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ABSTRACT 

Scattering of an incident plane, or cylindrical, wave by a staggered 

parallel-plate waveguide is examined. Of particular interest are the modal 

coefficients of the unattenuated modes in the waveguide when the incident 

field is an E-wave.  Several past approaches based on ray techniques 

are critically examined.  It is found that they are not applicable when 

the stagger is small or when the incident field is a cylindrical wave. 

For the latter incidence, we introduce here an aperture field method, in 

which the modal coefficients are calculated through the Fourier decomposition 

of the scattered field at the waveguide aperture.  To determine this 

scattered field, we apply the uniform asymptotic theory for the primary 

contribution, and the spectral theory for the first interaction. 

Extensive numerical data show that the aperture field method gives 

accurate results in canonical problems whose exact solutions are known. 

As an application to the design of the constrained waveguide lens antenna, 

our method enables one to determine the field distributed over the lens 

in a more exact manner. 
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BASIC CONVENTIONS 

1: MKS units and e~ w time variation are used. 

2:  Y - (a2 - k2)1/2 - -i(k2 - a2)1/2, where a - a + IT and 

k » kx + ik2  ,  k2 << kx 

3:  The Fourier pair is 

*(x ,a) - -i- [  •(«, , iaz . z)e   dz 

roo 

*(x,z) 
^T 

*(x,a)e    dot 

4:  The Fresnel integral is given by 

f -iir/4   p 2 
F(x)  -   I     e        dt  ,    x real. 

5: 

sgn(x) 

6:     g(kr) 

+1    x > 0 

-1    x < 0 

i(kr+ir/4) 

/airier 

7:     C - Euler's Constant -   .57721  ., 

8:    sine (x)  - sin(x)/x 

9:    H(x < b)  - • 
1    if    x < b 

0    otherwise 
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I.  INTRODUCTION 

This thesis considers the problem of the scattering of a plane or 

cylindrical wave by the staggered parallel-plate guide in Figure 1 when the 

stagger dimension "I"  is of moderate size compared to the wavelength.  In 

particular, we are interested in finding the modal coefficients of the 

unattenuated modes when the incident field is an E-wave.  The problem 

goes back to the early 1940's when Kock [18] and   Ruze [28] realized that a 

waveguide can serve as a refracting medium and wide angle scanning antennas 

can be designed very much the same way as natural dielectric lenses.  While 

these designs proved successful, researchers Immediately understood that for a 

thorough, quantiative design the scattering of a plane wave by the guide, which 

constitutes the basic element of the lens, had to be well-understood.  Recent 

developments in satellite communications have revived interest in the waveguide 

lens [13], and make the problem considered here all the more relevant. 

Among the first to- consider the scattering of a plane wave by a guide 

have been Carlson and Heinz [10], Lengyel [22] and Whitehead [32]. However, 

they studied the problem in which the parallel-plate guide was but the 

single element of an infinite, periodic array of guides.  In such a case, 

the Wiener-Hopf Method and other classical techniques [32] gave an exact 

solution. These solutions applied to the single, isolated guide, however, give 

poor results and the isolated guide has, generally, no exact, closed-form 

solution. The one exception to this statement is when the stagger "SL  "  is 

zero.  Then, the Wiener-Hopf Method may be used and the solution obtained 

in the manner outline in Chapter II.  While this solution is useful in its 

own right, it casts little light on how to proceed when "I"  is not zero or 

very small. 
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The introduction of ray techniques to the study of scattering by 

Keller [17], and later improvement to the theory of Aklauwalia, Lewis and 

Boersma [1] provided for a new way to attack the problem.  Instead of 

obtaining the full solution, rays can be used to follow each scatterirg 

off the plates, and from each scattering the modal coefficients computed 

by Fourier series analysis.  This approach was first presented by Yee, 

Keller and Felsen in 1968 [30]; a critique of this method is given in 

Chapter III.  In Chapter III, we show that the YKF method presents a 

difficult singularity problem when "I"  is not zero and, furthermore, makes 

use of unwarranted assumptions about the ray nature of the scattered fields 

in computing the effects of multiple scattering between the plates.  A much 

more rigorous use of ray optics for the unstaggered guide is given by 

Boersma [2], [5], but his solution is not easily extended to the staggered 

guide. The Modified Diffraction Coefficient, given by Lee [19], [20], is 

a new way to account for the multiple scattering in to to, but the MDC, 

which combines functional analysis and ray optics, can be properly used 

only when "4" is large - usually larger than one wavelength.  Furthermore, 

all the previous works mentioned above examined the incident plane wave 

case only. 

The approach to the problem in this thesis is to first find an accurate 

approximation of the total field on the guide aperture, and then by Fourier 

decomposition compute the modal coefficients.  Because of the difficulty in 

formulating the multiple scattered fields when "l"  is not zero or large 

we include in the aperture field, for the incident plane wave, only the 

first interaction, or scattering, between the plates of the guide.  Previous 

plane-wave investigations of the scattered field that included the first 

interaction were conducted by Jones [16] and Boersma [4], but their results 

,'' 
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respectively were in terms of very elaborate doubly infinite integrals and 

series. In this thesis the primary scattering field is given by the canonical 

or UAT solution to the scattering by a half-plane, and for the plane wave 

the first interaction is found by the Spectral Theory of Diffraction, recently 

introduced by Mittra and Rahmat-Samii [26].  This formulation of the aperture 

field, given in Chapter IV, is relatively easy to compute and is equally valid 

for all stagger size and plate separation "a." Using this aperture field, 

extensive data for the modal coefficient of the important TE1f) mode are 

presented in Chapter IV, and an application to the study of waveguide lens 

antennas is given.  Finally, conclusions are presented in Chapter VI. 

Finally, we note several conventions used in this thesis.  (1)  The 

time factor is e    and is suppressed.  (2) All angles are between -IT 

and TIT, positive counterclockwise, unless otherwise noted.  (3)  The E-wave 

problem is examined in detail, the extension to the H-wave problem is only 

stated. 

• >• — -.«w^gy^- ^ - qg^t pgmr 
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II.  SUMMARY OF THE WIENER-HOPF METHOD, THE SPECTRAL 
THEORY OF DIFFRACTION (STD) AND THE UNIFORM 
ASYMPTOTIC THEORY OF DIFFRACTION (UAT) 

For convenience of reference and as an introduction to the notation 

used in this work, the Wiener-Hopf Method, the Spectral Theory of 

Diffraction, and the Uniform Asymptotic Theory of Diffraction are briefly 

summarized below. 

A.  The Wiener-Hopf Method 

Before we come to the problem of scattering by a half-plane, a quick 

discussion of some elements of the Fourier transform complex number theory 

relevant to  the Wiener-Hopf Method is presented. 

A.l. Mathematical preliminaries 

First, if (J>(x,z) and *(x,a) form a Fourier transform pair, with 

a » a + IT and if $(x,z) has an asymptotic behavior given by 4>(x,z) " AeT 2, 

as z+ +00, then the half-range Fourier transform, * (x,a), defined by 

*. (x,a) - -—- 
+      /27 

<d(x,z)eia2 dz  , (II.1) 

will be analytic in the region T > x .  This statement is true for any 

4>(x,z) that is "well-behaved" and for any kernel that is continuous in 

a and z and analytic in z.  In II.1, it is eiaz.  A more rigorous formulation 

of the sufficient conditions involved in this discussion can be found in 

[25] or [29]. We assume throughout that $(x,z) is such that the conditions in 

[25] or [29] are indeed satisfied and the final results may be applied in a 

straightforward manner. 
+ 

Likewise, if 4>(x,z) " BeT Z, z * -«, then *_(x,a), which is given by 

<t   (x,a)  «   
/27 

rO 
<Kx,z)etaZ dz     , (II.2) 

•*&*"* läHtiy>v- W>-r «r- *': 
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is analytic in the region T < T .  Note that the subscripts "+" and "-" can 

now be used to indicate that the function involved is analytic in some 

"plus" or "minus," that is, upper or lower region in the a plane. 

We now define two functions $, «(x,z) and $, . (x,z) as 

>(x, z)    z > 0 
*, .(x, z) - \ (II.3a) 

0      z < 0 

and 

0      z > 0 
$. .(x, z) - i . (II.3b) 

K"' U(x, z)   z < 0 

Then, from the analytic properties of *_ and *. in their respective regions, 

it is easily shown that • /+\» *. and •# vi *_ are Fourier transform pairs. 

Also essential to the Wiener-Hopf method is the factorization and 

decomposition of complex-valued functions.  By factorization, we mean 

expressing a function G(a) as the product of "plus" and "minus" functions, 

that is, G(a) • G (a)G (a), where G (a) is regular for T > T~ and G (a) 

is regular for T < x , T , T some numbers.  For a well-posed problem, we 

will have T > x~  so that a region exists in which G (a) and G (a) are both 

regular.  In contrast, decomposition refers to expressing a function S(a) as 

a sum of "plus" and "minus" functions such that S(ot) - S (a) + S (a), where, 

as before, we expect to find some region, T < T < T , in which S (a) and 

S (a) are both analytic. 

A useful formula that is later used for factoring an entire, even 

function G(a) is 

G(a)«G(0)  5 (1 - -ü-)e-la/an "  (1 +-^e^'*11 (II.4) 
i-1     iYn       i-1     lYn 

 . 
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where +iy are the simple zeroes of G(a) and y    •*• an + b, n •*• <*>.     It is 

obvious that the first product is analytic in the upper-half-plane given 

by T > T~, where x~ is determined by the location of yQ  in the a plane. 

For decomposition of a function S(a) analytic in some strip 

x" < T < T , and which has the property that | S (a) | •*• 0 uniformly as 

lc| •* • within that strip, we will have occasion to use the following formulas. 

S+(<x) 
1 . 

2iri 

•He 

--»fie 

S(B) 
(8 - ot) 

dß     T < C < T (II.5a) 

and 

»+id 

S (a) 
1 

2iri 
S(6) 

(6 - a) 
dß  T < d < T (II.5b) 

-«+id 

That is, within the strip, using Equations (II.5a) and (II.5b), we can write 

S(ct) - S+(a) + S_(ct). 

The above equations for decomposition are also useful for factorization. 

If G(ce) is analytic and nonzero in some strip a < T < b, then by taking 

In G+(ct)G_(a) we can use (II.5a) and (II.5b) to find 

G+(a) - exp 

«4-ic 
_1_  f  In G(a) 
2iri  J   (8 - o) dB 

T  < C < T (II.6a) 

and 

G (a) - exp 

«H-id 
1 

2tri ft^« 
-a»fid 

T  < d < T (II.6b) 

Now, however, we require that within the strip |G(a)| -*• 1 uniformly as 

Ps* \*. - tapt^y •J 
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\a\  •+• •. Notice that, because of the use of the exponential, G (ot) and 

G (a) are also nonzero in their regions of regularity.  Other factorization 

and decomposition formulas can be found in [24] or [25]. Having finished 

these mathematical preliminaries, we now come to the problem that illustrates 

the three methods in this chapter - scattering by a half plane. 

A.2. Scattering by a half-plane 

Consider the problem in Figure 2. We wish to find the scattered 

field when the incident field is 

,i,  v   ik(xsinSH-zcosfi)   ikpcos(Q-6) ,TT ,. 
<t> (x,z) • e • e (II.7) 

where <h can be E for an E wave, and H for an H wave. Without loss of 
y y 

generality, we place the restriction ir > SI >  0. There are now two ways to 

start formulating the Wiener-Hopf problem: (a) use the Green's function 

method which then leads to an integral equation, or (b) use the differential 

equation. Although the Green's function method is more general, the second 

approach, called Jones' Method [15], is simpler and clearly shows the 

requirements for the Wiener-Hopf solution. 

We now examine the E-wave problem in some detail and later state the 

t   s   is 
equivalent results for the H-wave. First let <(> • $    + $  ,  $    being the 

scattered field. Then $ satisfies the source-free Helmhotz equation 

32<f>3 + 32<fis + kV - 0 (II.8a) 

with the boundary condition 

<frs(0,z) - -<(>i(0,z) - oo < z < o  . (II.8b) 

C&~,~T J 
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7T > Ü > 0 
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Figure 2.     Diffraction of a plane wave by a half-plane. 

a plane 

-k 

Re(y) >0 

+ k 

Figure 3.     Branch cuts of Y •  (a2 - k2)1/>2. 

a plane T 

y—-k2cosii 

wmwm 
-k2 

7flMMM, 

k = k| + ik2 

Figure 4.  Region of ehe Wiener-Hopf Equation (11.13) 
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A small but finite loss is introduced by letting k - k.. + ik». The 

Wiener-Hopf solution begins by transforming (II.8a) and (II.8b) into the 

spectral or transform domain, by multiplying both sides of (II.8a) and 

(II.8b) by e  //JiT and integrating over all z. If this operation is performed 

Equations (II.8a) and (II.8b) then become 

aV(x, o) - Y2*S(X, a) - 0 (II.9a) 

and 

*f(0, a) - -** (0, a)    T < -k2 cos ft , (II.9b) 

where the subscript "minus" appears because (II.8b) is true only for 

2   2 1/2 
-" < z < 0. The function y • (o - k )   is defined by its value on the 

upper or proper sheet, as shown in Figure 3. These branch cuts insure 

that the radiation condition is satisfied for all a on the real-number line 

and that Re(y) > 0 on the entire sheet. Note that y  is analytic in the 

region k_ > T > -k2. 

The solution to  (II.9b) is 

*s(x, a) - A(a)e~Y'X'        , (11.10) 

so that at x * 0 we have 

-<J>*(0, a) + *^(0,a) - A(a) (11.11) 

s s where, since $ satisfies the radiation condition, <J> is analytic for 

T > -k». Defining J (a) as being proportional to the transform of the 

total induced current on the plate, we get 

J_(a) - |{3x*f(0
+, a) - 3x*f(0", a)} - -YA(a)    . (11.12) 

"V- -  C*S"„*T 
.'• 
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Combining (11.12) with (11.11), we obtain the Wiener-Hopf equation 

J_(a) - **(0, a) - 0,  -k2 cos a > T > -k2>       (II.13) «+(0, a) + 

(see Figure 4), which is in the standard Wiener-Hopf form 

R(a)*^(a) + G(a)J_(a) + T(a) -0  T
+
 > x  > t"  , (11.14) 

+      - s with R, G, T given and analytic in T > T > T and the unknowns • , J 

analytic in T > T , T < T , respectively. Although Equations (11.13) and 

(11.14) are algebraic equations in two unknowns, by using the Wiener-Hopf 

Method, a solution is still possible. 

The first step is to factor G(o) - (1/y) into its "plus" and "minus" 

parts. For this particular case, it is obvious that 

G+(a) » (a + k)"I/2 , (II.15a) 

and 

G (a) * (a - k)"1/2  . (II.15b) 

Dividing both sides by G  (a), it follows that 

*J(0,  a)(a + k)1/2 +  (a - k)1/2 J_(a)  -  (a + k)1/2 **(0,  a)  = 0.   (11.16) 

1/2 i The next step is to decompose (a + k)  $ . Again, the decomposition 

can be done by inspection, and with $_(0,a) given by 

$*(0, a) - -i/[/2T(a + k cos Q)}, x <  -k2 cos Q ,        (11.17) 

one can write 

>T *  ca*.- 
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Kot + k)1/2      m  if(a + k)1/2 -  (k - k cos ü)1'2 

/2Ü"(a + k cos 0) /2T(a + k cos ü) 

+ — {) "AC0S "^/2    • «.M) ys—    (a + k cos Q; 

The first term on the right-hand side is S (a) which, because of the 

cancellation of the singularity at a= -kcos Q,  is analytic for 

T > -k_. The second term on the right is S (a), and it is obviously 

analytic for T < -k» cos ß. Combining (II.15a) thru (11.18), we have 

(a + k)
1/2 *>, cO - HO»*»172- (k-kcosn)1/2 

/2iT(a + k cos fi) 

i(k - k cos ft) (II 19) 

(a - k)1/2  /2T(ct + k cos Ü) 

for -k» cos Q > T > -k_.  The right side of (11.19) is analytic in the 

upper-half plane, T > -k», the left side analytic in the lower-half plane, 

T < -k_ cos ft.  Since there is a region where both sides of (11.19) are 

analytic and equal to each other, it is possible to analytically continue 

both sides of (11.19) into the entire complex plane, and obtain the equations, 

(a + k)1/2  #J(0,  a)   -  if(a+k?1/2-   (k-kcos.)1/2 = p(a) (u ^ 

/2rT(a + k  cos  n) 

and 
J-(a) i(k - k cos n)1/2 

 7J2-          }  » P(ct)     , (II.20b) 
(a - k)   ' /2ff(a + k cos fi) 

where P(a)   is an entire function.    We see  that  the Wiener-Hopf Method 

fXX^G^im&Qp^ -Vr -       Gsfct^ 
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leads to two equations in which the two unknowns may be solved for 

within some entire function, P(a). 

