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LABSTRACT

This document describes Diana. a Descriptive Intermediate Attributed Notation

for ADA. being both an Introduction and reference manual for it. DLAA is an

abstract data type such that each object of the type is a representation of an

Intermediate form of an ADA program. Although the initial uses of this form were
I for communication between the Front and Back Ends of an ADA compiler, It Is

also intended to b* suitable for use with other tools in an ADA programming

environment.

DNA resulted from a merger of the best properties of two earlier similar

Intermediate forms: TCOL and AIDA.
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PREFACE

PREFACE TO THE FiRST EDflrON

This document defines Diana. an Intermediate form of ADA (71 programs that
Is especially suitable for communication betwoen the front and Back Ends of ADA
compilers. It Is based on the formal definition of ADA [61 and resulted from the
merger of the best aspects of two previous proposals: AIDA (4. 10) and
TCOL [2]. Although DIANA Is primarily intended as an interface between the parts
of a compiler, it Is also suitable for other programming support tools and
carefully retains the structure of the original source program.

The definition of DIANA given here is expressed In another notation. IDL. that
is formally defined in a separate document 19J. The present document is,
however, completely self-contained: those aspects of IDL that are needed for the
DIANA definition are informally described before they are used. Interested readers
should consult the IDL formal description either if they are concerned with a
more precise definition of the notation or If they need to define other data
structures in an ADA support environment. In particular. Implementors may need
to extend DIANA in various ways for use with the tools In a specific environment.
and the IDL document provides information on how this may be done.

This version of DIANA has been *frozen" to meet the needs ot several groups
who require a stable definition in a very short timeframe. We invite comments
and criticisms for a longer-term review. We expect to re-evaluate DIANA after
some practical experience with using it has been accumulated.

L (
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Pagiv 6 DIANA Reference Manual

PIEFME 70 tis ED~ION

Since first publication of the DIANA Reference Manual In March. 1981, further
developments In connection with ADA and DIANA have required revision of DIANA.
These developments Include the following:

o The original DIANA design was based on ADA as defined In the July
1980 ADA Language Reference Manual (71. referred to hereafter as
ADA-80: the present revision Is based on AOA as defined in the July
1982 ADA LRM (81. referred to hereafter as ADA-82.

e Experience with use of DIANA has revealed errors and flaws in the
original design: these have been corrected.

This publication reflects our best efforts to cope with the conflicting pressures on
us both to impact minimally on existing Implementations and to croate a logically
defensible design.

TARTAN Laboratories Inc. Invites any further comments and criticisms on DIANA
In general. and this version of the reference manual In particular. Any cor-
respondence may be sent via ARPANet mail to OIANA-QUERYOUSC-ECLi3. Paper
mail may be sent to

DIANA Manual
TARTAN Laboratories Inc.
477 Melwood Avenue
Pittsburgh PA 15213

We believe the changes made to DIANA make no undue constraint on any
DIANA users or potential DIANA users. and we wish to hear from those who
perceive any of these changes to be a problem.

(
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CHAPTER I

INTRODUCTION

The purpose of standardization is to
aid the creative craftsman, not to
enforce the common mediocrity (111.

In a programming environment such as that envisioned for AOA1. there will be

a number of tools-formatters (pretty printers), language-oriented editors, cross-
reference generators. test-case generators. and the like. In general. the Input

and output of these tools is not the source text of the program being developed:
Instead it Is some intermediate form that has been produced by another tool in

the environment. This document defines Diane. Descriptive Intermediate At-

tributed Notation for ADA. DIANA Is an Intermediate form of ADA programs which

has been designed to be especially suitable for communication between two

essential tools-the Front and Back Ends of a compiler-but also to be suitable

for use by other tools in an AOA support environment. DIANA encodes the results
of lexical. syntactic, and static semantic analysis. but it does not include the

results of dynamic semantic analysis. of optimization, or of code generation.

It is common to refer to a scheme such as DtAmA as an Intermediate

representation of programs. Discussions of DIANA. including those in this docu-

ment. undoubtedly use this and similar terminology. Unfortunately. too often the
word representation suggests a concrete realization such as a particular data

structure in primary memory or on a file. It is Important for the reader to keep
In mind that DIANA does not Imply either of these. Indeed, quite the opposite is

the case; it was carefully defined to permit a wide variety of realizations as

different concrete data or file structures.

A far more accurate characterization of DIANA Is that It Is an abstract data

type. The DIANA representation of a particular ADA program Is an Instance of

this abstract type. As with all abstract types. DIANA defines a set of operations

that provide the only way in which Instances of the type can be examined or

modified. The actual data or file structures used to represent the type are

lade Is a registered Trademark f the Ad& Joint Program Moffe. Deartment of Defense. Unid
St3t OoWnrInt.
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hidden by these operations. in the sense that the implementation of a private

type in ADA Is hidden.

We often refer to a DIANA 'tree'. 'abstract syntax tree', or 'attributed parse

tree': similarly, we refer to 'nodes' In these trees. In the context of DIANA as

an abstract data type. it is important to appreciate what i and is not Implied by

such terms. We are not saying that the data structure used to implement DINA

is necessarily a tree using pointers and the like. Rather. we are using the

notion of attributed trees as the abstract model for the definition of DIANA.

An abstract data type consists of (a) a set of values (the domain of the

type) together with (b) a set of operations on those values. The specification of

an abstract type must define both its values and its operations. The abstract

modeling method of specifying an abstract type provides these definitions by

defining the values In terms of some mathematical entity with which the reader is

presumed to be familiar: the operations of the type are then defined In terms of

their effect on the modeling entities. in the case of DIANA. for example. the

mathematical model is that of attributed trees. The reader should always bear In

mind that the trees being discussed are merely conceptual ones: they are the

model of the values in the DIANA domain. They may or may not exist as an

explicit part of an Implementation of the DIANA abstract type2 .

1. 1. Design Principles

The design of DIANA is based on the collection of principles that are dis-

cussed in this section. As with any design intended for practical use. some

compromise of these principles has on occasion been necessary. The frequency

of deviations from the principles is extremely low. however, and an understanding

of the principles will help the reader to understand DIANA.

Section 1. 1. 1 presents those principles that motivated the original design of

DIAN. and Section 1. 1. 2 presents those principles that have governed changes

made since. Section 1. 1.3 defines what It means to be a DIANA user (i.e..

producer or consumer) and Section 1. 1.4 presents a lacuna of the entire DIANA

definition effort.

2 An altNe0MOv deal methad, algebraic axiomB, woul have avoided exi refenos to a model
ih trees and w 1ee mght hae been les ggeetve an imple"eetic. We Choe not to wa*

thia method in oider to retain a does ooeonnoe between Olama en ood Mea omal definition E*1.
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1. 1. 1. Original Design

The following principles governed the original design of DIANA:

a Diana is representation independent. As noted above, we strove to
avoid implying any particular Implementation strategy for the DA
abstract type. For example. where implementation-speciflc Infor-
mation is needed In a OLAMA representation (such as values on the
target-machine), we make reference to other abstract types for
representing these data: each Implementation is expected to supply
the Implementation of these types. In addition, we strove to avoid
any implications for the strategies to be used in Implementing Front
or Back Ends of compilers, or. for that matter. any other environ-
ment tools. Finally, we provide an explicit mechanism for implemen-
tations to extend or contract the DIANA form in a consistent manner to
cater to implementation-specific purposes.

o Diana Is based on ADA's formal definition (61. referred to hereafter as
the AFD. In defining an Intermediate representation of ADA. we face
three problems: what is the representation of a particular program.
what does that representation mean (i.e.. what is the semantics of
the particular instance of the representational scheme). and when is
the representation consistent (i.e.. meaningful)? Since the AFO
already provides the latter two of these . we have chosen to stay as
close as possible to the definitional scheme used there- particularly to
the abstract syntax. Thus. in this document we can focus exclusively
on the first of these questions, namely how particular programs are
represented.

* Regularity Is a principal characteristic of Diana. Regularity of descrip-
tion and notation was a principal goal. We believe that this regularity
is an Important aspect of both understanding and processing a DA
Intermediate form.

* Diana must be efficiently Implementable. As noted above. DIANA is
best viewed as an abstract data type. Its specification Is more
abstract than is directly supported by current programming languages.
Including ADA. Nonetheless. DIANA Is Intended to be usedl Hence. It
is essential that there exist an efficient Implementation of It (or
actually, several different efficient Implementations of it) In contem-
porary languages -especially ADA Itself. Later chapters deal with this
Issue explicitly: for now. the Important point Is that implementability
was a primary consideration and that such Implementations do exist.

- Consideration of the kinds of processing to be done Is paramount.
Although the primary purpose of DIANA Is communication between the
Front and Back Ends of compilers, other environment tools will use it

$9we proMe wth the AFO as an anwer to thee que ion we add&sd In Seo~o 1.1.4 on

pop 14.
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as well. The needs of such programs were considered carefully.
They influenced a number of the OIW design decisions, Including the
following:

- We define two trees-an Abstract Syntax Tree constructed prior
to semantic analysis (see Appendix II). and an attributed tree
(the Dwa structure) constructed as a result of static semantic
analysis. These two structures are. of course, closely related.
By defining both of them. we extend the applicability of OuNA to
Include those tools that need only the parsed form.

- We considered the size of (various Implementations of) DIANA
representations, and we made careful tradeoffs between this size
and processing speed. We envision that at least some ADA
support environments will be implemented on small computing
systems: hence. we considered It essential that DIANA be usable
on these systems.

• We never destroy the structure of the original source program:
except for purely lexical Issues (such as the placement of
comments). it is always possible to regenerate the source text
from its DIANA form. See Appendix III.

- We permit the possibility of extending the DIANA form to allow the
Inclusion of information for other kinds of processing. Of par-
ticular concern, for example. are extensions to encode infor-
mation needed by various optimization and code-generation
strategies.

" In Diana. there is a single definition of each Ada entity. Each defin-
able entity. e.g. variable. subprogram. or type. is represented by a
single defining occurrence In DuiA. Uses of the entity always4 refer
to this defining occurrence. Attributes at this definition point make it
possible for all information about the entity to be determined. Thus.
although the defining occurrences are part of the program tree. the
l of them plays the same roll as a dictionary or symbol table in

conventional compiler terminology.

" Diana must respond to the Issues posed by Ada's separate
compilation facility. It Is not In the domain of D~ to provide the
library management upon which separate compilation of ADA is based.
Nonetheless. the possibility of separate compilation affects the design

4 "here is a sngle epts-: Prkvte types use a different deht ng sosraioe fo4 re, Wel anof de
the pedmge bo* In which they ae dene than they do elewhe e. See Section 3.8.1.2 on poe
104.

%Nue, i pmatiumr. that on noenttien m wish t art ths den I ocasincesso that.
S ft wy the * ption otrepresenttion presen t ".

Sodehepemetetonewe mpte'nt serve with the Diane phfieoephl. Ohr~lmnMs pin
we dleavesd In Chapter 6.

______
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of DLANA in two ways:

. The possibility of separate compilation places certain restrictions
on DIANA and requires the possibility of certain indirect
references. We take care. for example, never to require for-
ward references to entities whose definition may be separately
compiled.

. We recognize that many library systems may wish to store the
DIANA form of a compilation unit-in order to support optimization
across compilation units, for example. Various design decisions
in DIANA were Influenced by this possibility.

* There must be at least one form of the Diana representation that can
be communicated between computing systems. We have defined in
Chapter 5 an externally visible ASCII form of the DIANA representation
of an AoA program. in this form. the OIANA representation can be
communicated betweon arbitrary environment tools and even between
arbitrary computing systems. The form may also be useful during the
development of the environment tools themselves.

1.1.2. Principles Governing Changes

J The design principles lust listed that governed the original design Of DANA

have been augmented during this phase of modification by additional principles.
It is important that these, too. be documented.

* Diana will be changed only when something is sufficiently wrong that it
requires change. We state this metric despite the fact it Is such a
broad characterization that deciding when something is 'sufficiently
wrong' Is clearly judgmental. Nonetheless, the principle has utility.
For example. it implies that we not make cosmetic changes. no
matter how obvious it might be that the change would result in a
better product. Our motto: 'if it's not broken, don't fix it.'

• We do not unduly impact existing Diana users. Thus we refrain from
changes whose impact on existing implementations significantly ex-
ceeds anticipated future benefits. Of course. changes with a large
enough savings down the road may be made even If doing so affects
current Implementations. Again. there Is a judgmental call here.

It Is often necessary to make some decision. in several cases. either
of two or more ways to proceed has seemed equally plausible. and
we have been unable to determine any significant advantage to any
decision. Nonetheless. in such cases we have made a decision.
since we judge a slightly incorrect decision to be better for the 0~
community then no decision. At least. there Is a standard way for
DIANA users to to proceed.

K * Where possible we have preserved the style of the original Diana

Wh117
- ......._.
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design. Stylistic concerns Include such Issues as creating IOL classes
for attributes, preserving the same naming conventions, and so on.

O iana does not unnecessarily deviate from ADA's formal definition.
Even though tht formal definition effort apparently Is no longer being
actively pursued . we continue to adhere to its style.

Unfortunately the guidelines just presented and those of the previous section

are sometimes In conflict. For example. consider a minor Inconsistency found

In the original design. The principle of consistency might suggest a change.
while the principle of sufficiently wrong might suggest leaving it alone. What we

have done is to be reasonable in considering changes. DIANA Is intended to be

used. and we continue to strive to keep DIANA responsive to the needs of its

users.

1.1.3. What is a 'DIANA User'

Inasmuch as DIANA Is an abstract data type. there Is no need that it be

implemented in any particular way. Additionally. because DIANA is extendable. a

particular Implementation may choose to use a superset of the DIANA defined in

this ORM. In the face of innumerable variations on the same theme, wo ftol it

Is appropriate to offer a definition of what It means to use OIANA. Since It

makes sense to consider DIANA only at the Interfaces. It is appropriate to

consider two types of 0IANA users: those which produce DIANA, and those which

consume it 7 . In addition. some Implementations (particularly compilers) may

claim to employ DIANA as an Intermediate form, even though neither Interface to

external DIANA Is provided. We consider these three aspects in turn:

producer In order for a program to be considered a DINA producer. It
must produce as output a structure that Includes all of the
information contained In DIANA as defined In this document.
Every attribute defined herein must be present. and each attribute
must have the value defined for correct DIANA and may not have

any other value. This requirement means. for example. that
additional values, such as the evaluation of non-static expres-

-, sions. may not be represented using the DiANA-defined attributes.
An implementation is not prevented from defining additional at-
tributes. and in fact It Is expected that most DIANA producers will

She tmd deinitlo is band o a-SO, nW there i no visible Intont to upgraee It to M1-ER.

?now* we not mutualy woulve; or empe, a cmple Froat ed Mat peods Diana may a
reod Diea ror Feprmae mpliatlon purposes.
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also produce additional attributes.

There Is an additional requirement on a DIANA producer: The
DIAA structure must have the property that it could have been
produced from a legal AOA program. This requirement is likely
to impinge most strongly on a tool other than a compiler Front
End that produces OIANA. As an example of this requirement. In
an arithmetic expression. an offspring of a multiplication could
not be an addition but would instead have to be a
parenthesized node whose offspring was the addition, since ADA's

parsing rules require the parentheses. The motivation for this
requirement Is to ease the construction of a 0IANA consumer.
since the task of designing a consumer is completely open-ended
unless it can make some reasonable assumptions about its Input.

oaiaumer In order for a program to be considered a DIANA consumer. it
must depend on no more than DIANA as defined herein. This
restriction does not prevent a consumer from being able to take
advantage of additional attributes that may be defined in an
implementation: however, the consumer must also be able to
accept Input that does not have these additional attributes. It is
also Incorrect for a program to expect attributes defined herein to
have values that are not here specified. For example. it is
wrong for a program to expect the attribute sm.value to contain
values of expressions that are not static.

employer The definition of a OIANA employer Is more difficult. The Intent is
that the intermediate form must be close to DIANA: the problem Is
that we have no useful metric for close. In addition, the lack of
a visible external representation of the intermediate form ap-
parently precludes application of any validation procedure. This
point is addressed further below.

*There are two attributes that are defined herein that are not required to be

supported by a DIANA user: Ix_comments and Ix-.arcpo.. We believe that these

* attributes are too implementation specific to be required for all DIANA users.

It is instructive to examine the problems suggested above of defining a DIANA
employer. Inasmuch as papers have begun to appear In the literature in which

a given implementation claims 'to use DIANA' or 'to be DIANA-like', we feel that

it is appropriate to offer a metric against which to judge such claims. Consider

the following three candidates for such a metric:

A representation can properly be called DIANA if It contains all the
same Information that DIANA contains.

* A representation can properly be called DIANA If one can provide a
reader/writer for transforming between the representation and DIANA.
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A representation can properly be called DiANA If it provides a package
equivalent to the one described in Chapter 4 for accessing and
modifying the structure.

Although the first two definitions have a certain appeal. it Is unfortunately true

that neither of them Is at all adequate. since a little thought reveals that the

original ADA source text meets either requirement. One repair possibility is to

attempt to tighten up the second definition by restricting the reader/writer to be

"simple', In some sense, but defining that sense appears to require Solomonic

wisdom.

The third definition also has appeal, though it is again hard to use as a

metric if the external Interface is not actually provided In a useful way.

it is our opinion that it is not proper to claim that a given Implementation

uses DIANA unless either It meets the following two criteria:

* It must be able to read and/or write (as appropriate) the external
form of DIANA defined In Chapter 5 of this document.

* That DIANA must meet the requirements of a DIANA producer or
consumer as specified In this section.

or It meets this criterion:

The Implementation provides a package equivalent to that described in
Chapter 4.

We hope that writers of papers will give consideration to this discussion.

1. 1. 4. Specification of DIANA

An Important problem faced by new users of DIANA Is to determine, for any

particular ADA construct. just what DIANA Is to be produced from It. Although the

DIANA specification In Chapter 2 specifies precisely what nodes must exist, which

attributes each node must contain, and what type the value of each attribute

must have. it often says very little about what value the attribute is to have.

This problem Is addressed in this document in several ways. Often, com-
monte appear in Chapter 2 specifying or suggesting the Intended value. in

addition, the lengthy discussion of design rationale in Chapter 3 presents much

additional Information. Unfortunately, still more help Is needed, and a complete

solution to the problem of providing such help is beyond the capability of this

document. The remainder of this section Is speculation about the form such

help might take.

i _ _ _
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What Is needed Is Is a formal way to determine, given an ADA source text

and a DIANA structure purported to be a correct representation of the source,

whether or not the DIANA Is In fact correct. For example, suppose that a Is

some ADA text and that 8 purports to be a DIANA representation of It. Needed is
a predicate r such that

ir(a, 0)

Is true If. and only If. 8 correctly represents a.

Ideally, the structure of w should be such that it Is accessible to a human

reader who requires help In designing an ADA front end or other transformer

from ADA to DIANA. No such predicate now exists. The kinds of questions that

such a predicate should help to answer Include the following:

1. Is a given abstract syntax tree (AST) correct for a given Ada
program?

2. What should be the value of each semantic attribute In a DIANA
structure?

3. When Is sharing permitted in the AST?

4. May the same node appear In several sequences?

We believe that one way to meet these needs is by first specifying the

transformation from ADA to AST and then defining a predicate. say wt on ASrS

and DIANA such that for an AST 7 and a DIANA structure 0 the predicate

t( 7, a)

returns true If the DIANA structure 0 Is a correct representation of the AST 7r.

This dichotomy appears useful.

Translation of ADA source to abstract syntax tree (AST) Is a two-step

process:

Translation of ADA source to parse tree (PT). The latter Is a tree in
which each node Is labeled with the name of a non-terminal from
ADA's BNF definition and has as many offspring as clauses appear in
the relevant definition of that non-terminal. Given a non-ambiguous
BNF for ADA, such a tree Is uniquely defined. Although the BNF In
ADA's LRM Is ambiguous. it Is not difficult to create a non-ambiguous
version that preserves all essential structure.

* Translation of PT to AST. This step, though somewhat harder to
specify than the previous one. Is not conceptually difficult.

We believe It Is possible to describe the PT to AST transformation by using

______|4a~, '~1
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an attribute grammar to specify the AST as an attribute of the root of the VT.

The specification of the AST to DIANA transformation (including specification of the

semantic attributes) Is a much harder problem and Is still open, We are
exploring methods of attacking these problems.

1.2. Structure of the Document

Abstractly, an Instance of the DIANA form of an ADA program Is an attributed

tree. The tree's structure is basically that of the abstract syntax tree defined In

the AFO. Attributes of the nodes of this tree encode the results of semantic

analysis. Operations defined on the DIANA abstract data type (see Chapter 4)

provide the predicates. selectors, and constructors required to manipulate this

tree and its attributes. The structure of this document reflects the several facets

of the DIANA definition.

* First we define precisely the domain of the DIANA data type. We do
so by specifying the set of abstract trees, their attributes, and various
assertions about them (which actually appear as comments). This
definition is done in two steps:

- In Section 1. 4 we describe the notation, called IDL. for exhibit-
Ing DIANA'S definition.

. in Chaptr 2. we use the notation to define the actual trees and
attributes

* Second, we provide a rationale for some of the more subtle design
decisions- particularly with respect to the attributes of nodes in the
abstract tree. This rationale appears in Chapter 8.

* Third, we define the operations on the DIANA abstract type. This

definition appears in Chapter 4. and again is done in two steps.
First. we describe generically the nature of these operations.
Second. we show how these operations can be realized in conven-
tional programming languages by showing how an Interface can be
derived from the DIANA definition and by showing the specification part
(except for the private part) of an ADA package that specifies Just
such an Interface. We also show here how ths interface is altered
when additional attributes or nodes are introduced

%gsthat r impenmntation may defin, an atended domain (adclitionel attributes). Whatwe donine here Is a required and adequate set.

Nsm ta an inmpemention my done eadditionl operatns. Again. we merely denne a required
-an doqub aMt here.

L

*. .- .
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- Fourth, in Chapter S. we define a canonical way to represent DIA~A
structures external to a computer.

- Finally. in Chapter 8. we discuss Implementation Issues and illustrate
some of the various options that are available.

There are also six appendices. Appendix I provides the definition of the

predefined environment for ADA compilations. in Appendix ii we define the

Abstract Syntax Tree from the AFO as a derivative of the DIANA representation.

Appendix III describes how the source of an ADA program can be regenerated

from the OOMA representation and Includes a discussion of the normalizations of

reconstructed source programs imposed by DINMA.

Appendices IV. V. and Vi provide three summaries of the DIANA definition.

These summaries provide an Invaluable cross reference Into the main definitions

and should be an Important aid to the reader.

There Is an extensive Index that lists separately topics. DIANA attributes, and

ODA node names.

.3. Atribution Principles of OMM

This section describes the general principles used to decide on the details of

DIN A. A more detailed rationale Is given in Chapter 3.

The design of an intermediate representation involves deciding what infor-

mation to represent explicitly and what Information to recompute from the stored

information. There are two extreme positions one can take:

e The source program (or its abstract syntax tree) contains all the
necessary information: other Information can be recomputed when
necessary.

o All Information which can be computed should be computed and stored
within the Intermediate representation.

DIANA's underlying principles, which are a compromise between these extrema,

can be derived from ONA's Intended role in an ADA Program Support Environ-

ment (APSE) (31. We envisage INMA as created by an ADA Front End. used as

input to that Front End for separate compilation purposes. used as input to the

compiler's Back End. and used (produced or consumed) by a variety of other

tools of the APSE.

For all these tools DIANA should contain Information that is both sufficient and

L L
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appropriate. There are two questions relevant to deciding, about a given

attribute, whether or not to Include It In the DIANA:

o Does the Information the attribute contains belong in the Intermediate
representation?

* Should the Information be represented expl'tly, or should It be
recomputed from the stored Information?

We have used two criteria In deciding of a given attribute whether or not to

Include it:

- DIANA should contain only such information as would be typically dis-
covered via static (as opposed to dynamic) semantic analysis of the
original program.

- If Information can be easily recomputed, It should be omitted.

These two points are discussed at length in the following two subsections.

First, however, a point must be made. Although the original DIANA design

used the metric of ease of computation In deciding what attributes to Include,

the concept has been considorably oxpanded In revisions of 0IANA and of this

report. As a result, attributes now exist in DIANA which, according to this

criterion, ought not to be there. We have elected to let them remain for two

reasons: They are not sufficiently wrong to require fixing, and their removal

would likely unduly Impact existing DIANA users. Note that these are the first twe

principles enunciated in Section 1. 1. 2 on page 11.

1. 3. 1. Static Semantic Information

We believe that It is appropriate for DIANA to Include only that Information that

Is determined from static semantic analysis, and that DIANA should exclude

Information whose determination requires dynamic semantic analysis.

This decision affects the evaluation of non-static expressions and evaluation of

exceptions. For example. the attribute smvalue should not be used to hold the

value of an expression that is not static. even If an Implementation's semantic

analyzer Is capable of evaluating some such expressions. Similarly, exceptions

are part of the execution (/.e.. dynamic) semantics of ADA and should not be
reprosented In DIANA. Thus the attribute am-value Is no longor used to

represent an exception to be raised, as It was In an earlier version of DIANA.

Of course, an implementation that does compute these additional values may
record the Information by defining additional attributes. However, any INA

......... I ....
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consumer that relies on these attributes cannot be considered a correct DIANA
user'. as defined in Section 1.1. 3 on page 12.

1. 3.2. What is 'Easy to Recompute'?

Part of the criteria for Including an attribute In DIANA is that it should be

omitted if it is easy to rocompute from the stored Information. We feel it is

important to avoid such redundant encodIngs If DIANA Is to remain an usefully

Implementable internal representation. Of course this guideline requires that we

define this phrase. and we suggest that an attribute is easily computed if

" It requires visits to no more than three to four nodes: or

" It can be computed In one pass through the DIANA tree, and all
nodes with this attribute can be computed in the same pass.

The first criterion Is clear; the second requires discussion.

Consider first an attribute that Is needed by a compiler front end (FE) to do

semantic analysis. As the FE does Its work. It is free to create extra

(non-DIANA) attributes for Its purposes. Thus the desired attributes can be

created by those who need them. To require them Is an Imposition on

a implementations which use algorithms that do not require these particular

pointers. If we add every attribute that anyone requires. everyone will be

overwhelmed.

Consider now an attribute needed by a back end (BE) to do code genera-

tion. As long as the attribute can be determined in a single pass. the routine

that reads In the DIANA can readily add It as It reads In the DIANA. Again. some

implomentors may not need the attribute, and it is inappropriate to burden

everyone with it.

It Is for these reasons that we have rejected suggestions for pointers to the

enclosing compilation unit. pointers to the enclosing namescope. and back

pointers in general. These are attributes that are easily computed in one pass

through the DIANA tree and Indeed may not be needed by all Implementations.

Of course, a DIANA producor can croate a structure with extra attributes

beyond those specified for DIANA. Nevertheless. any DIANA consumer that relies

on these additional attributes Is not a DIANA user. as that concept Is defined In

Section 1.1.3 on page 12.
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1. 3. 3. Other Principles

There are other reasons why particular classes of attributes are present in

DIANA.

* A tree-like representation of the source program is well-suited for
many of the tools that will exist in an APSE, such as semantic
analyzers, optimizers, and syntax-directed editors. The tree structure
Is represented In DIANA via the structural attributes; we use the same
abstract syntax tree as given by the AFO. with a few differences
described in Section 3. 1 on page 80.

• Lexical attributes (such as symbol and literal representations and
source positions) are needed by the compiler (e.g.. for error
messages). They are also useful to other APSE tools for referring

back to the source or for regenerating source text from the Inter-
mediate representation.

SADA provides the attribute 'SIZE to determine the minimum number of

bits needed to represent some object or subtype. If this attribute is
applied to a static type. the result is static and is therefore required
by ADA's semantics to be known at compile time. it represents a

target-machine . property properly computed by a code generator.
However, as it can be used in static expressions, the Front End must
know its value in some contexts. For example, the selection of a
base type for a derived integer type depends on a range constraint.
Without this information, the semantic analyzer cannot perform one of

its most important tasks. type and overload resolution. Since the
value must be known to the Front End. it is recorded as the value of
an attribute to avoid the need for recomputation by the Back End.

1.3.4. Examples

A few examples illustrate these principles:

- The structure of a type (whether it is an Integer, an array, a record.

and so on) can be deduced by searching backward through the chain
of derived types and subtypes. This chain could be of arbitrary
length. and so the search Is not tolerable. Thus, a subtype
specification (a DIANA constrained node) has an attribute
smtype-struct to record this Information.

* The parent type of a derived type is identical to the base type of the

subtype Indication given in the derived type definition, and this Infor-
mation is already recorded in the sm..base-type attribute of the
constrained node which is a child of the derived node. Thus no

parent type indication is needed in the derived node.

e Some DIANA users have suggested adding an attribute to each

OEFOCCURRENCE node to denote the node for the enclosing
namescope. Although locating the enclosing namescope (if the at-
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tribute is not available) can Involve visits to more than three or four
nodes. a DIANA reader can readily compute this attribute and decorate
the tree with it as the DIANA is read in. Since this attribute contains
Information that may not be useful to every Implementation and fur-
thermore is easy to compute in the above sense. It is not provided in
DIANA.

1.4. Notation

As we have stated several times. D~ANA Is an abstract data type that can be

modeled as an attributed tree. In this document we are concerned with defining

this abstract type-both Its domain and its operations. The domain of the DIANA

type Is a subset of the (mathematical) domain known as attributed trees. in

order to specify this subset precisely, we Introduce some special notation. a

subset of a notation called IOL (91. A knowledge of IDL is not necessary to read

or understand this document-all necessary information about the notation is

defined in this section. (A few additional features are defined in Appendix II as

they are used only there.)

To assist the reader In understanding this material, certain typographic con-
ventions are followed consistently throughout this document. as illustrated in

Figure 1-1.

I
DECL OP DEFOCCURRENCE IDL class names
constant var const_ld IDL node names
Ix...rcpos sm_address as.exp IDL attributes

Structure Root Type reserved word in IDL

begin case pragma ADA reserved words
INTEGER 'SIZE BOOLEtAN Identifier defined by ADA
Tax-rate Walk1 Tree Identifier in an ADA program

Figure 1-1: Typographic Conventions used in this Document

The set of abstract trees used to model the DiANA type can be viewed as a
language. one whose terminal sentences happen to be attributed trees rather

than strings of characters. The definition of this language can. therefore. be
given in a form similar to BNF. In particular, we use two definitional forms thatrr

-_ .....

&r
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resemble the production rules of BNF. The first of these defines non-terminals

of the description. Consider. for example, the following definition:

UCP :: efItee

As Is customary. this definition may be read. 'The notion of an EXP is defined

to be either a leaf or a tree.' Symbols such as EXP are called class names:

names of nodes In the 'tree language' are called node names. In this case.

both alternative definitions for EXP are node names. Class names, like non-

terminals In BNF, never appear In the sentences of the language: their only use

Is In defining that language. Node names, on the other hand, appear In the

sentences (that Is the trees of our tree language). Notice. by the way. that

each definitional rule Is terminated by a semicolon.

The use of this form of definition Is more restricted than in usual BNF. The

right hand side of the production may be only an alternation of one or more

class or node names and may not be a concatenation of two Items (as It may

be in BNF). In addition, class names may not depend upon themselves (in a

circular fashion) Involving only the '::=' form of definition rules. Thus a

directed graph constructed with an edge from each class name on the left to

each alternate on the right will be acyclic: that is, it will be a DAG.

As Is usual with BNF. there may be more than one such production with the

same left hand side (class name): definitions after the first merely introduce

additional alternatives. Thus, the effect of the two definitions

MOP ::nleaf

Ellgp tree

Is no different from that of the single definition given earlier.

The definition of the node names must specify the attributes that are present

In that node, as well as the names and types of these attributes. We again use

a BNF-like form for such definitions. To prevent confusion, this form is slightly

different from the definition of class names: for example

tzee -2 op: OPMTOR, left: EXP, right: MP

Here we define the node tree and associate with it three attributes with their

names (op. left. and right) and their respective types (OPERATOR. EXP. and

EXP). Unlike BNF (or record declarations), the order of attribute specifications

does not matter.

The right hand side of a production defining a node name Is also restricted:

it may be only a sequence of zero or more attribute specifications separated by
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commas and terminated by a semicolon. Multiple definitions of a node name

are permitted: definitions after the first add additional attribute specifications-

they are not alternatives but, rather. define additional attributes of the node.

Thus. for example.

tree - op t OPIEM'OR

tree-) left: EM, right: W ;

and

tree , opt OPERA2OR

tre- right: MW;

trzee -> left: MW

are both identical In effect to the single definition given earlier. Note also that

the order of both the =' and '=)' definition rules is irrelevant: all orders are

equivalent (as in BNF). in particular, we reversed the order of definition of the

left and right attributes in the last example above: doing so has no effect.

On occasion it is useful to specify a node which has no attributes, as for

example

fX) ,>

Nodes so defined are used much like enumeration literals In AOA. See. for

example. the nodes plus. minus. Umes. and dvde in Figure 1-2 on page 26.

There are two kinds of permissible attribute types: basic types defined by the

I1L notation, and private types. The basic types are:

Boolean These are the conventional boolean type: the only permis-
sible values of such an attribute are true and falee.

Integer This is the *universal Integer' type.

Blaional This Is the 'universal rational number' type. which includes
all values typically found in computer Integer. floating point
and fixed point types.

String These are ASCII strings.

Seq of T This Is an ordered sequence of objects of type T.

(name) The <nam* must be that of either a node or class name
defined elsewhere. Use of (name) as an attribute type
denotes a reference to either an instance of that node (In
the case of a node name) or any of the nodes that can be
derived from it (in the case of a class name). Note that

-
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a reference here does not necessarily mean a pointer in
the concrete implementation: direct inline Inclupion of the

nods Is permitted. as well as a number of other impothen-
tations. (See Chapter 6 for a discussion of some of the

implementation alternatives.)

A private type names an implementation-specific data structure that Is In-

appropriate to specify at the abstract structure level. For example. In D0"IA we
want to associate a sourcepoeition attribute with each node of the abstract tree.

This attribute Is useful for reconstructing the source program. for reporting

errors. for source-level debuggers. and so on. It is not a type, however, that

should be defined as part of this standard since each computer system has

Idiosyncratic notions of how a position in the source program is encoded. For

that matter. the concept of source position may not be meaningful If the DA

arises from a syntax editor. For these reasons, attributes such as source

position are merely defined to be private types.

A private type Is introduced by a type declaration. The declaration of the

private type 'MyType' would be

Tyjpe NYYQ
Once such a declaration has been given, the type name may be used In an

attribute specification. For example.

tzee , xxx: Nyype

Before proceeding. we need to make a few remarks about the lexical struc-

ture of the IDL notation. First, as in ADA a comment Is Introduced by a double

hyphen "--' and Is terminated by the end of the line on which it appears.

Second, the notation is case sensitive: that Is. identifiers that are spelled

Identically except for the case of the letters In them are considered to be

different Identifiers 0. Finally. names (identifiers), as In ADA. consist of a letter

followed by an optional sequence of letters. digits. and Isolated underscore

characters ("_').

The final point to be made about the notation Is that the definitional rules

Illustrated above are enclosed In a syntactic structure that provides a name for

the entity being defined together with the type of the goal symbol of the

grammar. For example, the IDL text

1W%.. wmtWity Is viewed by sm u a questicable noattonl propWy; In this InWa e it wim
aspl to vpport A diret osrreepeo with the APO (which is e msitive).

4 .,
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structure Somata" Root M Is
- sequence of definitional rules

asserts that the collection of production rules defines an abstract type (or

Structure in IDL terminology) named "SomeName' and that the root of this

structure Is an EXP. where EXP is defined by the set of definitional rules. in

the case of DIANA we are defining a single abstract type. so there Is a single

occurrence of this syntax that surrounds the entire OIANA definition: other uses of

IDL may require several Structure definitions. Expanding on the analogy that

IDL Is like BNF, the aoot defined here Is the 'goal symbol' of the grammar: all

valid instances of the type defined by the IDL specification are derived by

expanding this symbol.

1. 4. 1. Example of the IDL Notation

The following example Illustrates the use of the notation. It is intentionally

chosen not to be DIANA to avoid confusion. Suppose. then, that we wish to

describe an abstract type for representing simple arithmetic expressions. we

might use a definition such as the one shown In Figure 1-2 on page 26.

Although this example is quito simple. It does Illustrate the use of all of the

features of the (OL notation that are used to define DmANA. Two class names are

defined: EXP and OPERATOR. Since they name classes and not nodes (as

Indicated by our typographic conventions), neither appears in the trees in the

abstract type (structure) "ExpressionTree'. There are six node names defined:

tree. leaf. plus. minus, times, and divide. Each of these may appear as a

node in the trees. Of the nodes. only trees and leafs have attributes, and the

names and types of these attributes are given. An implementation-defined

private type. Source-Position. Is defined: both trees and leafs have attributes of

this type. Finally, the fact that the root of the tree must be an EXP, that is.

either a tree or a leaf node. Is specified. Figure 1-3 on page 27 Illustrates

several trees that are defined members of ExpressionTree: for expository reasons

the names of the attributes and the source position attribute have been deleted

from these pictures. Similar conventions are used in the figures in Chapter 3.

1.4.2. Specification of Representations

IDL can be used to define a refinement of a structure as well as an abstract

data structure. A refinement is treated the same as any other abstract structure

specified In IDL. A refinement of a structure Is used to provide more detail

about the abstract structure. in this document we define a refinement of DANA

. A

& lm
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Structure ExressionTree Root E In

-First we define a private type.

Type Soroe.j'oaition;

-Next we def ine the notion of an expression, WWV.

EXI a:- leaf I tree

PoNxt we define the nodes and their attributes.

tree -3 opt OPZM'OR, left: EX, right: EXP
tree -i arcs 3ource-.Position
leaf -~name: S tring;

leaf - 3 rc: Source_.Position

- Finally we define the notion of an OPZMTOR as the
- union of a collection of nodes; the null -3 Productions
- are needed to define the node types since
- node type nams are never implicitly defined.I OPZRAMOR :- plus I minus I times I dividei

Plus -~,mimi -o times -~divide -

Figure 1-2: Example of IOL Notation

that provides representation Information for the private types defined In DiANA.

101 can be used to define the package that contains the Internal represen-
tation of a private type. and can specify the exernal representation of a private
type. We add this Information to the 0~AN abstract type in the structure

* DianaConcrate In Chapter 2 on page 77.

The internal representation of a private type Is described by a definition of
the form

For NI!7pe Use Ky~aCkaqe;
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le af
Exyze

tree

leaf plus leaf

mabc* def"

tree

leaf times tree

Nim

tree plus leaf

I elm

leaf Minus leaf
lox" Oza

Figure 1-3: Some Trees In ExprslonTroe
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This definition introduce% the name of the package ( MyPackage' In this case)
where the definition of a private type ( MyTyp*e In this case) Is found.

The way a private type Is to be represented externally can be described In a
definition of the form

for Ny~ype Doe External Exterudype,

This definition asserts that the private type MyType Is represented by the type
'ExternType' externally. The external type may be one of the basic IDL types or
a node type.

The refinement of a structure Is specified with the following syntax
Structure Another~ree Refines Epression~res Is

- Mditional IDL statements to further define the
- structure ExpressionTree, such as a specification of the
- internal and external representations for private
- types :in the abstract structure ExpressionTree.
- Now nodes may be defined.

1. 4. 3. Example of a Structure Refinement

The following example illustretes the use of the structure refinement notation.
To continue with our example. suppose we wished to refine the abstract type
ExpressionTree by adding an Internal and external representation to be used for

the private type Source-..Position. We might refine the structure:

Structure AnotherTree Rename. Express jonTree Is

-first the Internal representation of Source....osition

Por Source-..oition, Use Source-ackagee

- next the external representation of Sourcejosition
- :is given by a new node type, @ ource...eterns.J.Xep

For Source.Josition Use External source...exral..rep

-finally, w define the node type souzce-.exteraLI...r

source..extemnairep file t String,
line : Integer,
char t Integer,

Di
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This example completes the discussion of IDL. Notice that in the second

example the internal representation and the external representation for the private

type are both given. The internal representation is described in a separate

package called Source-Package. The external representation is defined as a
node. source.externalrep. that has three attributes, a file name. represented

externally as a string, and a line number and character position. both of which

are represented externally by the basic type 'Integer'. At the end of Chapter

2 we present a refinement DianaConcrete of DIANA. In Chapter 5 we define the

canonical external representation of DIANA.

1.4.4. DIANA Notational Conventions

The definition of DIANA given In the next chapter observes some notational

conventions that are intended to improve the readability of the presentation.

These include:
* Wherever reasonable, both nodes and classes are named as in the

AFD.

a Typographic conventions are adhered to for class names. node
names. and attributes to assist the reader. These conventions.
which are are listed in Figure 1-1 on page 21, are that class names
appear in all upper-case letters, nodes names in all lower case. and
attribute names italicized.

o A class name or node name ending in "_S' or "_s' respectively is
always a sequence of what comes before the "_'. Thus the reader
can be sure on seeing a class name such as FOOS that the
definitions

VO0._$.S foo.e
Stos -s as-.list: Seq of POO

appear somewhere.

* A class name ending in '-VOID' always has a defini-

tion such as

F0O..yID POO I VodIj

The node void has no attributes.

There are four kinds of attributes defined in DIANA: sructural,
lexical, semantic. and code. The names of these attributes are
lexdcally distinguished in the definition as follows:

as- structural attribute. The structural attributes define the
abstract syntax tree of an AD program. Their names are
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those used in the AFD. prefixed with "as_.

Ix_ lexical attributes. These provide Information about the
source form of the program. such as the spelling of
Identifiers or position In the source file.

sm_ semantic attributes. These encode the results of semantic
analysis-type and overload resolution, for example.

cd- code attributes -there is only one. This provides infor-
mation from representation specifications that must be ob-
served by the Back End.

