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NOMENCLATURE 
j

a damping exponent, modified equation analysis

A cross-sectional area of the channel

b phase exponent, modified equation analysis

B channel width

c wave celerity

c average wave celerity in a reach

C Chezy conveyance coefficient
Cm constant, Manning's equation

C, Courant number

D diffusion coefficient

D* dimensionless diffusion coefficient

E dispersion coefficient

EH dispersion coefficient, Hirt analysis

E* dimensionless dispersion coefficient

F Froude number

g acceleration due to gravity

j spatial index

k wave number
m time index

n Manning's roughness coefficient

O() the order of

q discharge per unit width

14i local inflow per unit length of channel

Q discharge
Qk amplitude of the discharge component of wave number, k

Q0  discharge at previous time step
Q* dimensionless discharge

Q derivative of discharge with respect to time

R channel hydraulic radius

rk  complex amplification factor of the k-th Fourier component

Sr  slope of the energy grade line

So  slope of the channel bottom

I time
t* dimensionless time

V velocity

x distance
x* dimensionless distance

y flow depth

YO flow depth at previous time step

Ax, At finite distance and time increments

a grouping of parameters, diffusion wave model

0 grouping of parameters, diffusion wave model

It kAx

0 balanced diffusion parameter, diffusion wave model

Pa coefficients of terms in the modified equation

(b, phase angle of continuum solution

4DN phase angle of numerical solution

0, ratio of numerical and continuum phase angles

< > average over time, At
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ANALYSIS OF A DIFFUSION WAVE FLOW
ROUTING MODEL WITH APPLICATION
TO FLOW IN TAILWATERS

M.G. Ferrick, J. Bilmes and S.E. Long

INTRODUCTION

Current concerns regarding energy resources have sparked renewed interest in hydroelectric
power generation. Hydropower is especially valuable as it is well suited to meeting the peak power
demands of a utility. Peak power generation with hydropower yields flow regimes in tailwater
streams that are characteristically high or low with sharp transitions between these states. Large
flow and stage changes can occur in a tailwater in a period of several minutes. The duration of a
zero flow release can vary widely with power demand and water availability.

Lengthy periods of zero flow affect the ability of a tailwater to maintain a healthy aquatic eco-
system. Water temperature and quality in tailwaters are modified from those occurring naturally
in the stream, and sharp stage transitions can disrupt a stable river ice cover in northern rivers.
Accurate knowledge of the flow regime is an important component of an assessment of the poten-
tial effects of peak power generation upon alternative uses of the stream. In addition, an under-
standing of downstream-propagating sharp-fronted, large-amplitude flow waves of relatively short
period is important because of their similarity to dam break waves.

Numerical models can be used to investigate the flow regime of a tailwater. The development
of such a numerical model has two basic parts that we will address in this report. The first is the
construction of the mathematical statement of the physical processes of primary interest. The
second basic part is the deve!opment and analysis of the numerical solution technique. It is this
second component of model development that often does not receive adequate attention. As a
result, the behavior of a model is not well understood, and guidance is unavailable concerning pa-
rameter selection to achieve optimal accuracy for a given application and interpretation of model
output.

We performed an analysis of the dynamic open channel flow equations to obtain insight regard-
ing the physical processes of importance in tailwater flow. The relative magnitudes of wave con-
vection, diffusion and dispersion in channels are represented in terms of variables characteristic of
the channel and the flow. These processes are the result of contributions of terms in the momentum
equation, and when expressed in nondimensional form, their relative magnitudes indicate appro-
priate simplifications of this equation. For example, the magnitude of the dimensionless physical
diffusion coefficient of open channel flow waves is helpful when considering the justification for
basing an analysis upon the diffusion-free kinematic wave theory. In general, relatively short-per-
iod waves in rivers are significantly affected by diffusion. The analysis also indicates that inertia
has a small effect upon flow waves in natural channels at relatively small Froude numbers. This



conclusion is supported by the analyses of Ponce et al. (1978) and IHenderson (1063) for flow in
tailwaters, but contradicts the general belief* that inertia is important in rapidly varying flows.

The analyses provided physical insights that guided our model selection. Tile inertia-free diffu-
sion wave flow routing model of Koussis (1976) was chosen, and modifications were made as tieces-
sary for application to tailwater flow. The continuity equation that trmns the basis of the model
is a quasi-linear hyperbolic equation for discharge as a function of position and time. Exact solu-
tions of this equation do not exhibit the diffusion necessary to simulate wave movement in most
natural rivers, Through analysis of the numerical solution, however, it is possible to quantity numter-
ical diffusion and dispersion. The capability of the model is enhanced when the numerical diffusion
and dispersion error terms are equated with the terms for physical diffusion and dispersion of flow
waves developed from the dynamic equations.

The analysis of a numerical model, a basic step in model development, is frequently limited to
the development of criteria that ensure a stable solution. Numerical models must be stable if the
solution obtained is to be meaningful. Numerical stability requires that errors intretticed in the
solution do not increase in magnitude as the computation progresses. The condit Iquired for
stability of a numerical scheme are frequently known, and numerical instabilit. i' erally appar-
ent. The von Neumann and Hirt analyses have been used to develop stability con. for many
numerical models (Roache 1976).

Numerical solutions of the unsteady open channel flow equations, however. t, exhibit

errors in both amplitude and phase that may not be apparent without further an, :' umerical
dissipation or diffusion causes the Fourier components of the solution and tile errt,,. to be damped.
Numerical dispersion results when the wave celerity of each wavelength component differs. These
differences in celerity tend to tmodify the wave form as the computation proceeds. The effects of
numerical dissipation and dispersion upon the accuracy of the solution are subtle and difficult to
interpret. An improved understanding of the dissipative and dispersive behavior of the numerical
model enables the analyst to minimize, neglect or exploit these effects to enhance model accuracy
and to better interpret computed results. In our case. numerical diffusion moist be quantified and
controlled to permit a model without physical diffusion to properly simulate flow that may be sig-
nificantly affected by diffusion.

Though only strictly applicable to linear equations, the "modified equation" (Warming and
Hyatt 1974) and von Neumann analyses are used to quantify the dissipative and dispersive behavior
of the model in terms of parameters ot the numerical solution. The analyses ate comtplementar. ,
each having particular strengths. The Htirt analysis is also used. and its model behavior predictions
are compared with those of the other methods. A set of linear routings is used to demonstrate the
predicted behavior of the model and to verify tile adequacy of the expression for numerical diff-
sion developed in the modified equation analysis.

Finally, we demonstrate the benefits of careful model development and analysis by comparing
diffusion wave model simulations with extensive field data from the Apalachia and Norris Dam
tailwaters. These tailwaters have very different bed slope and roughness characteristics, spanning
those of a large number of rivers of practical interest. The accuracy achieved wilh the model in
these field applications verifies its generality for this problem class, and reinforces the utility of both
the nondimensional statement of the dynamic equations and the linear analyses of numerical solu-
tion behavior.

PHYSICAL DIFFUSION AND DISPERSION IN OPEN CHANNEL FLOW

The development of a mathematical statement describing tile important physical processes of a
problem relies upon a clear physical understanding. In this section we will develop a framework for
obtaining physical insights from the one-dimensional dynamic equations of flow in open channels.

