in;

Ix_srcpos
Ix_comments
Ix_asrcpos
ix_comments

: EXP,

: MEMBERSHIP_OP,

. TYPE_RANGE;

: source_position,

: comments;

: TYPE_SPEC, — always the TYPE_SPEC
— of a Boolean type

: value;

: source_position,
: comments;
: source_position,
: commaents;

Definition of the Diana Domain

Syntax 4.4.C

Frrtietd

simple_expression ::
{unary_operator] term (binary_adding_operator term)

term ::= factor {multiplying_operator factor})

tactor ::= primary [** primary] | abs primary | not primary
Syntax 4.4.0

primary ::=

Section 2 / Page

numeric_literal | nult | aggregate | string_literai | name | allocator

| tunction_call | type_conversion | qualitied_expression | (expression)

EXP ::= NAME — name, function_call (4.1, 6.4)
| numeric_literal — numeric_literal (bslow)
(nuil_access = null (sen Delow)
| aggregate — aggregate (4.3)
| string_literal — string_literal (below)
{ allocator - allocator (4.8)
| conversion - type__conversion (4.6)
| qualitied — qualitied_expression (4.7)
| parenthesized; - (expression) (below)

— This is not a conutruct in the Formai Definition.

— See rationale
. parenthesized => as_exp . EXP;
parenthesized => Ix_srcpos 1 source_position,
. Ix_comments . comments;
! parenthesized => sm_exp_{ype : TYPE_SPEC,
sm_value ¢ valve;
numaeric_literal = Ix_srcpos . source_position,
Ix_comments 1 commaents,
Ix_numrep : number_rep;
numeric_literal = sm_exp_type . TYPE_SPEC,
am_value : value;

49

— it there is implicit conversion sm_exp_type 'reﬂocts conversion;
— otherwise it references a universal type

i, string_ literal => Ix_srcpos : source_position,
{ In_comments : comments,
Ix_symrep : symboi_rep;
string_literal => sm_exp_tlype : TYPE_SPEC,
sm__constraint : CONSTRAINT,
sm_value : valve;
null_access => x_srcpos . source_position,
Ix__comments ;. comments;
null_access => sm_exp_tlype : TYPE_SPEC,
sm_valie ; valve;

ADA Section 4.4.8

T

Page 50 / Section 2 DiaNA Reference Manual

4.5 Operators and Expression Evaluation

Symtax 4.5
logical_operator ::= and | or | mor

rolational_operator ::= = | /= | < | <= | > | »>=
adding_operator ::3 ¢+ | -~ | &

unary_operator ::= ¢ | -

multiplying_operator ::= * | / | mod | rem
highest_precedence_operator ::= ** | abg | not

EEEEEER RN NN

-- operators are incorporated in function calls, see 3.3.4 of rationale
— operators are detined in Diana refinement, Diana_Concrete

4.6 Type Conversions

Syntax 4.6
type_conversion ::= type_mark(expression)

conversion => as_name : NAME,
as_exp . EXP;
conversion => Ix_srcpos 1 source__position,
Ix_comments : comments;
conversion => sm_exp_type : TYPE_SPEC,
‘ sm_value : value;

4.7 Qualified Expressions

Symtax 4.7
qualified_expression ::=
type_mark'(expression) | type_mark‘aggregate

qualified => as_name : wE.
as_exp : "

qualitied => Ix_srcpos : source_position,
Ix_comments ;. comments;

qualitied => sm_exp_type . TYPE_SPEC,
am_value : valve;

4.8 Allocators

Syntax 4.8
allocator ::=
new sybtype_indication | new qualitied_expression

EXP_CONSTRAINED::= EXP [CONSTRAINED;

allocator => as_exp_constrained : EXP_CONSTRAINED;

allocator => Ix_asrcpos : source_position,
Ix_comments : commaents;

aflocator =» sm_exp_tlype : TYPE_SPEC,
sm_value : value;

ADA Section 4.4.D

-

e,

Detinition of the Diana Domain

Statements

- S5.

Section 2 / Page 51

— 5.1 Simple and Compound Statemsnts - Sequences of Statemsnts

Syntax 5.1.A
sequence_of_statements :

STM_S ::= stm_s;
stm_s => as_list
stm_s => In_srcpos
Ix_comments
Syntax 5.1.8
statement ::=

S™ ::= labeled;
labeled => as_jd_s
as_stm
labeled => Ix_srcpos
Ix_comments
DEF_ID ::= fabel_id;
label_id => 1X_srcpos
Ix_comments
ix_symrep
label_id => sm_stm
Syntax 5.1.C
simple_statement ::= nuil_statement
| assignment_statement |

| enit_statement |
| goto_statement |
| delay_statement]
| raise_statement |

NEREREE

ST™ ::

null_stm

assign
procedure_call
oxit

return

goto
entry_call

ST™M ::

3
3
2

:= gtatement (statement)

. Seq Of STM;
: gource_position,
: comments;

{label} simple_statement | (label} compound_statement

: 1D_8,
: STM;
: source_position,
: comments;

~ Seq of "abel_id’

. source_position,

: comments,

: symbol_rep;

: STM; -~ aiways Tabeled’

procedure_call_statement
return_ statement
entry__call_statement
abort_statement
code_statement

~— nuli_statement (5.1.F)
assighment_statement (5.2)
~— procedure_call_statement (6.4)
~— exit_statement (5.7)

~— return_statement (5.8)

~— goto_statement (5.9)
entry_call_statement (9.5.8)
delay_statement (9.6)
abort_statement (9.10)
raise_statment (11.3)
code_statement (13.8)

Pt

pragma allowed where
— statement sliowed

ADA Section 4.8

{ . e —

Page 52 / Section 2 DianA Reference Manual
— Syntax 5.1.D

— compound_statement ::=

- if_statement | case_statement

- | loop_statement | bilock_statement

- | accept_statement | select_statement

case
named_stm | LOOP
block
accept
select

I
H
i
It

. - it
i |
! » =
| accept_statement (9.5.C)
({ cond_entry | timed_entry;
— select_statement (9.7)

~— Syntax 5.1.€
— label ::5 <<labei_simple_name>>

—~—

— 308 5.1.8

— Syntax 5.1.F
— nuli_statement ::= null ;

nyli_stm => In_srcpos : source_position,
Ix_comments : comments;
‘ —~ 5.2 Assigment Statement
— Syntax 5.2

assignment__statement ::=
variable_name := expression;

} assign => ss_name : NAME,

; as_exp : :

i assign => Ix_srcpos 1 source_position,
Ix_comments . comments;

ADA Section 5.1.C

—— e ———— = - - ——— e e DL st g

Definition of the Diana Domain Section 2 / Page 53

— 5.3 If Statemsnts

-— Syntax 5§.3.A
— it_statement ::=
- # condition then
- sequence_of_statements
-— {elelt condition then
- sequence_of_statements}
- [elen
- sequence_of_statements]
- ond it;
it => as_Jist : Seq Of COND_CLAUSE;
if => Ix_srcpos : source_position,
Ix_comments : comments;
COND_CLAUSE ::: cond_clavse;
cond_clause > as_exp_void : EXP_VOID, --void for else
as_stm_g : STM_S;
cond_clause > {x_srcpos : source_position,
Ix_comments : comments;

-~ Syntax 5.3.8
-— condition ::3 boolean_expression

— condition is replaced by EXP

5.4 Case Statements

-— Syntax 5.4
— case_statement ::=
- CRae® expression is
- case_statement_aiternative
- {case_statement_aiternative}
- ond caee;
— case_statement_alternative ::=
- when choice {| choice } =>
— sequence_of _statements)
ALTERNATIVE_S ::= alternative_s;
ALTERNATIVE ::= alternative | pragma; - pragma aliowed where aiternative aliowed
case => as_oxp . EXP,
as_aNernative__s : ALTERNATIVE_S;
case => In_arcpos . source_position, 1
Ix_comments : comments;
alternative_s => as_Jist : Saq Of ALTERNATIVE;
alternative_s => ix_srcpos : source_position,
Ix_comments : commaents;
alternative => as_choice_s : CHOICE_S,
28_m_2 : STM_S; }
eiternative => Ix_srcpos ! source_position,
Ix_comments : comments;

ADA Section 5.2

e m,__-——-—____m—_1

Page 54 / Section 2 DANA Reference Manuai

fott

[Toop_simple_name:]
Titeration_scheme) loop
sequence_of_statements

end loop (/oop_simpie_name];

named_stm => as_jd . 10, — always a ‘named_stm_id"
as_stm : STM; - “loop' or ‘block’
named_stm => Ix_srcpos : source_ position,
Ix__comments : comments;
DEF_ID ::= named_stm_id; i
named_stm_id => Ix__srcpos . source_position, |
Inx_comments : comments, i
Ix_symrep : symbol_rep; |
named_stm_id => sm_stm : STM; — aiways ‘named_stm' !
LOOP ::= loop;
ITERATION ::= void;
loop => as_jteration : ITERATION,
as_sim_»s : STM_S;
loop => Ix_srcpos 1 source_position,
Ix_comments : comments;

ADA Section 5.4

Definition of the Diana Domain

5.5.8
tion_scheme ::= while condition

| tor \oop_parameter_specification

loop_parameter_ specification ::=
identifier in (reverse] discrete _range

ITERATION ::= for | reverse;
for => as_jd
as_dscrt_range
for => Ix_srcpos
ix_comments
reverse => as_jid
as_dscrt_range
reverse => Ix__srcpos
ix_comments
DEF_ID ::= iteration_id;
iteration_.id => ix_srcpos
Ix_comments
ix_symrep
iteration_id => sm_obj_type
ITERATION ::= while;
while => as_exp
while => Ix_srcpos
Ix_comments

5.6 Block Statements

Syntex 3.6
block_statement ::=
[block_simple_name:]
declare
declarative_part)

T,

sequence_otl_statements
[exception
n_handier

exception_|
{exception_handler}]
end ([block_simple_name];

— 300 $.5.A for named biock

block => as_iem_gs
as_ostm_s
as_aNernative_s

block => Ix_arcpos
ix_comments

: source_position,
: comments,

: symboi_rep;

: TYPE_SPEC;

1 EXP;
. source_position,
: comments;

: {TEM_S,

: ALTERNATIVE_S;
: source_position,

Section 2 / Page 55

: 10, — always an ‘iteration_id*
: DSCRT_RANGE;
1 soyrce_position,
: comments;

ADA Section 5.5.A

Page 56 / Section 2 DIANA Reference Manual

— $.7 Exit Statements
Syntax 5.7
oxit_statement ::=
exit (/oop_neme] [when condition);

b

NAME_VOID ::= NAME | void;
; exit => as_name_void : NAME_VOID,
! as_exp_void 1 EXP_VOID;
: oxit => Ix_srcpos : source_position,
1x_comments : comments;
oxit => sm_stm : LOOP; -- Computed even when there

— is no name given
-~ in the source program.

-~ 5.8 Return Statssents

~ Symtax 5.8
~ return_statement ::= return [expression];

return => as_exp_void : _VOID;
return => Ix_srcpos : source_position,
ix__comments : comments;

-— 5.9 Goto Statemsnts

~ — Symax 5.9
h - goto_statement ::= goto /abe/_name;
{
goto => as_name 1 NAME;
goto => In_srcpos . source_position,
Ix_comments : comments;

1 ADA Section 5.6

Definition of the Diana Domain Section 2 / Page 57

— 6. Subprograms

— 6.1 Subprogram Declarations

— Syntax 6.1.A

— subprogram_declaration ::= subprogram_specification;

—

‘ SUBPROGRAM_DEF ::= wvoid;

— tor procedure and function subprogram designator is one of ‘proc_id",
' — “function_id*, or ‘def_op’
\ : — for entry subprogram designator is ‘entry_id'
! : — for renaming can be any of above or ‘snum_id* see 3.7 in rationale

subprogram_dec! => as_designator : DESIGNATOR,
ss_header : HEADER,
as_subprogram_def : SUBPROGRAM_DEF;
subprogram_deci => Ix_srcpos : source_position,
Ix_comments : comments;
DEF_ID ::= proc_id;
proc_id => Ix_srcpos : source_position,
Ix_comments : comments,
Ix_symrep : symbol_rep;
proc_id => sm_spec : HEADER,
sm_body : SUBP_BODY_DESC,
sm_Jocation : LOCATION,
. ! sm_astud : DEF_OCCURRENCE,
N am_tirst : DEF__OCCURRENCE;
* DEF_ID ::= tunction_id;
function_id => ix_srcpos . source_position,
Ix_comments ;. comments,
Ix_symrep : symbol_rep;
H tunction_id => sm_spec : HEADER,
sm : SUBP_BODY_OESC,
sm_Jocation : LOCATION,
sm_stud : DEF_OCCURRENCE,
sm_tirst : DEF_OCCURRENCE; i
DEF_OP ::= def_op;
def_op => ix_srcpos . source_position,
Ix_comments : comments,
Ix_symrep : symbol_rep;
def_op => sm_spec : HEADER,
sm_body : SUBP_BODY_DESC,
sm_jocation : LOCATION,
sm_stubd : DEF_OCCURRENCE,
am_first : OEF_OCCURRENCE;
LANGUAGE ::= argument_id;
LOCATION ::= EXP_VOID | pragma_dd;
SUBP_BODY_DESC ::= block | studb | instantiation |

FORMAL_SUBPROG_DEF | rename | LANGUAGE | void;
— ‘pragma_id" and ‘srgument_id* only occur in the predefined environment

ADA Section 5.9

Page 58 / Section 2 Diana Reference Manual

Syntax 6.1.8
subprogram__specitication ::=
identifier [formal_part]
| function dasignator (formal_part] return type_mark

designator ::= identiftier | operator_symbol
operator_symbol ::= string_literal

Prirber i

HEADER ::= procedure;
HEADER ::= function;
procedure => as_param_s : PARAM_S;
procedure 3> Ix__srcpos : source_position,
Ix__comments ;. comments;
function => as_pearam_3 : PARAM_S,
as_name_void : NAME_VOID;
-— void in case of instantiation
function => Ix_srcpos 1 source__position,
Ix_comments : comments;
ADA Section 6. 1. A
L -
- T - "
- ————— e~ e ————— o e Lk s —————— g o = - - -

Definition of the Diana Domain Section 2 / Page 59

(parameter_specification {; parameter_specification})

parameter_ specitication ::=
identifier_list : mode type_mark [:= expression]

mode ::= [in] | inout | out

PARAM_S ::= param_s;

param_s => as_Jist : Seq Of PARAM;

param_g => Ix_srcpos : source_potsition,
Ix__comments : comments;

PARAM ::= in;

in = as_id_s : ID_8, — always a sequence of ‘in_id’
as_name : NAME,
as_exp_void : EXP_VOID;

in s> Ix_srcpos : source_position,
Ix_comments : comments,
Ix_detault : Boolean;

PARAM ::= in_out;

PARAM ::= out;

in_out => as_jd_s : ID_S, — always a sequence of ‘in_out_id’
as_name : NAME,
as_exp_void : EXP_VOID; — always void

. in_out => Ix__srcpos . source_position,
Ix_comments : comments;
! out => as_jd_s : 1D_S, - always a sequence of ‘out_id'

as_name : NAME,
as_exp_void : EXP_VOID; - always void

out => Ix_srcpos 1 source_position,
Ix_comments : comments;

DEF_ID ::= in_id;

in_id = Ix_srcpos 1 source_position,
Ix_comments : comments,
Ix_symrep : symbol_rep;

in_id = am_obj_type ;. TYPE_SPEC,
am_jnit_exp . EXP_VOI0,
sm_first + DEF_OCCURRENCE;

* OEF_ID ::= in_out_id | out_id;

in_out_id => Ix_srcpos : sourca_pogition,
Ix_comments : commaents,
Ix_symrep : symbol_rep;

in_out_id 2> sm_obj_type : TYPE_SPEC,
am_lirst : DEF_OCCURRENCE;

out_id => Ix_srcpos : source_position,
Ix_comments : comments,
Ix_symrep : symbol_rep;

out_id = am_obj_type : TYPE_SPEC,
sm_tirst : DEF_OCCURRENCE;

ADA Section 6.1.8B

B, ey

Page 60 / Section 2

6.3 Subprogram Bodies

Symtax 6.3
subprogram_bady ::=
subprogram_spaecification is
[declarative_part]

sequence_of_statements
exception_handler

{exception_handier}]
end (designator];

BLOCK_STUB ::= block;
subprogram_body => as_designator

DiANA Reference

: DESIGNATOR, — one of ‘proc_id",

— ‘tunction_id* or ‘det_op’

as_header : HEADER,
as_block_stub : BLOCK_STU®B;
sybprogram_body => ix_srcpos : source_position,
Ix_comments ;. comments;
ADA Section 6.1.C
S -) b
. e —e—— - - A ——— S A e | P S~y >~ =" ™ - o -

{

N

it i 0 i

Manuali

" ar

Definition of the Diana Domain Section 2 / Page 61

|
:

Syntax 6.4
procedure__call_statement ::=
procedure_name {actual_parameter_part];

function_call ::=
function_name [actual_parameter_part]

actual_parameter_part ::=
(parameter_association {, parameter_association))

parameter__association ::=
[formai_parameter =>] actual_parameter

formai_parameter : .= parameter_simple_name

AR RN

actual_parameter ::=
expression | variable_name | type_mark(variable_name)
procedure_call => as_name 1 NAME,
as_param_assoc.s : PARAM_ASSOC_S;
procedure_cail => Ix_srcpos : source_position,
Ix__comments 1 comments;
procedure_call => sm_normalized_param_3 EXP_S,; i
function_calil => as_name 1 NAME,
as_param_assoc_s @ PARAM_ASSOC_S;
tunction_call => Ix_srcpos . source__position, ;
Ix_comments 1 comments;)
tunction_cail => sm_exp_iype : TYPE_SPEC,
sm_value : valve,
am__normalized__param__s : EXP_S,
Ix_pretix . Boolean;
PARAM_ASSOC ::= EXP | assoc;
ass0Cc > as_designator . DESIGNATOR,
as_sctual 1 ACTUAL;
ass0C => Ix_srcpos : source__position,
Ix_comments 1 comments;
ACTUAL ::= EXP;

ADA Section 6.3

Page 62 / Section 2 DIANA Reference Manual

— 7. Packages

—

— 7.1 Package Structure

— Syntax 7.1.A

— package_declaration ::= package_specilication;

package_dec! => as_id 1 10, -~ always ‘package_id'
as_package_def : PACKAGE_DEF;

package_dec! => Ix_srcpos : source_position,
Ix_comments : commens;

DEF_ID ::= package_id;

package_id => Ix_3srcpos : source_position,
Ix_comments : comments,
Ix_symrep 1 symboi_rep;

package_id => sm_spec : PACKAGE_SPEC,
sm_body 1 PACK_BODY_DOESC,

1 sm_address : EXP_VOID,

sm_stub : DEF_OCCURRENCE,
sm_tirst : DEF_OCCURRENCE,

PACK_BODY_DESC::= block | stub | rename | instantiation | void;

— Syntax 7.1.8
package_specification ::=
package identifier is
{basic_declarative_item}
[private)
{basic_declarative_item}]
end [package_simpie_name]

Pt i

PACKAGE_SPEC ::= package_spec;

PACKAGE_DEF ::= package_spec;
package_spec => as_deci_s1 : DECL_S, — vigible deciarations
as_decl_3s2 : DECL_S:; ~— private declarations
package_spec => Ix_3srcpos . source_position,
Ix_comments : commaents;
DECL_S ::= deci_s;
dect_s => as_Jist : Seq Of DECL;
dect_s => Ix_srcpos 1 source_positicn,
Ix_comments : comments;

ADA Section 6.4

|
i
|
i
g
i

Detinition of the Diana Domain Section 2 / Page 63

Syntax 7.1.C
package_body ::=
body package_simpie_name is
[declarative_part]
(bagin
sequence_of_statements
{ exception
exception_handler
{exception | —handier}]]
end [package_simple_name];

Pl bl

package_body => as_jd : -~— always ‘package_id'
as_block_stud : BLOCK STUB;

package_body => ix_srcpos L SOUICe __poution
Ix_comments : comments;

-- 7.4 Private Type and Deferred Constant Declarations

Syntax 7.4 A
private_type_declaration ::=
type identifier [discriminant_part] is [Nmited] privels;

P

TYPE_SPEC ::= private;
TYPE_SPEC ::= I_private;
N private => Ix_srcpos : soyrce_position,
Ix_comments : comments,
. private => sm_.discriminants : DSCRMT_} VAR _S;
’ i_private => Ix_srcpos : source __posltlon.
} Ix_comments : comments;
i_private => sm_discriminants : DSCRMT_VAR_S;
i DEF_ID ::= private_typs_id | |_private_type_id;
private_type_id => Ix_srcpos : source_position,
Ix_comments 1 comments,
Ix_symrep : symbol_rep;
} private_type_id > sm_type_spec : TYPE_SPEC;
. — Reters to the complete
— type specification of the
— private type.
~— See 3.4.2.4 of ratiale.
. I_private_type_id => Ix_srcpos : source_ position,
Ix_comments : commaents,
- Ix_symrep : symbol_| rop.
4 I_private_type_id => sm_type_spec : TYPE_SPEC;
1 : — Refers to the complete
— type specitication of the
- ~— limited private type.
1 — See 3.4.2.4 of rationale.
g — Syntax 7.4.8
% — deferred_constant_deciaration ::=
— ndontbﬂor list : constamt type_mark;
deferred_constant => as_jd_3s : 10_S, = sequence of ‘const_id’
as_name 1 NAME;
] deferred_constant => Ix_srcpos 1 soyrce_position,
i . Ix_comments 1 comments;
1
i ADA Section 7.1.B
+ R
Tw—— = .- ,,-“._,.-_,_“,__‘:_._m———- - - -
Lx‘- il . < . \
T T . s, P

& Page 64 / Section 2 DIANA Reference Manuai

8. Visibility Rules
8.4 Use Clauses

Syntax 8.4
use_clause ::= use package_name (, package_name);

use => as_list : Seq Of NAME;
) use => Ix_srcpos 1 source_position,
) : Ix_comments : commenms;

8.5 Renaming Declarations

Symtax 8.5
renaming_declaration ::=
identitier : type_mark renames object_name;
| identifier : exception renames exception_name;
| package identifier renames package_name;
| subprogram__specification renames subprogram_or_entry_name;

EERERE

—~ See Section 3.7 of rationale for discussion of renaming

OBJECT_DEF ::= rename;
! EXCEPTION_DEF ::= rename;
. PACKAGE_DOEF ::= rename;
F ! SUBPROGRAM_DEF ::= rename;
rename => as_name : NAME;
rename => ix__srcpos : source_position,
i Ix_comments . comments;

ADA Section 7.4.8

Definition of the Diana Domain

Section 2 / Page 65

— 9.1 Task Specifications and Task Bodies

Syntax 9.1.A
task_declaration ::= task_specification;

ask_specification ::=
task (type] identifier [is
{entry_declaration)
{representation_clause)
ond (task_simple_name]]

Frrrilihg

— see 3.3 for task type deciaration

TASK_DEF ::= task_spec;

task_dec! => as_id
as_task_det

task_dect => Ix_srcpos
Ix_comments

TYPE_SPEC ::= task_spec;

task__spec => as_decl_s

task_spec => Ix__srcpos
Ix_comments

task_spec => sm_body
sm_address
m_storage_size

BLOCK_STUB_VOID ::= block | stud | void;

Syntax 9.1.8

task_body ::=

task body fask_simple_name is
{ declarative_part]

sequence_of_statements

exception_handier
(exception_ handier}]
ond [task_simple_name];

BEEERERREERR

task_body => a8_j
task_body =»>

OEF_ID ::=
task_body_id =>

task_body_id *>

: 1D, ~—always a var_id
: TASK_DEF;

: source_position,

: comments;

: DECL_S:

. source_position,

: comments;

¢ BLOCK_STUB_VOID,

-— Void only
— in the presence

- of separate compilation.
— See 3.5.5 of rationale.

: EXP_VOID,
* EXPCVOID;

: 1D, — always ‘task_body_id"
;. BLOCK_STUB;

: source_position,

: commaents;

ADA Section 8.5

4

Page 66 / Section 2 DIANA Reterence Manual

9.5 Entries, Entry Calls and Accept Statemsnts

Syntax 9.5.A
entry_declaration ::=
entry identifier [(discrete_range)] {formal_part);

— entry uses subprogram_dec!, see 6.1

HEADER ::= entry;

OSCRT_RANGE_VOID ::=DSCRT_RANGE | void,;

entry => as_dscrt_range_void : DSCRT_RANGE_VOID,
as_pearam__s 1 PARAM_S;

entry => Ix_srcpos : source__position,
Ix_comments 1 comments;

DEF_ID ::= entry_id;

entry_id => Ix_srcpos . source_ position,
Ix_comments 1 comments,
Ix_symrep . symbol_rep;

entry_id => sm_spec : HEADER,
sm_address 1 EXP_VOID;

— Syntax 9.5.8

— entry_call_statement ::= enfry_name (actuai_parameter _part];

{ entry_call => as_name : NAME, — indexed when entry of family
as_peram_assoc_s . PARAM_ASSOC_S;
entry_call => Ix_srcpos : source._position,
Ix_comments ;. comments;
ontry_call => sm_normalized_param_s :EXP_S;
Syntax 9.5.C

accept_statement ::=
accept entry_simpie_name { (entry_index)] [tormai_part] [do
sequence_ot_ statements
ond (entry_simpie_name]];

entry_index ::= expression

REERERN

accept => as_name : NAME,
as_param_s : PARAM_S,
as_stm_g3 . STM_S;

acoept => In_srcpos : source_position,
Ix_comments ;. comments;

-— 9,6 Delay Statements, Duration and Time

-~ Syntax 9.6
~— delay_statement ::= delay simpie_expression;

delay => as_exp : EXP;
delay => Ix_srcpos : source_position,
Ix__comments 1 comments;

ADA Section 9.1.8

Definition of the Diana Domain Section 2 / Page 67

~— 9.7 Select Statemsnts

~— Syntax 9.7

-~ select_statement ::= selective_wait

-— | conditional_entry_call | timed_entry_call
— see below

! - 9,7.1 Selective Waits

Syntax 9.7.1.A

- selactive_wait ::=
- select
A select_alternative
—— {"
- select_aiternative)
— [olee
- sequence _of__statements]
- select;
select => as_select_clause_s : SELECT_CLAUSE_S,
as_stm__s : STM_S;
select 3> ix_.srcpos ! source_position,
Ix_comments : commaents;
SELECT_CLAUSE_S ::= select_clause_s;
select_clause_s => as_Jist : Seq Of SELECT_CLAUSE;
H select_clause_s => Ix_srcpos : source_position,
! Ix_comments . commants;
’ Syntax 9.7.1.8
selective _aiternative ::=
{whan condition =>]
selective__ wait__aiternative

selective_wait_alternative ::= accept_alternative
| delay_afternative | terminate_aiternative

accept_alternative ::= accept_statement [sequence_of_statements)
delsy_alternative ::= delay_statement [sequence_of _statements]
terminate_alternative : := terminate;

NI I I I A I

-t SELECT_CLAUSE ::= select_clavse;

SELECT_CLAUSE ::= pregma; ~— pragma aliowed where alternative allowed
. select_clause => as_oxp_void : EXP_VOID,
e8_sim_s : STM_S; — ftirst stm is accept or delay
select_clavse => Ix__srcpos . source_position,
Ix_.comments : commaents;
8™ ::= terminate;
torminate => Ix_arcpos . source_position,
Ix_comments ;. comments;

ADa Section 9.6

[—
B ey v s)
— — - - -
(m e e e e et i D ettt mp—— ;
H
ol cind oy Ahbniidaten g . R P e J—— g

Page 88 / Section 2 DIANA Reference Manual

9.7.2 Conditiomal Entry Calls

Syntax 9.7.2
conditional cait ::=

entry_cali_statement
{ sequence_of_statements)

EEEERERN

sequence_of_statements
. ond select;
cond_entry => as_stm_a1 1 STM_S, — Hrst stm is entry_call
as_stm_a2 : STM_S;
cond_entry => ix_srcpos : source_position,
ix_comments : comments;

9.7.3 Timed Entry Calls
Symtax 9.7.3
timed_entry_call ::=

select

entry__call_statement
[sequence_of_statements]

delay_aiternative

EEEREENN

: timed_entry => as_sim_s1 : STM_S, ~— tirst stm is entry_call

' as_stm_s2 : STM_S; — first stm is delay
timed_entry => Ix__srcpos : source_position,

g Ix_comments : comments;

—~ 9.10 Aabort Statements

Syntax 9.10
abort_statement ::= abort task_name {, task_name};

NAME_S ::= name_s; ’
name_s => as_fist : Seq Of NAME;
name_s => Ix_srcpos : source_position,
. Ix_comments : comments;
abort 3> as_name_s : NAME_S;
abort => Ix_srcpos . source_position,
) 1x__comments ! col s

ADA Section 9.7.1.8

Definition of the Diana Domain Section 2 / Page 69

— 10. Program Structure and Compilation Issues
~—~ 10.1 Compilation Units - Library Units

-— Syntax 10.1.A
- compilation ::= {compilation_uait)
COMPIATION ::= compilation;
! compilation => as_list : Seq Of COMP_UNIT;
compilation => Ix_srcpos . source_position,
In_commenis . comments;
Syntax 10.1.8

compilation_unit ::=
context_clause library_unit | context_clause secondary_unit

library_unit ::=
subprogram__declaration | package_deciaration
| generic_declaration | generic_instantiation
| subprogram_body

secondary_unit ::= library_unit_body | subunit

t library_unit_body ::= subprogram_body | package_body
: COMP_UNIT ::= comp_unit;
. UNIT_BODY ::= package_body (| package_dect | subunit | generi
! 1 subprogram_bady | subprogram_dec! | void;
i = UNIT_BODY is void only when comp_unit consists of only pragmas
' ; PRAGMA_S ::= pragma_s;
| pragma_s => as_list . Seq Ot PRAGMA;
] pragma_s => In_srcpos : source_position,
Ix_comments : commaents;
comp_unit => as_context : CONTEXT,
a8_unil_body : UNIT_BODY,
ag_pragma_s : PRAGMA_S; —— extension to FD.
comp_unit => Ix_srcpos 1 source_position,
‘ ix_comments ;. commaents;
CONTEXT_ELEM ::= pragma; — pragma allowed in clause

— Context Clauses - With Clauses

~ Syntax 10.1.1.A
— context_clause ::= (with_clause {use_clause)}}

CONTEXT_ELEM ::= use;
CONTEXT ::=

context;
comtaxt => as_list : Seq Of CONTEXT_ELEM;
comtext => Ix_srcpos . source_position,
Ix_comments 1 commenis;

ADa Section 9.10

Page 70 / Section 2 DIANA Reference Manual

-— Syntax 10.1.1.8
-~ with clluu 112 with unit_simple_name {, unit_simple_name);