* Although IDL is insensitive to the order of attribute definitions
with "=>' rules. we have preserved the order used in the AFO.
Additionally, for emphasis we have grouped structural, lexical.
semantic. and code attributes, always in that order.

e The DIANA definition Is organized In the same manner as the
A LRM. To establish the correspondence. each set of DIANA rules

begins with a comment that gives the corresponding section number
of the ADA LRM and the concrete syntax defined there.

I

S-'-_-- -J - t



Definition of the Diana Domain Page 31

CHAPTER 2

DEFINITION OF THE DIANA DOMAIN

This chapter is devoted to the definition of the domain of the DIANA abstract

type -- that Is. to the definition of the set of attributed trees that model the

values of the DIANA type. The definition is given In the notation discussed in

section 1. 4.

A simple refinement of the DIANA abstract structure follows the definition of the

DIANA domain. This refinement defines the external representation of the private

types used.

Before beginning the definition, which constitutes the bulk of this chapter, we

make two observations about things that are not defined here.

-First, there are six private types used In the definition. Each of
these corresponds to one of the kinds of information which may be
Installation or target machine specific. They Include types for the
source position of a node. the representation of identifiers. the
representation of various values on the target system, and the
representation of comments from the source program. The DIANA
user must supply an implementation for each of these types.

- Second. as Is explained in the ADA reference manual. a program is
assumed to be compiled in a 'standard environment'. An ADA
program may explicitly or implicitly reference entitles defined in this
environment, and the DIANA representation of the program must reflect
this. The entities that may be referenced include the predefined
attributes and types. The DIANA definition of these entities is not
given here but Is assumed to be available. See Appendix I for more
details.

With these exceptions, the following completely defines the DIANA domain.

4 _ -L l B .I P. .

• . ..-, " ., , , -,
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Iloot COMPILATION Is

- Diana Deference Ibawal

- Vogon. of 17 February 1993

Typesoure~psitin; - defines source position in original
Tvpecommnts, - source program; used for error messages.

- representation of comments; used for
- source reconstruction.

Type symboljep;
-representation of identifiers,
-strings, and characters

Type value;
-imnPementation defined
-gives value of a static expression.
-can ondicate tha no value is computed.

Type operaor
-enumeration type for alN operators
-used in implementation

Type mbw~rep representation of numneric lIterals

-2. * lfcal Il4ments

-Syntax 2. 0
- has no equivalent in concrete syntax

VOWd a " - has no attributes

-2.3 ZdentieS 2.*4 10r3ic Literals, 2.*6 String Lterale

- yno 2.3
- not of Interest for Diane

10 :.a OEF-10I I USMD....D

OP : :x OEP..OP I USMDOP;

DEI 3NATOR : :z 10 1 Or;

OEPOCCJRRENC :: EP_ID I DEP_OP I DEF_.CHAR:.

-see 4.4 for numeric lIteral
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- 2.6 1rams
- Thome productions do not correspond to productions; in the

- concrete syntax.

- Svnt= 2.6. A
- prawna :
- plasma identifier E (argument..association (.argument...assocltlon))]

PRA0MA 2pregma;

pragma M) as-id ID. - a ulsed..nsme-id'
&sapaamaaoc..s :PARAM ASSOC S;

pregma = I. xaScpos source.p)osition.
IX..commenf a comments.

PARAM-ASSOC_S :: paramassoc 5;

paramseaoc.s 31 so-ist Seq Of PARAM_-ASSOC;
paramakssocs 2, IX...rcpoa source...poaitioni,

Jx-cCrnme. comments;

- Syntax 2. 8.B8
- argument association
- [argunment..dentkfier z)] name

- argumenl..jdentltler ]) expression

- see 6.4 for associations

-3. D&cIarationa and! T"Me

31 Declaratli

- Syntex 3. 1I - declaration :
- object declaration I number _declaratlon
- I typedeclarstion I subtype-declaration
- I subprogram-declaration I pecksgedeclaration
- I taikdeclaraton I gw~ricL_declaratin
- I exception_declaration I gesneric~instantiation
- I penamingdecharton I deferredkconstant-declaraion

DECL.: constant I var - oblectdeclaration (3.2.A)
I number - numberdecaration (3.2.8B)
I type - typedeclaration (3.3. 1)
I subtype - aubtypedeclaration (3.3.2)
I subprogramdecl - subprogramdeclaration (6. 1)
Ipecis edc - peckagedeclaration (7. 1)
Itvskdecl - task declaration (9. 1)
Igeneric - generlodeclaraton (12. 1)
Iexception - exception-delaation (11 .1)
-See 12.3 for generic instantiation,
-See 8.5 for renamingdeclaraton,
Ideferred constant; -deterred constant~declaraton (7.4)

DCI pragma; -pregmea lowe as declaration

ADA Section 2. 3
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-3.2 Mj.Ct* UUA "MOP SXh=S

-Syntax 3.2.A
-obi4ct elartion

idcntwrIteitst - oonstartI subtype...inldiction E:= 6%riptes1i '

i dentiteJist (oOMtU'tI constrajned....Sr5y-dfiltln [,z QnpreSif1;

OBJECT DEF EX D(P..VOID.
EXP VOID::I Ivw

TYPE..SPCQCONSTRAINED;

constant ~ ed.S10 S. - sequenceoft 'const...'

a8te-P.ec rift SPEC,
ao-object-.det : OCL..OEP.

cownstZ> Ix-a.rCPo5 soutce-p05itiofl.
Ix...cowriewsf comments;

V~ 
10&~ IS, - a sequence of Ivarjd'

aejyp*.Ipec
se-objecf-dof O8)eCT....DEF;

'.ar IX_..SCPO& :Source _.position.
IJL-coflWlWf cmmn

varId;

vsr Id I..tPO:source-position,
gx-somwenta : comments,
JX...Symtep :symbolreP;

vor id :sm.ob..Jype 
TYPE -SPEC.

W address. 
Exp -VOID.

_m.obj-def : BJECTOEV;

OCP...O ::consjd. icsino efre osat

-see rationale Section 3.5.2.14 csao fdeerdcosat

const-id I X-Srcpoe : ort..positiofl.
Ix...commelnfts comments.
Ix-sym rep :symbol rep;

cosstd v.rA :EXP..V6IO.
n.ofbtye TYPE SPEC.

sm..objdof OGJCT OEF'.

sinjirst0& OOURRENCE - used for deterred

ADA Section 3. 1
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-SYnMM 3.2.B6
-nuawber declaraton :: a

numfber z) 00-4-.8 108S. - always a sequence of Inumberjd'

number zIz....epo source..positlon.
Ix...onwents a :conmments;

0EVID z: numberjd;

number-id z 3 IX...eCPo : ource.poawtion.
Ix..cwerfa:commeCo nts,
ix...rnwop :symbol Irep;

numberId s a...bLtype : 1WE.SjIEb. - always refers to a universal type

-Syntax 
3.2.C 

s-RepEP

- identif'ier list : ientifier C. identifier)

1DS :idas;

id s ) 0.JIst :SeqOf 10;
id:: a Ir-.arepoa sourcepjositlon,

IX...COMr~sf: comments;

-- 3.3 Tye and ubv
* - ~~3.3.1 Typ ecaat.s

-Syntax 3.3. 1. A
-type declaration : := fulitype-delaration

- I incompletetype.dclaralon I private-type.declaation
- ulltyped4eclarwfion ::

- type identifier [diacriminant_..part] is type definitIon;

- see ?.4 tor privste..type~declaralon
- see 3.8.1 for incomplete type_0.eclarstion

type aa-jd :ID. - a "Joe.d'
- 9.l_"*te.typId or

- prvtejtype id'
aa~dwrnN....vsr... DSCRMT_VAR..S. - discriminant list, see 3.7?.1
as.jYPe....pec : 1PES.PEC;

type 2) Ix....cpo : sourcepoition.
IX..COffMntA comments;

type Id z), Ix..acepo. : ource..poaltlon,
Ix~pocwwwefs :comments,
IXAOWVP symbol rep;

type...I zO mjype...pec :TYPE -8C
sm-iLIhE DEFCCURRENCE; used for multiple def

ADA Section 3. 2. A

L;..
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z: Syntax 3.3. 1.68
typ..e0nition
- nvmerstln..typ~e...fnton I 1nt*W~rtyp..dfinton

- I reel yp....delntion I anasyjype_.definition

- I dertvedjyp....dfnition

TYPE SPEC :zenum...itorak-s - enumeration type definition (3.5.1)
I integer - integer - type-d*lniton (3.5.4)
1 fixed I fHoat - real type dflntcn (3.5.6)
1 array - arr@Wtypedtlnltlon (3. 6)
I recrd - reor " dPiito (3. 7)
Iaccess - ac~~ja_*nbn(3.8)
Iderived; - derived_"tpedefnition (3.4)

3., Babty'pe Dcaaim

-Syntax 3.3.2. A
- ubtypedeclaraton : subtype identifier Is subtypejndcation;

sub"ype , aasjd : I,
asconarafned CONSTRAINED;

SUbtype IX....wpoa aource-positon.
Ix_conmota :comments;

0EV ID subtypJd;

subtype id l x...rcpos sourcepositlon,
Ix-cof'nfflnta comments,
lx.~aVtWp symbol rep;

aubtypejid s mjtypeespec CONSTRAINED;

Syntax 3.3. 2.98

-subtype indication ::typemak [constraint]

- "pmark := typename I subtyp..jtain

CONSTRAINED : constrained;
CONSTRAINT :2 void;

constrained so-ae" NAME.
aa-consraint CONSTRAINT;

constrained = iIX...rcpco souroeoalwstion,
JNCOmAw i# : comments;

constrained :2 1,atype-struct :TYPE -SPEC,
sm-.,ba*-tYp. TYPE -SPEC,
am...conraint CONfiRAINT;

constrained z, cd jm el-se : Integer;

ADA Section 3. 3. 1. A
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- Syntax 3.3.2.C

- constrainlt :
- raige..oonstraflt I fltating.p@iflt..contfllft I tlxed-Point..Onwtt
- i ndes...onstraint Idiacriminant-onstralet

CONSTRAINT ::RANGE - rang onstraInt (3.5)
I "lOat - floatng~point.conhtrhWn (3.5.7)
I fiXed - ftxed-pointconatraint (3.5.9)
I dwtjrangeas - index..constraint (3.6.C)
I dcrwt-aggregate; - dlacrlmlnant_ constrasnt (3.7.2)

-.* De-wed Ty"e DefinltioNIN

- Syntax 3.4
-derved tpe4dfintion ::= new subtypeindcato

derived ae..conaf rained :CONSTRAINED;
derived 2 lixtarpoe sourcepoaion.

IN..om"W"I's comments;
derived = i an-ize, EXPV010.

es_afuaf_deN a :Rational.
.n...packing Boolean,

smanl.Cnrolled Boolean,
en.am-lrege-o.ze :EXP..VIOSO;

derived c djmpl..wz* Integer;

- 3.5 3cal-zfye

- Syntax 3.5
- range~constraint :2ruse ranoge

-range ::= rangoeattributo

- I simplexpression .. siplexpression

RANGE :: range I attribute I attibute-call;

range si a#..expl :EXP,
aa-exp2 :EXP;

range xi Ix...acpo. s otrcejpoainfl
Ix_coenenenf a commients;

range 22, smbawejype TYPE..SPEC;

-3.5.1 Za1110ratios !ypes

-Syntax 3.5. 1. A
- nuneatiolk-type..deftnition::=

- (enumertorLitra..speCifftonl( enumeratlonjltarakspeclcatlon))

anumliteral a ai- 08-110 Seq Ot EHUMLITERAL;
amnm1ltera~esi IJL-rCPO* sourospoitiofl.

Ix-commuents comments;
enum Uter a 2 3- w.aiae : EXPYCIID;
Onum..IlteraCS 2) ad.jmpl-ze Integer;

ADA Section 3.3.2.5



Pae 38 / Section 2 DIANA Reference Manual

-Snftax 3.5S. 1.B0

-enumerationjlltervil : :a identiwe I charecterjlteral

ENUM LITERAL : :a enumj~d I dol~char;

DEF_..CIIAA: def char;

enufnid z 3-Ix-fwcpoe : urce..position,
ix...comn"enl wrcnuents,
Ix..y"Orsp s~ ryboep;

eenujnnid Z) anl..Objjypo : WE.PEW . - reoer to the 'enum -iltera-ae
ani..poe Integer, - consecutiv position (base. 0)

am-opInteger; - user supplied representation value

def...chr ~ x...acpo. : ource~powbton,
Ix..commrnela : coments,
IX...ymrep :symbofrep;

defcar a.nLabLtype : WESPEC, - reters to the eonum.~iterl-s'
anw-008Integer, - consecutive position (base 0)
antj"Integer; - user supplied representation value

-3.5.4 Ieager Typu

-Syntax 3.5.4
-lntegertyp@_dftntion : := rangoeconhtraint

integer = I.aa.rengs RANGE;
Integer : x..arcpoa sourceomwtlon.

ix~cwm~renfa commnents;
itgram_-SO" EXP VOID,

am-type..trucf TYPE SPEC.
am-baftjype :TYPE...SPEC. 'derived'

integer a) cd-impf-wze :Integer;

-3.5.6 Mal Tye

-Syntax 3.5.6
-- resljypedfniion ::z=

- latngpointconstrslnt I hxedpOmntconstrsitt

-see 3.5.7, 3.5.9

ADA Section 3. 5.1. A
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- 3..7?loatIng Point 21pe

- Syntex 3.5.7
-floatng~point..constrainlt

- flo.Uaa-ocurcwdellitOf Ervag....COnStraint

- foating....curay.dflfltiof ::x digit statkc.siMpb*eepre~s*on

RANGEVOID z RANGE I void;

foat 4 8-O.XP: EXP.
e-jan...yOid :RANGEV010;

float =Ja....acpoe s ource-poultion.
IXcommenfg comments;

tied amSi EXP V.OID,
wwjy...Nrutw TYP 1PSPC,

,i...baftjype : 1WCSPEC; - dwv
fwdt od....hpI...alle :Intege;

-3.5.9 Fix" Point 2je

-Syntex 3.5.9
-flzgdpolnt constraint :: =

- ttsdeccurcyV.deflnwton Erange..constraint]

-flx~deccurecydelnition : := defta tatic.,slmple.-oxpresion

fixed 84eep :EXP.
so-rag.yod RANOELVOID;

tixwd sl X..wcpoa source-poitiofl,
IX-comment a comments;

Iiiwd )am-Size :EXP VOID.

am-fids Intewe,
smim.e.sjype rfPE_-SPEC; -'drv'

fixed 2) cd.jmpl-size Intege;

ADA Section 3. 5. 6

t4
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- 3.6 AzasyTypes

- Syntex 3.6. A
-arrsytyp*edfnton

- unconstrmined...arrsy_.fefinitlon I constrained_arry..deflnltlon

-unconstranedarraydefnition

- rvay(index~subtypedfinitlon (, index_.subtype~deflnltlon)) of
contponentsubtype..ndication

-constrained-array.definition ::=
- way IQdexconstraint of compiwnE.,s.ubtyp...indlcatlon

array =i aa...dacrtrang.... DSCRT RANGE .S. - Index subtypes or constraint
s_conatrained CONSTINED;- - component subtype

array xil Ix*,arapos :source ... osition.
IX-Commetoa comment;

array w_~ EXP!V010,
wvi..powhng :Boolean;

DSCAT_RANGE_S := dscrt..range..s;

dwtrkranges- seaa.ist Seq Of DSCRT _RANGE;
dacrt range as 3 x-srcpce sourcepositln,

Ix-comments comments;

- Syntax 3.6.8
- Indez..subh"_pe..einition ::= typemari range c),

OSCAT _RANGE = index;

index *"jam* NAME;
index 3) x...rcpoa sourco~postlon,

- ynax3.S.CIx-comments 
comments;

- index constraint ::z (diwcrtekrange (. dlstreterange))

-dlacretrange : :z dlcrefesub"ypendcalon I range

OSCRT..RANGE z : constrained I RANGE;

AoA Section 3.S. 9
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- 3.7 hC-01 Yfyp

- Syntax 3.7.A
-record..typ...dfniton

oomponenkt~t
01111 record

REP-.VOID : REP I void;

record : ~ adtSeq Of COMP;
rooord 3 o-a rcpco scurce-.pouition,

reodZ.IMxconvillewa commlents;
recod zSM-81" EXP..VOID,

swn-dA*mW a : OSAM _AR_8.
an,.pecwig :Boolean,
amhreorar.ec :REP_VOID;

-Syntex 3.7. 8
- omponentjlist

- oompavnentdeclarvtion (component declaration)
- I (ccmponeniLdeclaration) variert~part

I null-

-componentd4eclaration : :r
klIdntlflr..llst onponentaubtypedefinton E:= expresaion);

component..subtype..defnition :: subtype Indication

COMP :var - component_declaration (3.2) where 10 is loompjdl
I varlaritpert - veriaftpart (3.7.3.A)
I nut!-Comp; - rMi (so. below)

COMP ::=pregme; - pragc'ias are allowe in comfponent declarations

flA omp X), hLwcpoe sourcepoalition,
Ix-colmme"Is :commrenft;

DET.JD comp...d;

COMPREP..YOID COUP.REP I void;

oo"pjd a~ Ix...rcpoo : ouroe~poaltion,
hx.r-WNenf a comments,
Ix-y"Irep : aMbol.rep;

G00mpid a~ 3, *..bLtp T YPE-SPEC,
amjnit..ex)P: EXPVOID.
an-comp...pec :COMP_.REPyOl0;

ADA Section 3. 6. C

ILL.-
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- 3.7.1 WIACZ~IA.nat

- Syntx 3.7?.1
-discrim~aientjmat

- disortminantLspehfoction 1; discrlmlnantspeoltiton))

-discrlminant speckifcation =
- dent~lerNst typ..mark [: = expression]

I)SCOMT_VAR_S :2docrmt_vae,_a;

decrmt-war-sa 3, aaJI Seq Of DSCRMT...VAR;.
decrt~va~a ~ Ix....wpoa sourcepoasIton,

Ix..commenf a comments;

OSCAMT _VAR : daamtwer; -where 117 Is always a IdamtW.l

dow"mt. war =I mejd..a ID S, - a sequence of 'war _Id'
ad-na"re NAME,
s-..objec-def O6JECT0EF;

dacrmtW 2) Ix....repo : sourosposOtion,
Ia-Comeunnta comments;

OEF.JD : dscrmt_d;

dsormt..id x: IXSFCPco sure-position,
IX....cmnna comments,
Jz.aym"p symbok rep;

dscrmtid z3 .n,...bLtype :TYPE SPEC,
amjnffi#-*ap EXP VO010,
amjlirat :E -E OCCURRENCE,
Wn-..conwp...pec :COMPREP_VOID;

- 3.*7.2 Dinszlzinant Comtrainta

- Syntex 3.?. 2
-discriminant constraint ::
- (diacrlminant~association (, dlscrlminant association))

- diacriminant association :
- LdIw~#nnf_omplem.* (I lcrlninanf.slmple~naie) =).] enpesson

dacrmt...agregate = i *0-fs: Seq Of COMPASSOC;
doormt_".agregate r 3 Ix....rcpo. source.postlon.

IX-Comfnasnts :comments;
dscrmt..ggregate smwn.nomallzed coenp... EXP...S;

-see 4.3.9 for disciminant association

AoA Section 3. 7. 8
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-3.7.3 Variant MatS

-Syntex 3.7.3.A

vsrntrie

ariant:-

-componentjlist

vaintprt *"one~f~ NAME.
as-vains VARIANT S;

IX...owllw~te comrneflts;

VARIANT _S :2ints

variant-, Z) aljiai Seq Of VARIANT;

verlsnkts > Izx..cpoa soure.post04,
i*@-cflgfl15 comments;

VARIANT ::z variant;
CHOICE S ::cho"CS$;.
lNNERk..RCiORD :2 innler recordl;

Ach@4oiW. = 31 Jist :Seq Of CHOQICE;

choirao z 2) 
:x$m source positionl.

ix~coeunuflf comments;

vamlt "-..chow*-* C1401CE..S.
_rjecord :INNER'..RECORD;

varant 2) xjtCpne : @oiin..positiOfl,I IX..cnI-lC:compo' Ments,

inner ienrd =3o aeJws Seq Of COMP;

inneirarcord Z1. txsrcp@5 source p~os,fl
ix..commeflt : cmmets;

-syntax 3.7.3.8
-choice : :x ulPftOn6rSsion flwWsmpon

CHOICE:: Exp I oScwr RANOE I others;

others 2ll bL.-MCce s ource..poltion.

AvA Section 3.7,2
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* -Syntax3.S
-aooeeatypedelnton =access subtype..ndlcatlon

acess sa..conslralned CONSTRAINED;
access ZlxINercpoe source..position.

Ix-Comrnonts comments;
accsswnsize EXPVOID,

inl-aforage..size EXP...VOID.
am-cowrofd aowles";

-See 4.4.C for mAl access value

-3.8.1 -noaclezetType

- Syntax 3.G.1I
- incomplete type-declaratIon :ztype identifier [dlscrlminantpart];

TYPESPEC void;

- incomplete types are described in the rationale Section 3.5.1.1

- 3.*9 Declarative PartX

- basic..declaratlve-l.tem) (Iaterdelaratlve item)
- baslc~declarstlve_tem := basic declaration

- I representation-clause I useclause

OECL: REP I use; -representation is declarative item

-Syntax 3. 9. 8
I lter declarative item:= body

- I subprogram~declaration I pacliagedeclaration
- I task -declaration I generic..declaration

I use-clause I genericeinstantation

-body :=properbody I stub

-properbody :,zsubprograMbody I packeebody I taskbody

ITEMS = itemsA;
ITEM-: DECL I subprogram body I packagebody I tsk body;

* -se 3. 1. 6. 1, 7. 1, 9.1, 10.2 (stub included In _body definitions)

items a I. so-a Seq Of ITEM;
*items$ 21 14-repo. souroeposiion,

IX-connmilscomments;

ADA Section 3. 7.3. 8
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-4. V and91: eKSSiaf

-4.1 Urns

-Synta 4.1. A
-nbame :: a simple..narn.

- I cbaracterjltera I operatorsymnboi
I indexekdoornponent I slice

- I aelected....omponent I attribute

-simple nameo ::= Identifier

NAME :=DESIGNATOR - identifier and operator (2.3)
1 used_cphar - characterjiteral (see below)
I indexed - indezed..oomponwnt (4. 1.1)
I ailie - slice (4.1.2)
1 selected I all - selected_component (4.1.3)
I attribute I attribute call; - attribute (4.1.4)

USED-10: used-pobhect.bd I used name id I used_.tn;

used object Id ixaercpo : sourcepjoaiin,
I5 :met comments,

Ix..yrnrep :symbo rep.
used object Id z- affl.xp-type :TYPESPE

am_deth DEF..OCCIJRRENCE,
am...value :value;

used-nameid z), Ix..srcpo. source-Position.
Ix-.commenf a comments,
Ix..symrop symbol rep;

used name Id zi, am-jlefn :DEF OCCURRENCE;

used-butn_d xi Ix...srcpos s ource~iouition,
Iscomment a commns.
IX...yrrirp :symbol jep;

used -bltn - d = el.owoaf or operator;

-see 3.8.5 of ratinale for a discussbon of built-in subprograms

USED-OP ::a usedop I usedkbltni-op;

uaedop --I Ix...rcps sourcekposition,
IX-Coimenf a :comments,
lx..aymrvp symbol rep;

usedop Z). am.Aevn DEF...OCCURRENCE;.

uaed~btn.%op z) IN-amerpoe souroepositlon.
Ix-Cornments commrents,

usqbtk pa. IX....yIVwP : abokrep;
uaed.Wt~op ~ am-.operator :operator;

useochar z) Ix..acpos :source povion.
IN-comnrnnfa comments,
Ix....ymrep symbolj'ep;

usedofiar z~ aw#Ld@II DEF...OCRRENCE,
anmIPjype IWKSPEC,

- Syntax 4. 1.86
- prefix ::name I function-call

NAME :: unction cal; se 6. 4

Am Section 3. 9.8B
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- 4.1.1 Isiii11i CC~ponetS

- Syntax 4. 1.1
- indexad-component prefix (expression (.expression)

EXP_-S exp-s;

*x- ) 8aa Seq Of EAP;
expS s lx... acpoa sourceposition,

lx_commens comments;

indexed =s aejame NAME,
"-exp-sEXP-S;

indexed 3. Ix....rcpse sourceyositlon,
Ixcod WIM nts comments;

indexed a m..exp-jyp. TYPESPEC;

- 4.1.2 SlIces

- Synitax 4.1.2
- slice prefix (dlscrete-range)

slice ae..neine NAME.
as-.dac.1.jange DSCRT_RANOE;

slice Ix...rcpOA source..Dositlofl,
lx-commets comments;

slice 4MvX- un.epjp1ESPEC,
sm..conhfraint CONSTRAINT;

- 413 Seleoted Ckimonents

- Syntax 4.1.3
- selected~componernt :=prefix, selector

- selector ::a sample name
- I characterliteral I operstor._symbol I ail

DESIGNATOR-CHIAR:: DESIGNATOR I used-char; - character lterals allowed as selector

se~ctd 04-ana"i NAME,
a&_.deslgnaf rchar : ESIGNATORCHAR;

selected o x-arepos sourcepositlon,
Ix..connWa comment;

selected a) am....xp-type TYWESPEC;

all z) a..jnane :NAME; - used for name. al
all z) IX-arcpos source~poation,

Ix....coINIWSn commrents;
all a wnyxpjtype TYPE.,SME;

ADA Section 4. 1.8B
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- 4.1.4 Attributes

-Syntax 4.1.4
- attribute := pretl'attribute designator

-attributedeignator simplenameo [(universal *tatlc_ expression)]

attribute ao-name NAME,
aajd 10. - always a uaed-nameid',

-whose attributes point to
- a predefined 'attr id'

attribute =1Ixarcpo8 source postlon.
IX...Comments comments;

attribute :3W m....*ptype TYPE_SPEC,
m..yvalu. value;

attribute-call > nene NAME, - used for attributes
- with arguments
- NAME can only be attribute

a....xp EXP;
attributek-call Ix....rcpo4 source position,

Ix-comments comments;
attribute-call > am....xpjtype TYPESPEC,

41m1yalu. value;

- 4.2 LiteraLLS

- Refer to 4.4.C for numeric-literal. stringliteral,
- and null access.
- Refer to 4. 1 for character literal

- The enumeration.literall is represented as a 'used object id' or a
- 'usedk_char' whose attributes point to an eanum~idr or a rdef char'.
- See 3. 5. 1. 8

-.3Agregates
-Syntax 4.3. A

- aggregate ::=
- (component~association (, component-associatlon))

EXP aggregate;

aggregate : s-fiat :Seq Of COMPASSOC;
aggregate Ix-srcpo. sourceposition,

IX-Cormel a comments;
aggregate S m.eXP-JYPe TYPESPEC,

am-CoW4raint CONSTRAINT,
am-normalzdcornp- EXPS;

- Syntax 4.3. 8
- component-association
- EChoicea ( I chokce) => I expression

COUPASSOC named I EXP;

named =z 3, chooceii CHOICE-%
ea..xp EXP;

flamed 2 Ix..srcpos source postlon,
IX-cominents comments;

ADA Section 4.1.3
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- 4.4 ZWreInsiM8

- Syntax 4.4. A
-exipression

- relation (and relation) I relation (and then relation)
- I relation (or relation) I relation (or elme relation)
- I relation (zor relation)

EXP binary; - only for short-circuit
- expressions; see 3.3.4 of rationale

binary : ~ as~xp 1 EXP.
as-binary..op BINARY -OP,
aa...xp2 EXP..

binary IN..arcpOs source-~position.
IX-commrente comments;

binary s m....xpjtype TYPE..SPEC, - always the TYPE_SPEC
- of a Boolean type

snL.vaiu value;

BINARY _OP SHORTCIRCUIT-OP;
SHORT_ CIRCUITOP* and_then I or-else;

andi-then l x~rcpos source position,
IX..commeflts comments;

or-elae l x....cpoa source-position,
Ix-comnienta comments;

- Syntax 4. 4. 8
- relation::
- simple-expression [ relationaioperator simpie~expressiofl]

- I simple~expression (not] In range
- I simple..expression Enot] in typemark

EXP := membership;
TYPE_RANGE RANGE I NAME;

membership => of..exp EXP,
asjvwmtbeahip..op MEMBERSHIPOP,
aejype..range TYPE..RANGE;

membership => 1X..rcpo. sourcepositiofl,
Im-coinments comments;

membership => $.....pjvpe TYK_.SPEC, - always the TYPE _SPEC
-of a Booleanitp

waAY& value;

MEMBERSHIP,_OP In_op I not-in;

in-op =I IX...rCpse0 aource...poitioil,
IX..Cominents comments;

not-in 23 Ix..jrcpoa sourcepoition,
IX-.comtmeflts comments;

ADA Section 4.3.8
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- Syntax 4.4. C
- simple-expression ::

- unary..operator] term (binaya.dng..operator term)

-term : =facor (muttiplyingo.perator factor)

-factor : 2primary [* primary] I abs primary Inot primary

- Syntax 4. 4. 0
- primary : :2
- numericjliteral I null I aggregate I stningjiteral I name I allocator

-- I tunction_"cal I type_conversion I qualiftedepession I (expression)

EXP ::z NAME - name, functloncall (4.1, 6.4)
1 numeric: literal - numericliteral (below)
I nullaccess - nul (see below)
I aggregate - aggregate (4.3)
1 string literal - stringjiteral (below)
I allocato-r - allocator (4. 8)
I conversion - typeoonversion (4.6)
I qualified - qualhdepeasson (W.7)
I parenthesized; - (expression) (below)

- This is not a con~truct in the Formal Definition.
- See rationale

parenthesized z> as..exp EXP.
parenthesized 1 X....rcPo. source ~position,

lX-comments :comments;
parenthesized 2) m...xpjtype :TYPESPEC,

ain...aale value;-

numeric-literal 3. /i...srcpos sourceposation.
__ lx_comments :comments,

1z..numrep :number rep;
numeric-literal =, srn..exp-type :TYPEs~pEc,

am-value :value..
- it there is Implicit conversion sm-exp type reflects conversion;
- otherwise it references a universal type

string iteral = x..excpas :sourceposition.
/x-commwil comments.
lX....ymrop symbol....yp;

stringjitoral 2) m-.exp-type TYPESPEC,
smconatrant CONSTRAINT,

sww.Yelue :value;

null access lvPtsrcpos :source-postion,
lx...comn"e comments;

nullaccess z) am...xp-JYPe TYPESPEC,
w~yafie :value;

ADA Section 4. 4.85
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- 4.5 C4Ra1Ktza arA MGes ion ZF4111alutOn
- Syntax 4.5
- lollicaoperstor an ud I or I nor

- reiationel operator 2 I2 C (

-addlng...operator :24

-unary-operator :4I-

-mutlplyinq..oporator :: III mod I ven

highes~precedenceLoperator :: I abs I not

- operators are incorporated in function calls. sae 3.3.4 of rational.
- operators are defined in Diana refinement, Dlana._Concrete

-4.6 Type ConversiLons

- Syntax 4. 6
- type_ conversion ::type_marictexpresslon)

conversion 3. *easfaM NAME,
ea...XP: EXP;

conversion 2IX-...cPo$ sourceposition,
IX-colments comments;

conversion i) sm...xpjyp. TYPESPEC,
arn..value value;

- 4.7 Qua~ifledl IFe imn

- Syntax 4. 7
- quallfled_.expresaion ::
- type martc(expession) I type...markeaggregate

qualified 2)- as-.nam. NAME,
ae...exp :EXP;

qualified 2) IX-f..wpos :source~poaition,
IX-cofmenl~3 comments;

qualified 2) -*XP.JyPw TYPESPEC,
W..yow. :value;

- 4.3 A2locatorS
- Syntax 4. 8

-allocator

- new subtype~indcaton I new quallfledexpresion

MX-.CONSTRAINED: :2 P I CONSTRAINED.

allocator 2)aa...earp.conatrained :EXP...CONSTRAINED;
allocator r2) :xwco souroe-position,

1Xcommnf.lts :comments.
allocator =) aml.expjtype : YPELSPEC,

am-yaAve :value;

ADA Section 4. 4. D
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-5. Statemnts
- a 51 simple and cmound Statamnts -Sequences of Stabmnwts

-Syntax 5. 1. A
-sequence-otatatements :=statement (statement)

SIN_S stms.;

stms3 so-list Seq Of STM;
atm-42) lx-swcpo. sourceposition,

s*_continnts comments;

-Syntex 5. 1. B
-statement::=

- (label) aimple statement I (label) compound...statemient

STM labeled;

labeled z) as-id.. 10 S, - Seq of label id'
saasm STM;

labeled =Ix....rcpo* source_.osition.
IX-commnfts comments;

OEFJO label Id;

lakbelid J x..arcpos source_position,
IX..comOMea comments,
IX-syflrep symboljrep;

label id : wetin SYM; - ahways labeled'

-syntx 1.. _

-spasatement I od_statement

STM melsetmnultm nulledstatement (5.1 .P
extsaeet I assugn - sagnen..stteen (.2
qtsaeat I redrecall -prceuracllstteen (.4
delexit -texitnt Itatement (5.T)n
rsreturnatemenurI statemente(5.6)

STI gol-to - gatoffstemnent (5.)
I egsntycl - entry calntstatement (95.2)
1 pidey al - prdelaystemenamot (9.6)
1 abot - abor~statement (.1)
I ratuse - raetstatment (1.)
I gooe - codestatement (1.)

SI prma; l - pnrygm -alloe sta ee(9 .)

- statement allowed

AoA Section 4.8
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-Syntax 5. 1. D
-compomund..ataterneft :

it t..statemelt. Im asetterflent
- I lj*op..statement Ibiock..statrnent

- ecceptstatemeflt I eled~statemnent

STM : it -it statment (5. 3)
once- cae satement (5.4)

Inamned stm I LOOP -loop...statemeflt (5.5)
Iblock -bMock statemenit (5.6)
Iaccept -accept..steml (9.5.C)
Iselect I oond..entvy Itimed..entry;

-select_statement (9. 7)

- Syntax 5.1. E
- label ::= <IabsIsimplejia"me)

- se 5.1.8

- Synta S. .

- nullstatenent : I

nufl-sm 1 IN-Oepos : ourceJ3ositioni,
Ix-cemnWits a :Comments;

-5.*2 A811i1MOat Statnlt

-Syntax 5.2
- asqnrmentstatemeM :

- vegriabw.name expression;

assign zo "-ftonwrs NAME.
ao-expEXP,

asgfl z>. Ix...rcpo. soutce.postlofl
Ix..cenfts :Comments;

AmA Section S .C
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- 5.3 If StatSmMIts

- Syntax 5.3. A
- if .statement
- It condition Maen
- sequence...of..statments
- (ekE condition 6Mn

- q"uence...o-statemnents)

- aequenceofstatements)
- end N*

if : ei:Seq Of CONOCLAUSE;
it Z ix...wcpos :source..posdtion,

IX-cOflWMfl8 comments;

CONO _CLAUSE :: cond~clause;

conqdausea). asxpvod EXPMOD, ----vd for else

- Syntax 5.3. 8
*- condition : boolnakexprsion

-condition is replaced by EXP

- 5.*4 Case Stateinents

- Syntax 5.4
- case statement
- ojwe expression is
- 6 ce"statementatrnative)

case statement-alterntive :

- whe choice I I choice)
- sequence_9ofstatements)

ALTERNATIW -S z~ afternst&*_s;
ALTERNATIVE : alternative I pragma; -pragea allowed where alternative allowe

Came 21 ss...@P EXP.
saalernIve. : ALTERNATVES;

CamS #) E...Mqo5 sourepositin,
IX@comfvie a : comments;

afterntme a zss :.4-a Seq Of ALTERNATIVE;
aflnatte z 1, Isrcpos soumo..pon.

sx-corwwents :compmnt;

afternative -o a&..cace..s CNOICES.
00-stm-sST4_S;

alterfnathv 2)- OX-srpos :sourmS.position.
Izooeinenfa : omments;

AoA Section 5. 2
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-5.*5 ImV Statut

- op sta eme3. A

- [lop slmpe-name:]
- liteatol..s&4me) lo"

- mquenco ot tatements
- endaloIpP(Iop....slple....nmel;

namwd-stm z) aa...d 1D, - always a -named_atm Id'
as-atm STM; - 1ooP' or Wbocli'

name...sm =lx..wcpe souroejmsitiofl.
lx-Commets comments;

ODO: named..stm_)d;

named-Am id : X-Srcpoa :source..positlon,
IM..Commonte comments,
Ix....yme~p : ymbol~rp

named atm ~id z am-aim S Th1; ' lasnamedtmn

LOOP : - loop;
ITERATION ::void;

loop = asAjeration :ITERATION,
41_41m..0. STM...S;

loop z lx....acpos sourcoepostlon.
Ixconwnta comments;

ADA Section 5. 4
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iteratio scheme = while condition
1 9 olop...pramterspcftatofl

-loop..pWamnter specification
- Identifier In Ireveres discrete-range

ITERATION :for I reverse;

for :a mjd 10, -always an lIteratIon..jd'
a. .dwt1rg* D SCRTyANGE;

for # X-JCPOS : our..psitw@Ei
lx~coffifleta comments;

reverse" aejd I0. - always an iteration-id
as..d~crftjamg* : SCAT _RANGE;

reverse i, IX..jrpr* sourckepoaiton.
fx-Conmrnn a omnts;

OEFZlD iteration d;

iteration..jd 2) X..Wco" . ourceomition.
IX-Comenfa comments.
Ix....yrp .symbokrep;

iteration_id : m..obLtype :TYPESPEC;

ITERATION ::while;

whilep .8* EXP;
while t x...rcpo. . ourcepition,

JX-commeflts comments;

- 5.*6 Blok statements

- Syntax 5. 6
- blokstatement :2

- Eblock-simple*.name:]
- Cdedmar

- fdcaativepart)

soquoncotatemeflts

exception....handler
(anceptlan handler))

* - end [(b0_A.simple..namej;

m se 5.5.A for named balc

block zi sajfem...e ITEM -S.
08-stin-4STMI 3,

sa.-sntNe.,.a ALTMNAWE._A;
block 2,>#p :swe.pst~l

Ix-comnf a :comments;

ADA Section 5.5.A
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- S.7 'hwt Statemts

- Syntax 5. 7
- exit statemnt

- d (Ioop...re. (En condition);

NAMEVOID : NAME I void;

exit aaft&mvoid NAME..VOID,
as..eip.yoi EXP...VOI;

eSPtA IX.. w'poA sourepoetofl.
Iz-commeflts comments;

exit z) sm...an Loop;-, Computed even when there
is no name given
i n the Source prograkm.

- 5. *~tu S mnstatmens

- Syntax 5.89
- retumn.$tetweft : := return ExPreason];

return & aa...xp..yoid :EP0
return = X.,.repos : ource.Positiofi.

I-coniflint a comments;

- 5.9 Gato statements
- syntax 5. 9

- got ..statem~et 
l : go b lab Iname.

goto wj. as-name NAME;
gob Z), IN-s"p@ : ource_.poition.

IX..comwonta comments;

ADA Section 5. 6
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-6. subiwogri Declarations

-Syntax 6. t.A
-subprogram_decqation ::= subprograM..spcitlctofl;

SUBPROGRAM-DEF ::2 void;

- for procedure and function subpogramn designator in one of 'proqjd',
- 'Function...d * or %defopl
- for entry subpogram designator is 'entryjd'*
- for renaming can be any of above or 'enum id* see 3.7 in rationale

subprogram_.dad as..Aosignator :DESIGNATOR.
s header :HEADER.
as....ubprograinw-def SUBPROGRAMOEF;

subprogram-dod l x...rcpoa aource_;"ion,
Ix-comments comments;

OEIV_ID :2Proc-id;

procjld 3, Ix...rcpoa :source-position,
1X..commente comments,
tx...ynw~p :symbol_rep;

proc-ld z) am....pec: HEADER.
am-body :SU6PBODY...DESC,
am.jocation :LOCAION,
am-*tub : EFOCCURRENCE.
sm-first : EV..OCCURRENCE;

0EV_ID :2 unctlon_1d;

function-id a) ix..srcpos sourcek-position,
Ix-comments :comments,
Ix...ynwep :symbol_rep;

functloq~id am-..Spec :HEADER.
sm-.body :SUBP_900Y DESC,
antjocation :LOCATION.
am-st.eub : EV OCCURRENCE,
am-first : EV_:OCCURRENCE;

OEV*_OP :2def...op;

delop c) Ix....rcpoa soumcepsition,
Ix..comments comments,
IX....y"rep :symbokrep;

defop 2) n,..pec :HEADER,
sm-.body :SUBP B00Y0DESC.
am1jocation :LOCATION,
sm..stub :DEV OCCURRENCE,
am-first : OEOCCURRENCE;

LANGUAGE a rgumentjd;
LOCATION: EXP..VOID I pragmauid;
5U"_..BOD'L0ESC x : blocki I stub I lnsantlatlonI

FORMALSUSPROG_. EF I rename I LANGUAGE I void;

-'pr5Wflaj.d* and 'argumeont...i only ocr in the predefined environment

ADA Section 5.9
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-syntsa 6.1.8a
-subpiogrnmupeciication

- presadureidentifier [formai..pert
- I funtion deshnator Etorme~part] return typemar

-designator ::= Identifer I operstor..symboi

-operatorsymbOl : :2 stringIfteral

HEADER z : procedure:
HEADER a fu hnction;

procedure = i. &..param...a PARAM_8;
procedure mi Ix..arcpoc sourcep3ositon.

Im-commnit a comment;

function 2as-jarewn.o PARAD.4S,
ae..nane...oid NAME VOID;

-void in case of instantiation
function 2) x...cprA source~position,

Ix...coflnf ts comments;

ADA Section 6. 1.A
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- (parameterspcitcation (; paramete'.specitcation)

-parameterspcltcation :=
- sntflsrjIat :mode typ. mark [:= expression]

-mode :-E10] I lulout I out

PARAM5 : param_;;

parMs = asefiai Seq Ot PARAM;
param... 2, IX...repos sourcepjoitofl.