- -v- -. -. .' - ,-



Flow in unstratified or weakly stratified reservoirs and in rivers having a significant base flow is
generally modeled using the dynamic equationz S w.iard numerical solutions of these equations
fail, however, if the flow dettl, ' ppiaches zero. This condition is common in tai!waters of dams
used to generike peak power, motivating the search for an alternate mathematical statement.

The dynamic equations of flow in open channels (St. Venant equations) are the most complete
statements of the laws of conservation of mass and momentum is common use when the longitu-
dinal direction is the important spatial dimension. The dynamic equations for a free-flowing river
with a wide prismatic rectangular channel and no local inflow are

a. + I aQ
at B ax =0

I aQ IQ3+ + y - 0

g at gy ax x Bv2) C 2 B

where t = time
x = distance along the length of the channel
Y = flow depth

Q = discharge
B = channel width

g = acceleration due to gravity
So = slope of the channel bottom
C= Chezy conveyance coefficient.

If the coefficients of eq 1 and 2 are assumed constant at appropriate reference values, the equa-
tions can be combined and expressed in terms of a single , 'pendent variable yielding

_QQ 3 gB 2v3Q -2Q +IQ + Q 0=
a 2B L 2gBaxo j ax 2  ax at B-Sj at2

(3)

a hyperbolic equation. Equation 3 can be manipulated further to eiiminate the second-order mixed
and temporal derivatives giving

Q + c L= D Q + f' + (Higher Order Terms)

at ax ax2  ax3

3Q = dQ
2By dA

2BS0

E= Q2  D= F2  D (4)
2gB2 .S 0 2SO (4)

where c is wave celerity, A the channel cross-sectional area and F the Froude number, 1, /l ,-
Kinematic and zero-inertia equations can be developed as simplified versions of the dynamic equa-
tions. If second and higher order terms in eq 4 are neglected, the approximation is termed kine-
matic and is free of physically based diffusion. When third and higher order terms are neglected.
eq 4 contains nositive physical diffusion and is . form of the zero-inertia model. Tracing through

3



the development of eq 4 reveals that the source of the diffusion term is primarily the water surface
slope term of the momentum equation (eq 2). The dependence of D upon the Froude number re-
sults from including the inertia terms in the development. The physical dispersion coefficient E
given in eq 4 is also positive. Its magnitude varies linearly with the magnitude of the diffusion co-
efficient, and quadratically with the Froude number. The existence of the dispersion term and the
higher order terms follow from the inertia terms.

Equation 4 combines the opposing tendencies of wave diffusion and steepening due to nonlinear
convection. Whitham (1974) showed that discontinuities in the flow (shock waves) are not pos-
sible if positive diffusion is present. A physical justification is needed for the application of kine-
matic wave theory, in which diffusion is neglected, or for a more complete description of the flow.
With reference discharge Q0 and spatial and temporal increments Ax and At, eq 4 is rewritten in
dimensionless form in terms of Q* = QfQ0 , x* = x/Ax, and t* = t/At as

aQ* + C, = -r + E* D* C, - + (Higher Order Terms)3t rX* ax*2 ax,3

cAt
c Ax

*= D

2gB
2
y
2
SoAx = S ( X-) (5)

where Cr is the Courant number, D* a dimensionless diffusion coefficient, and E* a dimensionless
dispersion coefficient. The magnitude of Ax is a characteristic of the wavelength. The value selected
should provide adequate resolution of the features of all flow waves of interest. Magnitudes of At
and Q0 are not as critical as they appear in the same way in each term of eq 5.

The magnitude of D* relative to I is a measure of the importance of diffusion relative to con-
vection. When this quantity is significantly less than i, convection is dominant over diffusion.
Smooth, steep channels are therefore good candidates for shock formation and successful applica-
tion of kinematic wave theory. Other analyses addressing the use of the kinematic wave approxi-
mation are given in Menendez and Norscini (1982) and Ponce et al. (1978). The magnitude of
E* relative to I measures the importance of dispersion relative to diffusion. As E* is proportional
to the square of the Froude number, its magnitude is generally much less than I. Consequently,
wave dispersion in rivers is usually negligible.

In natural rivers, flow generally occurs at small Froude numbers. When the Froude number is
significantly less than 1, eq S simplifies to a nondimensional convective diffusion equation. Cunge
(1969) developed an equivalent dimensional equation by initially neglecting inertia. In the form
of eq 5, the dynamic equations indicate that river flow is independent of inertia in many instances.

MODELING APPROACH

The analysis of the previous section indicates that an inertia-free simplification of the dynamic
equations frequently contains all important physical processes. Flood routing in rivers and several
other unsteady open channel flow problems have been adequately treated using simplified zero.
inertia or kinematic wave models. Still, Cunge et al. (1980) state that routing methods based upon
simplified equations may not be applicable in situations like flow in tailwaters where rapid stage
and discharge variations occur.

4



The question of the validity of using simplified routing methods for rapidly varying tailwater
flow can be investigated within the framework provided by the analyses of Ponce and Simons
(1977), Ponce et al. (1978) and Henderson (1963). The linear analysis of Ponce et al. provides
insight into attenuation and pr( ":tgation characteristics of the simplified models relative to those
of the full dynamic model. For a range of channel and flow parameters characteristic of tailwaters.
attenuation and propagation errors resulting from neglecting inertia appear small.

Henderson (1963) compared terms of the momentum equation in an order-of-magnitude anal-
ysis for a wide rectangular channel. The acceleration terms were of the same order of magnitude
and were related to the water surface slope term as

acceleration term
v/ax = 0 (F 2 ). (6)

As the Froude number of the flow in natural rivers is typically much less than I, the acceleration
terms are small relative to the water surface slope term. Henderson also compared the water sur-
face and bottom slope terms, obtaining

ay/a ,, 6g/at
so q213 S5/3

S 0 0

where q is the discharge per unit width. For flood flows in natural streams the magnitude of the
water surface slope term is often small relative to the bottom slope term. In tailwaters, where
sudden large-magnitude flow changes occur, aqlat can be large, and the water surface slope term
can be expected to make an important contribution to the momentum balance. The importance
of the water surface slope term is further enhanced if the river being modeled has a small bottom
slope.

The analyses support the use of an inertia-free model for tailwater flow routing. Our analysis
and that of Ponce et al. (1978) indicate the importance of diffusion, and the Henderson analysis
yields the related result that water surface slope is an important part of the momentum balancc.

The zero-inertia model satisfies these requirements. The local and convective acceleration terms
of the full momentum equation are neglected in this model. The abbreviated set of equations in-
cludes the water surface slope term which permits wave attenuation or diffusion, and can he solved
without difficulty as the flow depth becomes small. Connmionly in tailwaters. however, the water
surface slope changes abruptly with the passage of the toe of a wave front, and a number of fronts
may exist simultaneously. As a result, the complications of accurately locating each front and
evaluating the water surface slope in the vicinity of a front must be introduced into the model.

The kinematic wave approximation is obtained by neglecting the water surface slope term in
addition to the acceleration terms of the momentum equation. This additional simplification does
not permit wave attenuation and can be a serious limitation if the river being modeled is long or
mildly sloped. Numerical solutions of the kinematic wave equation, however, frequently exhibit
wave attenuation resulting from the solution technique (Cunge 1969, Smith 1980). This numer-
ical diffusion can be used to mimic the physical diffusion occurring in the channel and overcome
the inherent model limitation to diffusion-free flows.