To completely solve (II.20a) or (II.20b), another condition must be 

applied to find P(a).  In electromagnetics, this condition is the 

"edge condition," [23], which states that no charge may accumulate at 

the edge. This, in turn, implies that «S(p, 9) - 0(p ), p •* 0, 1 > 6 > 0, 

and, therefore, $ (0, a) • 0(a   ) as |a| •* ».  Inspecting the asymptotic 

behavior of (II.20a) and using Liouville's theorem P(a) must be zero. 

Then, from (II.20a) and (11.12) 

J (a) - - 
i(k - k cos a)l/2(a  - k)1/2 

-YA(o) (11.21) 
/2T(a + k cos fl) 

s 
Finally, solving for A(a) and inverse Fourier transforming 9   (x, a) we obtain 

the desired result 

/(x, z)  '~\ 
4.7T  J   L. 

1/2      1/2 
2(k - k cos fl)1/x(k - a)^ 

(a + k cos .1) 

-ylxI  J 
S—  e~iaZ da.  (11.22) 

s   s 
For an H-wave, <t> • H , the boundary condition in the transform domain 

is 3 <f^(0, a) - -3 *_(0, a), *S(x, a) - sgn(x)A(a) e~Y'x', and the current, 

which is polarized in the z direction, is 

J_(c0 =• -|{*!(0+, a) - *f(0~, a)} - A(ct) . (11.23) 

If the same considerations as for the E-wave are followed, the scattered 

field for the H wave is 

<)> (x, z) 
sgn(x) 

2TT 

1/2                1/2" 
2(k + k cos  a)   '   (a + k)1' t-rW 

(a + k cos 0.) 2y 
e~iaZ dz.(II.24) 
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In summary, once an equation of the type (11.14) is derived, the 

Wiener-Hopf method allows one to solve it for its two unknowns within 

some entire function P(a).  The essential features of the Wiener-Hopf 

Method are then factorization and decomposition, the use of analytic 

continuation, and the necessity of imposing another physical constraint 

to obtain a full solution. 

B.  Spectral Theory of Diffraction (STD) 

In the course of investigating the coupling into a waveguide, we 

need to consider the scattering by a half-plane of rather complicated 

incident fields. While the problem of a plane-wave diffraction by a 

half plane has been extensively analyzed since Sommerfeld's solution in 

1896, the diffraction of a more general incident field has only recently 

been examined.  The first treatment of an incident field other than a plane 

wave was by Carslaw in 1899 who considered the very special case of 

an incident field due to an isotropic line source. More recent work 

with the isotropic line field can be found in Born and Wolf [8], and in 

the book by Clemmow [11], who examined the problem through the use of a 

plane-wave spectrum representation.  A high frequency or asymptotic 

solution to this problem and of a more general line source field was 

studied by Boersma and Lee employing the U.A.T. formalism [6], [7]. 

The first rigorous and extensive study of the case of an arbitrary 

incident field scattered by a half-plane was done by Rahmat-Samii and 

Mittra [26], and their approach, labeled the Spectral Theory of Diffraction, 

is outlined below. 

We start by examining in more detail the expression for the scattered 

field of an incident plane wave as given by Equations (11.22) and (11.24). 

^"Jii^e^. '     cs^t , 
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Both E and H waves can be conveniently considered by letting 

(-1 E wave 

+1 H wave 

The "spectral diffraction coefficient" is defined as 

w,    v   2(k + ek cos fl)1/2(k + ea)1^ 
X(k , a) » —a ;——.—• *r '  

z (a + k cos ft) 
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(11.25) 

(11.26) 

where the square roots are defined by taking the cut just below the 

negative real axis in the a plane.  The scattered field can therefore 

be now written as 

E wave 

H wave 
*3(x, z) f x  1 1 r 

[sgn(x)J   J 

e^'*' -iaz .   , —s  e    da,  for 
2y 

(11.27) 

Note that (e~Y' '/2y) is the Fourier transform, with respect to z, of 

1  /*2   2 * 
iH_(k/x + z )/4, which is the Green's function for a line source 

radiating in free space. 

Introducing the change of variables x • p sin 9, z • p cos 9 

a *>  -k cos 'l>  and y * -ik sin ty  into (11.27), one arrives at 

• (P, e) 
1 

[sgn(9). 

i_ 
4TT 

,.  ,. ikp cos (t|i - 19 ) ,, 
X(fi, 1/)e K    xv   ' '  d* (11.28) 

In the preceding equation, i>  is the complex angle defined on the path 

T shown in Figure 5, and 

X(n, <!>) '  X(k cos fl, - k cos i//) - x±(n,  *) + exr(ß. *) (11.29) 

^^^^^f^ ••*?-      M*^? 
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I 
Figure 5. Integration path T  for integral representation (11.28) 

CO 

9\   <  7T 

Figure 6.  Diffraction of an arbitrary field by a half-plane. 
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where 

0±J6 
xi,r " eCM  2 

(11.30) 

Clearly x.  and x are infinite at 4) • Q and at • • -ft, respectively. 

These two values of ty  correspond to the incident and reflected shadow 

boundaries appearing in the GTD technique.  As a matter of fact, the 

spectral diffraction coefficient is precisely the angular part of 

Keller's diffraction coefficient, when ip is replaced by the observation 

angle 9.  Although x tends to infinity at the shadow boundaries, the 

scattered field, as evident in (11.27), does not. 

From (11.27) and the fact that (e T X /2y) is the Fourier transform of 

the Green's function (iHQ(kp)/4), it follows that x(ft» *) is proportional 

to the Fourier transform of the induced current on the plate.  We may, 

therefore, define xP (ft» •) as tne transform of the physical optics 

part of the current and write 

,P°/ ,P° P°< X¥  (Ö. *) - xj (0, *) + ex^Ca, *) (11.31) 

where 

po 
Xi,i + ctn 

a ± it» 
(11.32) 

Then x 'defined by 

x (8, *) - x(n. *) - xpo(ft, •) (11.33) 

is bounded everywhere and could be called the spectral fringe diffraction 

coefficient.  It is used in scalar aperture diffraction. 

— - - «—^ k» - .1—«  , — -^ ?*r*^Mm>^--   tm^z 
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Consider again the scattered field in (11.27). This spectral integral 

can be exactly expressed in terms of the Fresnel integral, viz., 

•"(p, 6) 
ikpcos(n-9) ,    i.    ikpcos(fH-9)_/._r. -e F(-£ ) + ee F(£  ) (11.34) 

where the Fresnel integral is 

e-ff/4  f it2 
F(x) - e       e" dt 

and 

/T 

5   * +/2kp sin 

(11.35) 

(11.36) 

So far in this development, we have tacitly assumed that Q  is real. 

However, using the argument of analytic continuation one can show that 

if the angle of incidence is a complex number u, Equation (11.34) is still 

a valid solution but with ß replaced by the complex u in (11.34) and (11.36), 

With the solution for a plane wave of complex incident angle available, 

the case of an arbitrary incident field on a half plane as shown in 

Figure 6  can now be examined. We assume the incident field can be 

placed in a spectral representation as 

•V v - fe 
ikp. cos (w-|8.|) 

P(u)e du (11.37) 

I" 

where p, - 0 denotes the phase center of the incident field and the path 

I" is the same as the path V  but where I" accounts for any singularities 

in P(w).  Expressing <(> now in terms of the coordinates attached to the 

plate 

••—*«^'Ä^t "7^' ^ T-.iJJ *WW • "Ve - taft^T 
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•it/«     Q\       i r»/  N   ikdcos   (u-fJ).   ikp  cos(u>-6) ,       ,„. 
*  (p*     ' • 4» lp(u)e Je du (11.38) 

r* 
when p sin <j> > -d sin Q.  The incident field is then a spectrum of plane 

waves incident at a complex angle u with a weight, or spectrum density, 

given by the term in the brackets.  Since (11.34) is the solution for a 

plane wave incidence, even with a complex angle of incidence, by super- 

position the scattered field due to an arbitrary incident field is 

•V»)-^J    (    [P(aOeikdc0s(u-n)Heikpc0s(w-9VcS 
r 

lkpcos((u+e)F(cr)}du (n>39) - ee 

where F is the Fresnel function of a complex argument, discussed in 

i r 
Appendix A, and £   are complex valued and again given by (11.36) with 

fl replaced by u.  We make use of (11.39) in Chapter IV. 

C. Uniform Asymptotic Theory of Diffraction (UAT) 

Except for a few canonical geometries commonly found in textbooks, 

closed-form solutions for Maxwell's equations are not known.  Several 

asymptotic or high frequency techniques have therefore been devised 

that enable one to study the scattering process locally, thereby making 

good use of the canonical solutions.  One of these high frequency theories, 

the Uniform Asymptotic Theory of Diffraction (UAT), proposed by 

Ahlawalia, Lewis and Boersma [1 ], is based on the form of the scattered 

field in Equation (11.34).  The UAT is one, and the most successful, 

of several high frequency or asymptotic theories that attempt to 

overcome the singularity of the diffracted field as formulated by the GTD [ 7] 

For the canonical problem of an incident plane wave on a half-plane 

(Figure 7), all asymptotic solutions reduce  to the one in (11.34). 

But for a more complex situation, such as a line source field incident 

'    T^rz **xr**LiMim9^ v. -    »*^t j 
_J^£_       *, 
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Figure 7.    Diffraction of a line source field by a half-plane. 
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Figure 8.  Shadow Indicator.  SB and SB are the shadow boundaries. 
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Figure 9.  Line of constant detour defined in (11,52). 
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on a half-plane, it has been shown [7]  that the UAT, which provides a 

systematic way for obtaining the higher-order terms in the asymptotic 

expansion, gives these terms accurately, whereas the other methods do not. 

Furthermore, the UAT has been successfully applied to problems with a 

patterned incident field and for more complicated geometries of the 

scatterer  [12], [26]. 

The Uniform Asymptotic Theory requires that the incident field be 

a ray field, that is, 4> (r) can be expressed as 

*Ht)  - eiks(r>[£(r-) + I    (ikrn£n(r-)] (11.40) 
n«l 

where s(r) is the eikonal and the A's are amplitude vectors.  Neglecting in 

(11.40) the k  and higher terms and requiring that <J> satisfy Helmholtz's 

equation, 

(V2 + k2)*1 - 0  , (11.41) 

we have 

k2(l - (Vs)2)A + ik(AV2s + 2Vs • VA) + VA - 0 .             (11.42) 

From Equation (11.42), the following conditions are derived: 

|7s|2 - 1 (II.43a) 

2Vs • VA + (72s)A - 0 ,                                     (II.43b) 

and from Gauss' Law 

Vs • t - 0 . (II.43c) 

_-*_a^ 
%&Ö&»^'    c^T gem- 

,'• 
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Also from (11.42), we must have 

VA" * 0 (11.44) 

or very close to it. This last condition obviously does not hold at a 

caustic or at other points where the field variation is great. 

If the incident field is indeed a ray field and satisfies the previous 

conditions, then the solution to the scattering problem shown in Figure 7 

is given by UAT as 

•fc(r) - *G + *d + 0(k"3/2) (11.45) 

where 4>  (r)  is called the diffracted field and is given by 

*d(r) - •*•<? » 0)D(Q,  9)  g(kr) (11.46) 

where 

g(kr) 
ik(r+ir/4) 

/8Ükr 
(11.47) 

4 cos   (-|fl)   sin  (|e) 
and D * r     for H waves cos ß - cos 9 

4 sin (|fl)  cos  (^e) 

cos ft - cos 9 for E waves (11.48) 

The angles are illustrated in Figure 7. Note that at the lines 9 » + Q 

the diffraction coefficient D becomes infinite and the diffracted field 

diverges. These lines are called the incident and reflected shadow 

boundaries. 

6» V; -   tttson. :J 
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The first term in (11.45), $ (r), which represents a modification of the 

geometrical optics field, is given by 

$G(r")  «  [FC?1)  - FUbuHh + [TU*)  - F(£r) ]4>r(r")       . (11.49) 

For large £, the Fresnel function has an asymptotic expansion given by 

F<0 - G(-0 + F(5) + 0(5~3)  15| * - (11.50) 

where 0(x) is the unit step function, $ (r) is the field radiated in free 

space by the image source of <t>   (r), and 

F(0 . ,!_ .lttW) . (II.51) 
25/JT 

j r 
The term 5 '  is called the detour parameter of the incident (reflected) 

field and is a measure of the phase difference between the incident 

(reflected) and diffracted fields.  Specifically (refer to Figure 8), 

Ci,r(r) - e1'* |v4(a + b - ci,r)| (II.52) 

where 5 ' (r) is the "shadow indicator" and is defined as 

+1 if r is in the geometrical shadow of <J> ' 

i r 
-1 if r is in the geometrical lit region of $ ' 

t1'*^) (11.53) 

Observe that: 

(a)  If 5 '  is large, that is, if we are away from the shadow boundaries, 

G e 
<(> reduces to <(i0, the geometrical optics field.  The total field 

is then given by 

•C(r) - 4>g(r) + 4>d(r)  . (11.54) 

-  

i 
T"" '— - _J-U _ . 

——— ^^^ - 
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This form of the solution is known as the GTD (Geometrical 

Theory of Diffraction) field, 

(b)  If we are on the shadow boundaries, 5 ' becomes zero and 

F(C ' ) diverges. However, recall that on the shadow boundaries 

the diffraction coefficient diverges as well.  It is easy to 

show that the singularities of F(5 ' ) and D(n,9) cancel, 

making the total field well-behaved.  It is in this sense that 

the UAT is "uniform." 

To find the region in space where <f> approaches $ , we seek to find 

the locus of points such that 

|Ci,r| - M (11.55) 

_3 
where M is some constant large enough so that the 0(5 ) term in 

Equation (11.50) can be ignored. The locus of point", satisfying (11.55) 

is obviously a hyperbola with one focus at the source (image) and the 

other at the edge. The asymptotes of the hyperbola form an angle 25, 

where (see Figure 9) 

6 - 4 sin V(M/ 2ka)  . (11.56) 

G     e 
For M • 2, the difference between <(> and 4>ö is approximately 2%.  For M = 1, 

it is approximately 10%. Note that for small M, that is, in the "transition 

region," the field in (11.45) is not a ray field. 

Finally, we note in connection with the UAT that if the line source 

in Figure 7 gives rise to a patterned field, or if higher-order terms 

are desired, (11.40) through (11.44) provide the machinary for doing so. 

?.- v- - sa*.,~T 
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III.  SOLUTIONS OF CANONICAL PROBLEMS 

In order to gain insight into our study of coupling into a parallel 

plate guide with an arbitrary stagger "S," (Figure 1) , the case of the 

unstaggered waveguide (£ • 0) is examined in some detail.  This canonical 

problem, which has an exact closed-form solution, also provides the 

necessary test for evaluation of the different staggered waveguide 

solutions presented in Chapter IV. 

Because of the symmetry of the unstaggered guide, we can introduce 

an electric or magnetic wall halfway through the guide and study the 

corresponding cases in Figures 10a and 10b. The solutions to the 

scattering by the two guides in Figures 10a and 10b now correspond 

to the symmetrical and asymmetrical components of the total scattered 

field.  We, therefore, speak interchangeably of the canonical 

case as being a guide of zero stagger or one where the stagger I  is infinite, 

the latter case sometimes allowing an easier interpretation of the results 

and a more natural extension to the case where "I"  is finite. 

