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Abstract

)e-present an interval-based temporal logic that permits the rigorous specifica-

tion of a variety of hardware components and facilitates describing properties such
as correctness of implementation. Conceptual levels of circuit operation ranging
from detailed quantitative timing and signal propagation up to functional behavior
are integrated in a unified way.

After giving some motivation for reasoning about hardware, we present the
propositional and first-order syntax and semantics of the temporal logic. In addition
we illustrate techniques for describing signal transitions as well as for formally
specifying and comparing a number of delay models. Throughout the discussion,
the formalism provides a means for examining such concepts as device equivalence
and internal states.
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§1 Introduction

Computer systems continue to grow in complexity and the distinctions between
hardware and software keep on blurring. Out of this has come an increasing
awareness of the need for behavioral models suited for specifying and reasoning
about both digital devices and programs. Contemporary hardware description
languages (for example 11,22,29]) are not sufficient because of various conceptual
limitations:

" Most such tools are intended much more for simulation than for math-
ematically sound reasoning about digital systems.

" Difficulties arise in developing circuit specifications that out of necessity
must refer to different levels of behavioral abstraction.

" Existing formal tools for such languages are in general too restrictive to
deal with the inherent parallelism of circuits.

The logic presented in this paper overcomes these problems and unifies in a
single notation digital circuit behavior that is generally described by means of the
following techniques:

" Register transfer operations
" Flowgraphs and transition tables
" Tables of functions
" Timing diagrams
" Schematics and block diagrams

Using the formalism, we can describe and reason about qualitative and quantita-
tive properties of signal stability, delay and other fundamental aspects of circuit -

operation.

We develop an extension of linear-time temporal logic (18,251 based on intervals.
The behavior of programs and hardware devices can often be decomposed int
successively smaller periods or intervals of activity. These intervals provide a - I

( convenient framework for introducing quantitative timing details. State transitions
can be characterized by properties relating the initial and final values of variablq
over intervals of time. In fact, we feel that interval-based temporal logic provid
a sufficient basis for directly describing a wide range of devices and programs. Fa

our purposes, the distinctions made in dynamic logic 110,24] and processm logic [6].,--
between programs and propositions seem unnecessary.
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The temporal logic's applicability is not limited to the goals of computer-

misted verification and synthesis of circuits. This type of notation, with ap-
propriate "syntactic sugar," can provide a fundamental and rigorous basis for com-
municating, reasoning or teaching about the behavior of digital devices, computer
programs and other discrete systems. Moszkowski 120,211 has applied it to describ-
ing and comparing devices ranging from delay elements up to a clocked multiplier
and the Am2901 ALU bit slice developed by Advanced Micro Devices, Inc. Temporal
logic also provides a basic framework for exploring the computational complexity
of reasoning about time. Simulation-based languages can perhaps use such a for-
malism as a vehicle for describing the intended semantics of delays and other fea-
tures. Manna and Moszkowski [17] show how temporal logic can itself serve as a
programming language.

§2 Propositional Temporal Logic with Intervals

We first present the propositional part of the temporal logic; this provides a t
basis for the first-order part.

Syntax

The propositional temporal logic consists of propositional logic with the addi-
tion of modal constructs to reason about intervals of time.

Formulas are built inductively out of the following:

e Propositional variables: P,Q,...

o Logical connectives: -w and W1 A W2, where w, to1 and W02 are formulas.

o Next: 0 w (read "next w"), where to is a formula.

o Semicolon: w1;W2 (read "to1 semicolon W2" or "101 followed by tw2"), where w,

and w02 are formulas.

Models

Our logic can be viewed as linear-time temporal logic with the addition of
the "chop" operator of process logic (6,111. The truth of variables depends not
on states but on intervals. A model is a pair (E, M) consisting of a set of states
E -s t,... together with an interpretation M mapping each propositional variable

3



P and nonempty interval so... a. E E+ to a some truth value M..., P|. In what
follows, we assume ' is fixed.

The length of an interval so... 8, is n. An interval consisting a single state has
length 0. It is possible to permit infinite intervals although for simplicity we will
omit them here. An interval can also be thought of as the sequence of states of a
computation. In the language of Chandra et al. [6], our logic is "non-local" with
intervals corresponding to "paths."

