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Abstract:

The paper explores the three important classes of temporal properties of con"rrent programs:
invariance, liveness and preceden#c. It presents the first methodological approach/to the precedence
properties, while providing a r view of the invariance and liveness propertiesi The approach is
based on the unless operator ,which is a weak version of the until operator TJ. For each class of
properties, we present a single complete proor principle. Finally, we show that the properties of
each class are decidable over finite state programs.

1. INTRODUCTION

In studying temporal properties of programs, i.e., properties that go beyond partial correctness,
an obvious hierarchy of such properties can be developed. One way of classifying the different sets
in this hierarchy is by the syntax of the temporal formulas expressing them.

The first set in this hierarchy is the class of invariance properties (safety in the terminology
of [I1). These are the properties that can be expressed in terms of a formula of the form:

0-10 or W D 3.

A formula or the first form, stated for a program P, says that every computation of P continuously
satisfies i'. In the case or the second forir, the formula says that whenever p is true, ? is in-
mediately realized and will hold continuously throughout the rest or the computation. Properties
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falling into this class include partial correctness, clean behavior (error freedom), mutual .xclusion,
and deadlock absence.

The second set in the hierarchy of properties is the class of liveneua properties (eventualities
in the terminology of IMP[I). These are properties that are expressible by temporal formulas of
the form:

In both forms these formulas guarantee the occurrence of some event Ob, in the first case uncondi-
tionally and in the second case conditionally on an earlier occurrence of the event ip. Among the
properties railing into this class are: total correctness, termination, accessibility, lack of individual
starvation, and responsiveness.

While most of the researchers in the field tend to agree that these two classes are the first
two rungs in a natural hierarchy, there is less of a consensus about what should be the next step
in the hierarchy. In previous work we have proposed that the next class to be studied is that
of precedence properties. In a broad sense, precedence properties are all the properties that are
expressible using the until operator U. To remind the reader, the expression pl.q, read "p until q",
means that eventually q must happen and between now and then p must continuously hold.

A more mathematical formulation of this definition is given by:

Let r = 8o, 81, 82, ... be a sequence of states, then pUq is true for a if there exists a j 0
such that:

q is true for the sequence 8j, sj+I, 8j+2, ...

(if q is a state property then q holds at si), and for every i, 0 < i < j:

p is true for the sequence si, si+1, 8i+2, • • •

(if p is a state property then p holds at s). Here, a state property is a property that depends only
on the state and not on the full sequence. Note that in the special case that j - 0, then q is true
on a and no requirements for p are implied.

A derived operator is the precede operator P that can be defined by:

pPq - -((~p)uq)

The meaning of this operator is that "p precede q", i.e., if q ever happens it cannot happen unlCss
p occurs first (strictly before q). In contrast to pUq which requires that q eventually happens, pPq
is automatically satisfied ir q never happens.

We often use nested until expressions of the form

p,U(p2U(p3U...(pl Uq)...)),

where PI, ... ,Pkq are state properties, i.e., fortitilas dependent only on the state and containing
no temporal operators. By carerul examination or the semantic definition of tie until operator
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we arrive at the interpretation that, stated at to, this expression means that there exist instants

to _ 5 .t._ t2 th,

such that: 3.
I 0'0

pt holds in every t, to 5 t < t

p., holds in every t, ti :5t <1t2 Pv - a

ph holds in every t, tk- 1 !5 t< tk, and v -
q holds in tk. so

Thus, this expression predicts a period of continuous pL followed by a period of continuous p2,
and so on, until a period of continuous ph, followed by an occurrence or q. Note that any of these
periods may be empty by having tj = tj+1 for an empty (i + 1)st period.

Since we are interested only in nested until expressions where the nesting is in the second
argument, we can omit the parentheses and represent the expression above by:

pUprUp ... pUq.

The class of precedence properties that we consider are therefore formulas of one of the forms:

p D (qPr) - a precede formula

p D (plUp2U ... pkUq) - an until formula.

Several interesting properties fall into the broad class of precedence properties.

Example:

Let us consider a program G (granter) serving as an allocator of a single resource between
several processes (requesters) R1 , .. R ,hR competing for the resource. Let each 1i communicate
with C by means of two boolean variables: ri and g,. The variable r1 is set to true by the requester
R, to signal a request for the resource. Once 14 has the resource it signals its release by setting
r, to false. The allocator G signals ft that the resource is granted to him by setting gi to true.
Having obtained a release signal from R, which is indicated by ri = false, some time later, it will
reappropriate the resource by setting gs to false.

Several obvious and important properties of this system belong to the invariance and liveness
classes. For instance, the property

ensuring that the resource is granted to at most one requester at a time, is an invariant property.
In summing boolean variables we treat true as I and false as 0. Similarly, the important property
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which ensures responsiveness, is a liveness property. It guarantees that every request ri will

eventually be granted by setting gi to true.

Let us, however, consider some precedence properties which are relevant to the specification
of such a system.

(a) Absence o.f Unsolicited Response.

An importaatbutioken overlo6ked desired feature is that the resource will not be granted to
a party who Ias not requested it..(A similar property in the context of a communication network is
that every riesage received musflia6e been sent by somebody.) This is expressible by the temporal
formula "

-g (;ipg,).

The formula states that if presently gi is false, i.e., R does not presently have the resource, then
before the resource will be granted to Ri the next time, Ri must signal a request by setting r, to
true.

(b) Strict (FIFO) Responsiveness.

Sometimes the weak commitment of eventually responding to a request is not sufficient. At
the other extreme we may insist that responses are ordered in a sequence parallelling the order of
arrival of the corresponding requests. Thus if requester Ri succeeded in placing his request befr.e
requester Rj, the grant to Ri should precede the grant to R'. A straightforward translation of this
sentence yields the following intuitive but slightly imprecise expression:

A more precise expression which also better conforms to the general form of the class of
properties we discuss in this paper is:

(ri A '-'r A '-gj) D (-g3Ugi).

It states that if we ever find ourselves in a situation where ri is presently on, and ry and g. are
both off, then we are guaranteed to eventually get a gi, and until that moment, no grant will be
made to R,. Note that ri A --ri implies that li's request preceded Ri's request, which has not
materialized yet. We implicitly rely here on the assumption that once a request has been made it
is not withdrawn until the request has been honored.

This assumption can also be made explicit as part of the specification, using another precedence
expression:

iD gnp(~rj).

Note that while all the earlier properties are requirements from the granter, and should be viewed
as the "post-condition" part of the specification, this requirement is the responsibility of the re-
questers. It can be viewed as part or the "pro-condition" or the specification. Without this
assumption, we could not hope to implement the granter in any reasonable way, since it would.
have to respond to very short and intermittent requests.
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(c) Bounded Overtaking.

The requirement or FIFO responsiveness may sometimes be too restrictive and difficult to
implement. Any program for the allocator that scans the requests in a certain polling order,
rl, .. . , 7 k and then back to rj may respond to requests in, say, the order or their detection by the
program. This order may be different from the arrival order. A more realistic requirement would
allow deviations from the FIFO discipline, provided they are bounded. For example 1-bounded
overtaking would say that for every i and j such that ri preceded rj, we may allow g. to precede
gi at most once. FIFO responsiveness may their be regarded as 0-bounded overtaking. In order
to express k-bounded overtaking we have to use nested until expressions.

The 1-overtaking property can be expressed by a nested until expression:

(r A -ri) : (-9g)UgjU(-g,)Ugi.

