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1. Introduction and Summary

A problem of substantial importance to practitioners in
reliability is the statistical estin:tio; of the reliability of a
system of stochastically independent components using experimental
data collected on the individual components. In the situations
discussed in this.paper, the component data consist of a sequence
of Bernoulli trials. Thus, for component i, i=1,2,...,k, the
data is the pair (“i’Yi)' where ny is the number of trials and Yi
is the number of observations for which the component functions.
Y:Y5,...,Y, are assumed to be mutually independent random
variables.

This problem was treated in Sudakov (1974), Wiriterbottom
(1974), and Harris and Soms (1980,1981); one purpose of the pre-
sent paper is to exhibit coiuinterexamples to theorems in the above
papers.

In Section 2 we discuss the general theory of optimal
confidence limits for system reliability so that the notation and
defini;ions to be employed in the balance of the paper have been
prescribed. Some general results on optimal confidence limits
are established. .

In Section 3 the counterexamples previously mentioned are
exhibited and the specific errors in the proofs of the theorenms
sre indicated.

Section 4 presents the proof of a special case of the key
test theorem (Winterbottom (1974)), the general form of which was
invalidated by a counterexample in Section 3.

The consequences for reliability applications are discussed

in Section §.




——————

2. Buehler's Method for Optimal Lower Confidence
Bounds for System Reliability

We now introduce the notation, definitions, and assumptions
that will be used throughout the balance of this paper,
1. Let p,, i=1,2,...,k denote the probability that the gth
component functions. The components will be assumed to be
stochastically independent. The reliability of the system will
be denoted by h(p), where p = (PysPpsecesPy)y 0 S Py € 1. It ds
assumed that h(0,0,...,0) = 0, h(1,1,...,1) = 1, and that h(p) is
non-decreasing in each p,, i=1,2,...,k. Further, h(p) is
continuous on {p|o < P; < 1}, which follows readily from the
assumption of independence. These properties hold for coherent
systems (see Barlow and Proschan (1975)).

2. Llet S = {X|x;=0, 1,...; n;, i=1,2,..,,k}. g(x) is said to
be an ordering functiocn if for 3 < 20 Xy < Toseees Xp < Tyo

%, ¢S, g(X) > g(Z). (It is often convenient to normalize g(x)
by letting 3(5) = 1 and ‘("l'nZ"°"nk) = 0, With such a
normalization, g(x) is often selected to be a point estimator
of h(p).)

3. Let R = {rl,rz....,r , 8 > 2} be the range set of g(x). With

s
no loss of generality we order R so that ry >, > o0 > 1.

4. Let A = {x|g(x) = ry, xeS, i=1,2,..,,3}. The sets A,
constitute a partition of S induced by g(X).

S. We assume throughout that the dats is distributed by

~ ~ n; =X n n,-
£(X;p) = py(Xex) = 1 ) 1]? YT 1.1 1)’1 qii Y, .

where qQ " l-pi, X; = ng-Yyo i=1,2,...,k. With no loss of




generality, we assume LS P '
From these definitions, it follows that

pi{x eiél Ai} - Ps{z(i) > rj} . (2.2)

L3

From (2.1) and (2.2), we have
' u, u, u

‘ - k
. ' P~{g(X) > rj} = J I ... 1 f£;p) ., (2.3)
P 1;%0 i,=0 i,=0

H where I = (i,,1,,...,1,) and uy = uy(d,),.uy = uyCig,i,,.. 0,

ik-l) are integers determined by rj.

g 6. Subsequently we will need to extend the definitions of S and

g(X) to real values. We denote this as follows. Let

{ s’ -'{ilo < x; < ny, i-1,2,...,k}
‘ ' and let g(X) be defined on s' with 8(X) > (D), X, 2 €S, when-
ever X < %, and g(X) = g(X) for XeS.
f Then v
| [ty [t,) [t,)
! ’i{t(x) 2 rj} =t 1 ... 1 f£d;p, (2.4)
; 11-0 12-0 ik'O
‘ where t, = t,(i,),...,t, = t, (i,,1,,...,1; ;), with

*
t1 = sup tlt €S and g(t,0,0,...,0) > rj}and tz(il'iZ""'iz-I)

L}
! - sup{tlt.es and '(11'12'°'"iz-l"'°""°) > rj , 2=22.3,,...,k,
’ We now introduce the notion of Buehler optimal confidence

bounds. Let g(x) = rj. Then define

Y " inf{h(i)l?i{Ilz(I) > g(i)} > c} . (2.5) ﬁ

BEquivalently, by (2.2), we can also write




i) " :lnf{h(ii)ll’i{Xeii}l Ai} > a} . (2.6)

We now establish the following theorem.

