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INTRODUCTION
T Largely as a consequence of advances in computer téchnology ; o
ithe'usg of time series analysis methodology to investigate
correlations of brain electrical activity with clinical disérders
has become an area of intense effort in many EEG research lab-
oratories. The primary objéctive of many of these investigations
is the detection of EEG time series properties which offer a
quantitative basis for aiding diagnosis of mental i;lneas or'bréin
injury. This chapter describes the speciul eiectrophysiological
5ce§£s thch we nave been dsvelopinq at TéIMS* for application to
‘vesearch projects concerned with.the detection of EEG properties
thch coryelate with particalar ahnormalities'suah as uncontrellad
' violeﬁt behavioxr, learning disabilities end epilepsy. -

BHAIN SPIKING o : ‘

Intermittent deep brain electxical spiking ae well as scalp |

j‘:EEG spiking has been imj _icated i certain brain and behavigral

(1)

U*dis@rdars such as epilepsy '’ ana uncontrolled violent behavior.

The cnerelation of abnormal deep brain electrical spiking activity ,

with violent behavior has been demonstrated in nonhuman primate e
studias‘z)by employing iavagive methods which involve the surgical a::'

inplantation of electrodes and subsequent analysis of the electri-
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cal activity recorded from the implanted deep brain structuros.,nléénnuion For
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diagnosis of abnormal brain activity, especially that deep brain

‘act.ivity associated with persons oxhibiting uncontrolled violent

behavior, woﬁld be achieved by the development of detection

. mgthodé that are noninvasiﬁe and therefore applicable in ordinary
clinical EEG settings.

Qur TEG research on noninvasive detection was stimulated
:primarily by the initial finding of complex patterns of consistent
waveshape in scalp EEG which were time-locked to spikes recnrded
from electrodes implanted in deep brain structﬁres of rhesus

‘monkeys. These studies'?

have also shown that such scalp corre~
lotes of deep spiking can be detected even in severe EEG noise
backgrounis by the application of digital filters appropriately
designed to minimize the effects of unwanted EEG background
activity, or by special application of cepstral mathods in cases
where digital filters for pattern recognition are not éuitable
because the pattern to be detected is not known a'priori. The
analytical methods and their potential applications are described
i refarencags) (¥ (8] (6)
DETECTION METHODS

The digital filtering procedures developed for detecting
scalp corrolates of deep spiking werd based on an analysis of
monkey and human scalp EEG data cbtained from reseaich projects

where simultaneous recordings from deep brain structures were

available. Using the deep spike as the trigger for averaging
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:.s¢alprEEG activity, it was observed that transient slow wave

L e

activity frequently appeared in scalp activity at the same time
that a spike occurred at depth. The waveshape of this transient
,1activity was usually distorted by the presence of noise;
therefore averaging procedures were used to achieve a better
estinate -of the transient waveshape. The power spectral density |
of the scalp EEG background activity was also estimated in order ?
to appropriateiy weight the spectral components in the £ransient
waveshape obtained by averaging. The digital filter Gerived fram
the spectral estimates of both the transient waveshape and *he
noise was employed as a detector which looks at scalp activity
and reports on the presence or nonpresence of transient patterns
which match the characteristics of the digital filter. It is
interesting to note that this coincidence’ of deep spiking and

tkansient BEG slowing implies that patholegical sharp spiliing

5§o$ivity at depth produces slow wave activity at the surface.

This is consistent with clinical EEC criteria which consider
focgl slow activity to be an abnormal indication.

The procedure for evaluating candidate digital filtors was
bused on the number of spikes detected ir nommal subjocis as
compared to the number of spikes Jletected in the recording of

-mantally ill subjects. In the ianitial evaluation a comparison
was made of the incidence of spikes in normals and in violont

subjects, based on a Poisson model for random spiking. In this

)




ﬁmbdel"the number of spikes detected over a given length of record-
‘Ern.ing is compared with the expected number derived from data on

nofmals. ‘The normal control is used to test the hypothesis that

'éréiveﬂ'record represents the EEG of a normal subject under the

‘ gssumption that'épikes in normal subjects are uniformly randomly §
:di§tp1bgt§d._ fﬁgﬁméthods of analysis underlying thesé evaluation Q
rpﬁégéduféé;&eﬁéndﬂbn the performance characteristics of the digital
filter as a'&etector, as well as on the statistical model for
evaluating the sigrificance of the number of spikes detected.

fThese methods are described in the next section.