Simple model formulation makes application of a kinematic wave based routing technique to
flow in tailwater streams attractive. Models based upon the kinematic wave approximation, in-
cluding the well-known Muskingum model, determine flow at a point independent of downstream
influences. These models do not require a downstream boundary condition and cannot account
for the influence of downstream controls upon the flow. The ability of this group of models to
correctly represent flow in rivers with long pooled reaches is therefore suspect. Smith (1980)
found that a variable weighting factor in the numerical scheme, corresponding to a variable dif-
fusion coefficient, allowed successful application of kinematic wave based models to flood routing

5
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through flat, ponded reaches. He did not, however, resolve the importance of backwater effects

upon rapidly varying flows found in tailwaters.
In conclusion, the tailwater flow model formulation should include variable wave attenuation

and the contribution of the water surface slope to the momentum balance. As a physically mean-
ingful downstream boundary is not generally available in tailwaters, models not requiring a down-
stream boundary condition are most readily applied. The diffusion wave model that is described,
analyzed and tested in this report satisfies these requirements. The model is an adaptation for
tailwaters (Ferrick 1980) of the flood routing model of Koussis (1976). Weinmann and Laurenson
(1979) related this formulation to other simplified routing methods.

DESCRIPTION OF THE DIFFUSION WAVE FLOW ROUTING MODEL

The diffusion wave model for flow in tailwaters is a kinematic wave based approach that differs
from most simplified routing methods in that both stage and discharge are computed at each point
in the numerical grid. The conservation of mass equation is solved numerically for discharge. Lx-
act solutions of the continuity equation deform but do not damp with time, so that diffusioh,
which is necessary for representation of important physical processes in tailwater flows, is not present
explicitly. The numerical solution of this equation, however, is adjusted in the model to require
numerical diffusion to mimic physical diffusion. An equation for the stream rating curve, which
includes the zero-inertia form of the momentum equation, models river stage. The inclusion of the
water surface slope term in this relationship generates a looped rating curve and provides an mi-
proved estimate of wave celerity. The pair of equations are coupled through the wave celeriti and
must be solved simultaneously.

The conservation of mass equation for flow in open channels can he i itten as

aQ +1 3Q 7TX C- at

where

C dQ dx
dA dt

Q = discharge,
qi local inflow per unit length of the channel
A = cross-sectional area of the channel

c = wave celerity

Equation 7, which forms the basis of the model, is a first-order hyperbolic equation. This type of
equation is advantageous for modeling tailwater flow because a downstream boundary condition
need not be specified. For this same reason, however, backwater effects upon the flow cannot be
taken into account.

The "method of lines" approach is used to obtain a solution of eq 7. In this method the spatial
derivative is approximated with a finite difference expression, but the dependent variable remains
continuous in the time domain. The partial differential equation for conservation of mass is there-
by reduced to an ordinary differential equation. With the approximations

L " _L [Qj+I (t) - Pj (0)] (8)

6



+ (I(9)

in which i is an index corresponding to the spatial location x = jAx, and 6 is a parameter of the
numerical solution, eq 7 is rewritten as

O+I,(t) + a Q 1(0 a Qj(t) + aA% q(t) -- 0j (t) (10)

where

a Ax(I - 0)

Q is the derivative of discharge with respect to time, and <E> is an averaged celerity in space and

time over the cell of the computational mesh where the equation is applied. Equation 10 is a linear
first-order ordinary differential equation. Assuming, for a small time increment, that the variation
of Qi(t) is linear, that the values of the coefficients can be estimated, and that the local inflow is

constant, the solution ofeq 10 is

=O (+C)

where
C, =I -a

C2 =a-

C3  3exp r

C q Ax(l -f)
1-10

C,

<e-> AtC,= Ax

The local Courant number of the numerical grid cell Cr expresses the ratio of physical to numer-
ical wave celerity, and m is the temporal index of the computational grid, t = mAt.

The variable physical diffusion of the flow is represented by tuning the numerical diffusion in-

herent in the model. An expression for the model parameter 0 that results from enforcing the
physical/numerical diffusion balance is

0 = 1 rC,

InIIn II+X,+CrJ

?, .. <Q> (I-F21/4) (12)

BSo <F> Ax

where discharge and wave celerity are averaged over the numerical grid cell, and B is the width of

the channel. A necessary condition for stability of the model is that either 0 ,( 0.5 or 0 < 1.0
and Cr > 1.0. Eouatlon 12 and the stability criteria for the model will be developed subsequently.I7



For small values of the Froude and Courant numbers, eq 12 is equivalent to the expression devel-
oped by Cunge (1969) for the weighting factor in the Muskingum model:

1(8 <Q> )(.3a = L- - Y>o ) > (13)

Neglecting the inertia of the flow and the momentum contribution of the local inflow, the
zero-inertia conservation of momentum equation for prismatic channels is

ava- SO + Sf = 0 (14)

in which Sf is the slope of the energy grade line.
The zero-inertia momentum equation inserted into Manning's equation yields an expression for

the stream rating curve,

1 C m R
2 / 3  

3jS 1,,2(1/)n (O o- / (15

where R is the hydraulic radius, n the Mannings roughness coefficient, and Cm a constant that
is dependent upon the system of units. To obtain a relationship that is consistent with the down-
stream-progressing discharge calculation (eq I I ), the spatial derivative in eq 15 is replaced with a
quantity determined at a point. If the energy slope is adequately large, arguments from kinematic
wave theory can be used, and eq 15 can be rewritten in a form of the "Jones formula" as

V= R 2/3 + I (16)
n oS 0 c2B  b

With a finite difference approximation of the time derivative in eq 16 and the assumption of a
wide rectangular channel, the low depth is determined as

ICB(SO + =0
0 c 2 BAt / J

The accuracy of the flow depth calculation using eq 1 7 depends upon the validity of the kine-
matic wave approximation. In response to decreasing flow in a river reach having a small bottom
slope, the denominator of eq 17 may decrease more quickly than the numerator, causing the cal-
culated stage to increase. This unphysical result signals the need I'm an alternate equation for the
calculation of flow depth. If the definition of celerity is approximated as

dQ /sQ

dA B AY

then an alternate equation for flow depth can be found:

Y=Yo + _L (Q-Qo)" (18)

The remaining unknown to be determined is wave celerity. As discussed by Henderson (1963),
the celerity of a kinematic or zero-inertia flood wave is related to the flow velocity by a multiplier

8



that depends upon the channel shape and energy slope model used. The wave celerity of steep-
fronted tailwater releases is also dependent upon the flow depth on either side of the wave front.
In the extreme case of a rapid flow release to a previously dry channel, the celerity of the front
must equal the velocity of the flow immediately behind it. The monoclinal rising wave is a trans-
latory wave of stable form. If rising tailwater releases are presumed to be monoclinal waves during
passage through a reach 6x, then an expression for wave celerity can be obtained. For a wide rec-
tangular channel, with the Chezy equation used to describe the energy slope, the expression for
wave celerity is

C l -(Vj.+I1y 1P121V (19)% Yi+ y) I

For slowly rising hydrographs, eq 19 yields the familiar result for celerity of a flood wave, c = 1.5
V. On the recession side of the hydrograph, the wave celerity used in the model is the value for
flood waves.