Interpretation of Formulas

We now extend the meaning function .4 to arbitrary formulas:

* ...... ~ [wi = true iff [wo..., Ito = false
The formula -'w is true in an interval iff w is false.

• M I.. A W^2J = true if M.....Jwil = true and .,......JW2j = true
The conjunction Wt A W2 is true in So... sn iff wi and W2 are both true.

* .M.o....jJO wl = true iff n > 1 and .M[,....,,wI = true
The formula 0 w is true in an interval 8o0... S, iff o is true in the subinterval
8 on. If the original interval has length 0, then 0 w is false.

S.M,.....Jw1;w2d = true if .M......,1wi+l = true and .M,...,.I o2 = true,
for some i, 0 < i _5 n.
Given an interval 8o... s,,, the formula w; w2 is true if there is at least one way
to divide the interval into two adjacent subintervals so... sa and 8... n such that
the formula w, is true in the first one, so... sa, and the formula 2 is true in the
second, ... .

A formula w is satisfied by a pair (.M, 8o... a,) iff

[ ] = true

This is denoted as follows:
(.M, so.. s.) I-w.

If all pairs of M and 80... s, satisfy u; then w is valid, written io o.

§3 Expressing Temporal Concepts in the Propositional Logic
*e

We illustrate the temporal logic's descriptive power by giving a variety of useful
temporal concepts. The connectives and A clearly suffice to express other basic
logical operators such as v and -.

4



Examining Subintervals
For a formula wo and an interval so.. •s. the construct w is true if w is true

in at least one subinterval si.... sj contained within a0... s. and possibly the entire
interval so.... itself. Note that the "a" in * simply stands for "any" and is not
a variable.

.. w= true iff [.w....ItI = true, for some 0 _< i -< " -< n

Similarly, the formula 0 to is true if the formula to itself is true in all subintervals
of so... a.:

M',o...,. tv = true if [M,,...iItuI = true, for all 0 _< i _< j -n

These constructs can be expressed as follows:

to - (true; W; true)

lawo --- -W

Because semicolon is associative, the definition of 0 is unambiguous. Together,
* and 0 fulfill all the axioms of the modal system S4 1121, with * interpreted as
possibly and [1 as necessarily.

Initial and Terminal Subintervals

For a given interval 8o... s,n the operators 4> and M are similar to * and 0
but only look at initial subintervals of the form so... si for i _< n. We can express

w uo and ] w, as shown below:

Ow (w; true)

law -- -* -Wt

For example, the formula W(P A Q) is true on- an interval if P and Q are both true
in all initial subintervals. The connectives 0 and ED refer to terminal subintervals
of the form ... s,, and are expressed as follows:

Ow m (true; w)

Both pairs of operators satisfy the axioms of 84. The operators 0 and M correspond

directly to 0 and 0 in linear-time temporal logic 1181.

5



The Yields Operator

It is often desirable to say that within an interval 80.* B. whenever some
formula wv1 is true in any initial subinterval s...* si, then another formula WJ2 is
true in the corresponding terminal interval Si ... an for any i, 0 :5 i :5 n. We say
that W1 Yields W2 and denote this by the formula W1 -- ;b W2:

Mao... --a-- W21 =a true
if .e.. 4 tui reimle .. ,f~ re for all 0 5iSn

The yields operator can be viewed as ensuring that no counterexample of the form
WI~; -W2 exists in the interval:

This is similar to interpreting the implication ul :D W2 as the formula -(Uh A -W2).

Temporal Length

The construct empty checks whether an interval has length 0:

-Ma... .. [emrpty] = true iff n = 0

Similarly, the construct skip checks whether the interval's length is exactly 1:

18kp]-=true iff n =I1

These operators are expressible as shown below:

empty - 0 true-

skip 0 empty

Combinations of the operators skip and semicolon can be used to test for intervals

of some fixed length. For example, the formula

skip; skip; skip

isa true exactly for intervals of length 3. Alternatively, the connective next suffices:

F~ 0 OQ empty



Initial and Final States

The construct beg w tests if a formula w is true in an interval's starting state:

0.. b * -- M

The connective beg can be expressed as follows:

beg Wo - 'O(emptY A W)

This checks that wo holds for an initial subinterval of length 0, i.e., at the interval's
first state. By analogy, the final state can be examined by the operator fin w:

fin - >(emptY A w)

This checks that w holds for a terminal subinterval of length 0, i.e., at the interval's
final state.