N OMPUTER IMPLEMENTATION

By virtue of our computer configuration, Fourier serics
methods (rather thaa matrix inversion methods) were used to design
as wc}l as evaluate the digital filter. The Fourier methods

-for the design of the optimum filtex proceed as follows:

’ 1. Obtain (a) the complex Fourier series of the candidate
transient patterns and, (b) the power spectral density of

the signal plus noise; that is, the background EEG signal.

2. Divide the conjugate complex Fourier series of the '

transient pattern by the power spectral density of the

L N e it e e S

signal plug noise.
3. Take the inverse transform of the Pourier series obtained
in Stop 2 which gives a discrotely sampled t.imcvﬁnctiun

that is tho desired template or matched filter.




:':In addition to performing the above operations, the computer

in-our laboratory is also capable of performing running convolu-
tion. This aliows continuous digital filtering of the scalp EEG

_rto rapidly evaluate the performance characteristics of a candidate

digital filter as a detector of abnormal transient activity.

" The above analytical procedures refer to the detection of

:népiﬁe inddced events, but it is necessary to assign séme signifi-

' cance to the number of events detected in terms of background
activity and artifacts that produce false spike indications. The
major difficulty which presents itself in physiological signal
skudies of this tybe arises fram the fact that any given signal

characteristic such as a spike can and usually does appear due to

random background cffects. The problem then bacomes one of

determining whether the appearance of this signal characteristic
L.}
is due to background effects or to some inherent neurophysioloy-

ical abnormality in the EEG being analyzed. The analysis and
evaluation rationale are stfaiqhtforward if it is assumed that
the time interval between spike indications is random and uni-
formly distributed due to background activity in the normal EEG.
- With the foregoing assumptions, the analysis proceeds as follows:
lot Igt(t)’& probability of oxactly n spikes occurring
i in time ¢t due to EEG background activity in

normal subjocts and,
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probability of exactly n spines occurring
in time ¢+At due to EEG background activity

in normal subjects and,

A = average rate at which spikes occur in the EEGs
of normal control subjects; ‘
then p, (t+At) =p (t)(1-MAt) +p, _ (t)MAt. ST

Equation (1) states (a) that the probability of exactly n
spikeé cccurring over t+At is equal to the probability that n
spikes occur over time ¢ and none in Af, plus the probability that
exactly {n-1) spikes occur over time ¢ and exactly one in At and
that the time increment At is so small that (b) the probability of
two or more spikes occurring during At is zero, and (c) that the
probability of one spike occurring at At is AAt. Rearranging terms

in BEquation (1), and passing to the limit as Af + 0 gives:
t

dp,(t) ’
=Tt Ap,(t) = Ap, ,(t). (2) §

The solutioﬁ of this difference-differontial equation is the

Poisson probability donsity: 1

&

' ()t -t
b, (L) = —-;%—-a . (3

Tthe average or expected numboer of spike occurrences, 5} durinq
time ¢ is given by:

n =)t

the variance of spike occurvences is also equal to AL, so:

az .;;0
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‘If the actual number of spikes detected in an BEG record of
length t is N, then to test significance we need to detemmine the
likelihood that ¥ or more spikes could occur in a normal EEG

racord. This is given by the cumulative distribution:

© n
Pﬁ(t) = I 15%%—-e’Xt !
n=N i
N-1 n
=1.- g BN (4)
n=0

If N is large compared to n(=At), then the likelihooé computed
froh Equation (4) is small. If this likelihood is sufficiently
Vsmall, then we reject the hypothesis that an EEG record containing
N spikes in a time ¢ is a normal record.