CONTEXT_ELEM ::= with;

with 3> as_list : Seq Of NAME;
with => In_srcpos : source_ position,
Ix_comments : commaents;

— 10.2 Subunits of Compilation Units
Syntax 10.2.A
subunit ::=

separate (parent_unit_name) proper_body

it

subunit => as_name : NAME,
as_subunit_body : SUBUNIT_BODY;

subunit => Ix_arcpos : source_position,
Ix__comments : comments;

SUBUNIT_B0DY ::= subprogram_body | package_body | task_body;

Syntax 10.2.8
body_stud :
wbprognm specification is separste;
| package body package_simpie_name is separate;
{ task body fask_simple_name is separate;

- ——
Freitd

BLOCK_STUB ::= stub;
i stud => ix_srcpos . source_position,
i Ix_comments : comments;

EXCEPTION_DEF ::= void;
exception => as_jd_¢s : 1D_S, — ‘exception_id' sequence
as_eoxception_det : BXCEPTION_DEF;
exception => In_ercpos : source_position,
Ix_comments : comments;
DEF_1D ::= exception_id;
exception_id > ix_srcpos . source_position,
Ix_comments : comments,
Ix_symrep 1 symbol_rep;
enception_id 2> om_exception_def : EXCEPTION_DEF;

ADA Section 10.1.1 A

Definition of the Diana Domain

11.2 Exception Handlers

sequence_ “of_statements
exception_choice ::= exceplion_name | others

R

— see 5.4, 5.6, 3.7.3.8

— 11.3 Raise Statessnts

— Syntax 11.3

— raise_statement ::= raise [exception_name};

raise => as_name_void
raise => Ix_srcpos
Ix_comments
— 12. Generic Program Units

— 12.1 Generic Declarations

Syntax 12.1.A
generic_declaration ::= generic_specitication;
spoaﬁcnbon =

| generic_tormal_part package__specitication

GENERIC_HEADER ::=
generic 3> as_jd
as_generic_param_s :
as_generic_header
Ix_srcpos
Ix_comments

generic_id;

Ix_symrep
ix__srcpos
Ix_comments
cm_gonodc_p.nm a.
am_gspec
am_body
sm_tirst
am_astud

generic =>

DEF_ID ::=
generic_id =>

generic_id =>

when mption choice {1 exception_choice} =>

: NAME_VOID;
. source_position,
: comments;

gomnc formal_part subprogram _specification

procedure | function | package_spec

1 10, ‘generic_id'

OENERIC PARAM_S,

: GENERIC HEADER;
: source _poutton
: comments;

GENERIC_| PARAM S,
: GENERIC_HEADER,

: 8Lock_stus_voio,
: DEF_OCCURRA
! DEF_OCCURRENCE:

Section 2 / Page 71

ADA Section 11.1

Page 72 / Section 2 DianA Reference Manual

Syntax 12.1.8
generic_formal_part ::z generic {generic_parameter_declaration)

GENERIC_PARAM_S ::= generic_param_s;

generic_param_s => as_list : Seq Of GENERIC__PARAM;

generic_pearam_s => Ix_srcpos . source__position,
Ix_comments : comments;

Syntax 12.1.C

generic_parameter_declaration ::=
identitier_list : [in [out]] type_mark [:= expression];
| type identitier is generic_type_detinition;
| private_type_deciarstion
| with subprogram_specitication (is name];
| with subprogram_specitication [is <>};

NN

GENERIC_PARAM ::= in | in_out | type | subprogram_decl;

SUBPROGRAM_DEF ::= FORMAL_SUB?ROG_DEF;
FORMAL_SUBPROG_DEF ::= NAME | box | no_defauit;
box => Ix_srcpos 1 source_position,
1x_comments T comments;
no_default => ix_srcpos 1 source_position,
‘ Ix_comments . comments;
Syntax 12.1.0

generic_type_defintion : =
(«>) | range <> | digits <> | deta <>

RN

TYPE_SPEC ::= FORMAL _TYPE_SPEC;
FORMAL_TYPE_SPEC ::=formal_dscrt -— (¢>)

| tormal_integer - range <>

| formal_fixed — deita <>

| formal_Hoast; — digits <>
formal_dscrt => Ix_arcpos : source_position,

In_comments : comments;
formal_fined => ix_srcpos : source_position,

Ix_comments . commaents;
formal_toat 3> Ix_srcpos : source_position,

Ix_comments 1 commaents;
formal_integer 3> Ix_asrcpos . source_ position,

: Ix_comments : comments;

ADA Section 12. 1. A

Definition of the Diana Domain Section 2 / Page 73

- 12.3 Generic Instantiation

— Syntax 12.3.A
generic_instantiation ::=
pasimge identitier is

now generic_package_name [Qeneric_actual_part];
| Mt identitier is
generic_procedure_name (generic_actual_part);
} m idontiﬂor [}
new generic_ function_name [generic_actuai_part];

genenc_actual_part ::=
(generic_association {, generic_association})

NN RN

— See 3.6 of rationale for discussion of instantiation

SUBPROGRAM_DEF ::= instantiation;
y PACKAGE_DOEF ::= instantiation;

GENERIC_ASSOC_S ::= generic_assoc_s;

generic_assoc_s => as_lJist : Seq Ot GENERIC_ASSOC;

Qeneric_assoc_s => Ix_srcpos : source_position,
Ix_comments ;. commaents; [

instantiation => as_name : NAME,
as_generic_assoc_s : GENERIC_ASSOC_S;

instantiation => ix_srcpos ! source_position,
Ix_comments : comments;

instantiation => sm_decl_s . DECL_S;

Symtax 12.3.8
iIC_association ::3
{generic_tormal_parameter =>] generic_actual_parameter

EEEEE

generic_formal__paramaeter ::= parameter__simple_name | operator_symbol

GENERIC_ASSOC ::= assoc;

Syntax 12.3.C
gmrlc actual_parameter ::= exprassion | variable_name
| subprogram_name | eniry_name | type_mark

—

ADA Section 12.1.0

T AR e e s e . . m———i

Page 74 / Section 2 Diana Reference Manual

:u.wmcm“and
Implementation Dependent Peatures
13.1 Representation Clauses

Syntax 13.1
representation_clause ::=
type__representation_clause | address_clause

type_reprasentation_clause ::= length_clause
| enumeration_representation_clause | record_representation_clause

RERERE

REP ::= simple_rap — length_clause and
~— enumeration_representation_clause (13.2)
| address ~— address_clause (13.5)
| record_rep; - record_representation_clause (13.4)

13.2 lLength Clause
13.3 Emmeration Representation Clauses

— Syntax 13.2
- length_clause ::= for attribute use simple_expression;

i)

Syntax 13.3
enumeration__representation_clause ::=
for type_simple_name use aggregate;

1)

simpile_rep => as_name . NAME,
. as_exp . BXP;
simple_rep 3> Ix_srcpos : source_position,
Ix_comments 1 comments;

13.4 Record Representation Clauses

Syntax 13.4.A
recory_ representation_clause ::=
for type_simple_name use
record [alignment_clause)
{component_clause}

brtrrbd

slignment_clause ::= at mod static_simple_expression;

ALIGNMENT ::= alignment;
alignment => as_pragma_3 : PRAGMA_S, — pragma allowed in clavse
as_exp_void 1 EXP_VOID;
|
i record_rep => as_name : NAME,
.~ as_alignment : ALIGNMENT,
} ag_comp_rep_s : COMP_REP_S;
record_rep => Ix_arcpos : source_position,
' Ix_comments : commaents;

ADA Section 12.3.C

Definition of the Diana Domain

I

Syntax 13.4.8

component_clause ::
component_simole _name at static_simple_expression range static_range;

COMP_REP_S ::=

-
-4

comp_rep_s;

COMP_REP ::= comp_rep;
COMP_REP ::= pragma; -~ pragma aliowed in clause
comp_rep_s > as_list : Seq Of COMP_REP;
comp_rep_s => ix_srcpos 1 source_position,
Ix_comments : comments;
comp_rep => as_name : NAME,
as_exp : EXP,
as_range : RANGE;
comp_rep => Ix_srcpos 1 source_position,
Ix_comments : comments;
13.5 Address Clauses
Syntax 13.5
address_clause ::= for simpie_name use at simple_expression;
address => as_name : NAME,
as__exp . H
address => ix_srcpos . source__position,
Ix_comments : comments;
13.8 #achine Code Insertions
Syntax 13.8
code__statement ::= type_mark'record_aggregate;
code => as_name . NAME,
as_exp . EXP;
code => Ix__srcpos : source_position,
Ix_comments : comments;

14.0 Input-Output

1/0 procedurs calis are not specially handled. They are
represented by procedure or function calis (see 6.4).

Section 2 / Page 75

ADA Section 13.4 A

Page 76 / Section 2

:mchnedoianamvim-nt

— see Appendix | ot this manuai

End

n

.

S e T OWET TR TR T

ADA Section 13.8

DIANA Reference Manual

DEF_ID ::= attr_id | pragma_id | ARGUMENT;

ARGUMENT ::= argument__id;

attr_id => ix_symrep : symbol_rep;

TYPE_SPEC ::= universal_integer | universal_fixed | universai_real;
universai_integer => '

universal_ fixed => H

universal_real => 5

argument_id => Ix_symrep : symbol_rep;

pragma_id => as_lJist : Seq Of ARGUMENT;
pragma_id => Ix__symrep : symbol_rep;

Detinition of the Diana Domain Section 2 / Page 77

Structure Diana_Concrete
Refines Diana Is

Refined Diana Specification

Version of 11 Febrvary 1883

For source_position Use USERPK.SOURCE_POSITION;

— detines source position in original

— source program. used for error messages.
For symbol_rep Use USERPK.SYMBOL_REP;

-~ representation of identifiers,

— strings and characters
For vaive Use USERPK.MACHINE_VALUE;

— implementation defined

- gives value of an expression.

— can indicate that no valve is computed.

For operator Use USERPK,OPERATOR;
— enumeration type for ail operators
For number_rep Use USERPK.NUMBER_REP;
— representation of numeric iiterals
l For comments Use USERPK, COMMENTS;
[— representation of comments from source program

This defines the external representations

b

. For symbol_rep Use External String;
! — the external representation of
— symbol_raep uses IDL basic type string,
For number_rep Use External String;
— the external representation of
— number_rep uses IDL basic type string.
For operator Use Cxternai OP_CLASS;
— the external representation of operator
-— yses the private type OP_CLASS
For vaive Use External VAL_CLASS;
- the external representation of values
— uses the private type VAL_CLASS

Page 78 / Section 2

Syntax 4.5

adding_operator :

NN NN

OP_CLASS ::=

and =>

ne => ;

ge => ;
unary_plus => ;
mult => ;

o®;p => ;

— VAL_CLASS is a class that defines the possible Diana vaives

VAL_CLASS ::

no_value =>
string_ve 1@ =>
bool_vatvs =>
int_valve =>
real_vealue =>

End

-y —

[- rm——— e = =

logicai_operator ::
reiational _operator ::

muitiplying_operator ::=
highest_precedence_operator ::=

OP_CLASS is an enumeration class that defines the Ada operators

and | or | mor
I < 4

t 7=

= | -1 &
unary_operator ::= ¢ | -
*1 /71 mod | rem
** | abs | mot

-

and

or

xor
oq

ne

"

le

gt

ge
plus
minus
cat
unary_plus
unary_minus
abs
not
mult
div
mod
rem
exp;

or => ;
= ;
plus => ;

div => ;

no_value | string_value | bool_vaiue |
int_value | real_vaive;

£{=

xor => ;
le => ;
minus => ;
unary_minus => ; abs 3> ;
mod => ;

DIANA Reference Manual

*»>=

P>

TUERE

B+l +vvan

g

I T T T T O O O I OO

i

-— no vaiue has been computed
: String; — character and string

: Boolean; — boolean vaive
: Integer; — integer vaive
: Rational; == real and tixed values

Rationale Page 79

CHAPTER 3
RATIONALE

The design of DIANA is based on the principles listed in Section 1.1. Unfor-
tunately these principles are not always compatible with each other and with ADA.
Under some circumstances It was necessary to deviate from them. albeit in
minor ways. The main purpose of this chapter is to clarify the DIANA approach
and to give reasons for our compromise decisions.

An important principle in the design of DIANA was to adhere to the Formal
Detinition of ADA (AFD), and in particular, to the abstract syntax defined there.
The first section below compares DIANA trees with those of the Abstract Syntax
and shows the transtormations from the DIANA form back to that given in the
AFD, The second section describes the effects of separate compllation on
DIANA. The third section discusses the DIANA approach to the notion of a
dictionary or symbol table. In the fourth section we discuss an important output
of the semantic analyzer—the type Information about objects. We point out
special situations and soiutlons which may not be obvious from the definition
given in the last chapter. The fifth section discusses another principle that it
was not possible to apply consistently—the requirement that there be a single
definition for each entity. Here the language. and especially its separate
compllation facility, Impose a compromise on DIANA, The sixth and seventh
sections discuss the special problems of Instantiations and renaming. The eighth
section deals with implementation dependent attribute types that are lntroduce& in
DuNA In order to avoid constraining an Implementation. The ninth saction
discusses the notlons of equality and assignment for attributes. A summary of
the non-structurai attributes closes the chapter.

This chapter contains a number of exampies where the structure of DIANA
trees is given in a graphical manner to lilustrate the relations between attribute
values and nodes. To emphasize the important points. we show only those parts
of the structure which are of Interest for the particular example. Thus. a
subtree Is sometimes replaced by the string which it represents or by ellipses if
it is not important. |f attributes are attached to a node. then the kind of the
node and the attributes of Interest are enciosed Iin a box. It is our Intention
that these figures capture only the essentiali information for the purpose at hand
and hence suppress unnecessary detall. they shouid not be viewed as complete.

- " A 4 o
oot ol atitidon 1 2 Sineh P’ N
—

W

b g

DIANA Reference Manual

Page 80 / Section 3.1

3.). Comparison with the Abstract Syntax Tree

In this sectlon we show that the Abstract Syntax Trees used in the AFD (6]
and the DIANA trees (with only structurai attributes) are equivaient. This equiv-
alence is useful for the description of the semantics of a DIANA tree. we simply
inherit the semantics from the AFD. Further. it enforces standardization of the
abstract syntax representation of programs. Since. however, it was necessary to
deviate from the AFD In minor ways. we list these deviations and point out the
reasons why they are necessary: we also indicate how the Abstract Syntax
Tree can be reconstructed from the DIANA tree.

We recognize that the ADA AFD is based on the 1980 revised ADA Language
Reference Manual {7) and does not reflect changes made to the syntax in the
1982 reference manual. This issue is addressed in Section 3.1.85.

3.1. 1, Semantic Distinctions of Constructs

Several nodes in DIANA have no counterpart in the Abstract Syntax of the
AFD. They are introduced in cases where a single construct in the AFD may
have several distinct semantic meanings. Different nodes allow us to attach
appropriate semantic attributes to each. In all such cases the name of the
original construct is extended with prefixes which denote the distinction, The
largest number of splits has been made for the Iid-construct. we not only
distinguish between a defining occurrence and a used occurrence of an iden-
tifler. but also between the kinds of the items denoted by it. For exampie,

const_Iid is a node which can appear in a constant declaration to
define a constant object. if such an object is referenced
by an identifier in an expression. the construct

used_object_id is used. The semantic attributes of both constructs can be
found In the DIANA definition.

Note that the attributes of these two types of '_id’ nodes are disjoint and that
their union contains all the information needed.

The original Abstract Syntax Tree can easily be reconstructed by omitting the
prefix of these nodes. it should be noted that no tree transformation is
necessary. since the structure of the new OIANA nodes s the same as that of
their counterparts in the Abstract Syntax.

r L ey ——— L L

Rationaile Section 3.1.2 / Page 8

3.1.2. Additional Concepts

There are nodes introduced in DIWANA which are used to deal with issues that
are not considered In the AFD. They are used to represent pragmas and
parentheses in expressions. if the nodes for parentheses and pragmas are
y removed from the tree. the original Abstract Syntax structure is restored.

Under some clrcumstances parenth-ses have a semantic effect in ADA. Con-
sider the following examples:

P((A)) -— Parameter cannot be im or in out
A+ (B+C) — Parentheses force the grouping
(A+B) *C — Parentheses force the proper parse

In each of these cases the parentheses have a semantic effect. Iin addition. the
ADA conformance rules (see Section 6.3.1 of the ADA LRM {8]) require that
parentheses be preservad in order to check that subprogram specifications
match. DIANA requires that all parentheses In the original ADA source are
preserved through the use of parenthesized nodes. See Section 1.1.3.

Pragmas may carry the commands given by the user to other compiler
modules after semantic analysis and must be preserved. Since pragmas may
occur In 80 many places in ADA (see Section 2.8 of the ADA LRM (8D, many
DiIANA classes were expanded to allow pragmas. This does not affect the
structure of the abstract syntax tree. However, the presence of pragmas aiso H
caused us to change the structure of the comp_unit node of the abstract syntax.
Pragmas can be given for a compilation unit and are therefore represented

together with the corresponding node. The comp_unit node now has throe
children:
comp_unit => context : CONTEXT, q
uni_body : UNIT_BODY,
pragma_s : PRAGMA_S ;

From the abstract datatype viewpoint. DIANA has merely added one additional
selactor. The original selectors of the AFD are retained unchanged.

3.1.3. Tree Normalizations

The AFD uses various normalizations of the tree. Most, but not ali, of them
are also imposed by DIANA. Those which are not performed In DIANA were elided
because after such normalizations it is difficult, and sometimes Impossible. lo
reconstruct the source text.

We do not follow the AFD in normalizing anonymous types. The
AFD proposes that all anonymous types be replaced by type marks and have an

-

-

Page 82 / Section 3.1.3 DiaNA Reference Manual

explicit declaration just before their original appearance. This tree transformation
Is not required by DIANA. For example., the declaration of a task object does not
require a declaration of an anonymous task type to be placed In the DIANA tree
before the task object.

We do not normalize parameter associations. In the AFD. ail subprogram
calls have their parameter sequences normalized to the named assoclation form.
DIANA leaves positional parameters as the user wrote them and avolds filling in
default parameters. (DIANA does have a semantic attribute for subprogram calis
that normaiizes parameter sequences and fills in default parameters. but semantic
attributes are not represented in the Abstract Syntax Tree).

All other normalizations in the AFD (e.g.. treating built-in operators as
function calls) are Imposed by DIANA. The Impact of these normaliizations on
reconstruction of the original source program from the DIANA tree Is discussed in
Appendix Iif. The normalizations which are not assumed by DIANA must be done
to get the Abstract Syntax Tree. the AFD defines how these are done.

3.1. 4. Tree Transformation According to the Formal Oefinition

Some ambiguities of the concrete syntax cannot be resolverd by the parser,
but must be removed during semantic analysis. For example., the Abstract
Syntax contains an apply construct, covering indexed expressions, calls. conver-
sions, and slices. in most cases semantic analysis merely has to rename the
node to encode the nature of the construct. there are no structurai ditferences.
The result of this process is assumaed in OIANA as woll as in the AFD (See
Appendix 1) . it should be noted that one possibility requires a structural
transtormation of the tree. namely when an apply node has to be changed iInta a
cail to a parameteriess entry family member. Figure 3-1 Iillustrates this case.
All these changes are In accordance with the AFD and require no actions to
reconstruct the Abstract Syntax Tree.

3.1.5. Changes to the AST

The majority of the changes In ADA syntax have not produced a change in the
structure of the Abstract Syntax Tree. For example. the change in syntax that
requires the result subtype of a function to be specified by a type mark instead
of a subtype Indication has allowed DIANA to use a NAME as a child of the
function instead of a CONSTRAINED node. This does not affect the structure In
the sense that the number of children that the function node has has not

Rationale Section 3.1.5 / Page 83
apply entry_call
Ll
used_name_id general_assoc_ s indexed param_assoc_s

N

int_number used_name_id exp_s

int_number

Figure 3-1: Exampie of a Necessary Tree Transformation

changed. One node has been changed structurally, the allocator node. which
has been changed to have only one child, as_exp_constrained. instead of the
two chiidren specified in the Abstract Syntax Tree defined In the AFD.

Two DIANA nodes have been introduced to consistently represent the changes
to ADA syntax. The discriminant specification requires a type mark Iinstead of a
subtype Indication. The Abstract Syntax Tree uses a var node to repraesent both
discriminant specifications and variable declarations, DIANA uses a separate
node, dscrmt_var, to represent the discriminant specification, Similarly, a
deferred constant declaration differs from a fuli constant declaration in that It
requires a type mark instead of a subtype indication. Both are represented by a
constant node In the Abstract Syntax Tree. DANA represents the deferred
constant declaration with the deferred_constant node.

3.2. Consequences of Separate Compilation

The separate compilation facility of ADA affects the Intermediate representation
of programs. The Front End must be able to use the intermediate represen-
tation of a previously compiled unit again. Further, the Front End may not have
complete information about a program unit.

The design of DiaNA carefully avolds constraints on a separate
compilation system. aside from those Implied directly by the ADA language. The

T T PSS WP Y

-

Page 84 / Section 3.2 DIANA Reference Manual

design can be extended to cover the full APSE requirements. We have taken
special care that several versions of a unit body can exist corresponding to a
single specification. that simuitaneous compllation within the same project is
possible., and that units of other libraries can be used effectively (5].

The basic decision which makes these facilities Implementable is to forbid
forward references:. this decision is explained in the next section. We then point
out some limitations Imposed on the Front End by the separate
compilation facility.

3.2.1. Forward References

The basic principle of DIANA that there is a single definition point tor each
ADA eantity conflicts with those ADA tfacilities that have more than one declaration
point. in these cases. DIANA restricts the attribute values of all the defining
occurrences to be Iidentical (see Section 3.5). In the presence of separate
compilation., the requirement that the values of the attributes at all defining
occurrences are the same can only be met temporarily. The forward references
(am_body) assumed by DIANA are vold In these cases. The reasons for this
approach are:

e A unit can be used even when the corresponding body is not yet

compiled. in this case. the forward reference must have the value
void since the entity does not exist.

e Updating a DWANA representation would require write access to a tile
which may cause synchronization problems (see (5]).

e A {ibrary system may allow for several versions of bodles for the same
specification. If we were to update an attribute, we would overwrite
its previous value. Moreover, we believe that the maintenance of
different versions should be part of the library system and should not
irfluence the intermediate representation.

3.2.2. Separately Compiled Generic Bodies

The AOCA separate complliation facility does not Impose a !otal order on
compliations. it Is possible to use a unit whose body has not yot boen
compiled. provided that its specification has been complled. This procedure
does not normaily cause a problem, since the specification usually contains ail
the information needed to use a unit.

However. a generic unit can be instantiated regardiess of whether the generic

e

Rationale Section 3.2.2 / Page 85

body has been complied. Thus, in many cases the Front End cannot instantiate
the body at the time it compiles an Instantiation. It would be possible to keep
track of the Instantiations and complle them once the body becomes available.
But this method would imply that aiready-stored intermediate representations have
to be modified. After such an update. existing references to the updated unit
might be invalid.

DIANA assumes that only the specification is instantiated (see Section 3.6 for
how this is done@). This assumption Is sale. since the specification must already
have been analyzed. The task of instantiating the body is left to the Back End:
the Back End cannot be run until the body of the generic unit has been
analyzed. This procedure has the advantage of allowing the Back End to decide
whether to use common code for several instantiations of the same generic unit.

3.3. Name Binding

Each entity of an ADA program Is iIntroduced by a declaration with a defining
occurrence of the name of that entity. Uses of the entity always refer back to
this defining occurrence. Attributes at the definition point make it possible for
all information about the antity to be determined. The defining nodes for entities
together with their attributes play the same roie as a dictionary or symbol table In
a conventional compiler strategy. To support the DIANA approach. the appearan-
ces of an ldentifier in the tree have to be divided into defining and used
occurrences (see Section 3.1.1).

3.3.1. Defining Occurrences of Identitiers

All declarative nodes (see DECL., Section 2.3.1) have a child which consists
of a sequence of one or more nodes representing the identiflers used to name
the newly defined entities. These nodes are termed the defining occurrence of
their respective Identitlers: they carry all the Information that describes the
assoclated entity. Because the set of attributes which is necessary for this
purpose depends heavily on the nature of the denoted entity, we distinguish the
defining identifiers according to the nature of the entity which they denote. Thus
we have the foliowing set of node types:

Page 868 / Section 3.3.1 DIANA Reference Manuai

OEF_10 ::= argument_id |
attr_id |
comp_id)
conat_id |
dscrat_id |

The defining occurrence of an enumeration character (DEF_CHAR) and of an
operator (DEF_OP) fall into the class of defining occurrences as well.

The consistency of the whole scheme requires that we provide a definition
point for predefined identitiers as well. These are pragma names (pragma_id).
attribute names (attr_ijd). and the names of the arguments of pragmas
(argument_Id). The predefined identiflers are described in Appendix I.

it should be noted that although label names. loop names. and block names
in ADA are implicitly declared at the snd of the corresponding declarative part.
they are not explicitly represented in DIANA. The defining occurrence of a label
(label_id) is its appearance in a labeled statement. The defining occurrence of
a named_stm_\d is its appearance In a named statement.

3.3.2. Used Occurrences of |dentifiers

All occurrences of identitiers which are not mentioned in Section 3.3.1 are
treated as used occurrences. The node for a used occurrence of an entity has
an attribute (sm_defn or sm_operator) that refers to the node for the defining
occurrence of that Identifler (where all information is stored). DIANA distin-
guishes between three difterent kinds of usage depending on the context in which
the entity is referenced.

USED_I0 ::= used_name_id |

Rationale Section 3.3.2 / Page 87

A used_object_Iid Is used when the sm_defn denotes an object. an enumera-
tion literal, or a number. In all other contexts. the use of an entity is
represented by a used_name_ild. whose only atiribute refers to the definition of
the entity. Additionally we have a used_char (treated as a used_object_id) and
a used_op (treated as a used_name_id). Identiflers for bulit-in entities are
discussed In Section 3.3.4.

3.3.3. Multiple Defining Occurrences of Identifiers

Recall that one of the basic principles of the DIANA design stated that every
entity has a single defining occurrence. As this is not the case In ADA Itself
(e.g.. Incompliete types, deferred constants), DIANA cannot strictly follow this
principle. In the instances where multipie defining occurrences can occur, DIANA
uses the following solution. All defining occurrences of an entity that could be
multiply defined are represented by a DEF_ID as described above iIn Section
3.3.1. However, these defining occurrences have an attribute. sm_first, that
refers to the node for the first defining occurrence of the identifier, similar to
the sm_defn attribute of used occurrences (Section 3.3.2). Nonetheless. the
several defining occurrences of the entity all have the same attribute values.
The complete details of how DIANA treats multiply defined identifiers are described
in Section 3. 5.

3.3.4, Subprogram Calis

In ADA it is possible to write bullt-in operators as function calls and to write
user-defined operators as operators. For exampile,
standard."+"(x => 1, y = 2)
In DIANA ail function calls and operators are represented as function calls. The
only exceptions to this method are the short-circuit operators and then and or
else and the membership operators in and not in, which cannot be overloaded.
cannot be represented as functions., and cannot be written as function cal.s.

DuNA records whether a function call was made using infix or prefix notation
through the Ix_prefix attribute. This information is necessary for subprogram
specification conformance rules (Section 6.3.1 of the ADA LRM (8)).

The kind of function call s Indicated by the first child of the
function_call node. which represents the name of the function. This attribute
may be a USED_ID or USED_OP, or a selected component where the
DESIGNATOR_CHAR child Is a USED_ID or USED_OP. This used occurrence

Page 88 / Section 3.3.4 DaNA Reference Manuat

distinguishes built-in operators (or even procedures and entries) f(rom user-
defined subprograms.

In a used_op or used_name_ld node. the sm_defn attribute denotes the
defining occurrence of the user-defined entity. In a wused_bitn_op <(or
used_bitn_id) . the sm_operator attribute Indicates the built-in entity; this attribute
is a private type and is Iimplementation-defined. It represents numeric cperators
such as °+* and "*°, but also represents the implicitly~defined relations for
user-defined types.

Derived subprograms are indicated by the original definition from which they
are derived. The actual paramaters all have type information attached. it is
sufficilent to compare the -actual types to the original ones to determine the
implicit type conversion necessary for parameter association if the representation
changes. Since type checking has already been performed, If the
sm_exp_type of an actual parameter is not equal to the sm_obj_type of the
corresponding formal (in the sense described In Section 3.9). it must be the
case that the actual parameter is ot a type ultimately derived from that of the
formal. Following the chain of derivations starting with the type of the actual
parametaer will give the sequence of type conversions which must be performed.
Similarly for a derived function, the result type of the function_call node can be
compared with the resuit type of th ‘unction_lId.

it a user defines an equality operator for a limited private type. then in-
equality is introduced Impiicitly. The user-defined equality is ldentifled by the
sm_defn attribute of a used_op node. In the case of inequality, there is no
defining occurrence. The tree Is therefore transformed to a standard ‘not*
operation applied to the user-defined equality. This situation Is Illustrated in
Figure 3-2.

The parameter associations for a subprogram call are in the user-written
order; it is therefore possible to reconstruct the source program in most cases.
it would be awkward to introduce named associations in the case of predefined
operators. It would be impossible for implicit ones such as equality. since there
is no defining occurrence of the formal parameters. Therefore. DWNA does not
normalize parameter associations to named associations. Howaver. DIANA does
use the sm_normalized_param_s attribute to record the normalized positional list
of actuais used in the subprogram call, Iincluding any default actual parameters.
(The attribute sm_normalized_comp_s serves a similar purpose for record
aggregates and discriminant constraints).

Rationale Sectlion 3.4 / Page 89

function_call

used_bltn_op param_assoc_S

sm_operator = op_not

function_cail

used_op param_assoc_s

sm_defn / \
.x. I’.

Figure 3-2: Cail of implicitly-Defined Inequality

3.4. Treatment of Types

Since anonymous types do not have an explicit declaration In DIANA (see
3.1.3), we cannot use the type identifier as the description of the type.

instead we use the type specification (TYPE_SPEC). in ail contexts whaore
structural type information is required, the attributes have values which denote a
TYPE_SPEC. e.g.. sm_exp_type in expressions and sm_base_type Iin

constrained nodes. This treatment implies that all nodes which can represent a
type specification must carry those attributes which describe the detailed type.
The meaning of these attributes is explained in the following sections.

It should be noted that most of the attributes described in these sections can
be computed from other attributes which are aiso present in OIANA. The main
reason for adding them is that it makes code generation easier. The attributes
represent Iinformation which the Front End aiready has and which wouid be
difficult for the code generator to recompute (especially In the presence of
seoparate compilation).