The water surface slope is largely responsible for diffusion of flow waves and the existence of
a looped rating curve in rivers. In the model, however, diffusion is generated numerically with the
0 parameter and does not depend directly upon the water surface slope term. The depth corre-
sponding to a given discharge varies depending upon the evaluation of the water surface slope (eq
17), and is lower during the rising limb of a hydrograph than during the falling portion of the hy-
drograph. This in turn affects the modeled discharge and wave celerity through eq II and 19, re-
spectively.

To advance the routing one time step, eq 6 is solved at each grid point using values of Q and c
computed at the previous time step to evaluate the coefficients. The values of flow depth and
celerity are then updated with eq 17 through 19. The updated values are used to reevaluate the
coefficients of eq 11, and the iteration repeats. A converged solution is reached when each of the
flow values computed at successive iterations agrees within a set tolerance. In simulations per-
formed at small Courant numbers a good initial estimate of the solution is available from the pre-
vious time step, and convergence is generally rapid.

The parameter 0 varies locally with the flow and is continually updated during the iterative
process. Values of the wave celerity and the corresponding Courant number vary along the chan-
nel. The model time step is determined from a limitation imposed upon the maximum Courant
number. The Courant number limitation, required to preserve accuracy, has a numerical value
that is dependent upon flow conditions.

ANALYSIS OF THE NUMERICAL MODEL

The development of a numerical model should include a thorough analysis of the solution tech-
nique. We will analyze the diffusion wave model with several linear techniques in this section of
the report. The difference expression for the continuity equation used in our model was com-
pared by Koussis (1980) with the Muskingum model, a more widely used method for routing flow
in open channels. The difference representation of this equation is repeated here for the case of
no local inflow,

Q~f+ .(1 l) QT+ + (a. - ) Q. + Qn+ (20)

=exp ( _1 1)

C,
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where m and i are indices of the temporal and spatial location on the computational grid, respec-

tively.
The diffusion wave model as applied by Weinmann and Laurenson (1979) and as described

above is nonlinear with coefficients that are dependent upon the local flow conditions. The cal-

culation for Q is explicit, progressing in the downstream direction from a known flow rate at the

upstream boundary and given initial conditions. At each new time level the model iterates until

the change in computed flow at each grid point is below a specified tolerance.

-" Modified equation and Hirt analyses of diffusion wave model
Stability, damping and dispersion characteristics of a difference approximation to a partial dif-

ferential equation can be investigated with the modified equation analysis of Warming and Hyett

and with the Hirt analysis. The two analyses follow the same basic steps with one important ex-

ception.
Neglecting roundoff error, the modified equation represents the actual partial differential equa-

tion solved when a numerical solution is obtained from a difference equation. To obtain the mod-

ified equation for the difference scheme of eq 20, each term is expanded in a Taylor series about
Qn. Upon simplification, the resulting equation is

.Q+C Q+ cAX 2 Q At i 2 Q+ cAt 2Q +CAX 2  3Q A<2  33Q
t ax 2 ax2  2 at2 (113) axat 6 ax 3  2a ax2 at

+ + 4 n Q+ (Higher Order Terms) = 0 (21)
2a axat 2  6 t

3

The modified equation has an infinite number of terms. Terms which appear in the modified equa-
tion but are missing from the original differential equation represent a type of truncation error.

Properties of a difference scheme can be found by examining a truncated version of the modi-

fied equation. The time derivatives higher than first order and the mixed derivatives are eliminated
from eq 21 to obtain an equation that is amenable to physical interpretation. Even-order spatial

derivatives in the recast equation correspond to dissipative effects and odd-order spatial derivatives
reveal dispersive properties of the model. In the Hirt analysis, the governing differential equation

is used to simplify eq 21. A solution of the original differential equation will not, in general, sat-
isfy the difference equation. Therefore, in the modified equation approach, eq 21 itself is differ-
entiated and used in the simplifying process. The coefficients are assumed to be constant in both
analyses. Differences between the two procedures for the diffusion wave model analysis appear
in the coefficients of third and higher order spatial derivatives.

Following the modified equation approach, eq 21 becomes

a)Q +caQ a 2Q a)3Qa" +c = D - + E - + (Higher Order Terms) (22)
a x 2  ax3

D=' i -1- ~ - ----

1 3Cr -20 1 3
63

Following Hirt's analysis, the analogous expression for h' is

E=C'--6 [3C,(II- ) Ic2(1---0 _-)1 (23)
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If third and higher order terms are ignored, eq 22 is a linear convective diffusion equation. The
Fourier components of the continuum solution of this equation are

Qk eik(x-ct)-Dk2 t

where k is the wave number (2f/wave length) of the component, i = ,¢ 'T, and Qk is the amplitude

of the component of wave number, k. The modified equation of the diffusion wave model (eq 22)
can be rewritten in the form

at ax2p+ I +2p (2

p=O p=1(

The form of the solution of eq 24 is

Q(Xt e(+ib)t elkx (25)

where

a= (-l)Pk 2P u(2p), b (-l)P k2P+I ;42p+I).
p=1 p=O

As waves of large wave number cannot be resolved on the numerical grid, waves having small
wave numbers are of primary importance in the numerical solution. For these waves the exponent
a of eq 25 can be approximated as

a - -k2D (26)

where D is the diffusion coefficient defined in eq 22. A dimensionless numerical diffusion coef-
ficient DO = D/(cAx) of the diffusion wave model is given in Figure I as a function of the Courant
number for various values of 0. A positive diffusion coefficient in the modified equation is neces-

sary for positive damping in the model and a stable numerical solution. A stable solution is ob
tained if either 0 < 0.5 or Cr > 1.0 and 0 < 1.0. Stability does not impose a restriction upon the
maximum value of the Courant number, which presents the possibility of using large time steps

in the model. Numerical dissipation increases as 0 decreases and as C. increases. In the low Cour.

ant number range, - 0.5, damping does not vary greatly with the Courant number.
Components of all wave numbers of the continuum solution of the convective diffusion equa-

tion are advected at c. After an increment of time At the components have each undergone a

phase angle change, 4 €, of

4tc = - ckAt = - C, (kAx) :Cr7. (27)

For the difference approximation, celerity is a function of wave number (eq 25). The phase angle

change of the numerical solution in time At is

4N=bAt =kI)At+A, (-I)' k2p + I 12p+ 1). (28)
pfi

The ratio of the numerical to continuum phase shifts yields an expression for the relative propa-
gation speed of each Fourier component per time increment



Nt, c = I 1 (-I)P k2p ;42p + 1). (29)
p=l

Values of 0, greater than I indicate that the numerical solution component of wave number k will
have a celerity greater than that of the continuum solution. The converse is true for values of (br
less than I. Since small wave numbers are of primary importance in the numerical solution, eq 29
can be approximated as

4* =1I+ k2  C_( 4 _) + f~ [3 C'2- (..22C.3
c 6 L l- fl))]J

(30)

Equation 30 is plotted as a function of the Courant number for selected values of 0 in Figures 2-4
for wavelengths of 24 Ax, 12 Ar and 6 Ax, respectively. For these wavelengths, the phase angle
of the numerical solution predominantly lags that of the continuum solution. The discrepancy is
largest for the shorter wavelengths, smaller values of 0 and larger values of the Courant number.
For the shorter wavelengths and Courant numbers greater than 1, the phase angle of the numerical
solution varies strongly with the Courant number. The numerical solution is most likely to exhibit
leading phase angles for waves of short wavelength with 0 approximately 0.5.
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An analogous equation for the ratio of the numerical to continuum phase shifts based upon the
Hirt analysis can be written by substitution of eq 23 for p (3) of eq 30. yielding

6l r- - .