For several values of spiku=-ccunt expectation, the level of
significance associated with this hypothesis for a record with ¥
spike indications can be obtained from plots of the cumulative
distribution shown in Figure 1. For example, if tho expected
numbor of spikes over a given length of a normal record is 6, then ‘
the plot shows that the probability of 18 spikes occurring in a
normal record is 0.0001. Therefore, the hypothesis that an ESG in
which 18 spikes are detected represents a normal subject is rejocted
at the 0.0001 level. ftThe detection of 12 spikes would allow re- |
jection of the hypothesis at the 0.02 level.

It should be pointed out that such statistical modeling of
multiple detections over lohg BEG records 1u ossontial bocauue of

the false signals, artifacts, and the many uncontrollable sourcas




of physiological interference that plague the evaluation of EEGs.

: These gtatistical procedures follow and supplement the digital

filtering procedures used in designing the detector, as outlined in

1
<

the previous sections and described in our publications.
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DETECTION OF SPIKE CORRELATED SCALP TRANSIENTS OF UNKNOWN WAVESHAPE
An alternate approach to the deep spike noninvasive detection
problem ié required when the recurring scalp FEG trarsient pattern
is of unknown waveshape. Since averaging methods for visualizing i
a recurrent waveshape in noisy EEG require that the averaging oro-
cess be synchronized by the deep spike event which can be detected
only by invasive methods, the waveshape of the recurrent transient
is frequently unknown. Under these conditions, the meChodology(“)(S)
for detecting the presence of a recurrent complex transient in
écalp recorded brain electrical Activiﬁ? is based en the application
of deconvolution procedures as described below,
A recurrent transient waveform in the KEG can be represented
as follo&s:
n ;
CK(t) = kx AkX(L-Tk) + N(L) ()
=()
Alternatively, (5) may be written as a convolut {un product:
N :
E(t) = X(t) * REO Ak 6(6~Tk) + N(t) (6)

whore * designates convolution, and

A(t) = intarmittent pattorn; i.e,, waveshape of recurrent

S M. - ~

transiont

-

N(t) = ﬁSG-bacquound activity
. 6(t~1k) = Dirac delta function at 1)
The deconvolution of the convoluiion factors fn equation (6) in

actamptished in soveral stops.  First, the Pourier transn)orwm ol

B
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(6)'gives the algebraic product of the individual Fourier trans-
forms of the intermittent pattern and the set of delta functions.

This suggests the use of cepstral analysis which involves com-

putation of the logarithm of the Fourier transform as a second

step andl, as a third step, computation of the inverse Fourier
transform of this result to produce a function called the cep-

strum. The properties of the cepstrum will reveal the presence

of a recurrent pattern in the EEG by virtue of spikes which will

appear in the cepstrum when two or more recurrences of the pattorn

" “are embedded in the EEG epoch analyzed.

If the waveform characteristics are of interest, then this
ﬁethodplogy can also be used to determine the shape of the tran-
sient pattern. This is accomplished by smoothing the cupstrum to
eliminate the spikes, and then reversing all the transfowmmations

used to produce the cepstrum. However, this is a difficult com-

{

putational problem and it is possible to circumvent these prucadura%

if one is not intorosted in ascertaining the shape of tha pattern,

- but simply in detecting whether a recurrent pattern is contained

within the time aepoch analyzed. If at least two patterns are

captured ie tha data epoch, then analysis shows that the power

spoctral density (PSD) will contain ripples which are attrilratable

to the ércsencc of the recurring pattorn. The assumption undur-
lying the utility of this approach is that the background BEG, it

the abgence of a recurront teansiont patteen, will possoss a

%

)
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smooth or unrippled PSD. Figurcs 2 and 3 demonstrate that this

assumption holds for the EEG data recorded under "eyes open"
conditions from occipital leads during an expefiment in which
transients were introduced into the background EEG by intermittent
visual stimulation. The figures show that the PSD for the no
stimulus condition is smooth (Figure 2) while “he PSD for the
stimulus condition exhibits ripples (Figure 3) whose peaks arc
separated by the reciprocal of the stimulus interval.