There are, essentially, two approaches to solving the staggered, or 

equivalently, the infinite staggered case.  The first is to apply some 

function theoretic technique and derive the modal coefficients in the guide 

with the interactions between the plates accounted for in toto.  This approach, 

using the Wiener-Hopf Method, is illustrated in Sections A and B wherein 

the "ray-to-mode" conversion formulas and the "modified diffraction 

coefficient" are presented.  In Section C, we look at a ray technique 

the YKF Method [30], which tries to track the individual interactions 

between the plates, and present this method's "ray-to-mode" conversion 

-•*" ••--  ii££ ;  
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formula.  In Section D the different techniques and "ray-to-modc" conversion 

formulas are discussed with an eye to their possible application in the 

finite stagger problem. 

A. Wiener-Hopf Solution: Unstaggered Guide 

The geometry of the guide in question is shown in Figure 11. We 

examine in some detail the case where the incident field is a plane E-wave. 

The solution for the H-wave can be found in a manner similar to that of 

the E-wave and only the final results are given. 

First, we make use of the symmetry of the guide and solve the 

symmetrical and asymmetrical problems separately.  For the geometries in 

Figures 10a and 10b, it is convenient to define the incident field in 

such a way that the reflection off the electric or magnetic wall is 

included in the incident field. With this in mind, the incident field 

is written as 

^(x.z) - \ eik2coSa{eikxsinn - 5lk(x+a)sln Q}j (ml) 

-, + for the electric and magnetic wall, respectively.  The scattered 

field is now defined as 

4>S(p,6) - $C(p,e) - <t)1(p,8)  ; (III.2) 

p and 9 are shown in Figure 11. 

The Wiener-Hopf formulation varies slightly depending on whether 

|n| < TT/2 or |fl| > IT/2.  In the application of the Wiener-Hopf technique, 

it is desirable to have $    attenuate as z <* °°. From the definition of the 

scattered field in (III.2), the scattered field will not attenuate in the 

shadow region if |n| < IT/2. We therefore restrict jfi| > TT/2. This 

constraint can later be removed. 

<       * 

.'• 
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For |n| > ir/2, <f> satisfies Helmholtz's equation 
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32<J>S +  32<j>s + k2<frS 

x z 
(III.3) 

where k • k + ik_, k- >> k_ .  Introducing the Fourier Transform 

*s(x,a) - — 
/2T 

,s,   x iaz , 
ti (x,z)e   dz (III.4) 

where a - a + ix and * (x,a) is analytic in the region -k_ cos n > x > -k_, 

we get 

aV(x,a) - Y2*S(x,a) « 0 (III.5) 

2   2 1/2 
where y * [<* - k ]   is defined on the upper sheet, shown in Figure 3. 

The solution (III.5) satisfying the radiation condition can formally 

be written as 

*s(x,cO 

A(a)e"YX 

B(a)e~YX + C(a)eYX 

x > 0 

-b < x < 0 

(III.6) 

From the continuity of * (x,a) across a PEC (Perfect Electric Conductor) 

at x » 0, one obtains 

A(o) - B(a) + C(a)  . (III.7) 

If the bottom wall is a PEC as well, 

B(a) - -C(a)e"2Yb (III.8) 

and if a PMC (Perfect Magnetic Conductor) wall 

B(cx) - C(a)e 
-2yb 

(III.8b) 

^y^^^^gg»--^ - «*^T ?gg»r-- 
.'• 
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If J (a) is defined as 

29 

J_(a) - -|{3 •8(0+,a) - 3x*
S(0",a)} - -Y(A - B + C)  , (III.9) 

then from (III.7), (III.8a) and (III.8b) the relationship 

J (a) -Y A(a), 
PEC wall 

PMC wall 
(1 + i2Yb) 

is obtained.  If the boundary condition is applied at x * 0, the 

Wiener-Hopf Equation 

(III.10) 

-4*(0,a) + **(0,ct) - ^I«l J_(a), -k2 cosft > T > -k_ (III.11) 

is constructed, where 

. - ,^b 

G(a) 

PEC wall' 

and 

l+e~
2Yb =8(a), 

.,,   r    -2ikbsinfi,. 
^(O.a) - -^ +  e ^ 

PMC wall 

2/2T (a + k cos Q) 
t < -k2cosfi 

(III.12) 

(III.13) 

As discussed in Section A, Chapter II, the next step in the Wiener-Hopf 

process is the factorization of G(a)/y. The factorization of y is obvious, 

and from Equation (II.4), G(a) factors into G (ot)G_(a), where 

(a) For G(o) - 1 - e -2Yb (PEC wall) 

G  fa)  -  (2b sinc(kb)]1/2     (a + k)1/2 e'11• «pÄl - C + In Q + f) ] 

expf^- ln(^f^) ]      g      (1 + rj-)  eiab/nir 

n-1 Yn 
»     T   > -k2, 

kb      2 

(111.14a) 
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(b) For G(a) - 1 + e"2yb = G(o), (PMC wall) 

30 

G+(o) - [2 cos (kb)]1/2 exp[^(l - C + la(~) + y1) ] 

expt^1 lnC5-^) 
a ,  iab/(n-l/2)ir 

n-1     iyn-l/2 
) e 

(III.14b) 

,t > -k, 

(c) G_(a) - G+(-a) (111.14c) 

In the above equations C Is the Euler's Constant and iy , iY •. #2 are 

-2vb ~2yb the zeroes of (1 - e   ) and (1 + e   ), respectively, with Y given by 

,,mr,2  ,2,1/2 Yn • ^r5 -k ] (III.15) 

with the same branch cuts as in Figure 3. A set of tables and other 

forms for G (a) are presented in Appendix B. 

Now decomposing Equation (III.11) and using the edge condition, the 

scattered field in the transform domain for -b < x < 0 is 

YX 

/2T 
*S(x,cO 

/i   T    -2ikbsinJ2N  Wl       „    x (1 + e       2. X(kcosf2,a)   &__^ 
2Y G+(-kcosfl)G+(-ct) 

,n x    -2ikbsinJ2,   „,,       „    .     -y(x+2b) 
-  (1 + e      2. X(kcosfl.a)  e       

JTtT 2Y G  (-kcosQ)G   (-a) 

(;]- ( PEC wall PMC wall (III.16) 

where X(k cos ft,a) is the spectral diffraction coefficient defined in (11.26). 

Comparing Equations (III.16) and (11.27), it is apparent that the spectral 

representation of the scattered field has the same form as that for the 

isolated half-plane and its image, but the half-plane solutions are multiplied 

by the factor in the curly brackets, which accounts for the multiple inter- 

actions between the top plate and the PEC or PMC wall. We should note that as 

r  ». •-.,--% r^r,«r- ca*>-T 
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b •*• •, G (a) •*> 1 and, since Re(y) > 0, the reflection term on the right-hand 

side of (III.16) goes to zero, so that only the half-plane solution remains. 

To find the field in the guide, the inverse Fourier Transform of 

(III.16) is computed.  Since the guide is in the region z < 0, the integration 

path may be closed as shown in Figure 12 and the residues evaluated. 

In computing these residues one finds that, first, the contribution 

around the branch cut is zero. Next, the residue at a • -k cos Q gives 

the negative incident field so that the total field in the guide is fully 

expressible in terms of its modes, as it must be.  Lastly, the poles at 

a • i-y give the modes of the guide. Note that a • iyQ gives the TEM mode. 

Summarizing the final results, if the field of the guide in Figure 10 

is written as 

$C(x,z) » I      C sin 
n-0 

nir -ik z 
e  g n » 1,2, (III.17a) 

where 

[kj - f* 2,1/2 (III.17bb) 

then the modal coefficient C is given by 

,. .  i(n+l)ir -ikasinfl, 
Cn       2ka cos * D(n'*n _ if) 

'GAk  cos <t>  )' 
+      n 

G (-k cos Ü) 
(III.18) 

with n even coinciding with the asymmetrical, PEC wall problem in Figure 10a 

and n odd, G * "G  ,  with the PMC wall problem.  D(ft,<(> - w) is the diffraction 

coefficient given in Equation (11.48) and <j> is defined by 
n 

3in *n " ka" (III.19) 

VJ 
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a plane 

Figure 12. Integration path for the inverse Fourier transform of 
(III.16), z < 0. 

co «* 

CO co 
P.E.C. or P.M.C. Wal 

Figure 13.  Ray interpretation of the modal coefficient in (III.18) 
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For (nir/ka) < 1, that is, for propagating modes we can interpret (III.18) 

to be the amplitude of the edge diffracted ray in the modal direction of the 

guide, Figure 13, where 2ka cos $ term serves as a normalization factor. 

However, instead of just the diffraction coefficient, the "modified diffraction 

coefficient" [19] 

D(fi,6) - D(£2,9)f(p • tbfC-k1 • n) (III.20a) 

\(|x|)       x<0 (III.20b) 

f(x) 
l/G+(x)       x > 0 

(see Figure 14) is used to account for the interactions between the 

plates. Although a ray picture is not totally proper, we say that the 

nature of this interaction is the reflection-diffraction cycle that takes 

place along the aperture, as shown in Figure 15. This interpretation 

is not strictly valid, because after the first reflection off the top 

plate, the field about the aperture is no longer a ray field and the 

reflection-diffraction phenomenon cannot really be localized to  a point. 

To summarize we note that (III. 18) is finite even when D(ft, <J> - ir) 
n 

becomes unbounded and also that the derivative of C with respect to a is 

discontinuous at the mode's cutoff point. For an H-wave, the same 

considerations are used but the diffraction coefficient is that for the 

H wave. 

B. Modified Diffraction Coefficient (MDC);  Large Finite Stagger 

Having examined in the previous section the unstaggered case, a similar 

Wiener-Hopf formulation is possible for the finite stagger in Figure 1. 

This time, however, there is a need to consider an additional unknown, the 

current on the bottom plate. This in turn leads to a set of coupled 

Wiener-Hopf equations for the two plate currents which, in general, are not 

-^••-* ,.— ^" ^^-^smt^ y - ca^t^-r- 
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Figure 14. Vectors in the definition of the Modified Diffraction 
Coefficient. 
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Figure 15.  Reflection-diffraction cycle on the guide aperture. 
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amenable to a solution.  But if the diagonal distance "d" is large with 

respect to the wavelength, asymptotic methods may be employed to decouple 

the Wiener-Hopf equations, and an approximate solution for the modal 

coefficients can be obtained. A short presentation leading to the 

Wiener-Hopf equations is now given and the asymptotic solution for the 

modal coefficients presented. The details of this section can be found 

in [19]. 

by 

We consider again the incident field to be a plane E-wave given 

^(p,9) , eikpcos(n-6) (III.21) 

with the same restriction - |ft| > IT/2. 

The scattered field is defined as in (III.21), and with the Fourier 

transform given in (III.4) one again arrives at 

aV(x,ci) - YV(x,a) =• 0 (III.22) 

The solution to (III.22) is 

*3(x,a) 

A(a)e"YX 

B(a)e"YX + C(a)eYX 

[D(a)e+YX 

x > 0 

-a < x < 0 

x < -a 

(III.23) 

Continuity of the E field gives 

and 

A(a) - B(a) + C(a) 

B(a)eYa + C(a)e"Ya - D(a)e"Ya 

(III.24) 

(III.25) 

•»?-   mp~ 3 
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The top plate current is again defined as 

JT(a) - jf(a) - ^[3x*
S(0+,cO - 3x*f(0",a)] - =*  (A - B + C)  ,   (III.26) 

where the superscripts T and B indicate the top and bottom plates, 

respectively. 

Introducing a shifted Fourier transform 

*s(x,a) » e~±ai  *S(x,a)  , (III.27) 

we observe that 

*S(X,C0 - -^; , 
/2TT - 

4>s(x,a)eia(z~Ä)dz (III.28) 

is analytic in the region x < -k2 cos ti.    Then making use of (III.28), the 

bottom plate current 

JB(ci) - i[3x*
s(-a+,a) - 3x*

s(-a"\c0] (III.29) 

can be written as 

JB(a) « e+iai?(a) = - *[B*
a - Ce"Ya + De"Ya] (III.30) 

where J (a) is analytic in the lower half-plane given by x < -k« cos £2. 

Two additional equations are obtained by applying the boundary 

condition to the top and bottom plates: 

-**(0,ct) + ^(O.a) - A(a) (III.31) 

and 

ei0lJl[-^(-a,cO + **(-a,a)] - D(a)e"ya . (III.32) 

^M i • mm *—^     — ...   _.. .     ^  
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After some manipulation and use of the edge condition, the coupled 

Wiener-Hopf equations 

^(O.ct) +-[/(*) + e"Ya ei<UP(a)] - **(0,ci) = 0 

37 

(III.33a) 

and -k. cos Q, >  T > -k„ 

e  * (-a,a) + —[e  J_(a) + e  J_(a)J - e  *_(-a,a) • 0      (III.33b) 

are obtained. It is obvious now that for an arbitrary stagger I  the 

Wiener-Hopf procedure becomes intractable. However, as stated before, an 

asymptotic evaluation of Equation (III.33)    can be made and the field 

in the waveguide computed to 0(l/kd). The details, which can be found in 

Lee [19], are quite involved and only the final result is now given. 

If the field in the guide is given by 

00 

$ (x,z) " I C sin 
n-1 

r            \ 

— X 
la    J 

-ik z 
e  8 

i    M 2   (nir k • [k- - |— 
g    0  (a 

2,1/2 
J     > 

, with H(A) defined a s 

n = 1,2,3 (III.34) 

(III.35) 

H(A) 

1 if A is true 

0 if A is false 

the asymptotic solution for C for the propagating modes is 

C -  I    c(j) + 0(l/kd) 
j-l 

(III.36) 

(III.37) 

•—»r »~ •• _ •* 
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,(1)       [H(n < -6) _e H(fl >   6  -TT) ] 
2ka cos  $> 

D(f!,4>    -  IT) 

G^(k cos  <£  ) 
+ n 

G  (-k cos Q) 

(III.38a) 

:(2)  „   [H(^  < 5)eikaCOs(n+6)l[D(n,Tr - ^ ] 
,  isn    IkJlcosiJ» 
(-1)  e in 

2ka cos 
(III.38b) 

.(3) 
.  ikacos(ft+6) „,,„,.    .,. , 
le g(kd)D(fl,TT - 6)] 

2ka cos i 
D(-6,$n - TT) 

GL(k cos <)> ) 
+       n 

G+(k cos 6) 
(III.38c) 

and 

c(4) - H($ < 6)[H(fl < -6)-e~2ikasinfi H(ß > 5 - T) ] [g(kd)D(n, 5 - TT) I 
n      n 

[D(TT  -   6,   TT  -   A  )] L 
<» G,(-kcos n)G,_(kcos   5) 

f(-Dne n -iklcosQ. 

2kacos i> 
(III.38d) 

The angle $ is defined as in Section A and is given by 

sin 
»n  ka ' 

(III.39) 

For propagating modes the four numbers c   thru c   can be given 

the interpretation of different diffracted rays "coupling" into the guide. 

Consider, for example, c  . We see that c   is the amplitude of the top 

edge diffracted ray in the modal direction - the same interpretation that 

was given in Section A. The functions H(«) in the equation for c   are 

present so that a ray "couples" into the guide via the edge diffraction 

only if that ray hits the edge. The situation is illustrated in Figure 16. 

We note the presence in (III.38) of the "Modified Diffraction Coefficient," 

which as in Section A, is said to account for the interaction between the 

^A. 
^j-^r^-^itffrgj». C3*.; A 
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Figure 16.  Various rays in the asymptotic problem. 
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(2) 
plates along the guide aperture.  The Interpretation of c   is similar, but 

ilt&COSrt) 
with an extra phase factor, e      n, present.  The diffraction coefficient 

is now unmodified, as the bottom plate's edge is not on the aperture.  The 

terms c   and c   are due to the twice-diffracted diagonal rays, shown in 
n      n 

Figure'16.  Higher-order interactions along the diagonal are ignored, as this 

result is only 0(l/kd). 