Equation 31 is plotted in Figure 5 as a function of the Courant number for the same wavelengths
and 0 values used with eq 30. This series of curves projects quite different dispersion behavior
than the modified equation analysis. At a Courant number of I . the Hirt analysis projects tero
dispersion independent of wavelength and 0. Lagging phase angles are projected at higher Courant
numbers, and all phase angles are leading at lower Courant numbers. Shorter wavelengths and
lower values of 0 are projected to have larger phase errors.
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von Neumann analysis of the diffusion wave model

As a result of the truncation of terms in eq 26, the modified equation analysis does not provide
information regarding the diffusive nature of the short wavelength Fourier components of the so-
lution or of the error. These components are, at times, responsible for instability of a numerical
solution. Similarly, the approximation in eq 30 limits the application of the modified-equation-
based phase relationship to waves of relatively small wave number. In addition to its usual role of
providing numerical stability criteria, the von Neumann analysis can be used to identify the relative
damping and dispersion of Fourier components of all wave numbers.

The evolution of the numerical solution in a time step At is considered in this approach. The
coefficients a and 03 of eq 20 are assumed to be constant. The solution of eq 20 can then be written
as a Fourier series:

= m eii-Y (32)
k

where Q'k" is an amplitude function at time iAr of the Fourier component of wave number k.
Each term of the difference equation is replaced by its k-th Fourier component. The spatial do-

main is assumed to be infinite, and boundary influences are not considered. The decay or ampli-
tication of each component is evaluated to investigate stability and damping of the numerical

scheme by forming the ratio of the amplitude functions at two successive times, nAt and (n + I )At.
Performing these operations upon eq 20 yields

011 1 + (el

k  k = )33)
- a+ (ai - I)

in which the complex nutiber rk is termied the amplification factor. A necessary and sufficient

condition for stability of the solution is that the modulus of rk be less than or equal to I for all

integer values of k (Richtmyer 1957). An expression for the square of the modulus of rk which

follows from eq 33 is

k 12 _ 04  +  2 12(g+ 1I -a) 1(0+ 1) 1I-cos -t) + 20 129 (1 -a) + a (a - 2)1 (1 -C()sy)2 -2 p21 sin 2  y'

a2 +4 a 2 (I -a) (I -cos Y) +4(1 -a) 2 (I -cos y)2

(34)

The square of the modulus ofrk imust also remain less than or equal to I for all integer values of k

for a stable numerical solution. When Irk 2 is equal to I for a component of wave number k the

numerical scheme is termed conservative or neutrally stable. Smaller values of Irk 12 correspond to

larger inherent dissipation of the numerical scheme.

Long wavelengths are resolved over a large number of grid points. For these waves, y is small

and the following substitutions can be made in eq 34:

Sin 2 7 - 7y2

I - cos'y f2/2

(I -cos -f)2 =- 0 (35)

and eq 34 can then be simplified to yield

14
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02 + [(' -a) + (t-a)](3
a2 +2(1 -a)

2

The solution will be stable for long period waves if

S-( -(1-) .4 0. (37)

This inequality is satisfied if either 0 4 0.5 or C, > 1.0 and 0 < 1.0. These criteria are in agreement
with those based upon the modified equation analysis. Figure 6 presents Irk 12 as a function of
Courant number for two wavelengths (24Ax, 12Ax) and selected values of 0 (0.9, 0.5, 0.0, -1 .0).
Numerical damping is sensitive to Cr and 0, as was noted in the modified equation analysis, and
exhibits the same trends. For long period waves having equivalent 0 and Cr, the shorter wave-
lengths are more highly damped.

As mentioned above, the von Neumann approach permits analysis of short period waves.
Assuming 7 is equal to 7r/2, eq 34 becomes

Irk 12 = 2
s - 2a 3 (1 +. P ) +. 2a2 (I +. g)2 - 4 ap (I +. 0) + 4P 2  (38)

a4 -4a 3 +8a 2 -8a+4
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Imposing the stability restriction on the square of the modulus of rk requires that

43 - k (P+ 3) + 2 a(O + 2)- 2 (P + 1), 0. (39)

The stability limits developed for the long period waves also satisfy the requirement imposed by
eq 39 for a short period wave. The jrk P is presented as a function of Courant number in Figure 7
for values of -y equal to both 7r/2 and ir, ti. shortest wavelength resolvable on the numerical grid.
Short period wave damping increases with Courant number and is a much stronger function of
Courant number than for the long period waves. Also, damping generally increases as wavelength
decreases. Wave propagation with a Courant number of 1.0 and 0 of 0.9 is undamped for both
short and long period waves. No limitation upon the minimum value of 0 is necessary for stability
of the model.

The dispersive properties of the numerical scheme can also be investigated using the von Neu-
mann analysis. For small angles, the measure of an angle in radians is approximately equal to the
sine of the angle. The phase angle of the numerical solution at time At is then

Imag (rk)
Cs - rk[(40)4N Irk I

For the diffusion wave model, eq 40 can be written as

n 2 sin 2 -y + I + 2A +A2 (41)

where

C u12 +2X r- l)( I - cosy)

(I -0)2

The ratio of the numerical to continuum phase angle is

qr- sin y - 1Cr 
(42)

' C2 sin2 -y + + +A (42)

Again, propagation in the numerical model matches that in the continuum solution of the convec-
tive diffusion equation if this ratio is I for a given wavelength. Equation 42 is plotted in Figures
2-4 for wavelengths of 24Ax, 12Ax and 6Ax respectively. Though the values of (br are not gen-
erally equal to those obtained using the modified equation analysis, all of the trends are in agree-
ment. Unlike the modified equation approach, however, no restriction upon 7f was used in the
development of the equation for (r Therefore, for the shorter wavelengths (Fig. 4), the von
Neumann analysis is likely to give a better estimate of the phase variation in the model. Numeri-
cal dispersion is typically the largest for short period waves or short period Fourier components of
a wave. Equation 42 reveals that the shortest wave resolvable on the numerical grid is stationary.

LINEAR CASE STUDIES

A set of linear case studies is presented to demonstrate the utility of the modified equation and
von Neumann analyses in representing model behavior. Figure 8 presents half sine waves, of wave-
length 8Ax and 164x, which will serve as initial conditions for the studies which follow. In each
case, the wave celerity is held constant at 3 ft/s (0.91 m/s), independent of the flow. If in addition
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Figure 8. Half sine waves of wavelength 8-and 16-Ax

that serve as initial conditions for the linear case studies.

to constant celerity, a constant diffusion coefficient is assumed, then the solution of the initial

value problem posed by the linear convective diffusion equation and an initial condition of Figure
8 can be written as a Fourier series.