Ix-comment. comments;

PARAM :2in;

in z) saejd- :D ID , - always a sequence of 'In idl
a&..name NAME.
aeexp~o~d :EXPYQVID;

in =IX...wcpo. g ourceposition,
IX-commlents comments,
Ix~d of ult B oolean,

PARAM : in-out;
PARAM : out;

in-out =I sajd-.s 10IDS, - always a sequence ot In out id'
a._name :NAME,
aa~exp-void :EXP _VOIO; - always void

in- out 2) x...8cpos source-positiofl,
)*...comfffena comments;

out ) ajd.. 10 lS, - always a sequence at 'out-id'
a.*-name :NAME,
ae...exp-..void :EXPVOID; - always void

out 2)Ix....wpce sourcepjositiol,
IN-comments :comments;

0EV 10 : in id;

in Id a) Ix...gcpos source-.positionl.
IXocomment. comments,
Ix..Syrep :symbol rep;

in id a) am-.obi-type :TYPESPEC,
am-jnt..xp :EXP VOID,
am-first : EV_-OCCURRENCE;

0EFVj ID: i_outId I outjd;

In _outjd mi. Ix...avpos : ource-Position.
IX..Conwents comments,
IXaSynwwp :swmboljrep;

in out-l z 2 anL-obL"e TYPE SPF-C
smwfira 0EV_OCCRRENCE;

out_Id : X-uPeS : ource-position,
IxeCommenfa commets,
IXsymirep :symboljrep;

Ogutd: wu...bLtype :TYPESPEC.
sm-firat : EV..OCCURRENCE;

ADA Section .1.8
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- 6.3 Subpxogrm Dodie

- Syntax 6. 3
- subprogrambody

- subprogram specification is
- (deceratlvepar]

- 9squenceo.satments

- .zceptlon-handler
- (exception handler)]

- owd (designator];

BLOCKSTUB = block;

subprogram body a....deeignsfor DESIGNATOR. -one ot 'proc~xd.
- Tunction Id' or 'detop'

asefiader HEADIER.
aa..bloch...tub BLOCKSTUB;

subprogram body = Ix-rcp0e sourcepostson.
JX-comment. comments;

AASection 6.1.C . -- -- ------



Definition of the Diana Domain Section 2 /Page 61

- 6.4 SUbprogram Call.

- syntax 6.4
-procodurecaffsttement

- procedur.k_name (atualpremeter..partl;

f unction call
- unc~v0nam* E actual~parmtr..pet]

-actual-paramttrpert

- (paramneterasociaton (. paramaterASSociation))

-parameter association
- (orMialParometer z)' actualIperem*ter

-formai~paramnetW par~*m.rSmpe.fam.

- expression I vartabie_namne I tpemarh(valablenam*)

procedure-call z) as-jiam. NAME,
a..,.pam_asoc_s PARAM-ASSOCS;

procedure_call /XSFP lx.vpos oucePOSitio,
IX...comfflwocs comments;

procedure call smj~rmaizdparam..s :EXP-S

tundtion~l => adjiawo. NAME,
.a...pI~m...aoc... PARAtVLASSOC_S;

ptfnction call :) /1x-srcpoa sourceposition,
lX-commonts comments.

furvvionc. all zi am-exp-type IYPE-SPEC.
4in_va/ue value.

amnormalizirL-param.... EXP-S.
Imxpieix Booleanl;

PARAM_ASSOC EXIM I assoc;

assoC 2 a&. designator tDESIGNATOR,
as..ectUai ACTUAL;

essoc 2) IX-smpos source-postion,
Ix-commnWIS comments;

ACTUAL Exp;

ADA Section 6. 3
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- 7. Paka

- 7. 1 P~kMqe1 Strcttwe

- Syntax 7. 1. A
- packeged.eclaration ::package...speaicationl;

pack- e..decl asjd :10, always 'packsge.id
aa..package..def :PACKAGE.DEF.

package-dod z) Ix..uxCPoe sourceposition.
Ix comnen.s comments;

DEF..1D package Id;

pacicgejd :IX-rcpos source position,
1X-comrnents comments,
1xsymrop :symbo!-rep;

packagek_id 3 sm..poc :PACKAGE SPEC,
sm....ody PACK_BODY(_DESC,
am....ddroas :EXP _VOID,
3mam..tub :DEFOCCURRENtCE,
3m-irA DEFOCCURRENCE;

PAcKBODYDESC - block I stub I rename Iinstantiation I void;

-Syntax 7. 1.60
-packagespecification

- pacae identifier is
- (basic declarative-item)j

- (basic _declarative-item)]
- end [peckeg...simple...name1

PACKAE-SPEC :2 packagespec;
PACKAGEDEF = packagespec;

packagespec as-dect_*i DECLS, - visible declarations
aa.....CL.2 DECL..S; - private declarations

packagespec IX...scpo : source~position.
IX-com"Wis~ comments;

DEVI._S ::decls;

decIs3=). 4eJft :Seq Of DECL;
decl s I) xarCpos source-.poitiofl,

Iz..commewI8 comments;

ADA Section 6.4
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-Syntax T.1. C
-pacluage-body

-pe body pa~ckage clmplenalne is
- (~declaratwle...pert]
- b~ sequence-at-statements

- aixception...handlr
-(siception handier)]I

- en [pec~age-impleamob

packae.body as-id 10, -always Vacge..d,
e..block-stub BLOCK STUB;

packaebody I Xa3rcpoa source..p:ositiofl.
IX-cormments comments;

-7.*4 Private TYPe and De0ferre constant Declarations

-Syntax 7. 4. A
-private-type-declaration

- typeidentifier (discriminant..pat me (limitd] Prkvf;

TYPE SPEC private;
TYPE-SPEC t-private;

private 2'IN...PAp05 source-..positionl,
IX-comments comments;

private 2 srn.Awcronminaflts DSCRMTVAR_-S;
l-pnvate =, Ix...AVp08 soute~psitiqfl.

IX-comments comments,
prJivate inL.dIacrinminants DSCRMT_-VAR_5 ;

0EV ID prtvate...ypeId I I-private-jyp...d;

prwatetypej.d Ix...rCpco sourcet..positiofl,
IX...ofmn~efts comments,
IX-ymltp symbol rep;

privte_ _Idsm-tpe-pecTypESPEC;
prlvte~tpe~j ~'- Refers to the complete

- type specification of the
- private type.

- See 3.4.2.4 at rat. vale.

l-prvate..type-ld 10 IxsrCpce souroe~postiofl,
tx~.ccmniiena comments,
Ix...syffrwep symbol I rep;

ipriatetype..id s mjype.5pec IYPESPEC; at heCMI
- yespecification of the

-limited private type.
-See 3.4.2.4 of rationale.

- Syntax 7. 4. 8
-deferred contanlt -declarationI

- identlfher...)t t-- q type mark;

defrre...cOflst~it z, aaJE.... ICoS- sequence of 'conatid'
"amhe . NAME;

deferred....Cfltaft 2), Ix..aicpoa .source...posltion,

ADA Section 7. 1.85
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-a. ViUlbility Ru3*u

0. 4 Mclauiii

-Syntax 8. 4
-us._clause :zuse packagename .pwAcagename);

use ~ a tSeq Of NAME;
use I XwOcpoa source..position,

Ix-convient. comments;

- .S Twoming Declaratioma

-syntax 8. 5
-ronamingdelaation

- identifier typomarc renaume objectname;
- I identifier excePtion renames oxception-name;
- I p~cag identifier renames packagename;
- I subprogramspecification renas subprorm~qr,.enfryname;

-See Section 3.7 of rationale for discussion of renaming

OMJECT..0EF z rename;
EXCEPTIONDEF rename;
PACKAGE DEF rename-,
SU9PRO0"AMDEF rename;

rename as-name NAME;
rename f xearcpos source-.Position,

Ix-comments comments;

AOA Section 7. 4. 8
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-9. Tasks

-9.*1 Task specifications and Task Badis

- Syntax 9.1. A
- task_.dclaration :=task specifcation;

- taskspeicatofl
- task (t"pe identifier [is
- (entry..dectaratlon)

- (representaton...clause)
- m en[taslhsimplenamej]I

-see 3.3 for task type declaration

TASKDEF :=taskaspec;

taskC" deasaid tD, -always avarjd
"ask_del TASKODEF;

task.decW IX-Srcpoa sourc.Position,
IJxcommenta comments;

Tym-peSPc : tsk spec;

taskaspec :asadecl~s :DECI_8;
taskhspec; = rcpce source. position,

Ix-Coaim~e comments;
taskaspec ~ moyBLOCKSTUSIVOID, - Void only

- in the presence
- of separate compilation.
- See 3.5. 5 of rationale.

sm-adreseEXP VOID,
w.A~r~g ~ D( EXP.YID;

8LOCK..STU8 _VOID ::= block I stub I Void;

-Syntax 9. 1. 8
-taskbody :

- to*k beow 10eA~slmpaename is
- (decArativePart]

- sequence_of_statements

exceptlonhandler
-(e2xcepbonhmndle)]

- end tas§hslmpeqname];

task..body =) dejd . sD, - lwys 'taskbodyjid'
aa..b~oc*_afub :BLOCKSTU83;

taskbody l Ixarepoe . ourceoaltion,
lX-Commewf acomments;

DEF 0 :utavk~bedy_#d;

tsAbody~id Ix-srapos souro_.poailvi,
Ix~comuen c omments,
Ixaymv'.ep sy~o rep;

ta*kbodylid xs aii, ype-spec TYPE 8DEC,
am-body 8LOdCICTU3VyD.

amjlrat DEr..O&URFENCE,
DEW OccRRENCE;

ADA Section 8. 5
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- 9.5 amtrieu, ftry Cofllu and Accept statirnats

- ntryd0claration:
- enbv identifier E(diacrete..range)) [tormalpart);

-entry uses subprogramd~dc, aee 6.1

HEADER : entry";
DSCF1T RANGE VOID O SCRTRANGE I void;

entry = as..dact-angeyoid: DSCRT..yANGE _yOID,
a-Ja..paa,.s PARAM..S;

entry a Ix...wcpr* sourceposition,
IX..comments comments;

0EV_10 ::z entry.Jd;

entry_1d a), Ix-arepo source...position.
IX-comments comments,
IX....yrrwp symbol rep;

entryd am-Spec HEADER.
am~odroeaEXP._VOID;

- syntax 9.5.9
- enry__cI...statement z : entryname (actuaI_.psramterpart];

*ntryCsII = a...ni - NAME, - indexed when entry at family
apwwn..aaoc... PARAMASSOCS;

entrycll ~ x....repss source.poatoln
Ix-comwients comments;

entry-Call =s mormiaftedparm-sa EXP..S;

-syntax 9. 5. C
ecowetattment:=

- accept .nlry...smple..nane C(entry~indox) I (tormal..par] [do
- sequence at Statements

wW e n ry_,v.impe name I];

-entry rndeii ::= expression

#AX)eW :' 4d.jeme NAME.
a8.ptwfw.8 PARAMS,
aC....M-a STM_.S;

accpt = 3. IX-Sw~os. source-poadtlon
Ix-cominenI 5 comments;

-9.* Delay Statamots, Duration and Timn

-Synftx 9. 6
-delay..sttenent : : delay simple~expreaalon;

do"~ 21 sa...XP: EXP:
delay 1. #x...wcpee souros..poastion,

5x..commnfa : comments;

ADA Section 9.1.
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-9.7 Select Statmnttg

-Syntexi 9.7
-select statemnut := selcIvet welt

-I condtionalentry-cal I Uimed-entrycal

- see below

-9.7.1 Selective Wbito

-Syntax 9.7. 1. A
-selectIve -wait

- Sle tlentv
f or

- select.afternative)

sequence -ofatatements]
am aselect

selctr aa...aAclcaue-s SELECT _CLAUSE_ S,
as.. am... STM_S;

Select =lx...rcpoa source_.posftlon,
Ix-comrN"nta comments;

SELECT CLAUSE S 3 seec clause_*;
seec &s~ ~ asar Seq Of SELECTCLAUSE;

select-clause-s 9%, wpo oucpailn
lX-comi WnS comments.

-Syntax 9.7.1.8
- c ae ItvaL-ternative ::
- (tIu condition z).]
- aelectfve-weait-alternatv

- ee ivewootafternative : := acoeptAlternative
- I dlayalernatveIterminate_alternative

- cceptltenatve s ccept~statemvent [sequence..ofstatemetnts)

-deWAyetRnate : 2delaYsttMent Eaequenoeo..stements]

-terminatealternative ::=ternet

SELECT CLAUSE : :L s~_eclause;
SELECT-CLAUSE : 2 pragma; -pragnm allowe where alternative allowedl

soled-camuse Z) aa..xpyeold :EXP VOID,
"-S(v-sSTdS; - first atm Is ace~ or delay

seletclaae IX-arCPo. sourceamtlon.
lx..offnvnf8 :cornments,

STUl : eminate;

terminaet 3, ls...Wcpo' sworepoaltln.
1lx-000"Wonfe commnents;

AoA Section 9. 8

v -. ,
- --
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- 9.7.2 Comditloal 31tZy Cafll

- Syntm 97 .2
- ond~tionalentry cell

- entry cali.statement

- ~ aqune_of_statemenfts
- selec

cofid_ ntty:58..tfL5 STh.S, - first stm is entry~calI
.s....fm...a2 STM_.S;

cond...enry :Ix....repoe aourcepoaion,
IX..commenfa comments;

-9.7.3 Timed Zntzy Calla

-Synto 9.7.3
-tim~ed..ntry_.caII

- ntry-C&IIstatement
- sE~quence-of-statements)

- delay alternative

timedentry = astm~.a STMS. -- first stm is entry_.cal
aejim_*22 STMS; - first Atm is delay

tlmedentvry zi lit..srcpoa sourcejosition.

Ix....co nts comments;

aboqtstatement abot taA.name (.tasltname);

NAME_ z namesx;

nnmes* 2. s JI t Seq Of NAME;
neme~s =x Ix..srepos souroejwsltli,

Ix..commenf a comments;

abort a). as-nam...s MAMES;
abort a x..sucpos souroe~poaitiofl,

Ix-Oamranf comments;

ADA Section 9.7.1.8

---------- - -
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-10. Progrmo Structure and CaiilatiomIs s

-10.1 C ±.aion Units - LIir T t

-S~na 10. I.A

-compilation :,:a (compiletlon..unot)

COMPLATION z : coinpilti;

compilation a), 841-#S! Seq Of COMP UNIT ,
compilation 2). Ix..arcpco : 5UMS-position,

Jx..conimenf a comments.

-S~na 10.1.8
-compilation_unit::

- context..cleuse ibrary unit I context clauee secondryunit

-librry uni ::
- subprograMdeclarabmo I packagdeoiaation
- Igenerlc.declaraton I generlc~jnstanlaton

- I wubprogram..body

-secondaiyunt ::= librswy~unit-body I subunit( - library unit body ::z subprogrmbody I peowAge"body

COMP UNIT :2comp unit;
UNITBO :: ~ packagebody I pecksag.ectI subunit I generic

I subproqWamjody I subprogram dod I void;
-UNITBODY Is void only wthen compunit consists of only pragmas

PRAGMA-S z: pregme-s;Iprauma-s 2) 8aalut : Seq Of PRAOMA;
pragm-s 21 IX..Vep... : ourceposion,

Ix-conwents :commnents;

compunit: aa.Contont :CONTEXT,
se-Un-podyUNIT BODYP

aa..pragna..a : PRAGMA S; - extension to FD.
comp-onut2 Ix-swcpoe sourcog7sion.

Ix-omnwenf a comments;

CONTEXTELEM ::a pregma; -pragma allowed in clause

Context Clause - WLth Claus"s

-Syntax 0.1i.ti. A
- oontextolse : 2(wIth cplauee (usecI&uae))

CONTEXT-ELEM : 2 use;
CONTEXT :2contedt;

contMx a), 4al Seq Of CONTEXTELEM;
cantedt 2). Ix.wcpce souroe-poatlon,

Ix-crnmenf a :comments;

ADA Section 9.10
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- Syntax 10. 1.1.9a
- with..Clse : 2 ift un#t_simename ( unit simpf..name);

COt4TEXTELEM = with;

With a) as-iist Seq Of NAME.
with 2IXVCPo. ; ource-position,

IX-Coninwnt comments;

-10.*2 Subunits Of CWiIAtiOn Untits

-- Syntax 10. 2. A
-suburot::z

S spwate (p~ nnhtname) proper..body

subunit zi sam~~ne NAME,
e*aubunt~boiy :SUOUNIT..OODY;

subunit 2 x-arcpco souroepjwton,
IX-commfens comments.

SUBUNIT_BODY : z subprogrsm~body I pack~ee.bodY I tskbody;

-Syntax 10. 2.98
- mbprmspecicti:n In snparft

- I peds"* bedy peckasq@smple*.narn Iseparate;
I tbody -~ksmp*nm isseat;

BLOCKSTUB : stub-,

stu ) x~srcpo : sourceposstlon,
IX-Conmenta :comments;

1 y1 1.1

exception ..de ciaratlon -:x : entifie r iSt : eO sP tioe;

EXCEPTION..OEP :z: void;

exception 44)- 10j&. s D. - 'exceptln~d sequence
a.....xc.oILde : EXCPTONLOEF;

easeption Z3. fiX.U'Cpos suroejwsitlon,
IX..Comemws~ comments;

0( DE : esmeptonid;

epoeptonlid 2), Ix..arcpoe s ouroeposition,
IX-Comnmenf. comments,

IX-syIrepsymbol rep;
enoepin-id s n.exaofn.def : EXCEPffON...OF;

AoA Section 10. 1. 1. A
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-11.2 Exeptlon Handlers

$"ntax 11.2
-exception_hendler

- when exception choice (I **ception-..choice) z3.
eqiuinceot staterments

- .ception...choice :*= exception..namne I *thus

- see 5.4. 5.6, 3.7.3.B

-31. 3 PMise Statemta

-Syntax 11. 3
raiseatatement -:: raise [excepion...namo.

?&Wse Z) ngmnevyoid NAME VOID;
raise z u Ix....cpoa :source .. osition,

Ix...comine :cofmments;

-12.* Generi-c Proqa. UitA

-12.1 Generic Declarations

-Syntax 12. 1. A
-generic-declartion :ugenenc-specitication;

-genenc...specoication =
genericJormalpart subprograsmspecflction

Igeneric_torma~part peckegespeaticetion

OENERICHEADER procedure I functlon I psclisge..apec;

generic 2) a-d 10I. - lgeneic~jd'
"gsnwic...pama: GENERICPARAM..S,

aa...wwr..h~e~r :GENERC-EADER;
genrcM M). IXwScpce souroePoation.

fix.cof"Mmda ommwents;

DEVjD : generic-id;

genleftc..d 3, IX..WSP" : smboljep,
Ix~srcpos :source-postlo"
Ix..conwents commnents;

genericid z). ai-generkc.perent-s: GENERICPARAMS,
sL-po : GENERIC H4EADER,

ww..bady B LOCK STU13 VOID,
wwJfisE : EF-FCcUMACE.
aw-fub : E7.OOCURJfTACcE;

ADA Section 11.1
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-Syntax 12. 1.89
-gene4'1c..ormeI..part :generi (generic..paramtr..d~caration)

GENERIC_PARAM._S generwc..param,...;

goneft cpe..s aa4jNef Seq Of GENERICPARAM;
genoftcpernma Ix....rcpos : ource-pii~n.

Iz..c03n"Iff comment$;

-syntax 12. 1. C
- genicprameterdeclaatiol

- ,entiflerjlist : Ein [&At]] "_pmark e: xpressin);
I Mw'p identis genericjype.deinitiofl;

- I p*vat..jyp*e..dw~tiefi
- I wlUt subprogrsmapcilcetion [is name);

I wIUo subprogramspecitlcation EIs > 1;

GENERIC_PARAM inf I inout I type I subprogramecl.

SLJSPROGRAM_DEF ::FORMALSU8PROG-OEF;

FORMAL_SUSPROGDEF ::NAME I box I no default:

box 2) ox..acpo. sourmepoition.
IX-Co"W"nete Comments;

no default => Ix....rcpo. : ourcik_po@itioii.
Ix..commerwa :Comments;

-syntax 12. 1. 0

- . ). ) I rine'' < IIdl deft'I - I auvybtypoefnItlon I a.oeue.typ*_dfnitIon

TYPE SPEC : FORMAL,_YESPEC;_
FOAMZALJYPE.SPEC : 2formal dacit -(~

I formal integer - ran"e c 2
1 formaljixed - delt <
1 formalkjlost; - digits -c

form~dact 2)IN..wopos : ourcepositiofl,
IX-of'nnewsa comments;

formaj heed 3 ~ IX..WCpc : souroitpoation,
IX-.Commnenfa comments;

tormaijflost 2l IxACco" : anrie..poit@fl.
IJL-coinnfea : comments;

fo~witgai 2), OX-f.epos source..joitifl.
IX-.Comnews comments;

ADA Section 12. 1. A
r__________-.--.--- - 72



Definition of the Diana Domain Section 2 /Page 73

- 12.3 Ganeric Irnstantiation

- Syntax 12.3.A
- geneftic nstaintation

- aq - Ientfie is
- nmew g9wwichawkg*_name (generic-actualpeurt];

- I procedure identifier is
- now gsneruoprocedure..name [gen~nqactul.Ipartj:

- " PI oude dontifier Is
new genercFunction name (generic..ctuaLpartj;

- (genric associaton (. genenc-asocuaton))

-See 3.6 ot rationale tar discussion of instantiation

SUSPAOGRAM DEF ::2 instantiation;

PACKAGE DEF : .= instantiation;

GENERCASSOC-S generic assoc a;

genric.assoc.s z aejeiat :Seq Of GENERIC_ASSOC;
genricssoc_*s 2 Ix..rcpoa source~osiion,

lj _Comments comments;

instantiation za#_nem. NAME.
58...gflwtc...sS8oc.. GENERICASSOCS;

instantiation 1*tarcpoe source-imstion.
IN-cormnwnts comments;

instantlation z,) smdofsa: OECL_.S;

- Syntax 12. 3. I
- generic association ::
- EgoonericJorma..perameter =:ol genericactualprameter

t-genericJormalparameter : : paranersimple_name I operatorsymnbol

GENERCASSOC : asc

-Syntax 12.3. C
-generic ctualperamer : 3expression I verabie name

- I aWbpogramnarne I *W'ryname I typmarwi

GENERIC ASSOC : 2 ACTUJAL;

ADA Section 12. 1. 0
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- 13. I~pmmsstatIms Clauses and
- Detlion - ~tes
- 13.1 9 Vxssevtation Clauses

- syntax 13.1

- reprsenttio n clus : eghcas
I tjepwtirepsentatlon_clause I d recauseprsnatnc

- type preatlo _laus Ilength clause

REP =simple ..rep - length clause and
enumerationjeopresentationclause (13.2)

1 address - asddresclaus. 013.5)
I record jep; - recordjrepresentatlonclause (13.4)

-133.2 Lnngth Claus
-13.3 Dmation Pspzemsntatioa clauses

- Syntax 13.2
- tngttl..c1&use for attribute use simplosexpreasion;

- Syntax 13.3
- enumeoration-representation clause
- for "yp_,simple-name use aggregate;

sompfurep aa.nae NAME.

55...@p EXP;
simpleep :l x..scpoa sourceposition.

Iz-commAIII comments;

- 13.4 Rcozd Ftpreseftation Clauses

-Syntax 13. 4. A
roordirepresentation-clause

- Owr Iyp....simple-name Nue
- t eme alignment-clause]

- (componont~clause)
- ~ O ai Crmmd

-alignmentclause at mod statc~simnple-exp'ession,

ALIGNMENT alignment;

alignment a) .a....regma... PRAOMAS_, -pragma allowed in clause
asexp..oid EXP.V010;

recordreop 2) *a-JnaMe NAME.
aL-4figtlmen ALIGNMENT,
a-.comp-jep-a COMP...REP...S;

recordrep a 3 /xwcarpo sourceposition,
IX-comment comments,.

AGA Section 12. 3. C
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-Syntax 13.4. 8
component~clause
- component simole namne at staticsimple-expression rang. static range;

COMP REPS :: compreps3;
COMP REP :: comprep;
COMPREP : ~ pragma; - pragma allowed in clause

compjeop_s aesi :a Seq Of COMP REP;
camp reps a x...arcpos source_.position,

lx...comrnents :comments,

compjep =i as-name NAME,
as...xp EXP.
as-.rang. RANGE;

compjrep 2 x....rcpos :sourceposition,
Ix..comrnes :comments;

-13.5 Mdresa Clauaes

- Syntax 13.5
- address-clause : := for simpe~nome use at simpleexpression;

address aa..name :NAME,
aa...xp EP

address 2) X..srcPoa source_position,
IX-comments :comments;

- 13.111 IbtChine Code InerUion

- Syntax 13. 8
- code statement : := tpemark'rocordaggregate;

cowde aa...nam. NAME,
aa,.eXP EXP;

code Z) lx..srcpos source_position,
IX-comments :comments;

-314.0 lqput-Out

1 /O procedure calls are not specially handled. They are
-represented by procedure or function calls (see 6.4).

ADA Section 13. 4. A
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- rffie Via Wan z ume

-see Appendix I ot this manual

DEF ID attrid I pragmajid I ARGUMENT;
ARGUMENT argumontId;

attrId Ixsymrep syrnborep;

T'IPE :SPEC unwersalteger Iuniversal~jlxed I universal -real;

universal iteer
universal -hxed
universal-real

argumefltjd IX..aymreP symbol-rep;

pragme id asojiat Seq Of ARGUMENT;

pragmalid Ix_ yrrp symbol jap;

End

AoA Section 13.8
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Structure Diana Concrete
Refines Diana Is

- Refined Diana Spec ficatios

- Version of 11 February 1963

For source__position Use USERPK.SOURCE POSITON;
- defines source position in original
- source program. used for error messages.

For symbol-rep Use USERPK. SYMBOL-REP;
- representation of identifiers,
- strings and characters

For value Use USERPK. MACHINE VALUE;
- implementation defined
- gives value of an expression.
- can indicate that no value is computed.

For operator Use USERPK. OPERATOR;
enumeration type for all operators

For number rep Use USERPK. NUMBER_REP;
- representation of numeric literals

For comments Use USERPK. COMMENTS;
- representation of comments from source program

I -- This defines the external representations

For symbol-rep Use External String;
- the external representation of
- symbol_rap uses IOL basic type string.

For number-rep Use External String;
- the external representation of

number_rep uses IOL basic type string.
For operator Use External OPCLASS;

- the external representation of operator
- uses the private type OPCLASS

For value Use External VALCLASS;
- the external representation of values
- uses the private type VALCLASS

. ... . . . .... . . . . , .-- ,. . . . .. . ... . . .
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-OPCLASS is an enumeration class that defines the Ada operators

- Syntax 4. 5
- logical operator ::= md I or I nor

- relational operator <=If

-addingoperator:24I-I

-unary-operator ::=4

- mutlplyngoperator : I/Imod I run

-- highetprocedonce-operator I ahe I not

OP _CLASS :2and - and
or - or

Ixor - or
eq -

Ino -- /

lit

9gt ->

Iplus -+

Iminus

Iunarypus -+

Iunaryminus --

Iabs -- abs
Inot -not
mutt-

Imod -mod
Irem - m

ep;

and Of or . xor eq i.

ge Z). plus =~, minus cat
unary..pus unary minus ;abs =, not
mult dlv = ; mod = >rem =I
exp =

-VALCLASS is a class that defines the possible Diana values

VA~cASS::z no value g tringvyalu. _voo..alueI
int value Ireal value;.

no -value =I, no value has been computed
strtngvr ie = str vat String; - character and string
bootlvaluf. =) boo val Boolean; - boolean value
mnt-value Z) int val :integer; - integer value
real value zi rtnrval :Rational; - real and flied values

End

L I
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CHAPTER 3
RATIONALE

The design of DIANA is based on the principles listed in Section 1. 1. Unfor-

tunately these principles are not always compatible with each other and with ADA.

Under some circumstances It was necessary to deviate from them. albeit in

minor ways. The main purpose of this chapter Is to clarify the DIANA approach

and to give reasons for our compromise decisions.

An Important principle In the design of DIANA was to adhere to the Formal

Definition of ADA (AFD). and In particular, to the abstract syntax defined there.

The first section below compares DIANA trees with those of the Abstract Syntax

and shows the transformations from the DIANA form back to that given In the

AFO. The second section describes the effects of separate compilation on

DIANA. The third section discusses the DIANA approach to the notion of a

dictionary or symbol table. In the fourth section we discuss an Important output

of the semantic analyzer-the type Information about objects. We point out

special situations and solutions which may not be obvious from the definition

given In the last chapter. The fifth section discusses another principle that it

was not possible to apply consistently-the requirement that there be a single

definition for each entity. Here the language, and especially its separate

compilation facility. Impose a compromise on DIANA. The sixth and seventh

sections discuss the special problems of instantlatlons and renaming. The eighth

section deals with Implementation dependent attribute types that are introduced In

DIANA In order to avoid constraining an Implementation. The ninth section

discusses the notions of equality and assignment for attributes. A summary of

the non-structural attributes closes the chapter.

This chapter contains a number of examples where the structure of DIANA

trees is given in a graphical manner to Illustrate the relations between attribute

values and nodes. To emphasize the Important points, we show only those parts

of the structure which are of Interest for the particular example. Thus. a

subtree Is sometimes replaced by the string which it represents or by ellipses If

it Is not Important. If attributes are attached to a node, then the kind of the

node and the attributes of Interest are enclosed In a box. It is our intention

that these figures capture only the essential information for the purpose at hand

and hence suppress unnecessary detail: they should not be viewed as complete.

J__ _ _ __ --.
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8.1. Comparison with the Abstract Syntax Tree

In this section we show that the Abstract Syntax Trees used In the AFD [6)

and the DIANA trees (with only structural attributes) are equivalent. This equiv-

alence Is useful for the description of the semantics of a DIANA tree: we simply

Inherit the semantics from the AFO. Further, It enforces standardization of the

abstract syntax representation of programs. Since, however, It was necessary to

deviate from the AFO In minor ways. we list these deviations and point out the

reasons why they are necessary: we also indicate how the Abstract Syntax

Tree can be reconstructed from the DIANA tree.

We recognize that the ADA AFD Is based on the 1980 revised ADA Language

Reference Manual (7] and does not reflect changes made to the syntax in the

1982 reference manual. This Issue is addressed in Section 3. 1. 5.

3. 1. 1. Semantic Distinctions of Constructs

Several nodes in DIANA have no counterpart In the Abstract Syntax of the

AFD. They are Introduced in cases where a single construct In the AFD may

have several distinct semantic meanings. Different nodes allow us to attach

appropriate semantic attributes to each. In all such cases the name of the

original construct is extended with prefixes which denote the distinction. The

largest number of splits has been made for the id-construct: we not only

distinguish between a defining occurrence and a used occurrence of an Iden-

tifier. but also between the kinds of the Items denoted by It. For example,

const-ld Is a node which can appear In a constant declaration to
define a constant object. if such an object is referenced
by an Identifier in an expression, the construct

used_objecUd Is used. The semantic attributes of both constructs can be
found In the DIANA definition.

Note that the attributes of these two types of "_Id' nodes are disjoint and that

their union contains all the information needed.

The original Abstract Syntax Tree can easily be reconstructed by omitting the

prefix of these nodes. i should be noted that no tree transformation is

necessary. since the structure of the new DINA nodes Is the same as that of

their counterparts In the Abstract Syntax.

., IIII _ _ III W ".-

4 -
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3.1.2. Additional Concepts

There are nodes Introduced in DIANA which are used to deal with Issues that

are not considered In the AFO. They are used to represent pragmas and

parentheses in expressions. If the nodes for parentheses and pragmas are

removed from the tree. the original Abstract Syntax structure Is restored.

Under some circumstances parenth-ses have a semantic effect In ADA. Con-

sider the following examples:

F( (A) ) - Paramter cannot be in or in out
& + (B + C) - Parenthees force the qrouping
(A + 18) - C - Parentheses force the proper parse

In each of these cases the parentheses have a semantic effect. In addition, the

ADA conformance rules (see Section 6. 3. 1 of the ADA LRM [81) require that
parentheses be preserved In order to check that subprogram specifications
match. DIANA requires that all parentheses In the original ADA source are

preserved through the use of parenthesized nodes. See Section 1. 1. 3.

Pragmas may carry the commands given by the user to other compiler
modules after semantic analysis and must be preserved. Since pragmas may

occur In so many places In ADA (see Section 2. 8 of the ADA LRM [8)), many
0IANA classes were expanded to allow pragmas. This does not affect the

structure of the abstract syntax tree. However, the presence of pragmas also

t caused us to change the structure of the compunlt node of the abstract syntax.

Pragmas can be given for a compilation unit and are therefore represented

together with the corresponding node. The compunit node now has throe

children:
womp unit 23 contomfox CONTEXT,

un.-bod: UNIT_.00Y,
pregma.e PRAGMAo_8;

From the abstract datatype viewpoint. DiANA has merely added one additional

selector. The orlinal selectors of the AFD are retained unchanged.

3.1.3. Tree Normalizations

The AFD uses various normalizations of the tree. Most. but not all, of them

are also Imposed by DIANA. Those which are not performed In DIANA were elided

because after such normalizations It Is difficult, and sometimes Impossible. to
reconstruct the source text.

We do not follow the AFD in normalizing anonymous types. The
AFO proposes that all anonymous types be replaced by type marks and have an

.IZ _7-- .. .. --- ' - -"... -- "-
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explicit declaration just before their original appearance. This tree transformation
Is not required by DIANA. For example, the declaration of a task object does not

require a declaration of an anonymous task type to be placed In the DIANA tree

before the task object.

We do not normalize parameter associations. in the AFD, all subprogram

calls have their parameter sequences normalized to the named association form.

DIANA leaves positional parameters as the user wrote them and avoids filling In

default parameters. (DIANA does have a semantic attribute for subprogram calls

that normalizes parameter sequences and fills In default parameters. but semantic

attributes are not represented in the Abstract Syntax Tree).

All other normalizations In the AFD (e.g.. treating built-in operators as

function calls) are Imposed by DIANA. The Impact of these normalizations on
reconstruction of the original source program from the D0A~ tree Is discussed In

Appendix II. The normalizations which are not assumed by DIANA must be done

to get the Abstract Syntax Tree: the AFO defines how these are done.

3. 1. 4. Tree Transformation According to the Formal Definition

Some ambiguities of the concrete syntax cannot be resolver4 by the parser,

but must be removed during semantic analysis. For example. the Abstract

Syntax contains an apply construct, covering Indexed expressions. calls, conver-

sions, and slices. In most cases semantic analysis merely has to rename the

node to encode the nature of the construct; there are no structural differences.

The result of this process is assumed in DIANA as well as In the AFD (See

Appendix II). It should be noted that one possibility requires a structural

transformation of the tree. namely when an apply node has to be changed Into a

call to a parameterless entry family member. Figure 3-1 Illustrates this case.

All these changes are In accordance with the AFD and require no actions to

reconstruct the Abstract Syntax Tree.

3. 1. 5. Changes to the AST

The majority of the changes In ADA syntax have not produced a change In the

structure of the Abstract Syntax Tree. For example. the change In syntax that

requires the result subtype of a function to be specified by a type mark instead

of a subtype Indication has allowed DIANA to use a NAME as a child of the

function Instead of a CONSTRAINED node. This does not affect the structure in

the sense that the number of children that the function node has has not
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apply entrycal 1

used name id generalassoc_s indexed param-assoc s

lnt_number used-name-id exp_s

ntnnumber

Figure 3-1: Example of a Necessary Tree Transformation

changed. One node has been changed structurally, the allocator node. which

has been changed to have only one child, asexpconstralned, instead of the
two children specified In the Abstract Syntax Tree defined In the AFD.

Two DIANA nodes have been introduced to consistently represent the changes

to AOA syntax. The dIscrlmInant specification requires a type mark instead of a

subtype Indication. The Abstract Syntax Tree uses a var node to represent both

discriminant specifications and variable declarations. DIANA uses a separate

node. dacrmtvar. to represent the discriminant specification. Similarly, a

deferred constant declaration differs from a full constant declaration in that It

requires a type mark instead of a subtype Indication. Both are represented by a

constant node In the Abstract Syntax Tree. DIANA represents the deferred

constant declaration with the deferredconstant node.

3.2. Consequences of Separate Compilation

The separate compilation facility of ADA affects the Intermediate representation

of programs. The Front End must be able to use the intermediate represen-

tation of a previously compiled unit again. Further. the Front End may not have
complete Information about a program unit.

The design of DIANA carefully avoids constraints on a separate

compilation system. aside from those Implied directly by the ADA language. The

, . . .
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design can be extended to cover the full APSE requirements. We have taken

special care that several versions of a unit body can exist corresponding to a

single specification, that simultaneous compilation within the same project is

possible. and that units of other libraries can be used effectively (5).

The basic decision which makes these facilities implementable is to forbid

forward references: this decision is explained in the next section. We then point

out some limitations imposed on the Front End by the separate

compliation facility.

3.2.1. Forward References

The basic principle of DIANA that there Is a single definition point for each

ADA entity conflicts with those ADA facilities that have more than one declaration

point. In thede cases, DIANA restricts the attribute values of all the defining

occurrences to be Identical (see Section 3. 5). In the presence of separate

compilation, the requirement that the values of the attributes at all defining
occurrences are the same can only be met temporarily. The forward references

(am...body) assumed by DIANA are void In these cases. The reasons for this

approach are:

a A unit can be used even when the corresponding body is not yet
compiled. In this case. the forward reference must have the value
void since the entity does not exist.

- Updating a DA representation would require write access to a file
which may cause synchronization problems (see (51).

e A library system may allow for several versions of bodies for the same
specification. If we were to update an attribute, we would overwrite
its previous value. Moreover, we believe that the maintenance of
different versions should be part of the library system and should not
Influence the Intermediate representation.

3.2.2. Separately Compiled Generic Bodies

The ADA separate compilation facility does not impose a total order on
compilations. It Is possible to use a unit whose body has not yet boon

compiled, provided that its specification has been compiled. This procedure
does not normally cause a problem, since the specification usually contains all

the Information needed to use a unit.

However. a generic unit can be Instantiated regardless of whether the generic

,'4 '
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body has been compiled. Thus, in many cases the Front End cannot instantiate

the body at the time it compiles an Instantlation. It would be possible to keep

track of the Instantlations and compile them once the body becomes available.

But this method would Imply that already-stored Intermediate representations have

to be modified. After such an update, existing references to the updated unit
might be Invalid.

DIANA assumes that only the specification is instantiated (see Section 3.6 for

how this is done). This assumption is safe. since the specification must already

have been analyzed. The task of instantiating the body is left to the Back End:

the Back End cannot be run until the body of the generic unit has been

analyzed. This procedure has the advantage of allowing the Back End to decide

whether to use common code for several Instantlations of the same generic unit.

3.3. Name Binding

Each entity of in ADA program Is Introduced by a declaration with a defining

occurrence of the name of that entity. Uses of the entity always refer back to

this defining occurrence. Attributes at the definition point make it possible for

all Information about the entity to be determined. The defining nodes for entities

together with their attributes play the same role as a dictionary or symbol table in

a conventional compiler strategy. To support the DIANA approach. the appearan-

ces of an identifier in the tree have to be divided into defining and used

occurrences (see Section 3.1.1).

3. 3. 1. Defining Occurrences of Identifiers

All declarative nodes (see DECL. Section 2.3. 1) have a child which consists

of a sequence of one or more nodes representing the Identifiers used to name

the newly defined entitles. These nodes are termed the defining occurrence of

their respective Identifiers: they carry all the Information that describes the

associated entity. Because the set of attributes which Is necessary for this

purpose depends heavily on the nature of the denoted entity. we distinguish the

defining Identifiers according to the nature of the entity which they denote. Thus

we have the following set of node types:
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o 'Fo : •z = gumed I
eId I

domrint-d Ieoiv. 64 I

onstjd I

en"UMId Iaeepflonjd I
tunction.. I
9weric Id I
injd I
in.Wott.d I
itrt Wid I
umb-ijd I

pr1vtejjId I
nsmatmtId_ I

prltypeid I
ou "od I

btyekld I
tb"_W I
vw'..d;

The defining occurrence of an enumeration character (DEFCHAR) and of an

operator (OEFOP) fall Into the class of defining occurrences as well.

The consistency of the whole scheme requires that we provide a definition

point for predefined Identifiers as well. These are pragma names (pragmaeld).

attribute names (attrld), and the names of the arguments of pragmas

(argumentld). The predefined identifiers are described In Appendix I.

It should be noted that although label names. loop names, and block names

In ADA are Implicitly declared at the and of the corresponding declarative part.

they are not explicitly represented In DIANA. The defining occurrence of a label

(labe_d) is Its appearance in a labeled statement. The defining occurrence of

a named_atmld Is Its appearance In a named statement.

3.3.2. Used Occurrences of Identifiers

All occurrences of identifiers which are not mentioned in Section 3.3.1 are

treated as used occurrences. The node for a used occurrence of an entity has

an attribute (smdefn or simoperotor) that refers to the node for the defining

occurrence of that Identifier (where all Information Is stored). DIANA distin-

guishes between three different kinds of usage depending on the context In which

the entity is referenced.

U$ED : :2 u**d_nmId I
uaed-ob)eOtOd I
uedblkjd;
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A usedobl|..cd Is used when the am-defn denotes an object, an enumera-

tion literal, or a number. In all other contexts. the use of an entity is
represented by a usednameid. whose only attribute refers to the definition of
the entity. Additionally we have a usedchar (treated as a usedobject_id) and

a usedop (treated as a used_namejld). Identifiers for built-in entities are

discussed In Section 3. 3. 4.