Theorem 2.1. Let assumptions 1-5 be satisfied. Then, for X€S,

a‘(i) is a 1-a lower confidence bound for h(p). If b (i) is any
other l-a lower confidence bound for h(p) with b, 2

1
then bg(i) S 23 for all xe 8.

Proof. Fix P and let m(p) be the smallest integer such that

- R(P) Accession For
P-{x e U Ai} >a . | NTIS GRA&I g
i=1 DTIC IAB
Unannounced a
Then - Justification
- s
P-{x € Uu_ A } > 1l-a . By.
i=n(p) Distribution/
Lot Availability Codes
_ e ' Avail and/or
) - Special
D -{5|p~{ie u A}>u}.
Tm P =1 -

Then Dg(i) is a 1-a confidence set for p, since

e e} - a0 <} 2 2o

By assumption 1, h(ﬁ) is continuous and the set of parameter
points satisfying (2.5) is compact; therefore the infimum in (2.5)
and (2.6) is attaiped.

Assume that there is an integer j, 1 < j < s-1, such that
brj > arj. Then there exists a 50 such that

b, >a_ = 1nf{h(5)|p5{§e uj;u Ai} > a} = h(io) . (2.7)

Ty j f=1




LU

‘0

g
g

e e e

. e o e A+ 1 b

given, g(X) = 10,000 = r

In addition, there exists a 51 such that

- 3 .
p~{erA}>a h(p,) <b_ . 2.8
U, M , 1 T (2.8)
Since b, > b, > ... 2 b ., from (2.7) we have
1 2 ]
h(il) < br’. , 2 =1,2,...,5 . (2.9)
Therefore
. 3 -
P~ U ~ b

which is a contradiction. Consequently, there is no integer j,

i < j < s-1, for which d > a_ .
- - rj rj
Remarks. From (2.6), it follows that a, = 0 and br is also
s s
necessarily zero. Note further that in (2,.,7) it is possible

that the infimum is attained at a point for which Pi{ie u Ai} >a.
i=)
To see this consider the following example.

Let k = 2, n, = §, n, = 10,000, x, = O, X, = s,

1 1
g(x) '.nl*nz-xl-xz, h(i) = PPy It is easily seen that the
hypotheses of Theorem 2.1 are satisfied., Thus, for the data

6
The set U A

6 O i consists 6f all points
(xl,xz) for which X 14X, < §, that is, Al = {(0,0)},
Az = {(1,0),(0,1)}, and so on, Consequently,
- . 6
l)!,6 . {plPB{Xe iI-J1 1} > u}

includes the parameter points (0, pzq) where P2q satisfies
szc{xzco} > a, since Pﬁl{xl < S} = ] when P " 0. Thus inf
h(B) = 0 for all 0 < a < 1.

The reader should also note that the monotonicity of h(i) is




not utilized in the proof, which is valid whenever h(p) is

continuous.

(R4

It is easy to see that ‘g(i) is monotone, i.e., ‘rl > arz
ees > 8_ . This follows from (2.7) upon noting that as j

- T
S

increases, the set of p satisfying (2.7) increases and the

infimum is taken over a larger sec,

k
CorollarE. For a series system h(p) = I P;- Then if
k i=]1

g(x) = I (ni-xi)/ni = I yilni, the hypotheses of Theorem 2.1

i=] i=1
are satisfied and the conclusion follows.
k
Remark. Note that g(x) = I (ni-xijlni is the maximum likelihood
i=1

estimator as well as the minimum variance unbiased estimator of
k

n Py and is therefore a natural choice of an ordering function
i=1

for this case.