AD-A128 232

UNCLASSIFIED

DIANA REFERENCE MANUAL REVLISION 3iu) TARTAN LABS INC
PITTSBURGH PA A EVANS ET AL. 28 FEB 83 TL-83-4
MDA9S03-82-C-0148

A3

0 bR

o i
| £ o 20
L = 0%

= TE IIM'

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Page 80 / Section 3.4.1 DIANA Reference Manual

3.4.1. Machine Dependent Attributes

DaNA originally required machine dependent attributes to be computed because
their values were allowed in ADA static expressions and therefore could appear in
type declarations. The rules for static expressions (Section 4.9 of the ADA
LAM [8]) now only allow attributes of static subtypes in static expressions: at-
tributes whose values are no longer machine dependent.

3.4.2. Type Specifications

There are several ways to specify a type In ADA. Fortunately they all have
different syntactic structures so that we are not forced to introduce new node
types to carry the different semantic attributes appropriate to each type (as was
done for identifiers. see 3.1.1). The following sections give a detalled descrip-
tion of the attributes for each kind of type specitication. These descriptions
involve the notion of structural type information: this notion is defined in the
following section.

3.4.2.1. Structural Type Information

The structural Iinformation for a type is expressed by the following nodes of a
DANA Tree:

integer, fixsd, float for numeric types

enum_literal s for enumeration types
record for record types
ar:ay for axray types
access for access types
task_spec for task types

and the universal types (see Appendix I). Each of these has attiributes for
values of user definegd or implementation chosen attributes.

There are language pragmas (PACK, CONTROLLED) which can be applied to
types and which are used instead of a representation specification. Occurrences
of these pragmas remain In the DWANA Tree to reconstruct the source. but they
are addludnally recorded with the type structures they affect using the
am_packing and sm_controlied attributes.

For record types, there may be representiation specifications for the record
and its components (including discriminants). A reference to this specification
is recorded In semantic attributes of the record id., ocomp_id. and
dsormt_id nodes. Similarly for enumeration types. information from represen-—
tation specifications for the enumeration iiterals is recorded with the enum_id.

Rationale Section 3.4.2.2 /7 Page N

{ 8.4.2.2. Subtype Specifications

All subtype Indications are represented by a constrained node which has type i
mark and constraint attributes. The constraint can be void. A subtype |
declaration can aiso be used just to rename a type (when no constraint |s
given) . so there may be a sequence of subtype declarations without constraint
information. For code generation purposes. It is necessary to know the last
| applicable conatraint, hence a constrained node in DIANA has a corresponding
attribute. sm_constraint, that points directly to this constraint. the code generator 1
is not forced to walk backwards through the chain of subtype declarations to find ,
the appropriate constraint.

ot e

For fixed and floating point types the last applicable constraint may have two
parts. a digits (or delta) constraint and a range. In order for the sm_constraint
to point to the last applicable constraint. a fixed or float node may need to be
created for the purpose of representing this constraint. For source
reproducidility reasons. the structural constraint may not contain all of the
relevant information. Figure 3-3 Illlustrates the fioat node that DIANA creates for
the following example:

type MYFLOAT is Adigits 6 range -1.0..1.0;
subtype MYFLOATZ is MYPLOAT digits 2,

The code generator aiso needs the Information about the type structure.
which is obtained from the original type from which all intermediate derived types
and subtypes are constructed. This attribute is named sm_type_struct. Note
that for derived record and enumeration types It denotes the duplicated type
structure. if any. This situation Is discussed in the next section. 3.4.2.3.

in a chain of type specifications, a user can add attributes to each type by
representation specifications. these specifications are possibie only for types. not
for subtypes. The type from which a subtype is constructed is called its base
type. The attribute sm_base_fype denotes its type specification. /.e.. a derived
type (see Section 3.4.2.3) or a type structure (see Section 3.4.2.1) where all
representation information can be found. The DIANA structure that resuits in such
a case is illustrated for the following example In Flgure 3-4. Note that all
information is present at the last subtype declaration: it s an integer type. the
values are in the range 1..9. and its representation must not exceed 8 B8its.

Page 92 / Section 3.4.2.2 DiaNA Reference Manual

type

/N

"MYFLOAT"
6" range

| /////, \\\\\\\

n.! .oh '1 .0 ;
; :
' ubtype
? / "MYFLOAT2" \
' constrained

> float

DR e sl

’ ‘ sm_constraint ,/\
. 8N e

i
e : "MYFLOAT"
b / \ 10" *1.0"
i
| f: | void
) |
;’ r' .
|
i { { Figure 5-3: Fioat constraint oreated by DWW

B on o

-

Rationale _ Section 8.4.2.2 / Page 93
type T1 is range 1..1000;
subtype T2 is Tl range 1..9;
type T3 is new T2;
subtype T4 is T3;
subtype TS is T,

8.4.2.3. Derived Types

A derived type is used to introduce a new type which Inherits characteristics
of the parent type. A user can give a new representation specification for every
derived type. It no representation is specified. then the attributes of the parent
type are inherited. To treat all derived types unitormly, the corresponding DIANA
attributes are copied and stored with the derived type specification. The values
are overwritten it the user gives a new representation. To support this, the
attributes sm_zaize. sam_storage_size, sm_actual_delta, am_packing., and
sam_controlled, as well as cd_Jmpl_size, are present in a derived node.

The subtype Indication defines the parent subtype and the parent type (s the
base type of the parent subtype (ADA LRM (8], Section 3.4)., 80 the Information
about the parent type can be obtalned from the subtree of the derived node.
The corresponding subtype Indication is represented by a constrained node which
has an attribute sm_pase_type (which denotes the base type) and an atiribute
sm_fype_struct (which denotes the atructural Information for that type):. see
Section 3.4.2.2.

if this structure la a record or an enumeration type. then it is possible that a
representation specification Is given for the derived structure—overwriting the oid
values. For s record structure. these valves are recorded with the component
declarations (e.g.. comp_id has the attribute sm_comp_spéc). In the case of
an enumeration type. the values are recorded with the enumeration
literal (enum_Jd has an attribute am_rep). The solution of this problem in OIANA
requires the creation of a new type structure where the new attribute vaiues can
be filled in. This new structure is referenced by the am_fype_struct attribute of
the constrained node of the derived type declaration.

Duplication has another advantage for enumeration literals: since we now have
a defining occurrence for a literal, the derivation of an enumeration
type introduces new defining occurrences for literals that belong to the derived
type and overioad the old ones.

i

el

e ey

i e

s

Page 94 / Section 3.4.2.3

type

7N\

.ti.

{integer

|

range

7\

"1000"

type

N

.t3.

DWNA Reference Manual '

subtype

/N

constrained

VR

lt‘.

ME—

void

subtypa

AN

constrained

sm_type_struct

N

derived

sm_size

|

constrained

RN

"t2"

void

simple_rep

7\

attribute

7N

*SIE"

Figure 3-4: DWW Form of type/sublype Specification

subtype

/N

02" const

/

.ti.

sm_base_type

sm_constraint

7N\

¢4 void

rained
range

N

.

B s . |
-

Rationale Section 3.4.2.3 / Page 95

The duplication of the record structure is only meaningful and necessary if a
representation specification is given by the user. An implementation of DiANA
can choose whether to copy or to denote the oid structure. it makes no

difference from the logical point of view.

In figure 3-5 we lllustrate the DIANA structure that results from the following
ADA source.

i1

for T2 use (5, 10);

" type

7\

enum_{d
Sm_rep = 1
"YELLOW® .
type ‘ ;num_l fteral_s
t2° derived Y
enum_{d - enum_1id
| Sm_rep = § SA_rep = 10
constrained "RED* *YELLOW"
- sm_type_struct)
sm_base_type
/ \
"t1° void

Figure 3~-5: An Example for ODerived Enumeration Types

Page 96 / Section 3.4.2.4 DaNA Reference Manual

3.4.2.4. Incomplete and Private Types

For incomplete and private types. there are two defining occurrences of the
same entity. The general solution for entities with several declaration points is
discussed in Section 3.5: the approach for Incomplete and private types in
particular is described In Section 3.5.1.

3.4.2.5. Anonymous Array Types

The ADA rules for multipie elaborations (ADA LRAM (8] Section 3.3.1) require

that the object declaration:
X, Y: array (l1..120) of INTEGER := (1..10 = 0)

resuit In X and Y having different types and In fact aiso cause the
aggregate occurring above to be evaluated twice with two different types in the
two evaluations. OWNA requires that the var_id’s for X and Y refer to different
intermediate nodes so that the fact X and Y are different types can be readily
determined.

3.4.2.6. Anonymous Derived Types

The ADA semantics require that an integer type declaration is equivalent to a
subtype dectaration of an anonymously derived integer type (Section 3.5.5 of the
ADA LRM [B8]). To represent this In DIANA without normalizing the source program
we have Introduced the attribute sm_base_type for Integer nodes that denotes a
derived node that (s created to give a unique type definition for the subtype.
Similarly, this attribute is aiso present on float and fixed nodes.

3.4.3. Type Specifications in Expressions

DANA records the result of overicad resolution in every expression node: the
sm_exp_fype attribute denotes the resuit type of the expression. Additionally, If
the value is statically evaluated. the value is recorded in the sm_vaive attribute
(see Section 3.8.1).

As far as overioading resolution is concerned. only the base type of an
expression is of Interest. However, for expressions which denote values which
are assured to satisfy a certain constraint, the constraint information is useful.
For this reason sm_exp_fype should refer to a constrained node for (only) the
following nodes:

e conversion and qualified whose as_name denotes a subtype name.

* Indensd and all.

Rationale Section 3.4.3 / Page 97

e function_call. If the function name is not a built-in operator, and

* used_object_Iid It the object s not deciared using an array type
specification and is not a single task.

There are three kinds of expressions which implicitly introduce an anonymous
subtype: aggregates. slices. and string literals. The resulting subtype can be
used to constrain an object if such an expression appears as an initiat value for
a constant object of an unconstrained array type (ADA LRM [8], Section 3.6.1).
The am_constraint attribute is used In these cases to denote a corresponding
subtype constraint. Unfortunately. this constraint does not exist in all cases. so
it must be computed by creating a suitable structure outside the tree.

in the case of a record aggregate the discriminant values are extracted from
the aggregate and used to build a dscrmt_aggregate node as a constraint for the
type to which the aggregate belongs.

in the case of an array aggregate the constraint attribute denotes a range
whose bounds are computed as described in the ADA LRM (8], Section 4.3.2.
-This range can be used as a constraint for the iIndex type of the underlying
array structure.

The sm_constraint attribute of a string literal denotes a range whose bounds
are computed from the underilying string type (denoted by sm_exp_fype) and the
length of the string literal.

in the preceding two cases. the constraint must be constructed outside the
tree. In the case of slices. it is already present; either it denotes the range of
the siice itseif or, it only a type mark was given. it denotes the range of the
corresponding subtype.

Note that because DWNA creates structures outside of the tree. an obvious
tree traversal (one that reaches only the structural., ‘as_’. attributes) will not
yleld all of the structural information. Tree traversals that yield all of the
structural Information do exist; these necessarily follow some semantic attributes
as well as the structural attributes.

3.4.3.1. Examples for Constraints of Expressions

Figures 3-8 and 38-7 iliustrates the DIANA structure for the following ADA
source.

" : R SR IO Sk

o

o ik ettt e rd e

-

o

Page 98 / Section 3.4.3.1 DIANA Reference Manual

type Il is ramge 1..1000;

type A is axzay (Il) of INTEGER;
subtype I2 is Il zange 1..10;
B:

The figures provide exampies for the vaiue of the sm_constraint attribute for
slices and aggregates.

Figure 3-8 iliustrates the DIANA structure for the following ADA source.

type MY_STRING is array (INTEGER range <>) of CHARACTER;
C 1 constant MY_STRING = “ABC";

3.4.3.2. Type Specifications for Names

The DWNA class EXP includes the ciass NAME which can appear In contexts
other than expressions (/.e.. wherever a name can appear In an ADA program).
in all contexts other than expressions. there is no type and no value which can
be associated with the nodes representing the name. However. 1t is not
possible to attach different attributes to the same node type depending on the
context in which it is used. This section defines the vaiues of these attributes
for these cases. (it should be noted that those nodes in the class NAME that
can never represent an expression, 6.¢.. any node in the class DEF_ID, do not
have the attribute sm_value. This discussion Is limited to those names that may
be used to represent an expression.)

We require that the value of sm_sexp_type be void for name nodes which are
not used to represent expressions. The sm_yalue attribute In these cases must
have a distinguished value (see 3.8.1) which indicates that the attribute has not
been evaluated. This applles as weil to used_char when it appears in contexts
other than expressions.

Consider the following two ADA fragments.

B = P.Q;
I 1= P.Q'ADDRESS

in both cases P.Q Is represented by a selected node. In the first case It Is
used In an expression. A type can be attached to the selected node. Indicating
the type of the selected object. in the second case the selected node is used
to denote an object for which an ADA attribute is to be computed. The node
might have a type. as before. but this type is unnecessary since the evaiuation
of the attribute does not depend on it A more convincing example is the
appearance of a selected node in a with clause.

Note that the selected node -does not have a am_vaiuve attribute and does not

Rationale Section 3.4.3.2 / Page 99

Example 1 : Representation of b(1..5)

(slice with range)

‘ /typl var,
slice "jq" integer “b* constrained
sm_exp_type

e N
/ \ void

"1 ‘*1000°

sm constramt

, . "b' range

7\

-1'

Exémple 2 : Representation of b(1..5)

:= (0,0,0,0,0)
| (array aggregate) '

’ assign

/ . :ngate / \

s bty dscrt_range_s constrained
m_exp_type \ / \
| sm_constraintt~ .

constrained "jnteger" void

AN 7S

0" range *{1" void

7\

Figure 3-6: Constraints on Siloss and Aggregates

t

, - - _ _ x-»-p«rmww"‘ »-

PP Aol

JURC TR TP - - W

Page 100 / Section 3.4.3.2

DIANA Reference Manual

Example 3 : Representation of b(i{2)

(slice with subtype)

slice

.sm_éxp_type

sm_constraint

AN

constrained

sm_constraint

/N

"i2" void

shbtype

7N\

.iz.

constrained

sm_constraint

7\

"{1" range

/N

Il. .10.

Figure 3-7: Constraints on Slices and Aggregates

dscrt_range_s ///’ \\\\

2N

integer

type

“a* array

/N

dscrt_range_s

|

constrained =4

7\

“{1" void

var
"be -trained
/
' void
constrained

/N

nteger” void

. o S e .
7 ok R .

N

¢

Section 3.4.3.2 / Page 101

N P e R ey

Rationale
type
type_id _,//—--e’ array,
sm_type_spec . /////
"my_string”
dscrt_range_s constrained
“{adex “character® void
"iateger® |
constaant
const_{d constrained string_literal
sm_obj_type sm_base_type sm_exp_type
] sn_pb}_ﬁtf r\g\‘l_jn_;onstraint sm_constraint
f .ABCI
" dsert_range_s
oc' . l
Tange ‘
INTEGER'FIRST INTEGER'FIRST+2

Figure 3-8: Constraints on String Uterails

[add

Page 102 / Section 3.4.3.2 DianA Reference Manual

record its value I(n the context of an expression. Only 9xpressions of scalar
types can be static (ADA LRM (8] Section 4.9). Thus the DIANA nodes selected,
indexed. slice. all. and aggregate do not have the attribute sm_value.

3.5. Entities with Several Deciaration Points

One of the basic principles of DIANA requires that there is a single definition
of each ADA entlty. This conflicts with those ADA faclliities that aliow or require
more than one declaration point for the same entity:

* incomplete type declarations

s (limited) private type declarations
* deferred constants

e subprogram declaration and body
s package declaration and body

e subprogram formals (in the formal part of subprogram declaration and
body)

s discriminants (in the discriminant part of incompiete or private types)

All instances of muitiple defining occurrences are treated as consistently as
possible. The principies that apply in all cases are

1. The first defining occurrence of an entity is treated as the defining
occurrence. and

2. all references to the entity should reference the first defining occur-
rence.

Al defining occurrences are representad with DEF_ID nodes (Section 3.8.3).
Multiple defining occurrences create muitiple instances of the same DEF_ID
node. DIANA uses the attribute sm_first to differentiate among defining occur-
rences and to allow references back to the first defining occurrence. The
attribute sm_first references the first defining occurrence of the entity in the
same way sm_defn denotes the defining occurrence for a used_id. The node
that is the first defining occurrence has an am_first that references itself.

Note that all used occurrences must reference the same defining occurrence.
the one that occurs first. This is the most consistent approach since this is the
occurrence that is elaborated in Ada semantics. This requirement aliows for a

Rationale Section 3.5 / Page 103

consistent treatment of all idwndflers. The attributes for ail defining occurrences
must stil be determined and for ail defining occurrences the attributes must be
identical. (The attributes may be different when separate compiiation issues
intervene: see Section 3.2.1).

There Is only one case that deviates from these principles. the case of
(limited) private types. Private types are given specilal treatment Iin DWANA, as
they are in Ada (Section 3.5.1.2),

in the following paragraphs we show the detalls of the DNA structure which
preserves these principles. We present the details individually for all the cases
where the language aliows several declaration points of the same entity. it
shouid be noted that representation specifications are not treated as declaration
points, although they do appear in declarative parts.)

3.5.1. Type Declarations

There are two forms of type declaration In which information about the type is
given at two different places: private and Incomplete types.

3.5.1.1. incomplete Type Declarations

The notion of an incomplete type permits the detinition of mutually dependent
types. Only the new name Iis introduced at the point of the incomplete decla-
ration. The structure of the type is given in a second type declaration which
must appear In the same declarative part. (This restriction ensures that there is
no interference from separate compilation.)

The deflning occurrences of both types are described by type_ld nodes which
have the semantic attribute sm_type_spec. in both cases. the value of this
attribute can denote the full type specification which satisties the DIANA restric-
tion. The defining nodes aliso have the attribute sm_first which refers to the first
occurrence. the incorrplete declaration. Note that if the incomplete type decla-
ration includes a discriminant part, that becomes the defining occurrence of the
discriminant identiflers (see Section 3.5. 1.3 below).

Figure 3-9 Iillustrates the DNA structure for the following Incomplete type
declaration.

type 1)

type T is xecord ...;

polt RO E F A5 R

Page 104 / Section 3.5.1.2 DaNA Reference Manual
type L I type
type_1id void type_id record

sm_type_spec sm_type_spec ‘
L] t' L] t L]

Figure 3-9: Example of an Incompiete Type

3.5.1.2. Private Types

Private types are used to hide information from the user of a package: a
private type declaration is given In the visible part of a package without any
structural information. The full declaration Is given In the private part of the
package specification. (This restriction ensures that there is no Interference
from separate compilation). Unfortunately. we cannot adopt the solution used
for incomplete types: if both defining occurrences had the same node type and
attributes. we could not determine whether the type is a private one or not. 1
This information is important when the type is used outside of the package.

DnNA views the declarations as though they were declarations of ditferent
entities—one is a private type and the other a normal one. Both dencte the
same type structure in their sm_fype_spec attribute. however. The distinction is
achieved by Introducing a new kind of a defining occurrence. namely the
private_type_id. it has the attribute sm_type_spec which denotes the structural
information given in tre full type declaration. LUmited private types are treated in
the same way. except that their defining occurrence s a | private_type_id. In
the case of (limited) private types the sm_first attribute of the type_ld node
refers to the private_type_id or |_private_type_id.

Figure 3-10 (llustrates the DIANA structure for the following example.

R -
R R

e e e e e e ———— . e

et it i et

DIPTSR " Paga Y

e & el o

R U T e

P PR L,

Rationale Section 8.5.1.2 / Page 105

package DEP_T is
é;ﬁ--rumms

private
éﬁn‘rhm...

type ce e type
private_type_id private type_id access
sm_type_spec sm_type_spec
e e

Figure 3-10: Example of a Private Type

Since we have Iintroduced two distinct defining occurrences for the private
type we must specify which of these definitions a used occurrence refers to.
Any use outside of the package denotes the private .ld or I_private_Id (but
nevertheless has structural Information) and any usage inside the package
denotes the full type declaration: in the interior context, there are no restrictions
on the use of the type.

3.5.1.3. Discriminant Parts

When an incomplete type declaration or (limited) private type deciaration
contains a discriminant part. the discriminant part must aiso appear in the
normal type declaration. This creates a muitiple definition of the discriminant
identiflers. Thus the dsormt_id node aiso has an attribute sm_first that refers to
the first definition point. ADA semantics demand that the discriminant part be
elaborated at the first occurrence.

The attribute sm_discriminants exists for |_private and private nodes because
for a generic formal private type deciaration. the discriminants are not asupplied
until instantiation. After [nstantiation., this attribute denctes the discriminants

R RIRTITT, S Y

Iy

VPO

TR T o ————
-

.

B —

Page 108 / Section 3.5.1.3 DIANA Reference Manual

supplied by the generic actual type.

When a discriminant part /s supplied in the (iimited) private type deciaration,
the sm_discriminants of the private node and the record node in the normal type
declaration should always refer to the discriminants in the first. (limited) private,
type deciaration.

3.5.2. Deferred Constants

Deferred constants are a direct consequence of the concept of private types:
since the structural detaiis of a type are hidden. the satructure of the Initialization
expression must be hidden as well. They are deferred to the private part. The
deferred constant declaration (represented by the node deferred_constant) and
the full declaration of the deferred constant (a constant node) are both defining
occurrence of the consi_ld. The attributes of both defining occurrences of a
deferred constant have the same values, satisftying our requirement. The at-
tributes denote the type specification and the Initialization expression. Both
attribute values are equal to those of the full declaration of the deferred con-
stant. Note that const_id also has the attribute sm_first to denote the first
defining occurrence. Figure 3~11 Illlustrates the DIANA structure for the foliowing
example.

type T is private;
A 1 constant T;

type T is range 0..10;
A 3 constant T 1= O;

3.5.3. 8ubprograms

The deciaration and body of a subprogram can be separate from each other.
Moreover, In the case in which the body Is compiled as a subunit. a
stub declaration can also be given. All three declarations can appear In
different compilation units: the deciaration in a package specification. the stub in
the package body. and the body as a compliation unit (subunit) itself. We first
oxamine the simplest case where declaration and body appear In the same
declarative part. Then we adapt the solution for the cases where separate
compiiation Iis invoived.

Rationale Section 8.5.3.1 / Page 107 «f
[-
» type deferred_constant
"t private
const_{d te
1 sw_obj_type
sm_obj_deT
constant %
; ‘ oge type
const_id .constrained "0
sm_obj_type sm_type_struct / \
sm_obj_def sm_constraint “t" integer
1 3
: \ ot void -> range
.o. .10.

Figure 3-11: Example of a Deferred Constant

3.5.3.1. Declaration and Body in One Declarative Part

The declaration and the body of a subprogram are viewed In DIANA as
. belonging to the same entity. Therefore. according to our restriction. both
defining occurrences must reference the first defining occurrence (the sub-
program declaration) and must have the same attribute values. Since the header
of the first defining occurrence is used to elaborate the subprogram. the
am_apec sttribute of both defining occurrences denotes the header of the decla-
ration.

Both defining subprogram identifiers further reference the block which
describes the body. This method leads to the structure shown in Figure 3-12.

YT

e -

F -

. ——
-

Page 108 / Section 3.5.3.2 DwnA Reference Manual
subprogram _dec)
proc_id procedure void
subprogram b
sm_spec 7 program _body
sm_body
proc_1d procedure block
sm_spec
sm_body

Figure 3-12: Subprogram Structure

3.5.3.2. Deciaration and Body in Ditferent Compliation Units

Since a subprogram body cannot appear in a package specification but must
be declared in the package body. and since package bodies will often be
separately complied. the declaration and body of the subprogram will often be in
separate compiiation units.

Updates to previously complled units are forbidden in DIANA. Therefore, it ls
not possible to Insert the value of sm_body in the declaration. The reasons for
this decision are discussed in more detall In Section 3.2.1. Therefore. in ail
cases where the body is in a separate unit, the value of sm_body is vold.
Nevertheless. If the DIANA tree for the declaration is processed. the attribute may
be temporarily set to point to the corresponding body if it is present as well.
Thus. during proceasing DIANA principles for multiple definitions are followed.

The permanent structure for a subprogram declaration and body in separste
compilation units is as shown in Figure 3-13.

= — — e i el on il mini 7 it an b L. e

7 " — _
o . .

Rationale Section 3.5.3.3 / Page 109
subprogram _decl
t
|
1 proc_id procedure void
, sm_spec - subprogram _body
! |
} sm_body \
; proc_id procedure block
. sm_spec |
sm_body

Figure 3-13: Subprogram Oeclaration and Body in Different Compilation Units

. ~wma.

3.5.3.3. Subprogram Bodies as subunits

’ it a subprogram body is compiled as a subunit, it is possible for there to be
a third defining occurrence. a stub declaration. making a defining occurrence in

three different complilation units. We adapt the solution presented above. adding

the stub deciaration which makes the picture more complicated. as is shown In

Figure 3-14.

The attribute sm_studb is used to refer to the defining occurrence of the stub.
This attribute provides a quick means of finding the stub when it is in a separate
compliation unit. Figure 3-15 shows the DWNA values for the attributes
\ am_firat and sm_stud. (in subsequent figures the values for the attributes
7 am_first and sm_stub are not shown. The treatment of sm_first and sm_stub for

} other DIANA constructs does not differ significantly from the treatment shown In

|

l

figure 8-15.)

Just as asm_body Is prevented from forward references. the value of
am_stub Is required to be void when the stub appears In a separate
compilation unit. H

4

—— T
L]
s A e P e~ L N AET N 3 PR ST -5

-

o ame -

Page 110 / Section 3.5.3.4 DwNA Reference Manuai
subprogram _dec]
proc_id procedure void
sm_spec subprogram _body
sm_body
proc_id procedure stubd
sm_spec A
sm_body
subprogram _body —
proc_id procedure block
sm_spec
sm_body

Figure 3~14: Exampie of a Subprogram Body as a subunit (1)

3.5.3.4, Entries and Accept Statements

An entry declaration and its corresponding accept statements are not treated
as different definition points of the same entity. The abstract syntax indicates a
name for an accept statement which is viewed as a used occurrence: DIANA uses
the same approach. Thus the entry_id is the unique defining occurrence: a
used_name_id appears as a child of an accept statement and refers to the entry
declaration. However. the formal part of the entry declaration and the accept
statement muitiply define the entry formals (see Section 3.5.3.5 below).

3.5.3.5. 8Subprogram Formals

When the declaration of a subprogram is separate from the subprogram
body (and stud) the subprogram formal part Is repeated. This creates a
muitiple definition of the subprogram formais. Thus the subprogram defining

) RTINS
BRI & T1o7 - LS RN

¥ o

i

S e T iy s contitiih

it i N T it s .‘_ - -4

T s —

Rationale Section 3.5.3.5 / Page 111

subprogram _decl

proc_id procedure void
sm_(irst subprogram _body

sm_stub

void

sm_first
\ sm_stub

subprogram _body
proc_id procedure block
sm_{irst
sm_stud

Figure 3-18: Example of a Subprogram Body as a subunit (i)
occurrences (in_Iid. In_out_id. and out_id) have the attribute sm_first to refer to
the first occurrence. ADA semantics require that the first occurrence is the one
that is elaborated. ’

This treatment applies to formal parts In entry declarations and accept state-
ments aiso.

3.5.4. Packages

Packages are declared by at least a specification and possibly a body:. in the
case of subunits. a stub declaration must also be given. Thus packages present
the same situation as subprograms. and the DWNA treatment of packages is In
principle the same as that for subprograms (except that the structure and the
attribute names are different).

————— ———— - - e —— o T S o

R . g .o 8 .
BRI re I TR

—

proc_id procedure stud !

TTT T T e e e P T TP

- - ‘;x..-

Page 112 / Section 3.5.4 DIANA Reference Manual

We restrict ourseives to the complicated case of having three different defini-
tlon places for packages: the DIANA structure Iis shown In Figure 3-186.

package_dec)
package_id package_spec
sm_spec |~ package_body
t sm_body
void package_id stub
sm_spec
sm_body
- package_body
package_id block
sm_spec
sm_body

Figure 3-16: Example of a Package Body as a subunit

3.5.5. Tasks

Task specifications can appear In two contexts., as a task type and as a
single task specification. The context is distinguished by the kind of the defined
identifler (type_id. var_Ild). A task body Is neither, so ODWNA has additionally a
task_body_Iid. This additional node impilies that there are two defining occur-
rences and therefore two distinct DIANA entities which do not have the same
attributes. Although there are different nodes. the DIANA structure looks similar
to the solution for packages. In particular. the same principles are applied In
the presence of separate compllation.

——————

Rationale Section 3.5.5.1 / Page 113

3.5.5.1. Task Types and Task Bodies

In the case of a task type and a corresponding body. we have the DIANA
structure shewn in Figure 3-17. In the presence of separate compilation. the
sm_body attribute denotes wvold for the task specification and stub for the
stub declaration. This approach paralleis the approach used for for packages
and subprograms. Used occurrences of the task Identifier denote the type_id:
the sm_first for the task_body_id aiso references the type_id.

type
type_id task_spec
sm_type_spec sm_body
task_body
task_body_id block
sm_type_spec
sm_body

Figure 3-17: Example of a Task Type and Body

3.5.5.2. Single Tasks and Task Bodles

Single tasks are represented by a task_deci node with a var_id. The task
specification (s given as an anonymous type specification. The DIANA structure,
nearly the same as the structure used for task types. is shown In Figure 3-18,
Used occurrences reference the var_ld: the asm_first attribute of the
task_body_id also references the var_id.

Note that in the case of an address specification of a singie task., the
am_address of the var_id and the task_spec are both set.

T L 7 S ST R 1IN

e ———EE—. . . —— — — = . e e i e s m————

VPRI R, S ST VIR TR NP

Page 114 / Section 3.5. 8 DIANA Reference Manual
task_decl
1 / \
- var_id task_spec
_i sm_obj_type sm_body
1
task_body
task_body_id block {
I
sm_type_spec
. sm_body
{
' Figure 3-18: Example of Single Tasks

3.5.6. Qeneric Units

Like subprograms and packages. generic units can have several declaration
points: the specification and the body (and possibly the stub as well). In order
to have the same information at these declaration points. the {dentifier of the
.body of the generic unit has to be a generic_id with the same atiribute values as
the defining occurrence within the specification. Thus the attribute
sm_generic_param_s points to the list of generic parameters given with the
specification, and the attributes sm_spec and sm_pody are set as in the case of
simple aubprograms or packages. Note that for generic subprograms the sub-
program formails are treated as described Iin Section 3.5.3.5. The DaNA
structure for a generic subprogram is lllustrated in figure 3-19.

o o o

Canaant

rangwy, -

————— - ——— e - —_— T —— . ot = e . e R

|
ﬁ
|

Rationale Section 3.6 / Page 115

generic
generic_id generic_param_s procedure
sm_generic_param_s subprogram _body

sm_spec

sm_body te

generic_id procedure block
sm_generic_param_s
sm_spec
sm_body

Figure 3-19: - Exampie of a Generic Body as a subunit

3.6. Treatment of Instantiations

In this section we describe how DIANA treats instantiations of generic units.