3. 3. 3. Multiple Defining Occurrences of Identifiers

Recall that one of the basic principles of the DIANA design stated that every

entity has a single defining occurrence. As this is not the case in ADA Itself

(e.g., Incomplete types. deferred constants). DIANA cannot strictly follow this
principle. In the Instances where multiple defining occurrences can occur. DIANA
uses the following solution. All defining occurrences of an entity that could be
multiply defined are represented by a DEFID as described above in Section
3. 3. 1. However, these defining occurrences have an attribute. sm.first. that
refers to the node for the first defining occurrence of the Identifier, similar to

the sm_defn attribute of used occurrences (Section 3.3.2). Nonetheless, the

several defining occurrences of the entity all have the same attribute values.

The complete details of how DIANA treats multiply defined identifiers are described

In Section 3.5.

3.3.4. Subprogram Calls

In ADA It is possible to write built-In operators as function calls and to write
user-defined operators as operators. For example.

atandazd.n"(X -). 1, y -. 2)

In DIANA all function calls and operators are represented as function calls. The

only exceptions to this method are the short-circuit operators and then and or

else and the membership operators in and not In. which cannot be overloaded.
cannot be represented as functions, and cannot be written as function cal.s.

DIANA records whether a function call was made using infix or prefix notation
through the Ix-prefix attribute. This Information Is necessary for subprogram

specification conformance rules (Section 6. 3. 1 of the ADA LRM (81).

The kind of function call is Indicated by the first child of the

func ton_al node, which represents the name of the function. This attribute
may be a USEO10 or USEDOP. or a selected component where the

DESIGNATOR-CHAR child Is a USEDID or USED-OP. This used occurrence

-It
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distinguishes built-in operators (or even procedures and entries) from user-

defined subprograms.

In a usedop or use&_nameld node, the smdetn attribute denotes the
defining occurrence of the user-defined entity. In a used_bltnop (or

usedbitnjd). the smoperator attribute indicates the built-in entity: this attribute

Is a private type and Is implementation-defined. It represents numeric operators

such as "+" and "". but also represents the Implicitly-defined relations for

user-defined types.

Derived subprograms are Indicated by the original definition from which they

are derived. The actual parameters all have type Information attached. It is

sufficient to compare the -actual types to the original ones to determine the

Implicit type conversion necessary for parameter association If the representation

changes. Since type checking has already been performed, If the

sm-expjype of an actual parameter is not equal to the am.obljtype of the

corresponding formal (in the sense described In Section 3. 9). It must be the

case that the actual parameter Is of a type ultimately derived from that of the

formal. Following the chain of derivations starting with the type of the actual

parameter will give the sequence of type conversions which must be performed.

Similarly for a derived function, the result type of the functioncall node can be

compared with the result type of tt, 6-rnctlon-ld.

If a user defines an equality operator for a limited private type. then in-

equality is Introduced Implicitly. The user-defined equality is Identified by the

smdefn attribute of a usedop node. In the case of Inequality, there is no

defining occurrence. The tree Is therefore transformed to a standard *not*

operation applied to the user-defined equality. This situation Is Illustrated In

Figure 3-2.

The parameter associations for a subprogram call are in the user-written

order: it Is therefore possible to reconstruct the source program in most cases.

It would be awkward to introduce named associations in the case of predefined

operators. It would be Impossible for Implicit ones such as equality, since there

Is no defining occurrence of the formal parameters. Therefore. DIANA does not

normalize parameter associations to named associations. However. DIANA does

use the sm_normallzed_,param,.a attribute to record the normalized positional list

of actuals used In the subprogram call, Including any default actual parameters.

(The attribute sm-normallzedcomp-s serves a similar purpose for record

aggregates and discriminant constraints).

* - -
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function call]

used_btnop param-asso: -s

sm operator - op not

function-call

used op param_assoc s

sm-defn

Ju * y

Figure 3-2: Call of Implicitly-Defined Inequality

3.4. Treatment of Types

Since anonymous types do not have an explicit declaration In DIANA (see

3. 1. 3), we cannot use the type identifier as the description of the type.

Instead we use the type specifltation (TYPESPEC). In all contexts whore

structural type Information is required, the attributes have values which denote a

TYPE-SPEC. e.g.. sm_exp-type Ir expressions and sm._bae_type in

constrained nodes. This treatment Implies that all nodes which can represent a

type specification must carry those attributes which describe the detailed type.

The meaning of these attributes Is explained In the following sections.

It should be noted that most of the attributes described in these sections can

be computed from other attributes which are also present In DIANA. The main
reason for adding them Is that It makes code generation easier. The attributes

represent Information which the Front End already has and which would be

difficult for the code generator to recompute (especially In the presence of

separate compilation).
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3.4. 1. Machine Dependent Attributes

DNA originally required machine dependent attributes to be computed because
their values were allowed In ADA static expressions and therefore could appear In

type declarations. The rules for static expressions (Section 4.9 of the ADA
LRM (81) now only allow attributes of static subtypes In static expressions; at-
tributes whose values are no longer machine dependent.

3.4.2. Type Specifications

There are several ways to specify a type In ADA. Fortunately they all have
different syntactic structures so that we are not forced to Introduce new node

types to carry the different semantic attributes appropriate to each type (as was
done for Identifiers. see 3. 1. 1). The following sections give a detailed descrip-
tion of the attributes for each kind of type specification. These descriptions
Involve the notion of structural type information: this notion is defined in the

following section.

3.4.2. 1. Structural Type Information

The structural Information for a type Is expressed by the following nodes of a
DIANA Tree:

Integr, fI, fLoat for nuomric types
eftV.,lituza!_s for entration types

zecord for record types
az-say for array tye

acs for ce types
taffi..pe for task types

and the universal types (see Appendix I). Each of these has attributes for
values of user defined or Implementation chosen attributes.

There are language pragmas (PACK. CONTROLLED) which can be applied to
types and which are used Instead of a representation specification. Occurrences
of these pragmas remain in the DIANA Tree to reconstruct the source, but they

- are additionally recorded with the type structures they affect using the

am-packing and amcontrolled attributes.

For record types. there may be representation specifications for the record
and its components (including discriminants). A reference to this specification
is recorded In semantic attributes of the rooerdld.o cmp.ld. and
dsommdld nodes. Similarly for enumeration types. Information from represen-
tation specifications for the enumeration literals Is recorded with the enuntld.

9.. ... l rrM- ". .
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8.4.2.2. Subtype Specifications

All subtype Indications are represented by a constrained node which has type
mark and constraint attributes. The constraint can be void. A subtype

declaration can also be used Just to rename a type (when no constraint Is

given)i so there may be a sequence of subtype declarations without constraint
Information. For code generation purposes. It Is necessary to know the last
applicable constraint, hence a constrained node In D~ has a corresponding

attribute. sm_constraent. that points directly to this constraint; the code generator

Is not forced to walk backwards through the chain of subtype declarations to find
the appropriate constraint.

For fixed and floating point types the last applicable constraint may have two

parts. a digits (or delta) constraint and a range. In order for the smjonstraint
to point to the last applicable constraint. a fixed or float node may need to be

created for the purpose of representing this constraint. For source
reproducibility reasons. the structural constraint may not contain all of the

relevant Information. Figure 3-3 Illustrates the float node that DIANA creates for
the following example:

type MYVW&! im digitsl Zan* -1.0.0.1.ou
mb"Te MMOM2 Is NPLGA 4Lgit. 21

The code generator also needs the Information about the type structure.

which is obtained from the original type from which all Intermediate derived types
and subtypes are constructed. This attribute is named am..typeo.truct. Note
that for derived record and enumeration types It denotes the duplicated type

structure. if any. This situation Is discussed in the next section. 8.4.2.3.

In a chain of type specifications, a user can add attributes to each type by
representation specifications; these specifications are possible only for types. not

for subtypes. The type from which a subtype is constructed Is called its base
type. The attribute am.aso-type denotes its type specification. I.e.. a derived
type (see Section 3.4.2.3) or a type structure (see Section 3.4.2. 1) where all

representation information can be found. The DIwA structure that results In such
a case Is Illustrated for the following example In Figure 3-4. Note that all

* information Is present at the last subtype declaration: it is an integer type. the
values are In the range 1. . 9. and Its representation must not exceed a Sits.

t ,
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type

"MYFLOAT" float

range

".1.o" u1.o"

subtype

MYFLOAT2"

Fconstrained

sm constraint float

020 range

MYFLOAT fload

2" void

Flgure 8-5: o oona wtal oreated by OVAF
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V7pe '1 Is, zag I. o10000
mab-ype Ui T. I ag 1.. ;
type 13 Is ; ay T2
subt"e T4 Js T";
maftye T5 Iz '?4;

3.4.2.3. Derived Types

A derived type Is used to Introduce a now type which Inherits characteristics
of the parent type. A user can give a new representation specification for every

derived type. If no representation Is specified, then the attributes of the parent

type are Inherited. To treat all derived types uniformly, the corresponding DAN

attributes are copied and stored with the derived type specification. The values

are overwritten If the user gives a new representation. To support this, the
attributes sm_,alze. sm.torage_.piz. m-jctual-delte. am-packing. and

OLm-controlled. as well as cdjlmpLi.siz, are present in a derived node.

The subtype Indication defines the parent subtype and the parent type Is the

base type of the parent subtype (ADA LRM (8]. Section 3.4). so the Information
f about the parent type can be obtained from the subtree of the derived node.

The corresponding subtype Indication is represented by a constrained node which

has an attribute sm..basefype (which denotes the base type) and an attribute

amJypeotruct (which denotes the structural Information for that type): see

Section 3.4.2.2.

If this structure Is a record or an enumeration type. then it Is possible that a

representation specification Is given for the derived structure- overwriting the old
values. For a record structure. these values are recorded with the component

declarations (e.g.. oompld has the attribute *m..comp-spec). In the case of
an enumeration type. the values are recorded with the enumeration

literal Cenumjd has an attribute amjrep). The solution of this problem In WM

requires the creation of a new type structure where the new attribute values can

be filled in. This new structure Is referenced by the amjype-otruct attribute of

the constralned node of the derived type declaration.

Duplication has another advantage for enumeration ilteral*: since we now have

a defining occurrence for a literal, the derivation of an enumeration
type Introduces nw defining occurrences for Ilterals that belong to the derived

type and overload the old ones.

LL-
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tylpe subtype

Ott* integer "t4" constrained

jrange wtv ~ void

. .-

"t3 0 _ de rved _ _' _•_s__basetype

subtype sm-constraint

subty t4 void
constrained

't2w void 6t2l' constrained
simple_rep

*tie range

S."attribute

FPiur 8-4: OWA FoMr of typ./S9tMVP @PeKIedOUS
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The duplication of the record structure Is only meaningful and necessary If a
representation specification Is given by the user. An Implementation of DA
can choose whether to copy or to denote the old structure. It makes no

difference from the logical point of view.

In figure 8-5 we illustrate the DIANA structure that results from the following
ADA source.

twe TI1 Is (NO, 0PZM);
tMp T12 IS~ Y1TI
E '2 U (5, 10)1

type

utie enum literal's

,°iI enu-id

type anums iteral s

/t2 derived e/ _

Con°strai ne~d !  .. "ED" "YELLOW"

, ,, ~sO..typ. s truc, ..

uti. Vold

.... -- _ A ran |
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3.4.2.4. incomplete and Private Types

For incomplete and private types, there are two defining occurrences of the

same entity. The general solution for entitles with several declaration points Is
discussed In Section 3.5: the approach for Incomplete and private types in

particular is described In Section 3. S. 1.

3.4.2.5. Anonymous Array Types

The ADA rules for multiple elaborations (ADA LRM E81 Section 3. 3. 1) require

that the oblect declaration:

X, Ta azmy (...10) of INTMXZ t- (1..10 -) 0)

result In X and Y having different types and In fact also cause the

aggregate occurring above to be evaluated twice with two different types In the
two evaluations. DLNA requires that the varld's for X and Y refer to different

Intermediate nodes so that the fact X and Y are different types can be readily

determined.

3.4.2.8. Anonymous Derived Types

The ADA semantics require that an Integer type declaration Is equivalent to a

subtype declaration of an anonymously derived Integer type (Section 3.5.5 of the
ADA LRM [81). To represent this in DIANA without normalizing the source program
we have Introduced the attribute sm,.base.ype for Integer nodes that denotes a

derived node that Is created to give a unique type definition for the subtype.

Similarly. this attribute Is also present on float and fixed nodes.

3.4.3. Type Specifications In Expressions

DLANA records the result of overload resolution In every expression node: the
*m.xpJype attribute denotes the result type of the expression. Additionally. if

the value is statically evaluated, the value Is recorded in the *m_velue attribute

(see Section 3.8.1).

As far as overloading resolution is concerned, only the base type of an
expression is of interest. However. for expressions which denote values which

are assured to satisfy a certain constraint, the constraint Information is useful.
For this reason am_oxpjype should refer to a constrained node for (only) the

following nodes:

* conversion and qualified whose as_ame denotes a subtype name.

* inemd and all.

L- -17#~4 v:
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o functon._oaU. If the function name Is not a built-In operator. and

e used.obect-ld it the object Is not declared using an array type
specification and Is not a single task.

There are three kinds of expressions which Implicitly introduce an anonymous

subtype: aggregates. slices, and string Ilterals. The resulting subtype can be

used to constrain an object it such an expression appears as an Initial value for

a constant object of an unconstrained array type (ADA LRM [81. Section 3. 8. 1).

The amconstraint attribute is used In these cases to denote a corresponding

subtype constraint. Unfortunately. this constraint does not exist in all cases. so

it must be computed by creating a suitable structure outside the tree.

In the case of a record aggregate the discriminant values are extracted from

the aggregate and used to build a dsormit.aggregate node as a constraint for the

type to which the aggregate belongs.

In the case of an array aggregate the constraint attribute denotes a range

whose bounds are computed as described in the ADA LRM (8]. Section 4.3.2.

This range can be used as a constraint for the Index type of the underlying

array structure.

The am-constraint attribute of a string literal denotes a range whose bounds

are computed from the underlying string type (denoted by am_expJype) and the

length of the string literal.

in the preceding two cases, the constraint must be constructed outside the

tree, In the case of slices. it Is already present: either It denotes the range of

the slice itself or. If only a type mark was given. it denotes the range of the

corresponding subtype.

Note that because DIA creates structures outside of the tree. an obvious

tree traversal (one that reaches only the structural. 'as_', attributes) will not

-' yield all of the structural Information. Tree traversals that yield all of the

structural Information do exist: these necessarily follow some semantic attributes

as well as the structural attributes.

3.4.3. 1. Examples for Constraints of Expressions

Figures 3-6 and 3-7 illustrates the DIANA structure for the following ADA

source.
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t 311 is Xm Ig 1,.1oo
tie & In Vz= (11) of DflZIM;

0111S1 12 18 1 I1 zange .. 10;
3 1 A;

The figures provide examples for the value of the sm-conatralnt attribute for

slices and aggregates.

Figure 3-0 Illustrates the DIANA structure for the following ADA source.

type mx_,TSRXmG is azzuy (IW"m3R rage rf) of cwwm,
C I Coatmt Mx LRXNG I- "ABC")

3.4.3.2. Type Specifications for Names

The OMA class EXP Includes the class NAME which can appear In contexts

other than expressions (i.e.. wherever a name can appear In an ADA program).

In all contexts other than expressions, there is no type and no value which can

be associated with the nodes representing the name. However. it Is not

possible to attach different attributes to the same node type depending on the

context in which it Is used. This section defines the values of these attributes

for these cases. (it should be noted that those nodes In the class NAME that

can never represent an expression. e.g.. any node In the class DEFIO. do not

have the attribute am-value. This discussion Is limited to those names that may

be used to represent an expression.)

We require that the value of amexp-jype be void for name nodes which are

not used to represent expressions. The am_Yalue attribute In these cases must

have a distinguished value (see 3. 8. 1) which indicates that the attribute has not

been evaluated. This applies as well to used. char when it appears in contexts

other than expressions.

Consider the following two ADA fragments.

a tm P.QJ
I amP.Q1ADD134

in both cases P.Q Is represented by a selected node. In the first case it Is

used in an expression. A type can be attached to the selected node. indicating

the type of the selected object. In the second case the selected node is used

to denote an object for which an ADA attribute is to be computed. The node

might have a type. as before, but this type Is unnecessary since the evaluation

of the attribute does not depend on It. A more convincing example is the

appearance of a seled node in a with clause.

Note that the a node does not have a sm_Yalue attribute and does not
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Example I Representation of b(1-.5)

(slice with range)

type a

ai" integer "b" constrained

smcntanrange U

Obw range

Example 2 Representation. of b( 1..5) :(0000)

(array aggregate)

assign

aggregate

smcontralnconstrained integer" void

No a ringe mile void

Figqure 4 Conerfw on Slkce and AN"'"'"c
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Example 3 : Representation of b(i2)

(slice with subtype)

type var

sl ice ile integer b trained

_________ rage / void

elft

Ob constrained

size void
type

as array

dscrt-range s constrained

subtyp
Constrained linteger* void

sm constraint1 void

Oil range

OIL* 0100

Figure 3-7: Constraints on Slime and Aggregates
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type-idarrzy.<

-C dicrtjrange s constrained

1index character* voidJ

constant

_.Oaf sm constrai t rng scntat

drtan.-

*INTEGERTIRST INTEOER'FIRST+2

Figure 3-13: Constraints on String Uterals
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record its value In the context of an expression. Only sxpressions of selaer

types can be static (ADA LRM [81 Section 4.9). Thus the DIANA nodes seleotmd.
Indemd. sice. all. and aggregate do not have the attribute smvalue.

3.5. Entities with Several Declaration Points

One of the basic principles of DLAN requires that there Is a single definition

of each ADA entity. This conflicts with those ADA facilities that allow or require

more than one declaration point for the same entity:

a Incomplete type declarations

* (limited) private type declarations

a deferred constants

* subprogram declaration and body

e package declaration and body

e subprogram formals (in the formal part of subprogram declaration and
body)

e discriminants (in the discriminant part of incomplete or private types)

All Instances of multiple defining occurrences are treated as consistently as

possible. The principles that apply in all cases are

1. The first defining occurrence of an entity is treated as the defining
occurrence. and

2. all references to the entity should reference the first defining occur-
rence.

All defining occurrences are represented with DEF-ID nodes (Section 3.3.3).

Multiple defining occurrences create multiple instances of the same DEF_ID
node. DLAM uses the attribute amjlrat to differentiate among defining occur-

rences and to allow references back to the first defining occurrence. The

attribute am_first references the first defining occurrence of the entity In the
same way am_dofn denotes the defining occurrence for a ued...d. The node

that Is the first defining occurrence has an am_flrat that references Itself.

Note that all used occurrences must reference the same defining occurrence.

the one that occurs first. This is the most consistent approach since this Is the

occurrence that is elaborated in Ada semantics. This requirement allows for a

- -___- j
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consistent treatment of all Idvwndflers. The attributes for all defining occurrences
must still be determined and for all defining occurrences the attributes must be
Identical. (The attributes may be different when separate compilation Issues

intervene: see Section 3. 2. 1).

There Is only one case that deviates from these principles. the case of

(limited) private types. Private types are given special treatment in DIWA. as

they are in Ada (Section 3. 5.1. 2).

In the following paragraphs we show the details of the DIAHA structure which

preserves these principles. We present the details Individually for all the cases

where the language allows several declaration points of the same entity. (it

should be noted that representation specifications are not treated as declaration

points, although they do appear in declarative parts.)

3.5. 1. Type Declarations

There are two forms of type declaration In which information about the type is
given at two different places: private and Incomplete types.

3.5. 1. 1. incomplete Type Declarations

The notion of an Incomplete type permits the definition of mutually dependent

types. Only the new name Is Introduced at the point of the incomplete decla-

ration. The structure of the type is given in a second type declaration which
must appear In the same declarative part. (This restriction ensures that there is

no interference from separate compilation.)

The defining occurrences of both types are described by typeld nodes which

have the semantic attribute smjtypespec. In both cases. the value of this

attribute can denote the full type specification which satisfies the DANA restric-
tion. The defining nodes also have the attribute amflrst which refers to the first

occurrence. the incomplete declaration. Note that if the Incomplete type decla-
ration includes a discriminant part. that becomes the defining occurrence of the

discriminant identifiers (ses Section 3. 5. 1. 3 below).

Figure 3-9 Illustrates the DIAm structure for the following Incomplete type

declaration.

tye lagm l ... u

- .-. iI.-l .
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type . . . type

type~d vod tye~idrecord

Sm type Spec sm type Spec

Figure 3-9: Example of an Incomplete Type

3. 5.1. 2. Private Types

Private types are used to hide Information from the user of a package: a

private type declaration Is given In the visible part of a package without any

structural Information. The full declaration Is given In the private part of the

package specification . (This restriction ensures that there Is no Interference

from separate compilation). Unfortunately. we cannot adopt the solution used

for Incomplete types; If both defining occurrences had the same node type and

attributes, we could not determine whether the type Is a private one or not.

This information is important when the type Is used outside of the package.

DIANA views the declarations as though they were declarations of different

entities-one Is a private type and the other a normal one. Both denote the

same type structure In their am.jyp~apec attribute, however. The distinction Is

achieved by Introducing a new kind of a defining occurrence, namely the

po We tine.tyl.d. It has the attribute sm.Jype....poc which denotes the structural

Information given In the full type declaration. Umited private types are treated In

the same way, except that their defining occurrence Is a lprivaft...type-jd. In

the case of (limited) private types the sm.jirst attribute of the typejld node

refers to the prtvate..Jype-jd or I~prlvsfte...ted1.

Figure 3-10 Illustrates the DIAN structure for the following example.

/\ /\
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t3 1is prie"I

type type

privatetype id private type id access

SM type-spec su-type-spec

f Figure 3-10: Example of a Private Type

Since we have introduced two distinct defining occurrences for the private

type we must specify which of these definitions a used occurrence refers to.

Any use outside of the package denotes the prlvatetypejdl or I..private.ld (but

nevertheless has structural Information) and any usage inside the package

denotes the full type declaration: In the interior context. there are no restrictions

on the use of the type.

3. 5. 1.3. Discrimlnant Parts

When an Incomplete type declaration or (limited) private type declaration

contains a discriminant part. the discriminant part must also appear In the

normal type declaration. This creates a multiple definition of the discriminant

Identifiers. Thus the deormtdl node also has an attribute emjlrst that refers to

the first definition point. ADA semantics demand that the discriminant part be

elaborated at the first occurrence.

The attribute am-dlacrlmlnanta exists for I-privat and private nodes because

for a generic formal private type declaration, the disriminants are not supplied

until Instantlation. After Instantlation. this attribute denotes the discriminants

_ _ _ _ _ _ __ _ _ _ _ _
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supplied by the generic actual type.

When a discriminant part ia supplied in the (limited) private type declaration.

the smdlscrlmlnants of the private node and the record node in the normal type
declaration should always refer to the discriminants in the first. (limited) private.

type declaration.

3.5.2. Deferred Constants

Deferred constants are a direct consequence of the concept of private types;
since the structural details of a type are hidden, the structure of the Initialization

expression must be hidden as well. They are deferred to the private part. The

deferred constant declaration (represented by the node deterredconstant) and
the full declaration of the deferred constant (a constant node) are both defining

occurrence of the constld. The attributes of both defining occurrences of a

deferred constant have the same values, satisfying our requirement. The at-
tributes denote the type specification and the Initialization expression. Both

attribute values are equal to those of the full declaration of the deferred con-
stant. Note that const_ld also has the attribute smjirst to denote the first
defining occurrence. Figure 3-11 Illustrates the DIANA structure for the following

example.

tMP '1 Is priwe"
A s coiataia Ti

peT Is 1l 0..101
A I camwtat T t: O

S. 5. S. Subprograms

The declaration and body of a subprogram can be separate from each other.

Moreover. in the case In which the body Is compiled as a subunit. a

stub declaration can also be given. All three declarations can appear In

different compilation units: the declaration in a package specification, the stub In

the package body, and the body as a compilation unit (subunit) Itself. We first
examine the simplest case where declaration and body appear in the same

declarative part. Then we adapt the solution for the cases where separate

compilation Is involved.

iI

K- ' "
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type delerroedoonstant

ate private

coftstid Uid

sm obj ype

I. const4 ___constant_

iR.objtype smtypestruct

rsul.obdhf sm-constraintatiner

ate voidrange

Figure 3-11: Exemple of a Deferred Constant

3. 5.3. 1. Declaration and Body In One Declarative Part

The declaration end the body of a subprogram are viewed In DoAN as
belonging to the same entity. Therefore. according to our restriction, both
defining occurrences must reference the first defining occurrence (the sub-
program declaration) and must have the same attribute values. Since the header
of the first defining occurrence Is used to elaborate the subprogram. the
amapec attribute of both defining occurrences denotes the header of the decla-
ration.

Both defining subprogram Identifiers further reference the block which
describes the body. This method leads to the structure shown In Figure 3-12.

-~~~_ -- -- _ _.A
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subprogram _doc I

proc A procedure voidSbroambd

sm.,bodyI

proc_7id procedure block

Figure 3-12: Subprogram Structure

3.5.3.2. Declaration and Body In Different Compilation Units

Since a subprogram body cannot appear In a package specification but must

be declared in the package body. and since package bodies will often be

separately compiled, the declaration and body of the subprogram will often be In

separate compilation units.

Updates to previously compiled units are forbidden In DMANA. Therefore. It Is

* not possible to Insert the value of am...body In the declaration. The reasons for

this decision are discussed In more detail In Section 3. 2. 1. Therefore. In all

cases where the body Is in a separate unit, the value of em...body Is void.
Nevertheless. It the DIOM tree for the declaration Is processed. the attribute may
be temporarily set to point to the corresponding body If it Is present as well.
Thus. during processing DmAA principles for multiple definitions are followed.

The permanent structure for a subprogram declaration and body In separate
compilation unite Is as shown In Figure 3-13.
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subprogram _dcl

Sproc Ad procedure void

sRs p ec subprogram body

procid procedure block
~sm..spec

so-body

Figure 3-13: Subprogram Declaration and Body In Different Compilation Units

3.5.3.3. Subprogram Bodies as subunits

If a subprogram body Is compiled as a subunit. it Is possible for there to be
a third defining occurrence. a stub declaration, making a defining occurrence in
three different compilation units. We adapt the solution presented above, adding
the stub declaration which makes the picture more complicated. as Is shown In
Figure 3-14.

The attribute sm_stub Is used to refer to the defining occurrence of the stub.
This attribute provides a quick means of finding the stub when It Is In a separate
compilation unit. Figure 3-15 shows the Dw values for the attributes
am-flrst and am-stub. (In subsequent figures the values for the attributes
am-flrst and .m-jtub are not shown. The treatment of .mjirst and sm.atub for
other 0N constructs does not differ significantly from the treatment shown In
figure 3-15.)

Just as smbody Is prevented from forward references. the value of
*m...tub Is required to be void when the stub appears In a separate
compilation unit.

-..I
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subprogram _d c I

procid fOC edur vid

sie~pecsubprogram~ body

proc id poeue su

rci Ippooceuurebsock

smbod bod

I.I

Figure 3-14: ExMpie of a Subprogram Body as a subunit (1)

3.5. 3. 4. Entries and Accept Statements

An entry declaration and Its corresponding accept statements are not treated
as different definition points of the same entity. The abstract syntax Indicates a
name for an accept statement which Is viewed as a used occurrence: DIANA uses
the same approach. Thus the ewitry..jd Is the unique defining occurrence: a
ueedjsamnejd appears as a child of an accept statement and refers to the entry
declaration. However, the formal part of the entry declaration and the accept
statement multiply define the entry formals (see Section 3. 5.3. 5 below).

3.5..5. Subprogram Formals

( When the declaration of a subprogram Is separate from the subprogram
body (and stub) the subprogram formal pert Is repeated. This creates a
multiple definition of the subprogram formals. Thus the subprogram defining
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subprogram _d c I

s_f~ subprogram-body

Proc id procedure stub

MtI
subprogram-body

___________ procedure block

Figure 3-15: Example of a Subprogram Body as a subunit (11)

occurrences (in~jd. ln...ould. and outud) have the attribute smJIrst to refer to
the first occurrence. ADA semantics require that the first occurrence Is the one
that Is elaborated.

This treatment applies to formal parts In entry declarations at.1 accept state-
ments also.

8.5. 4. Packages

Packages are declared by at least a specification and possibly a body; In the
case of subunits. a stub declaration must also be given. Thus packages present
the same situation as subprograms. and the DA treatment of packages Is In
principle the "ame as that for subprograms (except that the structure and the
attribute names are different).
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We restrict ourselves to the complicated case of having three different defini-
tion places for packages; the 0~AN structure Is shown In Figure 3-16.

packag*_deci

package~jd packagespec pcaebd

smsmbody

20packapackage

package id block

Figure 3-16: Example of a Package Boyas a subunit

Task secifictionscan appear In two contexts. as a task type and asa

sinle askspecification. The context Is distinguished by the kind of the defined
Idniir " I.var-ld). AtsboyInehrso 0~ a sA additionally a

tael-body-jd. Tiadiinlnd Imiethtthere are two defining occur-
rences and therefore two distinct DIANA entities which do not have the same
attibutes. Although there are different nodes. the DIANA structure looks similar
to the solution for packages. In particular. the same principles are applied In
the presence of separate compilation.



Rationale Section 8.5.5.1 IPage 113

3. 5. 5. 1. Task Types and Task Bodies

In the case of a task type and a corresponding body. we have the DIAA
structure shown In Figure 3-17. In the presence of separate compilation. the
am-..body attribute denotes void for the task specification and stub for the
stub declaration. This approach parallels the approach used for for packages
and subprograms. Used occurrences of the task Identifier denote the "-1...d:
the am~flrat for the tmsk~bodyild also references the typejld.

type

typelid task~spec

sm-type-spec sm body

task-body

taskbodyid block

sm-body

Figure 3-17: Example of a Task Type and Body

3. S. 5. 2. Single Tasks and Task Bodies

Single tasks are represented by a task-deoo node with a varjd. The task
specification Is given as an anonymous type specification. The DMmN structure.
nearly the same as the structure used for task types, Is shown In Figure 8-18.
Used occurrences reference the var-jd: the am.Jlrst attribute of the
task..body~jd also references the var...d.

Note that In the case of an address specification of a single task, the
am..,addresa of the var-id and the task~spec are both set.
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task-dec1

sm-ob jtype mbd

task body id Jblock

, J ~~sm-typo-speCsmbd

sm-body

Figure 3-18: Example of Single Taeks

3.5.6. Generic Units

Uke subprograms and packages. generic units can have several declaration
points: the specification and the body (and possibly the stub as well). In order
to have the same information at these declaration points, the Identifier of the

body of the generic unit has to be a genericld with the same attribute values as
the defining occurrence within the specification. Thus the attribute

am.generlc-pramjs points to the list of generic parameters given with the

specification, and the attributes am.jpec and sm.body are set as in the case of
simple subprograms or packages. Note that for generic subprograms the sub-

program formals are treated as described In Section 3.5.3.5. The DIANA
structure for a generic subprogram Is Illustrated In figure 3-19.

-L___-~ IL ~ :'--
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generic

genericid generic-.Iarams procedure

sm_generic_paramo_s sbrga bd

, M sT.pec

sm body "..

generic-id procedure block
sm_generic_oaramn_s

sm-spec

sm..body

Figure 3-19: Example of a Generic Body as a subunit

3.6. Treatment of Instantiations

in this section we describe how DIANA treats Instantlations of generic units.

An obvious implementation would copy the generic unit and substitute the

generic actual parameters for all uses of the generic formal parameters In the

body of the unit. This substitution cannot be done if the body of the generic

unit is compiled separately. A more sophisticated implementation may try to

optimize instantlations by sharing code between several Instantlations. Therefore
the body of a generic unit Is not copied In DIANA In order to avoid constraining

an Implementation. Indeed, an Instantlation may occur in the absence of a

generic body.

In DIANA the Instantlation Is performed In two steps. First, a normalized list

of the generic parameters is created. The nodes of the type Instantlation have
the semantic attribute sm_decl_a with a sequence of declarations. This attribute

Is the normalized list of the generic parameters. Including entries for all default

parameters. The values of this attribute are determined as follows:

For every generic formal In-parameter. a constant declaration is
created (the am-objdef refers to either the expression given or to its
default value).
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* for every generic formal In-out-parameter, a variable declaration Is
created (the em_obLdef refers to a rename node which Indicates the
object In the actual list that Is renamed by the new declaration).

* for every generic formal type. a subtype declaration Is created (the
m_type_apoc attribute Is a constrained node with a void constraint

that references the type name given In the association list), and

* for every generic formal subprogram. a new subprogram declaration is
created (the am-body attribute references a rename node which In-
dicates that the newly created subprogram renames either the sub-
program given In the association list or that chosen by the analysis
as the default).

In the second step the specification part of the generic unit Is copied. Every

reference to a formal parameter in the original generic specification is changed

to reference the corresponding newly created declaration. If a formal type has

discriminants. references to them are changed to point to the corresponding

discrImInants of the base type of the newly created subtype.

Examples of Instantlatlons are presented In the following two sections.

3. 6. 1. Instantlation of Subprograms

The generic Instantiation of a subprogram Is represented by the structure

shown In Figure 3-20. We use procedures as an example; the structure for

functions is similar. Figure 3-20 Illustrates the instantiation of the following

generic:
9WAeiC
LUICTH : INTEGR t- 200; - default valuekWpe m n Is plW1te,
pzvaaduze MOWKZM (U i in out ZLDI)i

;roos-ux inUow EIs RINIGI(ELI -i ZnTZR);

The procedure node of the subprogramdecl contains no Information: its

parameter list is empty. The Instantlatlon node represents the generic parameter

associations: it is referenced by the sm..body attribute of the proc_ld node. The

Instantlation node also has a normalized list of the generic parameters: it

contains a constant declaration of 'LENGTH' using the default and a type

declaration of the subtype "ELEM' using the type name given In the association

list. The am.apec attribute of the procId node references the header of the

Instantiated subprogram. It Is obtained by copying the generic subprogram's

header and replacing references to the generic formal parameters with references

to the new subtype declaration and constant declaration.
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subprogram decI

Proc id procedure

s..spec constant

WEXC- E aso Iength . . . 2OO

procedure

I "ELEM" ntsger

params subtype

in_out 
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Figure 8-20: Inetantatlion of a Generto Procedure
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3.6.2. Instantlation of Packages

The generic Instantlation of a package is represented in DLN by the structure

shown In Figure 3-21. The Instantiatlon node Is referenced by the

sm._body attribute of the package Identifier. The package specification Is con-

structed by copying the specification of the generic unit and replacing all

references to generic formal parameters wth references to their corresponding

actual parameters. The resulting specification Is denoted by the

sm._spec attribute of the package identifier.

3.7. Treatment of Renaming

The renaming of entities does not Introduce further problems. However, the

DLAA representation for some renamings may not be obvious. This section

clarifies how DIANA treats entities introduced by a renaming declaration.

Renaming of objects and exceptions are simple and not discussed here.

Note that an identifier which renames a constant object has to be a const-id.

Constant objects are constants. discriminants. and parameters of mode In. as

well as components of constant arrays.

3.7. 1. Renaming of Subprograms

The renaming declaration for a subprogram must repeat the header of the

renamed Item. This header can be denoted by the sm._ppec attribute of the

newly-introduced subprogram Identifier. The rename Information Is referenced by

the smbody attribute, since the actual body can be obtained from the rename

Information. The structure Is illustrated In Figure 3-22.

Note that an identifier which renames an entry or a member of an entry

family has to be an entryld. it Is possible In ADA to rename an enumeration

literal as a function. In such a case the Identifier that renames an enumeration

literal has to be an enum-ld.

3.7.2. Renaming of Packages

The renaming declaration of a package does not repeat the package

specification. The am..apec attribute of the new package Identifier therefore

references the original package specification. in order that the specification is

always present for a package Identifier. The sm..boy attribute denotes the

rename node. The resulting structure Is Illustrated In Figure 3-23.

-. , - •"
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Figure 3-21: Instantictiof of a Generic Package
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3.7.3. Renaming of Tasks

Task objects can be renamed like other objects. The task renaming is

treated just like the renaming of objects. Task types are renamed Just like other

types. Note that there Is no other renaming declaration for tasks.

3.8. Implementation Dependent Attributes

Representation Independence was a principal design goal of MANA. DMAA

does not force an Implementation strategy on either a Front or Back End-or on

any other tool for that matter. The description of DIA deals with this problem

(in part) by using private types for attributes that are to be implementation

defined. An implementation has the freedom to choose a suitable

representation, but it must support the corresponding attributes. Thus an im-

plementation must provide appropriate packages In which the attribute types are

defined, together with the necessary access operations.

in this section we describe the purpose of the attributes In detail and sketch

possible Internal and external representations of them.

3. 8.1. Evaluation of Static Expressions

The language requires that static expressions be evaluated at compile time In

particular contexts (see ADA LRM [81. Section 4.9). This evaluation can be

done either by the code generator or by the Front End (with target and host

Independent arithmetic). Both ways are supported by IANA. Since the DIAA

structure may be used as Input to the Front End In the case of separate

compilation, the latter solution has the advantage that the previously evaluated

expression can be used In the currently compiled unit. For this purpose every

expression node that can have a static value has an attribute am-value whose

type Is implementation dependent . Its external representation Is discussed In

Chapter 5. The implementation of the type must provide for a distinguished

value of this attribute which Indicates that the expression Is not evaluated. D~ANA

does not provide for non-static values to be computed. even if an

Implementation's semantic analyzer Is capable of evaluating some such expres-

alons (see Section 1. 1.3).

tf% saer tpee am hme ost emWogm
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38..2. Representation of Identifiers and Numbers

The attribute types symbolrep and number.rep are not defined in DIANA.

Their external representation Is discussed In Chapter 5. Their Internal represen-

tation Is not specified. so that DIANA does not Impose a special Implementation.

3.8.3. Source Positions

Source position is Important for error messages from the compiler. It may

also be useful to other tools that work with the DIANA structure, such as

Interpreters or debuggers.

The structure of this attribute Is not defined by DIANA since each computer

system has its own notation of a position in a source file. Moreover this

notation can vary between tools of the same environment: an Interactive syntax-

directed editor may have a different type of source position than a batch-oriented

compiler for example.

DIANA does not require that this attribute be supported by every Implementation

(see Section 1. 1. 3). Any implementation that does support this attribute must

define a distinguished value for this type for undefined source positions, which

can be used If nodes are created which have no equivalence In the source file.

The library manager for certain implementations may need a value Indicating

which compilation unit a OIANA entity comes from. This Information appropriately

belongs with the source position, and should be incorporated into such an

Implementation's definition of the private type.

3.8.4. Comments

The Ixcommenta attribute Is used for recording comments from the source

program. The structure of this attribute Is not defined by DIANA since every

Implementation may have Its own method of attaching comments to MANA nodes.

A generalized method for attaching comments to nodes is impractical: there Is

no method that will be accurate for all commenting styles. We envision local

commenting standards that will be enforced to match the implementation choices

for attaching comments to tree nodes. Note that support of the Ix-commenta

attribute Is not required for an Implementation to be considered a DIANA producer

or a ODaN consumer.

i.~~~~ 7. .,: .. .
.... .4 j I. ..

. . .. i - d. . . . .[



Rationale Section 8.8.5 / Page 128

3. 8.5. Predefined Operators and Built-In Subprograms

The amoporator attribute is used to Identify predefined operators and

implementation-dependent built-in subprograms". User-defined operators are

treated as functions in OLA and are not considered here. The predefined

operators and built-in subprograms are treated specially because It Is important

Information for the code generator and for an optimizer.

The type of this attribute Is implementation-defined. A likely Implementation

Is an enumeration type with at least one literal for each predefined language

operator. The refinement of DA given In chapter 2 gives the minimum subset

of operators that must be supported. An implementation can obviously support

further operators which can be added to this enumeration.

The means by which this Information is made known to the Front End is not

specified in 0IA. We provide only for representing the result of semantic

analysis: If the Front End recognizes that a compilation unit uses one of the

built-in subprograms. then the usednameld of the subprogram is changed to a

usedbtnjld whose sm_operator attribute Is set to denote the particular built-in

subprogram that was used.

3.9. Equality and Aasigoment

The DWANA representation assumes a well-defined notion of equality for all

attribute types, Including tree-valued attributes. An Implementation must provide

an equality comparison operation so that, for Instance, the

amtype-spec attribute of two entities of the same type will be equal and will not

be equal to the am. ype._speoc attribute of any entity of different type.

If an implementation Implements nodes as access types and tree-valued

attributes as pointers, then the equality comparison can be a simple pointer

equality. 0INA does not force this Implementation. however. it Is still possible

for an Implementation to make separate copies of a defining occurrence. For

example. consider a situation where a separately compiled unit A defines a type.

two other units B and C use this type to declare variables X and Y. and a fourth

unit D references both X and Y. It Is possible for an Implementation to decide to

copy some type Information from A Into B and C. However, a tool processing

Pv ... ple. an .mn t.tin ... -bulk! IM" MI-g. of the LOG funbon hm lay peamm
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the representation for unit D must be able to compare the smJype.apec at-

tributes of X and Y for equality. Thus the Implementation making the copies
must keep enough information in Its representations to be able to tell that the
copies are copies of the same thing. One possible solution is to attach a

unique key to evory entry and to copy the key along with the other portions of
the entity. The equality test can use this key for comparison.

DIANA Imposes a further requirement on Implementations of attribute-storing
procedures. If an Implementation stores an attribute of a defining occurrence or

a type specification, this change must be visible to all uses of such entities.

Once again, making the change visible is easy If the corresponding attributes in

the uses are implemented as pointers. In the case where an Implementation

has copies of such entities, the store procedure must ensure that all copies
which might be referenced are updated appropriately.

Note that the duplication of tree structures imposed by DIANA. especially those

described in Sections 3.4.2.3 and 3.6. are not copies In the sense of this

section. They represent Information for new objects. either of derived types or

of Instantiated units. The new objects must be different from the original ones.

DIANA does make a requirement about the value of tree-valued attributes In

the external ASCII form (Chapter 5). Tree-valued attributes that are equal must

be represented externally by a reference to the same tree: they must essentially

share the value. This Issue Is addressed more completely In Chapter 5.

