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INFORMATION-THEORETIC SURFACE MODEL ING

Cyrus C. Taylor and Steven W. Norton
United States Army Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060
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ABSTRACT

The problem of estimating the form of a surface, given a set
of points lying on that surface, is a fundamental concern in
automated cartography. A good deal of effort has been spent
investigating the problem by wusing particular terrain
modeling schemes, but no general approach has previously
been developed. In this paper, wWe examine the problem of
terrain estimation from an information-theoretic viewpoint.
Geometric analysis shows that there is an essentially unique
criterion for the optimal choice of an estimated terrain
surface given limited knowledge of that surface. We briefly
review this theory, and then turn to the practical question
of developing versatile and efficient software for
manipulating terrain elevation data based on the
information-theoretic analysis. The contour to grid
estimation system CONTOGES was implemented at the U.S. Army
Engineer Topographic Latoratories (USAETL) as a preliminary
check of the theoretical work. We discuss the particular
algorithm and the results of a test of the software system.

INTRODUCTION

The problem of estimating the form of the earth's surface
from a limited knowledge of that surface is not new. With
the advent of widespread computer technology over the past
two decades, and the corresponding demand for high-quality
digital terrain models (DTM's), the problem has become
particularly acute. To date the elevation estimation
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problem has been addressed in an ad-hoc manner. For
example, the decision to use certain functions with
"desirable"™ continuity properties for interpolation is an
arbitrary one, even though it seems to have an intuitive
basis. Previously proposed terrain estimation schemes
cannot be extended to other domains such as surface
estimation in higher dimensional spaces. It is the purpose
of this paper to suggest a general way of approaching the
problem of surface estimation from limited data.

Before discussing the details of our work, it is worth while

s emphasizing the motivation for the approach which we have
taken. Many techniques which work well for some terrain
features fail when presented with others. Thus, a linear
interpolation scheme can have nice behaviour on hill sides.
but do poorly when presented with hilltops. Expansions in
terms of more complicated functions, such as splines, have
smooth behaviour in a mathematical sense, but at the cost of
introducing spurious features. Yet we know that the problem
is not insoluble in principle, since cartographers have been
producing acceptable maps from limited data for centuries.
The cartographic license which goes into the manual
production of maps is not linear, but the underlying
principle may still be mathematically well defined. The
work described in this paper suggests that there is a
well-defined principle, that it is essentially unique, and
that, with suitable engineering assumptions, it can be used
as the basis for automated generation of DTM's from sparse
data of arbitrary form.

The starting point in our approach to the problem of terrain
estimation from limited data is the assumption that there is
some sense in which we may speak of the information content
of a terrain surface. When estimating a surface from sparse
data, it is appropriate to select that particular surface
which 1is consistent with our knowledge and at the same time
has the minimum information content. Any other choice
assumes information which we do not have. Next we develope
the functional form of the measure of information of a
surface. We assume that a value on the surface may be
estimated from knowledge of its neighborhood. Using only
that assumption, we <can use the tensor calculus to prove
that the information intrinsic to a surface must be
expressible in terms of the Gaussian curvature. Since there
has been some discussion of surface estimation using the
mean curvature®*, we discuss the cartographic basis for the
two approaches. In particular, we show that, since the mean
curvature is not intrinsic to the surface, it cannot be
calculated from angles and distances measured on the
surface. To show that this philosophy 1is of practical
value, we discuss its application to a particular problem:
the generation of a gridded DTM from digitized contour data.
By 1introducing suitable engineering assumptions, the

# I. C. Briggs, Geophysics, V. 41 (1976), p. 1377.
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abstractions of information theory and tensor calculus are
reduced to a set of versatile and efficient algorithms which
have been implemented on the PDP 11/45 computer at USAETL.
Finally, we comment on the implications of our work, both
for the specific problem of contour-to~-grid estimation and
for the general problem of digital terrain modeling.

INFORMATION THEORY AND INTUITION

When a cartographer manually estimates a terrain surface, as
in logical contouring, his estimate is based on the
information (e.g., contours) in the vicinity of the area he
is estimating. His estimate is smooth; no depressions or
rises are introduced unless they are indicated by the
available data. These elements of cartographic intuition
can be mathematically formulated by assuming that there
exists a measure of the information content of the surface
which is local, and that valid surface estimates minimize
the information content of the interpolated surface. The

information function is assumed to be positive
semi~definite: there are no surfaces of negative
information content. Finally, since a cartographer’s

intuition 1is independent of the choice of any particular
coordinate system, the information of a surface should be
intrinsic to the surface. These three assumptions,
locality, positivity, and coordinate independence of the
measure of information are the basic assumptions of
information theory.* Since the assumptions seem reasonable
in a cartographic context, it is appropriate to begin the
study of terrain estimation with them. We thus have the
first fundamental equation,

5 - I dzdy Ilx,y] (1)

where H is the information content of the total surface,
Ilx,y]l] 1is the local measure of information content, x and y
are suitable coordinates defined over the ¢two dimensional
surface of 1interest, and the integral is taken over the
entire surface.