We now establish the following theorenm,

Theorem 2.2. Let g(x) = Ty and let
f.(x;a) = sup P-{g(i) > r.}. "0<acx<l ., (2.10) -
h(p)=a J
Then

sup £'(%;a) = 1
0<a<l

and £ (X:a) is non-decreasing in a.

Proof. Since h(p) is continuous and h(l) = 1,

lim su P={g(X) >r.r =1,
a+l h(pg-a p{ j}

Now choose a and b such that 0<a<b<l,

P {g(i) > rj} - £ (x;0)
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’ib{'(i) > rj} - £°(x;50) .

Let I‘ be the set of indices i such that Pjq < 1. Then it is
possible to replace Pia by pib, ie I.. where Pia < pib <1, so
that h(ig) = b, where Pip " Pj,» L€ I:. This follows since

h(l1) = 1 > & and h(p) is continuous. The conclusion follows from

the monotone likelihood ratio property of the binomial distribution.

Remark. Only the continuity of h(i) was used in the proof of

Theorerm 2.2.

For the case of series systems, it is possible to strengthen

Theorem 2.2 and to exhibit the above construction. This is done

below.

k
Corollary. Let g(X) = r If h(p) = 10 Py, then inf £ (X;a) =0
¥ i=1 0<a<l
and f (x;a) is strictly increasing in a whenever all uj < “j

(see (2.3) for the definition of uj), j=1,2,...k.

Proof. From the hypotheses,

n
3 i
Ps{'(X) 2 rj} s 1-q1 » 1-1’2"-o,k »

k
and since I P; * 0 implies at least one P; + 0, this gives
i=1

inf £ (%;a) = 0 .
0<a<l

To show that f’(i;a) is strictly increasing in a, comsider
0<a<b<] and let p‘ (p‘l....,p‘k) satisfy f (x;a) = P- {z(X) > rj}.
Similarly, let pb satisfy f (X;b) = Pi {z(X) > rj}. Let

b
l. s {11'12""'ir} be any non-empty set of indices such that

i (!.’-)”r < 1 (non-empty because otherwise multiplying the

L, «é&'—";-}-;’.,)‘,‘.‘ﬁ"}e’ R )

Al
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components would give b > 1, a contradiction) and let I: be the

remaining indices. Then

X &' 1
C P ) ) P =b . (2.11)
jel aij a jelc aij
2 s
From the monotone likelihood ratio property of the binomial

distribution,

P {2 oy} < rpfachr 5}

where the components of p* are given by (2.11). This gives
£° (X;8) < £ (X;0) ,
which is the desired conclusion.

Remarks. Note that if at least one u, = nj. it follows immedi-

J x
ately from (2.S)] that A(p) = 0. PFor g(x) = T (n;-x;)/n, the
i=]

condition uj < nj is equivalent to xj < nj. j=1,2,...,k.
We now establish the following result, which may be inter-
preted as 2 duality theorem. This will prove useful in some of

the subsequent material.

Theorem 2.3. If £*(X;a) = a, 0<a<l, has at least one solution in

a, then

e " 1nf{t|£'(i;a) - a}. (2.12)
If £°(X;a) > o for sll a, then l:(i) = 0,
Proof. Let

c = 1nf{a|f‘(i;a) > a} . (2.13)

The infimum in (2.13) is attained. Thus, there exists a 50 such
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that ¢ = (). If £ (¥;8) > o for all a, let p; + 0, i=1,2,...,k.
Then h(p) + 0, since h(a) = 0 and h(ﬁ) is continuous, and

= o'

*5(x) .
Now assume there is at least one a with £ (x;a) = a. Then
ol ~ < ~ . < ~

b 4 (x,aztx)) > a and therefore ¢ < ‘g(x) 1f ¢ ‘g(x)’ then

c = h(ﬁoj and £'(X;c) = &, which is a contradiction.

Remarks. Again, only the continuity of h(p) was used in the
proof of Theorem 2.3. Under the hypotheses of the Corollary to

Theorem 2.2, for a series system, ‘g(i) is the solution in a of

£ (x;a) = o . (2.14)

The general theory described in this section applies as well

to what is known as systems with repeated components (see, e.g.,
Harris and Soms (1973)). For such systems, there are 1 f m <k
unknown parameters PysPgs-csPps since the "repeated components™
are assumed to have identical failure probabilities. This
assumption permits the experimenter to regard the data as
(ni.Yi). i=1,2,...,m, and employ the previous results.