3.10. Summary of Attributes

A short description of all attributes of DIANA closes the Rationale. We do not

describe the structural attributes (for the tree) ; this description is in the
AFO and can be deduced from the concrete syntax of ADA (which Is Included In

the DIANA definition for convenience). The remaining three attribute ciasses are

described. If they are already explained In the Rationale, then only a reference
to that section appears.

3. 10. 1. Lexical Attributes

Ixljumrep: Internal (or external) representation of a numeric literal.
the type is Implementation dependent. see 3. 8. 2.

Ix, default: Is of type Boolean. indicates whether the mode of an
In-parameter was specified (False) or defaulted (True).

• t-~
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Ix_,preofx: is of type Boolean. Indicates whether a function call was

written using prefix (True) or Infix (False) notation, see
3.3.4.

Ix..rcpoa: source position of the corresponding node. the type is
Implementation dependent. see 3.8. 3.

lx..ynrep: Internal (or external) representation of a symbol (I.e., an
Identifier or a string), the type is implementation

dependent. see 3.8.2.

Ix_comments: representation of comments from the program source. the
type is implementation dependent. see 3. 6. 4.

3. 10.2. Semantic Attributes

sm.jctualdelta: Is of universal rational number type. contains the value of
the predefined attribute 'ACTUAL.DELTA.

sm_address: denotes the expression given in a representation
specification for the predeflned attribute 'ADDRESS. It is
void if the user has not given such a specification.

m.baesojype: denotes the base type of a subtype. see 3.4.2.2.

mblte: Is of a universal Integer type, contains the value of the
predefined attribute 'BITS.

sm_body: denotes the body of a subprogram or package. It is void if
the body or stub are not In the same compilation unit, see
3.2.1. For Instantiated or renamed entitles It has the type
Instantltion or rename (see 3. 6 or 3. 7. respectively).
For generic formal subprograms it denotes the
FORMALSUBPROGDEF. if the pragma INTERFACE has
been applied to the subprogram, It denotes the defining
occurrence of the given language name In the predefined
environment(see Appendix I).

smcompspec: refers to the representation specification for a record com-
ponent or discriminant.

amconstraint: for expressions see 3.4.3. for subtypes see 3.4. 2.2.

am..controlled: Indicates whether the pragma CONTROLLED has been ap-
plied to the type.

sm.decl..: belongs to an Instantlation node. It refers to a normalized
parameter list which contains a declaration (DECL) node for
all formal parameters. see 3.6.
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ainLdeln: denotes the defining occurrence of a used Identifier. see
3.3.

amdlacrimlnants: denotes the sequence of discriminants given for a record or
(limited) private type. may be empty, see 3.5.1.3.

sm_exception-doet: denotes the EXCEPTIONDEF subtree of an exception decla-
ration, which Is void in normal cases and a rename node if
It Is a renaming declaration.

3mXep_type: denotes the type of the expression as the result of over-
loading resolution, see 3.4.3.

smjfirst: refers to the first occurrence of a multiply defined Identifier.
see 3.3.3.

am...genertc,.param js:
denotes the list of generic parameters of a generic sub-
program or package.

am-lnitexp: denotes the initialization expression given for numbers. In
parameters. record components. and discriminants.

am-location: denotes the location of a subprogram; it may be (a) void.
(b) the Identifier (pragmald) of the pragma INUNE If that
has been applied to the subprogram. or (c) an expression
supplied by the user In an address specification for the
subprogram.

am._normallzedcomp..j:
denotes the normalized list of values for a record aggregate
or for a discriminant constraint, including default values.

am,.normal ized,.parama.s:
denotes the normalized list of parameters for a procedure.
function, or entry call. Including the default parameters.

smobLdef: denotes the Initialization expression of an object. It is void
If none Is given. In the case of a renamed object. It
denotes the rename node of the declaration structure.

am,,oblJype: denotes the type speciflcatlon of a declaration (constants.
parameters. discriminanta. numbers. variables, enumeration
literals. and tasks). For deferred constants see 3. 5. 5. In
case of numbers It denotes one of the universal types. see
Appendix I.

*moperator: denotes one of the predefined operators or built-in sub-
programs. see 3.8.5.
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am.,pecklng: Indicates whether the pragma PACK has been applied to that
type.

ampos: Is of universal Integer type. contains the value of the
predefined language attribute 'POS of an enumeration literal.

am-l'ecordspec: refers to the representation specification for a record.

am-rep: Is of universal integer type. contains the value of the
predefined language attribute 'VAL of an enumeration literal.
which can set by the user. See also 3.4.2.3.

am--ize: denotes the expression given In a representation specifica-
tion for the predefined language attribute 'SIZE: It Is void If
the user has not given such a specification.

am-Spec: denotes the specification of a subprogram or package. In
the case of subprograms, it is Its header (for
Instantlations. see 3.6). In the case of packages. It Is
the package specification. For instantiated packages. see
Section 3. 6 and for renamed packages. see Section 3. 7.
in the case of a generic unit, It Is the generic header of
the unit.

Sm.jtnm: denotes the statement to which a label. loop name. or
block name definition belongs or the loop which is left by
an exit statement.

am-Storgeslze: denotes the expression given In a representation
specification for the predefined language attribute
'STORAGE_SIZE: It Is void If the user has not given such a
specification.

amstub: refers to the defining occurrence of the stub, see 3. 5. 3. 3.

am. ype..apec: denotes the specification which belongs to a type Identifier:
for private and Incomplete types. see Section 3. 5. 1. for
tasks and task body Identifier. see Section 3. 5. 5.

am.jype.truct: denotes the structural Information of a subtype. see
3.4.2.2. or derived type. see 3.4.2.3.

amvalue: contains the value of the corresponding expression If it is
statically evaluated. Its type Is Implementation dependent.
see 3.8.1.

. o ...
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3.10.3. Code Attributes

cdjmpl..size: of type universal integer, contains the value of the attribute
'SIZE for static subtypes. It may be less than a user
defined size.

3.10.4. Unnecessary Attributes

There are a number of attributes one might expect of semantic analysis that

are not explicitly represented in DIANA since they are very easy to recompute.

The floating point attributes corresponding to 'MANTISSA. 'EMAX. 'SMALL.

'LARGE. and 'EPSILON can all be computed from 'DIGITS. which Is required to

be a static expression. Formulae for these attributes are given in Sections
3.5. 7 and 3.5.8 of the Language Reference Manual. and are reproduced here

for convenience:

'MANTISSA = celilng('DIGITS * Ln(10) / Ln(2))

'EMAX = 'MANTISSA * 4

'SMALL = . 5 * 202(-*EMAX)

'LARGE = (1.0 - 'EPSILON) R 2*R'EMAX

'EPSILON = 2.01* (-'MANTISSA)

For fixed point types. all attributes can be defined In terms of

'ACTUAL_DELTA and 'BITS.
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CHAPTER 4

DEFINITION OF THE DIANA OPERATIONS

Recall that DIANA Is an abstract data type. By the nature of an abstract data

type as Implemented In a programming language, all that neeo oe known about

the type are the functions and procedures that operate on objects of the type.

Thus to realize the abstract type DIANA In some programming language. all that

Is needed Is to write those functions and procedures. In a language like ADA It

is possible to separate the specification of these functions and procedures from

their Implementation.

In this chapter we provide an ADA specification (but not Implementation) of

the Interface to the necessary functions and procedures to define DIANA. Fur-

ther. we suggest how. in general, an Implementation-specific package may be

derived from an IDL definition. Since the derivation of packages from an IDL

description Is a complex topic. we only sketch one possible derivation for one

particular language. A detailed discussion of the package derivation process is

given in the IDL Formal Description (9].

4. 1. The DIANA Operations

Every object of type DIANA is the representation of some specific ADA program

(or portion of an ADA program). Specifically. It may be thought of as the

output from passing that program through the Front End of an ADA compiler. A

minimum set of operations on the OIANA type must Include the following functions

and procedures:

type-getter Such a function permits the user to determine of a given
object what its type Is. In DIANA terms. If an object Is
known to belong to some specific node class, the function
determines the object's node type.

selector Such a function returns the value of a specific attribute of a
node.

constructor Such a procedure builds a node from its constituent parts.
or changes the value of an attribute of a node.

In addition, operators are necessary to determine the equality of DIANA objects.

Specifically. are a given pair of Instances of a DIANA type In fact the same

.... ...--- - - --ill- -" 
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instance, as opposed to equivalent ones 1? In case there are variables of this

abstract data type. an assignment operator Is necessary as well.

4.2. OmWs Use of Other Abstract Data Types

An IOL definition (such as the definition of DIANA in Chapter 2) Is built upon

subsidiary abstract data types. These Include those used In the IOL notation

(such as Integer. Boolean. Seq Of) as well as implementation-defined attribute

types (such as source-.position. symbol_rep. and so on). All of these except

Seq Of have the same operations as described above. It must be carefully noted

that for the scalar types (Integer. Doolean) there Is usually no distinction drawn

between equality and equivalence. Whenever doing so Is necessary. we carefully

draw such a distinction.

The sequence type seq of can be considered as a built-in type that has a

few special operators. Specifically, there must be a way to check if a sequence

Is empty and to fetch Items from a sequence. Additionally, there must be

operators for adding and removing items from a sequence.

The implementation defined types must have all the operations appropriate to

them as well as 1hose described above for attributes and nodes.

4.3. Summary of Operators

This section summarizes the operations described above.

The operations on nodes are

* create a node:
e fetch the value of an attribute of a given node:
o set the value of an attribute of a given node:
* compare two nodes to see if they are the same node; and
* assign a specific node to a variable.

The operators defined for the IDL sequence type (an ordered list of nodes of

the same class) are

* create a sequence of a given type:
* select an element of a sequence:
o add an element to a sequence;

1This disinction is eddreeed furthw in etion 3.9 on page 123.
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a remove an element from a sequence:
* compare two sequences to see if they are the same sequence: and
. assign a sequence to a variable of sequence type.

The operators required for the IDL scalar types Unteger. Itolaml. and

Boolean) are

a create a scalar:
% compare two scalars to see If they are equal (I.e., the same

scalar); and
* assignment.

4.4. General Method for Deriving a Package Specification for OU

To derive a general package specification for defining this abstract data type

called DIANA. further decisions concerning the implementation model need to be

made. For example. one must decide how to represent the various DA

objects. After these decisions have been made. a straightforward process can

be applied to derive the package specification from the 0I~A domain. A formal

method for specifying these decisions is presented in the iDL formal description.

Indeed, an IDL tool would produce such a package automatically from the

definition of EA in Chapter 2. For the purposes of this document. the

following discussion Is sufficient.

The implementation model must deal with two separate areas of concern.

First, there are the implementation restrictions Imposed by the choice of the

source language that the DIN type Is being Implemented In. Secondly. there Is

the choice of corresponding entities in tho implementation language for entitles In

the DIANA domain (I.e., how DIANA objects are represented). These decisions

can be driven by the design considerations of tools that expect to use the DIN

type. as well as by specific restrictions of the host system.

The general steps are as follows:

representation of IDL types. An implementation for each of the IOL
types must be chosen. Normally for the scalar types. the implemen-
tation language supports an equivalent (or close enough) abstract
type. For the sequence type and the implementation defined
types. the same decisions need to be made, and an abstract data
type for these derived and specified. (The DIANA domain specification
provides a handle on the abstract data types for the implementation
defined types.)

* repreaentatlon of node classes. The class names of the DIANA lan-
guage must be handled by the package derivation process. because

L.A--_ -j. . . .. - |
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the types of the attributes are defined using these meta-variables.

* representation of nodes. The node representation choice must permit
attribute values to be associated with the node. since each specific
Instance of a node may have different attribute values.

e method of defining operators. The operators in the language must be
specified either as functions and procedures in the Implementation
language or by equating them to specific operations already in the
implementation language.

4.5. Deriving a Specific ADA Package

To derive a specific ADA package, we apply the general method as outlined In

the previous section. First, we choose an Implementation model of an abstract

data type defined as a single package. A single ADA private type is used to

define all nodes In the 0IANA domain. All operations are calls on procedures or

functions specified in the package. Having made these decisions, we then

address the following points:

e representation of IDL types. The IDL Boolean type could be imple-
mented directly by the ADA BOOLEAN predefined type, However, the
IOL Integer and Rational types would have to be represented some-
how so as to be able to represent arbitrarily large quantities, and (in

* the case of rationals) to represent them exactly with no approximation2

Using the ADA predefined types INTEGER and FLOAT would not be
adequate.

For the sequence type Seq Of. we Include a private type definition
and primitive operations. The operations permit creation of an empty
sequence (Make), functions to add an element at the beginning
(insert) and end (Append) of a sequence. and functions for selecting
the first element of a sequence (Head) and the remainder of a
sequence (Tall). There Is also a function to determine if a list Is
empty (IsEmpty). Note that additional functions and procedures for
this type could be added.

a representation of node classes. Since a single type Is being used to
represent ali nodes In the domain, the dip,,"-atlon between different
classes Is not necessary.

e representation of nodes. A single private type (called Tree) Is
provided for all the node names defined in the DIANA domain. An

enumerated type (called Node_Name) is defined which provides a

2 Thse requirrnents we spelled out in the Adis LRM, which requires that some arlthmetic pefonnmed
at ompile tM be done exactly.
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name for all the various nodes defined in the DINA domain. An
additional function (named Kind and returning a result of type
NodeName) Is added to the Tree type to distinguish between different
node kinds.

* method of defining operators. The create operator for the various
nodes becomes a single function that takes a NodeName and returns
a new Tree node with most of its attributes not defined. Each of the
DIANA attributes has a corresponding procedure and function in the
package specification that respectively modify and fetch the value of
an attribute. The procedure and function both take the specific Tree
node as an argument. The procedure takes an additional argument
which gives the new value for the attribute; the function returns the
corresponding attribute value.

The comparison operators for the nodes and for sequences are the built-in

ADA comparison operators C='. '/-') which are defined for private types. The

comparison operators for the scalar types are not defined In this package. The

ADA language provides all create operations for the scalar types. The *saignment

operators are the pre-deflned ADA assignment operators for variables of the
private types. Except for these assumptions on the use of built-in operations.

the full ADA package Is given.

A few facts are important:

* Because some of the D~ node types conflict with ADA reserved
words, we choose to prefix all nodenames with the prefix "dn_"

(short for DIWA).

* Remember that this specification defines a minimal set of operations;
Implementations may augment it with other useful ones for particular
applications.

* We have added an additional type (AFUTIES) and several procedures
and functions (AFITY. Sonl, Son2. and Son3) which are mentioned
in the ADA Formal Definition and which are very useful In the tree
traversals essential to many phases of compilers, as well as other
tools.

4.6. The DVN Package In ADA

A summary of essential points of the ADA package specification for DIA

appears In Figure 4-1 on page 134. For ease of understanding. the figure

contains only as much of the package as fits onto one page.(
The package defines and makes available the following types, functions, and

procedures:
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-IN Diana IN
t Zs Is prileteo - a Diana node
twos 32ITM Is sriwate; - sequence of nodes-

type NOCK-wi IN - enumtion class for nods ames
( .,. - about 160 different node typsa

T ree constructors.
fnction MAE (co In NWZEJIE) return TREE;

eure OSTW ( tIn EEE);

unction KID (t in TREK) return M -MMJ

- Tree traverses from the Aa Formal Definition.

type ARMITIES is (nullary, unary, binary, ternary, azbitzzy),

functiom ARM (to in TR)return AM ;
fiuntiom SOUl (t: In TREE) sturu T;
pgocedure oul (t: in out TREE; vs in TMM)j
fuanction 902 (t: In TREE) return TREK,
procedure S062 (t: in out TREE; vt in TWn)j
function SO3 (to in TREK) returniTEE
procedure 8s03 (t: in out ; tI TREK);

- Handling of list constructs.
function HEAD (1, in SEQ..T!PE) return TREK; - LISP CAR
function TAIL (1: in SEQTYPE) return SEQ.TYPE; - LISP CDR
functio EK return SEQ-TYfl;i

-return empty list
funtion IS...DWTY (1: in SEQ...TYPE) return BOOLEAN,
function INSEW (1: In out SEQ-.TYPE;

is In TREE) return SATIE;
inserts i at start of 1

fution APPED (l, in out 5D-TYPK;
is in I) ret SEQ.TYPE;

- inserts i at end of I

mdling of LIST attribute of list constructs.
roceare LIST (t, in out TREE; vt in SUQ-TYPE);

fuctio L S9T (t, in TREE) retiu SETEM;

- Structural Attributes.

procedure As..ACTURL (to In out TRI vs in TREE);
function M..ACTCRL (to In TE) return TREK Z assoc

- followed by functions and procedure for about 100 attt em .....

- To be filled in...

end Oiana;

Figure 4-1: Sketch of the OIAA Package

L i -_________-- ~*b
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type TREE An object of this private type Is a node of the DIN~
structure.

type SEQTYPE An object of this private type Is a sequence of nodes of the
same class.

type NODE.NAME This is an enumeration type providing an enumeration literal
for each kind of DIANA node.

function MAKE This function creates and returns a DIANA node of the kind
which Is Its argument. Note that it is overloaded so as
also to be able to create an empty list.

procedure DESTROY
This procedure indicates that a node is no longer required.

function KINO Given a node. this function returns Its node-kind.

type ARITIES This enumeration type provides a literal for each number of
£ structural children a node might have.

fui/oo SONk For k = 1. 2. 3. each such function returns the k'th
i procedfuctro SON|Frk=1 .3 ahschpoeuesoe e t

offspring of a node.

procedure SONk For A = 1, 2. 3. each such procedure 'stores a new kt
j offspring of the node.

list processing A collection of functions and procedures Implement the
usual list-processing primitives.

attributes For each possible attribute, there Is a function to return the
value of that attribute at a node. and a procedure to store
a new value for the attribute.

A complete listing of the entire DIANA package specification concludes this

chapter.

L

__ __

-
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with WWEKD us WMK,
-package 13WK ptovides the following itemN (6m page 77)s

- source.poitions Defines source position in original source progrm
Used for error messages.

- xyol-reps MRes&W-tatIon of identifiers, strings and character*.
values Implementation defined.

- Gives value of an expression.
Can indicate that no value in computed

-Operator:I Enumeration type for all operators.
-nume.rep, MRe~wsentation of numric literalis.

C,- c t ampresentation of cmnts froe source progrm.

peclkae Diana In

tye TIM Is gtiutel

t7pe SEQTWZ is ptiufte,
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(dILabort, dn-accept, drLacmes,
dz-addroxv, dZkaqgreqate, dli-aliglnt,
dn..all. &rLallocatot, dA.altoxiative,
dlLalternative.., ft-and4Aben, dn-.agmnt..,d,
dn-array, dn...assigu, drLaauoc,
dn...att-ld, daLattribute, dnattrbutecallD
dn-binary, daubiock, dn-box,
&L-came, dvk.choice-... din.oode,
ft-CMWj4, da-ccW~vep. dLn-owqLep...,
dn...coup..unit. dn-coo.ilation, dn-con&.clause,
dn-oondLentry, &L...onstjA.s drLconstant,
dz-oonwtrained, dn~oontext . da~oonversion,
dnLdefezre&,constant, ft-de lay, dn-dezived.
ft.asecuktaggregate, dr...scmut..j., 82Ldo1zat.yar

da~dmc!3t~.yarL, 4zLdscrt.ranq*..a, dzi-..nty,
dn-entry-.call, dn-enty_..1d, drk.enu.d,
dn-enu..litora34e * dn...exeption, dzLecption_14,
dinezit, dxneecp.., dn-fixed.
dlLfloat, dn-.for, dn~faxua2.Aecrt,
drL-fomllf ime dn-foa-tloat, afoavia3.Axteger,
da-function, dnj~unction..Cafll dn..fiinctitowid,
daL.aric, dr4-generiq..aoc.., da~g~nerj.o.A,
dix-geerirc..parats, drk-goto, dvxj4.a,
da-if. dn~in, &L-iniL.d,
daLir-op. drk-izkout, daL1A-out-i.1d,
da-index. dn-indexed, da~inraer-recor3,
dn-.instaztiation. dn-inteqer, d-LM
daLiteration~id, di-labe.Ld, daLlabe led,
axloop, dr~l.private. driwpiate-type-id,
dn-pewership, dn-names, dn~nawad.
drLnain&...ta, dn~na&ed-taid. dn...node fault,
rLnoti:n, dn~nullaccess, dnnull3C=V,

dnnanric-literal, dn-or..else, da~others,
foudn-outid. dn~package..body,

dn-package...dcl, dn-package..1, daL-package-spec.
dn-pAma, dn~pragma..jA. dn~pragm@..s,
da-4mlvate, dn-Wiatq..tywe.d. dn~proc_.. I,
dn..pxacedure, da-procedu~recal, dn~quallfied,
dn..raiae, dn-rmnge * dfa..zevod,
drk-recozwLrep, dn-renm 0 da-return,
danrvwree dn-select, a-elect-clause.
dxnuelect.clause..m dn-selected, dn-aiwle..rep,

dn-stub, drLsubpr~qraujbody. dn-subpoqmv~.deC1,
dn....ubtype, dn-subtypejAd, da-subunit,
dnutask-.body drLtukJ)'ody....1, Ga-task-decl,
dn-..task~spec, dz-texmtnate. dn-tmeLa&.entry,
da~type. da-type-.id, dnniversal-.fized,
dn..w:vemslt-nteger, da-univeralrveal, dn~ume,
daLus&".btnj, dvLue&.blty...p, danawedAcar,
dnu..uue&..id, dik-usedl.cbect..id, da~uoe&.op,

dzodn-var.Ad, dn-varlant,
dA~vexiant.pezt, 6davarits, dn-voiA,
dr4,whiLle, a-ith
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-- Tree onstructors.

funtion mm (ci 13 Z JMIE) return TREE;
procedure DETMY (tt 13 TREE);
fwotios Kim (ti In TREE) Zetur= OMN JAE;

- Tree traveruers frm the A Formal Definition.

type AIUTIES is (nullary, unary, binary, ternary, arbitrary)i

funoction ARM (tt Ink THR) return AMITIES;
function awl (to In TREE) return TRK
procedure 81 (to In out TREE; V: In TREE);
ftiXon am (t: in TREK) return I'M" r
frooeduze Sor2 (0: In out TW; : in TREE)
fUntiC. 80113 (t: in TRE) return TREE;
proCedure 80103 (t In out TREEp v: In TREE);

- Bdling of list construct*.

function HERD (It In SMQ...TIE) return TREE; - LISP CAR
function TAIL (1: in 3EQ..TYPE) return SEQ...TTPEI - LISP CDR
funtion mn &*turn SEQ..TYi'E,

- retur *~ty list
funtion 1S3XNP (1: In SEQ T=) retur BOOLEANl

funtion INSERT (1, In out SEQ _TYPE
is In TREE) return SQ..,TYPRI

- inserts i at start of 1
function APPEND (It in out SEQ-.YPE

i: in TREE) return SEQ-TYPE I
- inserts i at end of 1

I

II

; i
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He Hnling of LIST attribut.e of list conmLrsacts.

procedure LIST (to In cut TIEEI vs in 530-TYPE),
function LIST (to in TREE) return SEQ...TYPEs

- aggregate ham Seq of 03WASSOC
- alternative... ham seq of AIJIEUATZV
- dhoioe..s ham Seq Of CHIIZ
- omplation ham Seq of CWJmZT

- ow..rep... has Seq Of CO_
- context bas Seq Of Kwir-Em
- decl..u has Seq of DECL
- dsc%%t_&.agregate bas Seq Of COW_.A58OC
- dscrt..xmng_o has Seq of O9MT_3ANGZ
- enjitera1_w ham Seq Of ENKLIXEML

WXPLs has Seq Of ZXI
-genc....asoc.. ham Seq Of GEERIC.A39OC
-- generc...parwq... has Seq of G~E MC-R.ARMM
- 4_5 has Seq Of ID
-if ham Seq Of COND-.CLAUSK
-inner.record lam Seq of CuNW
-item,1.. ham Seq of i'rM
-nami.s has seq of KAME
-paraasooc-s ham Seq of PARAILASSOC
-paraML111 han Seq Of PARSM
-pragmo..1A ham Seq Of ARiNUINT
-pragMa.... has seq Of VPuMk
-record ham Seq of COMP

select.clase-io ham Seq Of SELECT..CAUSE
- tII.3 has Seq of STh
-use bam Seq of MNIC
-variant_u ham Seq Of VALIAMT
-var...s ham Seq Of VAR
-with ham Seq Of RAM

-Structural Attributes.

procedure AS-.ACTUAL (to in aft TREI vt in TNEE);
function AS-A.CTUAL (ton In TREE) return TREE s -amo
procedure A5..ALXORDIT (to aIn out TREE; vs In TREE)j
fuonacon AS...ALXQOGIENT (to aIn TE) return TREE - Xecord..rep
99ocedure AS-.AIA'ZMTIVE..S (tn In out TRE vt In TREE);
function A5..AXA'ZRATIV... (tn In TRIM) return TRI - case

- blodk
pramsiure AsDInARY..Op (tn in oft TPZE5 vs In TURE )j
fameton AS-.DINARY-.OP ( t In TE) return TREE; - binarY
procedure ASX...3rL..SM (tn In out TREEM; vt In TREE),
VAtIon AS-A..CKWOLMVD (to In T) return TRI j - peckagebody I

fkinUIM Afi-CIMIC.... (to In TREE) return TREa-alternative I
-med
-variant

p9r001Ire AB...MW....m. (tn In ouit TRIM vs in TRIM)s
fbinUim M..9MW-...S (tn In TM) Return TF1s - recor&..re
im m 4 a Apjwcs... t33 (ton In out TRIM; vs in TREE);
finotaom AB5...I5TRAIMZ (tn in T z) return Tm I - acoce I derived

-array I subtype
* pru AB-CO93TW1RRXNT (ton in mat TRfl VI in )I

00UM AM-CfW1RAINT (tn in TM) return TRE - constrained
]IF-- m M .,1m (tn In out TM; vs In TRIM);a
am MA, AM..CCWI (ton In TE)return ! a -ni

-,k- L
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990aneare AS....DECtL (t: In ouit TFIj Vt In TREE),
fmtlnon ASDECL3s (t: in TIRZE) etur TREE ; - tasslupec
proaes ASJXCLS1 (t, in out TRE; vt In TRE);
fution AS_.ECLS1 (tt In TMM) return TREZ ; - PaC1age-spec
proossue M..ZCT.D.S2 (t: in out TREE vs in TRE)'
functio AsPCWL-s 2  (ts in TREE) return TRE ; - peckagespec

_ode ADESIGMTOR (t: in cut TREE; vt in TREE);
fuction A8....DSIIWWOR (ts Inn TREK) return TREE - saabPrOgram-POdY

- subprogramdecl
-assoc I generic

ed _DESzIGKLTOR_.QR (t: in out TREE; V: in TREE);
function A-DES IIm'R.HRR (ts in TREE) return TREE - selected
pOcedure AB..SCMUVAMS (t, In out TREE, V, in TREE),
funtion AS-PCY40-VAR-s (t, in TMM) return TREE - type
procedure ASDSCRT_-RP. (t: in out TREEs V: In TRE);
fUntion AS_ _l.SRTRNGE (t: in TREE) return TREE ; - for I zeyerse

- slice
RocedUre AS_,DSC=_RAMG_.S (t: in out TREE: Vt in TREE),
funtio AB..DSC-IRRMA._S (ti in TREE) return TREE ; - array

Aroos _re MDSC.RT_RhNGE.vOID (t: in out TREE; v: in TREE);
fuctn ASDSCRT 9Nl E(ZOID (t a in TREE) re TREE ; - entry
procedure MEXCETIONWDE (tt in out TREE; v: in TREE);
function ASXXCEPTIO-_D (ti in TRE) return TREE ; - exception
proce&r ASEXP (t: in out TREE: vs in TREE);
ftuatin AsMX (t: in TREE) return TREE - delay I case

- fixed I float
-mebership I while
-address I assign
- code I conversion
-naed I number
- qualified
-- siplerep

-- unary I coep-=ep
- parenthesized

proe"ue AS.,_EXPl (tn in out TREE, v: in TREE);
function ASECPI (t in TREE) Zeturn TREE I binary I range
vFSrSE2 (t in out TREE: vt in TREE)I
fution A _EXM2 (t: in TREE) return ; -- range--binary

oeDU ASWC0 (tt In out TREE; vI bn

TRZZ);
function AS._E.CONSTRAIN1E (ts in TREE) e TREE ; - allocator
proceduZe MSEEPS (t: in out TREE$ vs in TREE);
function ASEX_S (ts in TREE) return TREE : - indexed

- attributecall
procere _ AB.yOID (t In omut TREES v: in; TREE)
fution AS_ VOID (ts in TREE) re TREE r - eturn

- cond-clause
-in I ilkout I eXit
-out I recordrep

. ;.-,- -
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pecduz.e ABIRXC...ASOC_ (t:s in out TRE; vs in TREE);
fui AB_..ERICASSOC.S (ts in TREE) return TREE ; - instantiation
rour AS_GMERICEADRR (t: in out TREEp v: in TREE);

functos AI.CGRXICEAD (t: in TREE) return TREE ; - generic
proidure AS_GDMIE C_PARAM-S (ts in out TREE; vs in TREE);
futo AS_GMERIC...PARMS (t: i TREE) return TREE ; - generic
pioomure ASIE.DER (ts in out TREE; vt in TREE);
function ASOEADEM (t: in TREE) return TREE ; - subpr ora.body

- subprograu.decl
pruosaze ASID (ts In out TREEZ; vt in TIREE);
func AS ._ID (tt in TREE) return TREE ; - for I attribu..te

Slabeled I reverse
msed-stam

-- pkagbody
-package..decl

subtype

-variant..paft

-type I task_decl
- pragom

pmoduze ASID_S (t: in out TREE; va in TREE);
funi AS_ID_ (t: in TREE) turn TRE ; - exception

-nuMber I constant
- in I inout
- ot I var

Ywcedur AS_.TZ1LS (ts in out TREE; v: in TREE);
funtion AS_ITMCS (tt in TREE) return TR - block
procedure ASITERATION (ts in out TREE; v: in TREE);
funtion ASITERATION (ts in TREE) return TREE ; - loop
pwoosare ASM ERWHIP_OP (t in out TREEI vt In TRES);
fsintinn ASIDIBERSHIP_OP (ti in TREE) return TREE I - membership
p u AS.JUME (tt in out TREE; vt In TREE);
funtion AS_NME (t: in TREE) return TREE ; - accept I address

- procedurecall
-all I coop-rep

- onstrained
- indejd
- instantiation-goto I index

--qualified
--select~ed

-rename I slice
- ariant_.pazt
-- attrbute_call

- entry-.call
-rooord,.rep

- allocator
- assign
-attribute I code

- onversion
- function call

- imlt-rep
-subunit
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mmCwe AJS-XWI_3 (to in cat TW; vs in TRIM)j
function M._.LjVES (tz in TREE) return TREE , - abort

-ilh I use
moare AS-JWVOID (to in out TREE; vt in TRIM);
f'Jton M.JWIVLQID (t: in TEE) return TREE ; - raise I exit
1omare AsOBEC?_DPF (to in out TREE; vs in TREE);
funati. A.ODjECPDEF (to in TREE) return TREE ; constant I vax
pzoomrem ASPACKLZDEF (t: in out TREE; vs in TREE),
flnmttCi ASPACAGP-DE (tz in TRM) return T ; - package_ cl
pxeoare AS.PARNKASSOC_.S (t In out TRIM; vi in )j
fVEtAoU ASPIRA)LSOCS (t, in TRIM) return TR I - p Omeuzecall

- entry-call
- pragme
-- ~f.ctIoO.call

It=CGuXe ASPARaLS (to in out TREE; vt in TREE);
fumction ASPARAMS (tt in TREE) return TREE - procedurefunlqction

- entry I accept
NVoOeDure ._.PRAGLk3S (tt in out TREEZ; v in TREE);
funtion AS_PRAQGNS (t: in TREE) return TREE ; - comp-unit
prom0nre, A8RANGE (tt in out TREE; V: in TREE);
fution AS_.RAN (t: in TREE) return TREE - integer

proo _e RANGF.VOID (t: in out TREE; vs in TREE),
funtin AS-RANGE_-VOID (t :in TREE) return TREE ; - fix"d I float
pZOO&E ASRECORD (t: in out TREE; vt In TREE);
funtion ASRECORD (tt in TREE) return TREE : - variant
proo&aE M_SZC CLSE_...S (t: in out TREEI vt in TREE),
function A$_SZL C1A3.S (to in TREE) return TREE ; - select
pzomedre AS_5TM (to in out TREE; V: in TREE);
fsuntlon ASST1 (t in TREE) return TREE - labeled

- named_.st
Procedure ASSTLS (to in out TREZ; vt in TREE);
funtion ASSBTS (t: in TREE) return TREE ; - alternative

- cond_clause
- loop I select

- accept I blockI procure AS-ST4-Sl (to in out TREEj vi in TREE);
ctio AS_'ST14.3S (t: in TREE) return TREE - cond-entry

-- timdd_entry
prosdue AS_STMS2 (to in out TREE; vs in TREE);
fution AS_STILS2 (t: in TREE) return TREE ; - cond6_entry

- imed-entry
9wooare AS._SUBAPRDGRXLDEV (to in out TREE: vt in TREE),
functn ASSUPROGRMLDE (to in TREE) return TREE s - subproqraudecl
prooame ASSUBUNITAOD (to in out TREEj vs in TREE);
bOmition ASSUDUNIT_BODY (ts in TREE ) return TREE ; - subunit
procefure AS_TASK_WDE (to in out TREE; vt in TREIE)
funtocon AS_TAML.D (to in TREE) return TREE I - taskdecl
prooedure ASTYP&ERAM (to in out TRIM; vs in TREE),
functison M.T!PE_ ANZ (tt in TREE) return TR p- Membership
VCoo0"We MsTTESPC (t i in out TREE, vt in TREE),
fintim ASTTP4.SPEC (tt in TRIM) return T : - constant I in

- in_out I out
-var
type

prsdZAS WZT_.BoYM (to in out TRIEE v: in TRM);
futin AS...WIITnOD (to in TREE) return TR j - ccmp.unit
Voare MI_VARWIkHS (to in cut TREE; Vt in T)j
fstkn SB_VARIANTS (ts in TE) riturn T E - variant-part

IJ



Definition of the Diana Operations Section 4.8 / Page 143

- Lexical Attributes.

procedure LX._COUDITS (t: in out TREEs v: Co.mments)
function LLUMENTS (t : in TREE) return coments ,
procedure LXDEFAJLT (t: in out TREE; vs Boolean);
function LXDEFAUE. (t: in TREE) return Boolean;
procedure LXJIUMREP (t: in out TREE; v: nusber_rep);
function LX_.NUHRP (t : in TREE) return number_rep
procedure LXPREFIX (t: in out TREE; v: Boolean);
function LXPREFIX (ti in TREE) return Boolean;
procedure LXSWPOS (t: in out TREE; v: source_posit.ton);
function LXSRCFOS (t: in TREE) return sourceposition s
procedure LXSYMMP (t: in out TREE; v symbol-rep);
function LXSYMREP (t: in TREE) return symbol-rep j

- Semantic Attributes.

procedure SHACTOALDELTA (tr in out TREE; v: Float);
function SACTUAL_DELMTA (t: in TREE) return Float;
procedure SILADDRESS (t: in out TREE vt in TREE);

- vI EXPVOID
funtion SIADORESS (t: in TREE) return TREE ;

- returns EXP_VOID
SUBASETYPE (t: in out TREE; vt in TREE);

- v: TYPESPEC
function SLBASETYPE (t: in TREE) return TREE ;

- returns TYPESPEC
Yzo S14BITS (t: in out TREES vt Integer);
function SkBITS (t: in TREE) return integer;
Procedure SKBODY (t: in out TREE; v: in TREE);

- V: SUBP_ODY...DESC,
-PACK_BODYDESC,

- BLOCKSTUB_VOID
fumctio SILBODY (ts in TREE) return TREE

- returns SUBPBODYDESC,
- PAC..DODY.DE-SC.

- BWOCK_STUB_VOID
procedure SLCOMP_SPEC (t: in out TREE; vs in
Tm);
function SHLCOM-SPEC (t: in TREE) return TREE
procedure SICONSTRAnM (t: in out TREE; vt in TREE)s

- vs CONSTRAINT
fuction 31LCONSTRAINT (t: in TRE) return TREE ;

- returns CONSTRAINT
procedure S1LCONTROLLED (t, in out TREE; V: Boolean);
function S3_COW1MLIZD (t: in TREE) return Boolean ;
procedure SKLDEC[LS (t: in out TRM; vs in TREE); - V: DECL_S
function SKDECLS (t: in TREE) return TREE ; - returns DECL_..S
procdre SILPE (ti in out TREE; vi in TREE),

- vs DEPOCCTRREMM
fution S1LDWK (t: in TREE) Xtuzn TREE

-returns DEFOCCURRDCE
procedure SKLDISCRIMIWtATS (t: in out TREE; v in TREE)I - vt VARS
function SLDISCRIMIWANTS (t: in TRE) return TREE i - returns VAIS
procedure SLEZ)MZTIOMDEF (t: in out TREE; V: in TREE);

- v t ENCWTIOIODE
function SILE00EPTOMW.DE (t:i TE) return Tm reun 0LE- returns E TICILDaF
procefue SlEXTYPE (t: in out TREE; V: in TRE); - v, TTPE.SPNC
fSintion 3LEW".TTE (tt in TREE) return Tm ; - returns TYPILSPEC
procedure S4FIRST (tt in out TmR; ve in Tm); - vs DZFOCCURR
function SKLFZRST (t% in TREE) return TREE; - returns DE._OCCURa
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procedureb SILGEERIC..PAPMALS( ts in out TREE; vi In TREE);
- v i G~EMC...PARAIL3

funtion SIL-IEfIC-PARANCS( t: In TREE) return TREICI
- returns GENRIC-PARM&.Proedr m m mhT (t: in out TREEP viinREi - .. yI

function SICINIT_..EX (tt In TREE) return TREEM returns ECP.YOID
pRocedure S11IOCATION (t: In out TREE; vi in TREE); - vs LO)CATIOM
fuction SIC WCTIOff (t2z in TE) return TRE - returns WCATION
Procedure SIU1001MILIZDPARAK-S (t sTREE; v: In TREEC); - vt M(-S,
fuatInM SIUIOR~kLXZED-PARIA-S (ts in TREEI) return TREE ;- returns MW_..S
poed6Ur. SILOWDLEF (t: In out TREE; v: in TRE; - vt OB3ZCT.DEV
fution SICODJ..D (ts in TREE) return TREE ; returns ODJECT_.DEF
proosdrm S1COBJTYPE (t: In out TREE; v:iIn TREE); - v: TYPE...SPEC
function SICODJTYPE (t: In TREE) return TREE ; - returns TYPE-SPEC
Procedure SILOPERtATOR (tt In out TREE; vt operator);
function SILOPERIMR (t: in TREE) return operator ;
proedure 5ILPACING (t s In out TREE; v: Booleans);
function SILPAOCING (t: In TREE) return Boolean
procedure SK-POS (tt in out TREE; v: Integer),
funtion StLPOS (tt in TREE) return Integer ;
procedum SK..REP (tt in out TREE; v: Integer);
function SILFm (t: in TE) return Integer )
proced~Ure SULSIZE (t: in out TREE; v: in TREE);j - vs M(FV.OID
runctio SILSIZE (t: in TE) return TREE ; - returns MIRV.OID
procedure SKLSPEC (tr in out TREE; v: in TREE);

-vi HERDER

-PACKSPEC

funtioni SLSDEC (t a TREE) return TREE ;-returns HERDER
- GENERC_)MDR,

- PACK-SPECprocedure S)LSTM (t: in out TREE; v- in TREE); - v: STH, LOOP
function SILSTM (tt in TREE) return TREE ; -returns 5114, LOOP
procedure SILSTORAGESIZE (t: In out TREE; vs In TREE); - v: mX_VOID
function SILSTORAGESIZE (t: In TREE) return TREE ; - returns EXP.YOID
procedure* SILSTUE (t: In out TREE; vt in TREE);
function SM51T (ts :in TREE) return TREE ;

proedre KYPZ-SEC (t:I out TREE; vi in TREE), - v Tn*SPEC
VZO84lm S-TYIESTRICT (t:in utTREE) vi In TREE); -v YZSE

ftoolonSKYPESTRCT t: n TEE)return TREE ; -reun YESE
Pmomdr* K-A= tsIn utTREE; vi value);

function SILVALCIE st i return value

-Code Attribute.

procedure C(_IPLSIZE (t: in out TREE; vt Integer);
function *._INPL.SIzE (tt in TREE) return Integer

private

-To be filled in...

ead Diana;
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CHAPTER 5

EXTERNAL REPRESENTATION OF DIANA

This chapter describes how a DIANA tree may be represented in ASCII for

communication between different computing systems. The presentation Is infor-

mal; for a detailed discussion of the issues involved. see Chapter 4 of the IOL
Reference Manual [9). Although any conforming implementation of DIANA Is
required to be able to map to and/or from this external representation of DIANA.

other Internal representations are permitted. Indeed, we expect these latter
(non-conforming) representations to be the preferred means of communication

between tools on a single computing system. The standard external form is

defined to assist debugging and to allow communicaWon between computing
systems. not as the typical communication between trols.

The design of this external representation was guided by three principles:

* There must be a relatively straightforward way of deducing the external
representation from the DIANA specification of Chapter 2.

e The external representation must not unduly constrain the Implemen-
tation options outlined In Chapter 6.

e It must be possible to map between the external representation and a

variety of Internal representations in a reasonably efficient manner.

We expect that each installation that wishes to communicate with others via an
ASCII representation of DIANA will create a reader/writer utility to map between
the external representation and whatever internal representations are In use at

the Installation.

The external representation Is described in Figure 5-1 on page 146. It is

the usual sort of recursive construction. Note that square brackets I... I sur-

round the attributes of a node and angle brackets <...> surround Items of a

sequence.