§4 Some Complexity Results

We prove that satisfiability for arbitrary propositional formulas is undecidable
but demonstrate the decidability of a useful subset.

Theorem: Satisfiability for propositional temporal logic with semicolon is undecid-
able.
Chandra et al. 161 show that satisfiability for process logic with an operator called
chop is undecidable. Our semicolon construct acts like chop and therefore our
theorem strengthens their result since we do not require programs in order to obtain
undecidability.

If we restrict all propositional variables to be local (that is, each propositional
variable P is true of an interval so... a,, iff P is true of the first state so), then we
get a decidable logic:

Theorem: Local temporal logic with semicolon has a decision procedure that is
elementary in the depth of the operators -' and semicolon.

This is the best we can do since Kozen (private communication) has shown that
the validity problem for local temporal logic with semicolon is nonelementary. The
proofs of these theorems will appear in the full paper.

7

~ -~ -_



£ §5 First-Order Temporal Logic with Intervals

We now give the syntax and semantics of the first-order temporal logic. Expressions
and formulas are built inductively as follows:

Syntax of Expressions

* Individual variables: U,V,...

* Functions:f(e1 ,..., ej), where k ;> 0 and el,..., ek are expressions. In practice,
we use functions such as + and v (bit-or). Constants like 0 and 1 are treated as
zero-place functions.

Syntax of Formulas

* Predicates: p(el,..., e,), where k 2: 0 and el,..., ek are expressions. Predicates
include :_ and other basic relations.

* Equality: el=e2 , where el and e2 are expressions.

* Logical connectives: -wto and Wl A tA2 , where w, wt and t 2 are formulas.

* Universal quantification: VV. w, where V is a variable and wo is a formula.

# Next: 0 tw, where wo is a formula.

• Semicolon: W1; W02, where w01 and W2 are formulas.

Models

A model consists of a set of states E = s, t,... and domain D together with
an interpretation M mapping each variable V and interval so... s, to some value
)4,o...,. IV] in D. Furthermore, each function and predicate symbol is given some
meaning. Each k-place function symbol f has an interpretation M if I which is a
function mapping k elements in D to a single value:

Interpretations of predicate symbols are similar but map to truth values:

M I[P E (Dk + {true,jalse})

The semantics given here keeps the interpretations of function and predicate sym-
bola independent of intervals and thus time-invariant. The semantics can however
be extended to take into account'the dynamic behavior of parameters.

8
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Interpretation of Expressions and Formulas

We now extend the interpretation .M to arbitrary expressions and formulas:

*M so ... nIf (l ... ,iek)l = - fIG o.S e e)
The interpretation of the function symbol f is applied to the interpretations of
el, ... ,ek.

*-Mao0..... Jp(e1J. -, ek)] = p](.O...aRJely.... M&O ... a. JekD

* lM0 .. Jei =e2l = true iff la..aei]J = .M 0 .. Je2 j

* ~ [tuJJ = true iff M.O..... jJwJJ = false

*J~ A W2]J = true iff -M.o... JW1JI = M...1W21 = true

*M....... J[VV. w]J = true iff K~f 0...jw]J = true,
for every interpretation My4 that agrees with .M on the assignments to all variables,
function and predicate symbols except possibly the variable V.

*~~1 M8 .. jwD = true iff n i. and .M-1 ....,jIWl= true

* .80 .. Iwi; w2D = true iff [w = true and IM,.aW2D = true,
for some i, 0 :5 i :5 n.

Satisfiability and validity of formulas are as in the propositional case.

All the other temporal operators mentioned earlier are expressible as before.
In addition, existential quantification can be introduced as the dual of universal
quantification:

3V.tv = V.

