///AD-A128 148 PROVING PRECEDENCE PROPERTIES: THE TEMPORAL WAY({U)

STANFORD UNIV CA DEPT OF COMPUTER SCIENCE

Z MANNA ET AL. APR 83 STAN-CS-83-964 N00039-83-C-0250
F/G 12/1

UNCLASSIFIED

2

L
23 fhs |

FFEFEEE
EEEE

EEEE

4
r
er

lo~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o AN RS R e L

April 1983

»p128148

DTIC FILE copy

Report No. STAN-CS-83-964

Proving Precedence Properties:
The Temporal Way

by

Zohar Manna and Amir Pnueli

Department of Computer Science

Stanford University
Stanford, CA 94305

88 05 18 047

PROVING PRECEDENCE PROPERTIES:
THE TEMPORAL WAY

ZOHAR MANNA

Compuler Science Department
Stanford University

Stanford, CA

and

Applied Mathematics Department i
The Weizmann Institute of Science

Rehovot, Israel e

,’,," . ' : AL ‘
\ U 4 \ }
\ ‘}_—/ ~~-

.. Abstract: ¥)/

T The paper explores the three ,ifnportant classes of temporal properties of con urrent programs:
invariance, liveness and precedenge. It presents the first methodological approach/to the precedence

properties, while providing a rgview of the invariance and liveness propertics; The approach is
based on the unless operator &I, which is a weak version of the until operator A}. For cach class of
properties, we present a single complete proof principle. Finally, we show that the properties of
each class are decidable over finite state programs.

i. INTRODUCTION

1
In studying temporal properties of programs, i.e., propertics that go beyond partial correctness, !

an obvious hicrarchy of such properties can be developed. One way of classifying the different sets J
in this hierarchy is by the syntax of the temporal forinulas cxpressing them. |
i

|

The first set in this hierarchy is the class of invariance properties (safety in the terminology
of [L1]). These are the propertics that can be expressed in terms of a formula of the form:

Oy or oD0O%.

A formula of the first form, staled for a program P, says that every compulation of P continuously ‘;
satisfies ¥. In the case of the second form, the formula says that whenever ¢ is Lrue, ¥ is im- !
mediately realized and will hold continuously throughout the rest of the compulation. Propertics

This rescarch was supported in part by the National Scicnce Foundation under grants MCS79- {
09495 and MCS80-06930, by DARPA under Corltrch/N00039-82-C-0250,f. by the Uniled States ‘
Air Force Office of Scientific Research under Grant /AFOSR-81-0014,jand by the Basic Rescarch {
Foundation of the Israeli Academny of Sciences. - '

Part of this paper appears in the Procecdings of the 10Lh Colloquium on Automata, Languages |
and Programining, Barcclona, Spain (July 1983).

1

falling into this class include partial corrcctness, clean behavior (error freedom), mutual exclusion,
and deadlock absence. Lo .

The second sct in the hierarchy of properties is the class of liveness propertics (eventualities
in the terminology of [MP1]). These are properties that are expressible by temporal formulas of
the form:

i
i
1
I
|
i
i
I
|
i
!

OY or D O

In both forms thesc formulas guarantce the occurrence of some event 4, in the first case uncondi-
tionally and in the second case conditionally on an earlier occurrence of the event . Among the
properties [alling into this class are: total correctness, termination, accessibility, lack of individual
starvation, and responsiveness.

While most of the researchers in the ficld tend to agree that these two classes are the first
two rungs in a natural hierarchy, there is less of a consensus about what should be the next step
in the hierarchy. In previous work we have proposed that the next class to be studied is that
of precedence properties. In a broad scnse, precedence properties are all the properties that are
expressible using the until operator U. To remind the reader, the expression pllg, read “p until ¢”,
means that eventually ¢ must happen and between now and then p must continuously hold.

A more mathematical formulation of this definition is given by:

Let o = s8¢, 81, 82, ... be a sequence of states, then plgq is true for o if there exists a 5 > 0 :
such that:

g is true for the sequence 8;, 811, 8542, ...
(if ¢ is a state property then q holds at s;), and for every 1, 0 < i < j:
p is true for the sequence 8;, 841, 8i42, ...
(if p is a state property then p holds at s;). Here, a state property is a property that depends only

on the state and not on the full sequence. Note that in the special case that j = 0, then ¢ is true
on ¢ and no requirements for p are implied.

A derived operator is the precede operator P that can be defined by:

PPq = ~((~p)Ug).
The mcaning of this operator is that “p precede ¢”, i.c., if g ever happens it cannot happen unless

p occurs first (striclly before q). In contrast to pllg which requires that g evenlually happens, pPq
is automatically salisfied if ¢ never happens.

We often use nested untsl expressions of the form .

nl(paU(psll ... (pUg)..)),

where py, ..., P, q are state propertics, i.c., formulas dependent only on the state and containing
no temporal operalors. By carcful examination of the scmantic definition of Lhe until operator

2

I ——

e

we arrive at the interpretation that, stated at ¢o, this expression means that there cxist instants

€1y 0.0y thy
o<t Sta< ... <t | [
* O f e
such that: i i b
i L 3
L oSN
pL holdsinevery t, tg <t < ¢, & ~ "!3
i : : »g : o T
ps holds inevery ¢, ¢ <t < {3 ’5 ;!.ug RN 1
;; é'::b‘_. 30 &n
: o ds -
pr holds in every &, tx—y <t < ¢, and ::,E?-“-’g: .:o'd": =1
< ;:Eg.;’: :azs - :

q holds in ¢.

Thus, this expression predicts a period of continuous p; followed by a period of continuous pg,
and so on, until a period of continuous py, followed by an occurrence of g. Note that any of these

periods may be empty by having t; = ;4 for an empty (7 + 1)st period
Since we are interested only in nested until expressions where the nesting is in the second
argument, we can omit the parentheses and represent the expression above by:

piUpalUps... ;g

The class of precedence properties that we consider are therefore formulas of one of the forms

p D (qP7) a precede formula

PO (pUpl...;xUg) —
Several interesting properties fall into the broad class of precedence properties

an until formula.

Example:

Let us consider a program G (granter) serving as an allocator of a single resource between

zeveral processes (requesters) Ry, ..., Rx competing for the resource. Let each I2; communicate

with G by means of two boolean variables: r; and g;. The variable r; is sct to true by the requester

R; to signal a request for Lhe resource. Once R; has Lhe resource il signals ils rclease by setting
The allocator G signals R; that the resource is granted to him by setting g; to true.

r; to false. T
Having obtained a relcase signal from R;, which is indicated by r; = falae, some time later, it will

reappropriate the resource by sct.tmg g: to false.
Several obvious and important propertics of this system belong to the invariance and liveness

classes. For instance, the property

D((=-lgl) < l)l

ensuring that the resource is granted to at most one requester at a time, is an invariant property
In summing boolean variables we treat true as 1 and false as 0. Similarly, the important property

s O oyl',

S Y P

PR ———-

which cnsures responsiveness, is a liveness property. It guarantees that every request r; will
cventually be granl,od by setting g. to true. .

) Let us, however, consnder some preccdence properties which are relevant to the specification
of such a systcm . . .

(a) Absence oj Unsohc:ted Responase.

An lmportaut .but‘often overlooked desired feature is that the resource will not be granted to
a parly whe lias not requeésted it. (A similar property in the conlext of a communication network is
that cvery g)essagc recmved must have been sent by somebody.) This is expressible by the temporal
formula b

B

%

-
‘

~g; D (r:Pgi).

The formula states that if presenlly g, is false, i.c., B; does not presently have the resource, then
beforc the resource will be granted to R; the next time, R; must signal a request by setting r; to
true.

(b) Strict (FIFQ) Responsiveness.

Sometimes the weak commitment of cventually responding to a request is not sufficient. At
the other extreme we may insist that responses are ordered in a sequence parallelling the order of
arrival of the corresponding requests. Thus if requester R; succeeded in placing his request befz;e
requester R; the grant to I; should precede the grant to R;. A straightforward translation of this
sentence yields the following intuitive but slightly imprecise expression:

(ri?r5) O (9:Pg;)-

A more precise expression which also better conforms to the general form of the class of
properties we discuss in this paper is:

(1',' A ~r; A ~g,~) D (~g,-ug.-).

It states that if we ever find ourselves in a situation where r; is presently on, and r; and g, are
both off, then we are guarantecd to eventually get a g;, and until that moment, no grant will be
made to R;. Note that r; A ~r; implies that ;s request preceded R,’s request, which has not
materialized yet. We implicitly rely here on the assumption that once a request has been made it
is not withdrawn until the request has been honored.

