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The Theory of Optimal Confidence Limits for Systems

Reliability with Counterexamples for Results on

Optimal Confidence Limits for Series Systems

Bernard Harris and Andrew P. Soms

1Abstract

The paper treats the general theory of optimal confidence

limits for systems reliability introduced by Buehler.1967.-''

These general statements are specialized to the case of series

systems. It is noted that many results previously given are

false. In particular, counterexamples for results of Sudakov

5 2 -- 4 Winterbottom (1974) and Harris and Sons (1980,1981) are

given. Numerical examples are provided, which suggest that

despite the deficiencies of these results, they are nevertheless

valid for those significance levels likely to be used in

practice.
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1. Introduction and Summary

A problem of substantial importance to practitioners in

reliability is the statistical estimation of the reliability of a

system of stochastically independent components using experimental

data collected on the individual components. In the situations

discussed in this paper, the component data consist of a sequence

of Bernoulli trials. Thus, for component i, i-l,2,...,k, the

data is the pair (niYi), where ni is the number of trials and Yi

is the number of observations for which the component functions.

YY2, ...,yk are assumed to be mutually independent random

variables.

This problem was treated in Sudakov (1974), Winterbottom

(1974), and Harris and Soms (1980,1981); one purpose of the pre-

sent paper is to exhibit cotnterexamples to theorems in the above

papers.

In Section 2 we discuss the general theory of optimal

confidence limits for system reliability so that the notation and

definitions to be employed in the balance of the paper have been

prescribed. Some general results on optimal confidence limits1!
are established.

In Section 3 the counterexamples previously mentioned are

exhibited and the specific errors in the proofs of the theorems

are indicated.

Section 4 presents the proof of a special case of the key

test theorem (Winterbottom (1974)), the general form of which was

invalidated by a counterexauple in Section 3.

The consequences for reliability applications are discussed

in Section 5.
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2. Buehler's Method for Optimal Lower Confidence
Bounds for System Reliability

We now introduce the notation, definitions, and assumptions

that will be used throughout the balance of this paper.

1. Let Pi, i-l,2,...,k denote the probability that the ith

component functions. The components will be assumed to be

stochastically independent. The reliability of the system will

be denoted by h( ), where •PlP,...,P )  0 P<i 1. It is

assumed that h(0,0,...,0) 0 0, h(1,1,...,l) = 1, and that h(j) is

non-decreasing in each Pis i-l,2,...,k. Further, h(p) is

continuous on (pIO < pi f 1}, which follows readily from the

assumption of independence. These properties hold for coherent

systems (see Barlow and Proschan (197S)).

2. Let S a {f(i =-O, 1,...; ni, iul,2,..,,k}, g(. ) is said to

be an ordering function if for x 1 ! Z9 x2 < "2,..., Xk ! 'k ,

i, cS, g(i) > g (). (It is often convenient to normalize g(x)

by letting g(O) - 1 and gCnl-n 2 ,...,n k) • 0. With such a

normalization, g(i) is often selected to be a point estimator

of h(j)

3. Let R - (rl9r2 ,...,r s , s > 2) be the range set of g(i). With

no loss of generality we order R so that rI > r2  ... > rs.

".1 4. Lot Ai = (ijg(i) = ri , icS, i-l,2,..,,s). The sets Ai

constitute a partition of S Induced by gO().

S. We assume throughout that the data is distributed by

.1)
t k ni - xi k Yi

whf0;) p •  i-i j Ji ith o o (2.1)

where q, j Ej U-i njI-y10 i-l,2,...,k. With no loss of

IL
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generality, we assume n 1 - a 2 nk.

From these definitions, it follows that

* ~ X C UA) - g{(X) > r} (2)if il

From (2.1) and (2.2), we have
I u 1  u 2  u k

if Si) r i ISO iI SO i I=0C2.3)
- 1  2 k" 1l.0 izO i=

where i a (ill1 2• ... ik) and u2 a U2 (il)•...•uk =uk(*l•12,...

ik- I ) are integers determined by rj.