For example, if a series system of k components has @, of

one type, a, of a second, ..., a_ of an mth type, then
P 2 B

- a, Ga, o k
h(p) = P, Py - Py a; = ki .

3. Counterexanmples

In this section we restrict attention to series systems and

employ the ordering function

k
‘(;) - n (ni-xi)/ni »

i=]
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introduced following Theorem 2.1. As noted previously, in this
- k
case the reliability function h(p) = I Py- With this specisal-
i=1

ization we have for (2.4)

t, - nl(1-r-) (3.1)

and for each fixed 0 < 11 < tl, 0 < 12 < tz, ceey 0 < 1j 1 < tj 1°
j-1
tj = njtl’r-/[”fl (nl‘iz)/nzl)n 2 f j f k., (3-2)

whenever g(x) = Tgp 1 $m<s. Ifmss, thenr = anda = 0.

For x > 0, A > 0, let

' 1 [P k-1 A-1 )
IP(K,A) = m Io t (1-t) dt N 0 S P »

the {incomplete beta function.
It is well-known that if t is an integer, t < n, we have

t
n -1
I " q

i=0

= Ip(n-t,t+1) . (3.4)
In Sudakov (1974) the following inequality was published.

Pi{z(i) > rj} ST, (ng-t,,t,41) . (3.5)
I Py
i=1

This inequality and generalizations of it were further

studied in Harris and Soms (1980,1981). (3.5) implies
£'(x;2) < I (a,-t),t,+1) ,

hence its usefulness. However, as we now establish, (3.5) is not
universally valid, as was claimed in Sudakov (1974).

Let (xl,xz) = (:1.0) and let (“1’“2) = ("1’2“1)' Then
3(;) = (nl-xl)/n1 and t, = Xy Consider Pi{g(f) > r.}. 1f

b "%. n.mac” 5

-w,»r L

J‘- a-‘..-‘-»-«-
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; = (1,a), 0 < a <1, we have

Pﬁ(gCX) > r-} = P.{(nz-xz)/n2 > r-} R
since P{XI-O} = 1, by (2.1). Consequently,

PI;{B(X) 2 r‘} = Pa{xz < n2(1-r.)}
- l’a{x2 < 2n1(1-rn)} .
Since T * (nl-xl]/nl,
Ps{g(X) > rm} = Pa{xz < 2x1}

Thus from (3.4),

Pi{g(X) > rm} = 1_(2(n;-x;), 2x,+1) .
The Sudakov inequality implies that

I‘(2(n1-x1), 2x1+1) < Ia(nl-xl, x1+1)
or

Ia(anrm, 2n1(1-rm)+1) < Ia(nlrm, nl(l-rm)+1) . (3.6)

Let hz(t;nz,rm) and hl(t;nl,r-)'denote the beta density functions
corresponding to the left and right hand side of (3.6), respec-

tively. Then, provided n, > 1, there is an ¢ > 0 such that

T
n
hz(t3“2’rn) < hl(t;nl,r-) 0 <t<eg, l-e <t <1.

This implies that hl(t;nz,rn) and hz(t;nz,rn) intersect in at

least two points. If t* is such an intersection, setting

hl(t;nl.r-)/hz(t;nz,r.) = 1 gives




e —— et bty
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n1(1-r )

n,T
t 1 ®e1oe) = c(ny,r,) >0 .

Thus, for 1 <m<s, there are exactly two such intersections.

Therefore there is a z, such that
Izo(nlrn’ nl(l-r')+1) = Izotnzr-, nz(l-r‘)+1) R

> 2
for 2 o’

Iz(nlr-, nl(l-r-)+1) < Iz(nzrn, nz(l-r.)~1)
and for z < zZ,s
Iz(nlrn,nl(l-rn)+1) > Iz(nzrn, nz(l-rm)+1) .