This assumption can also be made explicil as part of the specification, using another precedence
expression:

ri D giP(~ri).

Note that while all the carlier properties are requirements from the granter, and should be viewed

as the “post-condition” part of the specification, this requirement is the responsibility of the re-

questers. It can be viewed as part of the “pre-condition™ of the specification. Without this .
assumption, we could nol hope to implement the granler in any reasonable way, since il would .

have to respond to very short and inlermittent requests.

4

(¢) Bounded Overtaking.

The requirement of FIFO responsiveness may somctimes be too restrictive and difficult to
implement. Any program for the allocator that scans the requests in a certain polling order,
r1, ..., 7k and then back to r; may respond to requests in, say, the order of their detection by the
program. This order may be different from the arrival order. A more realistic requirement would
allow deviations from the FIFO discipline, provided they are bounded. For example 1-bounded
overtaking would say that for every ¢ and j such that r; preceded r;, we may allow g; to precede
g: at most once. FIFO responsiveness may theu be regarded as 0-bounded overtaking. In order
to express k-bounded overtaking we have to use nested until expressions.

The 1-overtaking property can be expressed by a nested until cxpression:
(ri A ~1;) D (~g;)UgU(~g;)Ug:.

This expression predicts a period in which R; does not have the resource, followed by a continuous
period in which R; has got the resource, followed by a period in which R; does not have the
resource, followed by a grant of the resource to R;. Since any of these periods may be empty,
the formula actually states that in the worst case, I2; may gain the resource at most once before

R"'.I

Proofs of invariance properties for concurrent programs, have been extensively discussed in
the literature {e.g., [OG), [K],[L1], [MP2]). Fewer suggestions have been made for approaches to
proving liveness properties (e.g., [OL], [MP2], [MP3)).

In this work we address the problem of verifying properties of the precedence class. QOur main
conclusion is that the verification of precedence properties does not call for radically new ideas and
can actually be viewed as a generalization of the approaches suggested for invariance and [iveness
properties. In fact, precede formulas are in many respects generalization of invariance properties,
whereas until forinulas can be cstablished by a generalization of Lthe proof principles for livencss
properties.

To provide a proper framework, we first introduce an abstract operational model of concurrent
programs. We then oulline a proof system based on temporal logic; the system has been shown
in [MP5] to be relatively complete for proving all properties of concurrent programs. We then
discuss some derived proof principles that are tailored dircctly for the verification of precedence
propertics. The utility of these principles is demonstrated by proving several examples,

2. A COMPUTATIONAL MODEL

We start by defining an abstract computational.model; the temporal logic properties will be
stated and proven for computations over this model.

The abstract model consists of the following elements:

$ — A set of computation states. This is a possibly infinite sct. Every clement s € § represents
the full configuration of the computing system; lor concrete programs cach slale includes
the values of all the prograim variables as well as Lthe prograin pointers for all the processes.

5

0 —- The snitiality predicate. We will only consider computations originaling in a state sg such
that 8(sg) holds. .

T -—- A finite sct of transitions. With each transition 7 € T we associate a partial function
Jr:S — 25, where f,(s) yields all the possible outcomes of the transition 7 on the state g
8 € S. A transition 7 € T is said to be enabled on a state s if f,(s) # @; otherwise it is
called disabled on s. A state s such that no transition 7 € T is enabled on it is called
terminal. .

J — The justice family. This is a (possibly empty) family of scts of transitions J = {T{, ..., T{}.
Each set in J, T/ C T, is called a justice set and a justice requirement defined below is
to be applid to the set T7.

¥ — The fairness family. This is a (possibly empty) family of sets of transitions ¥ =
{TF, ..., T}F}. Eachsctin ¥, T,-F C T, is called a fairness set and a fairness requirement
is to be applied to T} .

An initiglized computation of such a system is a sequen-e of states with labclled transitions:

T T2 73
o: 8 —>8 —>8; —>... wherer;€T,

which satisfies the following requirements:

o Mazimality. The sequence o is maximal, i.e., either it is infinite or the last state s is -
terminal.

e Initiality. The first state sg satisfies the initiality predicate, i.e., o(so) = true.

Ts+1
e State-to-State transition. TFor each step s.-'—‘——> 8;4+1 in 0 we have that 8, € fy,,,(3;).

e Justice. TFor each T7 € J we impose a justice requirement:
e o is finite, or

e o is infinilc and contains an infinite number of statcs on which no transition in
T is cnabled, or

3 e an infinite number of g-steps are labelled by transitions in 7'7.

This corresponds to the notion that if for all states from a certain point on, some transition
in T (not nccessarily always the same) is always enabled, then some transition of 7'/
will be taken infinitely many times.

e Fairness. For cach TF € 7 we impose a fairness requirement:
e o is finite, or

e o is infinite and from a certain point on no transition of T'F is cnabled, or

| e some transition of TF is taken infinitely many times.

'This corresponds to the nolion that if some transitions from TF are enabled infinitely
many times then some transilions from TF are activated infinitely many times.

6

An admissible computation is any suffix of an initialized computation.

When considering a concrele computational system, we have to identify the five clemcents
described above with more concrete objects. Since our example is based on a shared-variables
computational model, we proceed with such identification for the shared-variables system. Such a
system has the form:

y:=9@E (Pl ... | Pumls

where § = (y1, . ..,yn) are the program (shared) variables, T = (z;, ..., z¢) arc the input vari-
ables, and Py, ..., P, arc the concurrent processcs of the program. Each P; is represented by a
transition graph with nodes (locations) L; = (£, ...,) and directed edges E; = {e}, ...,el}.
The locations lf) are the entry locations of P;, respectively. Each edge e € E; is labelled by an

instruction: @ c(¥) — [ge := h.(7)] @

whose meaning is that when c(7) is true, execution may proceed from ¢, to t: while assigning
the values h (%) to the variables 7. Special cases are the semaphore instructions request(y) and
release(y), equivalent to (y > 0) — [y := y — 1] and true — [y := y + 1}, respectively. We refer
the rcader to [MP1] for a more detailed discussion of these models.

A program state for this system has the form:

(lly ce ™y m, -'-;’7")7

where each £ € L; denotes the current location of the execution in the process P;, and each
n; € D is the current value of the program variable y;. (The variables § are assumed to range
over some domain D.) Thus we identify the set of all states S as the set of all (m + n)-tuples
(Ly x ++« X L x D").

The initiality predicate is given by:'
0(ll|-'-’tm; ?7)’ [/\(“':t:))] A (37‘:9(5))
1=1

ensuring that all the processes are at their initial locations and the values of the program variables
are properly initialized.

The set of transitions T is identified with the set of all edges ::-:E"' For 7 = e € F; we
define

(@,65 %) € £ ...,0%7)
if and only if

r=1¢, s = i,, 05 = ¢ for every j #£1, c.7) = true and '1? = h(9).

The justice family is given by:

I = {BE,...,En);

e S - <y

that is, we require that justice be applicd to each process individually. This implics that in any
infinite computation, cach process thal has not terminated yet will eventually be scheduled.

The lairness family is given by:
¥ = {{e}| eis labelled by a request(y) instruction}.

Thus, each scmaphore transition is to be individually treated fairly. This implies that a request(y)
instruction which is waitingz while ¥ turns positive infinitely many times must evenlually be per-
formed.

In considering computations of a program as models for temporal formulas that express prop-
erties of the program, we define the model corresponding to a sequence o,

Ty kp) T3
0. 8 —>8 —>83—>...,

as follows: If o is infinite then the corresponding model is
G: 80, 31, 82,

In the case that o is finite and its last state is the terminal state sg, we take & to be
O: 80, 81y .-0,8k, Bky »0.

that is, the last state repeats forever.

3. THE PROOF SYSTEM

The proof system consists of three parts.

o Part A, called the general part, formalizes the pure temporal logic properties of sequences
in general. It is completely independent of the particular program analyzed.

e Part B, called the domain-dependent part, formalizes the properties of the domain over
which the program operates, such as integers, reals, strings, iists, trees, etc.

e Part C is the program-dependent part. It provides a formalization of the properties that
resylt from restricting our attention to the computational sequences of the particular
program being analyzed.

We refer the reader to [MP4], [MP5] for a discussion of parts A and B. tcre we only repeat
part. C which we further develop in order to prove precedence propertics.

The program-dependent part consists ol four axiom schemes corresponding to the four re-
quirements imposed on admissible computations, In the following, a state formula is a formula
containing no temporal operators and hence interpretable on a single state.