6. Subsequently we will need to extend the definitions of S and

g() to real values. We denote this as follows. Let

* S o .Xi < i , i-l2...k}
I S* *

and let i(i) be defined on S with 1(i) > j(i), i• icS • when-

ever i < z, and j(i) - g(i) for i cS.

Then

it1 ] It 2) Itk]

EjfgLAJ) r . 1(2.4)
1 30 1230 1 kSO

where t2 M t2 (l)....,tk = tk(ilei,2...,iP.1), with

t1 I. sup~t~t cs and g(t,O,O,...,O) > rj )and tt(i 1 9i2 9 ... I 1L 1)

. sup It cS* and g(i1 i2 ...,*iL_lt,O•...0) > rj}, t=2,3...,k.

.•We now introduce the notion of Buehler optimal confidence

bounds. Let g(x) = r3 . Then define

Ealentlyffb(. ) we can al (2ite

Equivalently, by (2.2), we can also write

4i



a nfh(P)IP4YXc U A1)~a (2.6)
ii4

We now establish the following theorem.

Theorem 2.1. Let assumptions I-S be satisfied. Then, for ic S,

a M is a 1-a lower confidence bound for h( ). If bg() is any

other 1-a lower cvonfidence bound for h(p) with br1 > br > ... >b r

then b g . a(i) for all iceS.

Proof. Fix and let m(j) be the smallest integer such that

GC) Accession For
U il > c ,NTIS GRA&I

1-1 " -DTIC XAB
Then Unannounced 5
Then . Justif ication5 *1

t Dix C U Au4 >1-*. By. i =m (p Di str ibut ion/

Lot 
Availability Codes

0 Avail and/or
Dist Special

D, fi1PjX e U AJ

Then D is a I-a confidence set for p, since

P-fjD.(~j Pij~i)! r(;)> 1-a

By assumption 1, h(p) is continuous and the set of parameter

points satisfying (2.5) is compact; therefore the infimum in (2.5)

". . and (2.6) is attained.

Assume that there is an integer J, I < s-l, such that

br > ar" Then there exists a such that

b7r > ar -a ~)P U A,> al . (2.7)

' . .. ... -- , , - . ' L'+" -" i _- m , . ., . 1a +,.++'+fC

IP.. +++,,+, ~~~~~~iw A -.. .. . . . - " :
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i I IIn addition, there exists a p1 such that

Since b. > br > ... br  from (2.7) we have
1 2s

lb( i) <br1  , A - 1,2,...,J . (2.9)

Therefore

Pl xc e U Ad <" P1 { h (jl) < bg( (2.10)

which is a contradiction. Consequently, there is no integer J,

i < s-l, for which br > arj.

Remarks. From (2.6), it follows that a . 0 and b is also

necessarily zero. Note further that in (2.7) it is possible

that the infimum is attained at a point fr5 whic PjeU
icL

To see this consider the following example.

Let k - 2, n, a 5, n2 - 10,000, xI - 0, x2 aS,

g()=. nl+n 2 -x1 -x2, h(j) = pIP 2. It is easily seen that the

hypotheses of Theorem 2.1 are satisfied. Thus, for the data6

given, g() 10,000 -r The set U A consists of all points
Sr 6. ul I

,(Xx 2) for which xl.x 2 < S, that is, A1 -

A2  (I,01 ,(0, 11 , and so on. Consequently,

or: Pi X iC.J 6 AL >

includes the parameter points (0, p25 ) where P2. satisfies

11 2  0 since P S} ! = 1 when p, a O. Thus inf

h(T) - 0 for all 0 < a < nof

The reader should also note that the monotonicity of h(p) is
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not utilized in the proof, which is valid whenever h(j) is

continuous.