An obvious implementation would copy the generic unit and substitute the
generic actual parameters for all uses of the generic formal parameters in the
body of the unit. This substitution cannot be done if the body of the generic
unit is compiled separately. A more sophisticated implementation may try to
optimize instantiations by sharing code between several instantiations. Therefore
the body of a generic unit Is not copied in DIANA in order to avoid constraining
an implementation. indeed, an instantiation may occur in the absence of a
generic body.

in DIANA the Instantiation is performed In two steps. First, a normalized list
of the generic parameters is created. The nodes of the type instantiation have
the semantic attribute sm_dec/_s with a sequence of declarations. This attribute
is the normalized list of the generic parameters, including entries for all defauit
parameters. The values of this attribute are determined as follows:

e For every generic formal In—parameter., a constant declaration s
created (the sm_ob/_def refers to either the expression given or to its
default vaiuve).

Page 116 / Section 3.6 DIANA Reference Manual

e for every generic formal In-out-parameter. a variable declaration Iis
created (the sm_ob/_def refers to a rename node which indicates the
object Iin the actual list that Is renamed by the new declaration),

e for every generic formal type. a subtype declaration Is created (the
sm_type_spec attribute is a constrained node with a void constraint
that references the type name given in the association list). and

s for every generic formal subprogram. a new subprogram declaration is
created (the sm_body attribute references a rename node which In-
dicates that the newly created subprogram renames either the sub-
program given in the assoclation list or that chosen by the analysis
as the default).

in the second step the specification part of the generic unit is copied. Every
reference to a formal parameter in the original generic specification is changed
to reference the corresponding newly created declaration. |f a formal type has
discriminants, references to them are changed to point to the corresponding
discriminants of the base type of the newly created subtype.

Examples of instantiations are presented in the following two sections.

3.6.1. Instantiation of Subprograms

The generic instantiation of a subprogram Is represented by the structure
shown in Figure 3-20. We use procedures as an exampile. the structure for

functions is similar. Figure 3-20 Iliustrates the instantiation of the following
generic:

generic

LENGTH : INTEGER := 200; — default value

type ELEM is private;
procedure EXCHANGE (U : in out ELEM);

procedure SWAP is new EXCHANGE(ELEM => INTEGER);
The procedure node of the subprogram_decl! contains no Information: Iits
parameter list is empty. The Instantiation node represents the generic parameter
assoclations: It Is referenced by the sm_body attribute of the proc_id node. The
instantiation node also has a normalized list of the generic parameters: it
contains a constant declaration of "LENGTH’ using the default and a type
declaration of the subtype 'ELEM’ using the type name given In the association
list. The sm_spec attribute of the proc_id node references the header of the
instantiated subprogram. It is obtained by copying the generic subprogram’s
header and replacing references to the generic formal parameters with references
to the new subtype declaration and constant declaration.

r . o ‘«————___—————'————-——1

Rationale
subprogram _decl
’ i p id
. t roc_
| procedure “‘t"‘tilt‘lon
: ‘ sm_body
| sm_exp s
im_spec

"EXCHANGE"
"SWAP*

Section 3.6.2 / Page 117

————> constant

A WA

assoc

‘ ‘1 procedure / \

*longth® . . *200° j

‘ ‘ "ELEM" *integer®
j |
param_s subtype
in_out “ELEM" constrained
.
| |
.
3 - e
U~ -
' ELEM"
sm_defa
3
Figure 3~-20: instantiation of a Generic Procedure

i
[
b -) o L it - o
Lﬁl—‘-“ ﬁ_-‘v@mﬂ i “L_ —

e m——— e ———— o S O L = e

Page 118 / Section 3.6.2 DIANA Reference Manual

3.6.2. Instantiation of Packages

The generic Instantiation of a package is represented in DIANA by the structure
shown In Figure 3-21. The Instantiation node |Is referenced by the
sm_body attribute of the package Identifier. The package specification (s con-
structed by copying the specification of the generic unit and replacing all
reflerences to generic formal parameters with references to their corresponding
actual parameters. The resuiting specification Is denoted by the
sm_spec attribute of the package identifler.

8.7. Treatment of Renaming

The renaming aof entities does not Iintroduce further problems. However, the
DIANA representation for some renamings may not be obvious. This section
clarifies how DIANA treats entities introduced by a renaming declaration.

Renaming of objects and exceptions are simple and not discussed here.
Note that an Iidentifier which renamea a constant object has to be a const_id.
Constant objects are constants, discriminants, and parameters of mode In. as
well as components of constant arrays.

3.7.1. Renaming of Subprograms

The renaming declaration for a subprogram must repeat the header of the
renamed item. This header can be denoted by the sm_spec attribute of the
newly-introduced subprogram identifier. The rename Information Is referenced by
the sm_body attribute. since the actual body can be obtained from the rename
information. The structure Is illustrated in Figure 3-22.

Note that an identifier which renames an entry or a member of an entry
family has 1o be an entry_ld. it is posaible In ADA to rename an enumeration
literal as a function. In such a case the Identitier that renames an enumeration
literal has to be an enum_id.

3.7.2. Renaming of Packages

The renaming declaration of a package does not repeat the package
specification. The sm_spec attribute of the new package Iidentifier therefore
references the original package specification. In order that the specification is
always present for a package identifier. The sm_pody attribute denotes the
rename node. The resulting structure is illustrated in Figure 3-23.

Rationale

Section 3.7.3 / Page 119

package_decl

/N

package_id —/—> instantiation

sm_body
sm_spec v e .
package_spec
decl_s1 decl_s2

Figure 3-21: instantiation of a Generic Package

Page 120 / Section 3.7.3 DIANA Reference Manual
subprog_dec)
proc_id procedure rename
i sm_spec j \ ‘
!
: sm_body
param_s vt

Figure 95-22: Renaming a Procedure

package_decl

<\

sm_spec

-

package_spec

N

decl_s1 decl_s2

|

Figure 3-23: Renaming a Package

R N . FTARLING

S g - e v e s e e e
e e ————— . it . ot e

;e o -

Rationale Section 3.7.3 / Page 121

3.7.3. Renaming of Tasks

Task objects can be renamed like other objects. The task renaming is
treated just like the renaming of objects. Task types are renamed just like other
types. Note that there is no other renaming declaration for tasks.

3.8. Implementation Dependent Aftributes

Representation Independence was a principal design goal of DWNA. DIANA
does not force an implementation strategy on either a Front or Back End—or on
any other tool for that matter. The description of DIANA deals with this problem
(in part) by using private types for aitributes that are to be implementation
defined. An Iimpiementation has the freedom to choose a suitable
representation. but it must support the corresponding attributes. Thus an Im-
plementation must provide appropriate packages in which the attribute types are
defined. together with the necessary access operations.

in this section we describe the purpose of the attributes In detail and sketch
possible internal and external representations of them.

3.8.1. Evaluation of Static Expressions

The language requires that static expressions be evaluated at compiie time In
particular contexts (see ADA LRM [B8]. Section 4.9). This evaluation can be
done either by the code generator or by the Front End (with target and host
independent arithmetic). Both ways are supported by DIANA. Since the DWNA
structure may be used as input to the Front End In the case of separate
compilation. the latter solution has the advantage that the previously evaluated
expression can be used In the currently compiled unit. For this purpose every
expression node that can have a static value has an attribute sm_vaiue whose
type Is Iimplementation depondont’. Its external representation is discussed in
Chapter 5. The Implementation of the type must provide for a distinguished
value of this attribute which indicates that the expression Is not evaluated. DIANA
does not provide for non-static values to be computed., even If an
implementation’s semantic analyzer is capable of evaluating some such expres-
slons (see Section 1.1.3).

TNote thet only sosier types cen have static expressions

- ——— — - — - r——-——_—-.,,—-——~-—-.'—‘-~_,w~——,mu.-» —_— e ——

—

Page 122 / Section 3.8.2 DANA Reference Manual

3.8.2. Representation of identifiers and Numbers

The attribute types symboi_rep and number_srep are not defined In DWNA.
Their externa! representation Is discussed In Chapter 5. Their internal represen-
tation is not specified. 80 that DIANA does not impose a speclal implementation.

3.8.3. Source Positions

Source position is Important for error messages from the complier. It may
aiso be useful to other tools that work with the DIANA structure. such as
interpreters or debuggers.

The structure of this attribute Is not defingd by DIANA since each computer
system has its own notation of a position in a source flle. Moreaver this
notation can vary between tools of the same environment. an interactive syntax-
directed editor may have a different type ot source position than a batch-oriented

| compiler for example.
‘\‘ DIANA does not require that this attribute be supported by every Implementation
(see Section 1.1.3). Any implemantation that does support this attribute must l

define a distinguished value for this type for undefined source positions, which
can be used if nodes are created which have no equivaience in the source flle.

’ The library manager for certain implementations may need a value indicating
which compliation unit a DIANA entity comes from. This Information appropriately
belongs with the source position. and should be iIncorporated into such an
implementation’s definition of the private type.

3.8.4. Comments

The Ix_comments attribute Is used for recording comments from the source
program. The structure of this attribute is not detined by DNA since every
implementation may have its own method of attaching comments to DIANA nodes.
A generalized method for attaching comments to nodes is impracticai: there is
no method that will be accurate for all commenting styles. We envision focal
commenting standards that will be enforced to match the impiementation choices
for attaching comments to tree nodes. Note that support of the Ix_comments
attribute is not required for an implementation to be considered a DIANA producer

: or & DA consumer.

T

.
-—

Rationale Section 3.8.5 / Page 128

3.8.5. Predefined Operators and Bulit-in Subprograms

The asm_operator attribute Is used to identify predefined operators and
implementation-dependent bulit-in subprograms’. User-defined operators are
treated as functions In DIANA and are not considered here. The predefined
operators and buiit-in subprograms are treated specially because It is important

information for the code generator and for an optimizer.

The type of this afttribute Is implementation-defined. A likely !mplementation
is an enumeration type with at least one literal for each predefined language
operator. The refinement of DIANA given In chapter 2 gives the minimum subset
of operators that must be supported. An (mpiementation can obviously support
further operators which can be added to this enumeration.

The means by which this information is made known to the Front End is not
specified in DIANA. We provide only for representing the result of semantic
analysis: If the Front End recognizes that a compilation unit uses one of the
bulit-in subprograms. then the used_name_id of the subprogram Is changed to a
used_bitn_id whose sm_operator attribute Is set to denote the particular built-in
subprogram that was used.

3.9. Equality and Assigoment

The DWNA representation assumes a weli-defined notion of equality for ail
attribute types. including tree-vailued attributes. An implementation must provide
an equality comparison operation 80 that, for Instance. the
sm_type_spec attribute of two entities of the same type will be equal and will not
be equal to the sm_type_spec attribute of any entity of different type.

if an Iimplementation implements nodes as access types and tree-valued
attributes as pointers. then the equality comparison can be a simple pointer
equality. OIANA does not force this implementation. however. It is stili possible
for an implementation to make separate coples of a defining occurrence. For
example. consider a situation where a separately complied unit A defines a type.
two other units B and C use this type to declare variables X and Y, and a fourth
unit D references both X and Y. It is possible for an impiementation to decide to
copy some type Iinformation from A into B and C. However. a tool processing

m’&uwm.mmmmanMWMdmmemmw

e

Page 124 / Section 3.9 DiANA Reference Manual

the representation for unit D must be able to compare the sm_type_spec at~
tributes of X and Y for equality. Thus the Implementation making the coples
must keep enough Information In its representations to be able to tell that the
coples are coples of the same thing. One possible solution is to attach a
unique key to every entry and to copy the key along with the other portions of
the entity. The equality test can use this key for comparison.

: DIANA imposes a further requirement on Implementations of attribute-storing
procedures. If an implementation stores an attribute of a defining occurrence or
a type specification. this change must be visibie to ail uses of such entities.
Once again. making the change visible is easy If the corresponding attributes iIn
the uses are implemented as pointers. in the case where an Implementation
has coples of such entities., the store procedure must ensure that aill coples
which might be referenced are updated appropriately.

Note that the duplication of tree structures imposed by DIANA, especially those f
described In Sections 3.4.2.3 and 3.6. are not coples in the sense of this)
section. They represent information for new objects. either of derived types or |
of instantiated units. The new objects must be different from the originai ones. ‘\

' DIANA does make a requirement about the value of tree-valued attributes In
! the external ASCHl form (Chapter 5). Tree-valued attributes that are equal must

be represented externally by a reference to the same tree. they must essentiaily
3 share the value. This Issue is addressed more completely in Chapter 5.

3.10. Summary of Attributes

A short description of all attributes ot DIANA closes the Rationaie. We do not
describe the structural attributes (for the tree): this description is in the
AFD and can be deduced from the concrete syntax of ADA (which Is included In
the DIANA definition for convenlence). The remaining three attribute classes are
described. If they are aiready explained in the Rationaie, then only a reference
to that section appears.

3.10. 1. Lexicai Attributes

3 4 Ix_numrep: internai (or external) representation of a numeric llteral,
the type is implementation dependent. see 3.8.2.

Ix_defauit: is of type Boolean. Indicates whether the mode of an
; ‘ in-parameater was specified (False) or defauited (True).

o~

Rationale

Ix_prefix:

Ix_srcpos:

ix_symrep:

Ix_comments:

sm_actual_delta:
sm_address:
l sm_paso_type:
i sm_pits:

sm_pody:

sm_comp_spec:

sm_constraint:

sm_controlled:

sm_deci_s:

Section 3.10.1 / Page 125

is of type Boolean, Indicates whether a function call was
written using prefix (True) or infix (Faise) notation. see
3.3.4,

source position of the corresponding node. the type s
implementation dependent. see 3.8.3.

Internal (or external) representation of a symbol (/.e.. an
identifler or a string). the type is implementation
dependent, see 3.8.2.

representation of comments from the program source. the
type is implementation dependent, see 3.8. 4.

3. 10. 2. Semantic Attributes

Is of universal rational number type. contains the value of
the predefined attribute 'ACTUAL_DELTA.

denotes the @expression given in a representation
specification for the predefined attribute ‘ADDRESS. it is
void if the user has not given such a specification.

denotes the base type of a subtype. see 3.4.2.2.

Is of a universal integer type., contains the value of the
predefined attribute 'BITS.

denotes the body of a subprogram or package. It is void if
the body or stub are not In the same compilation unit, see
3.2.1. For instantiated or renamed entities it has the type
instantiation or rename (see 3.6 or 3.7. respectively).
For generic formal subprograms it denotes the
FORMAL_SUBPROG_DEF. it the pragma INTERFACE has
been applied to the subprogram, It denotes the defining
occurrence of the given language name In the predefined
environment(see Appendix).

refers to the representation specification tor a record com-
ponent or discriminant.

for expressions see 3.4.3, for sublypes see 3.4.2.2.

indicates whether the pragma CONTROLLED has been ap—-
plied to the type.

belongs to an instantiation node. it refers to a normalized
parameter list which contains a declaration (DECL) node for
all formal parameters, see 3.8.

T

Page 1268 / Section 3.10.2 DWANA Reference Manual

am_dein:

sam_discriminants:

sm_exception_def.

denotes the defining occurrence of a used identifier. see
3.3.

denotes the sequence of discriminants given for a record or
(limited) private type. may be empty. see 3.5.1.3. ‘

denotes the EXCEPTION_DEF subtree of an exception decla-
ration. which is void In normal cases and a rename node if
it iIs a renaming declaration.

sm_exp_type: denotes the type of the expression as the resuit of over-
loading resolution, see 3.4.3.

sm_first: refers to the first occurrence of a muitiply defined identifier.
see 3.3.3.

am_generic_param_s:

sm_init_exp:

sm_location:

denotes the list of generic parameters of a generic sub-
program or package.

denotes the Iinitialization expression given for numbers. In
parameters. record components, and discriminants.

denotes the location of a subprogram: it may be (a) void.
(b) the Iidentifler (pragma_ld) of the pragma INLINE If that
has been applied to the subprogram. or (c) an expression
supplied by the user in an address specification for the
subprogram.

sm_normalized_comp_s:

denotes the normalized list of values for a record aggregate
or for a discriminant constraint., including default values.

sm_normallzed_param_s.

sm_obj_def:

sm_obj_type.

sm_operator:

denotes the normalized list of parameters for a procedure,
function, or entry call. Iincluding the defauit parameters.

denotes the Initialization expression of an object. It is void
if none is given. in the case of a renamed object. |t
denotes the rename node of the declaration structure.

denotes the type specification of a deciaration (constants,
parameters. discriminants. numbers. variables. enumeration
literais, and tasks). For deferred constants see 3.5.5. in
case of numbers it denotes one of the universal types, see
Appendix |.

denotes one of the predefined operators or bullt-in sub-
programs. see 3.8.5.

Rationale

sm_packing:

sm_pos.

am_record_spec:.

sm_rep:
U am_alze:

sm_spec:

' l sm_stm:

sm_stub:

sm_ftype_spsc:

sm_type_struct:

sm_vailue:

! ’ sm_storage_size:

Section 3.10.2 / Page 127

indicates whether the pragma PACK has been applied to that
type.

is of universal Integer type. contains the value of the
predefined language attribute ‘POS of an enumeration literal.

refars to the representation specification for a record.

is of universal integer type. contains the value of the
predefinad ianguage attribute '‘VAL of an enumeration literal.
which can set by the user. See aiso 3.4.2 3.

denotes the expression given In a representation specifica~-
tion for the predefined language attribute ‘SIZE. it is void If
the user has not given such a specification.

denotes the specification of a subprogram or package. In
the case of subprograms, it is Its header (for
instantiations, see 3.6). In the case of packages, it is
the package specification. For instantlated packages, see
Section 3.6 and for renamed packages. see Section 3.7,
In the case of a generic unit., it is the generic header of
the unit.

denotes the statement to which a label. lo0op name. or
block name deflnition belongs or the loop which is left by
an exit statement.

denotes the expression given In a representation
speacification for the predefined language attribute
'‘STORAGE_SIZE: it is void If the user has not given such a
specification.

refers to the defining occurrence of the stub. see 3.5.3.3.

denotes the specification which belongs to a type I|dentifier;
for private and incomplete types., see Section 3.5.1. for
tasks and task body identifier, see Section 3.5.85.

denotes the structural Information of a subtype. see
3.4.2.2, or derived type. see 3.4.2.3.

contains the value of the corresponding expression If it is
statically evaluated. Iits type is Implementation dependent,
see 3.8.1.

~

Page 128 / Section 3.10.3 DaNA Refarence Manual

3.10.3. Code Attributes

cd_impl_size: of type universal integer. contains the value of the attribute
‘SIZE tor static subtypes. it may be less than a user
defined size.

3.10.4. Unnecessary Attributes

; There are a number of attributes one might expect of semantic analysis that
are not explicitly represented in DIANA since they are very easy to recompute.

b The floating point attributes corresponding to ‘MANTISSA., °‘EMAX, ‘SMALL,

‘LARGE. and ‘EPSILON can all be computed from ‘DIGITS, which is required to
be a static expression. Formulae for these attributes are given in Sections
3.5.7 and 3.5.8 of the Language Reference Manual, and are reproduced here
for convenience:

'MANTISSA = celling('DIGITS * Ln(10) / Ln(2))
.
' "EMAX = 'MANTISSA * 4
"SMALL = .5 * 2RR(—'EMAX)
; I ‘LARGE = (1.0 - 'EPSILON) * 2**'EMAX
’ 'EPSILON = 2.0%*(~'MANTISSA)

For fixed point types, all attributes can be defined Iin terms of
‘ACTUAL_DELTA and 'BITS.

——— e ——— s e = . . g e i

PrERIT

— " RO e

B et e TV SRR,

Deflinition of the Diana Operations Page 129

CHAPTER 4
DEFINITION OF THE DIANA OPERATIONS

Recall that DIANA is an abstract data type. By the nature of an abstract data
type as Implemented in a programming language. all that neec 0e known about
the type are the functions and procedures that operate on objects of the type.
Thus to realize the abstract type DIANA In some programming language. all that
Is needed is to write those functions and procedures. In a language flke ADA It
is poasible to separate the specification of these functions and procedures from
their implementation.

In this chapter we provide an ADA specification (but not implementation) of
the interface to the necessary functions and procedures to define DIANA. Fur-
ther, we suggest how. in general., an Implementation-specific package may be
derived from‘ an DL deflnition. Since the derivation of packages from an IDL
description Is a complex topic. we only sketch one possible derivation for one
particular language. A detailed discussion of the package derivation process is
given in the IDL Formal Description [9].

4.1. The DWNA Operations

Every object of type DIANA is the representation of some specitic ADA program
(or portion of an ADA program). Specificaily, it may be thought of as the
output from passing that program through the Front End of an ADA compiler. A
minimum set of operations on the DIANA type must include the following functions
and procedures:

type_getter Such a function permits the user to determine of a given
object what its type Is. in DIANA terms, it an object is
known to belong to some specific node class, the function
determines the object’s node type.

selector Such a function returns the value of a specific attribute of a
node.
constructor Such a procedure builds a node from its constituent parts.

or changes the value of an attribute of a node.

In addition, operators are necessary to determine the equality of DIANA objects.
Specifically. are a given pair of instances of a DWNA type In fact the same

4]

Page 130 / Section 4.1 DIANA Reference Manual

instance. as opposed to equivalent ones'? In case there are variables of this
abstract data type. an assignment operator is necessary as well.

4.2. DA’s Use of Other Abstract Data Types

An (DL definition (such as the definition of DIANA in Chapter 2) is bulit upon
subsidiary abstract data types. These Include those used in the IDL notation
(such as Integer. Boolean, Seq Of) as well as implementation-defined attribute
types (such as source_position., symboi_rep. and so on). All of these except
Seq Of have the same operations as described above. It must be carefully noted
that for the scalar types (Integer. Boolean) there |8 usually no distinction drawn
between equality and equivalence. Whenever doing so is necessary. we carefully
draw such a distinction.

The sequence type Seq Of can be considered as a bulit-in type that has a
few special operators. Specifically, there must be a way to check if a sequence
is empty and to fetch items from a sequence. Additionally, there must be
operators for adding and removing items from a sequence.

The implementation defined types must have all the operations appropriate to
them as well as those described above for attributes and nodes.

4.3. Summary of Operators

This sectlon summarizes the operations described above.

The operations on nodes are

create a node:

fetch the value of an attribute of a given node.

seot the value of an attribute of a given node;

compare two nodes to see It they are the same node: and
assign a specitic node to a variable.

The operators defined for the IDL sequence type (an ordered list of nodes of
the same class) are
e create a sequence of a given type.

* select an element of a sequence.
* add an element to a sequence.

"Ihis distinction is sddressed further in Section 3.9 on page 123,

. T 1

Deflnition of the Diana Operations 8Section 4.3 / Page 131

* regmove an element from a sequence:
* compare two sequences 1o see |f they are the same sequence:. and
+ assign a sequence to a variable of sequence type.

The operators required for the IDL scalar types (Integer. Rational. and
f Boolean) are

* create a scalar:
| e compare two scalars to see If they are equal (/.e., the same

scalar) : and
e assignment.

4.4. General Method for Derlving a Package Specification for DIANA

To derive a general package specification for defining this abstract data type
called DIANA. further decisions concerning the impleamentation model need 1o be
made. For example. one must decide how to represent the various DIANA
objects. After these decisions have been made. a straightforward process can
; be applied to derive the package specification from the ODWNA domain. A formal
method for specitying these decisions is presented in the iDL formal description.
iIndeed, an IDL tool would produce such a package automatically from the
definition of DNA In Chapter 2. For the purposes of this document, the
following discussion is sufficient. :

e The implementation model must deal with two separate areas of concern.
First, there are the implementation restrictions imposed by the choice of the
source language that the DIANA type is being implemented in. Secondly. there Is
the cholce of corresponding entities in the implementation language for entities in

1 the DIANA domain (/.e., how DIANA objects are represented). These decisions H

can be driven by the design considerations of toois that expect to use the DANA

b type. as well as by specific restrictions of the host system.

; The general steps are as foliows:

e reprasentation of IDL types. An Iimplementation for each of the 1DL
types must be chosen. Normally for the scalar types. the implemen—
tation language supports an equivalent (or close enough) abstract
type. For the sequence type and the implementation defined
types. the same decisions need to be made. and an abstract data
type for these derived and specified. (The DANA domain specification
provides a handle on the abstract data types for the implementation
defined types.)

* representation of node classes. The class names of the DIANA lan-
guage must be handled by the package derivation process. because

———

—

y P . . ROV
, ; . o —m——— = = - ettt e e A P — = . - - = e ae— e
L‘““J TN VRS t) o

Page 132 / Section 4.4 DIANA Reference Manual

the types of the attributes are defined using these meta-variables.

s representation of nodes. The node representation choice must permit
attribute values to be assoclated with the node. since each specific
Instance of a node may have different attribute values.

e method of defining operators. The operators in the language must be
specitied either as funciions and procedures In the Impiementation
language or by equating them to specific operations already in the
Iimplementation language.

4.5. Deriving a Specific ADA Package

To derive a specific ADA package. we apply the general method as outlined in
the previous section. First, we choose an implementation model of an abstract
data type defined as a singie package. A single ADA private type is used to
defline all nodes In the DIANA domain. All operations are calis on procedures or
functions specified in the package. Having made these decisions. we then
address the following points:

s representation of IDL types. The IDL Boolean type could be imple-
mented directly by the ADA BOOLEAN predefined type. However. the
iDL Integer and Rational types would have to be represented some-
how so as to be able to represent arbitrarily large quantities, and (in
the case of rationals) to represent them exactly with no approximation

Using the ADA predefined types INTEGER and FLOAT would not be
adequate.

For the sequence type Seq Of, we Include a private type definition
and primitive operations. The operations permit creation of an empty
sequence (Make)., functions to add an element at the beginning
(ingert) and end (Append) of a sequence. and functions for selecting
the first element of a sequence (Head) and the remainder of a
sequence (Tall). There is also a function to determine if a list is
empty (Is_Empty). Note that additional functions and procedures for
this type could be added.

e representation of node ciasses. Since a single type is being used 1o
represent all nodes in the domain., the dir*'~ction between different
classes Is not necessary.

e representation of nodes. A single private type (called Tree) s
provided . for all the node names defined in the DIANA domain, An
enumerated type (called Node_Name) is defined which provides a

’Thuomummum led out in the Ada LRM, which requires that some arithmetic performed
at compile time be done exactly.

I W

e

iyt e b

—

Definition of the Diana Operations Section 4.5 / Page 138

name for all the various nodes defined in the DWNA domain. An
additional function (named Kind and returning a resuit of type
Node_Name) is added to the Tree type to distinguish between different
node kinds.

« method of defining operators. The create operator for the various
nodes becomes a single function that takes a Node_Name and returns
a new Tree node with most of its attributes not defined. Each of the
DiaNA attributes has a corresponding procedure and function In the
package specification that respectively modify and fetch the value of
an attribute. The procedure and function both take the specific Tres
node as an argument. The procedure takes an additional argument
which gives the new vaiue for the attribute: the function returns the
corresponding attribute value.

The comparison operators for the nodes and for sequences are the buiit-in
ADA comparison operators ('=', ‘'/=') which are defined for private types. The
comparison operators tor the scalar types are not defined In this package. The
ADA language provides all create operations for the scalar types. The essignment
operators are the pre-defined ADA assignment operators for varlables of the
private types. Except for these assumptions on the use of bullt-in operations.
the full ADA package Is given.

A few facts are important:

e Because some of the DIANA node types conflict with ADA reserved
words. we choose to prefix all node_names with the prefix “dn_ "
(short for DIANA) .

e Remember that this specification defines a minimal set of operations:
Implementations may augment it with other useful ones for particular
applications.

e We have added an additional type (ARITIES) and several procedures
and functions (ARITY, Sonl, Son2, and 8Son3) which are mentioned
in the ADA Formal Definition and which are very useful in the tree
traversais essential to many phases of compilers, as well as other
tools.

4.6. The DWNA Package In ADA

A summary of essential points of the ADA package specification for DiANA
appears in Figure 4-1 on page 134. For ease of understanding. the figure
contains only as much of the package as fits onto one page.

The package defines and makes avallable the following types. functions, and
procedures:

R T

Page 134 / Section 4.6 DNA Reference Manual

package Diana is
typs Tres is private - a Diana node
type SEQ_TYPE umm; -— sequence of nodes
type NODE_NAME is -— enumeration class for node names
(oo -— about 160 different node types
)

- Tree constructors.

function MAKE (c: in NODE_NAME) return TREE;
proosdure DESTROY (t: im TREE);

function KIND (ts in TRER) reoturn NODE_MAME;
— Tree traversers from the Ada Formal Definition.

type ARITIES is (nullary, unary, binary, ternary, arxbitrary),

function ARITY (t: An TREE) return ARITIES;
function SOMl (t: in TREE) return TREE;
procedure SON1 (t: in out TREE; v: in TREE),
function SON2 (t: in TREE) return TREE;
procedure SON2 (t: in out TREE; v: in TREE);
function SON3 (t: in TREE) return TREE;
procedure SON3 (t: in out TREE,; v: in TREE);
~— Handling of list constructs.
function HEAD (1: in SEQ_TYPE) return TREE; — LISP CAR
function TAIL (1: in SEQ_TYPE) return SEQ TYPE; — LISP CDR
function MAKE return SEQ TYPE;
— return empty list

function IS_EMPTY (1: in SEQ _TYPE) yeturn BOOLEAN;
function INSERT (1: in ocut SEQ TYPE;

i: in TREE) return SEQ _TYPE,

— inmerts i at start of 1
function APPEND (1: im out SEQ _TYPE;
i: in TREE) return SEQ _TYPE)
— inserts { at end of 1

— Handling of LIST attribute of list constructs.
m LIST (t: in out TREE; v: in SEQ TYPE);

LIST (t: in TREE) eturn SEQ_TYPE;
— Structural Attributes.

procsdure AS_ACTUAL (t: in out TREE; v: in TREE),
function AS_ACTUAL (t: in TREE) rveturn TREE ; — assoC

— followed by functions and procedures for about 100 attr utes
privats
— Nu ‘111“ il'l...

end NDiana;

Figure 4-1: Sketch of the DWNA Package

e

Ww e .

Definition of the Diana Operations Section 4.6 / Page 185

type TREE

type SEQ_TYPE

An object of this private type is a node of the DIANA
structure.

An object of this private type is a sequence of nodes of the
same class.

type NODE_NAME This Is an enumeration type providing an enumeration literal

function MAKE

for each kind of DIANA node.

This function creates and returns a DIANA node of the kind
which Is its argument. Note that it is overicaded so as
also o be able to create an empty list.

procedure DESTROY

function KIND

type ARITIES

function SON,

procedure SON,

list processing

attributes

This procedure indicates that a node is no ionger required.
Given a node. this function returns Iits node-kind.

This enumeration type provides a literal for each number of
structural children a node might have.

For k = 1, 2. 3, each such function returns the k"'
ofispring of a node.

For k = 1, 2, 3. each such procedure stores a new km
offspring of the node.

A collection of functions and procedures Iimplement the
usuai iist-processing primitives.