Let v and ¢ be two state formulas. We say that a transition 7 leads from ¢ to ¢ if for every
two states s and 8' the following is true:

o)) A (5 € L,(a) > w(#).

Note that this formula is classical, i.c., contains no temporal operators and should be cxpressible
and provable in the first-order theory over the domain, ¢

For example, in the case of the shared-variables computation model a transition 7 would
correspond to an cdge e in some process FP:

(OB =hl 5y |

so that the condition above is cxpressible as

o8, &y ™) A 7)) = 1/)((‘,...,[",...,("‘; h(¥)).

Given a subset of transitions 7' C T, we say that T’ leads from o to ¢ il cvery transition
T € T' leads from ¢ to 9. If the full set 7' leads from ¢ to v, we also say that the program P leads

Jrom p to 9.
The state formula Terminal, characterizes the terminal states:
Terminal(s) = /\ (f+(8) = ¢).
reT

Also, for a subset T’ of transitions, the state formula Enabled characterizes the enabled transitions
in T':

Enabled(T")(s) = \/ [f+(s) # ¢l

reT!
Both formulas are expressible by a quantifier-free first-order formula.

Following are the inference rules of the program part:

(INIT) For an arbitrary temporal formula w
F 0> 0w
F Dw

This rule statles that if w is an invariant for all initialized computations it is also an invariant
for all admissible computations. This is because cvery admissible computation is a suffix of an
initialized computation, and a property of the form Ow is hereditary from a sequence to all of its
sullixes.

(TRNS) Lel p and ¢ be two state formulas
+ Every 7 € T leads from p to ¢
F (¢ A Terminal) D ¢

- o DOy

The first premise ensures Lthat as long as at least once transition is enabled, then if the current
state satisfies o, the next stale must salisly 4. The sccond premise handies the case that all

9

transitions are disabled, i.e., that of a terminal state. In a computation this mecans that no further
action is possible and the next state is identical to the present. Hence this premise also ensures
that in such a case the next state will satisfy 4.

(JUST) Let p and ¢ be two state formulas, and T/ € J a justice set

+ Every 7 € T leads from ¢ to p V¥
+ EveryreT’ leads from ptoy

b [A OEnabled(T?)] > oUyp

To justify this rule, consider a computation o such that ¢ A 0 Enabled(T”) holds for o but
@9 does not hold. By the first premise, once ¢ holds it can only stop holding when ¢ happens.
Hence plly may fail to hold only if 4 never happens and ¢ is true forever. Since we assumed that
TV is continuously cnabled on o, some transition in 77 must eventually be activated, and this in
a state satisfying ¢. Hence, by the second premise, once this transition is activated, it achieves 9,
contrary to our assumption.

A similar rule applies to fairness:

(FAIR) Let © and % be two state formulas, and TF € 7 afairness
 Every r€ T leads from p to p V9
F Every 7 € TF leads from ¢ to %

F o A 01O Enabled(TF)| > pUy

The justification is similar to that of the JUST rule.

In the following discussion we will consider computations only under the assumption of justice.
This amounts to considering an empty fairness family 7 = ¢. In the shared-variables computation
system this neans that we consider programs without scmaphores. The reintroduction of fairness
to the following analysis can be done in a straightforward manner.

In [MP5] the sct of the rules above has been shown to be relatively complete. By this we
mean that an arbitrary property which is valid for a given program, can be proved using these
rules, provided the pure logic and domain dependent parts are strong enough to prove all valid
properties. This result implies that the program dependent part is adequate for establishing all
the propertics that are true for admissible computations. However, while giving full generality,
these rules do not provide specilic guidance for proving propertics of the three important classes
that we have discusscd: invariance, liveness and precedence.

We will proceed to develop derived rules, one for each class. These rules, while being derivable
in the general system, have the advantage of being complete for their classes. By this we mean,
that every valid property in the class can be proved using a single application of the proposed rule
as the only temporal step. All the premises to the rule are first-order over the domain. Thus, for
anyone who is intcrested only in proving properties of Lhese classes, the respective rules arc the
only temporal proof rules he may cver need, dispensing for example with the general temporal
logic pact.

10

We will illustrate these rules on a single example -- an algorithm for mutual exclusion (Fig.
0) — takca from [Pe]. The program consists of two concurrent processes, Py and Pz that compcte
on the access to their critical regions, presenicd by €3 and my respectively. Entry into the eritical
regions is expected to be exclusive, i.e., al no time can P, be at £3 while at the same time P is
at my. The processes communicate by means of the shared-variables yy,y2,t. ’rocess P; sets y;
(# = 1,2) to T whenever he is interested in entering his critical region. e then proceceds to sct
t to 1. Following, he reaches a waiting state (£z or my, respectively). There he waits until either
y; = F (here i is the competing process, i.c., 1 = 2 and 2 = 1) or t = 1. In the [irst casc he infers
that the competitor is not currently interested. In the second case he infers that I’ is interested
but has arrived to his waiting state after /% did, since P was the last Lo set ¢ to 1. In any of these
cases I’ enters his critical region. Once he finishes his business there he exits while setting y; to
F, indicating loss of interest in lurther entrics for the present.

This description is of course intuitive and informal. The following discussions will provide
more formal prools of the correctness of the algorithim.

4. INVARIANCE PROPERTIES

A single rule which is complete for this class is:

(INV) - Invariance Rule

Let ¢ and ¥ be state properties

A+ 0Dp
B. + Every v € T leads from p to ¢
C. v oD%

+ 09y

A slightly more elaborate rule can similarly be used to cstablish propertics of the form p D Oy.
Since the rule is derivable from the INIT and TRNS rules above, it is cerlainly sound.

To argue that it is complete for properties of the form O, let 3 be a state property such
that D¢ is true for all computations. Define the predicate:

1 T2 Tk

Ace(s) = {There exists an initialized computation segment sg —> 8, —>...—> 8 = s}.

Thus, Acc(s) is true for a state 8 iff there exists an initialized computation having s as onc of
its states. We have defined Ace(s) in words rather *han by a formula; however, if the underlying
domain is rich cnough Lo contain, say, the integers, then this predicale is expressible by a first-order
formula over the domain,

We now apply the INV rule with p = Ace. Certainly 0 3 Ace, since every stale sg satislying
0 participates in a computation: 8g — 8y — It is also easy to scc that il s is accessible
and &' € f,(s) then &' is also accessible. This cstablishes premise B. P’remise C says that every
accessible state satisfies 4, but this follows from our assumption that T is true on all admissible .
computaiions. Consequently the INV rule is always applicable.

11

e

Iz:

13:

14:

15:

Let us consider some invariance propertics for the mutual exclusiion program (Fig. 0) ’prescnbed

above. I: F O((t=1) v(t=2))

Note that for this program
0: atlo A atmg A [(y1,y3,t) = (F,F,1)).

Take p = ¢ = (¢ =1)Vv(t=2). ILis casy to verify that & D o sincc 0 implies ¢t = 1.
Similarly by inspecting cvery transition we sce that all of them maintain .

F Oy = 4.3)

The proposition £, 3 is defined as at £, vat €2 Vatly, i.e., it holds whenever P, is somewhere k
in {¢;,%3,£3}. Potentially falsifying transitions are:

fo — £;: setting both yy and &, 3 to T.

L3 — Ly: setting both y; and £ 3 to . l

All other transitions do not modify either y; or £;. 3. ‘
F Oyz = my.a) |
This property is symmetric to I;.
F O{e: A ~mg] D (t=1)}. ‘

Note that initially & (i.e., atéy) is false so that the implication is truc. Potentially
falsifying transitions are:

£, — l3: setsttol.
my; — mg: makes ~mg false.
mg — ma while £3: by I, y) = T so this transition is possible only when ¢ = 1.

All other transitions trivially maintain the invariant.
F Of{(ms A ~&3] D (t=2)}.
Can be shown in a similar way.
We may now obtain the invariant ensuring mutual exclusion:
F O(~t3 v ~m3).
It is certainly true initially. The potentially falsifying transitions of this invariant are:

&2 — L3 while m3: but then yg = T (by I2) and t = 1 (by I3), s0 that this transition
is impossible.

mg — mg while £3: impossible, because y; = T (by [1) and ¢t = 2 (by I).
Thus mutual exclusion has been formally proved.

LIVENESS PROPERTIES

We start by developing a proof rule which is more convenient to apply than the JUST rule.