Without additional information, this is all that we can say.
Some will argue that, since the nature of the processes
underlying the formation of terrain are not well understood
in a mathematical sense, there is no basis to our approach.
This is not the case, however, since we do have one
additional fact at our disposal: 1in generating DTM's, we
are modeling a gsurface on which we can measure distances.
This 1is true of the earth’s surface but not of an arbitrary
function of two variables. (think about the distance
between two points on the earth's surface (x1,y1,z1) and
(x2,y2,2z2), and compare that with the notion of a "distance"

®# J.Shore and R. Johnson, IEEE Iransactions on Information
Theory, V.26 (1980), p. 26.
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between the temperatures at the two points (x1,yl,t1) and
(x2,y2,t2). Both z and t are functions of the two variables
x and y, yet only the former makes sense). It is this last
piece of information which allows us ¢to make useful
statements about the information content of a terrain model.

TENSOR CALCULUS AND THE GAUSSIAN CURVATURE

In the last section, we saw that the information content of
a two dimensional surface could be written as the integral
of a local function of the two coordinates used to map the
surface. The function is intrinsic to the surface and so
must be invariant under arbitrary coordinate
transformations. Finally we have seen that the earth's
surface is special in that a distance function is defined on
it. Mathematically speaking, the earth'’'s surface forms a
two-dimensional metric space. The task of cataloging the
invariant functions intrinsic to metric spaces of arbitrary
dimensionality is well known. The formalism needed to
discuss such issues in detail, the tensor calculus, is
complex. For our purposes, we need only a few fundamental
results, and therefore refer the interested reader to
standard modern textbooks.#®

The tensor <calculus, when applied ¢to two dimensional
surfaces, yields a powerful result. All invariant functions
intrinsic to two dimensional surfaces can be expressed 1in
terms of a single invariant function: the Gaussian
curvature. This result allows us to write the information
at a given position as an arbitrary functional of the
Gaussian curvature

Tlhx,w) = DOEPy ) (2)

Before proceeding to the application of this result to
engineering problems, it is important to discuss the meaning
of the Gaussian curvature in a cartographic context.
Consider a particular point on the earth's surface. If we
take a vertical plane passing through the point, then the
curvature in the direction of the plane is defined to be the
inverse of the radius of the osculating «circle at that
point. If we denote the maximum of such curvatures by ki1,
and the minimum by k2, then the mean curvature M is defined
by

M= (kl1+k2)/2 (3)
while the Gaussian curvature K is defined by the product

K = klek2 4)

*# See, for example, S.Weinberg, Gravitation and Cosmology,
(Wiley, New York, 1978).
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The Gaussian curvature is named after Karl Friedrich Gauss,
a mathematician who was also a surveyor. He proved that the
integral of the Gaussian curvature over the surface of a
triangle 1is equal to the sum of the interior angles minus
180 degrees. The limit of this integral as the triangle 1is
shrunk to a point is the Gaussian curvature at that point.
The Gaussian curvature is just what a surveyor would measure
on the earth’s surface (see Figure 1). As a corollary, it
follows that the mean curvature cannot be measured by such
techniques. For example, consider the triangle in Figure
2(a). It lies on a flat plane, and the sum of the interior
angles 1is 180 degrees. Both Gaussian and mean curvatures
vanish. By changing our coordinates, however, S0 as to
"roll" the plane into the cylinder of Figure 2(b), the sum
of the interior angles of the triangle remain unchanged, but
noWw tne mean curvature is non-zero. The mean curvature is
therefore not intrinsic to the surface.

ENGINEERING CONSIDERATIONS

In the last section, wWe saw that the information intrinsic
to the earth's surface can be expressed as an arbitrary
functional of the Gaussian curvature. This is not useful
unless the functional <can be approximated by a simple
function. To do this, we introduce two constitutive
assumptions: that the curvature of the earth's surface is
not rapidly varying and that it is small. Both assumptions
are reasonable as 1long as we are not interested in very
small features not well represented by the data. In
problems of terrain estimation from sparse data, such
features will not be present in the input data except as
noise. The first of these assumptions allows us to neglect
derivatives of the Gaussian curvature. The second allows us
to expand the information I[K] in a Taylor series:

Ikl = ) A_K%/a (5)

n=1

where the A are some unknown coefficients. If we now
recall that the information must be positive, then the
lowest order non-trivial term which contributes is the
square curvature. Our approximations thus allow us to write

1(x] - 2 (6)

where we have absorbed the constant A2 in the definition of
our unit of information.