It is easy to see that a is monotone, i.e., a > a >
g8x) r1 I r2 -

> a r . This follows from (2.7) upon noting that as j
s

increases, the set of j satisfying (2.7) increases and the

infimum is taken over a larger set.
k

Corollar For a series system h(j) a i1 pi. Then if
f* k i-l

S(O) - J (ni-xi)/n i  Yi/ni the hypotheses of Theorem 2.1
i-l jul

are satisfied and the conclusion follows.

k
Remark. Note that g(x) ( [ (ni-xi)/ni is the maximum likelihoodetmt a lil

estimator as well as the minimum variance unbiased estimator of
k

ilH pi and is therefore a natural choice of an ordering function

for this case.
we now establish the following theorem.

Theorem 2.2. Let g(x) a r and let

f(x;&) asup Pi g(X) ! > O<a<l 1 (2.10)
h()-a "

Then

sup f (i;a) - 1
H 0<a<l

and f (i;a) is non-decreasing in a.

P 0' Proof. Since h(j) is continuous and h(l) - 1,

lim sup Pi g(X) > r4 - I .
a-. h(p)=a

Now choose a and b such that 0 <a <b <1,

Pfa -fi) r, f (;;a)

and

IV
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p ( } f(i;b)

Let Ia be the set of indices i such that pia < 1. Then it is

possible to replace pia by Pib' I .a, where Pia < Pib ' ,

that h( ) = b, where p b ' Piai c a. This follows since

h(l) - 1 > a and h(j) is continuous. The conclusion follows from

the monotone likelihood ratio property of the binomial distribution.

Remark. Only the continuity of h(-) was used in the proof of

Theorem 2.2.

For the case of series systems, it is possible to strengthen

Theorem 2.2 and to exhibit the above construction. This is done

below.

Corollary. Let g(i) a r If h(p) = Pi, then inf f (x;a) -0

Y ini O<a<l
and f (x;a) is strictly increasing in a whenever all uj < n

(see (2.3) for the definition of u.), j-1,2,...k.

Proof. From the hypotheses,

Pis(x) r4 I l-q i  i-l,2,...,k

* I k
and since H pi 0 implies at least one pi 0 0, this gives

inf f*(i;a) - 0
-" 0•a<l

To show that f*(i;a) is strictly increasing in a, consider

O<acb<l and let Pa a (Pal'"'''Pak) satisfy f(i;a) -Piag(X) ! r .

Similarly, let ib satisfy f(x;b) = {(]) rj}. LetPib

a •isl,20..., be any non-empty set of indices such that

Pai( )1/r < I (non-empty because otherwise multiplying the

- 7I
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C
components would give b > 1, a contradiction) and lot Ia be the

remaining indices. Then

b 1/r
C It Pai( )j/r) 1  Pai * b (2.11)
idla e a

From the monotone likelihood ratio property of the binomial

distribution,

where~ thej copne: of p'X a: rP*g

where the components of p* are given by (2.11). This gives

f*(i;a) < f*(;;b)

which is the desired conclusion.

I Remarks. Note that if at least one u1 = n., it follows immedi-~k
ately from C2.S] that ho) = 0. For g() 1 Cni-x )/ni the

condition u1 < nj is equivalent to xj ni, j-l,2,...,k.

We now establish the following result, which may be inter-

preted as a duality theorem. This will prove useful in some of

the subsequent material.

Theorem 2.3. If f*(i;a) a a, 0•a<l, has at least one solution in

a, then

agCW) = inf{a~f*(;a) = a}. (2.12)

If f (i;a) > a for all a, then a a 0.

Proof. Lot

c a inf alf*(i;a) a} (2.13)

The infimum in (2.13) is attained. Thus, there exists a Fo such
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that c a ha o). If f (j;a) > a for all a, let pi * 0, isl,2,..*,k.

Then h(p) - 0, since h(O) - 0 and h() is continuous, and

as SO ) 0 o.

Now assume there is at least one a with f (x;a) = a. Then

f(xa -) > a and therefore c < ag()I If c < then

c a h(P0 ) and f*(;c) a a, which is a contradiction.