Initially, a key question will be addressed regarding the adequacy of the expression given by the

modified equation analysis for the numerical diffusion inherent in the model. A 97-term Fourier
series solution of the convective-diffusion equation with a diffusion coefficient calculated from eq
22 was obtained. This analytical solution is compared in Figure 9 with the corresponding numer-

ical solution for each wavelength after the center of the wave has been advected 6 miles (9.7 kin)

downstream. Cases presented were projected in the analyses to have minimal dispersion and a
range of diffusion. The damping evidenced in the numerical and analytical solutions are in agree-

ment in all cases. The cases with 0 equal to 0.9 and C, of 1.0 exhibited essentially pure convection.

No damping or phase error of any Fourier component of the solution was projected for this case
by the von Neumann analysis. A small amount of dispersion, evidenced by a slight lag in the nu-

merical solution, was present in the cases with 0 of 0.0 and Cr of 0.1. This slight lagging phase

error was projected by both the von Neumann and modified equation analyses (Figs. 2 and 3). Bv
contrast, the Hirt analysis projected a leading phase error for these same cases (Fig. 5).

Several cases are presented to demonstrate the projected diffusive and dispersive behavior of the

model. Figure 10 contains numerical and analytical solution comparisons for cases having a con-

stant Courant number and selected values of 0, after the center of the wave has been advected 6
miles (9.7 kim) downstream. The leading phase error of the longer wavelength components and

the more extreme leading phase error of the short wavelength components are evident for the case
in which 0 is 0.5. This behavior was projected in Figures 3 and 4. Minimal damping of the short

wavelength components (Fig. 7) is the other condition necessary for development of leading short

period waves. A small amount of phase lag occurs as projected for the case with 0 equal to 0.0.

In this case. damping is large, especially of the short wavelength components. Larger damping and
greater phase lag occur, as expected, when 0 is set at -1.0. The Flirt analysis projects leading phase

errors for all 0 values when the Courant number is small. In addition, leading errors are projected

to be more extreme at small values of 0(< 0.0).
For the cases presented in Figure II, 0 is held constant as Courant number is varied. As pro-

jected by the modified equation and von Neumann analyses, leading phase errors occur for Cour-

ant number 0.1, lagging phase errors occur for Courant number 4.0, and a minimal phase error is

observed for Courant number 1.0. Numerical diffusion is again well represented by the expression

developed using the modified equation approach.
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Figure 9. Comparison of numerical and Fourier series Figure 10. Comparison of numerical and Fourier series
solutions for 8- and 16-Ax wavelengths after the center solutions for the 8-Ax wavelength and a fixed value of
of the wave has propagated 6 miles (9. 7 kmj downstream. C, = .1 after the center of the wave has propagated 6
Cases shown were projected to have minimal dispersion miles (9. 7 km) downstream.
and a range of diffusion by the modified equation and
von Neumann.analyses.

In practice, cost considerations generally preclude the use of an extremely fine computational

grid. An assessment of the adequacy of a given mesh relative to the flow features of interest in the
prototype is an important part of model testing. The linear analyses have shown that numerical
damping and phase errors increase with spatial grid size. To investigate these effects, the short
period wave of Figure 8 was resolved on a coarse grid containing one-half the number of points
used in Figure 8. Cases having parameters identical to those presented in Figure 10 were repeated
using this coarse grid and are presented in Figure 12. As diffusion increases with the spatial mesh
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Figure 11. Comparison of numerical and Fourier ser- Figure 12. Comparison of numerical and Fourier series
ies solutions for the 16-Ax wavelength and a fixed solutions for the shorter (8- Yx) wavelength resolved on
value of 0 = 0.5 after the center of the wave has prop- a coarse grid after the center of the wave has propagated
agated 6 miles (9.7 km) downstream. 6 miles (9.7 km) downstream. The wave had a 4-Ax in-

itial wavelength relative to the coarse grid.

dimension Ax, damping is greater in the coarse mesh simulation for given values of 0 and the Cour-
ant number. Large diffusion cases are well behaved; the wavelength of the flow quickly increases
and numerical and analytical solutions correspond as before. The lightly damped case (C = 0.1,
0 = 0.5) largely retains its short wavelength and exhibits the same tendencies as its finer meshed
counterpart. The peak flow, however, does not correspond to the analytical solution and the
amplitude of the leading waves has increased. The wave period of interest is short enough, rela-
tive to the numerical grid, that a more accurate estimate of numerical diffusion is required. By
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retaining more terms of the modified equation, a higher order estimate of diffusion could be made.
It can be observed in Figure 10, however, that a refined mesh tends to correct the diffusion problem
and yields decreased amplitudes of the leading waves. Adequate accuracy of the numerical solution
on a coarse grid requires the presence of a large amount of diffusion. This requirement could pre-
clude or impair the analysis of physically important cases.

ACCURACY CONSIDERATIONS OF THE NUMERICAL SOLUTION

The order of accuracy of the difference scheme is defined, in the modified equation analysis, as
the power of the computational mesh dimension in the coefficient of the lowest order error term.
If D of eq 22 is physically based, the numerical scheme is accurate to second order. Physically

based values of D and E yield a third-order numerical solution.
Cunge (1969) and Smith (1980) equated coefficients of physical and numerical diffusion to en-

hance the capabilities of the Muskingum flow routing model. Koussis (1976) also followed this
approach with the present diffusion wave model. In equating the diffusion coefficients, an error
term in the numerical solution of the continuity equation is used to extend the physical basis of
the model. An equation for the numerical weighting factor 0, in terms of Courant number and
physical parameters of the flow and channel, is obtained by equating the diffusion coefficients of
eq 4 and 22:

061 + , (43)
In (

where

.= Q (I -F2/4).
BSOcAx

The value of 0 is a function of position and time. For flow at relatively low Froude numbers com-
mon in rivers, eq 43 reduces to the equation given by Koussis. As evidenced in Figures 1, 6 and 7,
model damping is dependent upon the Courant number and 0. As the Courant number approaches
1, the balance between physical and numerical diffusion is maintained by allowing 0 to increase to
compensate for increased damping as a result of the Courant number. As the Courant number is
increased further, 0 calculated from eq 43 may exceed the upper bound for model stability. In
this instance, small values of diffusion cannot be attained in the model. If the diffusion balance is
not enforced, the accuracy of the model will be degraded.