Thus for z > zZ,s (3.6) is violated. (3.6) was used as a lemma
by Sudakov (1974) to prove the inequality (3.5). This lemma was
also employed in Harris and Soms (1980, 1981). It is the falsity
of this lemma which invalidates (3.5).
Table 1 provides some illustrations of the violation of
(3.5) for k = 2 and selected values of (nl,nz), (xl,xz). The -
smallest value of PP, for which this violation occurs is also
given in the table, where it is denoted by a*. In addition,
£*(x;a") is tabulated. Thus for a < £'(x;a"), (3.5) is valid.
The calculations were made by means of a FORTRAN progranm.

Note that for ("1’"2) = (5,5) and (xl,xz) = (1,1), the

inequality was not violated.
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Table 1. The Smallest 2, a*, and £*(X;a2")

|
|

(n;,n,) (x,.%,) a’ £°(X;a%) |
(s,S) 1,1) 1.0000 1.0000 ;
(5,5) (3,3) .7454 .9998
(5,10) . 1,0) .8798 .8909
(s,15) 0,3) .8698 .8791
(5,30) ,0) .8498 .8467

4. The Theory of Key Test Results i
I1f for n, < n, S el Smy, (xl,xz,...,xk) = (xl,o,....O),
k > 2, then X is called a key test result. NWinterbottom (1974)
asserted that subject to x1 < f(k,nl), where f(k,nl) is the

solution in £ of
n,k-£-1 = k[(n,-0)n}" 111K, (4.1)
we have 2 (%) is the solution in a of
I‘(nl-xl, x1+1) =a , 0 <a<11. (4.2) }

This would imply the inequality (3.5), which we have disproved

in Section 3.

As we subsequently establish, the error in Winterbottom's
(1974) result is a consequence of falsely concluding that
f(k.nl) depends only on n,. It is easy to be led to this conclu-
sion on intuitive grounds, since (nl-xl. Ryseesy nl) would seem

to de & less favoradle experimental result than (nl-xl,nz.....nk).

whenever n; > n, for at least one index i, 2 < i < k. However, we
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" will now establish that a '"modified" key test result holds for

1s

X, < f(k,nl,nz,...,nk). where £(k.n1,n2,....nk) is the solution

in £ of

k k 1/k
B -f-1+ 122 n, = k[(n;-6) 132 n,] . (4.3)

Theorem 4.1. Ifn, <0, < ... <0 and X = (x,,0,...,0), with

< f(k’“l’nZ""’"k) < n,, then

*

Pi{l(i] > rj} <1, (ny-x.,x,41) , (4.4)
Ip,
i=]

where g(xl,o,...,O) = rj.

k
Proof. Por ] x, < m,, from Marshall and Olkin (1979, p. 78),
1=1 '

I (o,-x,) is a strictly Schur-concave function of
=1 41 | X x
(nl-xl,nz-xz,...,nk-xk). Thus, 1if 121 (ni-xi) is fixed, 151 (“i-xi) w
' k _ k
is minimized at (n1 - 2 xi’"Z”"’"k)' Equivalently, I (ni-xi)
i=1 k i=1 i
1s minimized for vectors of the type x = ( } xi,O,l..,O) vhen
k S e - 1=1 * .. . :
z x, 1s fixed.
i=1
Let z = (zl,zz,...,zk) with 121 z; € x <n,. Then .
; )
{n,-2,) > n,-x, ¢+ n, . (4.5)
1.1 1 1 - 1 1 1.2 i
3
For each fixed value of [ (n;-2,), ve have
1=] i
k k k k
I (n;-2,) > (m, - 2,) T a, > (n,-x;) N a, . (4.6)

In order that
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{El ; (ng-2,) 2 1§1(n1-x1)} . {;liglc"i"i’ > 1:{l(ni-xi)}. (4.7)

i=1
k
we must have x, = xg = ... = X, = 0. Wote that 1f 121 x, 2 8,

x4 < 8y,X, < BysecesXy < m, the two sets cannot coincide, because

(o.nz’,,,’nk)ia in the right hand set but not the left. From

" (4.6) it follows that

k

2 (n,~z,) 2 8 + ” } < {; I (n -2 ) > (n -x.) n n } (4.8)

{ ga1 3+ 1 1™ tZZ i=1 1
k k

Equality hoids if max T (n -z,) < (ny-x;) W a, when I(ni-zi) .