Values in the Data Domain

It is sufficient for our purposes that the data domain D contain natural numbers
and nested finite tuples. Both 0 and 1 serve as numbers and bits, with 0 standing
for low voltage and 1 standing for high voltage. The data domain does not contain
any intermediate voltages or "undefined" values

The following are samiple values:

*The approach taken in Moskowski (201 inclades undefined values. However, their omission results
in no loss of generality and somewhat simplifles the underlying logic.
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We adapt the convention that an n-element tuple has subscripts ranging from 0 on
the left to n - 1 on the right.

It is assumed that .4 contains standard interpretations of function and predi-
cate symbols such as +, :5 and v (bit-or). We also include conditional expres-
sions and conventional operators for constructing, subscripting and determining the
length of tuples.

Naming Conventions of Variables

Within an interpretation .4, a variable's values can differ from interval to
interval. For convenience, we will use naming conventions to distinguish certain
types of dynamic behavior.

* General variables: A, M, X,...
These can vary in value from interval to interval and are also kn, as non-local,
path or interval variables.

* Signal variables: A, N, X,...
The value of such a variable in an interval 80... s, depends sol.t on the initial
state so:

1a M O [A]

Thus, signals can change from state to state and are a special case of general
variables. Signals can also be referred to as local or state variables.

* Static variables: a, n, z,...
A static variable a has a single interpretation M ja]j, independent of any particular
interval:

jai=,Mt,...ta

All static variables are signals and are often called global or frame variables.

In general, variables such as A, B and c range over all elements of the data
domain D. On the other hand, J, K and n range over natural numbers. The
variables X, Y and z always equal one of the bit values 0 and 1. If desired, the
naming style suggested here can also be used in the propositional logic.

§6 Some First-Order Temporal Concepts

Within the framework of first-order temporal logic, we can explore a variety
of qualitative and quantitative timing issues. The constructs given below are useful
for describing and reasoning about circuits.

10



Temporal Assignment

The formula A -, B is true for an interval if the signal A's initial value equals
B's final value:

A B -df Vc. [beg(A = c) D fin(B = c)]

We call this temporal assignment. Unlike in conventional programming languages,
it is perfectly acceptable to have an arbitrary expression on the receiving end of the
arrow.

Properties:

o (A-+ B) D[(A)-+ f(B)]
If A is assigned to B, then any time-invariant function application f(A) is passed
to f(B).

[( Z Z); (- Z ,Z)] D (Z --+ Z)

If a bit signal is twice complemented, it ends up with its original value.

Temporal Equality

Two signals A and B are temporally equal in an interval if they have the same
values in all states. This is written A B B and differs from constructs for initial
and terminal equality, which only examine signals' values at the extremes of the
interval:

A ;, B def [B(A = L)

Properties:

o= [A ;. BI D [.f(A) s.5f (B)]

If A temporally equals B, then 1(A) temporally equals f(B).

[(A,B) ;z (A',B')] - (A. :A' A B B')
The pair (A, B) temporally equals (A', B') exactly if the signal A temporally equals
A' and B temporally equals B'.

Temporal Stability

A signal A is stable if it has a fixed value. The notation used is stb .A and can
be expressed as shown below:

8tb A =def 3b. (A -b)

It follows from this that every static variable is stable.

11

.. . .. .... - * --- , .• .. , . .. . . -,. .+ . ... ,a



The Temporal Function Len

Quantitative timing properties are handled by a 0-place temporal function en
whose value for any interval so... a,, equals the length n:

Ezamples

Concept Formula
The signal A is stable and the interval has at least m + n units stb A A Len > m + n
In some subinterval of length > m, X is stable 0([len _ m A stb X

Blocking

It is useful to specify that as long as a signal A remains stable, so does another
signal B. We say that A blocks B and write this as A 61k B. The predicate bk can
be expressed using the temporal formula

A bk B -def O(stb A D stb B)

The predicate A bk B can be extended to allow for quantitative timing. When
describing the behavior of digital circuits, it is often useful to express that in any
initial interval where A remains stable up to within the last m units of time, B is
stable throughout:

A blk m B -def W[(stb A; ten _ m) : stb B]

This modification has utility in situations where B is known to be slow in responding
to changes in A.

Initial and Terminal Stability

The predicate istbm A is true for an interval 80... s,, if the signal A is stable in
the initial states so... ,,. The next definition has this meaning:

istb' A *ef 4)(stbA A Len = m)

Note that the formula is false on an interval of length less than m. By analogy,
tstb' A is true if A ends up stable for at least m units of time.