With equation (6), we are close to the position of applying
our approach to practical problems of terrain estimation.
The one remaining problem is defining K in terms of the
structure of a DTM, rather than in terms of a continuous
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function. The key is to further exploit Gauss' theorem on
integral curvature. As noted by T. Regge, in the context
of numerical calculations in General Relativity,® the
appropriate way of treating curved spaces on digital
computers is to approximate them by triangulated networks.,
The invariant integral of a function of the curvature over a
curved surface is replaced by the sum of that function
evaluated at the vertices of the triangulation. The
Gaussian curvature at a vertex V is given by the deficit
angle

K(V) = 2n - Y oa (7)

i
where the of are the interior angles of the triangulation
with vertex V (see Figure 3). For example, tne Gaussian
curvature at each of the four vertices of a regular

tetrahedron is 180 degrees, while the Gaussian curvature at
each of the vertices of a cube is 90 degrees.

Regge’s formalism can be directly applied to terrain
estimation from a model based on a triangulated irregular
network®*¥* but it must be extended if we are to deal with
terrain estimation from more familiar DTM's Dbased on
digitized contours or rectangular grids. It is clear that
some triangulation of the surface in the neighborhood of the
point of interest 1is needed. Optimal results can be
expected from careful consideration of possible
triangulations.*¥*¥* Because of severe constraints on software
development time, we chose the triangulation of Figure 4 for
the initial implementation of our approach. This
triangulation was used as the basis for the algorithms in
the contour-to-grid-estimation-system CONTOGES implemented
at USAETL., #¥%%%

* T, Regge, Il Nuovo Cimento, V. 19 (1961), p. 558.

%% T. Peucker, et. al., Proceedings of the Digital
Terrain Models Symposium, American Society of Photogrammetry,
American Congress of Surveying and Mapping (1978), p. 516.

k%% See, for example, H.Fuchs, et.al, Communications of the
ACM, V. 20 (1977), p. 693.

SRR Gie Norton and C. Taylor, An Information-Theoretic
System: CONTOGES,
USAETL Technical Report, in preparation.
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RESULTS

The test of any terrain modeling theory is the performance

of computer programs embodying the theory. The problems
] generally associated with contour-to-grid interpolation
include flattening of hilltops, shifting of terrain {
features, and introduction of spurious features. In
addition, there are frequently problems such as a
"staircase" effect between contours which are not associated
with the 1interpolation scheme but are due to the terrain
sampling mechanism.

To focus on problems associated with the interpolation
scheme, and to allow limited comparison with "ground truth,"
the CONTOGES software was tested on data derived from an
existing elevation data base. To demonstrate the
flexibility of inputs, we generated a 601x201 input grid
with elevations falling on every tenth diagonal. Contour
data can also be considered as a sparse elevation matrix,
and therefore can Dbe input directly into our routines.
Although CONTOGES requires a gridded elevation input, it 1is
straight forward to extend the implementation to accept any
form of elevation data. The 601x201 sparse grid with
elevations at approximately 20% of the nodes was processed
by CONTOGES. The output was a 601x201 dense grid with
elevations at all of the nodes. In order to check for slope
continuity and systematic errors orthonormal shaded relief
was chosen as the technique for viewing the data. Figure §
shows the original data base when illuminated from the upper
left. Figure 6 shows the output of the test just described. !
Note that the hilltops are round, the ridgelines are sharp l

,*

(without the wuse of ridgeline data), and that no spurious
features are evident. The noise in Figure 6 is largely due
to the use of shaded relief since we are looking at the
derivatives of the surface rather than at elevations.
Inspection of the output shows that the noise corresponds to
fluctuations which are typically of the quantization size of

the 1input data and does not seem to be a problem of the +
estimation scheme.

The other element of concern in the evaluation of the
performance of the CONTOGES software 1is execution time.
Running on a PDP 11/45 minicomputer, the generation of the
full 601x201 data set requires approximately 20 minutes.
Despite the non-linearity of the approach, CONTOGES is
competitive in execution time with existing programs for
grid estimation from contour data.

DISCUSSION

Preliminary testing of the contour-to-grid-estimation system
CONTOGES suggests that the techniques described above may
form the basis for production software for the generation of
gridded DTM's from digitized contour data. Further testing
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on typical production data sets, as well as careful
consideration of where these ideas should be applied in a
production system will ©be necessary to determine the
changes, 1if any, which need to be made in software used for
large scale generation of gridded data Dbases. It 1is
apparent that the information-theoretic approach to terrain
estimation is free of the problems found in other approaches
without severe degredation of processing time.

Perhaps of greater importance in the 1long run 1is the
application of the ideas outlined in this paper to other
problems of terrain modeling. If the preliminary results
presented here are substantiated in further testing, the
information theoretic approach will prove to be of general
utility in generating any kind of DTM from any other. In
particular, an interesting application might be the
generation of triangulated irregular networks from available
terrain models such as gridded or digitized contour DTM's.
Another possibility 1s the treatment of noisy data by
extending this formalism to the consideration of fractal
surfaces.*
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Figure 1. Gauss'
Integral Theorem
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Figure 2. Gaussian Curvature
is intrinsic to the surfacu;
mean curvature is not.

Figure 4.
A Triangulation Scheme
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Figure 6.

Output Generated by CONTOGES
from Sparse Data.
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