This expression predicts a period in which Rj does not have the resource, followed by a continuous
period in which Ry has got the resource, followed by a period in which Ri does not have the
resource, followed by a grant of the resource to Rj . Since any of these periods may be empty,
the formula actually states that in the worst case, Rj may gain the resource at most once before

Proofs of invariance properties for concurrent programs, have been extensively discussed in
the literature (e.g., COG), [K),[L1], iMP2)). Fewer suggestions have been made for approaches to
proving liveness properties (e.g., 10L1, IMP21, IMP3)).

In this work we address the problem of verifying properties of the precedence class. Our main
conclusion is that the verification of precedence properties does not call for radically new ideas and
can actually be viewed as a generalization of the approaches suggested for invariance and liveness
properties. In fact, precede formulas are in many respects generalization of invariance properties,
whereas until formulas can be established by a generalization of the proof principles for liveness
properties.

To provide a proper framework, we first introduce an abstract operational model of concurrent
programs. We then outline a proof system based on temporal logic; the system has been shown
in iMP5] to be relatively complete for proving all properties of concurrent programs. We then
discuss some derived proof principles that are tailored directly for the verification of precedence
properties. The utility of these principles is demonstrated by proving several examples.

2. A COMPUTATIONAL MODEL

We start by defining an abstract computational model; the temporal logic properties will be

stated and proven for computations over this model.

The abstract model consists of the following elements:

S - A set of computation states. This is a possibly infinite set. Every element s E S represents
the full configuration of the computing sysLein; ror concrete programs each state includes
the values of all the program variables as well as the program pointers ror all the processes.
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0 -- The initiality predicate. We will only consider computations originating in a state so such
that $(ao) holds.

T .... A finite set of transitions. With each transition r E T we associate a partial function
f, : S - 2S, where f(s) yields all the possible outcomes of the transition r on the state
a E S. A transition T E T is said to be enabled on a state s if f.(s) # 0; otherwise it is
called disabled on s. A state a such that no transition r E T is enabled on it is called
terminal.

3 - The justice family. This is a (possibly empty) family of sets of transitions J = {T(, ... , Tk}.
Each set in J, T/ c T, is called a justice set and a justice requirement defined below is
to be applid to the set T.

- The fairness family. This is a (possibly empty) family of sets of transitions -
{T 1 , ... , T[,}. Each set in 7, TF C T, is called a fairness set and a fairness requirement
is to be applied to TJ.

An initialized computation of such a system is a sequenre of states with labelled transitions:

r: so 7 0 T2 ----- ... where ;ET,

which satisfies the following requirements:

" Mazimalit. The sequence or is maximal, i.e., either it is infinite or the last state s is
terminal.

* Initiality. The first state so satisfies the initiality predicate, i.e., O(so) = true.

ri +1
* State-to-State transition. For each step si-- sj+i in o we have that si+i E f.+,(si).

" Justice. For each 7" E J we impose a justice requirement:.

" a is finite, or

" a is infinite and contains an infinite number of states on which no transition in
T is enabled, or

• an infinite number of or-steps are labelled by transitions in T J.

This corresponds to the notion that if for all states from a certain point on, some transition
in Tr (not necessarily always the same) is always enabled, then some transition of i'
will be taken infinitely many times.

" Fairness. For each TP E I we impose a fairness requirement

So is finite, or

* a is infinite and from a certain point on no transition of TF is enabled, or

* some transition of T 7 is taken infinitely many times.

This corresponds to the notion that if some transitions from T F are enabled infinitely
many times then some transitions from TrF are activated infinitely many times.
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An admissible computation is any suffx of an initialized computation.

When considering a concrete computational system, we have to identify the five elements
described above with more concrete objects. Since our example is based on a shared-variables
computational model, we proceed with such identification for the ahared-variabes system. Such a
system has the form:

fg(); [PI 11 ... 11 P.1,

where - (yi, ... , yn) are the program (shared) variables, Y = (zi, ... xez) are the input vari-
ables, and P, ... , P,, are the concurrent processes of the program. Each P is represented by a
transition graph with nodes (locations) Li = (0, ... ,,t) and directed edges E = {ei1 , ...
The locations to are the entry locations of Pi, respectively. Each edge e E E, is labelled by anI instruction:

e

whose meaning is that when c,(ji) is true, execution may proceed from t. to 4 while assigning
the values h,(Fj) to the variables . Special cases are the semaphore instructions request(y) and
release(y), equivalent to (y > 0) -- (y := y - 11 and true --+ jy := y + 1), respectively. We refer
the reader to fMP1J for a more detailed discussion of these models.

A program state for this system has the form:

(III.. ,tn; , ... 017")p

where each t' E Li denotes the current location of the execution in the process Pi, and each
qi E D is the current value of the program variable y.. (The variables F are assumed to range
over some domain D.) Thus we identify the set of all states S as the set of all (m + n)-tuples
(LI x ... x L,, x D)").

The initiality predicate is given by:

0(1' . .. 'f; 10 [( 0= )] A (19u())
At

ensuring that all the processes are at their initial locations and the values of the program variables
are properly initialized.

The set of transitions T is identified with the set of all edges Ui.,Ei. For r = e E E, we
define

&i,.,;; ') E. f,(t', .. t;

if and only if

ti = to t=p i =t' for every j0 i , c.(#) "true and '4= h.(!).

The justice family is given by:

3 = {EI,...,E.);
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that is, we require that justice be applied to each process individually. This implies that in any
infinite computation, each process that has not terminated yet will eventually be scheduled.

The fairness family is given by:

I {{e} I e is labelled by a request(y) instruction}.

Thus, each semaphore transition is to be individually treated fairly. This implies that a request(y)
instruction which is waiting while y turns positive infinitely many times must eventually be per-
formed.

In considering computations or a program as models for temporal formulas that express prop-
erties or the program, we define the model & corresponding to a sequence a,

7 1 * T3o r" 80 --"- 1 -8 S )--- ... ,I

as follows: If or is infinite then the corresponding model is

a: SO, 31) 82, ....

In the case that a is finite and its last state is the terminal state sk, we takV E to be

&: 8 0 , 1...,tk, Sk, ... ,

that is, the last state repeats forever.

3. THE PROOF SYSTEM

The proof system consists of three parts.

* Part A, called the general part, formalizes the pure temporal logic properties of sequences
in general. It is completely independent of the particular program analyzed.

* Part B, called the domain-dependent part, formalizes the properties of the domain over
which the program operates, such as integers, reals, strings, iists, trees, etc.

* Part C is the program-dependent part. It provides a formalization of the properties that
result from restricting our attention to the computational sequences of the particular
program being analyzed.

We refer the reader to !MP41, [MP5] for a discussion of parts A and B. lere we only repeat
part C which we further develop in order to prove precedence properties.

The program-dependent poart consists of four axiom schemes corresponding to the four re-
quirements imposed on admissible computations. In the following, a state formula is a formula
containing no temporal operators and hence interpretable on a single state.

Let So and 0b be two state formulas. We say that a transition T leads from 1P to 4i if for every
two states 8 and a' the following is true:

V(s) A (s'By E ,()) 0(s').
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Note that this formula is classical, i.e., contains no temporal operators and should be cxpressible
and provable in the first-order theory over the domain.

For example, in the case of the shared-variables computation model a transition r would
correspond to an edge e in some process Pi:

e(-) -[ h(y)J

e

so that the condition above is expressible as

Given a subset of transitions T' C T, we say that T' leads from V to o if every transition
r E T' leads from V to b. If the full set T leads from V to 0', we also say that the program P leads
from V to 0t.