12



Rising and Falling Signals

A rising bit signal can be described 'v the predicate TX:

tX =d.f [(X - 0); skip; (X Pe 1)]

This says that X is 0 for a while and then jumps to 1. The gap of quantum length
represented by the test skip is necessary here since a signal cannot be 0 and 1 at
the same instant. Falling signals are analogously described by the construct 4X:

IX -d.f [(X $ 1); skip; (X - 0)]

These operators can be extended to include quantitative information specifying
minimum periods of stability before and after the transitions. For example, timing
details can be added to the operator T:

m"X =def [(X ,0 A Len _ i); skip; (X 1 A Len> n)]

This can also be expressed as shown below:

1T"X = (TX A iatbm X A tstb X)

Thus, the extended form of T can be reduced to the original one with separate
details concerning initial and terminal stability.

A negative pulse with quantitative information can be described as shown
below:

[(X S 1 A len >_ 1); skip;
(X 0 A Len _2 m); skip; (X -1 A Len 2 n)]

These constructs can be further modified to provide for noninstantaneous rise
and fall times.

Smoothness

A bit signal X is smooth if it is either stable or has a single transition. The
following illustrates one way to express smoothness:

8m X = def (atb X v TX v IX)

Since digital devices generally require clock inputs to be smooth, it is sometimes
important to ensure that a signal has this property.

13



t 7

§7 Delays and Combinational Elements

Delay is a fundamental phenomenon in dynamic systems and an examination
of it touches upon basic issues ranging from feedback and parallelism to implemen-
tation and internal device states. Such concepts also come into play in descriptions
of more complicated devices. In addition, a key design decision in building any
hardware simulator centers around the treatment of delay (see, for example, Breuer
and Friedman [5]). For these and other reasons, it is worth taking a detailed look
at various models of signal propagation.

Unit Delay

One of the simplest and most important types of delay elements can modeled
as having the following structure:

A- B

Here A is the input signal and B is the associated output. The following
statement uses intervals to characterize the desired behavior:

In every subinterval of length ezactly one unit, the initial value of
the input A equals the final value of the output B.

The next predicate del formalizes this:

A del B -=de [iJ[(len = 1) D(A -B)]

Property:

(A del A) = 8tb A
A signal is fed back to itself iff it is stable.

Transport Delay

It is natural to extend the predicate del to cover delays over m-unit intervals:

A del' B -d.r r-(len = m [A -*B)

Breuer and Friedman 151 refer to this as transport delay.

14



Properties:

Adel°B At i B
Zero delay is equivalent to temporal equality.

i. (A del ' B A B del" C) D A delm+ n C

Delay is cumulative.

(A1,A2) del' (B1,B2) (Al del' B1 A A2 del"' B2)
Delay between pairs is equivalent to component-wise delay. This generalizes to
tuples of arbitrary length.

Functional Delay

Often, one signal receives a delayed function of another. The following ex-
amples illustrate this and are based on the predicate del although other delay models
can be used.

Ezamples

Concept Formula
X keeps on being complemented (-X) del X
B either accepts A or itself, depending on X [if (X = 1) then A else B] del B

Properties:

SA del' B D 1(A) del' f(B)
If A has a delay to B then it follows that f(A) is delayed to f(B).

o [f(A) del' B A g(B) del" C] D g(f(A)) del' +'" C
Composition applies.

[(-X) delm Y A (-Y) del" Z] D X del"' + " Z
Two inverters cancel.

(I + 1) del I D [(I + len) --. I]
If the variable I keeps incrementing by 1, its final value is greater than its initial
value by the length of the interval.