We illustrate the external representation using the IDL example from Section

1. 4. 1. repeated here as Figure 5-2 on page 147. From this example. nodes

plus. leaf. and tree might be represented externally as follows:

plus - a node with o attrlbutes

leaf C nam "A"; arc represent. ionof-source..posilon ] - leaf for A

tree E left leaf (naf "A"]; right leaf (nama ""DI op plus] -A + B

L L - _LI
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DEFINITON OF XTERwAL DI~

node represented by the name of Its type. followed by "'. followed by
the representation of its attributes (separated by semicolons).
followed by J'. If there are no attributes, the Y ]" may be
omitted.

attribute represented by the name of the attribute, followed by the
representation of the value of the attribute.

comment start with double hyphen (--.): terminate with the end of the
line.

RPREqSBIAllON OF BASIC I V

Doolean represented by the tokens TRUE and FALSE.

integer represented by a sequence of digits with an optional sign. The
value Is Interpreted as being a decimal Integer.

Rational represented as a decimal or based number (In the ADA sense
and using the ADA syntax). or as the quotient of two unsigned
Integers, decimal numbers. or based numbers.

String represented as the sequence of ASCII characters representing
the value of the string, surrounded by double quotes. Any
quotes within the string must be doubled. The nonprinting ASCIIcharacters are represented as In ADA.

Sequence represented by a sequence of representations for individual
values of the sequence, separated by spaces. and surrounded
by angle brackets (' ... )').

Private types are provided by the structure definition. For our purposes.
the external representations of the private types used In DIANA are provided
in a refinement of the DIANA abstract structure.

Spaces are not significant except to separate tokens.

Case distinctions between Identifiers (such as node names) are significant.
as In IDL.

Figure 5-1: External DwAN Form

.L ............... d ..... |
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Note that no representation is shown for the value of the attribute arc, which is

the private type SourcePosition: this point Is addressed further below. Note

also that. because these examples show external DIANA which is expected to be

ASCII text. the usual typographic conventions for node names and attributes are

not followed in them.

Structure ExpressionTree Root CP Is

- First we define a private type.

Type Source...osition;

- Next we define the notion of an expr esion, EXP.

CCW ::- lea I tree;

Next we define the nodes and their attributes.

tzee -) opt opEwoR, lefts CXP, right: CCW
tree -, arc: source.Position ;
leaf name: String ;
la - arc: Source.)1osition ;

- Finally we define the notion of an OPERATOR as the
- union of a collection of nodesi the null -3 productions
- are needed to define the node types since
- node type names are never Implicitly defined.

OPMVOR :- plus I mas I times I divide,

plus - a 3nu5 tiin5 dividet

Figure 5-2: Example ExpreaslonTree of IOL Notation

The external representation also provides a means for sharing attribute values

between nodes. This fact does not necessarily imply that the corresponding
Internal representation is shared: for some attributes, the sharing in the external

representation can be viewed simply as a technique for compressing space.

K4
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However. any attribute value which is Inherently shared internallyI must be

represented externally In shared form. All of the tree-valued attributes of DIANA

fall In this category.

In order for an attribute value to be shared In the external representation.

one occurrence of the value must be labeled and all other occurrences must

refer to that label. Any attribute value may be labeled. Including node-valued

attributes. The labeled occurrence of the value Is represented in a normal way.

except that It Is preceded by a label Identifier and a colon (':). Each label

reference consists of the label Identifier followed by a caret (" ). rather than

the usual representation of the attribute value. A label identifier is a sequence

of letters, digits. and Isolated underscores starting. with a letter: case distinc-

tions among the letters are significant. For example. the tree for A+A could be

represented In any one of the following four ways (among others):

tree C left leaf nam "A"]; op plus, right leaf ( nam "A" I I

tree E left leaf E name y: "A" 1; op plus; right leaf E tim r I I

tree E left Xtleaf [ nem &"] op plus; right x

tree C left x^; op plus; right *:1eaf [ n-me "A" ] ]

Additionally. a node-valued attribute can be written free standing without being

nested within some other node. For example, a fifth representation for the

preceding example Is

tree E left xA; op plus, right x
x: leaf C na "A" ]

Note that In these examples we have consistently avoided giving a represen-

tation for the source position attributes. Recall that source position is a private

type whose representation must be supplied as part of the structure definition or

a refinement of the structure. One way to represent the source position Is to

use the representation defined in the example refinement in Section 1.4.3 on

page 28. repeated here for convenience In Figure 5-3 on page 149. Using this

external form. a source position might be represented using the node structure:

leafE nnm "A*;
are uource.position

C file -4urer)teet.ada" line 3 dhar 15 ]]

7he plwaee hmeen e dw Itere' Iies owWny Mes. We beieve "ht the pwe i
the esewm ot the s*atuaon where it is omovene to ye sharmg in te derna r.preoedatl . For
a mp dkweino of thi Mue, m the 0. I Reerew ManiM.

__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ .
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Structure Anothex'ree Aenams ipression r e Is

- fixt the internal representation of SourcePoeition

For Source.Yoition Use Sourcejackae

next the external representation of Source ot ttion
- is given by a new node type, sotaroexionmalX-rp

For SourcePoition Use External ource..termaXirs

- finally, we define the node type suae..teaal-MIep

souroexternaZ...Re -) file : String,
line : Integer,
char t Integer;

End

Figure 5-3: Example AnotherTree of IDL

Alternatively, a specification could define the source position to be represented

externally as a string:

leaf E nam "A"i arc "tuserteot.ada/15/3"]

Each of these particular external representations in some sense contains the

same Information in that either one could be mapped to the same Internal

representation by the reader utility. Each Installation must establish conventions

for communicating between the reader/writer utility and its user-supplied

packages to allow such user-supplied types to be mapped to and from the

external form. Of course, other representations for the source position attribute

are possible, many containing quite different Information. A more complete

treatment of the external representation of private types may be found In the IOL

Reference Manual.

The refinement of the DA structure defines the external representation for

four private types. s.ymbol_.rep. number_rep. operator. and value. Types

symbol~jep. and number.ep are represented as strings externally, and operator

is represented by an enumeration type.

The type symbol-rep Is a string that contains the source representation of

Idenifiers. The type symbol.rep also represents character literais. which are

distinguished from other identifiers by surrounding the character with single quote

-----
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marks. as In ADA. An Implementation must decide how to treat upper and lower

case characters: It can normalize the representations of identifiers to use the

basic character set. all lower case letters changed to upper case. or it can

preserve the case used In the source, so that source can be reconstructed

accurately.

The type numberlep is a string that has the source representation of

numeric literals. An Implementation may choose to normalize numericJliterala by
removing underscores.

The type operator is represented by an enumeration type. In the refined

DMA specification a minimum enumeration set is given: it may be expanded by

an implementation to include any other built-In subprograms.

The typo value Is represented as an integer or rational type if a value has

been computed. or with a distinguishing node for the cases where the value has

not yet been computed. A representation for ADA strings and arrays is also

provided: a sequence of values.

A complete external representation starts with an Indication of the root node

of the corresponding structure. followed by a sequence of zero or more

representations of nodes. The root indication can be either a label referencing

a node elsewhere in the external representation or the root node Itself. Since

the representation of subnodes can be contained within the representation of the

parent node, it is possible for the entire external representation to be given by
the root (a compilation node In DIANA). It is permissible. on the other hand. to

represent the DIANA tree in a flat form. where node-valued attributes are always

represented by labels referencing non-nested representations of the nodes.

Following are two examples. both In flat form. in each case a short ADA

fragment is followed by the external form of the DW4A. Note that these ex-

amples. like the figures in Chapter 3. are Incomplete In that some attributes are

omitted for expository convenience.
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-- From package STANDARD (sort of)

t"p 8019M Is (FbLSE, TRUJE) :

"0p INTEOER IS rang. MINJINT MAX!-NT:

P00: type I asId PD1
as..var-.s P02'
as...type-.spec PO3W I

POI: type-id ( Ix...symrep *BOOLEAN*
smjype..spec PO3W

P02: var-.s [ asjllst ( ), I
P03: enum-literai-s [ as-list < P04* P05*

sm-sze void I
P04: *num-id ( ixsymrep "FALSE"

sm...obl-type, P03W
sm-.rop 0:
sm...pos 0 1

P05: *num-id [ ix,_symrep 'TRUE'
sm...obitype POW
sm...rep I
sm...pos 1I

POO: type [ asId POO'
as_var-s P07'
as...typ-spec P09' I

PD7: vars3 [ as-list I
P08: type-jd I ix~symrep *INTEGER'

sm-jype..spec P09 IIP09: integer f as...range POWO'
sm...type...struct P09'
sm...size void J

P0D10,range ( as..expl PD1ll'
as....xp2 POW1:
sm-base..type P09' I

P0 11: used...oblect-d [ Ix_.symrep *MIN-JNT"
sm...Afn mj -- def for MIN-INT
sm...vaiue xxx - def for MIN-JNT
sm....xp...type P09' J

P012: us.&..objec-d ( Ix..symrep "MAX-JNT'
sm...defn )= : -- del for MAXJINT
am-value aXX : -- dof for MAX-INr
sm....XPjype P09
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package REPORT Is
function EQUAL CX. Y INTEGER )return SOOLEAN:

end REPORT:

A01: comp..unit ( as..pragma-.s A02^
as-.context A03^

as-unlt-body A04' I
A02: pragma-.s IasjlIst ' I
A03: context I as-list 4 ) I
A04: package-dccl i as-jd A05^:

aspackage.def A06'I
A05: package-id I lx-.symrep 'REPORT'

sm-.spec A06'
am-body void
am-..address void I

AGO: package..spec t as...decfs 1 A08'
as_deci~s2 A07' I

A07: as-decl-a Cas-list < '

AO6: as..decls I 83-11t < A09' > I
A09: subprogram-.decl I as..deslgnator Al0^

as..header AlP;
as..subprogram...def void I

A10: functIon-id C x..symrep *EQUAL"
sm...spec Al I:
am-body void
sm-location void I

All: function I as-param-s A12'
asname A18'

A12: param-s asiat c AW I
A13: In ( asjd.. A14

as_name A17*
asexp..old void I

A14: Id-s I asilast ( A15' AIV
AIS: ln-jd I lx..symnrep WX

sm~jnit~exp void
sm...obLtYPO P09' I

A1S: ln-id Clx..symrep 'Y*
3m....niLexp void
sm-.obLtYPe PD9' I

Al1': used .namejid I x...symrep 'INTEGER'
am...defn P08' :

AlS: usedname~jd Clx....ymrep 'BOOLEAN'
am_defn PDP II

- - - -
-

- - -- 
-A 

7



Implementation Options Page 153

CHAPTER 6
IMPLEMENTATION OPTIONS

One obvious Implementation of a compiler using the DMA Intermediate form Is
to produce the complete DIMA abstract tree as the result of semantic analysis.
representing each abstract tree node by a variant record on a heap and using

pointers to Implement those attributes that reference other nodes. In some
applications such an implementation may be completely appropriate: in others. it
may not. The purpose of this chapter is to Illustrate some other implementation

options that are possible. We cannot, of course, describe all conceivable

options: our goal Is merely to describe enough of them to make the point that
the obvious Implementation is not the only possible one.

At the risk of repeating the point once too often, we stress that DINA is

representation independent. Possible Implementations Include any of the schemes
mentioned below, many others, and combinations of them. Each possibility

makes good sense in certain applications or for certain implementation environ-

ments.

A Corout/ne Organization: The Front and Back Ends of the compiler might be
organized in a coroutlne manner. in which the Front End produces a portion of

the intermediate form after which the Back End produces code for this portion
and then discards the unneeded pieces of its input. In this organization there

would never be a DIA4A representation of the entire compilation unit at any one
time. instead, only a consistent DIANA subtree for the portion being communi-

cated Is needed. Although this type of organization may limit the amount of
optimization that can be done. It is often useful and Is completely consistent with
the Opm model. To use this style of compiler organization, the user needs

only to ensure that the values of all of the attributes for the portion of the tree

being communicated are defined properly.

Non-Tree Sltrutre: Many simple compilers use a linear representation. such
as Polish postfix. for the Intermediate form. Such a representation has the
advantage of simplifying certain tree traversals, and Indeed may be obtained from

the DMA tree by Just such a traversal. Such representations may also have an

advantage In that they are more efficient where storage Is limited or paging
overheads are high. Again, such representations are fully within the spirit of
DImNA. Where DINA requires a (conceptual) pointer. It may be replaced by an

. . .. . . . • " - . . .. w, . .. .s.
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index into the linear representation.

DAG Repreaontatlon: The structural attributes of OIANA define a tree cor-

responding to the abstract syntax of ADA. So long as the processing algorithms

do not require distinct copies of identical subtrees. such subtrees may be

shared to save memory space. The resulting storage structure is a directed

acyclic graph. or OAG. This observation is especially Important with respect to

leaves of the tree and to certain attribute values. Typically, for example, about

half the nodes In a tree are leaves: thus, substantial space can be saved by

using a single instance of a used_name_ld node to represent all of Its logical

occurrences in the DIANA tree. Similarly, occurrences of the attributes that

represent literal values and the string name of identifiers In the program can be

pooled.

Afrlbutes Outside the Nodes: There Is no need for the attributes of a node to

be stored contiguously. As there are many variations on this theme. we

Illustrate just one here. Suppose that the general storage representation to be

used involves storing each node as a record In the heap and using pointers to

encode the structural attributes. Because there are a number of different

attributes associated with each node type. one may not wish to store these

attributes directly in the records representing the nodes. Instead. one might

define a number of vectors (of records) where the records In each vector are

tailored to the various groupings of attribute types In DIANA nodes. Using this

scheme, the nodes themselves need contain only an index Into the relevant

vector. Such a scheme has the advantage of making nodes of uniform size as

well as facilitating the sharing of Identical sets of attribute values.

Generi Set of AMrlbutea: All nodes can be Implemented with a general set of

attributes, and all other attributes could be kept outside the nodes. A Boolean-

valued attribute in the node can then be used to Indicate that an attribute outside

the node exists. This method Is useful for attributes that may be on several

nodes but Is generally void (such as Ix-comments).

Nodee Ialede Ober Node: Although an attribute of a node may reference

another node. there is no Implication that a pointer Is required: the referenced

node may be directly included in the storage structure of the outer node so long

as the processing permits this. This approach Is especially important where the

referenced node has no attributes. For example. the bloay node of DIANA has

an attribute called aa,,blnaryop which references one of a number of possible

nodes-all of which have no attributes. In effect. this attribute's value Is an

-....... ..... 
I

i
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enumeration type and can be implemented as a small integer stored in the
binary node's storage area.

Copiee of Attribute Values: An Implementation may choose to copy the value

of an attribute. e.g.. If the attribute value Is stored in another compilation unit.
The implementation must. of course, preserve the semantics of the equality test

and assignment operations for attribute values, as discussed in Section 3.9.

Separate Symbol Tables. The collection of nodes types which constitute
DEFOCCURRENCEs are effectively a symbol table. This presentation discusses

such nodes as If they were part of the tree. but an Implementation may elect to
collect these nodes together into a compact structure, physically separate from

the tree.

I

.. ... .. 1 . J
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APPENDIX I

THE PREDEFINED ENVIRONMENT

The semantics of ADA provide that an ADA program may reference certain

entities that are not defined within the program Itself. There are four cases:

universal types These cannot be mentioned by the programmer but are
referenced only implicitly. For example, they are
referenced in describing the type of a number. or in
describing the result of certain ADA attributes.

predefined language environment
This Is essentially the package STANDARD.

attributes These include both those predefined by ADA as well as
those defined by the implementation.

pragmas These Include both those predefined by ADA as well as
those defined by the implementation.

In the following four sections of this appendix we describe how the DIANA form for
each of these Is derived.

I.1. Univeml Types

The notion of universal types Is used In ADA to associate a type with a
number declaration and to define the result type of certain attributes. To

represent these notions. DIANA extends the class TYPESPEC by three nodes:

TYP...SPEC un~erLInteger I
univsral res I

unlvrrmltmd;

These nodes. which have no attributes, can be referenced only by semantic

attributes of a program: they never appear directly in the tree. The type
unIvvraIl_rea covers both fixed and float types In cases where they cannot be

distinguished. as in number declarations.

1. 2. The Predned Language Environment

The predeflned environment of ADA Is specified by the package STANDARD.
given In Appendix C of the ADA LRM. The DIANA tree for It may be obtained by

simply compiling this package with a Front End. though the compilation must be

~w-I

- ~ - - - -l
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done in a special mode since some attributes must be determined by special

rules. In a few cases (such as cdjmpl_aize for numeric types). the attributes

must be explicitly assigned; they cannot be derived from any further environment

Inquiry. Note that this operation need be done only once; the DIANA form can

then be preloaded into all programs that process the DIA form of ADA.

Since the Front End and Back End must be able to agree on the operator

type (see Section 3. 8. 5) and the Front End must be able to communicate this
Information to the Back End. the two must agree on how the representation of

package STANDARD is to be augmented to include this information.

1.3. Attbutes

Appendix A of the ADA LRM describes a set of predefined language

attributes: these may be extended by an implementation, see LRM Section

4. 1.4. DIANA requires a unique definition point for each of these attribute

Identifiers. DIANA does not define additional information for checking that at-

tributes are used correctly: the design of this information is a choice for each

implementation. We also need a string representation of the attribute name (to

reconstruct the source, for example). The resulting structure looks like:

0EV :, :attrid;

attr Id => 1_ymrp wmbolrep;

The complete definition of an ADA program requires nodes for all the Implemen-

• tation supported attributes; these are easily constructed. Using the external form

of 0IANA defined In Chapter 5. for example. two of the predefined attribute nodes

are:

att_i ( lx.ywrep "BITS" ]

attrid [ lxaywmep "SHlML"

1. 4. Pragmas

Appendix B of the ADA LRM lists the language-defined pragmas for ADA. An

Implementation Is free to expand this set by defining additional pragmas. DIN~A

provides a definition point for the identifiers needed to represent the complete set

of pragmas known ;o an Implementation. The OiW.JA representation of these Is

similar to Its representation of attributes described above: In the predefined

environment. diana provides the information necessary to Identify the pragma
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names and their names of its arguments. In addition, where the possible values

of a pragma's arguments are named (e.g.. for pragma UST the values 'ON*

and 'OFF'). a defining occurrence for the names of the values Is also provided.

The defining occurrence for an Identifier used in conjunction with a pragma in

D ANA has the following structure:

OEFID ::: pragma jd I ARGUMENT;

pragma Id :3 a..1a Seq Of ARGUMENT;

ARGUMENT :: a argumentjid

prgma Id =I lxymrep : wmboLep ;

argumentid =) Ixeymrop : Wmbolrep ;

A list of argument names is introduced for those situations where multiple

argument names are possible, as for example for the various check names for
the SUPPRESS pragma. Note that the list is also used to introduce the names of

the values the pragma's arguments may take.

As with the attributes, an Implementation must supply a set of nodes for the

various language-defined and Implementation-defined pragmas. Here are two ex-
amples In external DIANA form:

praqma.id [ lxzywep "LIST"; as_list tLiA L2^,]
Li: argumenti [ lxE x.symep on" I
L2: ar gaent-id C lxwsmep "OFF"]

PragmA.id E lxzyemp "PRIORIT" ]

All checks concerning the correct use of z. -sragma are assumed to have

been done during semantic analysis, and performing these checks will neces-

sarily require knowledge of the semantics the pragma that DANA cannot supply.

The predefined environment merely provides the defining occurrences for the

identifiers used.

For language-defined pragmas. DLANA requires that the pragma subtree

represents a correct pragma: that Is. for each pragma the proper semantic

checking has been done. For pragmas not supported by an Implementation

01ANA requires that the structure of the pragma subtree is present and contains

the lexical information but does not require that the semantic attributes are

correct. In most cases this requirement means the pragma name and argument

names are represented by used_named nodes whose am_detn attribute Is void.
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There are several situations where the arguments to a pragma are types or

objects defined by the user. The pragma node has a structural attribute which

represents the list of actual arguments to a particular pragma: the list in the

pragmaid corresponds in a sense to formal parameters. Figure i-1 shows the

tree for the fragment

tWye C is azr-y(1..10) of CHRACTER,;

pragM PAM( C):

pragma

used name id paramassoc s

Sm defn

used name id

sm-defa
pragma_id

*PACK"

typeid for C

Figure i-1: Example of a Pragma
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APPENDIX II

THE ABSTRACT PARSE TREE

AmA's Formal Definition assumes a parse tree that is structurally quite similar

to the DIANA tree described In Chapter 2. This appendix shows the IOL

representation for this parse tree.

Following are the principal differences between the parse tree and the DIANA

tree:

" The parse tree has no semantic or code attributes.

" The parse tree has apply nodes Instead of function call. procedure
call. entry call. attribute call. Indexed, conversion, and slice nodes.

IDL provides a means for deriving a structure from a previously defined

structure by describing the new structure in terms of changes or edits to the old

structure. This form of structure declaration has the following basic form:
IJ

Structure newstructure Root root
V7L oldcstructure Is

- "edits" to old structure
End

There are two sorts of edits: additions to the original structure and deletions
from It. Additions are indicated by simply Including the additions within the

structure declaration as normal IOL definitions. Deletions are indicated by

clauses beginning with the keyword Without. followed by a list of Items to be

deleted from the original structure in forming the new one. Five kinds of

deletions can be made:

a Deletion of a particular element from the right side of a class defini-
tion Is Indicated by an entry of the form

class-nam : - elementw,ni

Here an *element' can be either a class or a node. Here is an
example:

-old
EM tm t-foo I leaf I tree

- without clause
Without IM- I I- leaf

E a- foo I tree

a Deletion of a particular attribute from the right side of a node defini-
tion Is indicated by a line of the form
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nodejme -). attribute_nam

Here Is an example:

- old
t AM), left:WOP, 0:0p,, rightzW

- withouat clause
Without tree -), left

tr"e -d 0I9dP, rigfht3:

* Deletion of an entire class definition Is indicated by giving just the

class name followed by ::=' as in

Io 8t-

- Deletion of an entire node definition is indicated by giving just the
node name followed by =) as in

too -,

* Deletion of an attribute name Is Indicated by writing

* -uftoo

The attribute is thereby deleted from all nodes which named it.

Using this notation, we now derive from Diana the structure ParseTree. with

root COMPILATION.

Li-
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Sbvur. PerssTree Root COMPILATION From Diane ts

- PasTree has APPLY nodes Instead of function call, proceurw call.
- o" cal. atbibt.t cal, Indexued, conversion, and slime nodes.

Wth*Au
functionce amzi)
preoedure.ca -'.
entry-9m11 a>,
attrlbuts.ca U),
Indened =)I.

conversion 231

NAME :: attribute -call.
NAME :: lunatic -Call,
NAME ::z slim5,
NAME ::=indexed,
EXP ::conversion,

STM:: procedure-l.
STM :2 ntjy cll;

- additions tor' APPLY

STa ::= NAME;
NAME :2apply;

aply ~asnanWe : NAME,
ix~scpos sourcaepoaltion.
IN-coflwoiif comments,
as..pwn.smaoc-.s OENERALA860C;

GENERAL ASSOCS : general esoc_s;
genwalssoc _a 6 esJa Seq Of GENERALASSOC.

Ix..arcpos s ource-Poition,
I-commnents :comments,

GENERAL_.ASSOC :: ACTUAL I RANGE I named;

- Pareree has only one kind of USEDJlD

Withut

used Jd : =ued.med
d'OJ : ) uasd..pblecd,

USDJ: ued~yjd_)

-additions for USEDJO0

USEDJ :) :: ured Id;
usesdd a 3. .wsopos : ao'Osoelto

Ix..comn"e o omments,
Ix-y"Prep x ymnIorep;.

PreTree h" only one Ind of USEDOP

used..op23
stulngijitsr 21
used WIn o

-additions tr USEDOP

DEUFGA NATOR : :2 aedtlg
ijaed-$"n 23) 14..w'oo : our"-poemton.

Ia~ommena :comments.
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- Prs*Tre. has no awnio attrbute

* ) m-ecuodelta.
* umeidrem,

, 2) m..bes...y.

* n) oompapec.,
* 2 f_ponsraint.

*ii, samoontmlled,

* )um..dicrimirnant,

812) m e3p type,
*2)aftgwt_ wm

SP) nIR-niteup.

* 2 g_flwmlZtdOmp,*,
*s m_normellzed~peram_.,s.
* 2) bjdet,

=3, am..obltype.
*2), sa opeator.
*2), wa~mng,

* 2 areoordapec,
*i 2) 66rep.

* ) metm.

* smatub,
*2) atykwespec

ParaTree has no cod, attributes

* Z),Uy~

End Ip i
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APPENDIX IN
RECONSTRUCTING THE SOURCE

One of the basic principles of DIANA is that the structure of the original

source program is to be retained In the DIANA representation. DIANA has been

designed so that the front end of an ADA compiler (or any other tool that
produces DIANA from ADA) can Include In the DIANA sufficient information so that.

to a first approximation at least. the original ADA text can be recreated from the

DIA. This ability enables an APSE tool such as a pretty-printer to work directly

from the DIANA form. or a syntax-directed editor to operate directly on It. The

DIANA form can stand alone without reference to the original source: some APSE

designs might elect to discard the source and keep lust the DIANA form, using a

pretty-printer when a source listing is required.

DIMA'S design deliberately Includes certain normalizaions of source

programs. These are omissions from the DIANA of enough Information to.

reconstruct the original program exactly, and the effect of omitting these data is

that the reconstructed source program is of necessity normalized in certain ways.

(The normalizations are discussed in Section Ill. 3.) Although the Information

lost by making these normalizations could be retained by providing additional

lexical attributes. DINA's design Is predicated on the assumption that the value to

the user of this Information does not justify Imposing on all DIANA users the cost

In processing time to record the additional data or in space to store them.

111.1. General Principles

The structure of DIANAs original design foliowed the Abstract Syntax

Tree (AST) of the ADA Formal Definition (AFO). which was designed to Include

adequate information to permit source reconstruction. Unfortunately. the AFD is

based on ADA-80, and DA's (present) design Is based on the syntax of on

ADA-82. which differs from that of ADA-0 In Important ways.

in Chapter 2. we showed the connection between the ADA-82 syntax and the

DIA structure by including the former with the description of the corresponding

nodes and attributes. There is a close correspondence between ADA's syntax

and DIANA's structural attributes. as shown In the examples In the next section.

It is this correspondence that permits source reconstruction.
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The discussion on formalization of 0~AN in Section 1. 1. 4 on page 14 Is also
relevant. Any technique to solve the problem addressed In that section will shed
light on source reconstruction.

111. 2. Examples

A lew examples Illustrate the reconstruction process. Consider first the ADA
at31gnment statement, with syntax and DIANA structural attributes as follows:

Ada SyntaX (Section 5.*2 of the Mda LKI)s
assigrnnt,...tatmont : :-

non t- expreonion

Diana. rulem:
assaign -). as-n~ame S m

aa~oxp : ;

The ADA text corresponding to an assign node. Is thus the text that led to the
NAME (L. e. the value of the sj~ame attribute),. followed by ': -'. followed by
the text that led to the EXP (L. e. the value of the as...xp attribute, foliowed by

.We can summarize by writing that the source text for an assign node Is

Here the angle brackets (a-) Indicate that the the text for the corresponding
subtrees must be filled In.

As a second example, consider an ADA block:

Ada Syntax (Section 5.6 of the Mda LR14):
bloc.s.tatesent : a-

EblocAsmpa-me]

begin
*equonce...o~tateoents

excep tion handler (exrception-handler) J

Diana ruleet
blodk -i. aa..Jtom... aTIS

asa..Am...s a Bt-3.5
aa..altornatvo.,, i &mTERNKvzW_3

Thus for an unlabeled block node used as a statement the following text Is
generated.

- _________________________ "T

.1-
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declaze
C itemae2
Ctms.

ta.lternativee
ecdl

In a few places the text to be generated depends on the structural child. In

the block statement example. it is important that the text exception be generated

only when the sequence of alternatives is non-empty (i.e.. the

aa"Iternative._s child Is empty). since the syntax of AOA-82 requires at least one

exception handler after the word exception. (ADA-80 permitted an empty list of

handlers. ) Similarly, a private part should be generated only for a package that

contains a non-empty list of private declarations.

In a similar vein. sometimes the text to be generated depends on the

structural parent. Again the block node provides a good example. When

block appears as the descendant of a subprogram-body node. the word declare

should not be generated.

Ill. 3. Normalizatlons of the Source

A normalization of the source is a deliberate omission from the DANA structure

of information that would be required to produce an exact recreation of the

source text. Most of the normalizations are Imposed by the AFO. ODINA

includes the following normalizations:

* The optional Identifiers following the reserved word end are not
represented In DtI. This decision means that during reconstruction
the program is normalized either always to include the end labels or
always to omit them.

* DIANA does not require that extra spaces between lexical tokens be
preserved.

a Variant spelling of an Identifier. as for example "FO0 and "Foo and
"foo'. need not be recorded In DIANA. This is a lexical issue that
does not affect the semantics.

* Alternate writings of numeric constants need not be preserved. For
example. In

2 002 0O-2
2IL1LlI.*I 160"0 O16'1TOW 255
1201 1.2e2 0.12+3 01.2002

all the values on each line would be represented identically in the
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0IA and so would be reconstructed Identically. This Issue Is essen-
tially the same as the variant spelling of identifiers: DIANA does not
require that variations be preserved.

A few normalizations of the AFO are no longer in DIANA. because of changes

in ADA-82's syntax from the ADA-80 syntax used In the AFD.

e In the AFD (and therefore In the original design of DIANA). all Infix
operators (except the short circuit and membership operators) are
converted to function calls. That Is. each of

X+Y

"+-(X, Y)

gave rise to the same DIANA structure. Thus the original program
could not be reconstructed. since It could not be determined whether
the original had an infix or prefix form for these operators. AOA-82
requires that this distinction be maintained to meet the conformance
rules for initial values of default formal parameters. stated in ADA LRM
Section 6.3.1.

- In formal parameter declarations for subprograms. the mode In is
optional. Originally. the presence of the word In in a formal part
was not recorded In the DIANA. The conformance rules of Section
6.3.1 requires that this information be maintained.

e The AFD omits parenthesized nodes If the parentheses are redundant.
The conformance rules just referred to require retention of these
nodes.

IN. 4. Comments

In order properly to reconstruct the source. DIANA must be capable of record-

Ing comments. To this end. every DIANA node that has a source position

attribute (i.e.. all those which correspond to points in the source program) has

the additional attribute

Ixcomments i cc: nan

which is an Implementation-dependent type. The implementation may choose

how accurately comment positions are recorded and how to associate comments

with particular nodes.

The way a user chooses to comment a program greatly affects the ability of

any internal representation to make a meaningful association of comments to

nodes. When there is a coding standard that enforces a commenting style.

assumptions can be made that make the association easier. Since standards

such as these are likely to be only enforced localiv, comments are treated as an

Implementation-dependent type. DIANA makes , requirement about either the

, -- - . - - - --+ ......- -
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internal or the external representation of comments. and an implementation does

not have to support the Ix_comments attribute to be considered a DIANA producer

or DLA consumer.

One method for attaching comments to tree nodes is described in [11. It

distinguishes between comments preceding or following the subtree which is

represented by the node.
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!I

I

.... .
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APPENDIX IV

DIANA SUIMMARY

This appendix contains a list of all the class and node definitions sorted by

the name of the class or node. Class definitions are given first: all class

names are upper case. Node definitions follow: node names are lower case.

With each definition Is listed the section number and page number within Chapter

2 where the corresponding concrete syntax can be found.

ACTUAL ::2 EXP; 6.4 61
ALIGNMENT ::= slignment; 13.4.A 74
ALTERNATIVE :: afternative 1 5.4 53

pregma;,
ALTERNATIVE -S ::= alternative-*; 5.4 53
ARGUMENT :argumentjid; App. I 76
BINARY_OP :2SHORTCIRCUITOP; 4.4.A 46
BLOCK_STUIB : Mck; 6.3 60
BLOCK-STUB ::stub; 10.2.9 70
BLOCK_STUB_VOID ::= block I 9.1.A 65

stub I
void;

CHOICE :2EXP 1 3. 7.3.8B 43
DSCRT _RANGE I
others;CHOICE_.S :-= choices; 3.7.3.A 43

COUP :2pragma; 3.7.8B 41
COMP ::var 1 3.7.5B 41

variant-.part I
nuNL-comp;

COMPILATION : 2compilation; 10.1 .A 69
COMP-ASSOC :2named 1 4.3.8 47

EXP;
COMPREP : comp..rep; 13.4.8 75
COUP_REP :pragma; 13.4.8 75
COMP..REP-S ::= cmprep.,; 13.4.5B 75
COMP..REP VOID ::2 COMP...REP 1 3.7.5B 41

void;
COUP _UNIT :2compunit; 10.1.9 69
COND.CLAUSE ::cond clause; 5.3. A 53
CONSTRAINED : =constrained; 3.3.2.9B 36
CONSTRAINT ::= RANGE 1 3.3.2.0C 37

"O~atI

dact...range_sI
daomntggrgate;

CONSTRAINT: void; 3.3.2.9B 36
CONTEXT : := context; 10. 1. 1.A 69
CONTEXTrELEM : pragma; 10.1.9 69
CONTEXLELEM us me. 10. 1.1. A 69
CONTXTELEM : with; 10. 1.1.8B 70
OECL ::;REP I 3.9.A 44

use;
OECL ::constant I 3.1 33

number I

ubprogramded I
pse".edec I
ta*_ded I
-6"ri I

deferre..constsnt;
DECL . pragma; 3.1 33
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DECLS : :2 decls; 7.1.8 62
DEI-CHAR :: a dek-char; 3.5.1.8 38
DEFiD : attr_Id I App.I1 76

pragma.jd I
ARGUMENT;

DEFI -Q camp id; .7. B 41
DEF ID : 2 ontjid; 3.2.A 34

10JD: dacrmtjdl 3.7.1 42
EFID entryid; 9.5.A 66

DEF 10 enum-Id; 3.5.1.8 38
DEF1ID exceptlnid; 11.1 70
DEF ID functlon Id; 6.1.A 57
DEFID0 generic Id; 12. 1. A 71
DEFID i n I d; 6.1.0 59
DEF1D in-ou~di1 6. 1. C 59

out Id;
DEFID iteration..Jd; 5.5.8 55
DEF-1D :: label d; 5.1.8 51
DEF-10:: namned_stm_1d; 5.5.A 54
DEF-ID : 2number-id; 3.2.0 35
DEI-_D : :z packsge-jd; 7.1.A 62
DEF-ID ::= private type_)d 1 7.4. A 63

l...prvatejype-.id;
DEF-10 ::z procjd; 6. I.A 57
DEFID : atbtypejd; 3.3.2.A 36
DEF -ID :2tasl...bodyjd; 9.1.8 65
DEFD :21 type.jd; 3.3. 1. A 35
DEF-I10: varjd; 3.2. A 34
DEF-OCCURFIENCE : := DEF-1D 1 2.3 32

DEF_OP I

DEF OP ::= do#-.op; E:HR 6.1.A 57
DESIGNATOR .:=2 10 1 2.3 32

DESIGNATOR _HAR ::= DESIGNATOR 1 4.1.3 46

D6CRLJT_-VA .: det-, 3.7.1 42

DSCII RANE cnstaind I3.6.C 40

DSR AGE idx 3.6.8 40
DSCR-RAGES := dsr _ang 3;3.6. A 40

OSCRTRANGEVOID : := DSCRTRANGE I 9.5. A 66

ENUMLITEAL num-d 13.5.1.8 36

EXC~nNDF enae;8.5 64
EXCPTON-EF voi-,11.1 70

EXP ::= NAE 4.4.0 40

arentoesIe;

EXP s agegate; 4.3. A 47
EXP :2binary; 4.4. A 46
EXP : :z membership; 4.4.8 46
EXPCO48TRAINED ::= EXP 1 4. 8 50

CONSTRAINED;
EXP..8 ::2 exps; 4.1.1 46
EXP-VOID ::EXP I 3.2.A 34

void;
FORMALSUPROGM.DF ::= NAME 1 12.1. .C 72

box I
"o-461sfat;

FORMAL lYPESPEC ::= formnal_" 1ar 12. 1. 0 72
formal integer I

tfmnaLI'loat;
GEMERqASSOC : zACTUAL; 12.3. C 73
GENERIqCA8SOC s moe; 12.3.98 73
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GENERq_ASSOC_S :2generlc_&aoc*; 12.3.A 73
GENERICHEADER ::=procedure 1 12. 1. A 71

function I
130181e081;

GENERIC-PARAM x in 1 12. 1. C 72
in out I
tvieI
subprogrmded;

GENERIC...PARAM..S ::= geneftc..param....; 12.1.8 72
HEADER :2 ez"". 9.5.A 66
HEADER :function; 6.1.8 56
HEADER :2procedure; 6.1.B 56
10 ::= DEFID 1 2.3 32

USEDJO;
ID-S::= id-.~s 3.2. C 35
INNER-.RECORD ::= inner-record; 3.7.3.A 43
ITEM ::= DECI I 3.9.8 44

subprogrwnbody I
packagebody I
taakbody;

ITEM_S ::= itemns; 3.9.8 44
ITERATION ::z fo 1 5.5.8 55

ITERATION :2void; 5.5.A 54
ITERATION4: while; 5.5.8 55
LANGUAGE :2argumnent-jd; 6.1.A 57
LOCATION :2EX(POID I 6.1.A 57

pregmajd;
LOOP ::= loop; S.S.A 54
MEMBERSHIPOP ::2 In_op I 4.4.8 46

notfln;
NAME :2DESIGNATOR I 4. 1. A 45

usedk_char I
Ind14ed I
slice I
selected I
all
attribute I
attribute call;

NAME ::= function call; 4.1.8 45
NAME-S ::= namnes; 9.10 68
NAME VOI NAME I 5.7 56

Yold;
OBJECTDEF :2EXP VOID; 3.2.A 34
OBJECT DEF :2rename; 6.5 64
OP ::DEF OP 1 2.3 32

USED-COe;
PACKAOEDEF :2instantiatloo; 12.3.A 73
PACKAGE..CEF : peltage...spec; 7.1 .8 62
PACKAGEDEF :2renamne; 6.5 64
PACKAGE..SPEC : ~packgespec; 7.1.s 62
PACK.BOOY..DESC ::= block I 7.1 .A 62

stub I
renarne
instalitiatonI
void.

PARAM :2in; S.I. C 58
PARAM ::z in-out 6.1.C 59
PARAM : :2z out; 6.1.C 58
PARAM ASSOC :2EXP I 6.4 61

PARAM ASSOC. : ::= peramoassoca-; 2.8.A 33
PARAM S ::2 -peram.*s 6.1.C 56
PRAGMA :2x pragm; 2.8.A 33
PRAGMAS ::= praga-s; 10.1.9B 68
RANGE : range I 3.5 37

attribute I
attribute..coo;

RANGE_VOID ::RAGE 1 3.5.7 39
void;

REP z :u lplejp 1 13.1 74
address I
reOrd rep.