Strupczewski and Kundzewicz (1980) and Dooge et al. (1982) found in analyses of the Musk-
ingum model that negative values of the weighting parameter are due to short model reach lengths.
The same conclusion can be drawn from the value of 0 expressed in eq 13 and 43. If negative
values occur, 0 can no longer be considered a weighting parameter. Instead, it is a parameter used

to control or tune the diffusion of the numerical model.
In the interest of further enhancing the physical basis of the diffusion wave model, equating

the coefficients of the physical and numerical dispersion terms of eq 4 and 22, respectively, would
be desirable. This balance would provide improved model phase accuracy. However, the model
does not contain a free variable in addition to the 0 parameter with which to enforce balanced
dispersion. Given 0 of about 0.25 and Cr < 0.5, the dispersion term of the modified equation is
approximately zero. Larger values of 0 correspond to a positive numerical dispersion coefficient,
and conversely, smaller 0 values indicate a negative coefficient. The physical dispersion coefficient
of eq 4 is always positive. To properly simulate physical dispersion requires that the shorter wave-
length components propagate more quickly than the longer wavelength components, If the
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dispersion coefficient in the model is negative, just the opposite will occur. Minimization of the
imbalance is possible for many cases of interest with judicious selection of reach length. An ade-
quate description of sharp-fronted waves of relatively short period that are encountered in tail-
waters may, however, dictate fine resolution of computational mesh. Negative values of 0, which
may then be required for proper diffusion in the model, will introduce some amount of lagging
phase error in the simulation that will be most severe for the shorter wavelengths. Assessing the
relative magnitudes of the dimensionless coefficients in eq 5 reveals that the magnitude of the dis-
persion term is small relative to that of the diffusion term. Therefore, imprecise modeling of dis-
persion is probably not a serious limitation. In any case, the insights obtained from these analyses
remain valuable as the lagging phase error can be anticipated, improving the interpretation of model
output.

FIELD STUDIES

Two extensive field tests were conducted to verify the diffusion wave model. One test was con-
ducted in the Hiwassee River below Apalachia Dam and the other in the Clinch River below Norris
Dam. Apalachia Dam is situated at hiwassee River mile (HRM) 66 near the southern end of the
Tennessee/North Carolina border. At the dam, the river has a drainage area of 1018 miles2 (2636
kn 2 ). In the 13-mile (20.9-km) study reach below the dam the river bed has a steep slope, dropping
over 350 ft (106.7 m). The bed is extremely rough with large boulders and trees in the channel,
creating roughness elements that are typically on the order of the flow depth. The pools located
in the reach are relatively short. The bulk of the flow in this reach is normally diverted from the
dam through a conduit to the Apalachia powerhouse located near the end of the reach. Therefore
flow occurs only during floods and as a result of local inflows from a drainage area totaling 118
miles2 (306 ki2).

Norris Dam is situated at Clinch River mile (CRM) 79.7 near Oak Ridge, Tennessee. The drain-
age area of the river at Norris Dam is 2912 miles 2 (7542 km 2 ). The physical characteristics of the
Norris tailwater are significantly different from those of the Apalachia tailwater. The tailwater
has a relatively mild bed slope, dropping about 25 ft (7.6 m) in the 13-mile (20.9-km) study reach
immediately below the dam. Relative to that of the Apalachia Dam, a much greater percentage of
the Norris tailwater is pooled at low flow. An individual pool located near the center of the stud,
reach is over 2.5 miles (4.0 kin) in length and has a bed slope of only 0.00012. In general, rough-
ness elements on the Clinch River reach are much smaller than those on the Hiwassee River reach.
In the pools, most of the roughness elements are submerged even during lengthy zero flow release
periods from Norris Dam.

The physical characteristics of the Hiwassee River below Apalachia Dam and the Clinch River
below Norris Dam span those of a large number of streams. Both rivers have typical alternating
pool-riffle structures. The study reaches were located immediately below each dam where the
features of the tailwater hydrograph are the sharpest and the effect of diffusion upon the flow re-
leases is most pronounced. As the diffusion of a flow wave in a wide rectangular channel is in-
versely proportional to the bed slope (eq 4), much greater diffusion of the flow releases was ex-
pected in the Norris tailwater relative to that in the Apalachia tailwater.

Apalachia Dam tailwater
A field investigation of flow in the Apalachia Dam tailwater was conducted by personnel with

the Tennessee Valley Authority (TVA) on 22-23 March 1979. The hydrograph during this study
was produced with sluice gates at the dam and is given in Figure 13. River stage was recorded at
HRM 62.8, 59.0, 56.9 and 53.0 during the test. The channel shape was approximated in the model
as rectangular throughout the tailwater. Channel width and slope were obtained from USGS
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Figure 13. Apalachiw Dam flow releases, 22-23 March 19 79.

quadrangles. The tailwater channel width varied between I 50 and 440 ft (46 and 134 m), averaging
280 ft (85 m), and the channel bed slope varied between 0.0027 and 0.0084. The Manning's
roughness coefficient was estimated on the basis of field observations and was adjusted during
model calibration. Calibrated roughness coefficients ranged between 0.04 and 0.07, averaging
0.066, Lateral inflow was initially neglected.

In addition to physical parameters characterizing the reach, model application requires a selec-
tion of numerical grid parameters. Both the linear analyses and past experience with model appl-
cation provide guidance to initiate the selection process. We performed further studies of the
laboratory test cases reported in Ferrick (1980) that have shown that mass balance and wave propaga-
tion speed errors in a model simulation are reduced with improved spatial grid refinement and by
decreasing the maximum Courant number. Linear analysis of the model has revealed that damping
and phase errors occur when the Ax chosen is large relative to wavelengths being routed. For these
reasons, a spatial grid size of 5280 ft (1609 m) and a maximum Courant number of 1.0 were chosen
for application of the model to the Apalachia tailwater. A limitation upon the minimum value of
the parameter 0 of 0.0 was imposed in the model to prevent lagging phase errors that occur with
negative 0 values.

A comparison of measured and computed stage is presented in Figure 14. The propagation of
the 1000-ft 3 /s (28.3-m 3 /s) release in the model lags the data by a time that increases with distance
downstream. The timing and magnitude of the other releases are accurately represented in the
model. Due to the absence of the powerhouse discharge, the measured and computed stages are
not in agreement at HRM 53. The diffusion of the waves during passage through the study reach
is not large (Fig. 15), and the computed rating curves at the four stage measurement locations were
not strongly looped. These observations indicate that the water surface slope term retained in the
momentum balance may not be important. The water surface slope increases the effective channel
slope at the wave front and causes an increase in the speed of wave propagation. The effect of
neglecting this term upon the modeled flow was to lag the arrival of the rising limb of each hydro-
graph. Though the shape of the computed hydrograph was not significantly altered, discounting
the water surface slope degraded the wave timing agreement between the model and the data.

A number of sensitivity studies were conducted in which the estimated input parameters, width
and roughness, were varied in an effort to improve the agreement of the modeled and measured
propagation of the I000-ft3 /s (28.3-m 3 /s) wave. Increased channel roughness caused a reduction
in wave speed, an increase in steady-state stage for a given flow, and an extended duration of the
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increased stage. Increased channel width caused a decrease in the magnitude of stage changes, a
slowing of wave movement and a decreased period of increased flow. The overall agreement of
model and prototype, however, was not improved.

A physically justifiable development that produced the correct propagatiou speed of the 1000-
ft 3/s wave without significantly affecting the larger waves was the inclusion of local inflows. Local
inflows, measured at 20 ft 3/s-mile (0.35 m3 /s.km) for the 3.5-mile (5.6-kin) reach nearest the dam,
were assumed to be representative for the tailwater. In addition, the known discharge at the power-
house was included as a local inflow. Figure 14 presents a revised comparison between the model
and prototype. At HRM 63 the only discrepancy concerns the stage increase during passage of the
000-ft 3/s (28.3.m 3/s) flow. The effective channel width at low flow is less than at higher flow,

but due to the assumption of a rectangular channel, measured stage at low flow is higher than the
computed stage, At HRM 59 the averaged channel parameters of the model accurately describe
the local channel characteristics except at times when only local inflows are present. Sensitivity
studies indicated that the remaining discrepancies in the arrival times of the I 000-ft 3/s (28.3-m 3 /s)

wave at HRM 59 and 57 can be attributed to a lack of detailed inflow data. The river is pooled at
low flow at mile 57, and as a result, the computed river stage at low flow at this location fans be-
low the measured stage. Timing and magnitude of the larger flow arrivals are again accurately rep-
resented in the model. Further downstream, at HRM 53, model and prototype data agree closely,
both in timing and magnitude for all the releases.