Remarks. Again, only the continuity of h(s) was used in the

proof of Theorem 2.3. Under the hypotheses of the Corollary to

Theorem 2.2, for a series system, ag( is the solution in a of

f*(X;a) - a . (2.14)

The general theory described in this section applies as well

to what is known as systems with repeated components (see, e.g.,

Harris and Sons (1973)). For such systems, there are 1 < a < k

unknown parameters pl,p 2 ,...,pa, since the "repeated components"

are assumed to have identical failure probabilities. This

assumption permits the experimenter to regard the dita as

(ni,Yi), iul,2,...,m, and employ the previous results.

For example, if a series system of k components has a1 of

one type, a2 of a second, ... , am of an nth type, then

a1  a2  am
... h(~p) = l 2 "' m ' " a- = ki

. i1

3. Counterexamp les

In this section we restrict attention to series systems and

employ the ordering function

k
gx) 1 (n n- xi)/ni ,

il



introduced following Theorem 2.1. As noted previously, in this
k

case the reliaBility function h(p) a i1 pi. with this special-

ization we have for (2.4)

t (3.1)

tj nj (-rt/[ 1 i

t 1r E1 (D -if)/nih]), < k (3.2)
Lai

whenever g(x) rm, 1< < s. If a a s, then r a and a 0 0.
o0

Fer K > 0, X, > 0, let

pP tl(l-t)ldt 0 < p (3.3)Zp , 3X)A = 0

the Incomplete beta function.

It is well-known that if t is an integer, t < n, we have

I (3) pniqi I p(n-t,t+l) . (3.4)~inO

In Sudakov (1974) the following inequality was published.

Pi P M > rjl ! I k (Alt~ll (3.S)

k i I - lill
[Pi

This inequality and generalizations of it were further

.1 studied in Harris and Sons (1980,1981). (3.5) implies
AP

f•(x;a) < Ia-t

a I- ltltll

hence its usefulness. However, as we now establish, (3.S) is not

universally valid, as was claimed in Sudakov (1974).

* Let (2lx2) = (x,.0) and let (n,,n 2) u (nl,2nl). Then

S(;) = (nl-xl)/nI and ti a x 1 . Consider P-{g([) . If

.4JA
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p- (l~a), 0 < a < 1, we have

P5{g(X) ! r} a Pa{(n2 -X2 In 2

since P{Ix I 00 1, by (2.1). Consequently,

PtzgCx) > r} Pa{X2 -n2 (1-rm)}

Pa < 2n(I-r,)}

Since r. (n-xln 1 ,

Pi {S(X) >T} a) P < 2x1}

Thus from C3.4),

P (g(CX) > r l aCn2(fi-xi 2 •+)

The Sudakov inequality implies that

1aC 2Cnl-x1 ), 2xl+1) < IaCli- Xi 1+1)

or

la( 2 nlrm, 2nl(1-r)+l) < Ia (n 1 ra, nI(1-rm)+l) . (3.6)

Let h2(t;n 2,rm) and h1 Ct;nlr 3 ) denote the beta density functions

corresponding to the left and right hand side of (3.6), respec-

tively. Then, provided nlr > 1. there is an e > 0 such that

h 2 (t;n 2 ,ra) < hl(t;nl,r ) 0 <t < E, 1-C < t < 1

This implies that hl(t;n 2,r*) and h2 (t;n 2,r) intersect in at

least two points. If t* is such an intersection, setting

hl(t;nl,ra)/h 2 (t;n 2,rJ) a 1 gives

)U

I
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nlrm(1-t)nl l rm) , n (1-

Thus, for 1 < a < s, there are exactly two such intersections.

i Therefore there is a z such that

I i r , C1-r )+I) I Cn r U

forz> zO0

I(nlr, nl(1-r*)+l) < I (n 2 r*, n2 (1-ra)+1)

and for z < z

I Iz(nlIrm n1 l r m) +I )  > I z(n2r Is, n 2(1-r &)+ I) .