The state formula Terminal, characterizes the terminal states:

Terminal(s) = A (s) = 0)
rET

Also, for a subset T' of transitions, the state formula Enabled characterizes the enabled transitions
in T':

Enabled(T')(s) - V [f,(s) : 01.
-"ET'

Both formulas are expressible by a quantifier-free first-order formula.

Following are the inference rules of the program part:

(INIT) For an arbitrary temporal formula w

1- OJW u
I-O1w

This rule states that if w is an invariant ror all initialized computations it is also an invariant
for all admissible computations. This is because every admissible computation is a suffix of an
initialized computation, and a property of the form 0 w is hereditary -from a sequence to all of its
suffixes.

(TRNS) Let (p and 0 be two state formulas

F Every r E T leads from o to

I- (o A Terminal)

- 0o 0

The first premise ensures that as long as at least, one transition is enabled, then if the current
state satisfies W, the next state must satisfy 0,. The second premise handles the case that all
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transitions are disabled, i.e., that of a terminal state. In a computation this means that no further
action is possible and the next state is identical to the present. Hence this premise also ensures
that in such a case the next state will satisfy @.

(JUST) Let o and ik be two state formulas, and T J E J a justice set

I- Every T E T leads from o to o V4

- Every r E T leads from V to t

- [V A 0 Enabled(T')] 0 qo1

To justify this rule, consider a computation a such that V A UiEnabled(T3 ) holds for 0r but
VUo4 does not hold. By the first premise, once V holds it can only stop holding when '0 happens.
Hence o U may fail to hold only if 04 never happens and V is true forever. Since we assumed that
T- is continuously enabled on cr, some transition in T J must eventually be activated, and this in
a state satisfying V. Hence, by the second premise, once this transition is activated, it achieves O,
contrary to our assumption.

A similar rule applies to fairness:

(FAIR) Let V and 4, be two state formulas, and TF E T a fairness i

I- Every T E T leads from V to v V

I- Every r E TP leads from V to 0

I- IV A 0 0 Enabled(TF) D oU1,

The justification is similar to that of the JUST rule.

In the following discussion we will consider computations only under the assumption of justice.
This amounts to considering an empty fairness family I = . In the shared-variables computation
system this means that we consider programs without semaphores. The reintroduction of fairness
to the following analysis can be done in a straightforward manner.

In [MP51 the set of the rules above has been shown to be relatively complete. By this we
mean that an arbitrary property which is valid for a given program, can be proved using these
rules, provided the pure logic and domain dependent parts are strong enough to prove all valid
properties. This result implies that the program dependent part is adequate for establishing all
the properties that are true for admissible computations. However, while giving full generality,
these rules do not provide specific guidance for proving properties of the three important classes
that we have discussed: invariance, liveness and precedence.

We will proceed to develop derived rules, one for each class. These rules, while being derivable
in the general system, have the advantage of being complete for their classes. By this we mean,
that every valid property in the class can be proved using a single application of the proposed rule
as the only temporal step. All the premises to the rule are first-order over the domain. Thus, for
anyone who is interested only in proving properties of these classes, the respective rules are the
only temporal proof rules he may ever need, dispensing for example with the general temporal
logic part.
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We will illustrate thesr rules on a single example -- an algorithm for mutual exclusion (Fig.

0) -- tak( :1 from [Pe]. The program consists of two concurrent processes, P, and P2 that compete

on the access to their critical regions, presented by 3 and m 3 respectively. Entry into the critical
regions is expected to be exclusive, i.e., at no time can P be at 13 while at the same time P2 is

at M 3 . The processes communicate by means of the shared-variables Y1 ,1 2 ,t. Process Pi sets yj

(i = 1, 2) to 7' whenever he is interested in entering his critical region. lie then proceeds to set

t to i. Following, he reaches a waiting state (t2 or M 2 , respectively). There he waits until either

yi = F (here i is the competing process, i.e., T = 2 and 2 = 1) or t = i. In the first case he infers
that the competitor is not currently interested. In the second case he infers that P- is interested
hut has arrived to his waiting state after P. did, since P- was the last to set t to i. In any of these

cases Pj enters his critical region. Once he finishes his business there he exits while setting yi to

F, indicating loss of interest in further entries for the present.

This description is of course intuitive and informal. The following discussions will provide
more formal proofs of the correctness of the algorithm.

4. INVARIANCE PROPERTIES

A single rule which is complete for this class is:

(INV) -- Invariance Rule

Let 'p and 4 be state properties

A. I- 0 D V

B. I- Every -r E T leads from top o V

C. I- 'p D

A slightly more elaborate rule can similarly be used tc' establish properties of the form V3 04.

Since the rule is derivable from the INIT and TRNS rules above, it is certainly sound.

To argue that it is complete for properties of the form 0 i, let 4 be a state property such
that 0 4' is true for all computations. Define the predicate:

r1  r2  rk
Ace(s) = {There exists an initialized computatior segmnent 8o 81 72 *... I Sk -- 8}.

Thus, Ace(s) is true for a state s iff there exists an initialized computation having s as one of

its states. We have defined Ace(s) in words rather 'han by a formula; however, if the underlying

domain is rich enough to contain, say, the integers, then this predicate is expressible by a first-order
formula over the domain.

We now apply the INV rule with 'p = Ace. Certainly 0 D Ace, since every state so satisfying

0 participates in a computation: so -- a - ... . It is also easy to see that if 8 is accessible
and s' C f,(s) then a' is also accessible. This establishes preminse 13. P'remise C says that every
accessible state satisfies 4', but this follows from our assumption that 0 4 is true on all admissible.

computa'.ions. Consequently the INV rule is always applicable.
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Let us considcr sonic invariance properties fr the mutual cxci uslion program (Fig. )yprescnted
above. J1: 0-((t=i1) V (t= 2))

Note that for this program

e0 atto A at mo A [((, Y2 , t) =(F, F, 1)1.

'fake v = = (t = 1) V(t = 2). It is easy to verify that 0 (psince 0implies t 1.
Similarly by inspecting every transition we see that all or them maintain jp.

11: F- O(Y1 = 1 1-3 )

The proposition tl..3 is defined as att 1 Vat £2 Vat£ 3 , i.e., it holds whenever P1 is somewhere
in {£1,£2,13}. Potentially ralsirying transitions are:

t- 1: setting both yj and £1..3 to T.

13 - £0: setting both yj and t1to3 t.

All other transitions do not mnodiry either iyi or £1..3.

12: F 142 =-(Y2 .3

This property is symmetric to f1.

13: I O{12 A -M.'21 :) (t =1)}.

Note that initially £2 (i.e., at£2 ) is raise so that the implication is true. Potentially
falsiryinig transitions are:

11 - t2: Sets t to 1.
,rn1 - in2 : makes -M 2 ralse.

M2- M3 while t2: by I,, y,' = T so this transition is possible only when t =1.

All other transitions trivially maintain the invariant.

14: F 0{[M2 A "-£21 D (t =2)}.

Can be shown in a similar way.

We may now obtain the invariant ensuring mutual exclusion:

15 l'- 0("-13 V -'M3).

It is certainly true initially. The potentially falsifying transitions of' this invariant are:

£2 -£3while mn3 : but then Y12 = T (by 12) and t = I (by 13), so that this transition
is impossible.*

M2--* M3 While t3: impossible, because V1JI T (by 11) and t = 2 (by 14).

Thus mutual exclusion has been formally proved.

5. LiVENESS PROPERTIES

We start by dleveloping a j,,--.of rule which is more conven~ient to apply thtan the JUST rule.