For each possible attribute. there is a function to return the
value of that attribute at a node. and a procedure to store
a new value for the attribute.

A complete listing of the entire DIANA package specification concludes this

chapter.

-

Page 136 / Section 4.6 DNA Reference Manual

with USERPK; use
— Package

USERPK;
USERPK provides the following items (see page 77):

source_position:

symbol_xep:
value:

operator:
numbex_rep:
comments:

package Diana is

Defines source position in original source program.
Used for error messages.
Representation of identifiers, strings and characters.
Implementation defined.

Gives value of an expression.

Can indicate that no value is computed
Enumeration type for all operators.
Representation of numeric literals.
Representation of comments from source program.

typs TREE is private;
type SEQ TYPE is private;

v) CERRGR
N PR Yt O A T > e

X

Detinition of the Diana Operations Section 4.6 / Page 137
NODE_NAME is :
dn_abort, dn_accept,, Aan_access, :
4n_address, dn_aggreqate, dn_aligrment, f
an_all, dn_allocator, dn_alternative,
dn_alternative_s, dn_and_then, dan_argument_1a4,
dn_array, dn_assign, 4an_assoc,
dn_attx_iq, dn_attribute, dn_attribute_call,

' dan_binary, an block, an_box,
an_case, dn_choice_s, dan_code,
an_comp_id, dn_cowmp._xep, dn_comp_xep_s,
dn_comp_unit, dn_compilation, dn_cond_clause,
dn_cond_entry, dn_const_14, dn_constant,
dan_constrained, dan_context, dn_conversion,
dn_decl s, dn_def_char, dn_def _op,
dn_deferred_constant, dn_delay, dn_deriveqd,
dn_dscrmt_aggregate, dan _dscrmt_id, dn_dscmt_var,
dn_dscrmt_var_»s, 4an_dscrt_range_s, an_entry,
dn_entry_call, dn_entry id4, an_enum_i4,

] dn_enum_literal s, dn_exception, dn_exception_id,
dn_exit, an_exp_s, an_fixed,
dn_float, dn_for, dn_formal_dscrt,
dn_formal_fixed, an_formal_float, an_formal_integqer,
4n_function, dn_function_call, dn_function_id,
dn_generic, dan_generic_assoc_s, dn_generic_id,
dn_generic_param s, dan_goto, an_id_s,
dn_1if, dn_in, an_in_ id,

i an_in_op, dn_in_out, dn_in out_iaq,

0t an_index, dn_indexed, 4an_inner_recorq,

; dn_instantiation, dn_integer, dn_item s,
dn_iteration_iq, 4an_label_id, dn_labeled,
dan_loop, dan_l1_private, dan_1_private_type_idq,

s dan_mexbership, dn_name_s, dn_named,
an_named_stn, dn_named_stm_id, dn_no_default,

i dan_not_in, dn_null_access, dn_null_comp,
dn_null_stm, dn_number, dan_numberx_idq,
dn_numeric_literal, 4an_or_elss, dan_others,
dn_out, dn_out_id, dn_package_body,
dan_package_decl, dn_package_id, dn_package_spec,
an_param_assoC_8, an_paxam. s, dn_parenthesized,
dn_pragmsa, dan_pragma_id, 4dn_pragma_s,
4n_private, an_private_type_ id, dan_proc_id,

re, 4an_procedure_call, an_qualifieq,
dn_raise, dn_range, dn_record,
dn_record_rep, dn_rename, an_return,
| d dn_reverse, 4an_select, 4an_select_clause,

) dan_select_clause_s, Aan_selected, an_simple_rep,
dn_slice, an_stm s, dn_string literal,
dn_stud, dn_
an_subtype,
dn_task_spec,

type,
dn_universal_integer,
an_used_bltn_iq4,

1 dn_used_name_id,
&m'

varx
{ dan_wvhile,
N
|
i
l -——

Page 138 / Section 4.0 DIANA Reference Manual

-— Tree constructors.

function MAKE (c: in NODE_NAME) return TREE;
m Dl:smt (t: in TREE);
(t: in TREE) return NODE_NAME;

— Tree traversers from the Ada Formal Definition.
type ARITIES is (nullary, unary, binary, ternary, arbitrary);

function ARITY (t: in TRER) return ARITIES;
function SON1 (t: in TREE) return TREE;
msom (t: in out TREE; v: in TREE);

(t: in TRER) return 'I'REE;
msouz (t: in out TREE; v: in TREE);
function SON3 (t: in TREER) return TREE;

procedure SON3 (t: in out TREE; v: in TREE);

— Handling of list constructs.

function HEAD (1: in SEQ TYPE) return TRER; - LISP CAR
function TAIL {1l: in SEQ TYPE) return SEQ TYPE; — LISP CDR
function MAKE return SEQ_TYPE;
-~- yoturn empty list
finction IS_EMPTY (1: in SEQ TYPE) return BOOLEAN;
function INSERT (1: in out SEQ TYPE;
i: in TREE) return SEQ TYPE;
— inserts i at start of 1
function APPEND (1l: in out SEQ TYPE;
~ : i: in TREE) yeturn SEQ TYPE,;

-— inserts i at end of 1

-

Definition of the Diana Operations Section 4.6 / Page 139

e

B A

function LIST (t: in TREE) SEQ_TYPE;
— aggregate has Seq Of COMP_ASSOC
— alternative_s has Seq Of ALTERNATIVE
— choice_s has Seq Of CHOICE
- compilation has Seq Of COMP_UNIT
-— COowmp_rep._s has Seq Of COMP_REP
— context has Seq Of CONTEXT ELEM
; - decl s has Seq Of DECL
— dscrmt_aggregate has Seq Of COMP_ASSOC
-— dscrt_range_s has Seq Of DSCRT_RANGE
— enum_litexal s has Seq Of ENUM_LITERAL
-— axp_8 has Seq Of EXP
-— generic_assoc_s has Seq Of GENERIC_ASSOC
—- generic_param s has Seq Of GENERIC_PARAM
-— id s has Seq Of ID
- 1if has Seq Of COND_CLAUSE
— inner_record has Seq Of ComP
-— item_» has Seq Of '™
— name_s has Seq Of NAME
~— param assocC_s has Seq Of PARAM_ASSOC
-— param s has Seq Of PARAM
- pragma_id has Seq Of ARGUMENT
~— pragma_s has Seq Of PRAGMA
~— record has Seq Of Cowp
~— select_clause_s has Seq Of SELECT_CLAUSE
— stm_s has Seq Of STM
-— use has Seq Of NAME
' — variant_s has Seq Of VARIANT
— var_s has Seq Of VAR
i — with has Seq Of NAME
~— Structural Attributes.
’ procedure AS_ACTUAL (t: in out TREE; v: in TREE);
function AS_ACTUAL (t: in TREE) return TREE ; — assoc
AS_ALIGNMENT (t: in out TREE; v: in TREE);
function AS_ALIGNMENT (t: in TREE) return TREE ; ~— record_rep
procedure AS_ALTERNATIVE_S (t: in out TREE; v: in TREE);
function AS_ALTERNATIVE_S (t: in TREE) return TREE ; tTlockcm
procedure AS_BINARY_OP (t: in out TREE; v: in)
function AS_BINARY_OP (t: in TREE) veturn TREE ; — hinary
AS_BLOCK_STUB (t: in out TREE; v: in TREE);
function AS_BLOCK_STUB (t: in TREE) return TREE ; — package_body
— task_body |
-— subprogram_body
pxoceduzre AS_CHOICE S (t: in out TREE; v: in TREE);
function AS_CHOICE S (t: in TREE) return TREE ; — alternative |
- — variant
AS_COMP_REP_S (t: in out TREE; v: in TREE);
function AS_COMP_REP_S (t: in TREE) return TREE ; — record_rep
prooedure AS_CONSTRAINED (t:s in out TREE; v: in TREER);
function AS_CONSTRAINED (t: in TREE) xeturn TREE ; — access | derived
—_— ay | subtype
procedure AS_CONSTRAINT (t: in out TREE; v: in TRER);
function AS_CONSTRAINT (t: in TREE) return TREE ; — constrained
procedure AS_CONTEXT (ts in out TREE; v: in TREE))
function AS_CONTEXT (t: in TREE) return TREE ; — comp_unit

— Handling of LIST attribute of list consLructs.

proosdure LIST

(t: in out TREE; v: in SEQ TYPE);
return

Page 140 / Section 4.8

function AS_DESIGNATOR_CHAR

——

(t:
(€:
(t:
(t:
(t:
(t:
(t:
(t:

(t:
(t:
(t:
(t:
{(t:
(t:

(t:
(t:
(t:
(t:

(t:
(t:
(t:

(t:
(t:
(t:
(t:

(t:
(t:
(t:
{(t:

(t:
(t:

TIET
JET

d
Hafl

BRRREE
Hafly

§

EEEEEEEE EEEEES BEEEEBREE

A d

:
:

£ 2
By 8 48

B E5E B E56E

3% 8%

H

%

H

L

|

DIANA Reference Manual

mewbership | while

address | assign

code | conversion

named | number

qualified

simple_rep

unary | comp_rep
- parenthesized

in TREE);

TREE ; — binary | range

in TREE

-~
-~

exit

Definition of the Diana Operations Section 4.6 / Page 141

procedure AS_GENERIC_ASSOC_S (t: in out TREE; v: in TREE);
function AS_GENERIC_ASSOC_S (t: in TREE) return TREE ; — instantiation
AS_GENERIC_HEADER (t: in out TREE; v: in TREE);
function AS_GENERIC_HEADER (t: in TREE) xeturn TREE ; — generic
AS _GENERIC_PARAN_S (t: in out TREE; v: in TREE);
function AS_GENERIC_PARAM_S (t: in TREE) return TREE ; —- genaric
procedure AS_HEADER (t: in out TREE; v: in TREE);
function AS_HEADER (t: in TREE) return TREE ; — subprogr
~— am_decl
proocedure AS_ID (t: in out TREE; v: in TREE);
function AS_ID (t: in TREE) xeturn TREE ; — for | attribute
~= labeled | reverse
~— named_stm
— package
-- package_decl
— subtype
- task_body
- variant_part
— type | task_decl
procsdure AS_ID_S (in ocut TREE; v: in TREE);
function AS_ID_S (t: in TREE) return TREE ; — exception
— number | constant
— in | in_out
-— out | var
AS_ITEM S (t: in out TREE; v: in TREE);
function AS_ITEM S (t: in TREE) return TREE ; — block
AS_ITERATION (t: in out TREE; v: in TREE);
function AS_ITERATION (t: in TREE) return TREE ; — loop
procedure AS_MEMBERSHIP_OP (t: in out TREE; v: in TREE);
function AS_MEMBERSHIP_OP (t: in TREE) TREE ; — membership
~ AS_NAME (t: in out TREE; v: in TREE);
AS_NAME (t: in TREE) return TREE ; — accept | address

— procedure_call
all | comp_rep
constrained
indexed
inatantiation
goto | index
qualified
selected
rename | slice
variant_part
attribute_call
entry_call
record_rep
allocator
assign
attridbute | code
conversion
function_call
simple_rep
subunit

Prererereerrbrreid

N , m...-.-.s_.-—-—_=—-—___.______~"

Page 142 / Section 4.6 DIANA Reference Manual
procedure AS_NAME_S (t: in out TREE; v: in TREE);
{ function AS_NAME_S (t: in TREE) rxeturn TREE ; — abort
4 — with } use
procadure AS_NAME_VOID (t: in out TREE; v: in TREE);
function AS_NAME_VOID (t: in TREE) return TREE ; — raigse | exit
procadure AS_OBJECT_ DEF (t: in out TREE; v: in TREE);
function AS_OBJECT DEF (t: in TREE) return TREE ; — constant | var
] procedure AS_PACKAGE_DEP (t: in out TREE; v: in TREE))
function AS_PACKAGE_DEP (t: in TREE) xeturn TREE ; — package_decl
pxocadure AS_PARAM_ASSOC_S (t: in out TREE; v: in TREE);
function AS_PARAM_ASSOC_S (t: in TREE) return TREE ; — call
— entry_call
—— pragma '
— fimction call ;
procedure AS_PARAM S (in out TREE; v: in TREE);
function AS_PARAM S (t: in TREE) return TREE ; — procadure
— fumction
-—- entry | accept
procsdure AS_PRAGMA_S (t: in out TREE; v: in TREE);
] function AS_PRAGMA_S (t: in TREE) return TREE ; — comp_unit
procsdure AS_RANGE (t: in out TREE; v: in TREE);
function AS_RANGE (t: in TREE) return TREE ; — integer
-— Ccomp_rxep
procedure AS_RANGE_VOID (t: in out TREE; v: in TREE);
function AS_RANGE_VOID (t: in TREE) return TREE ; — fixed | float
procedure AS_RECORD (t: in out TREE; v: in TREE);
function AS_RECORD (t: in TREE) return TREE ; ~ variant
procedure AS_SELECT CLAUSE S (t: in out TREE; v: in TREE);
function AS_SELECT CLAUSE S (t: imn TREE) return TREE ; — select
procedure AS_STM (t: in out TREE; v: in TREE);
fimction AS_STM (t: in TREE) return TREE ; — labeled
~ named_stm
. procedure AS_STM_S (t: in out TREE; v: in TREE);
! function AS_STM S (t: in TREE) return TREE ; — alternative
— cond_clause
- loop | select
— accept | block
procedurxe AS_STM Sl (t: in out TREE; v: in TREE);
fimction AS_STM Sl (t: in TREE) return TREE ; — cond_entry
- timed_entry
procedure AS_STM_S2 {t: in out TREE; v: in TREE);
function AS_STM_S2 (t: in TREE) return TREE ; — cond_entry
-— timed_entry
L pxocedure AS_SUBPROGRAM_DEF (t: in out TREE; v: in TREE);
function AS_SUBPROGRAM_DEP (t: in TREE) return TREE ; — subprogram decl
procedure AS_SUBUNIT_BODY (t: in out TREE; v: in TREE);
function AS_SUBUNIT_BODY (t: in TREE) rxeturn TREE ; — subunit
X procedure AS_TASK_DEF (t: in out TREE; v: in TREE);
function AS_TASK_DEP (t: in TREE) xeturn TREE ; — task_decl
? procedure AS_TYPE_RANGE (t: in out TREE; v: in TRER);
J function AS_TYPE_RANGE (t: in TREE) return TREE ; — membesrship
procedure AS_TYPE_SPEC (t: in out TREE; v: in TREE);
. function AS_TYPE_SPEC (t: in TREE) return TREE ; — constant | in
. — in_out | out
— var
. — type
procedure AS_UNIT_BODY (t: in out TREE; v: in TREE),
function AS_UNIT_BODY (t: in TREE) return TREE ; — comp_unit
proosdure AS_VARIANT_ S (t: in out TREE; v: in TREE);
function AS_VARIANT_S (t: in TREE) return TREE ; — variant_part

Definition of the Diana Operations

— lexical Attributes.

procedure LX_COMMENTS
function LX_COMMENTS
procedurs LX_DEFAULT
function LX_DEFAULT
procedure LX_NUMREP
function LX_NUMREP
LX_PREPIX
function LX_PREPIX
procedure LX_SRCPOS
function LX_SRCPOS
procedure LX_SYMREP
function LX_SYMREP

— Sewantic Attributes.

procedure SM_ACTUAL_DELTA
function SM_ACTUAL_DELTA
proceduxe SM_ADDRESS

function SM_ADDRESS
procedure SM_BASE_TYPE
function SM_BASE_TYPE

procedure SM_BITS
function SM_BITS

procedure SM_BODY

function SM_BODY

procedure SM_COMP_SPEC

TREE);

function SM_COMP_SPEC

procedure SM_CONSTRAINT

function SM_CONSTRAINT

function SM_DEPN

procsdure SM_DISCRIMINANTS
function SM_DISCRIMINANTS

procedure SM_EXCEPTION_ DEF
function SM_EXCEPTION_DEP

procedure SM_EXP_TYPE
function SM_EXP_TYPE
proocedure SM_FIRST

function SM_PIRST

(t:
(t:
(t:

(t:
(t:
(t:
(t:

(t:
(t:

(t:

(t:

(t:
(t:

(t:

(t:
(t:
(t:
(t:

(t:
(t:
(t:

(t:

(t:
(t:
(t:
(tr

e talelalelelalalelatel
(TP (T (T CT (T (T (T (T €T (T
es oo 0o o5 0o ss se e 06 08 e b

(t: in TREE)

in out TREE;

in TREE)

in out TREE;

in TREE)

in out TREE;

in TREE)

in out TREE;

in TREE)

in out TREE;

in TREE) ryeturn TREE ;
— returns SUBP_BODY_DESC,
PACK_BODY_DESC,

in out TREE;

in TREE)

in out TREE;

in TREE)

in out TREE;

in TREE)

in out TREE;

in TREE)

in out TREE;

in TREE)

v: in TREE);
return TREE ;

v: in TREE);
return TREE;

Section 4.8 / Page 143

comnents);

TREE) return comments ;

Boolean);

return Boolean;

number_rep);

return number_rep ;

Boolean);

yeturn Boolean;

source_position);

return source_position ;

symbol _rep);

return symbol_rep ;

v: Ploat);
return Float;
v: in TREE);

— vi: EXP_VOID
return TREE ;

-— returns EXP_VOID
v: in TREE);

— v: TYPE_SPEC
return TREE ;

— returns TYPE_SPEC
v: Integer);
return integer;
v: in TREE);
v: SUBP_BODY_DESC,
PACK_BODY_DESC,
BLOCK _STUB_VOID

BLOCK_STUB_VOID

v: in

return TREE ;
v: in TREE);

— ¥1 CONSTRAINT
return TREE ;

— returns CONSTRAINT
v: Boolean);
return Boolean ;
v: in TREE);
return TREE ;
(t: in out TREE; v: in TREE),

return TREE ;

- v: DECL_S
-— returns DECI_S

v: DEF_OCCURRENCE

~- returns DEF_OCCURRENCE

v: in TREE); —_—
~— returns VAR_S

v: VAR S

- v: EXCEPTION_DEPF

yeturn TREE ;

— returns EXCEPTION_DEF

-— w1 TYPE_SPEC
— returns TYPE_SPEC
— vi DEPF_OCCURR
— reuturns DEF_OCCURR

. -

.

Page 144 / Section 4.6

procedure SM_GENERIC_PARAM_S(t:
function SM_GENERIC_PARAM_S(t:

DIANA Reference Manual

in out TREE; v: in TREE);

in TREE) return TREE;
— returns GENERIC_PARAM_S

v: GENERIC_PARAM S

procedure SM_INIT EXP (t: in out TREE; v: in TREE); — v: EXP_VOID
function SM_INIT _EXP (t: in TREE) xreturn TREE ; -~ returns EXP_VOID
procedure SM_LOCATION (t: in out TREE; v: in TREE); —— wvi LOCATION
function SM_LOCATION (t: in TREE) xeturn TREE ; ~— returns LOCATION
procedure SM_NORMALIZED_PARAM S (t:TREE; v: in TREE); ~— v: EXP_S
function SM_NORMALIZED_PARAM S (t: in TREE) rveturn TREE ; -— returns EXP_S
procedure SM_OBJ_DEP (t: in out TREE; v: in TREE); — v OBJECT DEPF
function SM_OBJ_DEP (t: in TREE) xeturn TREE ; — returns OBJECT_DEP
procedure SM_OBJ_TYPE (t: in out TREE; v: in TREE); -— v TYPE_SPEC
function SM_OBJ_TYPE (t: in TREE) xeturn TREE ; - returns TYPE_SPEC
procedure SM_OPERATOR (t: in out TREE; v: operator);
function SM_OPERATOR (t: in TREE) return operator ;
procedure SM_PACKING (t: in out TREE; v: Boolean);
function SM_PACKING (t: in TREE) rxeturn Boolean ;
procsdure SM_POS (t: in out TREE; v: Integer);
function SM_POS (t: in TREE) return Integer ;
procedure SM_REP (t: in out TREE; v: Integer);
function SM_REP (t: in TREE) return Integer ;
procedure SM_SIZE (t: in out TREE; v: in TREE); —_— v: EXP_VOID
function SM_SIZE (t: in TREE) yeturn TREE ; — returns EXP_VOID
procedure SM_SPEC (t: in out TREE; v: in TREE);

- ¥: HEADER

-— GENERIC_HEADER,

— PACK_SPEC
function SM_SIEC (t:TREE) yeturn TREE ; — returns HEADER

—— GENERIC_HEADER,

— PACK_SPEC
procedure SM_STM (t: in out TREE; v: in TREE); — v: STM, LOOP
function SM_ST™ (t: in TREE) return TREE ; — returns STM, LOOP
procedure SM_STORAGE_SIZE (t: in out TREE; v: in TREE); -_ v: EXP_VOID
function SM_STORAGE_SIZE (t: in TREE) return TREE ; — returns EXP_VOID
procedure SM_STUB (t: in out TREE; v: in TREE);
function SM_STUB (t: in TREE) xyeturn TREE ;
procedure SM_TYPE_SPEC (t: in out TREE; v: in TREE); -— w1 TYPE_SPEC
function SM_TYPE_SPEC (t: in TREE) xeturn TREE ; — returns TYPE_SPEC
procedure SM_TYPE_STRUCT (t: in out TREE; v: in TREE); -— v TYPE_SPEC
function SM _TYPE_STRICT (t: in TREE) yeturn TREE ; — returns TYPE_SPEC

— Code Attribute.

procedure CD_IMPL_SIZE
function CD_IMPL_SIZE

private
— To be filled in...

end Diana;

(t: in out TREE; v: value);
(t: in TREE) xeturn value ;

t: in out TREE; v: Integer);
1+ in TREE) vreturn Integer ;

External Representation of DIANA Page 145

CHAPTER §
EXTERNAL REPRESENTATION OF DIANA

This chapter describes how a DIANA tree may be represented in ASCH for
communication between differeant computing systems. The presentation is infor-
mal: for a detailled discussion of the issues involved, see Chapter 4 of the (DL
Reference Manual (9]. Although any conforming implementation of DIANA (s
required to be able to map to and/or from this external representation of DIANA,
other Internal representations are permitted. indeed. we expect these latter

(non-conforming) representations to be the preferred means of communication
between tools on a single computing system. The standard external form s
defined to assist debugging and to allow communicafon between computing
systems. not as the typical communication between tdols.

The design of this external representation was guided by three principles:

e There must be a relatively straightforward way of deducing the external
representation from the DIANA specification ot Chapter 2. :

s The extognal representation must not unduly constrain the implemen-
tation options outlined In Chapter 6.

* It must be possible to map between the external representation and a
variety of internal representations in a reasonably efficiant manner.
We expect that each instaliation that wishes to communicate with others via an
ASCl!l representation of DIANA will create a reader/writer utility to map between
the external representation and whatever internal representations are (n use at
the installation.

The external representation is described in Figure 5-1 on page 146. It is
the usual sort of recursive construction. Note that square brackets [...] sur-
round the attributes of a node and angle brackets <...> surround items of a
sequence.

We illustrate the external representation using the IDL exampie from Section
1.4.7. repeated here as Figure 5-2 on page 147. From this example. nodes
plus. leaf. and tree might be represented externaily as follows:

Plus — a node with ‘o0 attributes

leaf [name "A"; src representrtion_of_source_position]| — leaf for A

tree [left leaf (name "A”); right leaf (name "B"]; op plus] — A + B

f N T e 1 g =

Page 1468 / Section 5 DIANA Reference Manual

Derinimion OF EXxTeRNAL DiaNA

node represented by the name of its type, followed by ‘{’. followed by
the representation of its attributes (separated by semicolons),
followed by ‘)’. |t there are no attributes. the ‘[)° may be
omitted.

attribute represented by the name of the attribute. followed by the
representation of the value of the attribute.

comment start with double hyphen ('--): terminate with the end of the
line.

REPRESENTATION OF BASIC TYPES

Boolean represented by the tokens TRUE and FALSE.

Integer represented by a sequence of digits with an optional sign. The
value is Interpreted as being a decimal integer.

Rational represented as a decimal or based number (in the ADA sense
and using the ADA syntax), or as the quotient of two unsigned
integers. decimal numbars, or based numbers.

String represented as the sequence of ASCIHl characters representing
the value of the string, surrounded by double quotes. Any
quotes within the string must be doubied. The nonprinting ASCIl
characters are represented as In ADA.

Sequence represented by a sequence of representations for individual
vaiues of the sequence., separated by spaces. and surrounded
by angie brackets ('«<...>').

Private types are provided by the structure definition. For our purposes,
the external representations of the private types used in DIANA are provided

_ in a refinement of the DIANA abstract structure.

Spaces are not significant except to separate tokens.

Case distinctions between Identifiers (such as node names) are significant,
as In IDL.

Figure 5-1: External DaNa Form

External Representation of DIANA Section 5 / Page 147

Note that no representation is shown for the value of the attribute src. which is
the private type Source_Position: this point is addressed further below. Note
also that. because these exampies show external DWANA which Iis expected to be
ASCIl text. the usual typographic conventions for node names and attributes are
’ not followed in them.

i Structure ExpressionTree Root EXP Is
~—— Pirst we define a private type.
Type Source_Position;

— Next we define the notion of an expression, EXP.

EXP ::= leaf | tree ;

~— Next we define the nodes and their attributes.

=> ©0p: OPERATOR, left: EXP, right: EXP ;
= §rc: Source_Position ;

name: String ;

=y §rc: Source_Position ;

131

Pinally we define the notion of an OPERATOR as the
union of a collection of nodes; the null => productions
are needed to define the node types since

node type names are never implicitly defined.

OPERATOR ::= plus | minug | times | divide ;
plus => ; minus => ; times => ; divide = ;

Figure 5-2: Example ExpressionTree of IDL Notation

The external representation aiso provides a means for sharing attribute vaiues
between nodes. This fact does not necessarily imply that the corresponding
internal representation is shared: for some attributes, the sharing in the external
representation can be viewed simply as a technique for compressing space.

r o

Page 148 / Section 5 DiaNA Reference Manual

However. any attribute value which is inherently shared lntornally‘ must be
represented externaily in shared form. Ail of the tree-valued attributes of DIANA
fall in this category.

In order for an attribute value to be shared in the external representation,
one occurrence of the value must be labeled and all other occurrences must
refer 1o that label. Any attribute value may be tabeled. inciuding node—vaiued
attributes. The labeled occurrence of the value is represented in a normal way,
except that it is preceded by a label identifler and a cofon (':°). Each iabel
reference consists of the label identifier foilowed by a caret (" °‘)., rather than
the usual representation of the attribute value. A label identifier is a sequence
of letters, digits. and isolated underscores starting, with a letter; case distinc-
tions among the letters are significant. For examptle. the tree for A+A could be
reprasented in any one of the following four ways (among others):

tree (left leaf (name "A"]}; op plus; right leaf [name "A"])

txee [left leaf [name y: "A”]; op plus; right leaf (name y*])
tree [left x:leaf (name "A”]i op plus; right x*]

tree (left x~; op plus; right %:leaf { name =A%]]
Additionally, a node-valued attribute can be written free standing without being
nested within some other node. For example. a fifth representation for the
preceding exampie is

tree (left x*; op plus; right x*]
x: leaf { name "A")

Note that in these examples we have consistently avoided giving a represen-
tation for the source position attributes. Recall that source position is a private
type whose representation must be supplied as part of the structure definition or
a refinement of the structure. One way to represent the source position is to
use the representation defined in the aexample refinement in Section 1.4.3 on
page 28. repeated here for convenience in Figure 5-3 on page 149. Using this
external form. a source position might be represented using the node structure:

leaf (name "A";

src source_position
{ file "cuser>test.ada” ; line 3 ; char 15)

ot

External Representation of DIANA Section 5 / Page 149

Structure AnotherTree Renames ExpressionTree 1Is
— first the internal representation of Source_Position

For Source_Position Use Source_pPackage;

— next the external representation of Source_Position
~— is given by a new node type, source_extsrnal_xep

Por Source_Position Use External source_external _rep;
— finally, we define the node type source_sexternal_rep

source_external_rep = file : String,
line : Integer,

char : Integer;

Figure 5-3: Exampie AnotherTree of DL

Alternatively, a specification could define the source position to be represented
externally as a string:
leaf (name "A"; src "«<user>test.ada/15/3"]

Each of these particular external representations in some sense contains the
same Information in that either one could be mapped to the same internal
representation by the reader utility. Each Installation must establish conventions
for communicating between the reader/writer utility and its user-supplied
packages to allow such user-supplied types to be mapped to and from the
external form. Of course. other representations for the source position attribute
are possible. many containing Qquite different information. A more caomplete
treatment of the external representation of private types may be found in the IDL
Reference Manual.

The refinement of the DWNA structure defines the external representation for
four private types. symbol_rep. number_rep. operator. and value. Types
symbol_rep. and number_rep are represented as stirings externaily, and operator
is represented by an enumeration type.

The type symboi_rep Is a string that contains the source representation of
identifiers. The type symbol_rep aiso represents character literais. which are
distinguished from other identifiers by surrounding the character with single quote

R PPRR S

Ii

Page 150 / Section § DiaNA Reference Manual
marks. as In ADA. An Implementation must decide how to treat upper and lower
case characters: it can normalize the representations of identiflers to use the
basic character set. all lower case letters changed to upper case. or it can
preserve the case used in the source, so that source can be reconstructed
accurately.

The type number_sep Iis a string that has the source representation of
numeric literais. An implementation may choose to normalize numeric_Jiterals by
removing underscores.

The type operator is represented by an enumeration type. In the refined
DwuNA specification a minimum enumeration set Is given: it may be expanded by
an implementation to include any other built-in subprograms.

The type value is represented as an integer or rational type if a value has
been computed. or with a distinguishing node for the cases where the value has
not yet been computed. A representation for ADA strings and arrays is also
provided: a sequence of values.

A complete external representation starts with an Indication of the root node
of the corresponding structure. followed by a sequence of zero or more
representations of nodes. The root Indication can be either a label referencing
a node eisewhere in the external representation or the root node itseif. Since
the representation of subnodes can be contained within the representation of the
parent node. it is possible for the entire external representation to be given by
the root (a compiiation node In DIANA) . It Is permissible. on the other hand. to
repraesent the DIANA tree in a flat form, where node-valued attributes are always
represented by labels referencing non-nested representations of the nodes.

Following are two examples. both (n flat form. in each case a short ADa
fragment is followed by the external form of the DIANA, Note that these ex-
amples. like the figures in Chapter 3. are incomplete in that some attributes are
omitted for expository convenience.