12

(J-EVNT) — The Just Eventuality Rule

Let ¢ and 4 be two state formulas and 77 a justice set
A. b+ Every 7 € T leads from ¢ to o V¢
B. F FEvery 7 € TV leads from p to ¢

! C. + o 2 (% Vv Encbled(T’))

F o D pUd

A similar rule exists for fairness. The rule can easily be derived from the JUST rule since by premise
C every computation having in it a ¢ which is not followed by a 9, will have T7 continuously
enabled. This by the JUST ruie implies pU9.

Let us apply the KEVNT rule to our sample mutual exclusion program (Fig. 0). Take for
example,

o =p1: atly ANatmg A(t=2)A(yy=T) A (y2=T) {
Y = po: atly
Clearly the only transitions enabled on a state satisfying p; are & — €3 and my — mgo. Conse-
quently every Lransition leads from p, to ¢ V 9. Taking T to be Py, i.e., all transitions within

P, we have premises A and B obviously satisfied. Also ¢; implies that &; — ¢3 and hence P, is
enabled. Thus we obtain F | 3 (¢, Upp). From this we can certainly obtain

F 120w

since pliq implies O q.

Next let us take

il

po: atly A atmy A (yl = T) A (y2 =T)

)
¥ = o1V po

We now take T to be P,. Certainly, the only transitions possibly enabled under pg are &3 — £,
L2 — L3 and my — mq. The first transition preserves pg. The second transition leads from @3 to
wo. The Lhird transition which is guaranieed to be enabled under g, leads from g to . Thus
every transition leads from w2 to @ V pg. We conclude w2 3 O V o). I'rom this we may
conclude by temporal reasoning and the previously established = o D © g that

F o220 Opo.

We may proceed and define additional ¢4, j = 3, ...,8, such that for each j, F p; D
OV < j9x) which cventually leads Lo F p; 3 O pg. This proof strategy of constructing a finite
chain of asserlions, cach cventually feading to an assertion of lower index can be suinmarized by:

13

. | -

(CIIAIN) — The Chain Reasoning Proof Principle
Let po,®1, - - -, be a scquence of state formulas.
A. F Every r € T leads from p; to Vp,-,
FAS
B. For every 1 > 0 there exists a justice set 77 = T/ such that

F Every 7 € T/ leads from p; to v ©;5
i<

C. For every 1 > 0 and 7 as above:

F i D [(\/go,) V Enabled(T{)| ‘
J<i |

F (\'/‘P.') 3 QOpo

=0

The scheme of a proof according to the CHAIN principle is best presented in a form of a
diagram. In this diagram we have a node for each ;. For each transition 7 leading from a state
satislying @, to a state satislying ¢, with j # 1 (and hence by A, j < ¢) we draw an edge from ¢
to w;. This edge is labelled by the appropriate justice set to which the transition belongs. Edges
belonging to the justice set which is known by premise C to be enabled in @, are drawn as double
edges. For example, Fig. 1 contains a proof diagram for provmg I até; D O atl3 for Lthe mutual
exclusion program. By the CHAIN rule we actually proved I (V.—o‘Pt) D O atls, but since pg is
at ¢, this establishes the desired result. The diagram representation of the CHAIN rule resembles
closcly the proof lattice advocated in [OL] for proving liveness properties.

In the application of the CIIAIN rule we may freely use any previously derived invariances of
the program. ‘Thus, if O/ is any previously derived invariance, we may use p; A I inslead of ¢y
to establish any of the premiscs. This amountls to considering the scquence wo A I, ..., v, AT
instead of the original sequence of asscrtions. Thus in the diagram (Fig. 1) we did not have an
assertion corresponding to (£3,7n3) since by the previously established invariances such a situation
is impossiblc, in particular no transition could lead from I A4 to (€3, m3). Similarly no transition
from (£2,my) to ¢; has been drawn in view of I.

The chain reasoning principle assumed a finite number of links in the chain. It is quite adequate
for finite stale programs, i.e., programs where the variables range over finite domains. tHowever,
once we consider programs over infinite domains, such as Lhe integers, il is no longer suflicient
to consider only finitely many asscrtions. In fact, scts of assertions of quite high cardinality are
needed. The obvious generalization to infinite scts of assertions is to consider a single state assertion
wla, 8), parametrized by a parametler a taken from a well-founded ordered set (4, <). Obviously,
an important feature of our chain of assertions is that program transitions led from p; to p; with
j < 1. This property can also be stated for an arbitrary well-founded ordering. Thus a natural.
genceralizalion of the chain reasoning rule is the lollowing:

14

L
+
14

S . o S —— | RSP ST VI

(WELL) — The Well Founded Liveness Principle

Let (4, <) be a well-founded ordered set.

Let p(a) = p(a, 8) be a parametrized state formula, and ¢ a state
formula.

Let h: A — J be a helpfulness function identifying for each a € A
the helpful justice set h(a) € J.

A. F Every transition 7 € T leads from
pla) to Y Vv3P((B X a)Ap(B)
B. F Every transition 7 € h(a) leads from
pla) to ¥V 3IB((B<a)Ap(8)
C. F pla) 2 [¢ v IB((B < a) A p(B)) vV Enabled(h(a)))

F (Bapla)) > O

In order to obtain a complete rule for livencss properties we have to treat the parametrized
assertion p(a, 8) as an auxiliary assertion:

(LIVE) — A Complete Principle for Liveness

Let p, q be state formulas and p(a), ¥ a parametrized asscrtion pair
as in WELL.

Assume premises A, B, C as in WELL, and
D. + Op, i.., pisaninvariant
E. F (g A p) 2 (Ja.p(a))
g2 Oy

We refer the reader to [LPS| for a completencss proof of the LIVE principle. Completencss
herec means that given Lwo state properties g and ¥ such that ¢ O O ¢ is a valid statement over
all the computations of the program P, it is always possible to find state predicates p, p(a,)
with a € A and (4, <), h as in WELL that satisfy pretises A to IE. Note that premise D requires
preliminary derivation of the invariance of p which can be done using the INV rule.

8. PRECEDENCE PROPERTIES
As a key operalor in expressing and cstablishing precedence properties we take Lthe weak until
operator, {1, to which we will refer here as the unless operator.
The unless operator may be defined in terms of the standard until operator as:
pig = Op vV (plq)

Thus, in contrast to pUq it does not require that ¢ eventually happen. But in the easc that q never
happens p is required to hold forever.

15

e mm—T

Even though it is introduced here as a derived operator, it can be adopted as the basic operator
for establishing precedence properties. This is because both the until and precede operators can be
expressed in terms of the unless operator:

pUg = (plqg) A Ogq
pPq = (~q) U(pA~q).

We can also express the nested until operator by considering the nested unless operator. Let
Yy, Ye—1, ..., Y1, Yo be a sequence of formulas then

¢, u¢,_| u... " i.l‘wo = 1/), u('l/),_l 5.1(e (‘lb[ﬂ¢o)).)

IA

holds on a sequence ¢ = s8g, 8¢, ... if there exists a scquence of indices 0 =1, <4, < ...
11 < 10 < w such that for cvery £ > 0 and 7, i¢ £ § < 121, P2 holds on

0(’) = 858541y ...

and if ip < w then 4y holds on o0°). Note that some of Lhe f, may be equal to onc another, and
also to w in which case some of the ¢ hold in emnpty periods.

An alternative description is that 1, 31 ... L4 holds on o iff cither o satisfies 9, U ...
%1 Uepg or for some 7, 0 < j < r, o satisfies ¥, U...¢; ;1 WD Y;. In the case j = r, o satisfies
Ovy,.

Then we can express the nested until by an extension of the previous formula for a simple

untsl:

P U U iUe = (¥, U1 8 .. 91 Uehg) A Oo.

Let us justify this cquivalence. The direction in which the ncsted until implies the nested
unless and the eventual ocurrence of g is obvious. Let us thercfore consider the other direction.

Assume that ¢, U ... ¢, ¢y and O y¥g both hold on a sequence . By the interpretation of
nested unless there exists a partition:

0 =14, <41 <...<4% <3 S w

such that ¥, holds between 1, and 14y for £ > 0 and g holds at 1 if it is finite. Since o must
occur somewhere in o let § be the minimal index such that ¥ holds on (). If j = 45 < w,
then the same partition justifies ¢, U ... % Ugg on 6. Otherwise there exists some £ such that
t¢ < J < t¢.1. In this casc the parlition up to 1, and Lhen J justifies ¥, U ... ¥YpUp from which

YU el ... Y1 Uso

follows by letting ¥¢_y, ..., ¥, hold over empty periods.