REP..VOIO : 2 EP I 3.7.A 41
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vow.;. 67
SELECT -CLAUSE :2pragms; 

6
SELECTCLAUSE :: ae0ectlau58; 67

SELEOTSCLAUSE_.S :s ect ca'uae $ 9.7..A 67
SHOR_CIRCUIT_OP : 2 nd..then I 44A 4

Sam :: If 1 5.1.0 52

LOOPI

cow-entryI
tlmedon";

SIN ::lbele; 5.1.8 51

SIN : nulatm 1 5.1. C s1
asinI
predur*_ Csl I
wa I
return I
goto I
eltry caI

rise I
code;

STM ::progma; 5.1. C 51
SIN : terminate; 9718 67

SIN S -: = tm 3; 5.1,A 51
SU8ROOR.AMD EF : 2FORMAL..SUBPROajDEF; 12. 1. C 72
SUPaROGRAM DEF instIatiation. 12. 3.A 73

SUSPROORAM:DEF : 2rename; 
8.5 64

SUPROGRAM DEF : 2void; 6.1. A 57

S"_p...BOY..OSC :2block~ I 6.1.A 57
stub I
inatantiattof I
FORMAL...SUOPROG...DEF I
reeI
LANGUAGE I
void;

SuSJNiT...80Y ::= subprogram-l..body I 1O.2.A 70
packagebody I
taak~.body; 9.1.A 65

TASK DI OE task spec;4,.B 8
TYPE-RANGE :2 RAGE I 448 4

- NAME;
TypE SPEC:: CONSTRAINED; 3.2.A 34

TYPE SPEC : FORMAL-r(PE...SPEC 3.2.1.0 36
TYPESPEC : 2enumjtere- 1 .. 1.B 3

-integer I
ftied I

array
recordi

deried;7.4.A 63
TYP SPC IPiftf;7.4.A 63

TYPE..SPEC ::a private; 91A 6
TYESPEC :2task-.apee;

TYFESPEC rleelto IAp.1 7
- ~univeraalftede I

univerawf6j";3.1
TYPE SPEC void; 106.1. 44

aubprogrammdeel
USED ~void; 41A 4
USEOJD ::~used -oblect-id I41A 4

used -name id I
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USED_..P : usedop 1 4. 1.A 46
uedbltnop;

VARIANT :~variant; 3.7.3.A 43
VARANT-S x: verient S; 3.7.3.A 43
abort =3 an esNA _8: 9.10 68
abort =:. 1tarcpos: sourcepaltion, 9.10 665

bt comiments: commenta;
accept i, a namte:NAME. 9.5.C 611

aaparama: PARAM&.S,
as -atma-: STMS3;

accept Mp bt rcpos: souroe-poaion, 9. S.C 68
tixComment: comments;

acceas a i.aekconstraned: CONSTRAINED; 3.8 44
access a > lx srcpos: sourcepostln. 3.8 44

Ix comments: comments;
access a) s9msize: EXP VDID. 3.8 44

sm sorage size: EXP..VOID,
am controlle: Boolean;

address => as name: NAME, 13.5 75
as_.mp:EXP;

address = btarcpos: source-position, 13.5 75
btcwOmments: comments;

aggregate zi asjlst:seq at COMP _ASSOC; 4.3. A 47
aggregate 21 tix..acpos: sourcoeposaion. 4.3.A 47

lixcommeonta: comments;
agreat ~sm~exp-type: TYPE SPEC. 4.3. A 47

sm ontraint: CONSTRAINT,
sm normalized comnp 5: EXP _5

alignment zi. aspragma-s: PRAGMAS, 13.4. A 74
as exp.void: EXP _VOID;

all = aa_name:NMAME; 4.1.3 46
all u) bsrpos: ouroejposition, 4.1.3 46

Ix comments: comments;
all sirnexpjype: TYE SPEC; 4.1.3 46
allocator =). as -xpconsramned: EXP _CONSTRAINED; 4.8 so
allocator = >lxtsrcpos: sourceosion, 4.0 50

xcqom~ments: comments;
allocator = > mnexp..type: TYPESPEC, 4.6 so

am-value: value;
alternative =i as ch~oice *:CHIOICE_$, 5.4 5

asstm_sbMS.;
afternatve: =>xtarcpos: sourceposition, 5.4 53

bixcomments: comments;
-lonhks zi. aa..llt: aeq of ALTERNATIVE; 5.4 53

afternat*e =).bisrcpa:ourcepornon, ::.A :3
Ix comnts: comments;

argumnt = W..srep:symbol..rep; App. 1 76
array a- as docrt rangs : DSCRT .RANGE..S. 3.6.A 40

as~constralned CNTAND
array =,a Ixarcwpos: sourcepoaltion. 3.6.A 40

txoommwents: commew-at
array mi. am size: EXP.VOID. 3.6.A 40

ampcing: Boolean;
asign =3 as..name: NAME, 5.2 82

asexp: EXP;
assign a) bLxsropos: sourcejoltion, 5.2 52

Ix -comments: conMoents;
an"o a~ a-s4delgnator: DESIGNATOR. 6.4 61

as_actual: ACTUAL;
assoc a). isrcpos: souroepoaltlon, 6.4 61

attr~ld z,. btxaymep:symbolrep; Ap.1 7

asjd: I;
attribute =) bklxacpos: aource..jcsitlon, 4.1.4 47

attrbue z i snexp..typ*: TYPESPEC. 4.1.4 47

aftribute-pai =) as name: NAME, 4.1.4 47
iseep: EXP

attrlbut~coll si Ixaropos: sourcepoaton, 4.1.4 47
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attilbujb CAN r) sm exp jp: TYPKfiPEC. 4.1.4 47

Uinary Z3, ase -:XOA'-P 
4.4. A 46

aseap:EP

binary =3 bg srepos: oufOSL.P*UMfl 4.4.A 46

binary 23 am -ep te YPE_SEC. 4.4. A 46

Miock i as Item s:fTEM.Sf 5.6 55

-a -8:kTERNATPE5- 5.6 5
bloc IX baropo: SOUrc..postiofl,

b coimft:conmments;.
box tK i..aCPOS: SOUrCe..joaitiOf. 12. 1. C 72

Cas as-zp: EXP .4 5
_Asatwmtks :ALTERNAME...;

am zi Ixasrcpoe: souirce~poeition,5. 5
&Am Ixcomnwts: conmmnts; 373A 4
choic a ajist.- eq of ChOICE, .. 3A 4

choices =) btar cpoS: a*Urm..po*t~ofl 3.7. 3.A 43

code =ii as nemne: NAME,136 5

amexp: EXP;
od. =-, Izarcpo :oiirc..positofl. 13.6 75

Ix comments: comments;
compjd z; barcpo s~oume.positnf, 3.7.8 41

Ix cmment:comments.
Ixsymlwp: spmbolrep;

compA) 23 am....bityp@:TYPE_..SKC. 3.7.8 41
sminhitexp: EXP...VOI.
sm-OfPnpeW: COmp-REP...VO1D 1..8

compjrep a ,as name: NAME. 1..B 7
asexp: EXP,
asrane:RANGE;1349 7

compjp.P b 13.4.po aor75.pstol
bi-coiwots: conlments; 348 7

copre- ot btWP83uCe-ositic 13.4.8 75
compjep..s Ixcmmnts: comment~s; 1. 8 6
compundsi.as..contet: CON4TEXT,10.8 6

comiunit as-unit body: UNIT...BODY.
aj-pmss;PRAdIA;S; 6

cmp".uft si kafcpo: aource~poitlofl, 0.1.8 66
lix coments: comments; 1..A 6

00ilw2) 3. arowpos. sourcepmtoatlf.10.A 6

Cow ~~ix commvents :O*flvflets;53.A 5

conpws'e zi asp vid: EXPYOID, 53A 6

coW~oI~se 2) Ixt pO: sourc...positiol, 53A 5
IxCommts:comnmnt8; 9.7.2 16

cow-en~try mi. sstr s1: STM.S.
aisstmi-s2: STU S;

cmmd-enttY 21 hsrco:ource OP08tiofl. 9.7.2 6o
00n :0mm";3.2.A 34

cot~ x wgros: soursepoaltiofi,
bixcmmVents: onmments.

cand txaymirep: swnbol-reP; 32A 3
x).aj on) amddres: EXP VOID. 32A 3

am..objtype:TY#PE SPEC,
onmobi..da#: O&Edf 0EF.

Content a). s--ds: 10., 3.2. A 34
aaj-e apse:TYPE smEC

congwa I g) mchi:scv*.ps0 3.2. A 34

Ixcmvnet:Onmts- 3.3.2.8 36
2)sring I anmname: NAME,

as_*n~trlned 2)1NT 3.3.2.0 35
com~shM i dnpI..UIZe: Intege;
oserane ukjrcpo: moure-POsitiofl, 3.3.2.6 36

bi-ownmeft:0ofWnts;
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constrained a) amjyptrucTYE SPEC, 3.3.2.0 36
uiibm type: TYPESP1M,
anm-constraint'CO4STRNT,

context zu esak.eq of CONTEKT _ELEM. 10.1.1.A 69
oftedt ai. i.rcpo:source..jostion, 10.1.1.A 6S

hIcomments: commen~nts;
conversion %aq aneme: NAME. 4.6 50

asemop: EXP;
converali mi Iz...rcpos:wsurce..positlon. 4.6 50

Ik~pomments: Ammewnnts;
conversion z3- .nepjyp:T1PELSPEC. 4.6 50

am volve:valke;
dod_.* z. sjidsteq ot DECL; 7.1.9 62
ded_* zi, Is acpo*saourc*_pos~ton, 7.1.8 62

bs_omnt centfnts;
deichar 21 Iscpo: sourcepoton. 3.5.1.9 38

bicommnents: commentds,
Issywovp: symborep;

def-char =) *M_*bL typ*:TYPESPEC, 3.5.1.9 35
am-pos: Integer.
sm~jep: Integer;

defop =3 Ispos:ourn.postlon, 6.1 .A 57
Iscommonts: comnwts.
Is..symrep: spmbolfrep;

def~p: a i, apec: EADER. 6.1I.A 57
am_body: SUBP..)ODY..ESC.

am_stub: DEPOCCURRENCE.
urnMrs: 0EVOCCURRENCE;

delerred constant a) aajds: ID_., 7.4. B 63
ajaMe:NAME;

defierred-constant a) btssrcposourceposition, 7.4.8 63
Ixcomments: comments;

delay =) s..exp:EXP; 9.6 66
delay mi, Ix_srcpos: sourceposition, 9.6 66

Ix Icomments: comments; 3derived x as constrained: CONSTRAINED; 3.4 3
derived = i ad impluze: Intege; 3.4 37
derived a~ -> aropos: aource-poltion, 3.4 37

Iscpomments: comments;
derived =o sm~ulz: EXP VOID, 3.4 37

wmctue~deit: Rational,
sm-pachin: Boolean,

dowrep~gate a iotas-is:so fCO OMpA SSOC; 3.7.2 42

daumt~aggegate zi I srcpo*s ource~posktlcn, 3.7.2 42
Ix commnents: ommewnts;

dscrmtwaggregst* =)o x normalzed~compa: ,EXP. S; 3.7.2 42
dacrmt..id 2 1, arcpos: awoocpositlon. 3.7.1 42

Iscomments: commefnts,
15sylw~p:Wsrfboljeop;

dasrmt.d zi. sm -ob....ype: TYPE SPEC, 3.7.1 42
am illxp:Exp Too.
am firg*G: OO(URRENCE.

mR~ompapec: COMP!REP._VOID;
dermtver ,- ids:m8.4 3.7.1 42

anae: NAME,
asoorotdevOSJE 22, 3.7.1 42
1x_9*nfts:comm~nts;

daant vsra mi, aojlst:seq of OSCRMT..VAR; 3.7.1 42
derm..se ~bk..scpo*:aourc..poaltin. 3.7.1 42

Is-commesnts: comments;
doortrwe_*.. a. asJls: seq of OSCRT RANGE; 3.6.A 40
dwtrtamgep *3, ubropee: iourcepooltion. 3.6. A 40

Isocomments: onwen4fts
entry mi aa~dowtjgvoid: DS RNEVOID. 9.5.A 66

entry zvr- e:aucpelln 9.3.A 66
Is-oroments: commvents;

anbv_*W m, s.nwne: NAME. 9.B. 661
o*_pern - sooa- : PARAMASSOCS;

softryw X) karos: so -psltin. 9.5.8 66

A
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*n~cs L.m nomIzdee..:ExP...; 9.5.8 s6
entry)d z3 bL....amp ura .poeltlo, 9.5.A 66

ix..oonmentB: comments,

entryjd * - wnspec: HEADER,95. 6
anmeddra: EXPOVOWD;

emd xi bix.m -*possoofteon, 3.5.1.8 38
bLxoments:commnt
Ixsynmp:fsymbol_rep;

enmjd: a), *..obLtyp:1'IP...SPC, 3.5.1.8 38
ampos: Integer,
sm-yep: Integer;

enum lhterais =, a lm~id: eq of ENUM_ LITERAL; 3.5.1.A 37
*niumllteruls -, cdjmp.-ftz:Intege; 3.5.1 .A 37
*nmjftere~s =3, Ix arcpos:aouroepsinf. 3.5.1 .A 37

tx commvents: coments;
emnmNjteras a. W sze: EXPVOID; 3.5.1.A 37
exception m) ssjd_ -:D.10.S. 11.1 70

as _e~cpln .dot. EXCEPTION_..EF;
wxception mi torcoa w mtic.otol 11.1 70

Ix-commens: cmments;
*x*eptlon..j i btarcpos: sourcejlostion, 11.1 70

ix commefts: commients,
b~ix..snp: snboirep;

eioepton.izdi wn m.exception...dW: EXCEPTION_DEP; 11.1 70
exit m) ss..neme Yol: NAME-VOID. 5.7 56

asexWp~yoid: EXP...VO
exft =) Ix mrpo: source..position. 5.7 56

sui =3 sm..tm:LOOP; 57 5
amp_ 2-j 5ij~it:seq of EXP; 4.1.1 46

ex_ , Im rcp0:4urce-posmon, 4.1.1 46
txocorinlmet -.commnUt;

ftxed xi as..exp:EXP, 3.5.9 39
&sge-.yokd: RANGE-VOID. 3

fixed x) *djmplaz: Integer; 359 39
ftxed -j-xarcpo : sourcej..osltol, 359 3

fixed "~ sm;_sze Exp .VOID, 3.5.9 39

amait$: InegerO,
smjbyet"uof:TYPE-.SME.
sm .. ea ..ap: : 55i .5.8 39

esacat...rang: DRT...RAO; 658
"oat mi irpos: aourcepoltol. 357 3

x commaents :comments;
flredet wsixe:roPos VOID, pstn 1.5.7 D 9

sx..oom~set: comments;
forme~ie -> sWIxacoDoo.pa l 1..0 72

bqixcotm*"wnw Cmens
formelfloert 23 bxaropo: souroepalon 12. 1.0D 72

bix..cmmnents: comments;

formd.ijtst z. b up ix.a c soure~positon, 12.1.0 72
ix...ooimet: coments;

fucton2)aprag s: PARAM 8. 6.1.8 561
aenome-vid: NAMI(YOI, 61.

function a) btaropos: aoumoep~ao~fl.. 5
Ix comnwt:comnt;,64 6

matm _cM 2 sjwne: NAME, .4 6
ssapwumeows: PARAMASSOCS; 64 6

runctlon-ea Ixaropow:sourcepoultlon. .4 6
ix..mments: omments;,

funtlen..c a sm eep.type: TWESPEC, 6.4 Si
oa-yelve:vmlve,
sm..nomelled~pesms: EXP_..S
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k...prefk: ookean
fntioid a~ 3- .avopos: souroe-position, 6.1. A 57

hIr~omments: comments.I
lbt pyfww: wmbelrep;

hwwotiond zi mspa: HEADER,. 6.1.A 57
wm~body: SU9W.8ODYDESC.
wsmjoostion: LOCTION,
am~stub: DEF OCCURRENCE.
w_"rs: DEFOOCURRENCE;

geneft a) smid: 10. 12. 1. A 71
asipeneilC-perenia: GENERIC PARAM 3,
asg*nerioJheeder: OENERICHfEADER;

genetc a) bsrceposource~position, 12. 1. A 71
I~oommnents: comments;

generisesec -a I as ist: seq of GENERICASSOC; 12.3.A 73
genefl@.aasc-B =) k..arcpo:souroe..positlon, 12.3.A 73

b omments: commrtnts;
geneft.cM 2). 01)svwewb~r 12.1. .A 71

ft grpsource..position.
bxoomenta: comments;

geneftj zil smgenerlc..perm....sGENERICPARAMS, 12.1. .A 71
unape: GENIERCHEADER,
sm..on- :BLOCK_STUB_VOID,
sm Mt: DEF OCCURRENCE.
anm stub: DEF_-OCCURRENCE;

genseftlcarm-4 =I, &sIisteq of GENERICARAM; 12.1.8 72
geenc.pessm..s =i Ix_sropos: source.posbosi, 12.1. B 72

bt-*omment2 -comments;
got. u~ s name: NAME; 5.9 56
goG. zi btarcpos: ource..poslon, 5.9 56

bt comments: commeonts;
id._;. zi asjls:seq of ID; 3.2. C 35
Wda zi Ix..arcpos: source~posltion. 3.2.C 35

Ix comments: comments;
it sI1t:seq 01 CONOLAUSE. 5.3.A 53
if b hisrcpos: souoeposditon, 6.3.A 53

omments: comments;
in zi asajd.s: 10OS. 6.1.0 so

5.,nhmeW: NAME.
asexp-"W :EXP _VOID;

In zi Isrcpos: soucepostion. 6.1.0 59I bticomments: comments,
ix..deful: Sooleen.

mj-d zi, bc...srps:owreposion, 6.1.0 59
Ix commerts: comments,
Ix-synvep: sym~bol rep;

id =2 e mobitype: yPl..SPEC. 6.1.0 59
smjifnp: EXP..y17M.
am-fIr4t: OEFOCCURREt4CE;

Ino0p 2 10 bt wopos: souroe..posltion. 4.4.8 46
Ix..oomiments: comments;

in-out 2 ms ajd~s: 10..S, 6.1I.0 56
@sann*:WNAE,
as-.expyvoid:EXPYOID;

In ouit zi, barcpos:soure..position, 6.1.0 59
b..omment.comme~nts;

In..outj 2,* Ix..apos: souro...position, 6.1.0 59
bticomments: comments,

4 Ix-iYmvp: W~bo rep;
* nujd zi sm *bIjtyp:TYPLSEC, 6.1.0 as

smfl:DEFOCCURRENCE;
k1n ai, au...name:NA 3.6.8 40
Wasn z Ixjrcposq : sor*e.poalton 3.6.8 40

Irto1m00 e0to: omments;
Indeewd X30 aa..nwmeNAME, 4.1.1 46

so ams: EXP-S;
Indseed a), bL.=vpo:uwoM-eq on, 4.1.1 46

Is 'Man t:comments;
Indesed a~ i.spte:TYPE..SPEC; 4.1.1 46I ~ o Ine.rood a) asjls: seq of COMP; 3.7.3.A 43

Innrjeotda' xjrpoe soroe.polt~n,3.7.3 .A 43
bI mmtents:comns

Insten"otlo 2, 48341110: NAM, 12.3.A 73

es~eefl...esooa: ONERCA880.A
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Inftanbtlein uzi. bktcos: urce..p~atin, 12.3. A 73
hizoominens: osmaot

Indwanglof =3, w deo s: DECA...S; 12.3. A 73
integer o~sa.range:RAGE; 3.5.4 3W
Intege 23, Gd_1mpI..sze:Intege; 3.5.4 39
Integer Z% ba..acpos: source-posiwln, 3.5.4 39

Is.. comments, comments.
into"e 23, 2m...alze:EXP.Y0IO, 3.5.4 38

sm..beas..typ: 1YKWE..EC;
Itema833 *ARd ajan~ of ITEM; 3.9.8 44

>tw~ = ht..cps: orcepostlon, 3.9.8 44
lk...comment3: comments;

Iteretlon'd a, Ia..srepos. ource-.position. 5.5.8 55
bLcomment: comments.
Iz...smrep: aiboL..rep;

Itrati d x3 eMo*bjtype: TYK_,.SPC; 5.5.8 55
L~prlvet 23 ks aCpos~s*Urce.-poaltlon. 7.4.A 63

Is-comments: comments;
Ijilvt.s 23 sm..dierinnts:0CcRMTVAR-S; 7,4.A 53
LPwtvW.tpJd z) bssrcpoa:ource-jostion, 7.4.A 63

bscommenbtcooments.
I Ix_*ymre: symbol rep;

-prtvte-jw*ejd = sm wvkypespec: TE.SC;7.4. A 63
lob* jd zl bkarcpo:sotarcej.olton. 5.1.8 51

In comments: comment.
bi...ame: symbol_rep;

Iabeljd zi sm...stm: STM; 5.1.8 51
labeled z i ssj..s: D..S, 5. 1. 8 51
labeled = twc..o.sor** 8imtIofl. 5.1.8 51

bt comments:oomments;
loop =3 ssa-Werstwn: rrERAT*N.4 5.5. A 54

Moop =I Ixaropos: soUrc*..podtion, 5.5. A 54
J Ix-comments: comments;

membership :as..exp: EXP. 4.4.8 46
aa...mmberahip op: MEM9ERSIIP.OP.
aa...t..ange:NERAkNGE;

wnbrsl1p 2, k-sCPo: source-joston, 4.4.8 46
Ix-comments:0omments;I membershIp x) smk..esp...type: TYPE_.SPEC. 4.4.8B 46
sm"u:viue;

nem.. z) &sjIat:seq at NAME; 9.10 68
nunes_ => bt marpa: aource..poslton. 9.10 se

I.Coomments-.comments;
named =, is oiceq_s: COICE..S, 4.3.8B 47

aseimp: EXP;
named wo Ix..srcpos: source.pos.iton. 4.3.8 47

bt comments: comments;
namedO-atm > aajd: ID, 5.5,A 54

as_*m: SIM;
nmedistt a) ft-jrapos: .ource-palln. 5.5. A 54

Ixjomments:comments;
nw~wjdJij -, lxarcpoe:ourc...oaliwn, 6.5.A 54

bt comnt:omments.
Ix...wmrep: symbol rep;

nedstm Id xi sm~sm: SM; 5.5.A 54
no-dhIt zi Ixarcpo:ource.poeltion. 12.1. .C 72

Ix commrents: comments;
notjtn -, IxarWcpos: source..posftlon, 4.4.8 48

Ix_*omnt:oomnta,*
nulsasees zp t..rcposaurceposltlon, 4.4.D 46

hi comments: comiments;
nuleccess zi sq fp-jyp:WE...SPEC, 4.4.1) 46

8m~vskfe:velue;
nulIComp zi btxops: ourcejostion. 3.7.0 41

bi-omaents:oomments;
maN~am 23 bt -arcpo : sourcepoltIon. 5. 1. F 52

hbpwiwments: comments;
2mw 3 so Id D S, 3.2.8 35

"-a*: LXF.
numbe av h...roo: ource..pooltlon, 3.2.0 35

IxcOmmwenta comments,
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numberjld z 3z....arcposouroe..oaion, 3.2.8 35
Ixk~omnt: Comments.
biayvmrep:vWrnboL-.rep;

nmbferId zi. onmobityp:Z:TYP..SPEC, 3.2.8 35
sm~initp: EXP;

nurneriqotiteral zl lx.._ropo: ouroe*_poaitlon, 4.4. D 49
Ix-Comments:omnments,
lx....numrep: number__rep;

numeriq_ 1tral z a stiep typo: I WE..-*PEC, 4.4.0D 49
sm~.value:value.

or._e"s a 3- b.srcpos: muros~positen, 4.4.A 46
b; comments: Comments;

others = k srcpos: 9ource~positon, 3.7.3.8 43
btconment: comments;

out =) as ires: ID..S, 6.1.C 56
"s:flsm: NAME,
4asep~void: DXP..yOlD;

out =3 ft-srcpo :ource-poslton, 6.1. C so
lx_oommentscoomments;

o lxi sr b~ cpoa:sourceposton, 6. 1. C 56
13x_pomments:comment,
lx_symr~p :symbol...rop;

otd =i sm..~obi type:TYPE SPEC. 6.I.C 56
smjtirat: DEFOCOURAENCE;

padmqe-body zi ssd: 1, 7.1.C 63
as,_block_stub: LOCK.TUB;

peckege"_bodv: a). bacpos: souroxe..otion, 7. 1. C 63
1x_*ommefts: omewnts;

ea..psckago.~de: PACKACE-DEF;
peckmge deal = 3. .srcpos: sourc.e.positon, 7.1. A 62

bx_qomvnents:comments;
package =d i- blsrcpos: sourooepoalio. 7.1. A 62

Mxoomments: coffwnents,
lxaymrep: syMbolrep;

peckage-i 3, am spec: PACKAG3E SPEC, 7.1.A 62
smn~body: PACKBW0YDESC.
smneddreas: EXPVOID,
smub: 0EP..OO~tRRENCE.
wm_ttro: DEP OCCURRENCE;

package spec x), as_dec.l . DECL...S, 7.1.9 62
as..dec_s2: DCLS;

peckege..spec lxjr*_cpoa: source..poaitlon. 7.1.83 62
lx_pomments: comments;

pernamecas 2) &s_llst:seq of PARAM..ASSOC; 2.8.A 33
psramassc-s b l....rcpos:- souroe_.posilon, 2.8. A 33

lx_Comments: comments,
perams xi aslst: seq of PARAM; S.I. C as
pwr_s zi Ixtsrcpos: sourceposion, 6.1.C se

lx comment: Comments;
perenheeled "' aa.exp: EXP; 4.4.D 46
parentheskzed =I 1x...scps:souroepositon. 4.4.0 48

Ixoomments: comments;
parenthesized =3, wmexpjype: 1TPE..SPEC, 4.4.0 48

am -value:vaiue;

pragme =* bt- d:ID, 2.8.A 33

pregmejd 22 as .Istl we: f ArUET; App. 1 76
pragmes zi asJt:seq ot PRAMA; 10.1.5 68
pregme 2 lxsr cpos:suM*ejoRon 10.1 a s

Ixopomments:oo oments
prwvae 21, bWpea:sovroe-postn, 7.4.A 63

lx_*minnt: comments;
prkvtat 2) dbscrlmi nt:OSCRMTY.AR..S; 7.4.A 63

petypeL c'krpos: souroeposR~on, 7.4. A 63
Iioomnt: conments,
lx vmrp: sybol rep;

p rvte typeId 2" s typeaspec: 1YftPEC; 7.4. A 63
prec-ld at3 k-wopoeurcepostlon 6.1 .A 57

bt covments: Comments.
lxsymrep: wvmbolrep;
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PrOs Id sm...spe:HEADER, S. I.A 57
-vi_bd: 8U8P_800Y068SC.
smRjocatlon: LOCATION.
am_stu: OEV OCCURRENCE,
sm-Mfrst: OEF...OCCURRENCE;

poeure 21 as...param.s: PARAM._S; 6.1.8 56
procedure z3 Iksrcpos:aource..poultln. 6.1.8 56

Ixoomnrt: comments;
Procvdure...cll x as~name: NAME. 6.4 61

4Aspram..asocs: PARAM_ASSOC_S;
Procedure-call z) 1Ksrcpos:sourop~stton, 6.4 61

tx-comnmtS offifenta;
PrcrOC ..call 23 aM__norneIiZed~pra..s: EXP S; 6.4 61
qualffied =i, asnme: NAmE. 4.7 50

as....xp: EXP;
qualified z) 1k..srcpos: source~p"Wtln. 4.7 50

isCommients comments.
qualified z) wsmexpjype: TyKEsPc, 4.7 50

smyalue: value;
raise ai as name-void: NAMELVOI; 11.3 71
rase = 31K srcpos: source..poaltion. 11.3 71

1_0mments: comments.
range 2)as..expl: EXP. 3.5 37

aaezSP2: EXP;
range 3) 1.srcpos: ource_.position, 3.5 37

1Kcomfnents: comments;
range 2 1a m_baaejyp: TYPE..SPEC; 3.5 37
record = I ana list: seq of COMP; 3.7.A 41
record =) ksrwcpcs: sourcepositon, 3.7. A 41

1K.comments: comments;
record z) omn_**::EXP..VOIo, 3.7.A 41

smdlcrimlnents: DSCRMTVARS,
sm~pacdng: Boociw,
sm-recordspec: REP..YOID;

record-rep =,as-name: NAME, 13.4. A 74
as alignment: ALIGNMENT,
ascomPrePs: COMPREP .S;

record-rep zi karopos: aource_.poait~n, 13.4. A 74
Ix"cmments: comments;

renam as_name: NAME; 6.5 64
rename = 1Kscpos: surce~posjuon, 8.5 64

1_commen.s : comments;
return a i aa..exp o: EXPvoID; 58 5
return =3 ksrwcpos:ourcepilon, 5.8 56

W commnrt:comment.
reWS0 as..jd:ID. 5.5.8 55

saCdscrt~range: OSCRT _RANGE;
rese = is-srpos: source.,position, 5.5.B 55

1_comments: omns
select =I- asselec clause s: SELECT CLAUSE S. 9.7.1.A 67

s.sts:STMS;
select x2 Ix rcpo:soure...posftion, S.T7.1.A 67

1Kcomiments:0comments.
solectcleuse =) as~exp_.yoid: EXyOID, 5.7.1.8 67

select-.clause z) Uxsrcpoa: source.pow".on 9.7. 1. 8 67
1Kx comwmnt: comments;

selctclause-s 2). asjlst:san of SELECT_.CLAUSE; 9.7.1I.A 67
selact..cluse..s 23 isrcc: source..posltlon, 9. 7. 1. A 67

Ixcomments: comments;
selected 21 as...nMe:NAME, 4.1.3 46

as...degnator.0chr: DESIONATOA...CHAR;
selected 2 3- ti.srcpoe: sue..plto 4.1.3 46

1K.comments:conmmnt;
Ic z) sm...ep..type: TWEK.SP!C; 4.1.3 46

simple~jep 2 3 s.neme: NAME, 13.3 74
aaeup: EXP.

simple rep a i- ..srcoo: source..posmton. 13.3 74
Ix comments:conments;

slice z, I. .nafme:NAME, 4.1.2 46
&@-..dadtange: 0CR8=_RANGE;

dice -, 1K...stpo: sourcejoltion, 4.1.2 46
1K...cenments: commeants;

slice u sm...ep.tye: TYPE_9.PEC, 4.1.2 46

I7
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sm-.constrait: CONSTRAINT;
stmus a u siM: seq of STM; 5. 1. A 51
atmas zi Ixsrcpoa:souroepolton, 5. 1. A 51

btxcommnt: comments,
atrliteral =) Ixaropos: * ouroejioition, 4.4. D 48

Ix_comments: comments,
Ixsymrep: symboLrep;

strtng-likeal = > mnexpjype: TWESPEC, 4.4.D 48
am constrainwt: CONSTRAINT,
sm-valu*: value;

stub wj rt~cpos: souapoatn, 10.2.9 70
Ix comments: comments;

subprogrambody as-designator: DESIGNATOR, 6.3 60
eaheader: HEADER.
as-block-stub: BLOCKSTUB;

subprogrambody Ixsrcpos: sourcepoitlon. 6.3 60
Ix comments: comments;

subprogram-dod z) sadsignator: DESIGNATOR. 6. 1. A 57
ashoader: HEADER,
as _subprogram -dot: SUBPROGRAM-DEF;

subprogram-dad z) lx srcpos: sourcoposfton, 6.1. A 57
Ix-comments: comments,

subtype :asid:ID0, 3.3.2.A 36
ascontrained :CONSTRAINED;

subt~ype s hiscpos: surcopostlon, 3.3.2.A 36
Ix-comments: comments;

subtyp..Jd =,j Ix acpos:asource~posion, 3.3.2.A 36
Ix_comments: comments,
Ix_symrsp: syiborep:

subtype_Id =i sm_type spoc: CONSTRAINED; 3.3.2.A 36
subunit =,! as_namo: NAME, 10. 2. A 70

as _subunitbody: SUBUNITBODY;
subunit =, Ix -srcpos: sourcepoaeton, 10. 2. A 70

Ix-comments: comments;
task-body as iad: ID, 9.1.8 65

as~block .stub: BLOCK STUB; 918 6
ta*_ody=i.Ixsrcpoi: sourcepoilion, 916 6

Ix-comments: comments;
task body_ =). b Ixsrcpos: sourceposton, 9.1.8 65

bIo-omments: comments,
Ix_&ymrep: symbol rep;

task body id =i wnmtypespc: TYPESEC, 9.1.9 65
sm..body: BLOCK( STUB VOID,.
smjlirst: DEF OdURRENCE.
am stub: DEOF OCCURRENCE;

tskdecl aajd:ID, 9.1.A 65
as_task def:TASKDEF;

ta*kded t Ix~scpos: sourcepositlon, 9. 1. A 65
Ix_comments: comments;

taskape aa..decld.s:DECL_.S; 9.1. .A 65
taos_spec 'xi lixscpos: sourcepostion, 9.1.A 65

Ix.commentswcomments;
task spec wnsmbody: BLOCK.STUB..VOID, 9.1 .A 65

smsddrees: EXP VOID,
smatoroges*z*: EXP VOID;

terminate ai Ix_rcpas: soure...poaltlon, 9.7.1.8 67
bkxcomments: comments;

tbed~en" zy. a_stm_sl:STMS, 9.7.3 66
as..stmA2: STMS;

timedoentry 2) hxsrcpoa: source..poaition, 9.7.3 68
Ixcomments: comments;

type ni asJd:I10, 3.3. 1. A 35
asdrmt var s: OSCRMT_VAR_S,
ss..tw*peo:TPE SPEC;

type z 3. btrcpos: sourc..poslton 3.3.1.A 35
Ix comnment : comments;

type_. i. Ixsrcpos: souroepolton. 3.3.1I.A 35
Mxoomments: comments,
bIymmep: symboirep;

typelId 2) on typ pe:TYE SPEC, 3.3.1. A 35
smjlrst-trPOCURAENCE;

uflivao ijxed 2), ; App. 1 75
oli elInteger 2) ; App. 1 75

wul-areal z ; App. 1 76
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Use =) as_Ils:seq of NAME; 8.4 64
Use C) Ix_srcpos:souc*_..posltlon, 8.4 64

bk-oomments: comments;
used_bitnjd =)- Ix srcpos: source-.posltion. 4. 1. A 45

hIccomments: comments,
lx..symrap: symb*L..rep.

used-bit'_Id z). smn-operstor: operator; 4. 1. A 45
used_bite'_op 2 b WT4"srpo:aourve-positon, 4. I.A 46

Ix comments: comments,
Ix..symmep: symboLrep;

usedk_bite_op = sm-opeistor: operator; 4. 1. A 45
usedlotiar --3 Ix srcpos: source.-position, 4. 1. A 46

Ix _omments:coments,
Ixsymmp: symbok_rep;

used char =3 sm defn: OEFO.CCJRRENCE, 4. l.A 46
smCexptpe: W ESPEC,
srr-ii~~eue: value;

used nameji Id >~ Ixsrcpos: source-position, 4. 1. A 46
I*-pomments: comments,
Ix..synwep: symbol rep;

used -name-id z) en defy,: DEF_OCCURRENCE; 4.1 .A 45
used_objec_Id = Ix 1_srcpos: sourcej..ostion, 4.1 .A 45

Ixoopmments: comments.
Ix..sywrep: symboljep;

used-object_ d =i, enexp type: TYPESPEC, 4. 1. A 45
en_dehi: DEF_OCCURRENCE.

used~o = 3 bt sm.ya~ue: vakue; 4 .A 4
use...p s Ixsrcpos: source-postion. .. A 4

I*_comments: comments.
Ixymrep: symbol..rep;

used.~op =3 sendetn: DEF_OCCURRENCE; 4.1. A 45
var =) as_Id 8:1 D5, 3.2. A 34

&s,_yp...pec: TYPESPEC,
&s.._object_..de: OBJECTDEF;

ver Z) Ix-srpo: source-position, 3.2. A 34
I*__comments:- commentv

ver Id=)- Ixsrcpos:source -- tion, 3.2. A 34
Ix-comments: cc t~nts,

Ix..ywep: symboirep;
var-d =j sm._obj type: TYE SPEC, 3.2. A 34

en-addreas: Exp.VOID,
sm_.q~bjdet: OEfCTDEF;

vaint=) "_oholces: CHOICE S,3.7.3.A 43
asrjecord: INNER.RECORD;

varlent z) Ix aropos: source-position, 3.7.3. A 43
1x_oomments:comments;

varlantpart zi as nsme: NAME. 3.7.3.A 43
sasvuuiant-s: VARIANTS5;

varent-psf =I Ix-srepos: source-poatton, 3.7.3.A 43
Icomments: comments;

vailent-s a) as.-IQs:seq of VARIANT; 3.7.3.A 43
variant-s =) Ixsrcpos: source-poslon, 3.7.3.A 43

void ~ I c >; b-omments: comments; 23
while xl asexp:EXP; 5.5.8 55
while zi Ixsrcpos:sourceposition. 5.5.5 55

Ix-comments: comments;
with x) as Rds:seq ot NAME; 10.1.1.8 70
with 2) Ix...scpo: sourceposltlon, 10. 1.1.8B 70

Ixomments : comments;



Diana Names Page 185

APPENDIX V

DIANA NAMES

This appendix is an Index of all of the names which occur In the DIA A

definition: these names Include class names, node names. attribute labels, and

attribute types. Each name Is shown in the form

name [section-number-list] page-number-list

The section number list gives all the sections of Chapter 2 which make use of

the name. The page number list gives pages of this document on which the
name may be found. Either list may be split across several lines.

ACTUAL [6.4, 12.3.C] 61, 73

ALIGNMENT [13.4.A] 74
ALTERNATIVE (5.4] 53
ALTERNATIVES (5.4, 5.6] 53, 55
ARGUMENT [App. I] 76
BINARY OP [4.4.A] 48
BLOCKSTUB [6.3, 7.1.C, 9.1.B, 10.2.8] 60, 63. 65, 70
BLOCKSTUBVOID [9.1.A. 9.1.8, 12.1.A] 65, 71
8001~e [3.4, 3.6.A, 3.7.A, 3.8, 6.1.C, 37, 40, 41, 44, 59, 61

6.4]
CHOICE [3.7.3.A. 3.7.3.8] 43
CHOICE S [3.7.3.A, 4.3.8, 5.4] 43, 47, 53
COMP (3.7.A, 3.7.8, 3.7.3.A] 41, 43
COMILAnON ( 10. 1. A] 69
COMP_ASSOC (3.7.2. 4.3.A, 4.3.8] 42, 47
COMP_REP [3.7.8, 13.4.8] 41, 75
COUPREP_S [13.4.A. 13.4.8] 74, 75
COMP_.REP_VOID [3.7.8, 3.7.1] 41, 42
COMPUNIT [10.1.A. 10.1.8] 69
COND_CLAUSE (5.3.A] 53
CONSTRAINED (3.2.A, 3.3.2.A, 3.3.2.8, 3.4, 34, 36, 37, 40, 44. 50

3.6.A, 3.8, 4.8]
CONSTRAINT [3.3.2.9, 3.3.2.C, 4.1.2, 4.3.A, 36, 37, 46, 47, 49

4.4.0]
CONTEXT [10.1.1.A, 10.1.8] 69
CONTEXTELEM [10.1.1.A, 10.1.8, 10.1.1.8] 69, 70
DECL [3.1, 3.9.A, 3.9.8, 7.1.8] 33, 44, 62
DECL S E7.1.8, 9.1.A, 12.3.A] 62, 65, 73
DEFCHAR (2.3, 3.5.1.8] 32, 38
DEF_ID [2.3, 3.2.A, 3.2.8, 3.3.1.A, 32, 34, 35, 36. 38. 41,

3.3.2.A. 3.5.1.8, 3.7.8, 3.7.1. 42, 51. 54, 55, 57, 59,
5.1.8, 5.5.A. 5.5.8, 6.1.A, 6.1.C, 62, 63, 65, 66, 70, 71,
7.1.A, 7.4.A, 9.1.8, 9.5.A, 11.1, 76
12.1.A, App. I]

0EF_OCCURRENCE E2.3, 3.2.A, 3.3.1.A, 3.7.1, 4.1.A, 32, 34, 35, 42, 45, 57,
6.1.A, 6.1.C, 7.1.A, 9.1.8, 12.1.A] 59, t;2, 65. 71

DEF -O E2.3, 6. 1.A 32, 57
TOR E2.3, 4,1.A, 4.1.3, 6.1.A, 6.3, 32, 45. 46, 57, 60, 616.41

OESIGNATOR.CHAR (4.1.3] 46
DSCRMTVAR E3.7.1] 42
OSCRMT VAR 9 (3.3.1.A, 3.7.A, 3.7.1, 7.4.A] 35, 41, 42, 63
DSCR- ,~~.E (3.6.A, 3.6.8. 3.6.C, 3.7.3.8, 40, 43, 46, 55, 66

4.1.2, 5.5.8. 9.5.A]
OCRT.RANGE.,S [3.6.A] 40
oCRT.. ,RANGE.VOID [9.5.A] 66
ENUM UI"ERAL7 3.5.1.A. 3.5.1.8] 37, 3
6=, CEhON_oEF 8.3, 11.1] 64, 70
EXP [3.2.A, 3.2,. 3.5. 3.5.7. 3.5.9, 34. 3. 37, 3. 43. 41,

3.7.3.9, 4.1.1, 4.1.4, 4.3.A, 47, 40, 4, 50, 52, 53,

- - - - **-- ~f4 ~.*~W
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4.3.8, 4.4.A. 4.4.0. 4.4.0, 4.6, 55, 61.6, 74. 75
4.7, 4.6, 5.2, 5.4, 8..8, 6.4,
9.6, 13.3, 13.4.8. 13.5, 13.83

EW'...CONSTAINED (4.63 so
(3.7.2. 4.1.1, 4.3.A, 6.4, 9.5.8] 4, 4, 47, 61, 96

EXPVOID (3.2.A, 3.4. 3.5.1.A, 3.5.4. 3.5.7. 34, 37, 36, 31, 40, 41,
3.5.9, 3.6.A, 3.7.A. 3.7.8, 3.7.1, 4L 44. 53, 56, 57, 56.
3.8, 5.3.A, 5.7. 5.8, G.I.A, G.1.C, 62, 66, f. 67. 74
7.1.A, 9.1.A, .S.A, 9.7.1.8,
13.4.Al

FORMN[SUB.ROGI.EF (SlA. 12.1.C] 57. 72
FM1WE,6PEC 12.1.O] 72

[SOC 12.3.A, 12.3.8, 12.3.C] 73
GENIERIC .ASOC 8 [12.3.A] 73
GENER C-_EAOAU 112.1.A] 71
GEN PAnAM E12. 1.8, 12.1.C] 72
GE[ERIPARAIS E12.1.A, 12.1.8] 71, 72
HEADER .. A, 6.1., 6.3, 9.5.A] 57, 56, 80, a
ID RA.3 V.8.A, 3.2.C, 3.3.1.A, X. X1, 35. 36, 47. 54.