External Representation of DIANA Section 5 / Page 151

-- From package STANDARD (sort of)
typ® BOOLEAN I8 (FALSE, TRUE):
type INTEGER 8 range® MIN_INT .. MAX_INT:

\ PDO: type [as_id PO1" .
! as_var_s PD2" :
as_type_spec PD3")
PD1: type_id [Ix_symrep "BOOLEAN® :
sm_type_spec PD3°]
PD2: var_s { as_list < >]

PD3: enum_literai_s (as_iist < PO4" PDS"
sm_size void }

PD4: enum_id { ix_symrep "FALSE" :
sm_obl_gpa PD3" :
sm_rep .
sm_pos 0]

PDS: enum_id { ix_symrep "TRUE® :
sm_obj_ Ype PO3"
sm_rep

1 sm_pos 1]

PDG: type { as_id PD8" :
as_var_s PO7° :
as_type_spec PO9")

i PD7: var_s { as_list <>)

PDB: type_id [Ix_symrep "INTEGER® :
’ sm_type_spec PD9° |}

PD9: integer { as_range PD10° :
sm_type_struct PD9"
sm_size void }

PD10: range { as_expl POI1" :
as_exp2 POI2" .
sm_base_type PD9"]

PD11: used_object_id [Ix_symrep "MIN _INT®
-sm_defn woox* . -
sm_value xxx -
sm oxp_type PDQ‘ }

PD12: used_object_id { Ix_symrep 'MA)LINT' :
sm_defn xxx -
sm_value ox* : -
sm_exp_type PO9" 1

v

def for MIN_INT
def for MIN_INT

dei for MAX_INT
def for MAX_INT

Page 152 / Section §

package REPORT s

function EQUAL (X. Y : INTEGER) return BOOLEAN:

as_pragma_s A02°
as_unit_body A04~°]

as_package_def A06°]
ix_symrep “REPORT" :

as_designator A10°

as_subprogram_def void]
Ix_symrep "EQUAL" :

as_list < A15° Al16° >]

sm_obj_type PO9°]
ix_symrep °INTEGER" :

Ix_symrep “BOOLEAN" :

end REPORT:
AO01: comp_unit
as_context A03° :
AQ2: pragma_s as_list < >)
A03: context as_list < >)
AO4: package_decl as_id A0S5" ;
A0S: package_id
sm_spec A06"
sm_body void :
sm_address void |
AO08: package_spec as_deci_s1 A08°
9 as_deci_s2 A07°]
AO7: as_decl_s as_list <>)
A08: as_decl_s as_list < AQ9° > }
A09: subprogram_dec!
preg as_header All" ;
A10: function_id
sm_spec All" ;
sm_body void :
sm_location void |
All: tunction as_param_s A12° ;
as_name Al8° }
Al2: param_s as_list < A13° >]
Al13: in as_id_s Al4° ;
as_name Al17" :
as_exp_void void]
Al4: id_s
Al1S: in_id ix_symrep °X*
sm_lnit_exp void :
sm_ob{_type PD9"]
Al8: in_id ix_symrep "Y"
sm_init_exp void :
Al7: used_name_id
sm_defn PO8" :
A18: used_name_id
sm_defn PD1")
———— e e - R S . ,':-"“-—*~»<- T T
s Gl akahaliie stticattdaduitfelasetinthniitnets ool . atntimtdiuly i i it

DANA Reference Manual

implementation Options Page 153

CHAPTER @
MPLEMENTATION OPTIONS

One obvious implementation of a compller using the DIANA intermediate form is
to produce the compiete DIANA abstract tree as the resuit of semantic analysis,
representing each abstract tree node by a variant record on a heap and using
pointers 10 implement those attributes that reference other nodes. in some
applications such an implementation may be compietely appropriate: in others. |t
may not. The purpose of this chapter is to illustrate some other implementation
options that are possible. We cannot. of course, describe aill conceivable
options: our goal is merely to describe enough of them to make the point that
the obvious implementation is not the only possible one.

At the risk of repeating the point once too often, we stress that DIANA s
representation independent. Possible implementations inciude any of the schemes
mentioned below. many others, and combinations of them. Each possibitity
makes good sense in certain applications or for certain implementation environ-
ments,

A Coroutine Organization: The Frant and Back Ends of the compller might be
organized in a coroutine manner. In which the Front End produces a portion of
the Intermediate form after which the Back End produces code for this portion
and then discards the unneeded pileces of its input. In this organization there
would never be a DIANA representation of the entire compilation unit at any one
time. Instead. only a consistent DIANA subtree for the portion being communi-
cated is needed. Aithough this type of organization may limit the amount of
optimization that can be done. it is often useful and is compietely consistent with
the DIANA modei. To use this style of compller organization, the user needs
only to ensure that the values of all of the attributes for the portion of the tree
being communicated are defined properly.

Non—Tree Structures: Many simpie compilers use a linear representation. such
as Polish postfix, for the intermediate form. Such a representation has the
advantage of simplifying certain tree traversals, and indeed may be oblained from
the DIANA tree by just such a traversal. Such represeniations may aiso have an
advantage In that they are more efficient where storage is limited or paging
averheads are high. Again, such representations are fully within the spirit of
DIANA. Where DWNA requires a (conceptual) pointer. it may be replaced by an

Page 154 / Section 8 DIANA Reference Manual

index into the linear representation.

DAG Representation: The structural attributes of DIANA define a tree cor-
responding to the abstract syntax of ADA. So long as the processing aigorithms
do not require distinct copies of identical subtrees. such subtrees may be
shared to save memory space. The resuiting storage structure is a directed
acyclic graph, or DAG. This observation is especiaily important with respect to
ieaves of the tree and to certain attribute vaiues. Typically., for example. about
halt the nodes Iin a tree are leaves: thus, substantial space can be saved by
using a single instance of a used_name_id node to represent all of its logical
occurrences in the ODIANA tree. Similarly, occurrences of the attributes that
represent literal values and the string name of identifiers in the program can be

pooied.

Attributes Outside the Nodes: There is no need for the attributes of a node to
be stored contiguously. As there are many variations on this theme. we
lilustrate just one here. Suppose that the general storage representation to be
used invoives storing each node as a record in the heap and using pointers to

encode the structural attributes. Because there are a number of different
N attributes associated with each node type. one may not wish to store these
' attributes directly in the records representing the nodes. instead., one might

define a number of vectors (of records) where the records in each vector are
tailored to the various groupings of attribute types in DIANA nodes. Using this
scheme. the nodes themselves need contain only an index into the relevant
vector. Such a scheme has the advantage of making nodes of uniform size as
well as facilitating the sharing of identical sets of attribute values.

General Set of Attributes: All nodes can be implemented with a general set of
attributes. and all other attributes couid be kept outside the nodes. A Boolean-
valued attribute in the node can then be used to indicate that an attribute outside
the node exists. This method is useful for attributes that may be on several
nodes but is generally void (such as Ix_comments).

Nodes Inside Other Nodes: Although an attribute of a node may reference
another node. there is no Implication that a pointer is required: the referenced
node may be directly inciuded in the storage structure of the outer node so long
as the processing permits this. This approach is especially important where the
referenced node has no attributes. For example. the binary node of DANA has ..
an attribute called aa_bpinary_op which references one of a number of possible
nodes—all of which have no attributes. in effect. this attribute’s vaiue s an

. e o m———— = . - - et ,.»-——-——»-'.L..____w—'
L"-—rJ , , . t

et IR
é

implementation Options Section 6 / Page 155

enumeration type and can be implemented as a small integer stored in the
binary node’s storage area.

Copies of Attribute Values: An implementation may choose to copy the value
of an attribute. e.g.. If the attribute value is stored in another compilation unit.
The implementation must. of course. preserve the semantics of the equality test
and assignment operations for attribute values. as discussed in Section 3.9.

Separate Symbol Tables: The collection of nodes types which constitute
DEF_OCCURRENCEs are effectively a symbol table. This presentation discusses
such nodes as if they were part of the tree. but an implementation may elect to
collect these nodes together into a compact structure. physically separate from
the tree.

R T — ﬂ

Page 156 / Section) DIANA Reference Manual

e
\
'
'

. _“‘ - - - -
Lh.‘» ittt
et S ot i il it bt L._‘“,,_._,L R i et vk o D e aT

bt

The Predefined Environment Page 157

APPENDIX 1
THE PREDEFINED ENVIRONMENT

The semantics of ADA provide that an ADA program may reference certain

entities that are not defined within the program itseif. There are four cases:
universal types These cannot be mentioned by the programmer but are
referenced only implicitly. For example. they are

referenced in describing the type of a number. or Iin
describing the result of certain ADA attributes.

predetined language environment
This is essentlally the package STANDARD.

attributes These inciude both those predefined by ADA as well as
those defined by the implementation.

pragmas These Iinciude both those predefined by ADA as well as
those defined by the implementation.

In the following four sections of this appendix we describe how the DIANA form for
each of these Is derived.

. 1. Universal Types

The notion of universal types Is used in ADA to associate a type with a

number declaration and to define the result type of certain attributes. To
represent these notions., DIANA extends the class TYPE_SPEC by three nodes:
TYPE_SPEC ::= yniversal_integer |
universal_rea! |

universal_tfixed ;

These nodes. which have no attributes, can be referenced only by semantic
attributes of a program: they never appear diraectly in the tree. The type
universal_real covers both fixed and float types in cases where they cannot be
distinguished. as in number declarations.

1.2. The Predeined Language Environment

The predefined environment of ADA Is specified by the package STANDARD,
given in Appendix C of the ADA LRM. The DWANA tree for it may be obtained by
simply compliling this package with a Front End. though the compilation must be

Page 158 / Section |1.2 DIANA Reference Manual

done in a special mode since some attributes must be determined by special
rules. In a ftew cases (such as cd_/mpi_size for numeric types). the attributes
must ba explicitly assigned: they cannot be derived from any further environment
inquiry. Note that this operation need be done only once: the DIANA form can
then be preloaded into all programs that process the DIANA form of ADA.

Since the Front End and Back End must be able to agree on the operator
type (see Section 3.8.5) and the Front End must be able to communicate this
information to the Back End. the two must agree on how the representation of
package STANDARD is to be augmented to include this information.

1.3. Attributes

Appendix A of the ADA LRM describes a set of predefined language
attributes: these may be extended by an Iimplementation., see LRM Section
4.1.4, DIANA requires a unique definition point for each of these attribute
identitiers. DIANA does not define additional information for checking that at-
tributes are used correctly: the design of this information is a choice for each
implementation. We also need a string representation of the attribute name (1o
reconstruct the source. for example). The resuiting structure looks like:

DEF_% ::= attr_id;
attr_id => Ix_symrep : symbol_rep;

The compiete definition of an ADA program requires nodes for ail the implemen-

‘tation supported attributes: these are easily constructed. Using the external form

of DIANA defined in Chapter 5. for example. two of the predefined attribute nodes
are:

attr_id (1lx_symrep "BITS"]
attr_id (lx_symrep "SMALL"™]

i.4. Pragmas

Appendix B of the ADA LRM lists the language—defined pragmas for ADA. An
implementation s free to expand this set by defining additional pragmas. ODIANA
provides a definition point for the identifiers needed to represent the complete set
of pragmas known 0 an implementation. The Dwia representation ot these Is
similar to its representation of attributes described above: in the predefined
environment. diana provides the information necessary to I|dentify the pragma

v

The Predetined Environment Section |.4 / Page 159
names and their names of its arguments. Iin addition, where the possible values
ot a pragma’s arguments are named (e.g.. for pragma LIST the values °"ON-°
and "OFF"), a defining occurrence for the names of the vailues is also provided.

The detining occurrence for an identifler used in conjunction with a pragma in
DIANA has the following structure:

DEF_ID ::= pragma_id | ARGUMENT ;

pragma_id => as_list : Seq Of ARGUMENT ;
ARGUMENT ::= argument_id ;

pragma_id => Ix_symrep . symbol_rep ;
argument_id => Ix_symrep : symbol_rep ;

A list of argument names is Introduced for those situations where muitiple
argument names are possible, as for example for the various check names for
the SUPPRESS pragma. Note that the list is afso used to introduce the names of
the values the pragma’s arguments may take.

As with the attributes. an Implementation must supply a set of nodes for the
various language—defined and implementation-defined pragmas. Here are two ex-
amples In external DIANA form:

pragma_id [1x_symrep "LIST"; as_list <Ll1* L2%>)

Ll: argument_id [lx_symrep "ON")
L2: argument_id (lx_symrep "OFF"]}

pragma_id (1x_symrep "PRIORITY"]

All checks concerning the correct use of & 7ragma are assumed to have
been done during semantic analysis, and periorming these checks will neces-
sarily require knowledge of the semantics the pragma that DIANA cannot supply.
The predefined environment merely provides the defining occurrences for the
identifiers used.

For language—detined pragmas. DIANA requires that the pragma subtree
represents a correct pragma: that is. for each pragma the proper semantic
checking has been done. for pragmas not supported by an implementation
DIANA requires that the structure of the pragma subtree is present and contains
the lexical information but does not require that the semantic attributes are
correct. In most cases this requirement means the pragma name and argument
names afo represented dy used_name_Id nodes whose sm_de/n attribute is void.

Page 160 / Section |. 4 DiIANA Reference Manual

There are several situations where the arguments to a pragma are types or
objects defined by the user. The pragma node has a structural attribute which
represents the list of actual arguments to a particular pragma: the list in the
pragma_id corresponds in a sense to formal parameters. Figure i-1 shows the
tree for the fragment

type C is array(l..10) of CHARACTER;
pxagma PACK(C);

pragma
used_name_1{d param_assoc_s .
sm_defn
l used_name_1id
sm_defn
pragms_id
"PACK" l

type_id for C

Figure 1-1: Example of a Pragma

The Abstract Parse Tree Page 161

APPENDIX #
THE ABSTRACT PARSE TREE

ADA’s Formal Definition assumes a parse tree that is structurally quite similar
to the DIANA tree described in Chapter 2. This appendix shows the IDL
representation for this parse tree.

Following are the principal differences between the parse tree and the DIANA
tree:

e The parse tree has no semantic or code attributes.

e The parse tree has apply nodes Iinstead of function calil. procedure
call, entry call, attribute cail. indexed. conversion., and slice nodes.

IDL provides a means for deriving a structure from a previously defined
structure by describing the new structure In terms of changes or aedits to the old
structure. This form of structure declaration has the tollowing basic form:

Structure new_structure Root root
From old_structure Is

-— "edits” to old structure
End

There are two sorts of edits: additions to the original structure and deietions
from it. Additions are Indicated by simply including the additions within the

structure deciaration as normal IDL definitions. Delations are indicated by
clauses beginning with the keyword Without. followed by a list of items to be
deleted from the original structure in forming the new one. Five kinds of

deletions can be made:

e Deletion of a particular element from the right side of a class defini-
tion is indicated by an entry of the form

class_name ::= elewmsnt_name

Here an “element” can be either a class or a node. Here is an
example:
-— old
EXP t1t= foo | leaf | tree
- without clause
Without EXP ;::= leaf
—_— e
11= foo | tree

e Deletion of a particular attribute from the right side of a node defini-
tion is Indicated by a line of the form

Page 162 / Section | DiANA Reference Manual

node_name => attribute_name
{ Here is an example:

-— old

tree = left:EXP, op:0P, right:EXP
-— without clause

Without tree =) left
— new

tree => op:0P, right:EXP

» Deletion of an entire class definition Is indicated by giving just the
class name followed by "::=', as in
POO ;=
e Deletion of an entire node definition is indicated by giving just the
node name followed by "=‘, as in

foo =

s Deletion of an attribute name |Is indicated by writing
* = foo
} The attribute is thereby deleted from all nodes which named it.

Using this notation. we now derive trom Dlana the structure Parsetree. with
) . root COMPILATION.

.VV

The Abstract Parse Tree Section Il / Page 183

Structure ParseTree Root COMPILATION From Dians Is

-— ParsaTres has APPLY nodes instead of function call, procedurs call,
-~ ontry call, attribute call, indexed, conversion, and slice nodes.

Without

function_call =>,

procedure_call =3,

ontry_cell 2>,

attribute_call =>,

indexed =>,

. slice =>,
i conversion => R

NAME ::= attribute_call,

NAME ::= function_call,

NAME ::= siice,

NAME ::= indexed,

BXP ::= conversion,

STM ::= procedure__call,

S™™M ;:= ontry_call;

~— additions for APPLY

S™M ::= NAME;

NAME ::= apply;

apply => a8__name NAME,
Ix_srcpos SOUTroe__position,
Ix_comments

GENERAL_ASSOC_S ::= general_assoc_s;

- general_assoc_s => as__list ¢ Seq OF GENERAL_ASSOC,
Ix__srcpos . sourcs_position,
) Ix_comments 1 OO .
! GENERAL_ASSOC ::= ACTUAL | RANGE | named;
— ParselTres has only one kind of USED_ID
l Without
M_’m_“ =,
used_object_i" => ,
used_number_| ld -).
! used_bitn_id =
USED_ID ::= used_name_id,
USED_ID ::= uaed_object_\d,
USED_ID ::= used_Dbitn_id;
— additions for USED_ID
% USED_ID : w_n:
“m n 8) L + source__position,
3 Ix_comments : comments,
Ix_symrep : symbol_rep;
— ParseTree has only one kind of USED_OP
Without
used_op => ,
string_tteral =>
used_bitn_op => ,
DESIGNATOR ::= used_op,
1 EXP ::= string_literal;
-- additions for USED_OP
‘ DEBIGNATOR ::= veed_string;
3 vesd_string => In

~rcpos
Ix_oomments

Page 164 / Section i DWNA Reference Manuai

E

l -— Parselree has no semantic attributes

=
=>
3>
2>
>
=
L34
=>
>
=
=
=
=
=
=
=3
=>
=
=
E3Y ob|

=> sm_obj_type,
2> sm_operator,

2> sm_pecking,

> am_pos,

3> sm_record_spec,
=> sm_rep,

= sm
=> sm
2> sm_stm,

=> am_storage_size,

=> sm_stub,

=> sm_type_spec,
=> am_type_struct,
=> sm_vaive;

i
i ¥y

i

5

i
3

|

i

§!|!|§§§!!§§§!§§§§§!§!!
]]
iy Nl
'g §

L2 2 I B 2R 2k 2R 2R B IR 2R BN AR R 2N I BN AR IR N N N R IR NN 2R 2R NN 2R I 2N N ¥]

— ParseTree has no code attributes

Without
’ * => cd_impl_size;

End

|

Reconstructing the Source Page 185

APPENDIX It
RECONSTRUCTING THE SOURCE

One of the basic principles of DANA Is that the structhre of the original
source program (s to be retained In the OIANA representation. DIANA has been
designed so that the front end of an ADA compller (or any other tool that
produces DIANA from ADA) can include in the DIANA sufficient information so that,
to a first approximation at least. the original ADA text can be recreated from the
DIANA. This abllity enables an APSE tool such as a pretty-printer to work directly
from the DIANA form. or a syntax-directed editor to operate directly on it. The
DiANA form can stand alone without reference to the original source: some APSE
designs might elect to discard the source and keep |ust the DIANA torm., using a
pretty-printer when a source listing is required.

DUNA’S design deliberately Includes certain normalizations of source
programs. These are omissions from the DANA of enough Information to
reconstruct the original program exactly, and the effect of omitting these data is
that the reconstructed source program is of necessity normalized in certain ways.
(The normalizations are discussed in Section (((.3.) Aithough the information
lost by making these normalizations could be retained by providing additional
lexical attributes, OIANA’S design Is predicated on the assumption that the value to
the user of this information does not justify Imposing on all DIAWNA users the cost
in processing time to record the additional data or in space to store them.

1il. 1. General Principles

The structure of DiIANA’s original design foliowed the Abstract Syntax
Tree (AST) of the ADA Formal Definition (AFD)., which was designed to Inciude
adequate information to permit source reconstruction. Unfortunately. the AFD Is
based on ADA-80., and DANA’s (present) design is based on the syntax of on
ADA-82. which differs from that of ADA-80 in Important ways.

in Chapter 2., we showed the connection between the ADA-82 syntax and the
OwuNA structure by Including the former with the description of the corresponding
nodes and attributes. There is a close correspondence between ADA'S syntax
and DWNA‘sS structural attributes. as shown In the exampies in the next section.
it is this correspondence that permits source reconstruction.

Page 166 / Section Ili. 1 DaNA Reference Manual

The discussion on formaiization of DIANA In Saction 1.1.4 on page 14 is also
relevant. Any technique to soive the problem addressed in that section will shed
light on source reconstruction.

fii. 2. Examples

A ftew examples lllustrate the reconstruction process. Consider first the ADA
assignment statement. with syntax and DIANA structural attributes as foliows:

Ada Syntax (Section 5.2 of the Ada LRM):
assignment_statement ;::=
name :=~ expression ;

Diana rules:

assign => as_name : NAME,
as_exp : EXP;

The ADA text corresponding to an assign node Is thus the text that led to the
NAME (l.e.. the value of the as_name attribute), followed by °:=', followed by
the text that led to the EXP (i.e.. the value of the as_exp attribute, followed by

‘.'. We can summarize by writing that the source text for an assign node is
<NAME> := <EXP> ;

Here the angle brackets (¢©) indicate that the the text for the corresponding
subtrees must be filled in.

As a second example. consider an ADA block:

Ada Syntax (Section 5.6 of the Ada LRM):
block_statement ::=
[(block_simple_name)

{daclare '
declarative_part)

begin
sequence_of_statements

{exception
exception handler (exception handler)]

end (block_simple_name] ;

Diana rules:
block => as_jtem_s : ITENS_S,
as_stm_s 1 STUS,
as_alternative_s : ALTERNATIVE_S;

Thus for an uniabeled block node used as a statement the following text is
generated.

1

Reconstructing the Source Section ill.2 / Page 167

declare
<item o>

begin
<stm_s>

calternative_s>
ond;

iIn a few places the text 10 be generated depends on the structural child. iIn
the block statement example. it is important that the text exception be generated
only when the sequence of alternatives is non-empty (/.e.. the
as_aiternative_s child is empty) ., since the syntax of ADA-82 requires at least one
exception handler after the word exception. (ADA-80 permitted an empty list of
handlers.) Similarly. a private part should be generated only for a package that
contains a non-empty list of private declarations.

in a similar vein, sometimes the text to be generated depends on the
structural parent. Again the block node provides a good example. When
block appears as the descendant of a subprogram_body node. the word declare
should not be generated.

{il. 3. Normalizations of the Source

A normalization of the source is a deliberate omission from the DIANA structure
of information that would be required to produce an exact recreation of the
source text. Most of the normalizations are imposed by the AFD. DIANA
includes the following normalizations:

e The optional identifiers following the reserved word end are not
represented in DIANA. This decision means that during reconstruction
the program is normalized either aiways to incliude the end iabels or
always to omit them.

e DIANA does not require that extra spaces between lexical tokens be
preserved.

e Variant spelling of an identifier. as for example "FOO" and °“Foo" and
“foo°. need not be recorded in DIANA, This is a lexical issue that
does not atfect the semantics.

» Alternate writings of numeric constants need not be preserved. For
exampile, In

2 002 002
201111 11119 164PP8 OLGHOPFS 255
12¢1 1.2¢2 0.12¢+3 0l.2e02

all the values on each line would be represented identicaily in the

Page 168 / Section l.3 DiaNA Reference Manual

DuUNA and so0 would be reconstructed identicaily. This issue is essen-
tially the same as the variant spelling of identifiers; DIANA does not
require that variations be preserved.

A few normalizations of the AFD are no longer in DIANA, because of changes
in ADA-82's syntax from the ADA-80 syntax used in the AFD.
e In the AFD (and therefore In the original design of DIANA), all Infix

operators (except the short circuit and membership operators) are
converted to function caills. That is, each of

X+Y
“+*(X, Y)

gave rise to the same DIANA structure. Thus the original program
could not be reconstructed. since it could not be determined whether
the original had an Infix or prefix form for these operators. ADA-82
requires that this distinction be maintained to meet the conformance
rules for initial values of default formal parameters. stated in ADA LRM
Section 6.3.1.

s In formal parameter declarations for subprograms. the mode In is
optional. Originally, the presence of the word In In a formal part
was not recorded in the DIANA. The conformance rules of Section
68.3.1 requires that this information be maintained.

e The AFD omits parenthesized nodes If the parentheses are redundant.
The conformance rules just referred to require retention of these
nodes.

IH. 4. Comments

in order properly to reconstruct the source. DIWNA must be capable of record-
ing comments. To this end. every DWNA node that has a source position
attribute (/.e.. ail those which correspond to points in the source program) has
the additional attribute

Ix_comments : comments;

which is an implementation-dependent type. The implementation may choose
how accurately comment positions are recorded and how to associate comments
with particular nodes.

The way a user chooses to comment a program greatly affects the ability of
any internal representation to make a meaningful association of comments to
nodes. When there is a coding standard that enforces a commenting style.
assumptions can be made that make the association easier. Since standards
such as these are likely to be only enforced locallv., comments are treated as an
implementation-dependent type. DWNA makes 1. requirement about either the

Reconstructing the Source Section . 4 / Page 169

internal or the externai representation of comments. and an implementation does
not have to support the /x_comments attribute to be considered a DIANA producer
or DIANA consumer.

One method for attaching comments to tree nodes is described in (11. it
distinguishes between comments preceding or following the subtree which is
represented by the node.

Page 170 / Section IV OWUNA Reference Manual

SO

e 2w

- ———
e .
—
——— e e - e ————— e —_—— - -~
- e S i———————
i st o i e e vimnns e -

Diana Summary Page 171

APPENDIX vV
DIANA SUMMARY

This appendix contains a list of all the class and node definitions sorted by
the name ot the class or node. Class definitions are given first; all class
names are upper case. Node definitions follow: node names are lower case.
With each definition is listed the section number and page number within Chapter
2 where the corresponding concrete syntax can be found.

ACTUAL ::= EXP; 6.4 61
ALIGNMENT ::= alignment; 13.4.A 74
ALTERNATIVE ::= aiternative | 5.4 53
pragma;
ALTERNATIVE_S ::= alternative_s; 5.4 53
ARGUMENT ::= argument_id; App. | 3
BINARY_OP ::= SHORT_CIRCUIT_OP; 4.4 A 48
BLOCK_STUB ::= block; 6.3 60
BLOCK_STUB ::= stub; 10.2.8 70
BLOCK_STUB_VOID ::= block | 9.1.A 65
stub
void;
CHOICE ::= EXP | 3.7.3.8 43
DSCRT_RANGE
others;
CHOICE_S ::= choice_s; 3.7.3.A 43
R COMP ::= pragma; 3.7.8 41
COMP ::= var) 3.7.8 41
variant_part |
! null_comp;
COMPILATION ::= compilation; 10.1.A 69
COMP_ASSOC ::= named | 4.3.8 47
EXP;
COMP_REP ::= comp_rep; 13.4.8 75
COMP_REP ::= pragma; 13.4.8B 75
COMP_REP_S ::= comp_rep_s:; 13.4.8 7S
COMP_REP_VOID ::= COMP_REP | 3.7.8 41
void;
COMP_UNIT ::= comp_unit; 10.1.8 69
COND_CLAUSE ::= cond_clause; 5.3.A 53
CONSTRAINED ::= constrained; 3.3.2.8 3%
CONSTRAINT ::= RANGE | 3.3.2.Cc 37
flost |
fined §
decrt_range_s |
dscrmt_aggregate;
CONSTRAINT ::= void; 3.3.2.8 ¥
CONTEXT ::= context; 10.1.1.A 69
CONTEXT_ELEM ::= pragma; 10.1.8 69
CONTEXT_ELEM ::= use; 10.1.1.A 69
P CONTEXT_ELEM ::= with; 10.1.1.8 70
. DECL ::= REP | 3.9.A a“
use;
DECL ::= constant | 3.1 3
ver |
number |
type |
sudtype |
subprogram_ded |
package_dect | 1
task_dect |
' !
deferred_constant;

DECL ::2 pregma; 3.1 3

Page 172 / Section IV DiaNA Reference Manual

DECL_S ::= decl_s;
DEF_ cﬂAR 12 def_char;
DEFID ::= attr_id |

35
T
@
ISR

DEF_{D ::
DEF 10 ::
DEF_ID ::
DEF_ID ::
DEF_ID ::
DEF_1D ::
OEF_1D :
OEF_ID :
DEF_ID ::
DEF_ID ::

DEF_ID ::
DEF 1D ::
DEF_1D :
DEF_ID :
DEF_ID ::
DEF_ID ::

i DEF_10 ::
§ DEF_ID ::
DEF lD::

DEF ID H

DEF O(X:URRENCE := DEF_ID |
DEF_OP |
DEF_CHAR;

QOANDN
w“>u>w

BREX2H BEIWILRAR2

|
- e e
-

Py

TN
-
-

R RN RN
| g
: U
' 5 '||.l_
N
2

1

ranosb

:
:i.