In Sections A and B, we have presented the modal coefficients and 

have associated them with the edge diffraction rays.  But the mechanism 

by which the diffracted rays couple into the guide and the reason for 

the absence of the incident field in the final solution are not clear. 

This and other points are discussed in Section C and D. 

C.  YKF Method 

Though the exact solution of the unstaggered case was given in 

Section A, a ray optics solution to the problem is nonetheless highly 

desirable. Not only are we provided with another check of the different 

asymptotic theories, but the use of ray optics and the local nature of 

ray methods allow for a better physical understanding of how the energy 

is actually coupled into the guide.  The first published work along this 

line was by Yee and Felsen [30], and in the ray analysis presented 

below, we often refer to this paper. 

C.l. Formulation via ray optics 

We start by considering the field in the presence of the unstaggered 

guide.  For exactness, the incident field is an E-polarized line source 

field, normalized so that its phase center is at (0,0).  That is, 

ik(pg-R) 

4>
±
CP _) - e   — (III.40) s    /n% s 

[T^r* »Z&Ql*  -• V -   c^ T mg/er • ''jj 
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where p  is the distance from the source, as  in Figure 17.  The advantage 
s 

of using a line source in our formulation becomes evident later. 

If R is large enough, we have in essence a plane wave.  Using 

Equation (11.45), the total field outside the guide may be written as 

f  = [F(eJ) - FCeJ) + FCC*) -  F<c|) - l]*1 

- [F(eJ) - FCsJmJ - [F(^) - F(^)]*2 

+ (*J + *jnt) + (•* + ^nt) (III.41) 

In the above equation, the subscripts 1 and 2 refer to the plates as 

given in Figure 17, C-,% are the detour parameters, <p1 9 are the 

diffracted fields that would exist if the plates were infinitely far 

apart, and <p  1 „ are the terms due to the interaction between plates 1 

and 2. 

We call the GO and diffracted fields, without any interaction, 

the "primary field." The -<f> term in the first bracket in (III.41) is 

present so that the incident field is not counted twice.  We should emphasize 

that Equation (III.41) is only for the region outside the guide.  To find 

the field inside, the guiding action of the waveguide, that is, the reflec- 

tions of the field, as schematically indicated in Figure 18, must be consid- 

ered.  Once we have done so, and the far field inside the guide is known, 

the model coefficients are computed by simply Fourier decomposing the field 

over the aperture A.  That is 

ikzcos<{) 

-a 
<fc     (x,z)  sin(ksin <ji x)e n dx (III.42) 

We have illustrated this procedure by first considering the diffracted 

fields '(i, and $v 

CZmr'.^-T 
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Source 

CO«* 

CO--» 

Figure 17.  Diffraction of a line source field by an unstaggered parallel- 
plate guide. 

Figure 18.  Reflections of a diffracted ray in the guide. 
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C.2. Primary field: Diffracted field contribution 

Consider the line source at x • 0, z - 0, producing in free space 

the diffracted field 

t*  = ^(O, 0)D(O,B)g(kp); (III.A3) 

g and D are defined in Equations (11.47) and (11.48).  If one ignores any 

diffraction by the lower plate and just traces the reflected rays in the 

guide, the far field in the guide excited by the edge line source is the 

same as that produced by the infinite set of images located at z * 0, 

x » 2aj    j - 0, ±1, ±2  . (III.44) 

That is, for z<0, -a<x<0, the edge line source gives rise to 

a far field given by the field of an infinite linear array centered at 

the edge and spaced 2a apart, (see Figure 19), with the array's field given by 

01 

** - *i(0,0) I      D(Q,e,)g(kp ) (III.45) 

where 

p - [(x - 2aj)2 + z2]1/2 

and 

9 - tan'1[(x - 2aj)/z]  ,   19 | < TT . 

Note that since D(n, - 9 ) • -D(ft, 9.) the array is antisymmetrical. With 

the modes as given in (III.17), the contribution to the modal coefficient 

from $ is 

_*_ 
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Figure 19.  Array of diffraction image sources 
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<j>..(x,z) ain(k sin (j> x)e 
1 n 

dx 
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(III.46) 

with z » 0. If the change of variables t - x - 2aj is introduced,the 

integration-sunnaation in (III.46) becomes an infinite integral and 

.i,n _N   iir/4 
4»   (0,0)e 

a/äirk 
v&mi .ifcp(t) sin(ksin*t) 

^TtT 

ikzcos<{> 
dt.   (III.47) 

If the integral is evaluated asymptotically, we obtain 

(f)1(0,0)D(fl, 4 - IT) 
„P -  S  
n 2ka cos 

(III.48) 

Likewise, for the line source at x • -a, we get 

D(J5, * - IT) 

c  • e 
n 

i(n+l)ir.i 
* (0, -a) 

2ka cos 
(III.49) 

Adding (III.49) to (III.48), we see that the part of the modal coefficient due 

to diffraction is the same as the total, exact modal coefficient in (III.18) 

except for the factor in (III.18) which accounts for the interaction between 

the plates. Note that the results derived here are only valid for the 

propagating modes, whereas (III.18) applies to the evanescent modes as well. 

C.3. Primary field: GO field contribution 

With the interpretation just given for Equation (III.18), it appears 

that the geometrical optics field plays no role in the final solution. 

To see why, we set up the problem as before. First, looking at (III.41) and 

Figure 17, it is evident that for the region in the waveguide it Is sufficient 

to consider the geometrical optics field given by 

£3*---? 
./• 
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(III.50) 

F(x) • F(x) - F(x) (III.51) 

That is, Che field is that of two line sources, one with a pattern given 

by F(£.) and the other with a pattern -F(?2), where from Figure 20 

eJ-eJ(eJ)|^(a; + bJ-cJ)| (III.52a) 

ej(ej) - 1 
+1  90 < Bj 

-i ej>0l 
(III.52b) 

Fr     r 

*2 * e2v"0 (•Sl^ + bJ-eJI 

£2(90> 

f+i  9* < [a 

1 

0 

'5 9Ü > I 

21 

"21 

(III.52c) 

(III.52d) 

No te that 9_ and 9fl are of opposite sign. 

We first examine the source F(5 ) and look at its array of images for 

the field in the waveguide. This is shown in Figure 21. The source is 

at z • -R cos(n.), x » R sin(|ß..|); the images are located at 

z - -R cos^), x - -R sindttj) + 2aj, j - ±1, ±2, . .  Observe 

that for x < 0 the pattern is -F(C,(-9 )) because the bottom images 

account for an odd number of reflections. This array is allowed to 

radiate in free space with the detour parameters given by (III.52a) 

and (III.52b), the subscript on the variables going from 0 to j. 

A similar array for the source -F(t;7), located at 

z - R cos(n.), x - -R sin(|n.|) - 2a, is shown in Figure 22. Again, 

  catt^z ,!• 



•Br"'—" ——— • 

i7 

00 -*- 

CO 

T 
a 

i 

Rsin(ia,l) 

OBSERVATION 
POINT 

Do \ I    t \      \     Rsin(in,l) + 2a 

181 ^ 7T    Positive   Counterclockwise \ \ 

Figure 20. UAT, geometrical optics field sources in (III.50) 

^•V-"  M*^1 .'' 



' I • ••  "        X um 

CO ^-r 

CO 

OBSERVATION 
J     POINT v . 

\ v Rsin(in,l) + 2a 

Figure 21. Array of image sources 

for the GO field $(5,). 

\     i 

\ \ 

2a 
Image 

Y-l 
-oo 
o 

.'^^^^«•fl?*^- "Vr -  cä*t,~t 



!•••• P.-W.    • I—P. •      '•'•' T— 

O 

CD 

t 

49 

CO «*—1  

CO «*—*  

No Image 

R    Rsin(lfl,l) 

OBSERVATION / K' 
POINT •••: D0 

\       Rsin(K i,l) + 2a 

_ 

-r«j«G8' 
i 

2a 
Image Y.1 

-CO 

Figure 22. Array of image sources for the GO field F(S?) 
of a source at x • R sin(!'?.|). 

Mote absence 

• ~ 



___ .- -_ 

50 

note the change of sign for x > 0 and also that now there is no 

image at x • R sin (|f2 |).  As before, the detour parameters are calculated 

from (III.52c) and (III.52d). 

Now we let R be large but still finite.  It immediately follows that 

J2. * Q,j.    Furthermore, if we let the observation point recede deep into 

the waveguide, that is, |z| * », both 5. and 5_ become large, but as can 

be seen from (III.52), are of opposite sign.  The addition then of 

the fields in Figure 21 and 22 leaves the field from the source at 

z • R cos (ft.), x • R sin(|j2-|), radiating in free space.  But since C-. 

is now large and the observation point is deep inside the waveguide, in the 

shadow region, we conclude that the GO field deep in the guide is zero. 

The fact that neither Equation (III.18) or (III.48) shows the GO field 

should not, however, be taken to mean that only the diffracted field is 

needed when considering the primary field contribution.  We can, instead 

of looking into the far field of the guide, find cp by integrating the 

primary field over the guide aperture at z • 0.  That is, 

r0 

\  [ tCF(sJ) + Fa*) - I)*1 ~ ?tt{)*l ~  «£)•![] I  sin 
•l-a ' z-O 

nir 
: dx 

(III.53) 

where we used (11.34) to express the primary field.  If, however, instead 

of the full expression in (III.53) we were to use the diffracted fields 

only and calculate c" by 

2 
a 

-a 
I#J + »21 sin 

z-O 

nir 
dx (III.54) 

c would be greatly underestimated.  This can be seen in Figure 23, where 

for a typical case, we compare the magnitudes of c? as calculated from (III.48) 
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and (III.49), (III.53) and (III.54).  We also observe that the asymptotic 

solution breaks down near cut-off. 

The answer, then, to the question of whether one should include 

the GO field is dependent on where the observation point is.  If one is 

examining the aperture field, the GO field must be included.  If one is 

studying the far field, the GO field drops out, hence, the appearance 

of only the diffraction coefficient. But this does not mean that only 

the knowledge of the diffracted field is sufficient to find c .  It is 

sufficient only if the integration is done in the far field. 

C.4. Primary field: Aperture field method 

Equation (III.53) suggests another way of computing the primary 

contribution - find and integrate the primary field over the aperture. 

This approach has several important advantages. First, by not looking 

down the guide, there's no need to track the reflections which, as just 

seen, can lead to complicated forms. And, although analytic expressions 

such as (III.48) and (III.49) cannot be found, the aperture field integral 

can be easily and very accurately numerically integrated, as its limits 

are from -a to 0.  Furthermore, though Figure 23 seems to indicate little 

reason for choosing the aperture field method over the asymptotic solution, 

the aperture field method is superior in that Equation (III.53) contains no 

singularities and hence the procedure is easily extended to the staggered 

case. Additional details on the aperture field method are discussed in 

Chapter IV. 

--*•*-•---  : -** «-rr^--^»!»* v? -  a* • 



" 

53 

C.5. Multiple scattering 

The solutions in Equations (III.48), (III.49) and (III.53) are based 

on the assumption that each plate in the guide is excited by the incident 

field alone.  In fact, each plate is also excited by the fields scattered 

off the other plate so that the effects of multiple scattering must be 

considered.  In the exact solution, this effect has been accounted for 

in toto by the use of the Modified Diffraction Coefficient (MDC). 

The ray optics solution, on the other hand, given by Yee and Felsen [30], 

attempts to keep track of each of the interactions. This is now 

briefly outlined and the limitations of the technique discussed. 

Consider for example the field scattered off the top plate, as 

in Figure 24. We denote the scattered field off plate 1 after (m + 1) 

scatterings by $,  , likewise foi plate 2 by A-  . To find the scattering J.,m z,m 
g 

of <K 0 by plate 2, the YKF solution proceeds as follows.  First, assume 

that the initial scattered field $ Q near the lower edge is well- 

approximated by the diffracted field. Next, approximate this first 

diffracted field by an isotropic line source field, its strength given by 

D(n, IT/2). As this field scatters off plate 2, the resultant scattered 

field near the aperture, denoted by <j>®  , is 
^» 1 

4>2>x - D(n, TT/2){g(ka)D(i:/2,62)g(kp2) - [F($|) - F(cJ)]g(kpf)}.(111.55) 

As we again consider the scattering of ^      off plate 1 to obtain <j>^ 1, we 

observe that the top edge and, indeed, the entire aperture lies on the 

reflected shadow boundary of $- ., However, note that even on the shadow 

s 1 
boundary 4>2  is finite and is equal to -^(fi, ir/2)g(kp ). 

a 
To find the scattered field <Ji  , again the approximation is made that 

$2 i is an isotropic line source field of strength 4D(:3, TT/2) and the entire 

procedure repeated to find the next higher-order scattering. When this 
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is all done, the modal coefficient due to the interactions is 

cint « D(Q. ./»C^W.O) + .iW)V(0, -a)] DJ; !l"/  * I 
4ka cos <i> 

m-1 

ima 

.1-1 

(III.56) 

That is, the multiply diffracted fields are reduced by one-half upon each 

diffraction and the coupling of these fields computed as in Section C.2. 

An interesting comparison of (III.56) with the asymptotic expansion of 

the exact solution, made by Bowman [1 ], shows that (III.56) would tend 

to underestimate c 
n 

The YKF method for the interactions then makes use of three basic 

assumptions: 

(a) On opposite plates, the primary scattered field is well- 

approximated by the diffracted field. This will be true if 

a is large and 4> is not close to v/2. 
n 

(b) The diffracted fields are approximated by an isotropic line 

source field. 

(c) A greater approximation than the isotropy of the diffracted 

fields is that ray fields are used at all. Equation (III.55) 

clearly shows that after the first interactions the edges lie 

in the transition region of the interacting fields, where a 

ray picture of any kind is inappropriate.  Furthermore, 

near cutoff, that is, $ * IT/2, the ray picture becomes 
n 

even more confusing.  In Chapter IV, the interactions 

are partially taken into account in a more exact manner. 

D.  Summary and Conclusions 

D'l«  Exact and asymptotic Wiener-Hopf solution (MDC) 

In Section A an exact solution for the modal coefficients of an 

unstaggered parallel-plate guide was found.  The expression, given in 

I"**- *Vr B*te**? 
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Equation (III.18), shows that the modal coefficients are proportional to 

the amplitude of the diffraction coefficient in the modal direction, 

multiplied by a factor which accounts for the interaction between the 

plates.  This then leads to the introduction of the Modified Diffraction 

Coefficient (MDC) in Equation (III.20).  Note that, generally speaking, 

the MDC will not give a ray field since it is a function of k, indicating 

that the interaction is of a complicated, nonray-like nature. 

In Section B, an asymptotic solution valid for large "i"  was 

introduced in Equation (III.38).  We note again the use of the MDC, 

but now also the presence of singularities in Eauations (III.38c) and 

(III.38d) as  5 •* <f> .  These singularities arise from the assumptions of 

the asymptotic evaluations and may in principle be removed [1], though 

this would lead tc exceedingly complex forms. 

Taking into account the inherent limitations of the asymptotic 

solution, when can Equation (III.38) be expected to give good results? 

"When "l" is large enough so that the lower edge is outside the transition 

region centered about the aperture, as shown in Figure 25." This 

transition region is the region in which the interactions between the 

plates take place, as outside of this region we have ray fields which 

only produce specular reflections. When the lower edge falls out of 

this region, the use of the MDC to account for the interactions is 

justified.  Simple calculations show "i"  would have to be greater than 

a wavelength, for example, when a • .55 X, I  > 1.1 X.  When a = 1.2 X, 

the minimum "I"  increases to % >  1.4 X. 