12



(J-EVNT) - The Just Eventuality Rule

Lct 'p and be two state formulas and T-r a justice set

A. I-Every 7- El7' leads from 'p to 'V V

B. I-Every -r E T- leads from 'p to ~

C. I p (iii V Eneh~led(T'))

I- 'p n PUV

A similar rule exists for fairness. The rule can easily be dcrived from the JUST rule since by premise
C every computation having in it a 'p which is not followed by a IP, will have T-' continuously
enabled. This by the JUST rule implies pUg'.

Let us apply the IEVN'f rule to our sample mutual exclusion program (Fig. 0). Take for
example,

V,= ps at12 A atM2 A (t =2) A (y, =T) A (Y2 =T)

V= 'P at 6

Clearly the only transitions enabled on a state satisfying Vpj are t2 6~1 and M2 - M2. Conse-
quently every transition leads from 'p, to VI~ V 4. Taking V~ to be PI, i.e., all transitions within
P1 , we have premises A and 13 obviously satisfied. Also Vp, implies that t2 -- t3 and hence P1 is
enabled. Thus we obtain l'- VI~ (' 1 U'pO). From this we can certainly obtain

FI- D :0 CW'

since pU q imnplies * q.

Next let us take

'p P2: W 2 A atmi A (y, =T) A (Y 2 = T)

0 'PI V 'P0.

We now take T' to be P2 . Certainly, the only transitions possibly enabled under VP2 are t2 -12,
t2 -- t3 and nit -- in2 . The first transition preserves 'P2. The second transition leads from (P2 to
'po. The third transition which is guaranteed to be enabled under V2s, leads from VP2 to VIt. Thus
every transition leads from 'P2 to 'p1 V 'PO- We Conclude F 'P2 J0('pi V 'Pa). Front this we may
conclude by temporal reasoning and the previously established 1-, 'p) O PO that

F S02 D (O

We may proceedl and define additional (pi, j = 3, . ,6, such that for each j, F-'p
O(Vk.,'Pwk) which eventually leads to I- 'p3 D 0 'p. This proof strategy of constructing a finite
chain of assertions, each eventually leading to an assertion of lower index can be summarized by:

13



(CRAIN) - The Chain Reasoning Proof Principle

Let Poit, ... ,p be a sequence of state formulas.

A. I- Every T E T leads from pi to VPit
i~i

11. For every i > 0 there exists a justice set TJ -=- T1 such that

I- Every T E T/leads front pi to V pi
j<1

C. For every i > 0 and 7' r as above:

V I( V [ V Enabled(T/)]
'<i

F(V pi) D0V
i=0

The scheme of a proor according to the CIIMN principle is best presented in a form of a
diagram. In this diagram we have a node for each p. For each transition r leading from a state
satisfying p to a state satisfying V. with j : i (and hence by A, j < i) we draw an edge from Pi

to pi. This edge is labelled by the appropriate justice set to which the transition belongs. Edges

belonging to the justice set which is known by premise C to be enabled in 'Pi are drawn as double
edges. For example, Fig. I contains a proof diagram for proving I- attI D W3 att for the mutual

exclusion program. By the CHAIN rule we actually proved I- (V6 at 3, but since ps is
att, this establishes the desired result. The diagram representation of the CHAIN rule resembles
closely the proof lattice advocated in tOLl for proving liveness properties.

In the application of the CHAIN rule we may freely use any previously derived invarlances of
the program. Thus, if I- 0 1 is any previously derived invariance, we may use Vpi A I instead of Vi
to establish any of the premises. This amounts to considering the sequence Vo A I, .. ., Pr A I
instead of the original sequence of assertions. Thus in the diagram (Fig. 1) we did not have an

assertion corresponding to ( 3 , M 3 ) since by the previously established invariances such a situation
is impossible, in particular no transition could lead from I A P 4 to ( 3 , m 3 ). Similarly no transition

from (62,ml) to t3 has been drawn in view of 13.

The chain reasoning principle assumed a finite number of links in the chain. It is quite adequate
for finite state programs, i.e., programs where the variables range over finite domains. However,

once we consider programs over infinite domains, such as the integers, it is no longer sufficient
to consider only finitely many assertions. In fact, sets of assertions of quite high cardinality are
needed. The obvious generalization to infinite sets of assertions is to consider a single state assertion
p(a, s), parametrized by a parameter a taken from a well-founded ordered set (A, <). Obviously,
an important feature of our chain of assertions is that program transitions led from pi to o with
j < i. This property can also be stated for an arbitrary well-founded ordering. Thus a natural.
generalization or the chain reasoning rulle is the following:

14
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(WELL) - The Well Founded Liveness Principle

Let (A, -<) be a well-rounded ordered set.
Let p(a) = V,(a, a) be a parametrized state formula, and ' a state

formula.
Let h : A -- J be a helpfulness function identifying for each a E A

the helpful justice set h(a) E J.

A. F Every transition r E T leads from
V(a) to 0 V 38((P -< a) A 9(p))

B. I- Every transition r E h(a) leads from

p(a) to 0 V 3((# -< a) A V(fi))

C. I- jo(a) D 11P V 30((# -< a) A o(fl)) V Enabled(h(a)))

In order to obtain a complete rule for liveness properties we have to treat the parametrized
assertion Vo(a, a) as an auxiliary assertion:

(LIVE) -- A Complete Principle for Liveness

Let p, q be state formulas and p(a), 4i a parametrized assertion pair
as in WELL.

Assume premises A, B, C as in WELL, and

D. - 0p, i.e., p is an invariant

E. I (q A p) D (3a.p(a))

I-q 0

We refer the reader to [LPSJ for a completeness proof of the LIVE principle. Completeness
here means that given two state properties q and 0 such that q : 00 is a valid statement over
all the computations of the program P, it is always possible to find state predicates p, Vo(a, a)
with a E A and (A, -<), h as in WELL that satisfy premises A to E. Note that premise D requires
preliminary derivation of the invariance of p which can be done using the INV rule.

6. PRECEDENCE PROPERTIES

As a key operator in expressing and establishing precedence properties we take the weak until
operator, t, to which we will refer here as the unless operator.

The unless operator may be defined in terms of the standard until operator as:

p.U q = pv(pttq).

Thus, in contrast to pUq it does not require that q eventually happen. But in the case that q never
happens p is required to hold forever.
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Even though it is introduced here as a derived operator, it can be adopted as the basic operator
for establishing precedence properties. This is because both the until and precede operators can be
expressed in terms of the unless operator:

pUq (p1tq) A *q

pPq (-q)iI(pA-q).

We can also express the nested until operator by considering the nested unless operator. Let
0,, 0,_ ... , 4, oo be a sequence of formulas then

holds on a sequence a = so, a,, .. . if there exists a sequence of indices 0 = i, < _ < ... <
it 5 io < w such that for every t > 0 and j, it < j < it-,, 4t holds on

and if io < w then 0o holds on a('O). Note that some or the it may be equal to one another, and
also to w in which case some or the 0't hold in empty periods.

An alternative description is that 4, it ... 01 it4'o holds on a iff either o satisfies 0', ...
4'1 U4o or for some j, 0 < j S r, a satisfies 0,. . o4'.+IU 0340. In the case j = r, a satisfies

Then we can express the nested until by an extension of the previous formula for a simple
untik

,A',0,-llU... 01U0o = ('0'. jj,_x U 0 .. eIt,) A 000.

Let us justify this equivalence. The. direction in which the nested until implies the nested
unless and the eventual ocurrence of 4'o is obvious. Let us therefore consider the other direction.