I | I_l
“ wnau
&
>“ond> >>o>po 000>
> >

a
:
NUGOWE NNUAAR ANINLLOWWD

Wpwow
RRERRQ

DEF_OP : dd _0p;
DESIGNATOR =10 |

oP;

DESIGNATOR _CHAR ::= DESIGNATOR |
L used_char;

DSCRIT_VAR ::= dscrmit_var;
i . DSCRMT_VAR_S ::= dscrmt_var_s;
I
|
i
;

>

-,) -4
w

OSCRT_RANGE ::= constrained |
RANGE;
i DSCRT_RANGE : Indox.
i DSCRT_| _RANGE__ s docft __range_s;
DSCRT_RANGE_ VO|D DSCRT _RANGE |

> >0 O

@
533 8 3288 8k3 5 RS

ENUM_LITERAL ::= enum id I
def chtr:

EXCEPTION_DEF ::= rename;
= void;

220 W GWW WO & MO
-

>z
20 o nam BNy

(=]

2
-3
g.

conversion)
, qualitied)
; parenthesized;
1 i= aggreqete;
binary;
;= membership;
ExXP GONSTRAINED 1z EXP |
CONSTRAINED;
EXP_S ::= exp_s;

EXP_VOID ::z EXP |

void;
FORMAL _SUBPROG_DEF ::= NAME | 12.1.C
box {
no_default;

FORMAL _TYPE_SPEC ::= formal “dscrt | 12.1.0
formal_integer |
formal_fixed |
formal_Hoat;

GENERIC_ASSOC ::= ACTUAL;

GENERIC_ASSOC ::= assoc;

3338

s 2ars

N -
> -

N 38 838523

N

NS
Lw
o0
Jd

Oiana Summary Section IV / Page 173 i
i
GENERIC_ASSOC_S ::= generic_assoc_s; 123.A 73 I
GENERIC_ " HEADER : pmeodun | 12.1.A Ia!
|
m_woc;
GENERIC_PARAM ::= in | 12.1.C 72
in_out |
type |
subprogram__deci;
113 generic_param_s; 12.1.8 72
entry; 9.5.A 66
H 6.1.8B]
procedure; 6.1.8 58
2.3 32
D_S : 3.2.C 3s
INNER. RECORD = inner_record; 3.73.A A&
ITEM ::= DECL I 3.9.8 44
subprogram_body |
package_body
task_body;
ITEM_S ::= item_s; 3.9.8 44
ITERATION ::= for 5.5.8 55
reverse;
ITERATION ::= void; 5.5.A 54
ITERATION ::= while; 5.5.8 55
LANGUAGE := argument_id; 6.1.A £14
LOCATION ::= EXP_VOID | 6.1.A 57
pragma_id;
LOOP ::= loop; 5.5 A 54
‘ MEMBERSHIP_OP ::= in_op | 4.4.8 48
not_in;
NAME ::= OESIGNATOR | 4.1.A 45
uvsed_char |
indexed)
slice |
selacted |
all)
: attribute |
attribute__call;
NAME ::= function_call; 4.1.8 45
NAME_S ::= Mmo LH 9.10 68
NAME_VOID : NAME 1 s.7 s6
OBJECT_DEF ::= EXP_VOID. 3.2.A 34
OBJECT_DEF ::= rename,; 8.5 64
oP ::= DEF_OP { 2.3 32
PACKAGE_DEF ::= instantiation; 123.A 3
PACKAGE_DEF ::= package_spec; 7.1.8 62
PACKAGE_DEF ::= rename; 8.5 64
PACKAGE_SPEC ::= package_spec; 7.1.8 62
PACK _BODY_DESC ::= block | T.1.A 62
stub |
rename |
instantiation 1|
PARAM ::= in; 6.1.C 59
PARAM ::= in_out; 6.1.C 59
PARAM ::= out; 6.1.C 59
. PARAM_ASSOC ::z EXP | 6.4 81
4880C;
PARAM_ASSOC_S ::= param_assoc_s; 2.8.A a3
PARAM_S ::2 param_s; 6.1.C 59
PRAGMA ::x pragma; 2.8.A 33
PRAGMA_S ::= pragma_s; 10.1.D 69
RANGE ::= range | 3.5 37

Page 174 / Section IV

void;

instantiation;
rename;

: instantiation 1

rename |
LANGUAGE |
void;
SUBUNIT_BODY ::= subprogram_body i
package_body |
task_body;

TASK_DEF ::= task_spec;
TYPE_RANGE ::= RANGE |

NAME;
TYPE_SPEC ::= CONSTRAINED;
TYPE_SPEC ::= FORMAL_TYPE_SPEC;
TYPE_SPEC ::= enum_litersl_s |

nwu

FORMAL_SUBPROG_DEF;

FORMAL_ SUBPROG_DEF |

aadn, _'_‘:-‘.iv

9.7.1.B 67
9.7.1.8 &7
9.7.1.A 67
s.4.A 48
5.1.0 52
5.1.8 St
s.1.c 51
s.1.C 51
9.7.1.B 67
S.1.A 51
12.1.¢ 72
12.3.A 13
8.5 64
6.1.A 57
6.1.A S7
10.2.A 70
9.1.A 65
448
3.2A
12.1.0 72
3.3.1.8 3%
7.4.A €3
7.4A 6
9.1.A 65
App. I 78
3.8.1 A
10.1.B
a1A 48
{

)

DWNA Reference Manual

Diana Summary Section IV / Page 175

USED_OP ::= used_op |
sed

we >
>>

o ~~ -
& :
2 22 8 8 8838 &

"
v
!
»
0 QLW &
-
-0

|
sg;gé
g3
i
I
7

%‘.
:
:
;

13.5
13.5

» 4.3.A 47
x_srcpos: source_position, 4.3.A ar

4.3.A 47

!
il
e
8¢
I
3

a

:
i
538
1
§

OXP
sm_ constraint: cONSTRAINT
sm_normalized_comp_s: EXP S;
alignment => as_pragma_s: PRAGMA_S, 13.4.A
as_exp_void: EXP_VOID;
> ag_name:NAME;
> Ix_srcpos: source_position,
Ix_comments: oommonu

N

-t
W W

-3
1]
v
3
..5 .o -

FEo83R0
. .ﬁ
o

> 00 o o A s2aa a2

> 22 2 » @ WO~

>

and_then =»> ll__uepo 1 0Urce _potmon.
?' Ix_comments: comments;

argument__| id = M mnp.ymbo‘l_ _rep; € s.
array 3> as_dscrt_range_s:DSCRT_RANG!
as_constrained: CONSTRAINED;

:
i
i
%

array => sm_size: EXP_VOID, 3.6.A
assign => as_name:NAME, 5.2
_OXp

assign => Iu_m:mm_pocmon, 8.2

x_¢
. 2880C 3> u duigndov DESIGNATOR 6.4 -3}

a890C => 'l arepoa aoureo_podtlon 6.4 81

_ comments;

B B &8 83 & 88 8 8 8 888 53

s comments:

1 » attr_id => _mwop.symbol_rop. App. | 7
! sttribute => as_name:NAME, 4.1.4 LY

as_id:1D;

. attribute => Ix_srcpos: source_position, 4.1.4 L4

Ix_comments: comments;
attribute => sm_exp_type: TYPE_ SPEC 4.1.4 47
_valve: valve;
4.1.4 47

4.1.4 47

§

.” 59 $¢8 3 R332 YR
2 W_M i mmm_m.“.&_mmm mmmmw
5 s34 €3 “e8g? $
Rt
m w u_unuwmmumunum m_u_m_w_wmuu_m_
- P amuaas_.._n
IR EIREEEE

_ N .

g3 S B B RR
@ o aa

o o . :
BSOS S
2 w " p o 22

mems;

: source_position,

rce_position,
" :
x
I

comp_id =>
comp,
comp_frep =»

code => Ix_srcpos: sou
Ix_comments: com!
_srcpos
comments: comments
op:
obj_type:
init_exp:
comp_
name
oxp: EXP
r
Ix__Srcpos: source
Ix_comments: co!
comp_rep_s => .

32 B 28
@ @ <<
- - e
o e oo
- -

compilation => aa_list: seq of COMP_UNIT;

ix_comments:
oxp)
stm

2> Ix srcpol source__position,

23 338%3 3 3 38 B8R

a oo
< € 6 8 € <« < <« o oo
m oo~ N NN N 8 0 00
w w6 B o® o ® ® o 60

source_position,
™S,
: comments, '
rop;
vOID,
SPEC,
CY_OEF
RRENCE;
SPEC,
€CT_DEF
__position,
integer;
ros_position

ST™M_S;

ca pedl

void : EXP_VOID,

u commonu:eo
sa_stm_s2 2

A A
"]

m m

mm:»um

-~

= e e

Diana Summary

,_comments: .
Ix__symeep: symboi_rep;
det_char => sm_obj_| :TYPE_SPEC,
am_pos: integer,
sm_rep: integer;
del_op => Ix_srcpos: source_position,
Ix_comments: comments,

Ix_symrep: sv.mbol_fw;
del_op 3> sm_spec: R

HEADER,
sm_body: SUBP_BODY_DESC,
sm__location: LOCATION,

i
=§§§g

:EXP_VOID;
as_list:seq ot COMP_ASSOC,
8: source_position,
comments;

i)
i
¥

|

3
s
b4 |2. E
¥ % g

4

g

¢
g
]
3
;
:

|
s
|

dsormt_ver =>

i.

)
§
|

7.4.B
7.4.8
9.6

©w Lew ©
o b O

NNONN
-N NN

Lo ww

§ A8 & 8 & 88 ¥

B BB AD

J

8 R 8 K 83 KA R

Section IV / Page 177

Page 178 / Section IV

DiIaNA Reference Manuail

comments: H
entry_call => sm_normalized_param_s:EXP_S; 9.5.8 66
entry_id => ix_srcpos: source__position, 9.5.A 66
_comments: v
L_Symrep: symbol_rep;
entry_id => sm_spec: ’ 9.5.A 66
_address: EXP__VOID;
enum_id 3> n_srcpos: source_position, 3.5.1.8 38
comments: comments,
Ix__symrap: symbol_rep;
enum_id => sm_ob)_type: TYPE_SPEC, 3.5..8 3@
sm_pos: integer,
sm_rep: integer;
enum_literal_s => as_list:seq of ENUM_LITERAL; 3.5.1.A 37
enum_literal_s => cd_impi_size:integer; 3.5.1.A 37
enum_iRteral__s => (x_srcpos: source_poasition, 3.5.1.A 7
Ix_comments: comments;
onum_Jteral__s => .m size: EXP_VOID; 3.5.1.A 37
axception => as_id_s:1D_S, 1.1 70
as_exception__def: EXCEPTION_DEF;
axception => Ix_srcpos: source_position, 1.1 70
_comments: comments;
exception_id => Ix_srcpos: soyrce_position, " 70
Ix__comments: comments,
ix_symrep: symbol_rep;
exception_id => sm_exception_det EXCEPTION_DEF; 1A 70
oxit => as_name_void: NAME_VOID, 5.7 56
as_exp_void: EXP_VOID;
exit => Ix_srcpos: source_position, 5.7 56
Ix_comments: comments;
axit => sm_stm:LOOP; 5.7 56
exp_s => as_list:seq of EXP; 4.1.1 48
exp_3s => Ix_srcpos: source_position, 4.1.1 46
Ix_comments: comments;
tined => as_exp:EXP, 3.5.9 39
as_range_void: RANGE__VOID;
tined => cd_impl_size:integer; 3.5.9 39
fixed => Ix_srcpos: source_position, 3.5.9 39
x_comments: comments;
tined => sm_size:EXP_VOID, 3.5.9 39
sm__actusl_deita: Rational,
sm_bits: integer,
sm_base_type:TYPE_SPEC;
tioat => as_exp . 3.5.7 39
as_range_void : RANGE _VOID;
flost => od_impi_size:integer; 3.5.7 33
float => ix_srcpos: source_position, 3.5.7 39
Ix_comments: commaents;
flom => sm_size: EXP_YOID, 39
sm_type_struct: TYPE_SPEC,
sm_base_type:TYPE_SPEC;
for => as_M:1D, : $.5.8)
as_dscrt_range:DSCRT_RANGE;
for => Ix_srcpos: source_position, s.5.8 8
_comments: comments;
formal_ 2> Ix__8rcpos: source _position, 12.1.D 72
In_comments: comments;
formal_Mxed => Ix_srcpos: source_position, 12.1.0 T2
in_comments: comments;
formal_lNoat => Ix_srcpos: source_position, 12.1.0 7
Ix_comments: comments;
formal_integer => ix_srcpos: source_position, 12.1.0 72
x_comments: comments;
function => as_peram_s:PARAM_S, 8.1.8 58
ss_name_ void: NAME_VOID;
function => Ix_srcpos: source_position, 6.1.8 58
:comments;
function_call 2> as_name:NAME, 6.4 61
as_peram_assoc_s: PARAM_ASSOC_S;
ane‘l”hmmm_pom 6.4 81
_comments: comments;
mwaamwmmmc. 8.4 (3]
sm_veive: veive,
sm_normaelized_peram_s:EXP_S,
RS
— — R . AT Tl e o i iy M St TGy = <
" . i L

Lo

bkt

.
(XS

Diana Summary

ix_prefin: Boolean;
function_id => Ix_arcpos: source_position,
x_comments: comments,
x_symrep: symbol_rep;
function_id => sm_spec: HEADER,
sm_body: SUBP_BODY_DESC,

_param_s: GENERIC_PARAM_S,
as _header: GENERIC_HEADER;

Mnnmmm_posmon
Ix

comments;
! uunqofeenechssoc
goneric__aseoc_ |= Ix_srcpos: source_position,
Izcomnueomum

wmmlnm ’
-eenemc_nemea.

iseq of GENERIC PARAM
rcpos source_position,
lx _comments: corments;
goto => as_name:NAME;
goto => l: __STCROS ; SOUrce_position,
eommonu commens;
d_s => s _Nst:seq of ID;
id s => I: __Srcpos : source_position,
x_comments:

comments;
> as_lst:seq ot COND_! CLAUSE
it => Ix_srepos: source _position,
ix_comments: comments;
m=>uidal03
ummoNAME
uoxpvonlEXPVOD
in 3> IX_Srcpos: source_position,
ix_comments: comments,
l:dofwnsoohcn
'm_id'> ,_Srcpos: source_position,
lacommom comments,

”"“.P symbol f”o
in_ld => sm_obi_type: : TYPE_SPE!

:NAME,
as_generic_assoc_s: QENERIC_ASSOC_S;

12.1.A

12.1.A

12.3.A
12.3.A

12.1.A

12.1.A

4.4.8
6.1.C

8.1.C
6.1.C

57

$7

7

Al

& 88 88 88 NN

35X 2 2888 B8 838 8

Section WV / Page 179

_— Lo PR R TS e X

Page 180 / Section IV DianNA Reference Manual
instantiation => Ix_ srcpos: source__position, 12.3.A 73
ix_comments: comments;
instantistion => sm_decl_s:DECL_S; 12.3.A Ie)
integer => as_range: H 3.5.4 38
intager 2> cd_impl_size:integer; 3.5.4 38
integer => Ix_srcpos: source_position, 3.5.4 38
Ix_comments: comments;
intager => sm_size: EXP_VOID, 3.5.4 38
sm_\type_struct: TYPE_SPEC,
sm_bease_type: TYPE_ 5
item_s => as_list:seq of ITEM; 3.9.8 44
tem_s => Ix_srcpos: source_position, 3.9.8 A4
Ix_comments: comments;
iteration_id => (x_srcpos: source_position, 5.5.8 Ss
Ix_comments: comments,
x_symrep: symbol_rep;
! iteration_id => sm_obj_type: TYPE_SPEC; 5.5.8 55
I_private 2> Ix_srcpos: source_ pasition, 7.4.A 63
x_comments: commaents;
I_private => sm_discriminants: oscnm' VAR_S; T7.4.A 63
I_private_type__ id = Ix _SrCpos: 30Urce__position, 7.4.A 63
ix_comments: comments,
_Symiep: sym rep;
i_private_type_id => sm_type_spec: TYPE_SPEC; 7.4.A 63
label_id => ix_srcpos: source_position, 5.1.8 st
Ix_comments: comments,
Ix_symrep: symbol_rep; ;
label_id => sm_stm:STM; 5.1.8 51 !
lsbeled => as _id_s:iD_S, 5.1.8 51 i
e as_stm:STM;
labeled => Ix_srcpos: source_poasition, 5.1.8 51
. ix__comments:comments;
loop => as_iterstion: TERATION, 5.5.A 54
as_stm_s:STM_S;
foop =» ix_srepos: source_position, 5.5.A 54
Ix_comments: comments;
) membership => as_exp:EXP, 4.4.8 48
as_membership_op: MEMBERSHIP_OP,
as_type_range: TYPE_RANGE;
membership => Ix_srcpos: source_position, 4.4.8 48
‘ ix_comments: comments;
membership => sm_aexp_type: TYPE_SPEC, 4.4 48
sm_vaive: value,
name_s 3> as_list:seq of NAME; 9.10 68
name_s => h_srcpos: source_position, 9.10 68
Ix_comments: comments;
named => as_ _8:CHOICE_S, 4.3.8 47
4 as_exp: EXP;
f named => Ix_srcpos: source_position, 4.3.8 47
. ix_comments: comments;
named_stm => as_Iid:iD, 5.5.A 5S4
as_stm:ST™;
F; named_stm => x _srcpos: num_pocmon $.5.A 54
_comments: comments;
; named_stm_id => Ix_srcpos: source_position, 5.5.A S4
4 ix_comments: comments,
n_symrep: symbol_rep;
’ named_stm_id 2> sm_stm:ST™; 5.5.A Se
no_detault 2> ix_srcpos: source_position, 12.1.C T2
Ix_comments: comments;
not_in 3> Ix_srcpos: source_position, 4.4.8 49
ix_comments: comments;
| nUNi_access => Ix_srcpos: source_position, 4.4.0 L]
: ix__comments: commaents;
: nuli_acosss => sm_exp_type: TYPE_SPEC, 4.4.0 L)
sm_velue:valve;
null_comp => lx __8TCPOS: 30Urce__position, 3.7.8 4
ix_comments : comments;
; nuli_stm => Ix uepoo source__position, 8.1.F s2
i x_ _comments: comments;
number x> u Tid 0&3. 3.2.8 3s
i number 2> ll arepon mm_poomon 3.2.8 3
' Ix_commenta: comments
! $

T - —— e

"’»———.—"“-——-———-\rﬂ'—"" o he e e

ol ccaas o 7 e S N i

Diana Summary

number_id => bx_srcpos: source_position,
u_eomnu.eomm,
Ix_symrep: symbol_rep;
number_id => sm_obj_type: TYPE_SPEC,
sm_ _init _oxp: EXP;
numeric_literal => lx __Srcpos: mroo_poamon.
ix_comments: comments,
Ix_numrep: number_rep;
numeric_literal => sm uptypoTYPE SPEC,
sm_valve: value;
or_else => Ix_srcpos: mreo_podﬂon
comments:

sm
package_body => as_id: ID,

address: EXP_VOID,

7 el
i
% &
3
g

pragma_id => as _list:3eq of ARGUMENT;
pragma_id => Ix_symrep: symbol_rep
Monulﬂmd?ﬂibm
pragme_s => Ix_srcpos: source_position,
x_comments: commens;

m.nhmmm_poaﬂon
In_comments: comments;
Ms»mmmomm VAR_S;
typoidnlxsrepooawm_poﬂﬂon,
: : commaents,
_Symrep: symbol_rep;
Mtypoidnmtyp:pwﬂﬁ SPEC;
proc_id => Ix m __pumon

lxlymnpqmw rop,

3.2.8

3.2.8
4.4.0

4.4.0
4.4.A

3.7.3.8

6.1.C

6.1,

(v}

6.1,
71
7.1,
7.1,
7.1.

> » » 00 0

7.1,

7.1,

>

-h b

Nh NN
oo

2 oo
.-‘-.
> > O OO 00 >»>» © ©

.

.

N N & A
® @ » »>

2288

NN N
> &
>> >

oN
-5
>>»

8 8 88 8 3

£ BRRRB BB B

S8 22 B 8833 8 8B & 33 88 88 B B

Section IV / Page 181

rra

Page 182 / Section IV

raise > as_name_) :
raise => Ix_srcpos: source_position,
Ix_comments: comments;
range => as_expt:EXP,
as_exp2: EXP;
range 3> [x_srcpos: source_position,
Ix_comments: comments;
range => sm_base_type:TYPE_SPEC;
record => as_list:seq of COMP;
record => Ix_srcpos: source_position,
Ix_comments: comments;
record => _size: EXP_ VOID

as_alignment: AUGNMENT

as_comp_rep_s:COMP_| REP _S;
record_rep => Ix_srcpos: source. _positlon.

Ix_comments: comments;

!
5t
it
33
8
it

as_
reverse => [Ix_srcpos: source_position,
Ix__comments:comments;
=>umma:SELECT CLAUSE_S,

WMWDESBNATORM
Mnhmmm_poduon,

Ix_comments: comments;
m”unouptypo'm’ﬁ SPEC
dmphnp”unmNAME

simple_rep 2> u_':::oa:mm_pomon.
comments:

x_¢ comments;
siice x> sm_exnp_type: TYPE_SPEC,

- -
- X

2 20 o o a0
SN N2

4.1.3
13.3

13.3

4.1.2
4.1.2
4.1.2

e

57

n
n

37
37
37
41
41

41

~
»

28 86 88 22 3

3 9

74
74

e et a e s - mma ———— s——— ; i

DIANA Reference Manual

Diana Summary Section IV / Page 183

sm__constraint: CONSTRAINT;
stm_s => as_list:seq of STM; S.1.A §1
stim_s => Ix_srcpos: source__position, $.1.A S
Ix_comments:comments;
string_literal => Ix_srcpos: source_position, 4.4.0 49
Ix_comments: comments,
Ix_ symeep: symbol_rep;
string_lteral => sm_exp_type:TYPE_SPEC, 4.4.0]
sm_constraint: CONSTRAINT,
sm_valuc:vcluo;
stub => Ix_srcpos: source_position, 10.2.8 70
o __comments: comments;
sybprogram_body => as_designator: DESIGNATOR, 6.3 60
as_header: HEADER,
as_block_stub: BI.OCK STUB;
subprogram_body => Ix_srcpos: source _posmon. 6.3 60
Ix_comments: comments;
subprogram_decl => as_designator: DESIGNATOR, 6.1.A 57
as_header: HEADER,
as wbprognm dof SUBPROGRAM_DEF;
subprogram_dec! => Ix_srcpos: source__position, 6.1.A 57 i
Ix_comments: comments;
subtype => as_id:ID, 3.3.2.A ¥
as_constrained : CONSTRAINED;
subtype => Ix_srcpos: source_position, 3.3.2.A 3
Ix_comments:comments;
subtype_id => ix_srcpos: source_position, 3.3.2.A 3
Ix_comments: commonts. j
Ix_symrep: symbol_rep
subtype_id => sm_type_spec: CONSTRAINED 3.3.2.A
subunit => as_name:NAME, 10.2.A 70 b
as_subunit_body: SUBUNIT_BODY; {
subunit => Ix_srcpos: source_position, 10.2.A 70
Ix_comments: comments;
' task_body => as_id:iD, 9.1.8 65
as_block__stub: BLOCK_STUB;
' task_body => Ix_srcpos: source_position, 9.1.8 65 - 4
ix_comments: comments;
task_body_id => Ix_srcpos: source_position, 9.1.8 65 ;
x_comments: comments, ¢
ix__symrep: symbol_rep;
task_body_id => sm_type_spec: TYPE_SPEC, 9.1.B 65
sm_body: BLOCK_STUB_VOID,
sm_tirst: DEF_OCCURRENCE,
sm_stub: DEF_ OCCURRENCE; $
task_decl => as_id: D, 9.1.A 65
as_task_det: TASK_DEF;
task_dec! => Ix_srcpos: source_position, 9.1.A 65
Ix_comments: comments;
task_spec => as_deci_s:DECL_S; 9.1.A 65
task_spec => ix_srcpos: source_position, 9.1.A 65
x_comments: comments;
task_spec => sm_body: BLOCK_STUB_VOID, 9.1.A 65
sm_address: EXP_VOID,
sm_storage_size: EXP_VOID;
terminate => Ix_srcpos: source_position, 9.7.1.B 67
Ix_ comments: comments;
timed_entry => as_stm_s1:STM_S, 9.7.3 68
as stm :2 ST™ s.
timad_entry => Ix wcpos soureo_pomion 9.7.3 68
3 eommonu comments;
type => as_id: D, 3.3.1.A 38
as_dscrmt_var_s:DSCRMT_VAR_S,
as_type_spec: TYPE_SPEC;
type > Ix_srcpos: source_position, 3.3.1.A 35
Ix_comments: comments;
type_iMd => I __8rcpos: soweo__pomion. 3.3.1.A 38
Ix_comments: s,
x_symrep: symbol_rep;
type_id 2> sm_{type_spec :TYPE_SPEC, 3.3.'A 33
sm_tirst 'ber _ OCCUARENCE;
universel_tiwed => App. | 7%
m__m.g« 2 ; App. | 7
universsl_real => ; App. | 76
e e . e e 2 - ..__._W - -

Page 184 / Section iV

> as_list:seq of NAME;
> Ix_srcpos: source_ position,
x_comments: comments;
used_bitn_id => Ix_srcpos: source_position,
Ix_comments: comments,

Ix__symrep: symbol_rep;

used_bitn_id => sm_operator: operator;

used_bditn_op => Ix_srcpos: source_position,
Ix_comments: comments,
x_t _Symrep: symbol__rep;

used_bitn_op = > m opontor operator;

used_char => Ix_srcpos: source_
lx _comments: comments,
x_: _Symrep: symbol_rep;

used_char => sm_defn: OEF_OCCURRENCE,
sm_exp_type: IYPE_SPEC,
sm__veive: valve;

veed_name_id => Ix_srcpos:source_position,

tx__comments: comments,

_ _synwep: symbol_rep;
used_name_id => sm_det: DEF_OCCURRENCE;
used_object_id => Ix_srcpos: source_position,

ix__comments: comments,

Ix__:ymp:symbol_rop;
used_object_id => sm_exp_type: TYPE_SPEC,

sm_dein: DEF__OCCURRENCE,

sm_value: value;
used_op => Ix_srcpos: source_position,
Ix_comments: oommem:.
x_ __symrep: symbol
vsed_op => sm_dein:DEF_ OOCURRENCE
var => as_id_s: 10 _S,
as_type __spec: TYPE_SPEC,
as_object_det: OBJECT_DEF;
var => In_srcpos: soureo_posmon.
Ix_comments: comments
var id-> Ix_srcpos: source -~e-ton,
Ix_comments:co - ‘unts,
x_symrep: oymbol _rep;
var_id => sm_obj_type:TYPE_SPEC,
sm ldduu exXpP_volo,

>
-
>

-
>>

>
-t
>

£2

&8

&8

¥

b I

3

3
43
43
3
43
43
k< -3
5
55
70
0

DIANA Reference Manual

W

Diana Names Page 185

APPENDIX Vv
DIANA NAMES

This appendix is an index of all of the names which occur in the DiaNA
definition: these names include class names. node names. attribute labels. and
attribute types. Each name is shown in the form

name {section-number-list] page-number-list

The section number list gives ail the sections of Chapter 2 which make use of
the name. The page number list gives pages of this document on which the
name may be found. Either list may be split across several lines.

ACTUAL 6.4, 12.3.C)
AUGNMENT 13.4.A)
ALTERNATIVE

ALTERNATIVE_S
ARGUMENT
BINARY_OP
BLOCK_STUB
BLOCK_STUB_VOID

@
»
d

. halPudl aghagbgsy
NN NNNSA-OAE AL

85, 70
41, 44, 59, 61

538

1.C, 9.1.8, 10.2.8]
9.1.8, 12.1.A]
6.A, 3.7.A, 3.8, 6.1.C,

68848832

WONnsP:

apuu-
3]

Raldd

Zwgey
N
-
W
REGLILRBAS

al08
¥
8
3
3
8

Sauw
==23>

e
5

47, 49

-d b o
. .
o oy
-

Lo0es

S

BegRRL

BLH I8
8
3

41,

. N_Nwlﬂ
Fwws

LT
3

7,

-l

@2
8
&

s7,

. -
-

PwNaSwe]

.1.C, 7.1.A, 9.1.B, 12.1.A)

NN !\,P. b
B48%

& 8

g

8

61

>t
= Y.] We

3.7.A, 3.7.1, 7.4.A]
.6.8, 3.6.C, 3.7.3.8,
-5.8, 9.5.A]

52
Y

.5.1.8]
.8, 3.5, 3.5.7, 3.5.9,

8838

-

A, 3
1.1]
3.2

(X i mimny nromel o ml ol L' I eielmieumamy 1ol Ll rmime mminlam ol ool m s e s
-
-

>>
A8RUR8 BRAB BRER JABARKBEBE B

Sepaan:

~
-
[&

LWRLOW WWWs
85

, 4.1.1, 4,1.4, 4.3.A,

AD-A128 232 DIANA REFERENCE MANUAL REVISIUN 31Uy TARTAN LABS INC 3/3
PITTSBURGH PA A EVANS ET AL. 28 FEB 83 TL-83-4
MDAS03-82-C-0148

UNCUASSIF IED F/G 9/2

ENL)
oare

e T~ o——— -

||||——:|=-9 m B2 g

— E m L
woog,

s -

P mLs

Eo

IL2s flie pue

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

5
m 8 3 8 t 13]] BS
- » - [J [R - - &
§ B gEhr 5~ 8 g] '] t 1
e < gess 888 2 8 gese § 58 £ ¢
M § sidd gid ¢ § 8999 3 r 88 8 = $5 & #¥
° ¢5¥8 R rEdd § 885 S 9%/ 3¢ 3 co88%8 ¥ 8 88 3 8¢
8 89Y3Yd OLrRRrRRENS Seet¥Ss LLJeSSER SRINVAVBRARNBBE BIIHLLEESs 58 LLRBEIT
L JE] - ’
] <o o S <

é Do -~ -e . o I w .

- . o . 2 < [L & et . . e]

cTm OO0 Ne . t . @ - ” ® oo -
;® & .0 .0 .8 . - faes "e - : B~ ™ €
8 Ceg<. ~Sads v LR T g g “% < o
i €a o0 <~ g-n " Ol5t " o $ 9 < < . “g
g% SO6%s o G < Heet 2T o o " S " <5
g .- <<¢¥%¢& o . g €S 5 o hogteed . < ¢ = g "% -2
‘. s ™) . - MO . N w . N M., NTD e~ 0 on 0 o [L . ® .
e o0 e - - -0 e O"e" - - . . 4 0 [: D - <)
4.5 . 45.3. ‘P o~ B- n..v..m.ssm &3" [4 n Bo4.4.c-8. .. 18 [J JO.I.M.Q. - o w o & 3&

L5 an® o = L A - .0 > 0d = . . Y e . . A .
g “Ngee 2 o0 L by BE. < dgpealy TS oda _doddagd k@ <000 Cd
to” €. T ad de-< Vol oo™ v %995 . "% dn &< - ONCon BB 2~ m- O i
< - . et N & - . .~ - . o My 2 ¢ DNO o SO TP . . ° P I3 « M
- 2O DCCCDE N & e pe T s, e o s W s ot o o o oD e o pPmM . crm o o s v o)
g7 <0 ;L2002 224N S ¢ €p @<L . TCOWN s ova L € _LLCOLLAL i gn < ~r<d i Cyndecmd
&n&JJ&&&LAtzzzzzzJ&unztﬂxsja&dnnAatn.&JAAJJAAAAJJJJJ&J&JJJAJJAJLJ&.JJ&JA&&
8 N RO o oo g RO000 000N & e CRONNENEONNONTN S ONBNNAYD L el T R A

Page 1868 / Section V
LANGUAGE

LOCATION

LOOP

NAME

NAM

NAM

OBJE!

oP

EXP_CONS
P_8
EP_VOID
QENERR
GENERIC_,
GENERIC_
GENERIC_
GENERIC_|
HEADER
()

0_s
INNER_RECORD

Section V / Page 187

. . .
3 gr 8
. . . .
8 L 14 b4 3
.
8e $ t 1] -] -4
-» » - & -» - »
g 83 ¢ s 58 -] 1)
» ® - - - - »> » - -
1) e¢ 883IRE nw e 8 8% 5 g§ 8 83 s¢ ¢ 888
- & - ' - & - - ®» - - - » B - - - - o
$0 8id22sdENTNYUaaesiondesinEnesuubenyesrEd 558%8 rorbHY
< < a & <
YL me - *
ppeb S <6 < <=
neY o ;00 N =®
- e '41 . 4oa‘.1l .w ‘ﬂvo
o) - . :
neTU - Ne © IS
el ¢« < P R o -
ddde- I T a5 A2
need < el B . R e <&~
> o&‘.ao m.m.ﬂ. D 3] |..” oﬂm 4” ® m. -Iuov.l [l -]cmav
Mma..mi << runbé¢ ~® Ma - U » ©w wgs €< N ne .
AiTEegTiIITNGNTLYY d of Tdodln 0 2o T9e i1 0oTTTes”
NEL¥ im0 dar od0dd Tde SN nsdd CRRdn-dTlnd g L RLT <Ly
B L e M L L L L L L p e bt bl G B L L L L L Sl
MMM&M“LL!&88314104884636184631330917!43“391”45“33445ﬂ11102&

S, &m !