^-r^-VtffrjfV'-vr-    «*^r  «MT- 
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D.2.  YKF and aperture field method 

In Section C, a ray optics solution for the unstaggered guide was 

presented.  It was shown that the primary field's contribution to the 

modal coefficient was through the diffracted fields only, the GO field 

being absent because a far-field evaluation was involved.  It was also 

seen that because the guide was unstaggered the singularities in the 

diffraction coefficient cancelled.  An equivalent formulation for the 

primary field's contribution, an aperture field method, was given, 

and shown to be preferable in many ways.  The YKF method for the 

interactions was discussed and its shortcomings pointed out, tamely, 

the presence of a singularity near cutoff, and the use of ray fields in 

the transition region. 

D.3.  Extension to the staggered case 

For "I"  > 0 the results in Section B have an obvious and immediate 

application.  However, as pointed out the MDC has several shortfalls. 

First, for the MDC to be successfully applied, the stagger must be large - 

greater than one wavelength.  Second, the terms which give the first 

interaction along the diagonal, Equations (III.38c) and (III.38d), are 

singular as 5 •* IT - 8 and are discontinuous due to the presence of the 

function H( ).  The YKF method has similar problems; a singularity when 

5 + IT - ß, the need for "I"  to be large so that the interaction rays are 

indeed rays on the opposite plates, and, in addition, the primary field 

term is singular when <f> *  TT/2. A comparison between the MDC, the YKF, 

and the more rigorous Aperture Field Method for a staggered guide is given 

in Section D, Chapter IV. 

Vr -  CS*i>-T 
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IV.  STAGGERED GUIDE 

We examine now Che staggered wave guide, i f Q,   in Figure 1. As in 

Chapter III we only study the E-wave problem in detail and show how to apply 

the method to an H-wave case.  In Section A we find the plane wave primary 

field contribution to the modal coefficient and make use of the Aperture 

Field Method introduced in Chapter III.  In Section B interactions between 

the plates are considered and the Spectral Theory of Diffraction is utilized 

to exactly solve for the first interaction.  Data are presented in Sections C 

and D and the cylindrical wave problem is examined in Section E.  Finally, 

we note that, although in this chapter we are solely interested in the 

propagating modes, the same methods may also be used for the evanescent modes. 

Rather than dealing with C , the modal coefficient of the n  propa- 

gating mode, we use P , the power transmission coefficient, defined as the 

ratio of the mode power to the source power incident on the aperture, 

projected in the direction of the waveguide, i.e., 

\C  |  cos <*> 
P , _2 a   t (iv.i) 
n   2|cos(Q)| 

as illustrated in Figure 26. The same definition is used when Q > 0, though 

in this case, P has less physical meaning.  Observe that because of the 

way P is defined it is possible for it to be greater than one. We define 

the phase shift of the mode as the phase of C minus the incident field's 

phase at the center of the aperture, (-a/2,0). That is, 

Phase Shift =• arg C1  - arg (Jii(- | , 0). (IV.2) 

A.  Primary Contribution (Plane Wave):  Aperture Field 

The primary contribution to the modal coefficient is found by the 

Fourier decomposition of the primary field over the guide aperture, as 
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in Equation (III.53).  But now, for any I _> 0, we have for the primary field 

contribution 

Cn " I f £(F<-^> + *<«?»•* - *<eJ)*J ~ F<C|>*|1|   sinfji * 
(IV.3) 

where 

^•r(x,0)  - eJ'r 
/2k)x|   sin 8  .  * 

U - 2J 

C^'r(x,0)  - e*'r v4k[(a + x)2 + I1}111 cos ß _,_ 1 ,  -1 
2 1 2 tan 

a + x 

^(x.O) - exp(-kx sin Q] 

<t>^(x,0)  -  exp[-ik(x + 2a) sin Q]  . 

When 1*0,   (IV.3) reduces to (III.53). 

In Figures 27 and 28, we show for I  • 0 some typical comparisons of 

P and the phase shift, as calculated from (IV.3), and the same parameters 

obtained from the exact solution. We see that (IV.3) gives accurate results, 

the error in P is kept under 10% or + 0.8 dB, and the phase shift less 

than 10°. The greatest errors occur at the onset of a mode when P 
n 

is most sensitive to small changes in the aperture field. As a/A increases, 

the agreement with the exact solution becomes excellent. 

B.  First Interaction (Plane Wave) 

The fields on the aperture due to the first interaction can be 

solved for exactly using STD. The scattered field of the first inter- 

actions can be written as 

int li+ *u (IV.4) 

*>^r^^^!*||^ '"*  Ö*e>^ «Kit: 
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where, following the notation in Section C, Chapter III, $. . is the field 

is the field 

s 

s       s 
scattered off plate 1 when the incident field is <(>. n, and <()„ ^ 

scattered off plate 2 when the incident field is <t>1 _.  The scattered fields 
i, u 

s       s 
$. _ and <J)2 n are the primary scattered fields off plates 1 and 2, respectively, 

as indicated in Figure 29.  From Equation (11.28) the primary scattered 

fields may be written as 

>1(2),1  4* 

ikpimcosOHeim|) 
(IV.5) 

where (p., 9..), (p2,9_), and |9| < ir are the cylindrical coordinates attached 

to the edges of plates 1 and 2, respectively, and r is the path in Figure 5. 

Note that Equation (11.28) applies when Q > 0.  For Q < 0 we use the fact 

that (f>s(-|n|,9) equals <f>S(|n| ,-9), which for an E-wave is the same as 4>s(|ft|,9) 

Next, using superposition, as in (11.39), we obtain the expressions for 

•l.l and *2,1 

s  a **(—.O 
'1,1    4iri x(|n|,*)e' 

-ikd cos (i|H-6)L(_ci)eikp1 cos (*-9L) 

_ ikp, cos (<^+9 ) 
+ F(cJ)e l l 

dtp , x > -a (IV .6) 

where 

^'r - +/2ki p. sin 
* + 9. 

and 

'2,1  4iri X<|Q|,*)e 
- JF(_ci)e

ikp2COs(^62) 

where 

ikp, cos (iJ>-9, 
+ F(5p e  l 

<|» + 9, 

'} dt|)  ,    x > -a 

4'r - +/2kpT sin 

(IV.7) 
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Figures 29a and 29b. First interaction between the plates. 
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The part of the modal coefficient due to these field terms is 

/•0 int 

' -a 
(•J^U.O) + ^(x.o)) elnlf2 x dx 

66 

(IV.8) 

The evaluation of (IV.6) and (IV.7) is simplified by noting that for 

any spectral component in (IV.5) the incident shadow boundary is always 

outside the guide so that F(-£,) and F(-5_) may be ignored.  Further simpli- 

fication is possible by deforming the path r into a steepest descent path 

by the transformations 

-ikd cos 0|i + 6) - ikd - kdt (IV.9) 

for the integral in (IV.5), and 

ikd cos {% - 6)  - ikd - kdt (IV.10) 

for the integral in (IV.7). The saddle points associated with the trans- 

formations (IV. 9) and (IV.10) are IT  - 6  and 6, respectively, and the 

residues to be considered are from the poles at i>  • +n, respectively. 

Using then the steepest descent path transformations and the program for 

complex Fresnel functions in Appendix A, c   can be computed with any of 

the standard quadrature methods. 

The effects of the first interaction are e>«i3",ned for the test case 

2. • 0. The same examples as in Figures 27 and 28 are now presented in 

Figures 30 and 31 but with the first interaction included. We see that the 

maximum error in P has been reduced by a factor of two to under 0.3 dB, 
n J 

and under 5° for the phase shift. Also the convergence to the exact 

solution as a/X increases is more rapid, with the agreement already 

.'• 
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excellent for a/X - 0.6. Higher-order interactions are hereafter ignored as 

an exact formulation of them, possibly via an integral equation, would little 

improve accuracy and any approxiiiate technique would have an error at least 

as large as the error present now.  We emphasize that the formulations here 

for the primary and interaction terms are equally valid for any "l"  and the 

same order of accuracy is expected as that for I =  0. 

C. Numerical Results 

We study the staggered guide making use of (IV.3) and (IV.8).  Figures 32 

thru 38 present for different angles of incidence Q  the power transmission 

coefficient and the phase shift for a • 0.7 X, 0.8 X, and 0.9 X as a function 

of the stagger distance "I."    These cases, 0.5X<a<l\, are of particular 

interest as guides in the dominant mode are often used as the elements in 

lens antennas [28] and in other antenna systems [14].  Furthermore, it is for 

0.5X<a<lX that a more exact analysis is needed; for plate spacing this 

small asymptotic, high frequency methods cannot be expected to give very 

good results. 

Figure 32 presents data for Q » 180°, that is, the wave vector is 

parallel to the guide aperture. As 2./X increases, we see P.. gradually 

decreasing, falling at I  • 1 X by about 3 dB.  This is because the scattered 

field on the aperture is, essentially, the diffracted field from the edges 

of the two platej.  As one of the edges moves away from the aperture, the 

scattered field on the aperture becomes reduced. However, as \ti\   decreases 

and the wave vector tends to parallelism with the aperture, several different 

effects can be discerned.  First, for I  • 0, f.   decreases as |Q| decreases. 

This is because as |fi| decreases from 180°, the wave number k sin Q  increases 

in magnitude, which results in a more rapid phase variation of the incident 

field on the aperture.  In turn, this implies less power coupling into the 

fundamental mode. 
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Second, for fi < 0, that is, the wave incident from above, as |fi| decreases 

and i/A increases, we see more power in the dominant mode. Although the 

diffracted field on the aperture from the bottom plate decreases, more energy 

is now channelled into the guide by the stagger via reflection.  On the other 

hand, for R > 0, less field appears on the aperture as the stagger now acts 

to block out the incident field. For |ß| close to 90", however, this pattern 

breaks down. The behavior of P.. and the phase shift becomes more erratic as 

the entire aperture now lies in the transition region of the incident and 

reflected fields. Note that as |Q| •* 90° the projected aperture goes to 

zero and hence, from (IV.1), P. goes to infinity. 

Perhaps the most interesting result is the phase shift behavior.  Except 

for |ft( close to 90°, we see that the phase shift is very weakly dependent on 

"I,"  and is less than 20°. One could essentially compute the phase shift 

for I  • 0, for which an exact solution is available, and use the result for 

% +  0. Tables that can be used to compute the phase shift for I  - 0 are 

provided in Appendix B.  It is because of this very weak behavior of the 

phase shift with "£" that simple phase front designs for waveguide lens 

antennas are successful [28]. 

D.  Comparison of the Aperture Field, MDC and YKF Method 

We now compare the aperture field method, the MDC method as given by 

Equation (III.38), and the YKF method. The YKF formulation for the 

staggered guide is the same as the MDC formulation in (III. 38), but instead 

of the G functions, Equation (III.56) is used for the interactions along 

the aperture. The results are shown in Figures 39 and 40. We observe 

that for small and moderate "I"  the MDC and YKF methods fail.  This is 

because they include the interaction rays along the diagonal which, as I 
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approaches zero must be somehow removed, as they are not present in the 

canonical solution for Si  • 0. We observe in the figures the singularity 

at <5 * IT - |fl|, something not present in the aperture field method. As 

i  increases all the methods approach the proper solution.  It would appear 

from Figures 39 and 40 that if one is away from the singularity at 

8 • » - |Q|, the MDC and YKF methods give good results for I > 2\. 

E.  Incident Wave-Source Field 

An advantage of the aperture field method is that it allows one to 

consider incident fields other than a plane wave. As an example we 

consider the problem of an incident line-source field, the geometry of 

which is given in Figure 17. The guide is unstaggered and the source 

coordinates are (R cos ft.., R üin|n|), where R is now a finite number of 

wavelengths. The problem of finding the primary field contribution to 

the modal coefficient can be attacked in one of two ways. One could 

proceed in the manner of the YKF solution, as in Section C, Chapter III, 

but in this case an additional singularity is introduced in Equations 

(III.48) and (III.49) when ft. or ft. equals $ - TT. We recall that for an 

incident plane-wave the singularities in (III.48) and (III.49) cancelled 

out whereas for a line-source field they do not. 

On the other hand, the aperture field method is simple. Though an 

exact solution to the problem of scattering of a line-source field is 

available [8], we prefer to use the asymptotic solution given in [7]. We 

begin by expanding the line-source field in an asymptotic series.  Since we 

-3/2 
utilize the primary fields only our results will be accurate up to 0(k   ), 

-1/2 
and hence only the k    term in the incident field expansion is retained. 

A higher order of accuracy can be obtained by first taking the nlane-wave 

spectrum of the incident field and for each plane-wave component computing 

• 
>•*»-.*'-* 
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the interactions between the plates as in Equations (IV.6) and (IV.7). This, 

however, would prove to be too laborious. With the incident field then given 

by (III.40) the primary field on the aperture is 

f . 4J + •£ + ** + <fr* + 0(k"3/2) (iv.ll) 

where $ and <J> are given in Equations (11.46) through (11.53). Plots of 

the amplitude and phase shift for C. are given in Figures 41 and 42. 
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Figure 42.  Magnitude and phase shift of C vs. R, .".. • -1£Q, I 
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APPLICATION:  WAVEGUIDE LENS ANTENNAS 

From the onset of radio, optical techniques have been applied to meet 

the needs of microwave communications.  The simplest and most fundamental 

of these problems has been the collimation of microwave energy from a 

point source.  It was readily recognized that, as in optics, the solution 

was a standard lens built of dielectric material.  These lenses, however, 

were heavy and were quickly discarded in favor of reflectors.  But in 1944, 

Kock [18] suggested that a metal guide supporting modes can be used as a 

refracting medium, with its index of refraction given by X/X , where X  is 

the guide wavelength.  This opened the possibility of significantly reducing 

weight and cost, and because of the less stringent manufacturing tolerance, 

the lens began to compete with other antenna designs.  In 1950, Ruze [28] 

showed that a "constrained" lens, that is, a lens operating in the dominant 

TE  mode, can be used for wide-angle scanning applications.  Such a two- 

dimensional lens is shown in Figure 43.  The guides are aligned along the 

contours E.. and I2 with the edges parallel to the E vector so that only the 

TE.- mode propagates.  Thus, if the plate surfaces are space a apart we 

can define a refractive index n as 

n-/i (A/2«)' (V.l) 

and then the phase shift through any guide of length t is 2imt/X.  Note 

that in contrast to natural dielectrics n is less than one.  In analogy to 

dielectric lenses, the design of the waveguide lens is then obtained via 

standard phase-path length analysis.  Figure 43 shows that for a feed at 

a focal point offset a degrees from the z axis and the main beam in the 

same direction, the three electrical path lengths FPQN, FOO'N', and FP'O' 

are set equal and the equations 

•v -  CS0?>-T JBB**f~ y 
.'• 
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and 

2 2   2 
z + 2zf cos a + x cos a • 0 (V.2) 

nQt0 + nt + (t - tQ + z) cos a - 0 (V.3) 

are obtained.  Equation (V.2) gives the profile of the first surface E-. 

This is an ellipse with its major axis perpendicular to the lens axis. 

Equation (V.3) is one relation between n and t and a second arbitrary 

relation can be chosen.  Some of the commonly chosen are 

(a) a lens of constant thickness 

(b) a lens with a plane second surface 

(c) a third focal point 

(d) a constant refractive index. 

There are two main features that distinguish the metal-plate lens from 

a dielectric lens.  First, since n < 1, Z.   and Z? are concave.  Second, the 

rays in the lens are "constrained." By this it is meant that the rays in 

the lens always travel parallel to the z axis, regardless of the angle of 

incidence.  It is this property that gives these lenses such good wide-angle 

scanning ability. 

The standard design just outlined has a basic limitation.  It models 

the region of any waveguide by a medium with index of refraction n, given 

by (V.l), and does not consider the actual physical structure and the scat- 

tering off the plates.  It assumes that the phase shift at E.. and E„ is zero or 

very small, but more fundamentally, the design is incomplete as it cannot 

predict the amplitude distribution in the lens.  Note that because the lens 

is "constrained," Snell's Law cannot be used to give even a qualitative 

idea of what the amplitude distribution is. What is typically done, as 

in a recent design by Dion and Ricardi [13], is to assume that the power 
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transmission coefficient at Che interface of any guide is simply one. 