In summary, the above results demonstrate that PSD analysis
of sufficient frequency resolution to resolve ripples may provide
a tool for noninvasively diagnoesing illnesscs in which decep
brain electrical spiking may be a factor, More generally, the

unalytical methods described in this section provide a basis for

invastigating the clinical implications of weak recurrent trangient

which are ambodded in BEG background and therefore usually not

discerniblo by visual inspection of the BEG time series.
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' EEG SPECTRAL COHERENCE ' ‘

LR

Spectral coherence analysis of the EEG provides a frequency
‘dependent measure of shared* electrophysiological activity. Thus, ﬂ
if linearly related (i.e., coherent) electrophysiological activity .
between two EEG channels is present in a restricted portion of the
frequency spectrum while the remainder of the spectrum'pontains g
activity which is linearl& independént (i.e., incocherent) then.the
spe;tral coherence runction by virtue of its frequency dependence,
can detect coherent activity even in situations where intensc
levels of incoherent activity dominate the energy spectrum. Since
differences in shared EEG activity may reflect differences in
ﬁeural connectivity (i.e., communication between brain reéions)

- this measure - {coherence) has been adopted by several investigators(7)
as a logical approach to the study of brain function in projects
qealing with EEG correlates of cognition and leafning disability.

-PROBABILITY'DISTRIBUTION OF COHERENCE ESTIMATES

i ity

The coherence function (i.e., Spectral Coherence) is defined i%

terms of the normalized cross-spectrum of two time series. The
. ‘

cross-spectrum is defined as the Fourier Transform of the cross~

correlat.on function, viz: L l

}.

.- *In this context shared electrophysiological activity among brain

regions is defined as that activity at a recording site that is

?’ "'Y related to the activity at another recording site through a linear
ff‘lftransformqtion.
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Denote, S)(t), S,(t)

different time series
$12(T) = cross-correlation function of } S
Si1(t), Sa2(t), where T is the variable

time shift between S; and S3, and ¢y2(T)

is defined by the integral equation (7)

|

dr2(1) = —; fg' S1(t) Syt + t)dt (7) 1

2

Then denote, P12(f) T cross-spectrum of S;(t), S2(t) where Pia(f)

is defined by (8), using the exbonential form of the Fouricr trans-

formation.

$0o -227f
Pralf) = L2 orate (8)
(where f is frequency in hertz and T is time shift in seconds)
'By substituting equation (7) into equation (8) and appropriately

factoring the resulting double integral it can be shown that

Pya(f) = S:1(f) Eg(j? (¢ denotes camplex conjugate) (9)
where: S;(f) is the Fourier transform of S)(t) and S5(f) is the {

conjugate Fourier transform of S,(t). Note that S1(f) and

o . . .
S5(f)  are complex numbers in general and therefore so is P12(f).

We may represent them in polar form, as follows:

Bilf) = e (10)
FB(f) = pre?? | (11)

substituting (10) and (11) into (Y) gives the cross-gpectral

density in polar form:




] (12)
f(whexe 6 ='63 - 92)

- |
Whlle not 9391101t1y shown, note that the r's and 0's are :

:func ;ons of f- Now to arrive at the spectral coherence function
yg;nb%mal;;e §qqa§ion (12) by dividing by ri1r, and then averaging
.o§eri525um§ér;of fféquencies.and/or averaging over a number of time.
epcéhé of the two tlme series being analyzed.

- ‘.Thus if the average is taken over 2N + 1 discrete frﬁquen ies

. we.may write :he-spectral coherence as

e N ' (13)
1 ze(f ) ~ :
Clf) = " T 711,, k

":fwhere f ‘is. the center of the spgctral window and unltorm welghting
-is used in the wmndow; If-the average is taken dver M time epochs
z:"(ensemble averaging) we may write the spectral coherence as

ot ) et p o0 (T
'fﬁfc(fk)] _Mh_mél e m’k A (14)

\

If a- combinatxon of ‘frequency and cnsemble averaging is used then

. y—

spcutral coherence may be written
Wl ) ———— S . 15
Agy' - thesge expressions assume the use of uniform weighting

i the spectral window. |
) It should. be noted that for 1inearly independent siqna19 the
phase difference 0(=0,-02) is a randem function over both

reguoncy . ond onsembls and therefor the expocted value of coherence:
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averaged over frequency and/or time (ensemble averaging) is zero.