Assume that 4', JA . . . V't Ui to and C 0(o both hold on a sequence a. By the interpretation or
nested unless there exists a partition:

0 = i, 5 i,-t 1< ... < ii <5 io < W

such that 0'1 holds between it and it-, for t > 0 and 4'o holds at io if it is finite. Since 10o must
occur somewhere in a let j be the minimal index such that '0 holds on or(A . If j = io < w,
then the same partition justifies 0,U ... 0 bU0o on a. Otherwise there exists some t such that
it ._j < i In this case the partition up to i and then j justifies b,U ... 4'tutvo from which

0,.U.PIU,0- I ... 01 U'0

follows by letting %'-t, ... ,4' hold over empty periods.

Thus, expressively at least, the unless operator seems to be an appropriately basic operator.
But we claim that the choice or the unless operator is appropriate on proof theoretic grouilds as well.
fly inspecting; the expression of until formulas in terms of unless formulas we find a resemblance
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to the relation between the concepts of total and partial correctness. Total correctness, which is a

liveness property, can be expressed as the conjunction or partial correctness, which is an invariance

property, and termination, which is another livencss property but simplcr than the original. In
quite the same way we can express the until property as a conjunction of an unless property, which
we regard as extended invariance property and the simpler liveness property o40.

In practice, if we want a single proof principle that will cover properties of the following three
subclasses

(a) v D (p Uq)

(b) v (pPq)

(c) p (p Uq)

then the unless operator is a good choice.

In order to establish (a) we establish separately

I- (V' : pitq) and 1- V q,

which are implied by (a). The first will be established by using the unless proor principle. The
second is a liveness property and can be established by the WELL rule or its extensions.

Similarly in order to establish (b) it is sufficient to establish V D (AUt.) where P is -q and j
is p A -q.

We could not have used the until operator in a similar role, i.e., reducing proors of properties
of the subclasses (b) and (c) to the.e of (a). This is for example because if V D (p£{q) is a valid
statement, then certainly so is 9, D (O3Ip V (pUq)), but it does not imply that either ip D 0ip or
o D (pUq) are valid statements. Proving precede statements would cause similar problems.

The fact that the weak form of the until operator is more basic than its strong form seems
to have been intuitively sensed in [121 where a while operator is introduced which is equivalent to
p U-q.

Consequently, we will proceed by developing proof principles for the unless operator 1. We
begin by formulating a core rule:

(CORE-U) - Core Rule for Unless Properties

Let ip., pr-l, ... io be state formulas

A. For every i > 0,
F Every r E T leads from pi to VVY

(pi):)(OpUV' 7 i U -- 'lt UO)
i-O

Let a be a computation whose first state so satisfies i. For some 0 < r. Assume first that
j > 0. Define i - .. - ii --- 0. By premise A, a, must satisfy some 91 for I < j. If
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I=jwe proceed until we find an sAk that satisfies pf for t < j.il wc never find such a state we
may take ii- I = o = w. Otherwise we take ii. 1 = .. = k and proct'ed similarly
beyond al, unless 1 0. This construction shows that if so satisfies pi for some .j then a satisfies
'p, U ... Il po. The case j=0 is even simpler.

We can make a complete rule out of the CORE-U rule by strengthening the preconditions and
weakening the post conditions.

(UNLS) - Complete Rule for Unless Properties

Let 'pry ... o 'Pop 'Or ... f 4)o, p, q be state formulas such
that:

A. For every i > 0,

F Every T ET leads from 'pi A p to v

B. F- Op

C. F- (q A p) D (Vi)
i=O

D. For every i, 0 <i<r

F- (Vi A p) 0 0

I- q 0(b, It1b, -I U... ~ii 9 o)

Let us consider the application of this rule to the analysis of the mutual exclusion algorithm.
We take (the (pi's refer to the assertions in Fig. 1):

q:at t2

950 = io at 6

951 =V 1.. 3 :12 A Imo, 1 V (M2 A(t= 2)))

952 = 94: t 2 AM 3

'P3 = V5: t 2 AM 2 A(t=l1)

01= 4)3 = -Mr3, 4'2 = Mn3

p - the conjunction of all the invariants Io A ... A 15

The diagram certainly establishes that Oi3, i > 0, leads to 9i
i5;i

3
It is also easy to show that (q Ap) D (V i~) and that 95i D )p for i =0, .. ,3. Thus we

may conclude:

12 :s) ('-M 3 Urn3 U -M 3 UI1 3)-



This establishes the property of 1-bounded overtaking from Is. This means that once P, is at
12, P2 may be at m3 at most once before PI gets to his critical section at £3.

An alternative derivation of the same result could have been achieved by taking the V's in the
rule to be identical to the v's in the diagram. This leads to:

l- 12 D (V5Ut4£ti3£tV2UW11 o).

We may now use the collapsing theorem for the unless operator:

(piqUr) D ((pVq)itr)

to obtain:

- 12 D P114APV2P)V)

which is equivalent to the above after we replace each of the p's by the weaker Oi.

Having obtained I-bounded overtaking from the point that P is at 12 we may inquire whether
the same holds from the point that P, is at I,. As the analysis shows in Fig. 2 the best we can
hope for is 2-bounded overtaking. The diagram in Fig. 2 establishes

I- :) (V4 U5 I .3UVo)

from which 2-bounded overtaking is easily established.

7. COMPLETENESS OF THE UNLS RULE

Next we will show that the UNLS rule presented above is complete for establishing nested
unlea properties.

Proof:

Let q, 0,, ... ,Oo be state properties such that the statement q D (0, U''-t ... 01 U0) is
valid on all admissible computations. We will show that there exist state properties p, pr, I ol
which are first-order expressible over the integers, such that all the premises of the UNLS rule are
satisfied.

As p we choose

p(s) : Acc(s) (- There exists an initialized computation containing a}.

Clearly p is an invariant of all admissible computations so that premise B is satisfied.

Let & be a finite segment of a computation, i.e., a finite sequence

= 1O 9oat - . • ---hsk

such that s+ I E f/(s,) for each i- 0, ... ,k - 1.
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We say that a satisfies a temporal formula w if a's infinite extension so, at, v.., Sk, sk, sk, ...

satisfies w.

Let cr be a computation satisfying or it ... 0i U4'o. It can be verified that any finite prefix of
a is a computation segment that also satisfies 0, Rt ... 01 U4'o.

Let us define now p for i = 0, 1, ... ,r by d(s) = true iff

(a) Every computation segment originating at a satisfies 4'i it4 - ... 01 i0O

(b) The index i is the smallest index for which (a) holds.

Let us show that the sequence of pi's defined in this way satisfies premises A, C and D of the
UNLS rule.

Consider first premise A. Let a be a state satisfying pi, for i > 0. Let s' be a state such that
a' E f,(s). Consider any computation segment originating in a':

Tt ) 2 A : Sk.

We can obtain from it a computation segment:

T , jT I ) 2 b ka : s --- "-*-' "-'- ... -- s

By our assumption about a, & must satisfy 4'i 1 ... U-0'o. It can be shown that due to i > 0,
and the minimality of i this implies that c' must also satisfy ij it ... Uo4o. Thus we have identified
at least one index, i, such that clause (a) is satisfied for i and a'. Let j > 0 now be the minimal
index satisfying (a) for a'. Then (b) is also satisfied and we have that a' satisfies Vj for j < i. This
establishes premise A.