Thus, expressively at least, the unless operator scems to be an appropriately basic operator.
But we claim Lhal the choice of the unless operator is appropriate on proof Lheorelic grounds as well.
By inapecling the expression of until formulas in terms of unless formulas we find a resemblance

16

e e i A ——— . o ee -) iiond Y i d iy v
- e = oA s

to the rclation betwceen the concepts of total and partial correctness. Total correctness, which is a
liveness property, can be expressed as the conjunction of partial correctness, which is an invariance
properly, and termination, which is another livencss property but simpler than the original. In
quite the same way we can express Lthe untsl property as a conjunction of an unless properly, which
we regard as extended invariance property and the simpler livencss property < ¥g.

In practice, if we want a single proof principle that will cover properties of the following three
subclasses

(@) ¢ D (pUg)
(®) ¢ 2> (pPq)
(c) v D (pUyq)

then the unless operator is a good choice.

In order to establish (a) we establish separately
F (¢ D pilyg) and F p D Oy,

which are implied by (a). The first will be established by using thc unless proof principle. The
second is a liveness property and can be established by the WELL rule or its extensions.

Similarly in order to establish (b) it is sufficicnt to establish ¢ D (7 1) where p is ~q and §
is pA ~q.

We could not have used the until operator in a similar role, i.e., reducing proofs of properties
of the subclasses (b) and (c) to these of (a). This is for example because if ¢ O (p £(q) is a valid
statement, then certainly so is p D (Dpv (pUq)), but it does not imply that cither ¢ D Op or
® D (pUgq) are valid statements. Proving precede statements would cause similar problems.

The fact that the weak form of the until operator is more basic than its strong form seems
to have been intuitively sensed in [1.2] where a while operator is introduced which is equivalent to
p U~q. :

Consequently, we will proceed by developing proof principles for the unless operator . We
begin by formulating a core rule:

(CORE-U) — Core Rule for Unless Properties

Let p,, ©r—1,...,00 be state formulas

A. Forceveryi >0,

+ livery 7 € T leads from o to Vgo,-
<

o (V?’.’) D (pr U1 U ... 01 L)

=0

l.et o be a computatlion whose first state sg satislics p; for some 0 < j < r. Assume first that
J > 0. Define s, =14, ; = ... =14; = 0. By premisc A, s; must satisly some o, for £ < 5. If

17

= j we proceed until we find an s, that satisfies @, for £ < j. If we never find such a state we
may take i;_; = ... = i{p = w. Otherwise we take i;_; = ...
beyond s, unless £ = 0. This construction shows that if sg satisfics p; for some j then o satisfies

o, U ... Wpo. The case j = 0 is even simpler.

We can make a complete rule out of the CORE-U rule by strengthening the preconditions and

weakening the post conditions.

=i, =k and procé‘cd'ﬁsimilarly

Let op,,

that:
A.

(UNLS) — Complete Rule for Unless Properties

For every t > 0,
+ Every 7 € T lcads from p; A p to

+ QOp

F(@Ap)D (V‘Pi)
§=0
For every 1, 0 <1 <

F (i AP) D W%

vees 90, ¥ry --, Yo, P, ¢ be state formulas such

Ve;

J<i

F g D (¥ Uy U ... 9 Uehp)

Let us consider the application of this rule to the analysis of the mutual exclusion algorithm.

We take (the @;’s refer Lo the assertions in Fig. 1):

q: atly

Yo=1o: atls

S1=wp1r3: & Almg1 V (mA(t=2)))

Pr=1p4: laAmg

P3 = Ps : tz/\‘rm;/\(t:l)

¥ = ¢P3 = ~mg, Ya = my

p — the conjunction of all the invariants IgA ... ATs

The diagram certainly establishes that g, 1 > 0, leads to Vﬁ,'.

It is also easy to show that (gAp) D (V $5) and that g; D ¢; for ¢ =0, ...,3. Thus we

may conclude:

j<s

3

=1

+ & D (~m3 HUmg U ~mgy 1“3).

18

This establishes the properly of 1-bounded overtaking from £3. This means that once P is at
&3, P’ may be at mg al most once before P gets to his critical scction at £5.

An alternative derivation of the same result could have been achieved by taking the ¢'s in the
rule to be identical to the ¢'s in the diagram. This leads to:

F €3 D (ps Ups Lps Hps L) Upg).

We may now use the collapsing theorem for the unless operator:
(pUqitr) D ((pVvq)ilr)

to obtain:
F & > (ps U U(p1 Vo2V p3) o),

which is equivalent to the above after we replace cach of the p,'s by the weaker ;.

Having obtaincd 1-bounded overtaking from the point that P, is at £ we may inquire whether
the same holds from the point that Py is at {;. As the analysis shows in I'ig. 2 the best we can
hope for is 2-bounded overtaking. The diagram in Fig. 2 establishes

F & D (ps Uos.7 s o3 Upo)

from which 2-bounded overtaking is easily established.

7. COMPLETENESS OF THE UNLS RULE

Next we will show that the UNLS rule presented above is complete for establishing nested
unless properties.

Proof:

Let q, ¥y, ..., 90 be state propertics such that the statement ¢ O (¥, U1 ... 91 Lehp) in
valid on all admissible computations. We will show that there exist state properties p, o, ..., po0,
which are first-order expressible over the integers, such that all the premises of the UNLS rule are
satisfied.

As p we choose
p(8) = Acc(s) = {There exists an initialised compulation containing s}.

Clearly p is an invariant of all admissible compulations so that premise B is satisfied.
Let 6 be a finite segment of a computatlion, i.c., a finite sequence
. T T2 Th
0 = 8028 —> ... P8,
such that 8,4, € f,(s;) forcachi =0, ...,k — L

19

We say that ¢ satisfies a temporal formula w if 6’s infinite extension sqg, 8y, ..., 8k, 8k, 8%, - ..
salisfies w.

Let o be a computation satisfying ¥, U ... ¥; Ug. It can be verified that any finite prefix of
o is a computation segment that also satisfies ¥, 4 ... 9¥; Uhy.

Let us define now p; for i = 0,1, ...,r by p;(8) = true iff

(a) Every computation segment originating at s satisfies 9, U1 ... 9 Ut
(6) The index 1 is the smallest index for which (a) holds.

Let us show that the sequence of p;'s defined in this way satisfies premises A, C and D of the
UNLS rule.

Consider first premise A. Let s be a state satisfying @, for 1 > 0. Let s' be a state such that
8’ € f,(s). Consider any computation segment originating in &':

- 71 T2 Tk
7
g: §—>s—> ... —>s.

We can obtain from it a computation segment:

- 7., N T2 Tk
0. 8§—>8 —>g —> ... —D>8.

By our assumption about s, 6 must satisfy ¥¢ & ... tepo. It can be shown that due to i > 0,
and the minimality of 7 this implies that o' must also satisfy ¥, 4 ... Uyg. Thus we have identified
at least onc index, i, such that clause (a) is satisfied for ¢ and 8'. Let 7 > 0 now be the minimal
index satisfying (a) for 8’. Then (b) is also satisfied and we have that s’ satisfies p; for j < i. This
establishes premise A. ‘

Next, consider premise C. Let s be a state satisfying q and p. It is therefore an accessible state
satisfying q. By the assumption that ¢ O (1, U ... tlipg) is a valid statement for all admissible
computations, every computation originating in s saisfies ¥, H ... U ¢Pg. Conscquently every
computation segment originating in s satisfies ¥, U ... Uepp. Thus, clause (a) of the definition of
@ is satisfied for § = r. Let j be the minimal index satisfying clause (a). Then p;(s) holds and
j<r.

To show premise D, let s be a state saisfying ;. Consider first 1 = 0. The zero version of
P4l ... Lo is g by itsell. Since every finite computation segment originating in s must saisfy
o which is a state property, it follows that s satisfies 9¥g. Consider next, ¢ > 0. Since 5 was
the minimal index satislfying clause (a), there must exist a computation segment o originating in
s which satisfies 9¥; U ... g but nol ¥, (U ... Ug. Conscquently the initial scction of &
satisfying ¥; must be non-empty and therefore 8 musl satisfly ¥,. Thus, we have p; D ¥;.