With the methods in thie paper the amplitude distribution can be found. 

As an example, we study the scanner in Figure 44.  We choose Z- to be 

a plane, and ignoring interactions between I. and I. and any interactions 

between the guides, we apply the methods of this chapter to each guide in 

the lens.  The principles of operation of this lens are well-known [28], and 

the pertinent parameters are:  f • 14 X, d. • 3.5 X, n. • 0.8, a • 18°, 

f/D • 0.95, and number of guides • 21. 

Since we have already shown that the phase shift at Z    is minimal, we 

concentrate on the power transmission.  Since the distance from the feed to 

any waveguide is much greater than the width of the guide, we approximate 

the field at each guide by a plane wave and examine the power transmission 

coefficient at each guide as the feed sweeps along the focal arc shown in 

Figure 44.  The use of a plane wave allows us to include the first interaction 

when computing the power transmission coefficients.  These power transmission 

coefficients are shown in Figures 45 thru 50 for six different scan angles. 

We observe that for small scan angles the amplitude distribution in the lens 

is nearly symmetrical and, except near the edges, has an additional taper of 

approximately 1 dB.  As the scan angle increases, the distribution now becomes 

asymmetrical.  The staggers in the lower half of the lens channel more 

power into the guides and those on top act to block out some of the incident 

field.  For scan angles approaching a, the amplitude distribution becomes 

increasingly flat near the center of the lens with variation of approximately 

2 dB near the edges.  We also note that as the scan angle increases less 

power is coupled into the lens.  This is shown in Figure 51 where we plot 

the efficiency at £., the ratio of the power in the lens to the incident 

i 
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power, as a function of scan angle.  For Che scan angle a » 18", the efficiency 

is down by 0.7 dB from its maximum at ß - 0. 

The effects on the secondary pattern of a non-uniform power transmission 

thru the lens are examined in Figures 52 thru 58 .  We compare the H-plane 

far field pattern with the amplitude distribution calculated by the methods 

in this thesis with the pattern given by assuming a power transmission 

coefficient of one through each guide, as done by Dion and Ricardi [13].  Each 

pattern is normalized by the maximum intensity computed by our method.  We 

observe that the nonuniform power transmission distributions in Figures 52 

through 57 result in a side-lobe level approximately 1 dB below chat calculated 

by Dion and Ricardi.  Also, the intensity of the main beam is different. 

The variation of the main beam strength with the scan angle is given in 

Figure 58.  The curves are normalized by the main beam strength at ß • 0, 

calculated by our method.  We note that the main beam strength has a stronger 

variation than would be predicted by Dion and Ricardi, with the strength 

down by 1 dB at ß - 14°. 

^xr^^^ftfriM- v - a*-1 
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VI. CONCLUSIONS 

In this thesis, we examined the scattering of a plane and cylindrical 

wave by a staggered parallel-plate wave guide, shown in Figure 1.  In partic- 

ular, we concentrated on the fields in the guide for 0.5 A < a < 1 X.     In 

Chapter II, a quick review of some relevant techniques was given, and in 

Chapter III, past approaches to scattering by a parallel-plate guide were out- 

lined and critically examined.  We concluded in Chapter III that the Aperture 

Field Method offered the greatest accuracy and flexibility for the problem at 

hand.  The first interaction between the plates was also exactly formulated 

and solved for in Chapter IV. 

In Chapter IV we used the Aperture Field Method to examine the TE., 

mode in a staggered parallel-plate guide. We gave quantitative results for 

the power transmission coefficient and showed that the phase shift at the 

aperture of the guide was very small and weakly dependent on "2." Because 

of this weak dependence, the phase shift was veil-approximated by its value 

at I  • 0. Tables to aid in this computation are included in Appendix B. 

In Chapter V, we applied the Aperture Field Method to the study of 

waveguide lens antennas and showed how the amplitude distribution in the 

lens may be obtained, something previously not available. 

Finally, we noted that, although we have concentrated on the TE1n mode 

and the E-wave, the same methods may be used for the H-wave problem.  Also, 

the same aperture field formulation can be used to  find the reflection 

coefficient for the field incident from inside the guide.  One merely 

expresses the incident field as a sum of two plane waves and for each 

plane wave makes use of Equations (IV.3), (IV.6) and (IV.7). 

Z£^y*~  - Btf£»*t 
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APPENDIX A 

FRESNEL INTEGRAL WITH COMPLEX ARGUMENTS 

In this appendix, some basic properties of the Fresnel integral 

with complex arguments are presented. The Fresnel integral is defined 

-iff/4 -   2 -ITT/4 5 ,r2 
FU) - 2-jm- / eiC dt - | - S-jy- / e" dt (A.l) 

where the integration path in / is any path that goes to infinity in 

the first quadrant. The asymptotic expansion of F(£) may be shown as 

AIL -tr2 iir^4 °° 1  ~n 
F(5) - et-Ra(5e"lir/*)] + •** ~f I r(n+l/2)(iO 

n-0 

2 
- 6[-Re(5e~i7r/4)] + f(5) + 0(?"3 eU )  for  141 » 0     (A.2) 

where 9 is the unit step function and 

iC2 + iir/4 

Furthermore, one can establish the following inequality 

\  |ei5 I        when Re(Se*iu/4) > 0 

l*(«| <s (A.4) 
2 

1+4 |eU I     when R*(5e"llt/4) < 0 

which can be derived from (Al) by introducing the change of variable 

t  • t + €•  Substitution of the variable -? into (Al) allows one to 

arrive at 

F(5) + F(-0 - 1, (A. 5) 

for complex 5's. 
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There are available some fast routines for accurate determination of 

the Fresnel integral (Al). Application of one of these routines (see 

Table A-l) allows one to evaluate F(£) for real or complex £'s.  Some 

representative results are shown in this appendix.  Figure A-l is the plot 

of the magnitude and phase of F(£) for real c's.  Figures A-2, A-3 and A-4 

are the three-dimensional plots of the magnitude, the real and the imaginary 

parts of F(5) for complex S's in the first quadrant, i.e., Re £>o and Im S>o. 

Figures A-5, A-6 and A-7 are the counterparts of A-2, A-4, and A-5, 

respectively, for complex S's in the fourth quadrant, i.e., Re 5>o and 

Im 5<o.  Clearly, because of (A5) the behavior of F($) in the third and 

the second quadrants is similar to its behavior in the first and the fourth 

quadrants, respectively. 

^MEVytl» 6» Vr --  «*t>-T 
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TABLE A-l 

FRESNEL INTEGRAL WITH COMPLEX ARGUMENT 

,-!»/*    r      ic2 
ZFR - AT«-—      e   dt 

SUBROUTINE FRNL(Z1,ZFR) 
IMPLICIT REAL*8  (A-H,  O-Y) 
IMPLICIT COMPLEX*16  (Z) 
REAL*8 IM 
PI-3.1415926535DO 
ZI»(ODO,lDO) 
SQPI-DSQRT(PI) 
Z»Z1*DSQRT(2.DO/PI) 
ZW»SQPI*Z/(1.-ZI) 
X-DREAL(ZW) 
Y=DIMAG(ZW) 
ABSX-DABS(X) 
ABSY-DABS(Y) 

C*  Z1ST: Z IN 1ST QUADRANT 
Z1ST»DCMPLX(ABSX,ABSY) 
CALL WOEZ(ABSX,ABSY,RE,IM) 

C*  1ST QUADRANT: W(Z) 
ZFR»DCMPLX(RE,IM) 

C*  3RD QUADRANT: W(-Z)=»2*EXP(-Z**2) -W(Z) 
CALL UNDERZ('OFF') 
IF((X.LE.O.).AND.(Y.LE.O.)) 
1ZFR»2.*CDEXP(-Z1ST*Z1ST)-ZFR 

C*  4TH QUADRANT: W(CONJ(Z))*CONJ(W(-Z)) 
IF((X.GE.O.).AND.(Y.LE.O.)) 

IZFR»DC0NJG(2.*CDEXP(-Z1ST*Z1ST)-ZFR) 
C*  2ND QUADRANT: W(CONJ(-Z))=»CONJ(W(Z)) 

IF((X.LE.O.).AND.(Y.GE.O.)) 
lZFR-DCONJG(ZFR) 
ZFR»(1.+ZI)/2.*(1.-ZFR*CDEXP(ZW*ZW)) 
CALL UNDERZ('ON') 
ZFR-.5DO-(1.DO-ZI)*ZFR/2.DO 
RETURN 
END 

V *   O*?^! 
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SUBROUTINE WOFZ(X,Y,RE,IM) 
REAL*8 X,Y,RE,IM 
INTEGER*4 CAPN,NU,N,NP1 
REAL*8 H,H2,LAMBDA,R1,R2,S,SI,S2,T1,T2,C 
L0GICAL*4 B 
IF((Y.LT.4.29).AND.(X.LT.5.33)) GO TO 1 
H=0. 
CAPN-0 
NU» 8 
GOTO 2 

1 CONTINUE 
S=(1.-Y/4.29)*DSQRT(1.-X*X/28.41) 
H=1.6*S 
H2=2.*H 
CAPN»6+23*S 
LAMBDA«H2**CAPN 
NU-9+21*S 

2 CONTINUE 
C* IN THE FOLLOWING STATEMENT, LAMBDA=0 COVERS THE UNDERFLOW CASE WHERE 
C* H.GT.O. IS VERY SMALL. 

B=((H.EQ.O.).OR.(LAMBDA.EQ.O.)) 
Rl-O. 
R2=0. 
Sl-O. 
S2-0. 
N-NU 

3 CONTINUE 
NP1-N+1 
T1=Y+H+NP1*R1 
T2=»X-NP1*R2 
C«0.5/(T1*T1+T2*T2) 
R1=C*T1 
R2=C*T2 
IF((H.GT.O.).AND.(N.LE.CAPN))   GOTO 4 
GOTO  5 

4 CONTINUE 
T1-LAMBDA+S1 
S1=R1*T1-R2*S2 
S 2-R2*Tl+Rl*S 2 
LAMBDA-LAMBDA/H2 

5 CONTINUE 
N-N-l 
IF(N.GE.O) GOTO 3 
IF(Y.EQ.O.) RE»DEXP(-X*X) 
IF((Y.NE.O.).AND.B) RE= 
IF((Y.NE.O.).AND.(.NOT.B))RE» 
IF(B) IM 
IF(.NOT.B) 
RETURN 
END 

IM- 

1.12837916709551*R1 
1.12837916709551*S1 
1.12837916709551*R2 
1.12837916709551*S2 

•Vr - a^i^T J 
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Figure A-2.  Magnitude of F(C)i defined in (Al), for £'s in the first quadrant 
of complex £-plane. 
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Figure A-3.  Real part of F(£), defined in (Al), for ;'s in the first quadrant 
of complex C-plane. 
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Figure A-4.     Imaginary  pare of  F(0,  defined  in   (Al),   for  £'•   in  the  first  quadrant 
of  complex  5-plane. 
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Figure A-5.  Magnitude of F($), defined in (Al), for £'s in ehe fourth quadrant 
of complex 5~plane.  |F(£)| is truncated at 5. 
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Figure A-6.  Real part of F(£), defined in (Al), for 5's in the fourth quadrant 
of complex 5-plane.  Re F(5) is truncated at -5 or 5. 
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Figure A-7.  Imaginary part of F(£), defined in (Al), for •,'s  in the fourth 
quadrant of complex 5-plane.  Im F(?) is truncated at -5 or 5. 
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APPENDIX B 

THE FUNCTION G (a) 

As illustrated In this report, a central step in the Wiener-Hopf 

Method as applied to the waveguide is the computation of the "plus" 

part of 

,, 2 .2.1/2, 
(B.l) 

where for the latter case (+), we say G(a) • G(a).  One expression for 

G .(a), already presented in Equations (III.14b) and (III.14c), 

is the infinite product form. For small or moderate guide dimensions, 

this product converges quite rapidly; however, for larger guide dimensions, 

the infinite product form can be very laborious.  As a matter of fact, it 

can be shown that for truncation of the product after N terms,the error, 

e, is 

e - [(ob/ir) /N]  if  e « 1 (B.2) 

Then for otb - not small - N must be exceedingly large. 

Another useful formula for G (ct) is 

G+(ot) » exp[U(a/k, 2kb) ]  a > 01 , (B.3) 

where U(s,p) is the Weinstein function [21], [31], given by 

j  |~ ln(l + exp[ip - pt2])(l + it2)(l + \  it2)1/2 dt 
u(s«p)" 271  , i "T—^m  

t(l +| it ) - 2 s exp[iff/4] 

Equations  (B.7)  and  (B.8)   in  [21]  are only valid for a. > 0. 

(B.4) 

•v?^   ~W>t>*T J 



the plus in ln(l + exp[*]) being used for G(a) » G(a). 

For a < 0, this relationship is used: 

G+(-a)G+(a) - G(a) 

Two commonly found asymptotic expressions for U(s,p) are 

J t - 2   s exp[i7r/4] 

and, directly from (B.5), 

(+)l)n exp[in(2irp - s
2) ] 

113 

(B.5) 

dt + 0(p~ ), uniformly  (3.6) 
in s 

U(s,p) * I 
n»l 

F(/ns/2) + 0(p_1), uniformly 
in s 

(B.7) 

where F(*) is the Fresnel .integral. 

By making use of a new factorization formula [19], it also may be 

shown that 

_ ,„>  , -ikb T ikb.1/2 ikb/2 
G,(a) » (e    + e  )  e 

exp 
1 

2iri 

r 
ln-jl + 

2ab 
t ~   ,   r /«w.i\l727  s   2ikb v   (s[s - 4ikbj)  '   e - e 

2 ikb 
dsl (B.8) 

where the path P goes from -°° to 0 below the real axis of s, circles 

around the origin, and then goes from 0 to +• above the real axis. 

Note that the integral in (B.7) converges quite rapidly.  Other asymptotic 

formulas for special cases may be found in the references listed above. 

Tables B.l and B.2 and Figures B.l and B.2 give the values of C,(o) 

for different values of kb. 

(r^"1*-   «*>~ ' js?**~- 
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Values of G (kx), (Magnitude, Phase). 