Next, consider premise C. Let a be a state satisfying q and p. It is therefore an accessible state
satisfying q. By the assumption that q D (o, JA ... 11I0o) is a valid statement for all admissible
computations, every computation originating in 8 saisfies Obr U ... it 0. Consequently every
computation segment originating in a satisfies 4', Ut ... ifoo. Thus, clause (a) of the definition of
pj is satisfied for i = r. Let j be the minimal index satisfying clause (a). Then p,(s) holds and
j< .

To show premise D, let a be a state saisfying pi. Consider first i = 0. The zero version of
4' U ... It~io is 4o by itself. Since every finite computation segment originating in a must saisfy
#'o which is a state property, it follows that a satisfies -bo. Consider next, i > 0. Since i was
the minimal index satisfying clause (a), there must exist a computation segment a originating in
a which satisfies Obi Ut ... g{ o'o but not o',._ i ... Ul #o. Consequently the initial section of i
satisfying 4bi must be non-empty and therefore a must satisfy 10,. Thus, we have pi D Oi.

We claimed that the pi's defined above are first-order expressible over the integers. This is due
to the fact that clause (a) refers only to finite computation segments. This is a direct consequence
of the fact that we deal with the unless operator. No similar first-order definition is possible for
the until operator. J
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8. DIRECT PROOFS OF UNTIL PROPERTIES

In spite of our recommendation of splitting a proof of until property into a proof of a similar
unless property, followed by a liveness proof of 0Z 0i, there are many cases in which an until property
can be directly obtained by a small modification of the liveness proof. As we have seen both the
CHAIN rule and the UNLS rule call for a sequence of assertions, such that the computation always
lead from Vi to pj with j .5 i. The CHAIN rule stipulates in addition a strict decrease under
certain conditions. It is often the case that the same chain of assertions used in the CHAIN rule
can be used to establish a nested until. In fact, in much the same way that we have justified the
CHAIN rule we can with the same premises obtain a stronger result:

Taking 0 < pi < P2 < ... < p. = r be a partition of the index range [0...r] into s
contiguous segments, we may formulate the following chain principle for until properties:

(U-CIIAIN) - The Chain Rule for Until Properties

Let po, 'p, ... , oP be a sequence of state formulas, and 0 < p, < p2 <
... < Ps = r a partition of [I...f].

A. I- Every 7 CT leads from pi to (Vo) for i = ,...,r.

B. for every i > 0 there exists a justice set T -V T7 such that:

I- Every rE T leads from pi to (V pi)
i<'

C. for i > 0 and Ti as above:

p D [(V v,) V Enabled(T/)Jl
3<'

r P J)4-- P1
F (V( V u( V Vo)... (VV U

i=O 'p_ I+, --j=P- 2 +1 j=1

The conclusion states that starting at a state that satisfies one of the pi's, i = 0, ... ,r, we
P.

are guaranteed to have a period in which ( V vi) continuously hold, followed by a period in

ji-p.- 1 +1

which ( V pi) continously holds, etc., until finally po is realized. Any of these periods may
i-P.- +I

be empty.

To justify the soundness of this conclusion we first prove it for the most refined partition
possible, namely:

(,) (V /') D (VUS0,_,Up,,_ ... ,USo).

This is proved in a way similar to the justification or the corresponding liveness principle. We show
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by induction on n, n = 0, 1, ... ,, that

i-0

For = 0 we have I- V'o v o from which follows trivially

I-F o D V:oUIo..

Assume that the statement (*) above has been proved for a certain n and consider its proof

for n+ 1.
n

Consider the EVNT rule with V = .- As shown in the proof of the liveness
1=1

case all the premises of the EVNT rule are satisfied. Consequently we may conclude:

i'I

By the induction hypothesis and the monotonicity of the U operator this yields

-V+ I : (Vn+IUP.U... olUPo).

Due to I- v D (uUv), the induction hypothesis can also be written as

n(VA,) :) (,.+,Uv.U ... VIUP0).
i=O

Taking the disjunctica or the last two statements gives

n+1

'- (V ') D
i=O

which is the required statement (*) for n + 1.

Consider now a coarser partition:

O<pI<p2< .. p,-

By consecutively merging any two contiguous assertions that fall into the same cell, using the
collapsing rule:

I-('P+,0PUP u)) :) ((V,+,v ,)U'P),

we obtain the coarser conclusion:

" (VP'j) U V ,) ( V P)) U... (Vo).J
iO _1 j-P,_+1 i=l
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In our mutual exclusion program, by reference to Fig. I it is easy to use the U-CIIAIN rule
and obtain:

from which the 1-bounded overtaking from t 2 is obtained by the monotonicity of the until operator
(i.e., replacing formulas by weaker formulas).

A natural extension of the U-CHAIN rule to programs that require infinite chains of assertions
uses again well-founded ordered sets.

Let (A, -<) be a well-founded ordered set. We require however that the ordering is total (or
linear). That is, for every two distinct elements, al,a2 E A either at -< a 2 or a2 -< at.

(U-WELL) - Well-Founded Until Rule

Let (A, --<) be a well-rounded totally ordered set.

Let Vo(a) (a, s) be a parametrized state formula.

Let h : -* . be a helpfulness function identifying for each a E A the helpful
justice set h(a) E J.

Let a, -< a2 -< • -• •< a. be a finite sequence or elements of A.

A. I- Every transition T E T leads from

p(a) to 1b V 3((fl a) A W(fi))

B. I- Every transition T E h(a) leads from

V(a) to 0 V 3#((, -< a) A p(p))

C. - r(a) D [0b V 30 ((13 -< a) A V(,3)) V Enablcd(h(a))]

F 4( -< a.) A V(a)) D

([3((a,._I -< - a). _) A

30(((/ .- -. ) A 4 (f3)) A p/)

3/3((a~~..2 I)/ A< U~t A t(p)

By a combination of the completeness of the WELL rule for liveness properties and the UNLS
rule for unless properties we can extend the above rule to a complete rule for until properties.

9. DECISION PROCEDURES FOR FINITE STATE PROGRAMS

The question of whether a given program has a certain property expressed by a temporal for-
mula, is in general highly undecidable. However, for a very important restricted class of programs,
this question is decidable, namely for finite state programs. Finite state programs are programs
whose variables range each over a finite domain. These programs generate only finitely many
different states and a joint finite transition diagram over these states can be constructed such
that any computation is a maximal path in this finite directed graph. The literature abounds in.
many special decision procedures for testing ror deadlock situations, starvation, etc. on programs
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represented by finite transition diagrams. All these are special cases of the general result which
states that testing a temporal formula over a finite state program is decidable. The general deci-
sion procedure for testing a temporal formula 'p on a finite state program P consists in checking
the implication Wp D cp for general validity. In this implication Wp is a formula characterizing
all admissible computations of P. if P is finite state then both Wp and 'p may be represented
as propositional temporal formulas. Consequently we test a propositional temnporal formula for
general validity. As shown in [13S], it can be done in time exponential in the size or P arid V. This
exponential time complexity has been a source or criticism of linear temporal logic in [CES].

In this section we show that when the temporal property 'p to be tested, falls into one of the
property classes discussed here, then there exists an efficient decision procedure polynomial in the
size of P and Vp for testing 'p on P.

Let P be a program consisting of m processes P,, • • P,. Let each process Pi be presented
as transition diagram with set of nodes Li. The program variables Yl, y.,Yn assume values
over finite domains DI, ... D, respetively. Then the state set S of the program P is the set of
all possible tuples (ti, .,,; 771, ... ,vjn) with ti E Li, i - I, ... ,m, and 77j E Dj for j =
1, ... , n. Consequently

SI 1 I LI X X IL,IxID, x ... x DI.