We claimed that the o,'s defined above are first-order expressible over the integers. This is due
to the fact that clause (a) refers only to finite computation segments. This is a dircct consequence
of the fact that we deal with the unless operator. No similar first-order definition is possiblc for
the until operator. d

20

8. DIRECT PROOFS OF UNTIL PROPERTIES

In spite of our recommendation of splitting a proof of until property into a proof of a similar
unless property, followed by a liveness proof of © ¢, there are many cascs in which an until property
can be directly obtained by a small modification of the liveness proof. As we have seen both the
CHAIN rule and the UNLS rule call for a sequence of assertions, such thal the computation always
lead from p; to p; with § < 1. The CHAIN rule stipulates in addition a strict decrcase under
certain conditions. It is often the case thal the same chain of assertions used in the CHAIN rule
can be used to establish a nested until. In fact, in much the same way that we have justified the
CHAIN rule we can with the same premises obtain a stronger result:

Taking 0 < p1y < p2 < ... < p, = r be a partition of the index range [0...r] into s
contiguous segments, we may formulate the following chain principle for until properties:

(U-CHAIN) — The Chain Rule for Until Properties

Let v, 1, ..., pr be a sequence of state formulas, and 0 < p; < pg <
... < ps = r a partition of [L...7].

A. F Every 7 € T leads from p; to (V(Pj) for 1=1,...,r.
‘ j<i
B. for every i > 0 there exists a justice set 7/ = T; such that:
I Every 7 € T/ leads from p; to (qu:,-)
i<i
C. fori > 0 and T/ as above:

F pi D [(Vgo,) v Enabled(T!)]
i<s

F (\'/ﬂm) > {({/ ;) U (p‘\?l ”J')u"'(vp’)upo]

=0 F=pe-1+1 =P, _32+1 J=1

The conclusion states that starting at a state that satisfics one of the p;'s,$ =0, ...,r, we
e

are guaranteed to have a period in which (V ©5) continuously hold, followed by a period in

J=pe_1+1
Pa—1

which (V ©;) continously holds, etc., until finally g is realized. Any of these periods may

J=p,_a+l
be empty.

To justify the soundness of this conclusion we first prove it for the most refinced partition
possible, namely:
4
() (Vo) 2 (e lipriUpr-ali... o1 Upg).
== .

This is proved in a way similar to the justification of the corresponding livencss principle. We show

21

by induction onn, n=0,1, ...,r, that

F (Vo) 2 (palipn 1U...p1Upo). !

=0 .
For n = 0 we have F po O g from which follows trivially

F w0 D pollwo..

Assume that the statement () above has been proved for a certain n and consider its proof
forn+ 1. }

n
Consider the EVNT rule with ¢ = pp 41, ¥ = (V ©s). As shown in the proof of the liveness

=1
case all the premises of the EVNT rule are satisfied. Consequently we may conclude:

F @nasr D wn+xu(VSO-')-

i=t
By the induction hypothesis and the monotonicity of the U operator this yields

F@nt1 O (Par1leall...01Upo)
Due to F v O (ulv), the induction hypothesis can also be written as
n
F (V ©i) O (Pat1leall...o1lpg).
i=0
Taking the disjunctica of the last two statements gives

ntl '
"(VSO.') D (r+1lpall...p1Upg),

i=0
which is the required statement () for n + 1.
Consider now a coarser partition:
0<m<;p<K ... <p=r.

By consccutively merging any two contiguous asscrtions that [all into the same cell, using the
collapsing rule:

F (piniUleile)) 2 ((pis1 vV ei)lep),

we obtain the coarser conclusion:

P Ve > (CF eau Voedu (Ve um). -

$=0 J=p,_1+1 F=pe-3+l Cor=1

22

In our mutual exclusion program, by rcference to Fig. 1 it is easy to usc the U-CIHAIN rule
and obtain:

£3 O (psUpalpr.alpo),

from which the 1-bounded overtaking from £; is obtained by the monotonicity of the until operator
(i.e., replacing formulas by weaker formulas).

A natural extension of the U-CHAIN rule to programs that require inflinite chains of assertions
uses again well-founded ordered sets.

Let (4, <) be a well-founded ordered set. We requirc however that the ordering is total (or
lincar). That is, for every two distinct elements, ay, a2 € & either ay < a3 or ag < ay.

(U-WELL) — Well-Founded Until Rule

Let (A, <) be a well-founded totally ordered sct.

Let p(a) = p(a, 8) be a paramctrized state formula.

Let h: & — J be a helpfulness function identifying for each a € A the helplul
justice set h(a) € J.

Let oy < ag < ... < a, be a finite sequence of clements of A.
A. F Every transition 7 € T leads from
pla) to ¥ Vv3IB((B X a)Ae(B))
B. b+ Every transition 7 € h(a) leads from
pla) to ¥ VvIB((B < a)Ap(B))
pla) 2 [¢ v IB((B < a)Ap(B)) v Enabled(h(a))]

F 3a((a < a) Ap(e)) D
[38((0a—1 < B <) A0(B)) U
3((as-2 < B a-) Ap(B) U ...
38((8 % a1) Ap(B)) U ¥)

C.

T

By a combination of the completeness of the WELL rule for liveness propertics and the UNLS
rulc for unless properties we can cxtend the above rule to a complete rule for until properties.

9. DECISION PROCEDURES FOR FINITE STATE PROGRAMS

The question of whether a given program has a certain property expressed by a temporal for-
mula, is in gencral highly undecidable. Tlowever, for a very important restricted class of programs,
this question is decidable, namely for finile state programs. Finite state programs arc programs
whose variables range each over a finite domain. These programs generate only finitcly many
different states and a joint linitc transition diagram over these states can be constructed such

that any compulation is a maximal path in this finite directed graph. The literature abounds in.

many special decision procedures for testing for deadlock situations, starvalion, ete. on programs

23

T

represented by finite transition diagrams. All these arc special cases of the general result which
stales that testing a temporal formula over a finite state program is decidable. The general deci-
sion procedure for testing a temporal formula ¢ on a [inite state program P consists in checking
the iroplication Wp O ¢ for general validity. In this implication Wp is a formula characterizing
all admissible computations of P. If P is finite state then both Wp and ¢ may be represented
as propositional temporal formulas. Consequently we test a propositional temporal formula for
general validity. As shown in [PS], it can be donc in time exponential in the size of P and . This
exponential tine complexity has been a source of criticism of lincar temporal logic in [CES].

In this scction we show that when the temporal property ¢ to be tested, lalls into one of the
property classes discussed here, then there exists an eflicient decision procedure polynomial in the
size of P and ¢ for testing ¢ on P,

Let P be a program consisting of m processes P, ..., P,,. Lel each process P; be presented
as transition diagram wilth sct of nodes L;. The program variables y;, ...,y, assumc values
over finite domains Dy, ..., D,, respetively. Then the state sel § of the program P is the set of
all possible tuples (£, ..., ¢m; 71, ..., mn) With & € L;, s =1, ...,m, and n; € Dj for j =
1, ...,n. Conscquently

IS| < [Li]x o X |Lom| X D1} %X +++ X |Dyl.

3.
We construct for I a joint transition diagram Tp with $ as nodes, and an edge s—>s' for
every pair of states s, s’ and a transition 7 in P; which leads from s to s'.

In order to generate only accessible states we start from all states satisfying 0 and include in
Tp only states which are derivable rom states which are already included in Tp. Fig. 3 shows the
diagrarn Tp for the mutual cxclusion algorithm. States in this diagram have the form "¢, m;,t).
We have not included the values of y1,y2 since in all accessible states they are uniquely determined
by the location values ¢; and m;. The initial state in this diagram is sq.

We procced to describe three algorithms which, for properties in each of ti:~ threc classes, will
determine whether a finite state program P has this property. The algorithms wini be linear in the
size of Tp. Let us denote N = |Tp|.

10. TESTING INVARIANCES

Let the formula Lo be tested be of the form ¢ D Op. We can check whether all paths in Tp,
and hence all admigsible computations of P, salisly ¢ D O by the following procedure:

PI: Locate in Tp all states which satisly ¢q. For each such state s construct the transition
diagram Tp(s) which includes exactly all the states accessible from s. Check that each
8’ € Tp(a) satisfics .

If all these steps succeeded then ¢ D O is valid for . We can organize the procedure so
that it takes no more than m - N steps where N = |Tp| and m is the number of processes and
hence the maximal degree of Tp. This is because if 82 € Tp(8y) satisfies ¢ then T'p(sg) C Tp(sy)
and no scparate check is needed for sy if we have already checked T'p(sy).

24

Conscquently we have to access each state at most once, and then may have to explore each
of its edges.

For checking invariances we may actually suggest a simpler procedure: mark in Tp each state
which is accessible from a g-state (a state saisfying q). Then check that all the marked ¢ ates
satisly ¢. However the complexity of the two procedures is identical and the PI procedure above
conforms better with the procedures presented below for the other classes.

We may lor example apply PI to test for the invariance of Iy Lo Iy derived lor the mutual
exclusion. All these propertics have the form [0 so we may take ¢ = true and consider Tp(s) for
all accessible states. However since every accessible state s € T'p(8p) = T'p, it is sufficient to check
that all states in T'p satisly .

