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ABSTRACT 

The problem of estimating the form of a surface, given a set 
of points lying on that surface, is a fundamental concern in 
automated cartography. A good deal of effort has been spent 
investigating the problem by using particular terrain 
modeling schemes, but no general approach has previously 
been developed. In this paper, we examine the problem of 
terrain estimation from an information-theoretic viewpoint. 
Geometric a'nalysis shows that there is an essentially unique 
criterion for the optimal choice of an estimated terrain 
surface given limited knowledge of that surface. We briefly 
review this theory, and then turn to the practical question 
of developing versatile and efficient software for 
manipulating terrain elevation data based on the 
information-theoretic analysis. The contour to grid 
estimation system CONTOGES was implemented at the U.S. Army 
Engineer Topographic Lahoratories (USAETL) as a preliminary 
check of the theoretical work. We discuss the particular 
algorithm and the results of a test of the software system. 

INTRODUCTION 

The problem of estimating the form of the earth's surface 
from a limited knowledge of that surface is not new. With 
the advent of widespread computer technology over the past 
two decades, and the corresponding demand for high-quality 
digital terrain models (DTM's), the problem has become 
particularly  acute.   To  date  the  elevation  estimation 
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problem has been addressed in an ad-hoc manner. For 
example, the decision to use certain functions with 
"desirable" continuity properties for interpolation is an 
arbitrary one, even though it seems to have an intuitive 
basis. Previously proposed terrain estimation schemes 
cannot be extended to other domains such as surface 
estimation in higher dimensional spaces. It is the purpose 
of this paper to suggest a general way of approaching the 
problem of surface estimation from limited data. 

Before discussing the details of our work, it is worth while 
emphasizing the motivation for the approach which we have 
taken. Many techniques which work well for some terrain 
features fail when presented with others. Thus, a linear 
interpolation scheme can have nice behaviour on hill sides, 
but do poorly when presented with hilltops. Expansions in 
terms of more complicated functions, such as splines, have 
smooth behaviour in a mathematical sense, but at the cost of 
introducing spurious features. Yet we know that the problem 
is not insoluble in principle, since cartographers have been 
producing acceptable maps from limited data for centuries. 
The cartographic license which goes into the manual 
production of maps is not linear, but the underlying 
principle may still be mathematically well defined. The 
work described in this paper suggests that there is a 
well-defined principle, that it is essentially unique, and 
that, with suitable engineering assumptions, it can be used 
as the basis for automated generation of DTM's from sparse 
data of arbitrary form. 

The starting point in our approach to the problem of terrain 
estimation from limited data is the assumption that there is 
some sense in which we may speak of the information content 
of a terrain surface. When estimating a surface from sparse 
data, it is appropriate to select that particular surface 
which is consistent with our knowledge and at the same time 
has the minimum information content. Any other choice 
assumes information which we do not have. Next we develope 
the functional form of the measure of information of a 
surface. We assume that a value on the surface may be 
estimated from knowledge of its neighborhood. Using only 
that assumption, we can use the tensor calculus to prove 
that the information intrinsic to a surface must be 
expressible in terms of the Gaussian curvature. Since there 
has been some discussion of surface estimation using the 
mean curvature*, we discuss the cartographic basis for the 
two approaches. In particular, we show that, since the mean 
curvature is not intrinsic to the surface, it cannot be 
calculated from angles and distances measured on the 
surface. To show that this philosophy is of practical 
value, we discuss its application to a particular problem: 
the generation of a gridded DTM from digitized contour data. 
By  introducing suitable  engineering  assumptions,   the 

* I. C. Briggs, Geophysics, V.  41 (1976), p.  1377. 
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abstractions of information theory and tensor calculus are 
reduced to a set of versatile and efficient algorithms which 
have been implemented on the PDP 11/45 computer at USAETL. 
Finally, we comment on the implications of our work, both 
for the specific problem of contour-to-grid estimation and 
for the general problem of digital terrain modeling. 

INFORMATION THEORY AND INTUITION 
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in  logical  contouring,  his 
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where H is the information content of the total surface, 
I[x,y] is the local measure of information content, x and y 
are suitable coordinates defined over the two dimensional 
surface of interest, and the integral is taken over the 
entire surface. 