Thus for z > zo, (3.6) is violated. (3.6) was used as a lemma

by Sudakov (1974) to prove the inequality (3.5). This lemma was

also employed in Harris and Soms (1980, 1981). It is the falsity

of this lemma which invalidates (3.5).

Table 1 provides some illustrations of the violation of

(3.5) for k - 2 and selected values of (nl,n 2), (xlx 2). The

smallest value of plP 2 for which this violation occurs is also

given in the table, where it is denoted by a*. In addition,

f*(i;a*) is tabulated. Thus for a < f*(X;a*), (3.5) is valid.

The calculations were made by means of a FORTRAN program.

Note that for (nln 2 ) (5,5) and (x,,x2) (1,1), the

inequality was not violated.

-- o . , ,, o ,-- .. . . . . . . . .
'1.....-
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Table 1. The Smallest a, a', and f*(i;a*)

(aI n2) (xI x2) a' f'(i;a')

(ss) (1,1) 1.0000 1.0000

(5,5) (3,3) .7454 .9998

(5,10) (1,0) .8798 .8909

(5,15) CO,3) .8698 .8791

(5,30) (1,0) .8498 .8467

4. The Theory of Key Test Results

If for n < n2  . nk , Cxl,x 2,...,xk) m(Xl,0,...,0),

k > 2, then i is called a key test result. Vinterbottom (1974)

asserted that subject to x1 < f(k,n 1), where f(k,nl) is the

solution in f of

n k-f-l - k[(n 1 -f)n kl]l/k , (4.1)

we have ag( is the solution in a of

I Ia(n l-xl, xl+l) u a , 0 < a < 1 (4.2)

This would imply the inequality (3.5), which we have disproved

in Section 3.

As we subsequently establish, the error in Winterbottom's

(1974) result is a consequence of falsely concluding that

f(k,nl) depends only on n 1  It is easy to be led to this conclu-

* sion on intuitive grounds, since (nl-x1 , nl,..., nI) would seen

* to be a less favorable experimental result than (nl-xl,n2,...,nk),

whenever n n1 for at least one index 1, 2 < i < k. Rovever, we
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will now establish that a "modified" key test result holds for

xI < f(knhn 2 A,...,nk] , where f(kn,nn 2 ,...,nk) is the solution

in f of

k k i/
n f- l+ I n" k[(n-) I n,:l/a a (4.3)

i=2 i-2

Theorem 4.1. If n n2  ... ! n and r a (xlO,...,0), with

X < (knln 2 ... nk) < ni, then2.0 .. €,.,

where g(xlO,...,O) - r .

k
Proof. For I xi C n1 , from Marshall and O1kin (1979, p. 78),

L-1
1I (ni-xi ) is a strictly Schur-concave function of

11k k
I i' .,nk-X k )  Thus, if (ni-xi) is fixed, R (n 1-xi)i-i i-

k IL
to minimized at (a, - J i~n2,...nk). Equivalently, R (ni-xi )

1-1 k i-i

is minimized for vectors of the type z - ( x,O,...O) when
k .- •- i- -

x is fixed.
i-

Lot (za = ) with zi  x, I n I . Then

k k
"(n-z) > n1-x1  n (4.S)

k
For each fixed value of (ni-z1 ), we have

k k k k

iorderlth=2 a

In order that



V > a (a 2 .:.. (: :- M.; :;... . .i..: .. (4.7)

u-'il Ju Ju " i

we must have X a X x 0. Note that if 1xi 1 ,

2 1 It U1X 2 -C a29, .., k < n k, the two sets cannot coincide, because

N(on2)4 . nk]is in the right hand ect but not the left. From

(4.6) It follovs that

kk k k~
I n. (4.8)

k k
Equality holds if max I (ni -:1 ) < (n 1 -xI) U n when 1(n 1-z Ik Jui! l ) •  nlxl2nwhn[n- ) =

CnI-x 1 ) I ni-l. From the trithmetic-geometric mean inequality
im 2

this is true whenever

J k Ik

.._ (n1-x1) 1 n1 . (4.9)

I.i=2 "

Note that equality in (4.7) may still hold if (4.9) is
k

violated since (nI- xI+I n,-l)/k may not be an integer or may be
i=2

bigger than some of the ni, iul,2,...,k. Thus if xI is the

smallest x1 value for which equality holds in (4.9), then

f(k,nl,n 2 ...,nk) - x .