Indced we can easily check for example that there are no states in which &g, ~mg and £ # 1
are all true. In other words every state in which both & and ~mg are true, i.c., 8g, 819, also has
t = 1 in it. This establishes I3. Similarly, there is no accessible state in which both £3 and m3
hold, cstablishing Is.

It is easy to prove:

Lemma:

A formula ¢ D Oy is valid for P iff the procedure PI applied to Tp succeeds.

11. TESTING LIVENESS

Let the formula to be tested be of the form ¢ D O p. Let 8 € Tp be an accessible state. Let
T = 8y, ..., 8k be a finite path in Tp. We say that x is a non-p path il none of 8y, ..., 8,1 satisfy
p. Note that si is allowd Lo salisfy w. We dcline Tp(s,) to be the dirceted graph containing all
states in Tp which are accessible from s by non-p paths. The graph T'p(s,) can be efficiently
constructed as follows: '

(a) Put sin Tp(s,)
(b) Yor every s’ € Tp(s,) which does not satisfy o, add all the successors of &' to
Tp(ﬁ, ‘P)-

Let us dccompose Tp(3,) into maximal strongly connected components. It is known that
when we consider edges between the components, it is always possible to order the components in
a topological sorling order Ky, ..., K,, such that if there is an edge from a node in K; to a node
in K; then necessarily ¢ < 7. Components such that there are no cdges leading out of them are
called terminal components.

We suggcest the following test for checking that all just computations in Tp(s,) satisfy O ¢:
p-Liveness Test:

Decompose Tp(s, p) into a topologically sorted list of maximal strongly connecled com-
ponents: K,, ..., K,.

For cach i =1, ..., r check:

{a) If K, is terminal then it consists of a single node salislying .

(b) If K, is nonterminal, then there must exist a j, 7 = 1, ..., m, such that every
state 8 € K, has a P’ transition leading out of K.

Lemma:

All just ecomputations in Tp(s, p) realize O ¢ ifl the p-liveness test succeeds.

Proof:

Assume that the test succeeds. Let ¢ be any maximal computation in Tp(s, p). By the ordering
of the Ky, ..., K,, from a certain point on, the computation must be fully contained in a single
component, K¢ say. If K¢ is terminal then the computation terminates once it has entered Koy,
and the last state satisfies o by (a) above. If /K, is not terminal then being conlained in K¢ and
by (b) it must be infinite, since no state in K, is terminal. FFurthermore, no /7 transition is ever
taken once the computation has entered K¢, otherwise it would have left /,. Consequently the
computation is unjust with respect to P;. Thus all just computation must eventually realize .

Assume that the test fails. Then cither there is a terminal component /(; not satisfying ¢, or
there exists a nonterminal component K, not satislying condition (b). In the first case we construct
a computation ¢ leading from o lo K, and then cither stopping if the state s € Ky is terminal or
looping within K; in a loop that spans all of K,. Since states within K| do not satisly ¢ (actually
none of them docs) this can be shown to be a just computation not realizing p. In the second
case, we construct again a computalion o reaching K; and contlinuing in a loop spanning all the
transitions within K. By violation of condition (h) every process Py thal has not terminated yet
has a P; transition internal to K. Thus by traversing all transitions in K;, we generale a just
computation which does not realize .

Note that the construction of T'p, its decomposition into strongly connccled components and
applying the livencss test are all linear in the size of Tp.

In order to check that ¢ D © ¢ is valid for I we could in principle take each s € Tp which
satisfies g, construct 7'p{s,¢) and apply the p-liveness test Lo il. But we can actually be more
efficient as follows:

Let 8y, ..., 5% be all the g-states in Tp. Construct T'p(s(, 1) and check it for p;-liveness,
where

p1(s) = p(s).
Next, construct Tp(3g, 2} and check it for pa-liveness, where

p2(8) = p(s8) vV 8 € Tp(s1,01)

Thus in constructing Tp(s2,p2) we may slop the analysis once the computation enters
Tp(81,91), since we already know that all computations there realize .

In general we construct Tp(s;, ;) and cheek it for p;-liveness for ¢ =1, ..., k where:

pils) = o(s) v [s€ |JTr(s;,05))
I<s

In this way we cssentially consider cach state at most once and the whole procedure becomnes linear
A

in [Tpl. “

Let us apply this procedure for checking validity of at¢; D < atf; on the mutual exclusion
program. We will check the following ¢-states:

s17: (L1,m3,2), 812: (&y,mg,2), 813: (&4, m4,2),

81: (&,mo, 1), s83: (&, my, 1), s816: (L1, m2,2).

In Fig. 4 we present Tp(s17, atf3). In decomposing the graph we find that every component
consists of exactly one node and a possible sorting order for them is:

817, 812, 813, 316, 318, 819, 84, 85, 8g, 88, 89.

The terminal components are ss and sg and they both satisly atl3. For every other com-
ponent we ecasily identily a helpful process leading out of the compouent. Thus P; is helpful for
{817, 812, 813, 816, 84, 88} and P, is helpful for {815, 819, 8¢}.

Note that this diagram also took care of 812, 8,3, 816. The ncxt g-state not yct analyzed is
81. We construct for it 7'p(s1,p2) where pa(s) = atls v s € Tp(s11,43).

The corresponding diagram in Fig. 5 shows that all computations starting at sy or 83 eventually
must enter Tp(3)7, at€3). Consequently we conclude that até; D O atl; is valid for the program
P.

12. TESTING UNLESS PROPERTIES

I.et the formula to be tested be

g D (pr o1 ...01 Uipg).
Let s € Tp be an accessible ¢g-state. Construct Tp(s, pg) as before. We propose the following
test for checking that all computations in Tp(s, pg) satisly w: o, Up,_y ... 01 Upe.
w-Precedence Test:

Decompose Tp(s, pq) into a topologicaily sorted list of maximal strongly connccted com-
ponents: Ky, ..., K,. Proceeding from K, down to K,, we try to assign each component
K a rank p; = p(K;) as lollows:

Let p; be the smaliest k > 0 such that all states in K satisfy o, and that any component
K, dircctly connccted to K, i > j, has a lower or equal rank, i.e., k 2 p;.

If we fail to rank some component K; then the test is said Lo fail, otherwise we say that
it has succeeded.

27

Lemma A:

If the w-precedence test succeeds, then all computations in Tp(s, pg) satisly w.

Proof:

Assume that the test succeeded. Let ¢ be any computation in Tp(s, po). Such a computation
must progress through a finite chain of components K, K;,, ..., K;, with) < iy < ... <1,
Thus it sucessively satisfies (k.) @p(k,,)1 - - - Pp(ic;,) With p(K:,) 2 p(Ki,) 2 ... 2 plK,).

Obviously it satisfies w.

Let K; be any component. We say that we failed to assign K; the rank j if either p; > j or
we lailed to rank K; altogether. d

Lemma B:

If we failed to assign K the rank j then for every s € K; there exists a compulation ¢ =
8—> ... (beginning in 8) that does not satisfy

wy; = p,ﬂ...tp,ﬂ«po.

Proof:

We will prove the lemima by double induction, first on j = 0,1, ... and then for each j on
t=rr—1,...,L

Consider first 7 = 0. Let 3 € K; be any slate in K;. If s satislies pg then K, consists of s
alone and has no successors. Correspondingly we could have defined p(K;) = 0. Since we failed
to assign 0 to K, s does not salisfy pg. Consequently any computation beginning in s falsifies
wo = . This establishes the lemma for j = 0 and K, ..., K,.

Consider now a 7 > 0 and assume by induction that the lemma has been proved for 7 — 1 and
K, and also for 7 and each of K;,;, ..., K,. Let s € K.

There could be two distinct reasons why we [ailed to assign the rank j to Kj.

e There cxists some stale s' € K; which does not satisfy @5 By the induction hypothesis
there exists a computation ¢’ = s',s2, ... which docs nol satisly w; . We claim that
o' also doces not satisly w,. I'or o’ to satisfy w, there must be a (possibly emply) prelix of
o' continuously satisfying ¢, followed by a suffix which satisfies w;_,. Since 8' Ialsifies
©j, the prefix must be empty and the whole of ¢’ must satisly w,;_; which contradicts
the definition of ¢'.