Without additional information, this is all that we can say. 
Some will argue that, since the nature of the processes 
underlying the formation of terrain are not well understood 
in a mathematical sense, there is no basis to our approach. 
This is not the case, however, since we do have one 
additional fact at our disposal: in generating DTM's, we 
are modeling a surface on which we can measure distances. 
This is true of the earth's surface but not of an arbitrary 
function of two variables. (think about the distance 
between two points on the earth's surface (x1,y1,z1) and 
(x2,y2,z2), and compare that with the notion of a "distance" 

* J.Shore and R. Johnson, JJ£££ Transactions cji Information 
Theory, V.26 (1980), p.  26. 
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between the temperatures at the two points (x1,y1,t1) and 
(x2,y2,t2). Both z and t are functions of the two variables 
x and y, yet only the former makes sense). It is this last 
piece of information which allows us to make useful 
statements about the information content of a terrain model. 

TENSOR CALCULUS AND THE GAUSSIAN CURVATURE 
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The tensor calculus, when applied to two dimensional 
surfaces, yields a powerful result. All invariant functions 
intrinsic to two dimensional surfaces can be expressed in 
terms of a single invariant function: the Gaussian 
curvature. This result allows us to write the information 
at a given position as an arbitrary functional of the 
Gaussian curvature 

I[x,y] = I(K[x,y]) (2) 

Before proceeding to the application of this result to 
engineering problems, it is important to discuss the meaning 
of the Gaussian curvature in a cartographic context. 
Consider a particular point on the earth's surface. If we 
take a vertical plane passing through the point, then the 
curvature in the direction of the plane is defined to be the 
inverse of the radius of the osculating circle at that 
point. If we denote the maximum of such curvatures by k1, 
and the minimum by k2, then the mean curvature M is defined 
by 

M (k1+k2)/2 (3) 

while  the Gaussian  curvature K is  defined  by  the  product 

K  =  k1»k2 (4) 

* See, for example, S.Weinberg, Gravitation and Cosmology, 
(Wiley, New York, 1978). 
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The Gaussian curvature is named after Karl Friedrich Gauss, 
a mathematician who was also a surveyor. He proved that the 
integral of the Gaussian curvature over the surface of a 
triangle is equal to the sum of the interior angles minus 
180 degrees. The limit of this integral as the triangle is 
shrunk to a point is the Gaussian curvature at that point. 
The Gaussian curvature is just what a surveyor would measure 
on the earth's surface (see Figure 1). As a corollary, it 
follows that the mean curvature cannot be measured by such 
techniques. For example, consider the triangle in Figure 
2(a). It lies on a flat plane, and the sum of the interior 
angles is 180 degrees. Both Gaussian and mean curvatures 
vanish. By changing our coordinates, however, so as to 
"roll" the plane into the cylinder of Figure 2(b), the sum 
of the interior angles of the triangle remain unchanged, but 
now une mean curvature is non-zero. The mean curvature is 
therefore not intrinsic to the surface. 

ENGINEERING CONSIDERATIONS 

In the last section, we saw that the information intrinsic 
to the earth's surface can be expressed as an arbitrary 
functional of the Gaussian curvature. This is not useful 
unless the functional can be approximated by a simple 
function. To do this, we introduce two constitutive 
assumptions: that the curvature of the earth's surface is 
not rapidly varying and that it is small. Both assumptions 
are reasonable as long as we are not interested in very 
small features not well represented by the data. In 
problems of terrain estimation from sparse data, such 
features will not be present in the input data except as 
noise. The first of these assumptions allows us to neglect 
derivatives of the Gaussian curvature. The second allows us 
to expand the information I[K] in a Taylor series: 

HI] = Y    An.K
n/n! (5) 

n=l 

where the A are  some  unknown coefficients.   If we  now 
recall  that the  information must  be  positive, then the 
lowest order non-trivial  term which contributes is the 
square curvature.  Our approximations thus allow us to write 

1(1] - K2 (6) 

where we have absorbed the constant A2 in the definition of 
our unit of information. 

With equation (6), we are close to the position of applying 
our approach to practical problems of terrain estimation. 
The one remaining problem is defining K in terms of the 
structure of a DTM,  rather than in terms of a continuous 



function. The key is to further exploit Gauss' theorem on 
integral curvature. As noted by T. Regge, in the context 
of numerical calculations in General Relativity,* the 
appropriate way of treating curved spaces on digital 
computers is to approximate them by triangulated networks. 
The invariant integral of a function of the curvature over a 
curved surface is replaced by the sum of that function 
evaluated at the vertices of the triangulation. The 
Gaussian curvature at a vertex V is given by the deficit 
angle 

K(V) 2n (7) 

where the o(; are the interior angles of the tr iangulation 
with vertex V (see Figure 3). For example, tie Gaussian 
curvature at each of the four vertices of a regular 
tetrahedron is 180 degrees, while the Gaussian curvature at 
each of the vertices of a cube is 90 degrees. 
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* T. Regge, H Nuovo Cimento, V. 19 (1961), p. 558. 