16



Delay Based on Shift Rtegister

* A shift register R storing m + 1 values can be specified as follows:

RIO] del R~l] A *"A R~m - 11 del Riml

Over each unit of time, the contents of R shift right by one element. That is,
the value of RIO] is passed to Rill) and so forth. This description is more formally
expressed by means of quantification:

Vi~ E [0, m - 11. (RfiJ del R[i + 1])

The next formula has the same meaning but is more concise:

R[O to m- 11 del RII torn)

The following property shows how to achieve an rn-unit delay by means of such
a shift register:

s- R(Otom-lldelR(lcm to ) R(Ojdelm R[ml W*

This suggests an implementation of A'del' B of the form A sAdel' B:

Ashdel' B =-d.f (A szt-RO1 A R[m -B A R[Otom - 11del R11om])

Here, the yalue of A is fed into RIOJ and B receives the value Rim]. The correctness
of this implementation is given by the following property:

em ahdel7nB :) A del'" B

We can localize R in the formula A ahdel' B by defining a variant A Ahdel' B
which existentially quantifies over R

A Ahdel' B Mde 3R. (A .Adel' B)

The register in assumed to exist without being externally visible to an observer.
The quantifier's effect on scoping is similar to that of a bepin-block in a conven-
tional block-structured programming language. We call A sAdl' B an external



specification of the implementation. In fact, this is logically equivalent to the basic
delay predicate A del'm B as the next property demonstrates:

A shdelt B - A del ' B

The proof that ehdel implies del follows from the implementation theorem (.)
given above. The converse requires demonstrating that some R exists. Perhaps the
easiest way to do this is by direct construction. At each instant of time, the values
of the m + 1 elements of R can be those of the next m + 1 values of B in appropriate
order:

R[ij ;z0 m -4 B, for 0 -5 i < m

The output value Rim] always equals the expression 00 B, which is defined to be
B's current value. Similarly, R[01 always equals O"' B, that is, the value B will
have m units later. This technique works even if the interval has length less than
M.

Variable Transport Delay

A batch of delay elements may have varying characteristics although each
individual device is rather fixed in its timing behavior. The predicate A vardel"', B
specifies that A's value is propagated to B by transport delay with some uncertain
factor between m and n:

Avardel" B -d.f 3i E[inj.(A del' B)

Delay with Sampling

Digital circuits often require that inputs remain stable and be sampled for some
minimum amount of time in order to ensure proper device operation. The delay
model A sadel B has this characteristic:

A ,adel m B =d.f 11((tbA A ten _ m) D fin(A = B)J

Here the input A must be stable at least m units of time for the output B to equal
A. Behavior during changes in A is left unspecified. The properties below illustrate
two other ways of expressing sade. We present them to demonstrate other possible
styles:

I.A sadelf B -m M ttb m A :) fin(A =f B))

A sadel"' B w [stb"'A A beg(A =fiB)]

17



Properties:

An del' B A AaadeL' B
Basic delay implements sampling delay.

on A eadel' B =-(tstbm A -~ (beg(A =B) A A bA Bl)
Once the device stabilizes, the input A blocks the output B.

The predicate eadel can be extended to associate some factor with the blocking
of B by A

A 8adel'm " B - .f (tatb6' A [.' beg(A = B) A A bik" El))

In a sense, m is the maximum delay and n is the minimum delay.

An Equivalent Delay Model with an Internal State

Arelated delay model A utde1l"" B is based on a bit flag X that is set to 1 after
the input A has been held stable m units. Whenever X is 1, the input A equals the
output B and blocks X, which in turn blocks B by the factor nt:

A tdeL~" B =dtf

6I(Iatb A A ten ?: m] :) fin(X = 1))

A I9(beg(X =1) D (beg(A =B) A A blk X A XbAln BI)

In the manner described earlier, we internalize X by existentially quantifying over
it:

A atde"' B -=3X. (A eideLx"B

This external form is in fact logically equivalent to A sadelt "" B:

inA stdr'," B =-A 8adeLman B

The following construction for X can be used:

X seitbeg(A = B) A AbAn B] then IelseO0

e There are a variety of specifications that use different internal signals such as

X and yet are externally equivalent.