It only remains to obtain a similar computation starting from 8, the arbitrarily spccified
state in K. If by chance s = 3! then o' will do. Otherwisc, since s and a! belong to the
same strongly connected component there must exist a path 8 = 3y, ..., 8,, = s' within
K; connccling s to s'. Consider the computation ¢ = s, ...,s',8%, ..., i.e., the path

28

from a to s’ followed by ¢'. Since no state in K satisfies po, 0 can satisly w; only if o’
docs. Thus o falsifies w;.

o The sccond case where we fail to assign j to K is that there exists a K, directly connected
to K, i < £, such that ps > j or more generally we failed to assign j to K,. Thus there
exists 8; € K; and 84 € K, such that

Py
8, —> s, for some Pg.

By strong connectedness there exists a {possibly empty) path connecting s to s; : s,
..., 8;. By the induction hypothesis since £ > : and we failed to assign j to K¢ there
exists a computation o, : 8,82, ... which falsifies w,;. Consider now the computation

. . 2
o: 8, ..., 8, 8, 8°, ...

The computation o consists first of the path from s to s; within K, then the cdge from
8; Lo 8, and then follows 6,. Since the whole segment s, ..., s, does not contain a state
satislying pq, ¢ can satisly w; ouly if g, does, which is impossible. Thus o falsifies w; as
required. d

Let now K; be a component that was not ranked altogether. By the last leinma there exists

a computation ¢ = s,8%,8%, ... with 8 € K such that o falsifies

we = p, U0 Upg.

We can prefix ¢ by a path leading from 89 to 8 and obtain a computation o9 = 89, ...,s, ...
which fails Lo salisfly w,. We may combine Lemmas A and B to obtain:

Corollary:

Given Tp(sg, o), all sp-initialized computations in Tp(sq, o) satisfy
w=op,U...01Ugg

iff the w-precedence test succeeded.

Proof:
In order to test the general implication ¢ O w on the entire Tp diagram we proceed as follows:

Let 8¢, 82, ...,8k be all the g-states in Tp. Construct Tp(8y,p) and test o, U ..., tp
on it. Construct Tp(s2,%2) where ¥2(8) = po(8) V 8 € Tp(s1,p0).

Test o, U ..., g on Tp(sg,13). In ranking the componentls we add the following rule:

If K; is a terminal component consisting of the single node s € Tp(s;, po), give K; the rank
that 8 (or the componcnt containing 8} has received in Tp(sy,p0).

In general we construct Tp(s;,9;) where

vile) = wols)Vviee UTr(sw) (91 =0}

I<s

29

We then test o, 8 ... Upg on Tp(s;, ;) ranking any component consisting of s € Tp(:f,,qb,) for
some) < ¢ accordmg to the rank it received earlier.

~ Consequently the testing procedure is again linear in the size of Tp. To be precise, of com-
plexity r - m - |Tp|. J

To illustrate the procedure let us test the validity of the following unless property:
lo o] (to um;; u~m3 l(m;; H~mgy uta).

This property again expresses a certain kind of 2-bounded overtaking, However the reference point
is when P is at €. It states that from the time Py decides to leave &5, P2 may enter mg at most
twice before Py enters £3. Furthermore, actual 2-overtaking can take place only if P; on exiting
&y finds P; in m3 at precisely the same moment. If on exiting &y, P; find P, anywhere else then
at most 1-overtaking can Lake place. In contrast with other unless properties considered before in
this paper, this property is notl an until property. The corresponding until property does not hold
since when P, is at £ it is quite acceptable that it never gets out to achieve &3.

We define

g=ps5: atly

Pr=1p3: atmy

Py =p1: ~atmy

wo = atly

Accessible g-states in Tp are:

s (lo,m3,2), 810: (Y0,m0,2), 8i1: (€o,my,2),
' (l01m212)r 80 : (lo, mo, l)) 82: (‘Osmly l)‘

In Fig. 6 we have Tp(s,5, pp). Its component decomposition gives the following topologically
sorted list of components:

{815, 310, 811, 814}, {817}. {812}, {813}, {816}, {Hls}, {819}, {_34}, {35}, {36}1 {68}, {39}-

Going backwards we assign the [ollowing ranks:
pi =0 forie {50}
pi =1 foric (8,864}
pi=2 fori =19
pi =3 foric {18,16,13,12}
o =4 fori=17

30

AK) =5

This shows that the desired uniess property actually holds for the g¢-states s¢g, 810, 851, 214.

Next let us consider Tp(sq, [wo(s)V s € Tp(815, p0)]). It is given in Fig. 7. All the terminal
nodes belong to the previous diagram and their ranks have been listed. We may proceed to rank
the unranked states in Tp(sg, ¥3).

We define

=13 forie (1,3},

and
pi =5 forie€{0,2}.

Thus, all g-states have been successfully ranked, and the unless property:
o O (bo Umz U ~m3 Umg U ~m3 UL).

has been cstablished. We obviously cannot do better since the computation:
815 — 817 —* 812 — 813 — 838 —* 818 — 819 — 84 —* 85

demonstrates 2-overtaking.

Acknowledgement:

We would like to thank Yoni Malachi, Ben Moszkowski, and Frank Yellin for careful and
critical reading of the manuscript.

13. REFERENCES

[CES] Clarke, E.M., E.A. Emerson, and A.P. Sistla, “Automatic Verification of Finite State
Concurrent Systems using Temporal Logic Specifications: A Practical Approach,” Proec.
of the IEEE Conf. on Foundations of Computer Scicnce, Chicago (1982).

[K] Keller, R.M., “Formal verification of parallel programs,” CACM, Vol. 19, No. 7 (July
1976), pp. 371-384.

L1} Lamport, L., “Proving the Corrcctness of Multiprocess IPrograms,” IREL Trans. Soft.
ing. SL-3, 2 (Mar. 1977), pp. 125-143.

(L2) Lafnport, L., * ‘Sometime’' is Sometimes ‘Not Never': On the Temporal Logic of Pro-
grams,” 7th Annual ACM Symposium on Principles of Programming Languages (1980),
pp. 174-185.

[LPS] Lehmann, D., A. Pnueli, and J. Stavi, “Impartiality, justice and fairness: the ethics
of concurrent Lermination,” in Automats Languages and Programming, Leclure Notes in
Computer Science 115, Springer Verlag (1981), pp. 264-277.

3

[MI’1] Manna, Z. and A. Pnueli, “Verification of Concurrent Prorams: The Temporal I'rame-
work,” in The Correctness Problem in Computer Science (R.S. Boyer and J S. Moore,
eds.), International Lecture Series in Computer Science, Academic Press, London (1982),
pp. 215-273.

[MP2] Manna, Z. and A. Pnueli, “Verification of Concurrent Programs: Temporal Proof
Principles,” Proc. of the Workshop on Logic of Programs (D. Kozen, ed.), Yorktown-
Heights, N.Y. (1981). Springer-Verlag Lecture Notes in Computer Science 131, pp. 200-
252,

[MP3] Manna, Z. and A. Pnueli, “Verification of Concurrent Programs: Proving Eventualities
by Well-Founded Ranking,” TOPLAS (1983, to appear).

[MP4] Manna, Z. and A. Pnueli, “Verification of Concurrent Programs: a Temporal Proof
System,” Proc. 4th School on Advanced Programming, Amsterdam, Holland (June 1982).

[MP5] Manna, Z. and A. Pnueli, “How to Cook a Temporal Proof System for Your Pet
Language,” in the Proc. of the Symposium on Principles of Programming Languages,
Austin, Texas (Jan. 1983).

[OL] Owicki, S. and L. Lamport, “Proving Liveness Properties of Concurrent Programs,”
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3 (July 1982),
pp. 455-495.

[0OG] Owicki, S. and D. Gries, “An Axiomatic Proof technique for Parallel Programs,” Acta
Informatica, Vol. 6, No. 4 (1976), pp. 319--340.

[Pe] Peterson, G.L., “Myths about the Mutual Exclusion Problem,” Information Processing
Letters, Vol. 12, No. 3 (June 1981), pp. 115-1186.

[PS] Pnucli, and A., Sherman R., “Semantic Tablcau for Temporal Logic,” Technical Report,
CS81-21, The Weizmann Institute (Sept. 81).

32

(yl,yaft) = (F, 1) !

Figure O

™ ey

Fig. 1. Proof Diagram for !y o 015

33

¢8: ll,m5

@6: [l}me)t= 2

Fig. 2. Proof Diagram for 2-bounded overtaking from !1

34

Fig. 3. Joint Transition Diegram for the Mutual Exclusion Program.

Fig. &4. TP(Sl.?,g_t_ 23)

Fig. 5. Tp(8,9,)

36

Fig.

37

Fig. 7.

TP(So’ *2)

38

i