G(kx) - 1 - e 
.... 2 .,1/2 

-2kb(x -1) 

Values of G.(kx) for kb - 1.0 Values of Gr(kx) for kb - 2.C 1 

X <?•(**) X <?•(**) X G+(kx) X GJkx) 

-1.00 (0.00, 0.0) 0.00 (1.30. -16.4) -1.00 (0.00, 0.0) 0.00 (135, 12.3) 
-0.95 (0.50, -67.6) 0.05 (130, -15.3) -0.95 (112, -63.1) 0.05 (1.32, 12.6) 
-0.90 (0.69, -60.2) 0.10 (130, -14.3) -0.90 (146, -49.3) 0.10 (1.29. 12.9) 
-0.85 (0.82. -54.7) 0.15 (129, -13.4) -0.85 (1.64, -39.2) 0.15 (1.26, 13.0) 
-o.so (0.92, -50.1) 0.20 (129, -12.5) -0.80 (175, -31.1) 0.20 (1.23, 13.0) 
-0.75 (0.99, -46.2) 0.25 (1.29, -11.7) -0.75 (1-81, -24.4) 0.25 (121, 12.9) 
-0.70 (105, -42.8) 0.30 (1.28, -10.9) -0.70 (1.84, -18.7) 0.30 (1.19. 12.8) 
-0.65 (1.10. -39.7) 0.35 (1.28, -10.2) -0.65 (1.84, -13.8) 0.35 (1.17. 12.6) 
-0.60 (1.14, -36.9) 0.40 (1.27, -9.6) -0.60 (1.82, -9.5) 0.40 (115, 12.4) 
-0.55 (1.18, -34.4) 0.45 (1.27. -8.9) -0.55 (1.79, -5.8) 0.45 (114, 12.1) 
-0.50 (1.20, -32.0) 0.50 (127, -8.3) -0.50 (1.76, -2.6) 0.50 (1.12, 11.8) 
-0.45 (1.23. -29.9) 0.55 (1.26, -7.8) -0.45 (1.72, 0.2) 0.55 Cl.ll, 11.5) 
-0.40 (1.24, -27.9) 0.60 (1.25, -7.3) -0.40 (168, 2.6) 0.60 (1.10, 11.2) 
-0.35 (126, -26.1) 0.65 (1.25, -6.8) -0.35 (1.63, 4.7) 0.65 (1.09, 10.9) 
-0.30 (1.27, -24.4) 0.70 (1.24, -6.3) -0.30 (1.59, 6.5) 0.70 (108, 10.5) 
-0.25 (1.28, -22. S) 0.75 (1.24, -5.9) -0.25 (1.54, 8.0) 0.75 (1.07, 10.2) 
-0.20 (1-29, -21.3) 0.80 (1.23, -5.5) -0.20 (1.50, 9.3) 0.80 (1.06, 9.9) 
-0.15 (1.29, -20.0) 0.85 (1-23, -5.1) -0.15 (1.46, 10.3) 0.85 (1.06, 9.5) 
-0.10 (1.29, -18.7) 0.90 (1.22, -4.8) -0.10 (1.42, 11.2) 0.90 (1.05, 9.2) 
-0.05 (130, -17.5) 0.95 (1.22, -4.5) -0.05 (1.38, 11.8) 0.95 (1.04, 8.9) 

1.00 (1.21, -4.2) 1.00 (1.04, 8.6) 

Values of G+(*x) for kb - 3.0 Values of G.(kx) for kb = 3.1416 

X G+(kx) X G-(fct) X G.(kx) X C. (kx) 

-1.00 (0.00, 0.0) 0.00 (0.53. 40.9) -1.00 (0.00, 0.0) 0.00 (0.00, 135.0) 
-0.95 (2.11, -35.2) 0.05 (0.51, 34.6) -0.95 (1.96. 162.7) 0.05 (0.08, 137.7) 
-0.90 (2.56, -14.1) 0.10 (0.51, 28.5) -0.90 (2.35, -174.3) 0.10 (0.14, 140.3) 
-0.85 (2.70, 1.3) 0.15 (0.51, 23.0) -0.85 (2.44, -157.2) 0.15 (0.20, 142.6) 
-0.80 (2.67, 13.7) 0.20 (0.52, 18.2) -0.80 (2.39, -143.2) 0.20 (0.25, 144.8) 
-0.75 (2.56, 23.9) 0.25 (0.53, 14.2) -0.75 (2.25, -131.3) 0.25 (0.30, 146.8) 
-0.70 (2.40, 32.5) 0.30 (0.55, 11.0) -0.70 (2.08, -120.8) 0.30 (0.34, 148.7) 
-0.65 (2.22. 39.9) 0.35 (0.57, 8.4) -0.65 (1.88, -111.6) 0.35 (0.38. 150.4) 
-0.60 (2.02, 46.1) 0.40 (0.59, 6.3) -0.60 (1.68. -103.3) 0.40 (0.41, 152.0) 
-0.55 (1.82, 51.3) 0.45 (0.61. 4.6) -0.55 (1.48, -95.8) 0.45 (0.44, 153.51 
-0.50 (1.64, 55.6) 0.50 (0.63, 3.3) -0.50 (1.28, -88.9) 0.50 (0.47, 154.8) 
-0.45 (146, 58.9) 0.55 (0.65, 2.2) -0.45 (110, -82.7) 0.55 (0.49, 156.1) 
-0.40 (129, 61.3) 0.60 _ (0.67, 14) -0.40 (0.93, -77.0) 0.60 (0.51, 157.3) 
-0.35 (1.14, 62.7) 0.65 (0.68, 0.7) -0.35 (0.77, -71.3) 0.65 (0.53, 15S.4) 
-0.30 (100, 63.0) 0.70 (0.70, 0.2) -0.30 (0.63, -67.0) 0.70 (0.55, 159.4) 
-0.25 (0.88, 62.2) 0.75 (0.71. -0.2) -0.25 (0.49, -62.5) 0.75 (0.57. 160.3) 
-0.20 (0.77, 60.2) 0.80 (0.73, -0.5) -0.20 (0.37, -58.4) 0.80 (0.58, 161.2) 
-0.15 (0.69, 57.0) 0.85 (0.74, -0.8) -0.15 (0.26, -54.7) 0.85 (0.60, 162.0) 
-0.10 (0.62, 52.5) 0.90 (0 75. -1.0) -0.10 (0.16, -51.2) 0.90 (0.61. 162.8) 
-0.05 (0.57, 47.1) 0.95 (0:76, -1.1) -0.05 (0.08, -48.0) 0.95 (0.62. 163.5) 

1.00 (0.77, -1.3) 1.00 (0.63, 164.1) 

'^BL. 
1-c -   c*t>^r 
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TABLE B.l  (Continued) 

Values of GJkx) for kb m 3.2 Values of GJkx) tot kb m 4.0 

GJkx) GJkx) GJkx) GAkx) 

-1.00 (O.OO, 0.0) 0.00 (0.34, 136.7) -1.00 (0.00. 0.0) 0.00 (123, 139.6) 
-0.93 (193, 162.7) 0.05 (0.41, 139.4) -0.95 (169. 164.7) 0.05 (1.23, 161.9) 
-0.90 (2.29. -173.9) 0.10 (0.47, 141.9) -0.90 (1.75. -166.7) 0.10 (124, 163.9) 
-0.83 <2.33. -156.6} 0.15 (0.52. 144.2) -0.85 (152, -145.6) 0.15 0.23, 1656) 
-0.80 (2.23, -142.4) 0.20 (0.57. 146.4) -0.80 (1.19. -128.6) 0.20 (1.23. 167.2) 
-0.73 (2.06. -130.2) 0.25 (0.61. 148.4) -0.75 (0.83, -114.2) 0.25 (1.22. 168.5) 
-0.70 (1.85. -119.7) 0.30 (064, 150.2) -0.70 (0.49, -101.7) 0.30 (121. 169.8) 
-0.63 (1.62, -110.3) 0.35 (0.68. 151.9) -0.65 (0.18. -90.8) 0.35 (1.21. 170.8) 
-0.60 (139, -101.9) 0.40 (0.70, 153.4) -0.60 (010, 98.9) 0.40 (1.20, 171.7) 
-0.53 (117. -94.3) 0.45 (0.73, 154.9) -0.55 (0 34, 107.5) 0.45 (1.19. 172.6) 
-0.30 (0.96, -87.4) 0.50 (0.75, 156.2) -0.50 (0.54, •1..2) 0.50 (118, 173.3) 
-0.45 (0.77, -81.2) 0.55 (0.77. 157.4) -0.45 (0.70, 122.1) 0.55 (117, 173.9) 
-0.40 (0.59, -75.4) 0.60 (0.79, 158.6) -0.40 (0.84, 128.3) 0.60 (1.17, 174.5) 
-0.35 (0.42, -70.1) 0.65 (0.80. 159.6) -0.35 (0.94, 133.9) 0.65 (116, 174.9) 
-0.30 (0.28, -65.3) 0.70 (0.82. 160.6) -0.30 (1.03, 138.9) 0.70 (115. 175.4) 
-0.25 (0.14, -60.8) 0.75 (0.83, 161.5) -0.25 (109. 143.4) 0.75 (1.14, 175.7) 
-0.20 (0.02, -56.8) 0.80 (0.84, 162.4) -0.20 (114, 147.4) 0.80 (1.14. 176.1) 
-0.15 (0.09, 127.0) 0.85 (0.85. 163.1) -0.15 (1.18, 151.0) 0.85 (1.13. 176.4) 
-0.10 (0.18, 130.5) 0.90 (0.86, 163.9) -0.10 (1.20, 154.2) 0.90 (112. 176.6) 
-0.05 (0.27, 133.7) 0.95 (0.87, 164.5) -0.05 (1.22. 157.0) 0.95 (1.12. 176.9) 

1.00 (0.87, 165.2) 1.00 (111. 177.1) 

Values of GJkx) for kb =» 5.0 

X GJkx)               x GJkx) 

Values of GJkx) for kb - 6.0 

X GJkx)               x                GJkx) 

-1.00 (0.00, 0.0) 0.00 (1.38, -171.8) -1.00 (0.00, 0.0) 0.00 (0.75, -143.1) 
-0.95 (1.92, 174.0) 0.05 (1.34, -171.0) -0.95 (2.22. -164.6) 0.05 (0.71, -148.1) 
-0.90 (1.57, -150.8) 0.10 (1.30, -170.5) -0.90 (118. -122.3) 0.10 (0.69, -153.1) 
-0.85 (0.93, -125.0) 0.15 (1.26. -170.2) -0.85 (0.05, 88.7) 0.15 (0.68, -157.7) 
-0.80 (0.27, -104.3) 0.20 (1.22, -170.2) -0.80 (106, 113.6) 0.20 (0.68, -161.7) 
-0.75 (0.31, 93.0) 0.25 (1-19, -170.3) -0.75 (1.78, 134.4) 0.25 (0.69, -165.0) 
-0.70 (0.78, 107.8) 0.30 (1.17. -170.4) -0.70 (2.23, 152.2) 0.30 (0.71, -167.7) 
-0.65 (1.14, 120.5) 0.35 (1.15. -170.7) -0.65 (2.46, 167.4) 0.35 (0.72. -I69.S) 
-0.60 (1.40, 131.7) 0.40 (1.13, -171.0) -0.60 (2.51. -179.4) 0.40 (0.74, -171.5) 
-0.55 (1.58, 141.4) 0.45 (1.11, -171.4) -0.55 (2.45. -168.0) 0.45 (0.75, -172.9) 
-0.50 (1.68, 149.9) 0.50 (1.10. -171.8) -0.50 (2.31, -158.3) 0.50 (0.77, -174.0) 
-0.45 (1.74, 157-2) 0.55 (1.09, -172.1) -0.45 (2.12. -150.1) 0.55 (0.78, -174.9) 
-0.40 (1.75, 163.6) 0.60 (1.08, -172.5) -0.40 (1.92, -143.4) 0.60 (0.79, -175.6) 
-0.35 (1.74, 169.1) 0.65 (107, -172.8) -0.35 (1.71, -138.1) 0.65 (0.80, -176.2) 
-0.30 (1.71, 173.7) 0.70 (106, -173.2) -0.30 (1.50, -134.4) 0.70 (0.81, -176.7) 
-0.25 (1.66, 177.6) 0.75 (1.06, -173.5) -0.25 (1.32, -132.2) 0.75 (0.82, -177.0) 
-0.20 (161. -179.1) 0.80 (1.05, -173.8) -0.20 (1.15, -131.5) 0.80 (0.83, -177.4) 
-0.15 (1.55, -176.5) 0.85 (1.05, -174.1) -0.15 (101, -132.4) 0.85 (0.84, -177.6) 
-0.10 (1.49, -174.5) 0.90 (1.04, -174.3) -0.10 (0.90, -134.8) 0.90 (0.85, -177.8) 
-0.05 (1.44, -172.9) 0.95 (104, -174.6) -0.05 (0.81, -138.5) 0.95 (0.85, -178.0) 

1.00 (1.04, -174.8) 1.00 (0.86, -178.2) 

"vr, *     ca*t>-T 
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TABLE B.l   (Continued) 

Values of Gt(kx) for kb - 6.2832 Values of G^kx) for kb - 7.0 

X G.(kx) X G»(fct) X Gt(kx) X G,(fcr) 

-1.00 (0.00,        0.0) 0.00 (0.01, 135.0) -1.00 (0.00, 0.0) 0.00 (115, 155.5) 
-0.95 (1.97. -145.5) 0.05 (0.10, 138.9) -0.95 (1.50, -141.2) 0.05 (1.16, 158.7) 
-0.90 (0.85, -100.4) 0.10 (0.19, 142.4) -0.90 (0.16. -91.4) 0.10 (117. 161.4) 
-0.85 (0.37,     113.0) 0.15 (0.26, 145.5) -0.85 (0.95, 125.4) 0.15 (1.18, 163.7) 
-0.80 (1.31,     140.1) 0.20 (0.33, 148.3) -0.80 (1-58. 135.0) 0.20 (1.17. 165.7) 
-0.75 (1.93,     163.0) 0.25 (0.38, 150.S) -0.75 (1.80, 180.0) 0.25 (117, 167.4) 
-0.70 (2.26, -177.2) 0.30 (0.43, 153.0) -0.70 (1.72. -158.5) 0.30 (1.16, 168.9) 
-0.65 (2-38, -159.8) 0.35 (0.47, 155.0) -0.65 (1.47, -139.7) 0.35 (1.16, 170.1) 
-0.60 (2.33, -144.3) 0.40 (0.50, 156.8) -0.60 (1.12, -123.2) 0.40 (1.15, 171.1) 
-0.55 (2.18. -130.5) 0.45 (0.53, 158.4) -0.55 (0.75. -108.5) 0.45 (1.14, 172.0) 
-0.50 (1.97, -118.1) 0.50 (0.56, 159.3) -0.50 (0.39. -95.5) 0.50 (1.13, 172.8) 
-0.45 (1.72, -106.9) 0.55 (0.58, 161.1) -0.45 (0.06, -83.9) 0.55 (1.13. 173.5) 
-0.40 (1.47.   -96.8) 0.60 (0.60, 162.3) -0.40 (0.23, 106.4) 0.60 (1.12, 174.0) 
-0.35 (1.22,   -87.8) 0.65 (0.61. 163.3) -0.35 (0.47, 115.6) 0.65 d.U. 174.5) 
-0.30 (0.98,   -'9.6) 0.70 (0.63. 164.3) -0.30 (0.66, 123.7) 0.70 (1.11. 174.9) 
-0.25 (0.77.   -72.2) 0.75 (0.64, 165.1) -0.25 (0.81, 130.9) 0.75 (1.10, 175.3) 
-0.20 (0.57,   -65.6) 0.80 (0.66, 165.9) -0.20 (0.93, 137.2) 0.80 (1.10 175.6) 
-0.15 (0.40,   -59.6) 0.85 (0.67, 166.6) -0.15 (1.01, 142.8) 0.85 (1.09, 175.9) 
-0.10 (0.24,   -54.2) 0.90 (0.68, 167.3) -0.10 (107, 147.7) 0.90 (1.09, 176.2) 
-o.os (0.11,   -49.3) 0.95 (0.68, 167.9) -0.05 (1-12, 151.9) 0.95 (1.08, 176.4) 

1.00 (0.69, 168.4) 1.00 (1.08, 176.6) 

^ VwW'-* V *   *&**L 
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TABLE B.2 

Values of G (kx), (Magnitude, Phase), 

G(kx) = G(kx) = 1 + e"2kb(x -1) 
1/2 

Values of G+(kx) for a» - 1.0 

X K (kx) X a (kx) 

-1.00 (2.33, -12.75) 0.00 (1.04, 28.65) 
-0.95 (2.22, 4.53) 0.05 (1.01, 27.94) 
-0.90 (2.11, 10.98) 0.10 (C.99, 27.17) 
-0.85 (2.01. 15.52) 0.15 (0.97, 26.36) 
-0.30 (1.92, 19.02) 0.20 (0.96, 25.50) 
-0.75 (1.83, 21.31) 0.25 (0.94, 24.63) 
-0.70 (1.74, 24.07) 0.30 (0.93, 23.73) 
-0.65 (1.67, 25.90) 0.35 (0.91, 22.33) 
-0.60 (1.59, 27.38) 0.40 (0.90, 21.93) 
-0.55 (1.53. 28.56) 0.45 (0.39, 21.04) 
-0.50 (1.46, 29.46) 0.50 (0.39, 20.16) 
-0.45 (1.40, 30.13) 0.55 (0.38, 19.30) 
-0.40 (1.35, 30.58) 0.60 (0.87, 13.45) 
-0.35 (1.30, 30.84) 0.65 (0.37, 17.64) 
-0.30 (1.25, 30.92) 0.70 (0.37, 16.35) 
-0.25 (1.21, 30.35) 0.75 (0.36, 16.09) 
-0.20 (1.17, 30.63) 0.30 (0.36, 15.36) 
-0.15 (1.13, 30.29) 0.35 (0.36, 14.66) 
-0.10 (1.10, 29.34) 0.90 (0.36, 13.99) 
-0.05 (1.07, 29.28) 0.95 (0.36, 13.36) 