i=2

i=1
(n -X ) + { ni-l From the arithmetic-geometric mean inequality

i=2
this is true whenever

k k
nl-xloizzni-l k
.7 < (n "1)

(4.9)

ez 1

Note that equality in (4.7) may still hold if (4.9) is
k
violated since (n 1°%;* X ni-l)/k may not be an integer or may be
i=2
bigger than some of the ng, i=1,2,...,k. Thus if xy is the

smallest Xy value for which equality holds in (4.9), then

f(k,nl,nz,...,nk) =X,

1f Xy < f(k,nl,nz....,nk). then, from the above,
. - k k
£ (X;a) = sup P{ ) Y, > m-x; 0+ ) ni} . (4.10)
k i=] i=2 g
I Py=2
i=1

Writing (4.10) as an iterated sum and noting that

I‘(n-x.xol) is a decreasing function of n for fixed x, we have
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k
sup P{ I Y, 2 Ry-X,¢ z n } < sup P{Y + 2 U, > n,-x,+(k-1)n },
X a1 1 1=2 k 14ap i =171 1
R Py=a n py"2

1=l i=] .

vhere the U, are independent dinomial random variables with para-

meters (nl.pi). i=2,...,k. Writing

yoe Ju« 1 P,
+* U.
1 4a2 is1 ja1

where the Yij are independent Bernoulli random varisbles with

parameter p,, 2 result of Pledger and Proschan (1971) may be

employed to show that the upper tail of I 2 Y,, is 8 Schur-
ju1 j=1 13

convex function of (-lnpl, -lnpl...., lnpl, -lnpz....,-lnpz....,

-1apy,...,-1np,) and therefore £'(X;a) = I,(n;-x;, x,41), as

required.

As is discussed below, (4.3) may have no solutions. 1In such
cases, and in general, it is possible to strengthen (4.3).
Corollary. For each £, form the vector = (zl,zz....,zk) from
A= (nl'"Z"“’nk) by continually reducing the maximum (s) until

the subtractions total f+1, ¢ > 0. Denote by'f'(k.nl.nz,...,nk)

the first £ for which

k k
i 2, > (n,-£) I n, .
11 3% 7177 4. 8

Then (4.4) holds for X, < f'(k,nl.nz.....nk).

Proof. The proof {rococds exactly as for Theorenm 4. 1 by noting

that ? maximizes . r, subject to 0 < r, < n, and Z

k i=l - - A=

{ n, ~£-1. This follows since z is majorized by T and the
i=1
product is strictly Schur-concave.
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Remarks. For 0 < £ < n,, the right hand side of (4.3) is concave
decreasing. The left hand side exceeds the right hand side when
£ = n,. If the left hand side is less than the right at £ = 0,
there is exactly one solution £, 0 < £ < n,. If not, there are
no solutions. There is always a solution if n,Eay, s ... = on.
From the Corollary following Theorem 4.1, x, = 0 sstisfies (4.4).
I1f Ry =N, % ... =Dy, (4.3) reduces to (4.1) which is
Winterbottom's (1974) éondition. However, s should be replaced

by s+1 in his formula, which also has a sign error. As an

example, for k = 2, n, *=n, = S0, from ¥Winterbottom (1974), (4.4)

is stated to hold for x, < 17 or nl-il > 33. However, 33+50 < 41 -41,

and therefore (4.4) only holds for Xy < 13 or ny X, > 37, as the
Corollary to Theorem 4.1 shows, or the solution of (4.3), which
gives £(2,50,50) = 13.14.

The dependence of £ on 1 may be seen by considering an
example. Let k = 2, n, = S, n, = 10. Then from the Corollary
following Theorem 4.1, (4.4) only holds for x, = 0, whereas for
n;, =n, = S, it holds for x, = 0,1,2, and 3. Thus the case of
equal ngs i=1,2,...,k, does not give the minimal £. In fact, it

may be seen that if ny > 2n1. then (4.4) holds onl} for x; = 0.

S. Concluding Remarks

From Table 1, it seems reasonable to conjecture that (3.5)
is valid for those values of a,k,i likely to arise in practice.
The authors are continuing to investigate the problem and hope
to report more precise conditions for the validity of (3.5) im

subsequent work.
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