** T. Peucker, et. al., Proceedings pf £H£ Digital 
Terrain Models Symposium, American Society of Photogrammetry, 
American Congress of Surveying and Mapping (1978), p. 516. 

*** See, for example, H.Fuchs, et.al,  Communications Q£  üi£ 
ACJ1, V. 20 (1977), p. 693. 

**** S. Norton and C. Taylor, An Information-Theoretic 
Contour-to-Grid-Estimation System:  CQNTPGES, 
USAETL Technical Report, in preparation. 
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RESULTS 

The test of any terrain modeling theory is the performance 
of computer programs embodying the theory. The problems 
generally associated with contour-to-grid interpolation 
include flattening of hilltops, shifting of terrain 
features, and introduction of spurious features. In 
addition, there are frequently problems such as a 
"staircase" effect between contours which are not associated 
with the interpolation scheme but are due to the terrain 
sampling mechanism. 

To focus on problems associated with the interpolation 
scheme, and to allow limited comparison with "ground truth," 
the CONTOGES software was tested on data derived from an 
existing elevation data base. To demonstrate the 
flexibility of inputs, we generated a 601x201 input grid 
with elevations falling on every tenth diagonal. Contour 
data can also be considered as a sparse elevation matrix, 
and therefore can be input directly into our routines. 
Although CONTOGES requires a gridded elevation input, it is 
straight forward to extend the implementation to accept any 
form of elevation data. The 601x201 sparse grid with 
elevations at approximately 20% of the nodes was processed 
by CONTOGES. The output was a 601x201 dense grid with 
elevations at all of the nodes. In order to check for slope 
continuity and systematic errors orthonormal shaded relief 
was chosen as the technique for viewing the data. Figure 5 
shows the original data base when illuminated from the upper 
left. Figure 6 shows the output of the test just described. 
Note that the hilltops are round, the ridgelines are sharp 
(without the use of ridgeline data), and that no spurious 
features are evident. The noise in Figure 6 is largely due 
to the use of shaded relief since we are looking at the 
derivatives of the surface rather than at elevations. 
Inspection of the output shows that the noise corresponds to 
fluctuations which are typically of the quantization size of 
the input data and does not seem to be a problem of the 
estimation scheme. 

The other element of concern in the evaluation of the 
performance of the CONTOGES software is execution time. 
Running on a PDP 11/45 minicomputer, the generation of the 
full 601x201 data set requires approximately 20 minutes. 
Despite the non-linearity of the approach, CONTOGES is 
competitive in execution time with existing programs for 
grid estimation from contour data. 

DISCUSSION 

Preliminary testing of the contour-to-grid-estimation system 
CONTOGES suggests that the techniques described above may 
form the basis for production software for the generation of 
gridded  DTM's from digitized contour data.  Further testing 
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on typical production data sets, as well as careful 
consideration of where these ideas should be applied in a 
production system will be necessary to determine the 
changes, if any, which need to be made in software used for 
large scale generation of gridded data bases. It is 
apparent that the information-theoretic approach to terrain 
estimation is free of the problems found in other approaches 
without severe degredation of processing time. 

Perhaps of greater importance in the long run is the 
application of the ideas outlined in this paper to other 
problems of terrain modeling. If the preliminary results 
presented here are substantiated in further testing, the 
information theoretic approach will prove to be of general 
utility in generating any kind of DTM from any other. In 
particular, an interesting application might be the 
generation of triangulated irregular networks from available 
terrain models such as gridded or digitized contour DTM's. 
Another possibility is the treatment of noisy data by 
extending this formalism to the consideration of fractal 
surfaces.* 
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Figure 1.  Gauss' 
Integral Theorem 
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Figure 2.  Gaussian Curvature 
is intrinsic to the surface ; 
mean curvature is not. 

K(V) = n   -  \  0j 
i=l 

Figure 4. 
A Triangulation Scheme 
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Figure 5.  601x201 Test Data Set 

Figure 6.  Output Generated by CONTOGES 
from Sparse Data. 
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