3.3.2.A, 4.1.4, $.S.A. 38., 55, SL 63. 88. 71

7.1.A 7.1.C, 9.1.A. 9.1.8, 12.1.A]
ID_4 [3.2.A, 3.2.B, 3.2.C, 3.7.1, 5.1.8. 34, 35, 46, 51, 53, 63,

6.1.C, 7.4.8, 11.13 70
MIER-RECORD 3.7.3.A] 43ITMa (3.9s.81s 44

ITEM 8 3.9.8. 5.6) 44. 55
ITERATION S.5.A. 5.5.8] 54, 56
Ineger [3.3.2.8, 3.4, 3.5.1.A, 3.5.1.8. 36, 37, 38, 36

3.5.4, 3.5.7, 3.5.9]
LANGUAGE S. I.A] 57
LOCATION 6. 1.A] 57
LOOP E5.1.0, 5.5.A. 5.7] 52. 54, 56
MEMBERSHIPOP [4.4.81 48
NAME E3.3.2.8, 3.6.8. 3.7.1, 3.7.3.A, 36, 40, 42, 43, 45, 46,

4.I.A, 4.1.8, 4.1.1, 4,1.2, 4.1.3, 47, 46, 49, 50, 52, 56,
4.1.4, 4.4.8, 4.4.0, 4.6, 4.7, 5.2, 58, 61, 63, 64. 66, 66,
5.7. 5.9. S.I.C, 6.4, 7.4.8. 8.4, 70, 72 73. 74, 75
6.5, 9.5.9. 9.5.C, 9.10. 10.1.1.8,
10.2.A, 12.1.C, 12.3.A. 13.3,
13.4.A, 13.4.8. 13.5, 13.8]

NAME-.S E9.10] 6
NAME VOID (5.7. 6.1.8, 11.33 56, 56. 71
OBJEd-tDOEF (3.2.A, 3.7.1. 6.53 34, 42, 64
OP (2.3] 32
PACKAGEDEF [7.1.A. 7.1.8, 8.5. 12.3.A] 62, 64. 73
PACKAGF,_SPEC (7. A. 7.1.8 62
PACK-BODY_0ESC E7.1 A 62
PARAM E6.1.:C 56
PARAM_.A68 (2.S.A, 6.4] 33. 61
PARAM...A80C_ (2.6.A, 6.4, 9.5.83 33. 61, 66
PARAM (6.1.8, 6.1.C, 9.5.A, 9.5.C] W6 so, 66
PRAGMA (2.6.A, 10.1.83 33, 6S
PRAGMA_. (10.1.8, 13.4.A] 6, 74
RANGE (3.3.2.C, 3.5, 3.5.4. 3.5.7. 3.6.C, 37, 36, 38, 40, 46, 75

4.4.8, 13.4.83
RANGEVOID 3.5.7. 3.5.9] 3
REP 3.7.A, 3.9.A, 13.1] 41, 44. 74

REP...3I E7.Aj 41
R 3.4. 3.5.91 37, 38

S9.7.1.A, 9.7.1.83 67
SELECTCLNSE S_ [9.7.1. A] 7

HORTI:qcUITW [4.4.A] 48
8Tm [.I.A. 5.1.8. 5.1.0. 5.1.0, 5.S.A. 51. 52, 54, 678~.7.1.8]
STM-8 [.I.A. 5.3.A, 5.4, 5.5.A. 5.6, 51. a, 54. 56, a 6, 67,

9.5.C, 9.7.1.A, 9.7.1.8, 9.7.2, a
9.7.31

SU11PROGRAM 0EF (..A 8.5, 12.1.C, 12.3.A] 57, 64, 72, 73
S uW BADY c 6.1.A] S7

10.2.A] 70
S1.. 65

1WE--iRANE (4.4.8] 46
TYE3PEC (.2.A, 3.2.8, 3.3.1.A, 3.3.1.8, 34. 35. 36. 37, 38. 33,

.3.2.8, 3.5, 3.5.1.0, 3.5.4, 41, 42,44, 46,46, 47,

I, L .. . ... . . . . .... .... . . . . ... . . -i ... . - .. " ,-. . . . .t . . . : ..

I ' '
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3.5.7, 3.5.9, 3.7.3, 3.7.1, 3.6.1. 46, 4, 80, 8, 8, 61,
4.1.A, 4.1.1. 4.1.2, 4.1.3, 4.1.4, 3, as, 7. 76
4.3.A, 4.4.A, 4.4.8, 4.4.0, 4.6.
4.7, 4.8, 5.6.8, 6.1.C, 6.4, 7.4.A,
S.I.A, 9.1.8, .1.D, App. 1]Wo mn IxvO.l.l 88UIT IU. , 4.1. A] M 4u
(WIW 2.3, 4.1.A1 M, 41

V[ATIT 3.7.3.A] 43

VAKATS j3.7.3.A] 43
Mapt 5.1.D, ..01 w, 68

., [3.3.1.8, 3.6] 3s, 44
ddneM 13.1, 13.51 74, 75

4.3.A, 4.4.0 47, 46
113.4.A] 74V 4.1.A. 4.1.31 4, 46

amow4.4. 4.81 49. 30

4.4.A] 46
ni6fluii&d Sl.A, App. I] 57, 76
SWFN 3.3.1.8, 3.6.A] 36, 40

6.43 61
13.4.Al 74

m ltesiltvsa 5.4, 5.6] 53, 8

a-bkny-op 4.4.A] 48
,, -.bsat 6.3, 7.1.0, 9.1-8] 0o, W Is

3.7.3.A, 4.3.8, 5.41 43, 47, 53
U- monrok. 113.4.A] 74
s oonirlnod (3.3.2.A, 3.4, 3.6.A, 3.81 3, 37, 40, 44

!L er"snrM* (3.3.2.8] 3s
as.. ooest [10.1.8] as

ocft-p 9I:A65w dadl.S *1 71 a 2

o1u-gn-atr I.1. 6.3. 6.41 57, 60, 61
m~uegnmr.ar [4.1.3] 46
j e amtvw..s [3.3.1 .A] 35
w a d _rant"rg (4.1.2. 5.5.8] 46, 85
..dart- gp (3.6.A] 40

adsmt~ra voi [9.S.A) Se
as~aaseim del [11.1] 70
U-_4Mp E3.2.8, 3.5.7, 3.5.9, 4.1.4, 4.3.8, 35, 3s, 47, 48, 4, 80,

4.4.5, 4.4.D, 4.6, 4.7, 5.2, 5.4, 52. 53, 85, 66, 74, 75
.5.5., 9.6, 13.3, 13.4.8, 13.5,

13.6]
asipil (3.5, 4.4.AJ 37, 46

(3.5, 4.4.A] 37, 46
U-SpMoo trawwed [4.8] s0
"e-Gpa 4.1.1] 46
m•__usp VMd 15.3.A, 5.7, 5.6, 6.1.C. 9.7.1.8, 53, 86, 59, 67, 74

13.4.A"

asguwm ul j" M. 12:3.A 71

aq~jqe..gsnsrl~pu 12.1.A 71
ehode [8.1.A, 6.3] g

ao_)d 12.8.A. 3.3.1 3.3.2.A 4.1.4, 33, as, , 47, 54, 865,
5.S.A, 5.5.8, 7.1.A, 7.1.C, 9.1.A, . U, 8U , 71
9.1.0, 12.1.A]
[3.2.A. 3.2.B, 3.7.1, 5.1.8, 6.1.C, 34, 3s, 42, 51, 8, IS,.. I 7.4.8,11.11 7

UCNd A. 3.2.C, 3.5.1.A. 3.S.A, 33, 3s, 37, 40, 41, 414

3.7.A, 3.7.1, 3.7.2. 3.7.3.A, 48, 44, 46, 47, 61, 5,
3.9.3, 4.1.1, 4.3.A, 5.1.A, 5.3.A, 86, I 64, 67, , U,
5.4, 6.1.C, 7.1.B, 6.4, 9.7.1.A, 70, 7 73, 75, 79
9.10, 18.1.1.A, 10.1.A, 10.1.8,
10.1.1.8, 12.1.8, 12.3.A, 13.4.9,

48We•s" O ll m I nl q 4.4 . 419

1ame [ 3 . 3 . 9. 3.6.8, 3.7.1, 3.7.3.A, 31, 40, 4, 48, 46, 47,
4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.6, 80, U 8 8, 6, ,

* x
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4.7, 5.2, 8.9, 6.1.C, 6.4, 7.4.5, 64, 06 70. 73, 74, 75
0.5, 9.5.1, 9.6.C, 10.1.A, 12.3.A,
13.3, 13.4.A, 13.4.S, 13.5, 13.0

mmes..M 1 .10 U
w.mwvd 5.7, 6.1.S. 11.31 8, U, 71

3.2.A. 3.7. 1] 34,AI
7.1 .A] a

esw oo..s L..A, 6.4, 9.5.8] 33, 61, 66
6.1.8, 9.S.A. 9.5.C3 s,

muj~rqe..s 10. 1. 8, 13.4.A] 0, 74
emngs 3.5.4, 13.4.81 36, 75

3.5.7. 3.5.93 39
m13.7.3.A4
sss&.,9. [1.7.1.A] 67
as.m 5.S. 55.Aj 51. 54

1[.3.A. 5.4. 5.5.A. 5.6. .S.C. 53, 54, 56, 66, 67
.7.1. A 9.7.1.8]am~1 .7.2, 9.7.33 66

a-stm. 9.7.2, .7.3]
W_-SION-m42 9:. :3 .G]
U.m.abpmu-dy l. 1. A] 57

m.euuI~sd 10.2.Aj 7es.WaLd. 1.1.A] i

as._bpeJnu 4.4.8)]4
4.44.3

as wa es 3.2.A, 3.3. 1.A] 34, 3-
es~a..i :10.1.8] as
e..umlMts 3.7 3.A3 43

ame 5.1.C, 5.2) . 51, 52
emS 6.4, 12.3.5) $1, 73
-fr (App. 11 7

dfm L3.5 4.1.A 4.1.4] 37. 45. 47a**Lfi~wM Ollll [3.5. 4.1.A. 4.1.4) V, 4. 47
bmv 4.4.A] 40

bON, 5.1.0. 5.6., .1,A, 6.3, 7.1.A. 52. 55, 57. 6o, 62, es
.1.A]

b".1.0] 72A c5s.1.0, 5.4) 52, 53
odimpl 8z. [3.3.2.8., 3.4, 3.5.1.A, 3.5.4, 36, 37, 38, 39

3.5.7, 3.5.9)
dltoiom8 [3.7.3.A, 43

eds [ C.1.C, 13.03 51. 75
smmeab [2.9.A, 3.2.A, 3.2.8, 3.2.C, 33, 34, 35, 36, 37, 36,

3.3.1.A, 3.3.2.A, 3.3.2.1, 3.4, 36. 40, 41, 42, 43, 44,
3.5, 3.5.1.A, 3.5.1.6, 3.5.4, 45, 45, 47, 45, 49, 30,
3.5.7. 3.5.9. 3.6.A, 3.6.8. 3.7.A, 51. 52, 53. 4. 55. 56,
3.7.8, 3.7.1, 3.7.2, 3.7.3.A, 57, 56, 5, 60, 61, 62,
3.7.3.8, 3.8, 3.9.8, 4.1.A, 4.1.1, 63, 64, 65, 6, 7. 611.
4.1.2, 4.1.3, 4.1.4, 4.3.A, 4.3.8, 69, 70, 71, 72, 73, 74,
4.4.A, 4.4.8, 4.4.0, 4.6, 4.7, 4.8, 75
5. 1.A, 6.1.0, 3.1.F, 5.2, 5.3.A,
6.4, 5.5.A, 5.5.8, 5.6, 5.7, 5.6,

.9, 6.1.A,. 6.1.3, G... 6.3, 6.4,
7.1.A, 7.1.9, 7.1.C, 7.4.A. 7.4.8,
6.4, 6.5, O.1.A, 9.1.8, 9.S.A,
9.5.8, 1.5.0, 9.6, 1.7.1.A,
9.7.1.9, 9.10, 9.7.2, 9.7.3,
10.1.1.4 1O.1.A, 10.1.8, 10.1.1.8,
10.2.A, 10.2.8 11.1, 11.3, 12.1.A,
12.1.8. 1.1.C. 12.1.0, 12.3.A,
13.3, 13.4.A. 13.4.5. 13.5, 13.3

OmDMlid 3.7.3] 41
.spmpp 13.4.5) 75

.1 m , _p a 13.4.83] 75

l0.1.8] s
10.1.A] o
5.3.A) U
5.1.0, 9.7.2)a
,O. ].. 34

cos" .1. . .Al U, 34

3mbiinm4 3.3.2.8. 3.6.0] 316 40
o~ - 10.1.1.A] a

-9 4.4.0, 4.6) 4, 80
dad... 7.1:.ft
de. 36.1.5 3

-I., ,.



Diana Names Secton V/ Page 89

d hS 3...Sfim 3.1. 7.4.9 n. a

(. dd .1.0, 1.6| 81
deddved 3.3.1.3, 3.43 26, 37

u.3.2.0, 3.7.21 37. 4

dawmL _d .7.11 4 2
dmm..s .7.11 4

dltJ-rrU*s 3.3.2.C, 3.8.Aj 37, 40
OR " S Te s ... A I 5 $

_oN5.1.0. 1.5.31 51, 38

I.5.AI a
e3X.5.31.1 367

.3.1.3, 3.5.1.Al 33, 70
3.1, 11.11 70,,q _+11.1$ ,

ilR 81.G,5. 1, 6

p'ina. A.5 36.7.24.1.11 4
3. 3.1.3, 3.3.2.0, 3.. 36, 37, 3Bti3 .3.1.0, 3.3.2.G, 3.5.1 Yj, so 3

ftr 3.5 72

W o wm 12.5 72for d 12.1.0
fmus~sS 6.1.3. 121AJ6

ftMWW 16.1 Al 7

rtoe Ilost 12.1.01 so T

hm wom 6. 1., 12.. A] 4 , 81
10tl nun a 4.1. 6.41 S

3.1, 10.1.3, 12.1.AI U, 66, 71
' ~12.1.A] 73

12.1.8 2

SgIb 51, al 66gess1.rlim...._ 5.1.0, 5.91 ,

A 3.2.C] 5, 03
-- 5.1.0. 5.2.A]

in S. 1. C. 12.1.0 72

In out .1.d

hdWi (4.1. A, 4.1.11 43

Iner rooard (3 7 3.Aj 43 R,7
infiIpi~n C6.1.. 7 .1.A, 12.3.A 31, 3

Intaes [3.3.1.8, 3.5.41

mw•i 5-. 63I_. d 3.4. A'44"

7.4.A 6

[5.1.3a 51[8de .1.8]
5.1.A 

54

Ia.6A, a .2,A. 3.2.8, 3.2. 0, . 34. 35, 35, 37. 39.

3.3.1.A. 3.3.2.A, 3.3.., 3.4, , 40, 41, 4, 45. 44,

3.5, 3.5.1.A, 3.5.1., 3.5.4, 4, 4. 47. 4, 4. 60,

3.5.7, .5.9, 3.O.A. 3.6.8, 2.7.Al 1, 2, 11 , 8 54. 5, 6N

3.7.3, 3.7.1, 3.7.2, 3.7.3.A, 57, 6 , n , 0, 1, a,
3.7.3.8, 3.5, 3.9.B, 4.1. A 4.1.1. U, 64, S, 6- 67, ,

4.1.2, 4.1.3. 4.1.4, 4.3.A, 4.3.3, 0, 70, 71, 71, 73, 74,

4.4.A, 4.4.9, 4.4.D, 4.6, 4.7. 4.0, 75
a.1.A, 5.1.3, a.1.F. 5.2. 5.2.A,
5.4, 5.5.A. 5.5.. $.G, 5.7, 5.6,

5.1, s.IA. ..1.6, 6.1.0, 6.3, 6.4,

7.1.Ap 7.1.3, 7.0, 7.4.Ao, 7.4.3,

6.4, 6.5, I. 3.1.,1I.A,
3.6.3, 9.8.0. 9.6, O.?.1.A.
1.7.1.8, 9.10, 9.7.2, 9.7.3,
10.1.1.A, 10.1.A. 10.1.., 10.1.1.3,
10.2.A, 10.2.3, 11.1, 11.3, 12.1.A,
12.1.3, 12.1.0, 12.1.0, 12.3.A,
13.3, 13.4.A, 11.4.3, 13.5, 13.61

610 46[a. 4j 
41

W1. A. .I.A. 3.2.6, 3.2.0, U, 34, U. 36, $To 3,

. ,- - NW
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3.3.1.A, 3.3.2A* 3.3.2., 3.4, 39, 40. 41. 42 43, 44.
3 6. 1.A, 3.5.l.0, 3.5.4, 46, 40, 4Y, 41, 46, 4,
3.3.7, 3.5.9, 3.6., 3.6., 3.T. , $1, MU s 13 t 04, OO, ,
3.7.3, 3.7.1, 3.7.2. 3.7.3.A, s,. 1 , n o. 61. m
3.7.3.8, 3.0, 3.9.3, 4.1.A, 4.1.1, 53, 64, 65, 66, 67, 63,
4.1.2. 4.1.3, 4.1.4, 4.3.A, 4.3.0, U, 70, 71. 73, 74,
4.4.A, 4.4., 4.4.0, 4.6, 4.7, 4.8, 75
S.1.A, 5.1.S, S.l.F, s.2, 3.3.A,
5.4, S.S.A, S.S.3, 5.6, 5.7, 5.3,
5.9. .A 6.l.S, 6.1.C. 6.3, 6.4,
T.I.A. 7.1.8, 7..C. 7.4.A, 7.4.8,
8.4, 6.5, I.1.A, 9.1.8, 9.5.A.
9.5.8. 9.5.0, 9.6, 9.7.1.A,
9.7.1., 1.10, 9.7.2, 1.7.3,
1O.1.1.0. I.A 10.1.8, 10.1.1.8,
10A..A, 10.2.8, 11.1, 11.3, 12.1.A,
12.1.8. 12.1.C, 12.1.0, 12.3.A,
13.3, 13.4.A, 13.4.8, 13.5, 13.63

bIumnwep [3.2.A, 3.2.8. 3.3.1.A, 3.3.2.A, 34, 35, 36 30, 41, 42,
3.5.1.3, 3.7.8, 3.7.1, 4.1.A, 45, 4, 51, 54. 85, 57.
4.4.0, 5.1.3, 5.5.A. 5.5.8, 6.1.A. U9, 62, 3, 65, 66, 70,
6.1.C, 7.1.A, 7.4.A, 9.1.8, 9.5.A, 71, 75
11.1, 2. 1.A. App. 1]

nellbem 4.4.8] 46
SmmS (.10] 80

n1mJ 4.3.3 47
neme&.ab M ~ 5[.1.D, 5.5.AJ 52,54

umed nI C s.5.AJ 54
nh_.e It 12.1.03 72
notin 4.4.83 43
nuLaoom [4.4.0) 43
na-omp (3.7. a 41neA~olm S3.I. C, S.1. F] 51. 52
number 3.1, 3.2.8] 33, 33
numw_d [3.2.83e 35
number rep C4.4.0] 43
nummicUteral [4:4.0] 43
ps4. I.A 46

orWeels 4.4.A] 4B
3.7.3.8) 43

out 6. I.C] 80

3.9.8, 7.1.0, 10.1.8, 10.2.AJ 44, 63, U9, 70
p~ _dod 3.1, 7.1.A, 10.1.8] 33, 62, U
ps~bueId 7 :1.AJ 62pu.eeos..ka 2. 3.A) 33
p~ -mS.P 7.1., 12.1.A] 2, 71

pem~ m s .0A]l 3
pu. .1I.03 Uo

pniged4.4.03 4

pr4m 2.0.A, 3.1, 3.7.3, 5.1.C, 5.4 33, 41, 51, 13, 67, U,
1.7.1., 10.1.3, 13.4.3] 75

pmgm,~id S.I.A, App. 157, 7
prqpmas 10.1.9] - a

Pie 7.4.A 3
prks%_%tped 7.4.A)
proji 6. I.Al 57p G.S. t. ] 5.71
pOedufe 6.1.3, 12.1.A3 U. 71Il.,eedu1w....I 5.1., 6.431 51, 61

qie 4.4.0, 4.73 4. 80
roe a.I.C, 11.] 1, 71
row 3.53 37
regd 3.3.1.0, 3.7.AJ 36. 41
remoaurlojp 13.1, 13.4.A] 74
rem $.;.A, 7.1.A, 0.5] 57, M, 64
rewm 5.1.e, 5.63 51, aswene 5.5.3) U0
NOWt 6.1.0, a.7.1.A] 6, 67
sou" SIt S.7.1.83 67

(daLemum_.e 07' 1: A] 67
eled 4. 1.A, 4.1.33 45, 46
en e M.TEHNATNIE 5.4aml at ANUM4ENT App I] 71

o CeOMP 3.7..7.3.A] 41, 43

L +++' ..... +++++ +++++ _
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a rA 3.7.29 4.3.A1 41. 47a" of ~ W 1.4. 75

sq 01 CON_ CLAUE 6.3.Aj U
amqo cmit.ELEM 10. 1..A] as
sqof01101. 7.1.5 6z

ofq 0OOMY VA 3.7.11 412
anq of OSCET lANGE 3.61A 40
amo B4ImJm_ o 3.S.1.A] 37
a" at Exp 4.1.11 46
8eq at n . 12.3.A1  73
amq 0ot4RC. A 1t. 1.3e 72
am at0 3.2.a 35
smq0oflM 3.3.3 44
eq of NAME 6.4..10, 10.1.1.1. 64. , 70
qof PAAMAO S. I. C)

m of E.EYT. CLAUS e.71.A] 67
a at STM :5.1.A] 61
nq of VARIAT 3.7.3.A3
GimpIeyep 13.1. 13.31 74

4.1.A, 4.1.21 46, 46
WmeMItlldeft '3.4, 3.5.91 37. 3
m edes 3.2.A. 7.1.A. S.1.A, 9.S.A] 34, 62, 63, a
umn-.I.botypo e [3.3.1.9. 3.5, 3.5.4, 3.5.7. 3.5.91 36. 37, 3. 39
Oft bft [3.5.91 39

[.I.A. 7.1.A. 9.1.A. 9.1.8, 57, 62., 66, 71
12. 1.A]

mR__mp.spe. 3.7.3, 3.7.1] 41, 42
monstreiM 3.3.2.8. 4.1.2, 4.3.A. 4.4.D1] 3, 46, 47. 46
um~colrIhed 3.4. 3.61 37. 44
m deLs 12.3.A] 73
mdleR 4.1.A] 46
mndiscrtlnonts 3.7:A, 7.4.A1 41, 63
am smpbn-0 11.1 0

8k-op-tiw 4.k1. 4.1.1, 4.1.2. 4.1.3, 4.1.4, 46, 46, 47, 4. 46,80,
4.3.A, 4.4.A, 4.4.0, 4.4.D. 4.6, 61
4.7. 4.0, 6.41

sm ti [3..A. 3.3.1.A, 3.7.1, s.I.A, 34, 3, 42, 57. 3 62,
6.1.0. 1.1.A. 9.1.3. 12.1.A] 6, 71

m1jbeIo _perm..a 12.1. A 71
sm m p 3.2.3. 3.7.0, 3.7.1, S.1.C1 U. 41, 4, 8
am HNNIesa 6. 1. A57
UmuWmen_=ed-O"-s 3.7.2 4.3.AJ 42. 47
m._nmAdwm..._s 6.4, 95.81 .1, es
mbLdef t3.2.A3
sm.obLtypo 1 3.2.A, 3.2.S. 3.6.1.3. 3.7.8. 34, 36, 30, 41, 42, W,
M .7.1, .3. 6.1.01 U9
sm..oedr C4. I.A 46

mUpadV (3.4, 3.6.A, 3.7T.A 37, 40, 41
amePS 3.5.1.51 3
sm-rurd-speo [3. 7.A] 418m_rop 3$.5.1.B

m".4, 3.. .A, 3.5.4. 3.5.7, 3.5.9. 37, 3, 25, 40. 41, 44
3.6.A, 3.7.A, 3.61

smasp 6.1.A, 71.A. 9.5.A, 12.1.A s. 6a.. 71
MR[6o 5.1.8, 6.5.A, 5.71 ]1, 4, Us

[3.4, 3.0. 9.1.A] 37, 44, 63
M Ub [6.1.A, 7.1.A, 9.1.8. 12.1.Aj 57, 2, 63, 71

.AtWpeep@s 3.3.1.A, 3.3.2.A, 7.4.A, 9.1.81 36, U3. 6
uptw-mb" [3.3.2.9, 3.5.4, 3.5.71 3, , 30

14.1.A. 4.1.4, 4.4.A. 4.4.8, 4.4.D. 46. 47, 45, 46, g0, 61
4.6, 4.7, 4.6. 6.41

uooo.sl [2.S.A, 3.1.A, 3.2.8, 3.2.C, 3 , 3, 36, 36. 37. 3,
3. 1.A, 3.3.2.A. 3.3.2.3. 3.4. 3, 40, 41, 42, 43. 44,
3.5, 3.5.1.A, 3.6.1.. 3.5.4, 46, 46, 47, 46. 45, 80,
8.8.7, 3.5.3, 3.S.A, 3.6.3, 3.7.A, 51. 2, 3. 54, 8, 85,
S.7. , 3. .1, 3.7.2, 3.7.3.A. 57 8, go. go, 61. 2.
3.7.3.3, 3.0, 3.9.8, 4.1.A, 4.1.1. 63. 64. s . , 57. a,
4.1.2 4.1.3, 4.1.4, 4.3.A, 4.3.5, 65, 70, 71 .72. 73, 74,
4.4.A, 4.4.9. 4.4.D, 4.6, 4.7, 4.6, 75
6.1.A, S. . 1, SI, 6.2, 5.3.A,
5.4, 5.8.A, .5.8. 5.6., 6.7, 5.5,
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5.1. *.1.A. 6.1.5. G.1..G. . 6.4.
7. .A, 7.1.5I 7.1.C, 7.4.A, 7.4.8,
6.4, 6.5, 1.I.A, 9.1., 9.5.A,
9.5.8., 9.5.C, 9.6, 9.7.1.A,
0.7.1.5. 9.10, 9.7.2, 9.7.3,
10.1.1.A. 10. 1.A, 10.1.5, 10.1.1..,

10.2.A, 10.2.S, 11.1. 11.3. 12.1.A,
12.1.01 I., 12.1.0. 12.3.A.
13.3, 13.4.A, 13.4.8. 13.5, 13.8

dmL..l a. I.A] 51
drf-1ad4. 4. 49

mub 6. 1.A. 7.1.A .I.A, 10.2.83 ST. 62. s. 70
subprogemm.bsy 3.9.8. 6.3, 10.1.8, IO.Z.A] 44, W. U. 70
abprepum...dsd ~ 3.1, 6.1.A, 10.1.8, 12.1.C] 33, 57, 08, 72

3.1, 3.3.2.A] 33. 36
aubtwed 3.3.2.A] 36
subunit 10.1.8, 10.2.AJ 66, 70
svmOLWrep 3.2.A, 3.2.8, 3.3.1.A, 3.3.2.A, 34 35. 36, 33• 41, 42

3..1.8, 3.7.8. 3.7.1, 4.1.A, 46, 46, 51. 84. 5. 57,
4.4.0. 5.1.8, G.S.A, 5.5.8, 6.1.A, 9. 62, 63, 6, 65. 70,
6.1.C, 7.1.A, 7.4.A. 9.1.8, 9.5.A. 71, 76
11.1, 12.1.A, App. I

tmoubby 3.9.8, 9.1.8, 10.2.A] 44 65, 70
tbkbdv d ,.1.1 Ss%&dd3. 1. 9.1. A] 33, 65. 1 .A] 65

9:u.7.1.8] 67
m.ny .1.D, 9.7.3) 52. 616

type 13.1. 3.3.1.A. 12.1.C) 33. 35, 72
t"-w_ 3.3.1. A] 35
UnktMIdft"s (App. 1] 7
unkuramwLh [App. 1] 76
unoveam.lvmIe (App. i] 76
use 3.9.A., .4, 10.1.1.A] 44, 64, 6
uoednW_ 14. 1. A 45
WUnd.nboiOp (4.1 .AJ 45

"smd ltar 44.1.A, 4.1.3] 45, 46
[4.1.A 3 45

ussd..ObjecLd (4..A] 45
usedOp 4.1. Aj 45
Von 14.1.A, 4.1.4. 4.4.A, 4.4.0, 4.4.0, 45. 47. 40, 40, 50, 61

4.6, 4.7, 4.6, 6.43
w 3.1. 3.2.A. 3.7.83 33. 34, 41
vurd 3.2.A] 34
vw~nt [3.7.3.A] 43
v nL3.7. 3 .7.3.A] 41, 43
v(rs 3.7.3.3A) 43
void 3.2.A. 3.3.2.8, 3.5.7, 3.7.A, 32. 34, 36. 36, 41, 44,

1.7.8. 3.6.1, 5.5.A. 5.7, 6.1.A. 84, 56, 57, 6. 6, U,
7.1.A, 9I.A, e.s.A, 10.1.8, 11.1] 6. 70

V*" (5.5.8) U
wire [10.1.1.8] _70
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( APPEND V1
DANA ATTRIBUTES

This appendix Is an Index of all of the attributes which occur In DIAN tree
nodes. Each attribute Is shown In the form

label : type (uection-nmbox-list] pa.nte-list

The section number list gives all the sections of Chapter 2 which make use of
the attribute. The page number iist gives pages of this document on which the
attribute may be found. Either list may be spit across several lines. The
attributes are grouped Into four sections: structurai. lexical, semantic. and
code.

Vi. 1. Structural Attributes

Structural attributes define the basic shape of the DIANA tree.

4waclal:ACTUAL 6.41 6I
ai .agnmen:NJGNMENT 13.4.Aj 74
an.s trnastv *:ALTERNATIV_$ 5.4, 5.5] 53, 35

Go".j~p~U r", s: 1 13.4.A] 74
.s..-~e&- d:Ct46TANE 3.3.2.A. 3.4, 3. 6. A. 3.6] 3, 37, 40, 44

mm~era&:CNSTRAINT 3.3.a.15 35
I , lk:COTEXT 10.1.3] aS

"as.d s EC...5 7.1.9 42
71U

W"-= = TO" 6.1. . 6.3. 6.4] 5,g.$

4.1. 46.5

mmtgrmg p: 06RAMIO S 3.6.j 40

m0-00sapthm dWECEIION..0W 1.11 10
as Wfl: awP ~3 . 4. 37. 46
apS: EW3:5, 4.A]37. 46

es...pMP 3.2.3, 3.5.7, 3.5., 4.1.4. 4.3.3. 35. 39. 47. 49, 49., 0.
.4.3, 4.4.0. 4.6. 4.7. 5.2. 5.4. 83. 53. U, a., 74, 75

6.G.B, 9.6, 13.3. 13.4.8. 13.5.
13.6]

eqswv_*osA&@hd: b.0OSD

as qWi 6 OP a C4.T11 46
eimWpw4i: P-VO 5U.3.A. 5. 7, 6. .. c.C. 9.7T.1. 6, 83., US, 67, 74

13 .4.AJ

ms..snjlms_h....:a9NE HEADER 11O...S 7

11 1.i A] 71
w 'hwAu:HAMS [6.I.A, 6.3] 57, US

eW_1d:IDI.SA, 3.3.1.A. 3.3.1.A. 4.1.4. 33, 36. 36. 47. 54, U.
U.$.A, 5.5.8, 7.I.A. 7.1.0, S.I.A,. WU, U, 71
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9. 1 11 1. A]
eswjd..s: ...S C3I.LA, 3.25B. 3.7.1, 5.1.9, .I.C, 34, 35. 42. 51. U,. 63.

7.4.B. 11.1, 7
aq.ma!,.: TBA 8 5.63 as

as--sw:aq of ALTERNAIMV 5.43 53
ei-*M ARSUM4T App. 11 76

a...U*:mat COICE 3.7.3.AJ 43
es.i:sq of COMP 3.7. A. 3 7.3. A] 41. 43
s...Us:asq of OOMP..ASWC 3.7.2. 4:3:A] 42. 47
iiUet:aq rA CoUP..RE 13.4.8) 75
@q i:mq d comp .UNIT l0.1.A] so
4i....Ustnq of c(ND CLAJE 15.3.A] 53
as Mt:amq of CONTOCT.ELEM *10. 1. 1. A] as
OsC.Us:asq at amCI :7.1 62
Aaji:smq of OSORM VAR *3:7.1 42
es...Uatq of M 1 TRANGE 36A3 40

as sqo ENIJ _ .TERAL *3. 5. ..A] 37
- :8* of P 4..111.46

asjbtasq of GENRIC..A9OC :12.3.A73
as.Ug:sq of GENERIC7_PAAAM 112. 1.8BI 72
emjNg:smq @f ID 3.2.CJ 35
u A seq ofITEM 3.9.8 44
Ors.".Naq of NAME 6.4, 9.10, 10.1.1.8] 64, U,. 70

n s:asq ofPARAM 6.1.C 59
mja:soq of PARAM...O 2. a -A] 33
us..seq of GM 10.1.83 so

s*N-@qo SELECT..CLAIJSE 9.7.1. A]67
eoN:soq of Sild 5. 1. A] 51

as ofn VARIANT 3.7.3.AJ 43
aso.m he- lip op:k MMERWHI...OP 4.4.81 46
euinWme:NAMC 13.3.2.8, 3.6.8. 3.7.1, 3.7.3.A. 35, 40, 42, 43, 46, 47,

4.1.1, 4.1.2. 4.1.3, 4.1.4, 4.6. 50. 52, U6, U9, 61. 63,
4.7, 5.2, 5.1, 6.1.0, 6.4, 7.4.8, 64, U,. 70, 73, 74, 75
03. 9.5.8. 9.5.C. 10.2.A. 12.3.A.
13.3, 13.4.A, 13.4.8,. 13.5, 13.81

us-seine:HAE.. (9.101 Go
s_nae_ved: NAIJE VOID (5. 7. 6.1.8B. 11. 3] 56, 5U, 71

es....I@-dsf:o0Ct dOwF (3.2.A. 3.7.11 34. 42
as..wmske...dof: PACKAGEOEFr [7. 1. A] 62
nmmm aoc s: PARAM..AMM800 (2.8.A, 6.4, 9.5.8] 33, 51, U6

esw sPAAM S 6. 1.8B, 9.5. A, 9. 5. C1 56. 66
4:qm s:RAGOA.6 (10. 1.98. 13.4. A] 6, 74

ss-an"e: &~ 13.5.4. 13.4.8B] 35, 75
se~rqpd:RA VW3573.913

us ~ I -4~I 13.7.3.A] 4
wel tulma*~: SELE t.CLAUSI....

9 ? I.A] 67
us.aiiM_*.:wTM 5 9.7., 9.7.3] a
as tm v2: STM -3 .72 9.7.3]

aas Su5M15 15.3.A. 5.4, 5.5.A. 5.6, 9.5.C. 53. 54,.U 55,6 67

UasjbposMn.dOf:8UIJROOAMW Es. I.A]
57
as qubuwot bsdb':SUSUNIT.BO 10.2.A] 70

asty RPe...ras: TYERAO 4.4.8 46
s yVp@IE iU 3.2.A. 3.3. 1. A] 34. 315

us3Cbdv:UNT bo 10. 1. B]U
as.yvn~aVAIA4.. (3.7. 3.A] 43

* . V1.. Louc" Atributes

Lexical attributes represent Information provided by the lexical analysis phase.

k~os12f. 6.mmeA. 3.2. A. 3.2.8. 3.2.0C. 33, 34, 35, 36, 37, 39,
3.3 .A.S.2. A, 3.83.2.8, 3.4, 38, 40, 41, 4L, 43, 44.

3.5, 3.5.1.A. 3.5.1.111 3.5.4. 46, 46, 47, 46, 49. 85.
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3.5.7, 3.5.9, 3.6.A. 3.6.8. 3.7.A, 81. 82, W, 84. 5, 86,
3.7.8. 3.7.1. 3.7.2. 3.7.3.A, 57, 8, 88 g, 1, 4,
3.7.3.8, 3.6. 3.9.8, 4.1.A, 4.1.1, 63. 64. 5. 66, 67. 6.
4.1.2, 4.1.3. 4.1.4. 4.3.A, 4.3.B. 6. 70. 71, M 7, 74,
4.4.A, 4.4.8, 4.4.0. 4.6. 4.7. 4.6, 75
5.1.A, 5.1.B, 5.1.F. 5.2. 5.3.A.
5.4, 5.5.A, 5.5.B, 5.6, 5.7, 5.6,
5.9, 6.1.A, 6.1.8. 6.1.C. 6.3. 6.4.
7.1.A, 7.1.8, 7.1.C. 7.4.A, 7.4.0.
8.4. 6.5, 9.1.A. 9.1.8. 9.5.A,
9.5.8, 9.5.C, 9.6, 9.7.1.A,
9.7.1.8, 9.10, 9.7.2, 9.7.3,
10.1.1.A, 10.1.A, 10.1.0, 10.1.1.8.
10.2.A, 10.2.8. 11.1, 11.3, 12.1.A.
12.1.8, 12.1.C, 12.1.D, 12.3.A.
13.3, 13.4.A, 13.4.0, 13.5. 13.8]

i..desait:Bsooeen (6.1.] 5)83

knwm p: numbererep (4.4.0] 48
bt_.pref: 3B n (6.4] 61

.._a.cpa:sw.pjaoaion [2.8.A. 3.2.A, 3.2.8, 3.2.C, 33. 34, 35, 36, 37. 36,
3.3.1.A, 3.3.2.A. 3.3.2.0. 3.4. 38, 40. 41, 42, 43, 44,
3.5, 3.5.1.A. 3.5.1.0. 3.5.4. 45. 46, 47, 48, 48, 50,
3.5.7, 3.5.9. 3.6.A, 3.6.3. 3.7.A, 51, 52, 53. 54, 85. 86,
3.7.0, 3.7.1, 3.7.2, 3.7.3.A, 57. as. 8, go. 61, Ga,
3.7.3.3. 3.6, 3.9.8, 4.1.A. 4.1.1. 63. 64, 65. 66, 67, 68.
4.1.2. 4.1.3, 4.1.4. 4.3.A, 4.3.8, 68. 70, 71, 72. 73, 74.
4.4.A, 4.4.8. 4.4.D, 4.6, 4.7, 4.8, 75
5.1.A, 5.1.8, 5.1.F. 5.2. 5.3.A.
5.4, 5.5.A, 5.5.8, 5.6. 5.7, 5.6.
5.9, 6.1.A, 6.1.8, 6.1.C. 6.3. 6.4.
7.I.A,. 7.1.8. 7.1.C, 7.4.A, 7.4.8.
8.4, 6.5, 9.1.A, 9.1.B, 9.S.A.
9.5.0, 9.5.0, 9.6, 9.7.1.A,
9.7.1.0, 9.10, 9.7.2, 9.7.3.
10.1.1.A, 10.1.A, 10.1.8, 10.1.1.8,
10.2.A. 10.2.B. 11.1, 11.3, 12.1.A,
12.1.8, 12.1.C, 12.1.0, 12.3.A.
13.3. 13.4.A, 13.4.8, 13.5, 13.8]

lk_symrep:nboL rap E3.2.A. 3.2.0, 3.3.1.A, 3.3.2.A, 34. 35, 36. 38. 41, 42.
3.5.1.8, 3.7.8. 3.7.1, 4.1.A, 46, 48, 51, 54, 5, 57,
4.4.0. 5.1.3, 5.5.A, 5.5.0. 6.1.A, 58, 62, 63, 65. 66, 70.
6.1.C, 7.1.A, 7.4.A. 9.1.8, 9.5.A, 71, 76
11.1, 12..A, App. 1]

VI. S. Semantic Atibuits

Semantic attributes represent the result of semantic analysis and provide

Information on the meaning of the program represented by the DIA tree.

wmn -abm .€det:PAUwW 3.4, 3.5.91 37, 39
wm--&dmes: OP VOWO 3.2.A. 7.1.A, 9.1.A, 9.5.AJ 34, 62 65, N6
ai--begS Tfb:t-..8PEC 3.3.2.8. 3.5, 3.5.4. 3.5.7, 3.5.9] 36. 37, 36, 38
m.bis:la~r _ 3.5.9] 39
mesurlO STUB VOID 9.1.A. 9.1.8, 12.1.A] 65, 71
u~iLbsdv: PACK D.OWY ZI30 7.1 A] a
sm by:U VWP SO0_C 6. 1.A 37

.4 m_ _smp -:OMP REPVOID 3.7.6. 3.7.1] 41, 4t
am- ow.nrnt:CONSTODACT 3.3.2.8, 4.1.2. 4.3.A. 4.4.0] 36, 48, 47, 48
SmCosabls: Bee 3.4, 3.61 37, 44
qm_dL_.: 0EC_8 W 12.3.A] 73

ap.d4n: DEEP 4 1.A] 4
am dilmlawme:OCMT VAN 6 3:7:A. 7.4.A] 41. 63
am..fi-_ ps - P 11.13 70

4.1.A. 4.1.1, 4.1.2, 4.1.3, 4.1.4, 45, 46, 47, 48, 48, 50,
4.3.A, 4.4.A, 4.4.8. 4.4.0. 4.6, 61
4.7. 4.6. 6.43

OmR-flr::0 00JCUMRNCE C3.2.A, 3.3.1.A, 3.7.1, 6.1.A, 34, 35, 4l. 57, 86, U.
6.1.0 7.1.A. 3.1.6. 1.1.Al 6, 71

W.I _
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[11. 1.A] 71
mjnL~p: P 3.2.61 35

aml4ftswW:EP VOID 379. 3.7. 1. 6. 1. C3 41, 42. 5S
UI-ftcaswcSII:LON~ 16. 1. Aj 57
am..nrmelld...e-mp sEXP 8 3.7.2. 4.3.AJ 42, 47
sqra lijwnzsdj~wrai a:E L [6. 9.5.8] 61, *G
amkbLd:OSCX-WUE 13.2LA] 34
am..*Lbp:1'fPE.SME (3.2.A. 3.2.0. 3.5.1.9. 3.7.9. 34. 35, 36, 41, 42. 5,

3.7.1, 5.5.8, 6.1.03 a6

am~padng:soI*&n 3.. .;A] 3..A 37, 40, 41
am....po: ~ssm [3.5.1.93 35
am~jrwdap~c: RE...V0ID [3.7. A] 41
am-re.p:in~e [ 3.5.1.81 39

3. S. A. 3. 7. A. 3.68]
sa~as: GENERICJIEAOER (12. 1. A) 71
am.~spec: HEADER [S.l.A, 9.5. A] 57, 66
.m....pec: PA~CAGE...SPEC (7. .A] 62
smatmLOOP 15.73 56

m~nSTM [5. 1., B5 .5.AJ 51. 54
am ...elie, size- EXP VOID [3.4, 3., S.S.1. A] 37. 44, 65
am...atb:O W occuNUENC [SlIA, 7.1.A, 9.1.8., 12.1.A] 57, 62, 65, 71
9mMnyp~.apgsCONSTR.A*4ED [3.3.2. A] 35
am..jMe...ac: TYPE SPEC [3.3. 1. A. 7.4. A. 9.1.831 35. 63, 65
am..tp_*..tnhc: rf PfSPEC 13.3.2.93, 3.5.4, 3.5.7] 36, 30, 39
am-yon eftie (4.1.A. 4,1.4. 4.4.A. 4.4.83, 4.4.D, 415. 47, 46, 46, 50, 61

4.6. 4.7, 4.8, 6.4]

V11.4. Code Attribuls

Code attributes provide target-machine-specific Information.

Oit-jWlpI..Ie: WOWe (3.3.2.8. 3.4, 3.5. 1. A. 3.5.4. 36, 37. 38, 39

3.5.7. 3.6.91
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P~cmg specofiation 104, 106, 1og. Ill. s mo tabl 10, as, 185
112, 116 ay pblvep
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