Delay with Separate Propagation Times for 0 and 1

Sometimes it is important to distinguish between the propagation times for 0
and 1. The following variant of sadel does this by having separate timing values
for the two cozes:

A sadel01'"I B -d

[@([A 0 A ten m l i n(A = B))
A M(fA:1 A ten n] fin(A = B))

Smooth Delay Elements

It is possible to specify that between times when the delay element is stable, if
the input changes smoothly, then so does the output. We call such a device a smooth
delay element. This type of delay has utility in systems which must propagate clock
signals without distortion. Here is a predicate based on the earlier specification
8tdel:

A mdel "' B =det
A stdel'" B

A tr((beg(X--1) A fin(X = 1) A 8mAl .D smB)

The external form quantifies over X:

A smdel " 'n B =d.f X. (A Xmdelc'" B)

Delay with Tolerance to Noise

Sometimes it is important to consider the affects of transient noise during signal
changes. A signal A is almost smooth with factor I if A is continuously stable all
but at most I contiguous units of time:

sib A; (len <_ 1); sib A

The delay model toldel is similar to 8mdel but has an additional timing coefficient I
for showing how almost smooth input changes result in smooth output transitions:

A toldelt ' n, B =dot
A stdelt'" B

A W[(bcg(X --1) A flR(X -1) A [stbA;(len S 1);sib A)) D mB]
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From this we can obtain the external form

A toldelm',", B

The predicate smdel is a special case of toldel with a noise tolerance of 1 time unit:

t A smdelm'," B =_ A toldel " "nl B

Gates with Input and Output Delays

One might specify an and-gate with both input and output delays as follows:

(X,X')8aand','"Y =d.f 3Z, Z'.[XoadelmZ A X'sadelm Z' A (Z A Z')sadel"Y]

Here a delay exists from the input X to an internal signal Z and another delay
occurs from X' to Z'. The bit-and of Z and Z' is propagated to Y. The input
delays are given by m and the output one by n. If we choose to ignore input delays,
the model reduces to a single occurrence of eadel:

o (X, X') 8aand0 '" = (X A X') 8adel" Y

If the internal propagation is modeled by transport delay, things are even
simpler. Here is an and-gate specified in this manner:

(X,X') tand" n" Y -det 3Z, Z1. [X del ' Z A X' del' Z' A (Z A Z') del" Y]

The predicate tand simplifies even if internal input delay is not ignored:

o (X, X') tand"'" Y = (X A X') delm+n y

§8 Simple Latch

A latch is a simple memory element for storing and maintaining a single bit of
data. The two inputs S and R determine what value is stored with S standing for
Set and R standing for Reset. When the latch is stable, the outputs Q and q are
complements. Note that the bar in "!" is part of the name and not an operator..
Such elements are among the simplest storage devices that can be constructed
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out of TTL gates and provide a basis for building counters and other sequential
components. Here is one way to specify such a latch:

(S,R) latChm C(Q ) def
61l[(S SZ: 0 A R ;t I A ten a_ m)

,O-(beg[Q = 0 A 0 = 11 A S blkn (Q, ))

A M [(S Sl^AR O st en 2:m)

-->(beg[Q = 1 A Jq = 01 A R blk n Q,

For example, the specification states that after S is 1 and R is 0 for at least
m units of time, Q equals 1, q equals 0 and R blocks both with factor n. That
is, the outputs are stable as long as R remains "inactive" at 0, independent of S's
behavior. A logically equivalent specification based on an internal state is given in
the full paper.

A latch can be constructed out of two nor-gates that feed back to one another:

S[-'(R v Q) sadelm", Q A -(S v Q) sadelm"', A n_]
D [(S, R) latch 2m' (Q, Q)]

The gates' blocking factor n must be nonzero in order to achieve a feedback loop
that maintains a stored value.

§9 Some Variants of Temporal Logic

There are a variety of operators and concepts that can be added to the temporal
logic. We discuss a few here.

Iteration

The logic can be generalized to include iteration. In the proposition case, this
involves adding the Kleene closure of semicolon. This does not affect our basic
complexity results. Loop operators such as while can be expressed by means of such
a construct.

Ignoring Intervals

The concepts presented here can generally be expressed in linear-tirre temporal
logic [18) with 0, 0, * and U. The satisfiability of propositional formulas for such
a logic is PSPACE-complete 128). However, the conciseness and clarity provided by
semieoon and other interval-dependent constructs are often lost.
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Infinite Intervals

In the semantics already given, all intervals are restricted to being finite. It can
however be advantageous to consider infinite intervals arising out of nonterminating
computations. The inclusion of such intervals does not alter the complexity of
satisfiability.