.

P ———— . P ——. A o i T ' L

sl wmw
mmm i ME

wmaww

g das

g sa8

3 -3-3-3

¥§ 5¢3

S 1 1]
JRBINTGE

@ <

. "
4

o
o an<
S ST
<no<d

- P Y]
~ b

" nhnao=
. 13‘1
D QO o« o
. o gy . g™ N
N~ N - -
e ono9%
TLT e tnea
I N
-N - O0® - .
"ntvon "
O v it) O @

-

._ m

H. { _M.

: 333

DIANA Reference Manual

>
€
(]
=
s
]
~
3
P
L]
e
0.

8 g¥s8dEY

hd B g 31 13374

g 8 § B8 sJvsgsr

R = 8 8 5% & 8 R35988x

g 89 z8xrp 33 8 dp $9 8 a5 pISeedsse 8 39 8

$ 2883p0igsRessd 38LRBYSBLSLENeY NIE 208RYS5E8R seegsadssisfunt
- - - t" ‘0 g el~

[- -e . .

Lry . , RIRGUFT L

1 Q S < R PR L LD S b

~] ! © o7 < LCONS g0 LA Lo,

nAoB- o ~ . . oSB-ﬂ&A o .N e @ty

“<q . . s % (%GR eaddde®=Nds

o0 o [o] (] ("] . &3 - -

ccla.]c. - —— - - P ..QM&.‘D n“nw"zo.lous

el A = i SR B Yoeh R p N WLt L

Y. . X X oo - ——- - ” LT e S P o S I NI .9A (] oy

ol - 2 e < . . . 3333445517& o [3)

g8, °T %¢3¥n Togn 2 o Y0 o oad 1R St b g ¢

S5l @n veais eenll 5 % gq ¢ a7 Fandaldddd ldGdtednd s 24 3

Weg maxsa AN i I Msmummlm meau‘s~saam«mamLzsam~ I Sl R

w0 o0 <Al inn-d < dITITL Y €02.00, . A0<0n g i 0S¢0 SE B¢~ -<d< d da-T

T L e N R e b B M T T LD LRt i de i I B b L e e e bl PR A b

‘...3'53725'333955999019‘31335 33459133.&352333&&‘.4.&5.&7..«&9.““““311 ~HHOOOESCTNY

s i

mihililal

cd_impl_size

~Mmmmm il

L e ——— - s - uy

Section V / Page 189

Diana Names

$SS8dEy
31 1 33°1d
gdesgerd
88 ' [4 BeSA88K
38sY g 8 LR 8 55 ke 8 s g8 R ¢ g8 s9¢dgse
Gl YVIRBaBRBARS naaunnnnuawannnmsaaa«sawu«wauuauamuaanunuun 8838
.8 &g dad
< Cdg 6% Fe
¢ N =a <0< T
. - 9‘4.7.3. 3.7& R .
(4] ‘o !An '.’7"&5- 3!“ a l > [4]
aguandd . g Saln e o
ok 3.&&&1.1&0&564 el T -
oe - < L . MR AN S
. 9 b - R Tt B
- = < go o ¢, TP UL DL AL Ll M e B
- < - ciel T * -~ © R 2&&334.48&17&9 Y L
o~ GN. L] L1 : . < . - Lo -58.1w.... <
- : - e @ - e - e Cnlardanaa "B OFON"<C :
Feas o3 s B gTC T0d 8 g diguani-ddntae goY 3
a0 9 Y . LY PR~~~ 0.]1.1.. on® e OB OO o€ vim
o I i L L nsnmmmmmwm&JM1Mun&ﬂnamm£mcxa¢ammxxmxx-a.auzAxso~.mmnAJ;mm1A
nma&mna&xa&sam.nnaaxmzzmi11uzzan¢nnngJJJanaaaﬁxnnaJammmnmmmaoaammuzn@nanx
ssab&%%%%sbh%bh%h%%%ﬁh%fhhh%-Hh%%%wbm%saasssh%ﬁ1ss§&saaaammmmammmmwwauuuuﬂ

m w mw -
i wmw mwmmm“mm dmuumwwmwmmmm

o, LA
1 H m

) wmmmmr

- S . ORI . ~ver

OwuNA Reference Manual

190 / Section V

Page

$88g8% I5e

gegate 317 -3

Jesgdn EE) R]

111 1’14 34 88 a 3

FYdEsEe sede 3 98 gd s s p FreBr s d8 & @

geéasdee S985 essdsneesanneeveoRasrigdnaeietegaLssfanintandbsvane
< < Jd 94 o <<

¢ N "e <20« Pl S - <

aetgtentand 2,20 0 < M

cegn < <N dhgR - dd ! .

TPTEEL Ll LAl A N T e s

umammm4s&nrmmsmAmnAnss o e

T DL ol bt Sepe et S & o -5 el e

M&&Ltttt&&tﬁ&J&ﬂiA&&Jm. e~ o ®
&&&&mt&&nt&ss 0? an S = Ne - T % T

I L L L LI < e o* < o= < 2 B

3&91&38& Jc Nl nDls] t& - et g <<, e) 4

anammnmn&&:sss'ou4zanu1 - i) - wS o umw UG ind Smed o

&833&&&&&L189&&1 FLLY l.lcl]].z)]]l)]l.ll e o £ emvomsems ¢2™" " a< A
% d i <<®® <D e Ld” LT 5 An@OT aoacaaooAA1C£s1A.. 0<E<0TTddoy_~ {J@d~~

...... IS L L S B LT 44111&@@m&mmn@JmnamA@vqmamnnnmassmmm&nnmmawvr

3&817141%914&7 L LI I] o
&&&&&tt&&&lm&&wwuwﬂattndso581443533444438833772002.81773880833105389048

w M memwamﬁ

L i

-
[
-
P - [..’. - -
~ § ¢ 8 3 fsaddex
, w e 8 ¢ : 8 A00B3S
9 88 < ¢ § & 8 s § & r8 ¢ gY¥sged
M R g8 8§ & 5 ¢ ¢ § 5 8§ $88808Y ¥I5868<
% 8 ¢RO5 O V€Y 2 ¢ 8BK T S8 8 @ 8 JIsdEny seedgse
YRE2BYVSLIPNRIIRABSS2YINTINAS SENRYIRYs SErEsVIIRYNRIRN SohLERY deeasder
- - g >
) < 3 o > o .®
% e % Y . x cate®
” Y e & o O o o T e n?
- . 2 . S o= - €T e el Yo,
<~ 0 <« ig < © ~ N & <0 80 Cdnd<s S
6e < ¢ ¢ 9T = " 8§ g¢ % SOl Csene
om O . € - N © . s ¥ 9 ¢ na”®ON""
- s 2 € MR « AN .&&3344430
) <¢ € o N N = - ¢ €_ drhe<d
- ce < ¢ ce o2 N 60 T SR - Aepanm<daeau®
- on o - ¢ .~ =® o N 3098.M.tA .48&&8‘7.141!
- o - s > 1.2. ~— o‘.l.A.S o g @ ” o 91 N 2333344‘3
< - N €0 & Fr < AT d < a, " {ed<odnnddd oy g kg
n g Br@een ~ N¢_ & “gens K o6l dg 4 <ireteaeedd 2ol ot
Qm..JlM M]M.m. v lm.m. ﬂuo&ra. - SB.MM..I.:. QA.J.JLM;J 4” 35. J..lw ?37JM7A.&47.3.A.833&448.8
L hie T ite i g e P I A ST £ et S L el L pt L SRt L ps L0 ST LL el I NP
J&w....7..-.&1.&&2.34.1.&&717&1.4.2...31....1.34.2171.1.&7.3...22.1.7.4.32.7...Q.JJs.d.s......a....s.s....&assl.r.t...&...a
[Aahad] 733’.1’33..21’831‘3333‘&3331‘31“.‘.“' NOOONO ‘33333&.‘3‘3"‘“&&’.&&‘...'...

gl i Y
mmw mwmmw kil | ; m Ww_m

—
auuﬁuuuuaaaaauauuuaua mmmmm m mm m

m.w 8 xw&z
mmmnuuamnmnqummmummmm EEE6E SEEEESEE m

Diana Names

DaNA Reference Manuai

Page 192 / Section V

]

LA, 9.1.A, 10.2.8]

7
6.3, 10.1.8, 10.2.A
1.A, 10.1.8, 12.1.C

3.2.A)

57‘9’““““3‘8333313 .

12.1.C)

1.A]

]

8.7.3)
LA,

;2 <d” <6<a”"

crOHOOOPROMO

<
> g g gy
- .|||A-.l.]

§2%

_integer

84, 56, 57, 62, 65, 68,

@9, 70

32, 34, 36, X9, 41, W,
58
0

48, 47, 48, @, 50, 61
3B, M, M

34
<
M,

y 3.3.2.8, 3.85.7, J.7.A,
8.85.A, 8.7, S8.1.A,
8, 1.1}

.4, 10.1.1.A)

4.1.4, 4.4.A, 4.4.8, 4.4.0,
8.1

9.1.A, 9.5.A, 10.1.

4.1.3)

atN O

3

........
Deremerermrmee

cOon [[[34“.“‘444.33333 ~

S0 i 1

v.'sv

5. .,

2
SRR

-

aibeins

e

Diana Atftributes Page 193

APPENDIX Vi
DIANA ATTRIBUTES

This apbendlx is an index of all of the attributes which occur in DIANA tree

nodes. Each attribute is shown in the form
label : type (section-number-list) page-number-list

The section number list gives all the sections of Chapter 2 which make use of
the attribute. The page number list gives pages of this document on which the
attribute may be found. Either list may be split across several lines. The
attributes are grouped Into four sections: structural. lexical., semantic. and
code.

VI. 1. Structural Attributes

Structural attributes define the basic shape of the DIANA tree.

as_actual: ACTUAL . %4%] ;‘1‘

as_slignment: ALIGNMEN A

u_mdmun 3: ALTERNATIVE_S S. : As .6) g. S8

as H N,

u:uoet_‘s:u’o:sl.ocx:swe 6.3, 7.1.C, 9.1.8) 60, 63, 65

as_choice._s: sm s ?3743 :]\ 4.3.8, 5.4) ;:. 47, 53

as_comp_rep_s:

as_constrained: 3.2.A, 3.4, 2.6.A, 3.8) 38, 37, 40, »

as_constraint: CONSTRAINT .3.2.8] 3%

as_context: CONTEXT 0.1.8) %

as_deol_s1:0€CL_8 1.8 2

as_deol_s2: .1.0] -]

as_decl_s: AA a5

_designetor: TOR .1.A, 6.3, 6.4) 57, @0, 61
_designetor_char: DESIGNATOR_CHAR .9 -

as_dscrmt_var_s: DSCAMT_VAR_S :3:1.A3 s

“‘Mw‘w: ;z. .5.8] : 88

as_ _renge_ .Q.Af

as_dsort_range_void: DOCRT_RANGE_' 5.A] -

as_enception 1.1 7

as_enpt: EXP .5.14.4.4\] 37,

as_enp2: EXP .5, 4.4.A 37, &

as_oxp: BXP 2.8, 3.5.7, 3.5.9, 4.1.4, 4.3.B, 36, 30, 47, 48, ¥, 50,
4.8, 4.4.D, 4.6, 4.7, 5.2, 5.4, , 53, 65, @5, 74, 7S
‘i]" 9.6, 13.3, 13.4.8, 13.8,

as_exp_conetrained : EXP_CONSTRAINED o o

as_enp_o:EXP_ 8 :1.1] ot

as_onp_void .::itn.so.uc 9.7.1.8, 63, 58, 50, €7, 74

as_generic_esos_s:GENERIC_ASSOC_S

- | :

o-generes ' 2.1.A} n

80_Nheader: HEADER .1.A, 8.3) 87, @

se_id:1D .8.A, 3.3.1.A, 3.3.2.A, 4.1.4, 33, 38, 38, 47, 54, 88,
8.A, 5.5.8, 7.1.A, 7.1.C, 9.1.,A, 62, €, 6, N

DWNA Reference Manual

Page 194 / Section Vi.1

.1.8, 12.1.A)

3 ¢8r
8 t 234]
a 8R 8
) R Y8R c 8 8
- - o & & - - - =
8 ¢s 3 88 3¢ s8R 3 3 8
SRBIDLIIYLBABAVYIRENRRIIBBBLLOIRIT BRIVAIBRRB? 55888 2 RIS
c. -
- N.&M” .
© e o

Mg N .
¢ S °
- o te<y >
o e L <
N - ol-se 5 @9 <
" < - dé®a® < 2°%.) <
< < gy o - PP e O e D =i - :
5, 6T e 6 as, "= "4em <EROD -
N ~e - e nlops O SO0 e AR o
- ~ e < - - T LY Fh 66 Cho owvasw o _e
- —< ——r— <_ e o€ <, 2¢nNnn < < by g
<5 2 AT ETT TS0t 0T T he gl <<id¢nn dqddd ITHLn
NG2ne 7JJ303OJJJJJL!&JAJJOJJIAJ. JJIJJJJOSS7 ettty ISP A AL
AL LIRS XTI IR AIASIIIAA LIS TLIL T I K IHOOORNDGTENNG OOOON . FOCOHEN

&

s m wm . mm mm) W
mmm il A

dddddddﬂdddddddddddddddd

.ﬁ.mummmmwm:mm:m::mm:m
g uuuuuuuuuwuwuwuwuwuuuuuuu m
g 999995 555955555595454454444ss

d
mep 2.0 8 mm_mm
M & Mmmm : w ..a ww_m
..u.wm wwwm e |l

O s o S Rl e it

33, 34, 3, 38, 37, %N,
30, 40, 41, @, 29, M,
6, N 47, % 8 %,

.8.A, 3.2.A, 3.2.8, 3.2.C,

Lexical attributes represent information provided by the lexical analysis phase.
sz
.3.1.A, 3.3.2.A, 3.3.2.8, 3.4,
3.8, 3.5.1.A, 3.5,1.B, 3.5.4,

w0 []
’ - - - . & & & . a « - e d -
; ~ 8dgx R LT L J5e 3 g§ o
. - & & o ®e & & 8 & & & - o - - -
] -3 1114 33 131414 T88 a ¢ B
P - 9 & [IR I I IX) »> & = . - -
< ¥ggd RI¥I88N 838 g 88 ¢ § &
> o & = .« o o & s . = o g o~ - o - -
~ 8888 ¥Isa8es 858 . 58 ¥ § ¢
> S33IR ISeHBIR sear [m gl = 9¥s 3 ¢ 87
c o s o . R .o o [] . o8 e R . e . o
K] 331 14 RNV BER se8r e BEIRRSBULITRERETRES 38
(J - s o - - - o -t -
$. g% fa 9 ; cg® g 0% << o o <
» N muamo.su e ® . oCpveUte nE Ee lg T 8 J]
n tenaPdang Juuw TP M AL LR Mu“...sz.&s R -0) e <
<, 4578 15 3-.01 gl o oY <. EOND v ot L P E S A.7- - 3-0. -<
B’AA - 05 &7 !3.«“5 LBI’NBQ&.A.A - "m vA-QmA.7 tﬂ_v-cl‘».acl - “ < ss. ‘- 1u . ‘w‘
671382 04 D 0 ” .3&71362 QY -~ - 0 wur “ P . 4.‘. N
- P giigs 3 - . o o0 3 . . g . -
<ddeduSgniddTnd S0l qdedutSunfdeiidne £et $ i- 2 g L
ena-erdd=dn FEY S denasvrddn @l mE L nad £E* ga o <% .=
sasaqss....rAss.A.a.c.w L ELL L LEELY L el e E A | - .t de
dreadd®Cdno%g0r-¢ Sndardaddttardfgns LGnadd e
O St LT DI L SN LR S S Lt Db @ 8 dn: & 6.8 K % a%
"o ECBR-NGh < 0 LI DT A ML LY £ 5 5.9 8% ¢~
B 66 6 Pela 00 <Cn .0 .00 0 DT <D T = P e NBLC TN ST md so < s
Nded<d® 0 Lod Lo L Ten nand <L sAqanmznazmmsn 2 @ dang-senadtenne< b0
377141491457 . e .3557714.1.4. Al .l_w -. L L ¢ e s e s s e = « o . ® .3. "o
..m1&4.&&&&10.&&w.0-ﬂﬂmﬂ.mwm&&&&&0.45557099wwﬂﬂﬂ346ﬂ -t nonnetennn SN leele
® O
& o
£ m . 9
|
<
w m ® 0 m
P2, b B
0
- O) m
o w_ 3 -1 wm s 8 m |
® | c =
2 Wm £ & u
3 9 &=
: : s Bipni .
= M € o w
E 2 w ped o =]
< rvd m m w es 29 oo -
m i . 5 _E_m nilly ¢
2 ;. E SEEEENENEE ,_ £
a . s s £ mmm § nnnmn (4]
- - = - - - sr———————ReERRE

e e m m i —— i —— bl =]

Page 196 Reference Manual

; [12.1.A) 4!

: sm_init_exp: EXP 3.2.8) k<]
sm_Inik_exp: EXP_VOID 3.7.8, 3.7.1, 6.1.C) 4, 2, %
sm_location: LOCATION 6.1.A] s7
am_normalized_comp_3s:EXP_S 3.7.2, 4.3.A) R, 7

o zed_param_s:EXP_S 6.4, 9.5.8) 61, 68
sm_obi_def: 0BJECT_OEF 3.2.A) |
sm_obj_type: TYPE_SPEC (3.2.A, 3.2.8, 3.5.1.8, 3.7.8, 34, 35, 38, 41, 42, S5,

3.7.1, $.5.8, 6.1.C] 59
i sm_operator: operator 4.1.A] 45
sm_peacking: Boolean 3.4, 3.6.A, 3.7.A) 37, 40, &1
} sm_pos: 3.5.1.8)
« sm_record_spec: REP_VOID [3.7.A) 41
sm_rep: integer Es.s.t.a] 38
sm_size: EXP_VOID 3.4, 3.5.1.A, 3.5.4, 3.5.7, 3.5.9, 37, 38, 39, 40, %
3.6.A, 3.7.A, 3.8)
. sm_spec: GENERIC_HEADER 12.1.A) 7
{ sm_spec: HEADER 6.1.A, 9.5.A) 57, 66
i sm_spec: PACKAGE_SPEC 7.1.A]
! sm_stm:LOOP 5.7) $6
‘ 'ma EXP_VOID £3:4.%.0. %9 A) 7 -
oM r<] 8y .8, 9.1, 0]
* sm_stub: DEF_OCCURRENCE 6.1.A, 7.1.A, 9.1.8, 12,1,A] 57, 62, 65, M
‘ sm_type_spec: CONSTRAINED 3.3.2.A) %
i sm_type_spec: TYPE_SPEC 3.3.1.A, 7.4.A, 9.1.8] 35, 63, 65
1 sm_type_struet: TYPE_SPEC 3.3.2.8, 3.5.4, 3.5.7] ., 38, 39
sm_velue: valve (4.1.A, 4.1.4, 4.4.A, 8.4.8, 4.4.D, 45, 47, 48, 49, 30, 61
4.6, 4.7, 4.8, 6.4]
. Vi.4. Code Attributes
|
Code attributes provide target-machine-specific information.
. od_impl_size:integer [3.3.2.8, 3.4, 3.5.1.A, 3.5.4, 36, 37, 38, 39
i 3.5.7, 3.5.9)
{
!
|

-

DWuNA Reference Manual Page 197

nl P.F. Aibrecht, P.E. QGarrison, S.L. Graham. R.H. Hyerle. P. ip. and
8. Krieg-Bruckner.
Source—to~-Source Transiation: Ada to Pascal and Pascal to Ada.
in Symposium on the Ada Programming Language. pages 183-193. ACM-
IGPLAN. Boston. December. 1980.

21 B. M. Brosgol. /.M. Newcomer, D.A. Lamb. D. Levine. M. S. Van
Deusen. and W.A. Wulf,
TCOL 54,: Revised Report on An Intermediate Representation for the Prelimi-
na% Ada Language.
Technical Report CMU-CS-80-105, Carnegie~-Mellon University, Computer
Science Department. February. 1980.

{3 J.N. Buxton.
Stoneman:. Requirements for Ada Programming Support Environments.
Technical Report, DARPA. February. 1980.

(41 M. Dausmann. S. Drossopoulou, G. Goos. G. Persch, G. Winterstein.
AIDA Introduction and User Manual.
Technical Report Nr. 38/80, Institut fuer Informatik Il, Universitaet
Karisruhe, 1980.

(51 M. Dausmann. S. Drossopoulou. G. Persch, G. Winterstein.
On Reusing Units of Other Program Libraries.
Technical Report Nr. 31/80. Institut fuer informatik ii. Universitaet
Karisruhe, 1980.

6l Formal Detinition of the Ada Programming Language
November 1980 edition. Honeywelil. Inc.., CiHl Honeywell Bull, INRIA, 1980. h

n J.D. ichbiah, B. Krieg—-Brueckner. B.A. Wichmann. H.F. Ledgard. J.C.
Hellard, J.R. Abrial, J.G.P. Barnes, M. Woodger. O. Roubine, P.N.
Hilfinger, R. Firth.

Reference Manual for the Ada Programming Language
The revised reference manual. July 1980 edition, Honeywell. inc.. and
Cli~Honeywell Bull, 1980,

(81 J.D. ichbiah, B. Krieg-Brueckner. B.A. Wichmann. H.F. Ledgard. J.C.
Hellard. J.R. Abrial. J.G.P. Barnes, M. Woodger. O. Roubine, P.N.
Hillinger. R. Firth.

Reference Manual for the Ada Programming Language
Draft revised MIL-STD 1815, July 1982 edition, Honeywell. Inc.. and
Cli-Honeywell Buli, 1982,

91 J.R. Nestor. W.A. Wulf., D.A. Lamb.
IDL - Interface Description Language: Formal Description.
Technical Reoport CMU-CS-81-139, Carnegie—Melion University, Computer
Science Department. August. 1981.

(101 Q. Persch. G. Winterstein. M. Dausmann. S. Drossopouiou. G. Goos.
AIDA Reference Manual.
Technical Report Nr. 39/80, Institut fuer Informatik Ii, Universitaet
Karisruhe, November, 1980.

{111 Author unknown.
Found on a blackboard at Eglin Air Force Base.

T R ——

R Y
-~

e e - ~—

Page 198 DIANA Reference Manual

T g—

t
o

- R "
- N TR ',A"‘h‘*':r.‘a. . .
[- , e L 17, AL SV

e
S >
— e

* L *

DuNA Reference Manual

Abstract Syntax Tree 10, 80, 8%, 82, 83, 168
accept statement 110

actual parameters 126

address specification 113, 125, 126

AFO 9, 80, 81, 82, 83, 124

aggregate 96, 97, 98, 126

node in abstract syntax 82, 161
APSE 17, &3
sfray aggregate 97
srray type 96
attribute assignment 124, 158
sttridbute esquality 123, 124, 158
base type 88, 91, 93, 96, 125
buit-in

.14

123
code generation 85, 89, 91, 123
comments 122, 125, 168, 169
Oiana private type 122, 168
unit 81, 83, 84, 106, 108, 109,

constamt declaration 83, 115, 116
as part of instantiation 115, 116, 118
See also deferred constant declaration

node censtruined
13, 14, 18, 19, 122, 160
declerstive part 103, 108
deferred constant &7, 102, 108 -
deferred constant declarstion 83, 108

o

-
87, 12, 103, 104, 108,
108, 109, 110, 111, 112,
13, 114, 128

arguments €8, 158, 199

102, 103, 108,
1, 112,

ih
]

i
39'; 2
s,

.-3- 8

10L
derived
derived subtype 9
derived 9, 83, 95, 95, 12¢
conetraint 08, 128

:

Page 199

disoriminamt part 102, 103, 108, 106, 128
dmms“ specification 63

slso ODiana node decrwmit_wer
ontry cal 82
ontry declaration 110, 118
enumeration fiteral 90, 83, 118, 127
ehumeration type 90, 91, 93, 95, 118, 127
expression 89, 96, 97, 98

See also static expression

Olana se11. 124, 145, 148, 150, 181,

fined type 91, 9

fioat type 91, 9%

Formal Definition of Ada
Seo also AFD

formals 102, 110, 114

forward reference 84, 108, 100

private 108
formals 114, 115, 116, 118
114, 118, 126
114, 118, 116, 118, 126
specification 85, 114
subprogram 114, 116, 118, 126
instantiation 84, 65, 105, 118, 116,
118, 124, 125, 127
generic unit 114, 115, 116, 118

oL 21

tion dependent attributes 121, 124,

158, 159
incomplete type 87, 96, 102, 103, 108, 127
integer type 91, 98
Hbrary manager 84, 122
Nmited private type

See aiso private type
mwm 90

names
normalizations 81
anonymous types 81, 82
constreints 08

generic parameters 115, 118
n source reconstruction

168
operators @2, o7
munoumo.ﬂ..

|

Olane privale type 08, 123, 150, 'S8
membership &7
normalized as function ot 82, &7
shert-cirowt &7

vesr-defined 07, 80

overioad ressivtion 98

paciage bedy '0R, 108, 108, 111, 112, 128
posimge declarstion 102

Page 200

104, 108, 108, 111,

112, 118
actual 08
generic i S 118
118, 116,
normalized 82,
parenthesss 13, 81
pragma
CONTROLLED 90, 125
INUNE 128
INTERFACE 128
LIST 188
PACK 90, 127, 160
PRICRITY 1

SUPPRESS 159 s
pragmas 81, 90, 157, 158, 159, 160
predefined

m names 086, 127, 158
86, 158, 159
pugm names 06, 158, 159
predefined environment 31, 08, 123, 128,

R
private type

Ada 127“. 102, 103, 104, 105, 106, 126,

DL 24, 28, 28, 31, 121, 122, 123, 130,
131, 145, 149
producer 12, 13, 14, 19, 122, 169
record aggregate 88, 97
record type 90, 91, 83, 103, 106, 126, 127
refinement 25, 31, 149

90, 91, 93, 98,
109, 128, 127
resuit type 80
seperste compiiation 10, 83, 84, 89, 109,
104, 106, 108, 109, 111, 112, 113,
usz.‘ 1215‘
sharing 124, 1
In external Diana 147
siics 97 :
source position 122, 128 -
soyrce reconstruction 10, 81, 82, 88, 90, 91,
165, 168, 167, 168
20UrOe.

R A e B
0Urce
STANDARD
Ade package 157, 158
static enpression 12, 13, 18, 90, 98, 9%,
121, 127

string Mored 97
stwd 108, 108, 111, 113, 114, 128, 127
body 102, 108, 107, 108, 108,
110, 128

decleration 102, 108, 107, 108,
108, 110, 118
declaration

swdbunit 108, 108, 111, 112, 114

DIANA Reference Manual

symbol table 10, 85, 188
symbol_rep
Oilana private type 122, 140, 158, 159
syntax—directed editor 122, 165
task body 113
task type 112, 113
anonymous @82, 113

used OcCCUITeNO®
110, 113

Olana private type 98, 121, 150
15
as part of instantiation 116

80, 85, 06, 88, 102, 108,

§
§
£
i

DEF_ID 65, 87, 98, 102, 159 ;
DEF_OP 86
DESIGNATOR_CHAR 87
EXP 98, 166
NAME spg(z: 98, 166]
WPE 89, 157

USED_ID &7
USED_OP 87

Diana Nodes
acoses 90, 105

97, 102
o S, 102

-m_ns.as 88, 159
” 98, 166 !
asses 116 [1
oitr_d “9'3 86, 158 ‘.‘
bleck ‘!,07. 108, 109, 112, 113, 114, 166,

e-uq_u es, 98, 108, 118
83, 98, 108, 116
20. 89, 91, 83, 98, 98, 108,

m 4 08, 110, 118
85, 90, 93, %5, 118

o o

. . N "
PRDIOT VP W0 e y 3

-

DIANA Reference Manual ‘

g’ 50, 9, %

flost 90, 91, 98
funslion 82

fenstion_cell 82, 67, 88, 96
fonstion_ld 2]

gemeric 11
generie_d 65, 114
in_4 88, 110

n_ .
ui‘r'.:o 85, 110
ndund 2, %

102
nslaptisllon 115, 116, 118, 125
:o. gs, 98, 98, 108

123

180

W 8, 86, 126, 159, 160

108, 108

private_typs_id 85, 104, 108

prea_ 85, 107, 108, 108, 116, 118
pressdwre 107, ‘12«, 09, 114, 116, 118

qualified 96
renge 91, 93, 98, 108
recard 90, 103, 108
ronand_W 90
remame 116, 118, 125, 128
selngied 98
dmple_rep 39
sy 62, 97, %, 102
wm_body 114
sm_gpes 114
PN, 10
8
oud 109, 112, 113
107, 108, 108, 114, 1&7
s 107, 108, 100, 116, 118
." ”o 'n 1“
]
symbel_fep 130
ek _body 113
o .113“' 12, 113
ek _spes 90, 113
e 91, 83, 95, 98, 103, 106, 108, 113
Ype_lé 05, 109, ”106. 112, 113, ®0
1
oger 157
enbveresl_resd 187
wond_Mn_jd 08, 88, 123
woad_bin_op 88
vond_ohr §7, %
voad jé 02
uu_lﬂ”o_n 2, 7, 8, 110, 123, 1%,

Page 201

vwr_ié 06, 98, 112, 113

. wid 84, 91, 33, 95, 98, 103, 108, 107,
108, 108, 113, 159
Diana Attributes
ss_alternetive_s 168, 167
se_exp 166
as_exp_consirained 83
ss_flem_s 188
as_jist

Ix_ercpos 1
Ix_comments 122, 125, 168
Ix_default 124

124
Ix_pretix 87, 124
he_orcpos 128
_symrep 125, 158, 159
am_vealve 13, 18
am_actual_deNa 93, 125
sm_oeddress 113, 125

lm_b‘“_‘vpzts 20, 89, 91, 93, 95, 96, 128

am_pits

am, 84, 107, 108, 112, 113,
114, 116, 118, 125

am_comp_spec 99, 125

am_conastraint 91, 93, 97, 98, 108, 125

am_controlled 90, 93, 123

109,

am_deci 116

am_deci_s 115, 128)

sm_defn 06, 87, 88, 102, 125, 159, 160
s 108, 106, 126

o

am_exception_det 126

sm_exp_type 88, 89, 96, 97, 98, 126

am_tirst 87, 102, 103, 104, 106,
100, 110, 113, 128

114, 128

108,

128
em_normalized_comp_a 088, 128
am_normalized_peram_s 88, 128
am_obi_def 98, 108, 115, 118, 128
sm_obi_type 88, 98, 108, 128
sm_operstor 68, 88, 123, 128
sm_peching 90, 93, 128

100, 112, 114, 116,

”m_ size 9N, 27
sm_atud 108, 127
_8pec 98, 103, 104, 108,
113, 116, 129, 127
em_{ype_struct 20, 91, 93, 96, 127
sm_valve 98, 98, 10R, 121, 77

108,