Thus, when coherence deviates significantly from zero, one

- . . -—.—4‘

may conclyde that the two signal processes in question are related

coherence estimate depends on the number of independent samples of

coherence which are used in arriving at the cohercence estim-~:e, and

upon the probability Aistribution Ffunction of these cohercnce

éstimates as described below.

— e e

" A coherence estimate is the average computed from independent

.

samples of the normalized cross-spectrum. These samples can he

-{fi - “represented as_points on the unit circle in the complax plane,

e

a:'illhsirated in Pigure 4. 1If these points are uniformly

_ " distributed over the unit circle, It is clear that the expected |

- value of coherence lies at the origin (z = ¥ =0). The normallzed

L e ]
sapples of cross-~spectrum may be written:

&, iy/-=‘3£0k = aoph '+-{ ain 6

o el T Tk k

-

The distiiﬁqticn shown in Figure 4 is-equivalent to stating ’

& - o .

,?ﬁ. ~ that the relative phase values botween Sjand S; at frequency f}

. axé;unifcrmlylr&ndomlg distributed over an ensemble of time opochs
_{‘ A and/qrﬂoVér'a nwber of frequencies in a spectral window contorud

at froquency fb + The complox value of coheronce may be writton:

3 t

A . — — o .
[P . e e e e el . . T AN -
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z (16)

Ch(f) == I @ +1 &

k=1
Since ©p and Yp lie on the unit circle .

Ly, = cosek

il

Uy sznek
the PDF (Probability Distribution Function) of both x and y

(given that 8 is a uniformly distributed random variable) have the

game form and are given by:

Dlx) = =~ | D(y) = am
Wi - a Wi = y

The corresponding means, (x, ﬂ) and variances (0;, Of

I) are given by

z=y=0 . (18)
2 _ 2 1
qw = GH 5y (19)

where ¥ = number of samples.

Prom (18) and (19) it follows that the mean and variance of the

coherence magnitude ([aoh(f;)l E r) is given by:

: P =0 ' (20)
i 1
& ol = (21)

Thus, to test the hypothesis that gt(t‘) and $2(t) are linoarly
independent time series, one examines the probability that the
opirically-obtained mean, computed from N samples, deviates from

the expected value {zoro in this case).g The numbar of standard
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-exceads 0.2. At TRIMS thig method of cohuronce analysis has baon

18

9-1 dgviétions by which the empirical value exceeds the expected

 value determines the level of significance. - S

For example when the coherence magnitude, r, is obtained by

"a combination of ensemble cveraging over 20 epochs and frequency

. _averaging over 5 spectral camponents then

N=20x6=100 = ~TT—-eo . __
andjthe regulting standard deviation of the estimate is Q‘_-""‘““‘-
0, ==~ =g
- Y100

Thus an empirically abtained value of coherence magnitude
which exceeds 0.2 would be more than two standard deviations from
the expected value for independent signals. Therefor it would be
statistically reasonable to conclude that the signals in question

are not independent, but rather that they are linearly dependent

’Qr coherent over the spectral region whore the cohereonce magnitude

§
i
{

gppliud to a pilot study of reading disabled children and normal
controls. Our initial findings suggest that bilateral EEG coherenve
at froquencies above 20hz is significantly lower in reading disabled -

children than in normal readers, which may be attributable to

- yreduced sharing or communication between homispheres at those A

frequencies. In any event this BEG moasure provides a basis for

camparing activity which visual examination of the EEG is incapablo

of disverning bocause the lower @rogquency enceryy which dominaten
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b&thrchaﬁnels conceals the coherent relationship at high frequen-
- cles. Thé application of coherence analysis to problems in
electrophysiology is likély to grow in importance because of the
need to examine the relationships among multiple channel activity
which may reveal abnormalities that cannot be found in analysis

of single channel properties of the EEG.
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Figure 4. A cohorence sample as a point on the unit circle

in the complox plane.

A coharence estimae is the averaqe of guch

samples over o spocificd muber of frequencies and/or o apect i

tsber of time epochs,
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