Projection

Sometimes it is desirable to examine to behavior of a device at certain points
in time and ignore all intermediate states. This can be done using the notion
of temporal projection. The formula Wt1 H W2 in an interval forms a subinterval
consisting of those states where w, is true and then determines the value of W2 in
this subinterval:

M .Wi rlW21 = ,Mt...t1W2,,

where to... t,, is the sequence of the states in s0... a,, that satisfy wj:

.MtJwJ = true, for 0 < i5 m

Note that to... t,,n need not be a contiguous subsequence of 80... a,. If no states
can be found, the projection is false. In the semantics given here, the formula w,
examines states, not intervals. For example, the formula

(X = 1) II tb A

is true is A has a constant value throughout the states where X equals 1. Variables
like X act as metrics for measuring time and facilitate different levels of atomicity.
If two parts of a system are running as different rates, metrics can be constructed
to project away the asynchrony. Other definition3 of projection are also possible.

Additional Modifications

Further possible extensions include quantification over propositional variables
as well as interval-oriented temporal logics based on branching or probabilistic
models of time.

§10 Related Work

We now mention some related research on the semantics of hardware. Gordon's
work 181 on register-transfer systems uses a denotational semantics with partial
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values to provide a concise means for reasoning about clocking, feedback, inf. ruction-
set implementation and bus communication. Talantsev 1301 as well as l6etancourt
and McCluskey 131 examine qualitative signal transition concepts corresponding to
tX and IX. Wagner [311 also uses such constructs as TX in a semi-automated
proof development system for reasoning about signal transitions and register trans-
fer behavior. Malachi and Owicki [16] utilize a temporal logic to model self-timed
digital systems by giving a set of axioms. Bochmann [4] uses a linear-time temporal
logic to describe and verify properties of an arbiter, a device for regulating access
to shared resources.

Leinwand and Lamdan [14] present a type of Boolean algebra for modeling
signal transitions. Applications include systems with feedback and critical timing
constraints. Patterson [23] examines the verification of firmware from the standpoint
of sequential programming. Meinen [19] discusses a semantics of register transfer
behavior. McWilliams [15] develops computational techniques for determining tim-
ing constraints in hardware. Eveking [71 uses predicate calculus with explicit time
variables to explore verification in the hardware specification language Conlan.

A number of people have used temporal logics to describe computer communica-
tion protocols [9,13,26]. Bernstein and Harter [21 augment linear-time temporal logic
with a construct for expressing that one event is followed by another within some
specified time range. This facilitates the treatment of various quantitative timing
issues. Recently Schwartz et al. [271 have introduced a temporal logic for reasoning
about intervals. They distinguish intervals from propositions.

For our purposes, much of this work either has difficulties in treating quantita-
tive timing, lacks rigor, is unintuitive or does not easily generalize. In particular, we
believe that in many papers on applications of temporal logic, various basic aspects
of discrete-time systems have be neglected in favor of more "glamorous" protocols
and distributed algorithms. Furthermore, the computational models used generally
interleave the executions of different processes. In the treatment of digital circuits,
this approach seems inappropriate.

It has been argued by some that temporal logic is simply a subset of dynamic
logic. However, once interval-dependent constructs are added, this is no longer the
case. Operators such as semicolon and yields are not directly expressible in dynamic
logic. Furthermore, the descriptive styles used in dynamic logic and temporal logic
differ rather greatly. Dynamic logic and process logic stress the interaction between
programs and propositions. Temporal logic is expressive enough to conveniently and
directly specify a variety of useful programs. Our current view is that the addition
of program variables would be redundant.
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§11 Conclusion

Standard temporal logics and other such notations are not designed to con-
cisely handle the kinds of quantitative timing properties and signal transitions that
occur in the examples considered. Temporal intervals provide a unifying means for
presenting the various features. Even without intervals, some of the dynamic con-
cepts discussed here have utility in specifications and properties about discrete-time
systems.

Moszkowski [211 uses the logic for describing and comparing a variety of digi-
tal devices. Manna and Moszkowski [17] show how to program directly in tem-
poral logic. Future work will explore microprocessors, buses and protocols, DMA,
firmware and instruction sets, as well as the combined semantics of hardware and
software. We also plan to examine compilers and other systems that transmit and
manipulate commands and programs.
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