We construct for P a joint transition diagram Tp with S as nodes, and an edge s---s for
every pair or states s, s' and a transition r in Pi which leads from s to s'.

In order to generate only accessible states we start from all states satisfying 0 and include in
Tp only states which are derivable from states which are already included in Tp. Fig. 3 shows the
diagram Tp for the mutual exclusion algorithm. States in this diagram have the form ,i,mjt).
We have not included the values of Yl, Y2 since in all accessible states they are uniquely determined
by the location values ti and mi. The initial state in this diagram is so.

We proceed to describe three algorithms which, for properties in each of t three classes, will
determine whether a finite state program P has this property. The algorithms wiI he linear in the
size of Tp. Let us denote N = ITpI.

10. TESTING INVARIANCES

Let the formula to be tested be of the form q D O 'p. We can check whether all paths in Tp,
and hence all admissible computations of P, satisfy q D O 'p by the following procedure:

P: Locate in Tp all states which satisfy q. For each such state s construct the transition
diagram Tp(s) which includes exactly all the states accessible from s. Check that each
a' C Tp(s) satisfies 'p.

If all these steps succeeded then q D [V' is valid for P. We can organize the procedure so
that it takes no more than m. N steps where N = ITpI and m is the number of processes and
hence the maximal degree of Tp. This is because if 82 C Tp(s 1 ) satisfies q then Tp(82 ) C Tp(s,)
and no separate check is needed for s2 if we have already checked Tp(sl).
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Consequently we have to access each state at most once, and then may have to explore each
of its edges.

For checking invariances we may actually suggest a simpler procedure: mark in Tp each state
which is accessible from a q-state (a state saisfying q). Then check that all the marked s ates
satisfy V. However the complexity of the two procedures is identical and the PI procedure above
conforms better with the procedures presented below for the other classes.

We may for example apply PI to test for the invariance of 10 to 15 derived for the mutual
exclusion. All these properties have the form []o so we may take q - true and consider Tp(s) for
all accessible states. However since every accessible state s E Tp(so) - Tp, it is sufficient to check
that all states in 'p satisfy o.

Indeed we can easily check for example that there are no states in which t2, -m 2 and t # 1
are all true. In other words every state in which both t2 and -M 2 are true, i.e., s6, s19, also has
t = 1 in it. This establishes 13. Similarly, there is no accessible state in which both t3 and m3

hold, establishing 15.

It is easy to prove:

Lemma:

A formula q D 0 V is valid for P iff the procedure PI applied to '(p succeeds.

11. TESTING LIVENESS

Let the formula to be tested be of the form q D < o. Let 8 E Tp be an accessible state. Let
71 = s1, 8., 8k be a finite path in Tp. We say that r is a non-p path if none of l, . .. satisfy
Vp. Note that sk is allowd to satisfy Vp. We define Tp(s,'p) to be the directed graph containing all
states in Tp which are accessible from s by non-'p paths. The graph /p(s,'p) can be efficiently
constructed as follows:

(a) Put s in Tp(s,'o)

(b) For every a' C Tp(s, v) which does not satisfy Vo, add all the successors of a' to
TP(s, V)

Let us decompose Tp(s, V) into maximal strongly connected components. It is known that
when we consider edges between the components, it is always possible to order the components in
a topological sorting order K1 , .. . ,K,, such that if there is an edge from a node in Ki to a node
in Kj then necessarily i < j. Components such that there are no edges leading out or them are
called terminal components.

We suggest the following test for checking that all just computations in Tp(s, V) satisfy 0 Vo:
'p-Liveness Test:

Decompose Tp(8,'p) into a topologically sorted list of maximal strongly connected com-
ponents: K,, ... , K,.

For each i = 1, ... ,r check:
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(a) If K, is terininal then it, consists or a single node satisfying (p.

(b) If K, is nonLerminal, th en there must, exist a j, j = 1, ., m, such that every
state s C Ki has a I-' transition leading out of Ki.

Lemma:

All just computations in Tp(s, 'p) realize 0 p iff the 'p-liveness test succeeds.

Proof:

Assume that the test succeeds. let a be any maximal conputation in Tp(s, 'p). By the ordering

of the K 1 , K,, from a certain point on, the computation must be fully contained in a single
cownponent, KI say. Ir KI is terininal then the computation terminates once it has entered K1,
and the last state satisfies p by (a) above. If K, is not terminal then being contained in KI and
by (b) it must be infinite, since no state in Kt is terminal. Furthermore, no 1) transition is ever
taken once the computation has entered Kt, otherwise it would have left K1. Consequently the
conpitation is unjust. with respect to Th..u" s all just computation imust eventually realize 'p.

Assume that the test rails. Then either there is a terminal component /i not satisfying p, or
there exists a nonterminal component K, not. satisl'ying condition (b). In the first case we construct
a computation a leading front a to K,, and then either stopping if' the state s C Ki is termninal or
looping within Ki in a loop that spans all or K,. Since states within Ki do not satisry p (actually
none of them does) this can be shown to be a just. onputation not realizing 'p. In the second
case, we construct again a computation a reaching K, and continuing in a loop spanning all the
transitiois within Ki. By violation of condition (b) every process P, that has not terminated yet
has a P transition internal to Ki. Thus by traversing all transitions in Ki, we generate a just
computation which does not realize V.

Note that the construction or Tp, its decomposition into strongly connected components and
applying the liveness test are all linear in the size of Tp.

In order to check that q : ' p is valid for P we could in principle take each s E Tp which
satisfies q, construct T'p(s,'p) and apply the 'p-livencss test to it. But we can actually be more
efficient as follows:

Let st,. sk be all the q-states in Tp. Construct Tp(s 1 ,Vp1 ) and check it for Wp-liveness,
where

= AS).

Next, construct Tp(s 2 , V2) and check it for 'p2 -liveness, where

V2(8) = V(s) V s C- T r(s,,V)

Thus in constructing Tp(s2 ,'p) we may slop the analysis once t~he computation enters
T'p(st,'po), since we already know that all computations there realize Vp.

In general we construct Tp(sq, 'pi) and check it for 'pi-liveness for i - I, ... , k where:

,(s) = (.) V Is I UC (VA.

3 <2
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In this way we essentially consider each state at most once and the whole procedure becomes linear
in ITP . J 

4P ,-

Let us apply this procedure for checking validity of att , atta on the mutual exclusion
program. We will check the following q-states:

817 (t,m 3 ,2), 812 : (It,mo,2), 813 : (ti,mt,2),

s8 1 (61,MP0,Y S3"7 (tb , 1)1 816 : Vh1m2,2).

In Fig. 4 we present Tp(s 17 , att 3 ). In decomposing the graph we find that every component
consists of exactly one node and a possible sorting order for them is:

817, 812, 813, 816, 818, 819, 84, 85, 86, 88, 89.

The terminal components are 85 and s9 arvid hey both satisfy att3. For every other com-
ponent we easily identify a helpful process leading out of the component. Thus P1 is helpful for
{817, 812, 813, 516, 84, 88) and P2 is helpful for {sis, 819, s6).

Note that this diagram also took care of 812, 813, a6. The next q-state not yet analyzed is
a1. We construct for it Tp(si,P 2) where V2(8) = at13 V s E Tp(8 17 , £3).

The corresponding diagram in Fig. 5 shows that all computations starting at a, or s3 eventually
must enter TP(S17 , att 3 ). Consequently we conclude that att1 D 0 at13 is valid for the program
P.

12. TESTING UNLESS PROPERTIES

Let the formula to be tested be

q :D (V, A,_I... V, VO).