1.00 (0.36, 12.-5) 

Value* of G+(kx)   for Vcb - 2.0 

X G
+ 

(kx) X G^_ kx) 

-1.00 (1.36, -168.47) 0.00 (0.91, 147.30) 
-0.95 (1.51, -132.18) 0.05 (0.94, 149.21) 
-0.90 (1.20, -117.47) 0.10 (0.96, 150.99) 
-0.35 (0.92, -106.48) 0.15 (0.98, 152.64) 
-0.80 (0.68, -97.47) 0.20 (1.00, 154.19) 
-0.75 (0.46, -89.76) 0.25 (1.01, 155.62) 
-0.70 (0.27, -83.01) 0.30 (1.02, 156.96) 
-0.65 (0.10, -77.00) 0.35 (1.03, 153.21) 
-0.60 (0.05, 108.40) 0.40 (1.04, 159.37) 
-0.55 (0.19, 113.31) 0.45 (1.05, 160.45) 
-0.50 (0.30, 117.78) 0.50 (1.05, 161.45) 
-0.45 (0.41, 121.37) 0.55 (1.06, 162.39) 
-0.40 (0.50, 125.66) 0.60 (1.06. 163.27) 
-0.35 (0.58, 129.14) 0.65 (1.07, 164.09) 
-0.30 (0.65, 132.35) 0.70 (1.07, 164.35) 
-0.25 (0.71, 135.33) 0.75 (1.07, 165.56) 
-0.20 (0.76, 138.09) 0.30 (1.07, 166.22) 
-0.15 (0.31, 140.65) 0.35 (1.07, 166.34) 
-0.10 (0.35, 143.03) 0.90 (1.07, 167.42) 
-O.05 (0.88, 145.24) 0.95 (1.07, 167.96) 

1.00 (1.07, 163.47) 

^^ r^r^.^^,,^ v .     ca^^t jgp»»- 
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TABLE B.2   (Continued) 

V»lu«« of G.(kx)   tor  kb "   3.0 

X G+(kx) X 
«• 

(lex) 

-1.00 (1.79. 176.94) 0.00 1.41, 175.94) 
-0.95 (1.06, -129.43) 0.05 1.38, 17T.26) 
-0.90 (0.46, -108.21) 0.10 1.36, 178.39) 
-0.35 (0.02, 87.39) 0.15 1.34, 179.34) 
-0.80 (0.40. 99.96) 0.20 1.32, -179.86) 
-0.75 (0.70, 110.53) 0.25 1.30, -179.19) 
-0.70 (0.93. 119.62) 0.30 1.28, -178.63) 
-0.65 (1.11. 127.55) 0.35 1.26, -178.18) 
-0.60 (1.24, 134.52) 0.40 1.24, -177.82) 
-0.55 (1.34, 140.69) 0.45 1.23, -177.53) 
-0.50 (1.41. 146.16) 0.50 1.21. -177.31) 
-0.45 (1.46, 151.03) 0.55 1.20. -177.14) 
-0.40 (1.49. 135.36) 0.60 1.19, -177.31) 
-0.35 (1.50, 159.20) 0.65 1.17, -176.92) 
-0.30 (1.51. 162.60) 0.70 1.16, -176.37) 
-0.25 (1.50. 165.62) 0.75 1.13. -176.84i 
-0.20 (1.49, 168.27) 0.30 1.14, -176.33) 
-0.15 (1.47, 170.60) 0.85 1.14, -176.34) 
-0.10 (1.45, 172.64) 0.90 1.13. -176.36) 
-0.05 (1.43. 174.41) 0.95 1.12, -176.90) 

1.00 1.12, -176.94) 

V»lu«s of G+(Voc)   for Wb -  3.1416 

_ 
X V *x) X °* -<uc) 

-1.00 (1.32. 175.70) 0.00 (1.41, -180.00) 
-0.95 (1.01, -128.21) 0.05 (1.39. -178.35) 
-0.90 (0.36, -106.06) 0.10 (1.36, -177.91) 
-0.85 (0.15, 90.19) 0.15 (1.33, -177.14) 
-0.80 (0.55, 103.27) 0.20 (1.31, -176.52) 
-0.75 (0.86, 114.23) 0.25 (1.28, -176.04) 
-0.70 (1.09, 123.64) 0.30 (1.26. -175.67) 
-0.65 (1.27, 131.82) 0.35 (1.24, -175.39) 
-0.60 (1.39, 138.99) 0.40 a.22. -175.20) 
-0.55 (1.48. 145.31) 0.45 (1.21. -175.07) 
-0.50 (1.53, 150.39) 0.50 (1.19, -175.00) 
-0.45 (1.57, 155.82) 0.55 (1.13. -174.98) 
-0.40 (1.58, 160.17) 0.60 (1.16, -174.99) 
-0.35 (1.58, 164.01) 0.65 (1.15, -175.03) 
-0.30 (1.57, 167.38) 0.70 (1.14, -175.09) 
-0.25 (1.55, 170.32) 0.75 (1.13, -175.17) 
-0.20 (1.53, 172.39) 0.30 (1.12, -1-5.27) 
-0.13 (1.50, 175.10) 0.35 (1.12, -175.37) 
-0.10 (1.47, 177.01) 0.90 (1.11. -175.-3) 
-0.03 (1.44. 178.63) 0.95 (1.10, -175.59) 

1.00 (1.10, -175.70) 

^2j^^^^*5p.- VE - c*s-_ 



TABLE B.2   (Continued) 

Valu«s of C   (toe)   for icb • 3.2000 

120 

m 
X C+(lat) X K [Vac) 

-1.00 (1.84, 175.25) 0.00 (1.41, -178.33) 
-0.95 (0.99, -127.64) 0.05 (1.38, -177.26) 
-0.90 (0.32, -105.11) 0.10 (1.35, -176.40) 
-0.35 (0.21, 91.41) 0.15 (1.32, -175.71) 
-0.30 (0.61, 104.70) 0.20 (1.30, -175.18) 
-0.75 (0.93, 115.83) 0.25 (1.27, -174.78) 
-0.70 (1.16, 125.36) 0.30 (1.25. -174.49) 
-0.65 (1.33, 133.65) 0.35 (1.23, -174.29) 
-0.60 (1.45, 140.90) 0.40 (1.21. -174.18) 
-0.55 (1.53, 147.28) 0.45 (1.19, -174.12) 
-0.50 (1.58, 1S2.90) 0.50 (1.13, -174.12) 
-0.45 (1.61, 157.85) 0.55 (1.17, -174.15) 
-0.40 (1.52, 162.22) 0.60 (1.15, -174.22) 
-0.35 (1.61, 166.04) 0.65 (1.14, -174.32) 
-0.30 (1.59, 169.39) 0.70 (1.13, -174.43) 
-0.25 (1.57, 172.30) 0.75 (1.12, -174.55) 
-0.20 (1.54, 174.82) 0.30 (1.11, -174.69) 
-0.15 (1.51, 176.99) 0.35 (1.11. -174.33) 
-0.10 (1.48, 178.33) 0.90 (1.10, -174.97) 
-0.05 (1.45, -179.62) 0.95 (1.09, -175.11) 

1.00 (1.C9, -175.25) 

Values of G+(luc) for !&b • 4.0 

X G+(kx) X K (kx) 

-1.00 (2.14, 173.44) 0.00 (1.14, -155.41) 
-0.95 (0.68, -115.37) 0.05 (1.10, -156.33) 
-0.90 (0.37, 92.56) 0.10 (1.06, -157.46) 
-0.35 (1.10, 112.93) 0.15 (1.02. -158.73) 
-0.80 (1.59, 129.21) 0.20 (1.00, -160.06) 
-0.75 (1.89, 142.73) 0.25 (0.93, -161.41) 
-0.70 (2.07, 154.19) 0.30 (0.96, -162.73) 
-0.65 (2.15, 164.00) 0.35 (0.95, -163.99) 
-0.60 (2.15, 172.42) 0.40 (0.94, -165.18) 
-0.55 (2.11, 179.64) 0.43 (0.94, -166.29) 
-0.50 (2.04, -174.22) 0.50 (0.93, -167.31) 
-0.45 (1.94, -169.04) 0.55 (0.93, -168.23) 
-0.40 (1.84, -164.77) 0.60 (0.93. -169.07) 
-0.35 (1.73, -161.32) 0.65 (0.93, -169.34) 
-0.30 (1.62, -158.65) 0.70 (0.93, -170.52) 
-0.25 (1.52. -156.69) 0.75 (0.93, -171.14) 
-0.20 (1.43. -155.39) 0.30 (0.93, -171.70) 
-0.15 (1.34, -154.58) 0.35 (0.93, -172.20) 
-O.10 (1.27. -154.50) 0.90 (0.93, -172.66) 
-O.05 (1.20, -154.77) 0.95 (0.93. -173.07) 

1.00 (0.94, -173.44) 
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TABLE B.2   (Continued) 

Values of 8. (feat)   for kb » 5.0 

„ 
X G

+ 
Ckx) X <v< tat) 

-1.00 (1.96, -170.85) 0.00 (0.75, 143.24) 
-0.95 (0.02, -80.95) 0.05 (0.81, 146.42) 
-0.90 (1.12, 134.96) 0.10 (0.35, 149.28) 
-0.85 (1.72, 161.53) 0.15 (0.88, 151.35) 
-0.30 (1.95, -176.90) 0.20 (0.91, 154.15) 
-0.75 (1.94, -158.66) 0.25 (0.94, 156.21) 
-0.70 (1.79, -142.84) 0.30 (0.95, 158.06) 
-0.65 (1.57, -128.94) 0.35 (0.97, 159.71) 
-0.60 (1.30, -U6.59) 0.40 (0.98, 161.20) 
-0.55 (1.02, -105.55) 0.45 (0.99, 162.53) 
-0.50 (0.75, -95.63) 0.30 (1.00, 163.73) 
-0.45 (0.49, -86.70) 0.55 (1.00, 164.80) 
-0.40 (0.26, -78.64) 0.60 (1.01, 165.77) 
-0.35 (0.06, -71.36) 0.65 (1.01, 166.64) 
-0.30 (0.12, 115.22) 0.70 U.01, 167.43) 
-0.25 (0.27, 121.17) 0.75 (1.02, 168.14) 
-0.20 (0.41, 126.54) 0.80 (1.02, 168.79) 
-0.15 (0.52, 131.39) 0.35 (1.02, 169.38) 
-0.10 (0.61, 135.76) 0.90 (1.02, 169.92) 
-0.05 (0.69, 139.70) 0.35 (1.02. iro.ii) 

1.00 (1.02, 170.35) 

Valu«» of GAlat)   tat kb - 6.0 

X K kx) X K (tat) 

-1.00 (1.84, 178.59) 0.00 (1.39, 171.39) 
-0.95 (0.54, 105.91) 0.05 (1.36, 173.94) 
-0.90 (1.57, 148.39) 0.10 (1.33, 175.62) 
-0.35 (1.31, 179.63) 0.15 (1.31, 176.98) 
-0.30 (1.61. -155.21) 0.20 (1.23, 178.07) 
-0.75 (1.21, -134.08) 0.25 (1.26. 178.93) 
-0.70 (0.74, -115.94) ;.30 (1.24, 179.61) 
-0.65 (0.27, -100.15) 0.35 (1.22, -179.87) 
-0.60 (0.15, 93.70) 0.40 (1.20, -179.47) 
-0.55 (0.51, 105.90) 0.45 (1.19, -179.17) 
-0.50 (0.79, 116.67) 0.50 (1.17. -173.95) 
-0.45 (1.02, 126.17) 0.55 (1.16, -178.79) 
-0.40 (1.18, 134.54) 0.60 (1.15, -178.68) 
-0.35 (1.29, 141.90) 0.65 (1.14, -178.60) 
-0.30 (1.37, 148.33) o.ro (1.13, -173.56) 
-0.25 (1.41, 153.92) 0.75 (1.12. -178.53) 
-0.20 (1.43, 158.76) 0.30 (1.11. -173.53) 
-0.15 (1.43, 162.90) 0.35 (1.11, -178.53) 
-0.10 (1.43. 166.43) 0.90 (1.10, -178.54) 
-0.05 (1.41, 168.40) 0.95 (1.09, -173.36) 

1.00 (1.09, -173.59) 
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TABLE B.2   (Continued) 

Value» of G+(luc)   for !cb - 6.2832 

X G
+ 

(lot) X <V lac) 

-1.00 (1.38, 176.73) 0.00 (1.41, -180.00) 
-0.95 (0.71, 109.01) 0.05 (1.37, -178.46) 
-0.90 (1.71, 153.38) 0.10 (1.33, -177.30) 
-0.35 (1.33, -174.04) 0.15 (1.30, -176.46) 
-0.30 (1.49. -147.33) 0.20 (1.27, -175.87) 
-0.75 (0.97, -125.87) 0.25 (1.24, -175.48) 
-0.70 (0.41, -107.05) 0.30 (1.21, -175.26) 
-0.65 (0.11, 39.28) 0.35 (1.19, -175.15) 
-0.60 (0.55, 103.55) 0.40 (1.17, -175.14) 
-0.55 (0.90, 116.07) 0.45 (1.15, -175.19) 
-0.50 (1.17. 127.05) 0.50 (1.14. -175.23) 
-0.45 (1.36, 136.68) 0.55 (1.13, -175.41) 
-0.40 (1.48, 145.08) 0.60 (1.12, -175.55) 
-0.35 (1.55, 152.38) 0.65 (l.U, -175.70) 
-0.30 (1.58. 158.68) 0.70 (1.10. -175.36) 
-0.25 (1.58, 164.05) 0.75 (1.09, -176.01) 
-0.20 (1.57, 168.59) 0.30 (1.08, -176.17) 
-0.15 (1.54, 172.38) 0.35 (1.08, -176.32) 
-a. 10 (2.50, 175.50) 0.90 (1.07, -176.46) 
-0.05 (1.46, 178.01) 0.95 (1.07, -176.60) 

1.00 a.07, -176.73) 
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V«lu«i of G,(kx)   for kb r.O 

X K (tat) X G + (kx) 

-1.00 (2.06, 174.39) 0.00 (1.23, -159.46) 
-0.95 (1.19, 119.35) 0.05 (1.17, -160.06) 
-0.90 (2.05, 169.13) 0.10 (1.12, -161.01) 
-0.85 (1.76, -154.76) 0.15 (1.08, -162.18) 
-0.30 (1.01, -125.77) 0.20 (1.05, -163.45) 
-0.75 (0.17, -101.56) 0.25 (1.02, -164.74) 
-0.70 (0.53, 99.10) 0.30 (1.01, -165.98) 
-0.65 (1.18, 116.93) 0.35 (0.99, -167.15) 
-0.60 (1.60, 132.39) 0.40 (0.98, -168.23) 
-0.55 (1.87, 145.30) 0.45 (0.98, -169.20) 
-0.50 (2.00, 157.41) 0.50 (0.97, -170.07) 
-0.45 (2.04, 167.37) 0.55 (0.97, -170.34) 
-0.40 (2.01, 175.32) 0.50 (0.97, -171.53) 
-0.35 (1.94, -177.14) 0.65 (0.97, -172.14) 
-0.30 (1.34, -171.42) 0.70 (0.97, -172.68) 
-0.25 01.72, -166.93) 0.75 (0.97, -173.16) 
-0.20 (1.61, -163.53) 0.30 (0.97, -173.58) 
-0.15 (1.49, -161.29) 0.35 (0.97, -173.97) 
-3.10 (1.39, -159.93) 0.90 (0.97, -174.31) 
-0.05 (1.30, -159.37) 0.95 (0.97, -1"4.61) 

1.00 (0.97, -174.39) 

£3»>^t 
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