If x < f(k,nl,n2,...,nk), then, from the above,

.' ' f(;;a) = sup P Y4 (4.10)
k Jiul " 'l iwi"

I=

Writing (4.10) 9s an iterated sum and noting that
-I~ I(n-x,x~l) is a decreasing function of n for fixed x. we have

1t

li
rut
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sx{p I n s.Y.U -x,(k-l)}
k1= su °ly , 12I k 162 1 n

I p i ma I p I ~a

where the It are independent binomial random variables with para-

meters Cn .Pi). i=2,...,k. Writing

k kn

1l T I 1 12 u1 a I Yi=2 I t=1 Jul

where the Y are independent Bernoulli random variables with

parameter Pi, a result of Pledger and Proschan (1971) may be
k n

employed to show that the upper tail of I i is a Schur-

convex function of (-lnp, -1npl..., -Inp -1nP 2 ...,-1nP 2 .
-lnP ...,-InPk ) and therefore f*(;a) I (nas

required.

As is discussed below, (4.3) may have no solutions. In such

cases, and in general, it is possible to strengthen (4.3).

Corollary. For each f, form the vector ( - Czlz2,...,zk) from

* (nln 2 0..., n k ) by continually reducing the maximum (s) until

the subtractions total f~l. f > 0. Denote by f'(k,,na...,nk)

the first f for which

k ki>(if

-;i~l " iA2 in"

Then (4.4) holds for x 1 < f'(k,nan2 ,...,nk).

Proof. The proof roceeds exactly as for Theorem 4.1'by noting

that I maximizes R r i subject to 0 < r and r

k 1=1 I 1

"r nf-l. This follows since i Is majorized by and theim1

product is strictly $chur-concave.
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Remarks. For 0 < f < nI, the right hand side of (4.3) is concave

decreasing. The left hand side exceeds the right hand side when

f a n1 . If the left hand side is less than the right at f u 0,

there is exactly one solution f, 0 < f < n1 . If not, there are

no solutions. There is always a solution if n I = n2  n

From the Corollary following Theorem 4.1, xI * 0 satisfies (4.4).

If n I a n2  ... a nk , (4.3) reduces to (4.1) which is

Vinterbottom's (1974) condition. However, s should be replaced

by s+l in his formula, which also has a sign error. As an

example, for k = 2, n1 I n2 a SO, from Winterbottom (1974), (4.4)

is stated to hold for x1 < 17 or nI-x1  33. However, 33,S0 < 41-41,

and therefore (4.4) only holds for x,< 13 or n-xi > 37, as the

Corollary to Theorem 4.1 shows, or the solution of (4.3), which

gives f(2,SO,30) = .13.14.

The dependence of f on may be seen by considering an

example. Let k = 2, n I a S, n 2 - 10. Then from the Corollary

following Theorem 4.1, (4.4) only holds for xI a 0, whereas for

nI a n2 - S, it holds for xI - 0,1,2, and 3. Thus the case of*

equal ni, inl,2,...,k, does not give the minimal f. In fact, it

may be seen that if nk 21, then (4.4) holds only for xI = 0.

S. Concluding Remarks

From Table 1, it seems reasonable to conjecture that (3.5)

is valid for those values of a,kji likely to arise in practice.

The authors are continuing to investigate the problem and hope

to report more precise conditions for the validity of (3.5) in

subsequent work.

iAL
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