Let 8 E Tp be an accessible q-state. Construct Tp(s, Vo) as before. We propose the following
test for checking that all computations in Tp(s,(po) satisfy w : V, ip,-,1 ... V 1t9poo.

w-Precedence Test:

Decompose Tp(s, poo) into a topologically sorted list or maximal strongly connected com-
ponents: K 1 , . , K,. Proceeding from K, down to K 1 , we try to assign each component
Ki a rank pi = p(Ki) as follows:

Let pi be the smallest k > 0 such that all states in K, satisfy Ok and that any component
K,, directly connected to Ki, i > j, has a lower or equal rank, i.e., k > pi.

If we fail to rank some component Ki then the test is said to fail, otherwise we say that
it has succeeded.
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Lemma A:

If the w-precedence test succeeds, then all computations in Tp(a, oo) satisfy w.

Proof:

Assume that the test succeeded. Let Vp be any computation in Tp(s, o). Such a computation
must progress through a finite chain of componenLs K, , ... ,Ki,, with ii < i 2 < ... < it.
Thus it sucessively Satisfies Vop(K,,), Vp(K,.), .p(K,,) with p(Ki,) ? p(Ki) > > p(Kj.

Obviously it satisfies w.

Let Ki be any component. We say that we failed to assign Ki the rank j if either pi > j or
we railed to rank Ki altogether.

Lemma B:

If we failed to assign K; the rank j then for every 8 E K i there exists a computation a
s * . (beginning in s) that does not satisfy

wi = vjA... w, Jtvo.

Proof:

We will prove the lemma by double induction, first on j = 0, 1, ... and then for each j on
i=r,r- 1, ... ,1.

Consider first j = 0. Let s E K; be any state in Ki. If s satisfies VP0 then Ki consists of a
alone and has no successors. Correspondingly we could have defined p(Ki) 0 0. Since we failed
to assign 0 to K1 , 8 does not satisfy po. Consequently any computation beginning in s falsifies
wo = po. This establishes the lemma for j = 0 and KI, . K.

Consider now a j > 0 and assume by induction that the lemma has been proved for j - I and
Ki and also for j and each of K±i+, ... ,K,. Let a E Ki.

There could be two distinct reasons why we failed to assign the rank j to Ki.

e There exists some state s E Ki which does not satisfy VPj. By the induction hypothesis
there exists a computation a' - sIs 2 , .. . which does not satisfy wi 1. We claim that
a' also does not satisfy wj. For a' to satisfy ivj there must be a (possibly empty) prefix 6f
a' continuously satisfying V . followed by a suffix which satisfies wj. 1. Since 81 ralsifies
joi, the prefix must be empty and the whole of ao ' must satisfy wj- I which contradicts
the definition of a'.

It only remains to obtain a similar computation starting from a, the arbitrarily specified
state in Kj. If by chance a = s then a' will do. Otherwise, since a and al belong to the
same strongly connected component there must exist a path s = 8, ... ,s = - 1 within
K connecting s to s'. Consider the computation a = 8, ... , S 2 , 

... , i.e., the path
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from a to al followed by o'. Since no state in K, satisfies rpo, a can satisfy w3 only if o'
does. Thus a falsifies wi.

* The second case where we fail to assign j to K, is that there exists a KI directly connected
to Ki, i < 1, such that pt > j or more generally we failed to assign j to K 1. Thus there
exists 8, E Ki and st E K, such that

si -Ph s, for some Pk.

By strong connectedness there exists a (possibly empty) path connecting a to s : a,
•.., s. By the induction hypothesis since t > % and we failed to assign j to Ke there

exists a computation al : 8t, s2, . . . which falsifies wjo. Consider now the computation
or : 8, . .. , ai, 81, 82, .. .

The computation a consists first of the path from a to si within K,, then the edge from
sa to at and then follows at. Since the whole segment a, .. . , a, does not contain a state
satisrying (po, a can satisry wj only if o1 does, which is impossible. Thus a falsifies wi0 as
required. J

Let now K, be a component that was not ranked altogether. By the last lemma there exists
a computation a = a, a 2 , a , . . . with a E Ki such that a falsifies

WD, = V, U ... ipmiL(Oo.

We can prefix a by a path leading from so to a and obtain a computation ao0  s o, ... ,s,.

which fails to satisfy w,. We may combine Lemmas A and B to obtain:

Corollary:

Given Tp(so, Vo), all so-initialized computations in Tp(so, Vo) satisfy

iff the w-precedence test succeeded.

Proof:

In order to test the general implication q D to on the entire Tp diagram we proceed as follows:

Let st,s2, ... , 8k be all the q-states in Tp. Construct Tp(81 ,po) and test (p, Ut ... (I 1(U 0
on it. Construct Tp(8 2, 0 2 ) where 02(8) = tpo(s) V s E Tp(8 1, po).

Test p, It ... oP ito On Tp(s 2 , 0 2 ). In ranking the components we add the following rule:

If K, is a terminal component consisting of the single node 8 E Tp(as, (Po), give Ki the rank
that 8 (or the component containing a) has received in Tp(ai,spo).

In general we construct Tp(sj,,bj where

' o(8) V [8 E U Tp(a,,Oi)j I p
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We then test V, It ... U po on Tp(s, b) ranking any component consisting or 8 E Tp(a., Oj) ror
some j < i according to the rank it received earlier.

Consequiently the testing procedure is again linear in the size or Tp. To be precise, or corn-
pie xity r -m -ITpI.

To illustrate the procedure let us test tlie validity or the following unless property:

This property again expresses a certain kind or 2-bounded overtaking. However the reference point
is when P, is at to. It states that from the time P, decides to leave to, 1P2 may enter 7793 at Most
twice before P, enters 13. Furthermore, actual 2-overtaking can take place only if P, on exiting
to finds P2 in M3 at precisely thc same momecnt. If on exiting to, P1 find P2 anywhere else then
at most I-overtaking can take place. In contrast with other unless properties considered before in
this paper, this property is not an until property. rIhe corresponding until property does not hold
since when P1 is at t o it is quite acceptable that it never gets out to achieve 13.

We define

q = 5 : atto

W4 V2 atM3

vO3 v :- atmn3

'pa att4

Accessible q-states in Tp are:

15((o,m3 ,2), 8,0 (Io,mo,2), 81ll (toom,,2),

In Fig. 6 we have Trp(a 1 5 , 'po). Its component decomnpositioni gives the following topologically
sorted list of components:

K, " {8i15PSiO,811, 814},{817}, {812), (813), {816 8-118, (Big), (8141, (8s), {'Is}, {8g}, {89).

Going backwards we assign the following ranks:

pi=O0 for iE {5, 9)

Pi= I for iE{(8,6,4)

p = 2  for i= 19

p= 3 for iE{(18,16,13,12)

p= 4  for i= 17
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p(K) =5

This shows that the desired unless property actually holds for the q-states s15, 810, s1t, a14.

Next let us consider Tp (so, [(o(s) V a E Tp(s 1 5, vo)l). It is given in Fig. 7. All the terminal
nodes belong to the previous diagram and their ranks have been listed. We may proceed to rank
the unranked states in Tp(so,0 2 ).

We define

p=3 for i E {1,3},

and

pi 5 for i E {0, 2}.

Thus, all q-states have been successfully ranked, and the unless property:

to D (10 U M3 9 -..M3 JAln M3 it -M3 it t3).

has been established. We obviously cannot do better since the computation:

815 --+ 817 -- 812 -- 813 - 8 -- 819 - 84 -4 85

demonstrates 2-overtaking.
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