The flow releases in the Apalachia tailwater are lightly damped (Fig. 14-15), and experience
with the model has revealed that this condition increases the tendency to compute an unphysical
discharge value immediately preceding a sudden increase or decrease in discharge. This error was
suppressed in the model by retaining the discharge computed at the previous time step. Numerical

experiments were conducted to verify that this mechanism did not adversely affect the solution.
Further experiments have shown that the tendency to compute an unphysical discharge is reduced
by decreasing the maximum Courant number, or equivalently, the temporal grid resolution.

Dynamic waves of measurable size traveling ahead of the main flow and upstream wave move-
ment resulting from wave reflections were not observed during the test. Together with these ob-
servations, the accurate simulation of wave propagation and damping of the rapidly varying flows
generated for the Apalachia tailwater study confirm the negligible influence of the inertia terms
for flow in steeply sloping tailwaters. The ability of the model to simulate flow in mildly sloping
tailwaters, where the inertia terms are larger relative to other terms of the momentum balance,
however, is more important practically and a more severe test case.

From the hydrographs presented in Figure 15 it is noted that the model accurately conserved

mass. The limitation imposed upon the 0 parameter, 0 > 0.0, permitted the numerical diffusion
in the model to maintain the balance with the physical diffusion occurring in the stream and did
not impair the accuracy of the simulation. The Manning's roughness model for the energy slope
was adequate to characterize the effect of the large-scale roughness elements upon the flow. The
physical justification for omission of backwater effects in the model cannot yet be judged. It is
possible that the pooled reaches in the Apalachia tailwater were short enough to have a negligible
effect upon the flow or that the addition of local inflow compensated for the effect.

Norris Dam tailwater
A 160-hour controlled release test (Fig. 16) was performed in the Norris Dam tailwater by per-

sonnel with the TVA on 1-7 July 1980, during which the variation of river stage was continuously
recorded at CRM 78.85, 76.1, 73.6, 71.4, and 67.3. The long pool in the study reach was isolated
by the placement of two of the recording gages at CRM 76.1 and 73.6. The channel shape was
assumed in the model to be rectangular throughout the study reach. Prior to the test TVA per-
sonnel surveyed the tailwater for channel width and bed slope. Measured widths ranged between
260 and 540 ft (79 and 165 in), averaging 380 ft (116 m), and bed slopes varied between 0.00012
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Figure 16. Norris Dam flow releases, 1- 7 July 1980.
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Figure 17. Hydrographs at downstream extent of Norris tailwater study reach computed with constant 0 =
0.5. spatial grid resolution of 2640 ft (805 m), and maximum Courant numbers of 0.25 and 1.0.

and 0.00130. Local inflows were small during the test, averaging about 2 ft 3/s-mile (0.035 m3/s-

km), with point inflows of 19 ft3 (0.54 m3 /s) from Coal Creek, the largest tributary, and 40 ft3/s
(1.13 m3 /s) of leakage past Norris Dam. Calibrated roughness coefficients that were used in the
model simulations ranged between 0.015 and 0.035, averaging 0.026.

The Norris tailwater model required a relatively fine spatial resolution of 2640 ft (805 m) to
provide stage and discharge information that was adequate to assess the effect of alternative flow
release strategies upon the tailwater fishery, and to provide resolution necessary for accurate rout-
ing of short period releases. The linear analysis revelaed that the dissipative and dispersive char-
acteristics of the model are sensitive to the Courant number and the 0 parameter, in addition to
the spatial grid resolution. To achieve optimal model accuracy, the limitations to be imposed upon
the maximum value of the Courant number and the minimum value of the parameter 0 were sys-
tematically addressed. Constant 0 simulations for various values of the maximum Courant number
and equal Courant number simulations with different minimum 0 limitations were run to supple-
ment the information supplied in the linear analysis.

Figure 17 presents computed flow at CRM 67.2 with a constant 0 value of 0,5 and maximum

Courant numbers of 0.25 and 1.0, respectively. The simulation at the higher Courant number ex-
hibited greater model damping and lagging of the waves, relative to the lower Courant number

K -25

u . •z _



(m3/s) (ft 3/%)

28 I0 x 0 3  
T

240 aCRM672

200- C' = 10
16 - 6- - - C,=0.25

so

40-

0 0 20 40 60 80 100 120 140 160

Time (hrs)

Figure 18. Hydrographs at downstream extent of lMrris tailwater study reach computed with constant 0 = 0.0. spatial
grid resolution of 2640ft (805 m), and maximum Courant numbers of 0.25 and 1.0.

simulation. This effect was especially pronounced for short period waves. Model damping in the
small Courant number simulation was minimal. Based upon the linear model analysis, all of these
tendencies were expected. Both simulations created mass, and the smaller Courant number case
has a mass conservation error of 28% at CRM 67.2.

A comparison of the simulations with a constant 0 value of 0.0, given in Figure 18, shows that
wave propagation was slightly faster and wave attenuation was apparently greater for the simula-

tion with a maximum Courant number of 0.25 than for the Courant number 1.0 simulation. The
contradiction with the linear theory concerning wave attenuation is actually an effect of improved
mass conservation which is seen as a quicker arrival of the tail of the wave. The bulk of the dif-
ference between the two simulations occurred in the long, nearly flat, pooled reach between CRM
76.2 and 73.7. Again, both simulations created mass, but the error was only 4% for the smaller
Courant number case. Measured and computed stages with a constant 0 value of 0.0 and a maxi-
mum Courant number of 0.25 agree reasonably well at all gages, although modeled damping is
generally less than that in the prototype. This result indicates that a variable weighting factor i%
not essential for reasonably accurate modeling of flat, ponded river reaches.

Comparing the simulations of like Courant number in Figures 17 and 18 reveals model tenden-
cies due to varying the 0 parameter that were predicted in the linear analysis. The effect upon
model damping of varying 0 is much greater than the effect of varying the Courant number. For
the cases in which 0 is set at 0.0, the slopes of wave fronts are less steep, corresponding to increased
diffusion relative to the cases where 0 is 0.5. Also, the arrivals of the short wavelengths at CRM
67.2 are lagged in the 0 equal 0.0 cases, relative to the 0 equal 0.5 cases.

Further reduction of the Courant number did not affect the computed hydrograph for any of
the constant 0 runs at the downstream end of the study reach. Larger Courant number (> 2.0)
simulations were attempted, but the iteration did not converge to a solution at the initial abrupt
flow increase of the inflow hydrograph. This convergence problem was not resolved because of
generally poor model accuracy at large Courant numbers.

The linear analysis of the numerical model indicated that negative values of 0, required to
maintain the physical-numerical diffusion balance when fine numerical grids are used, introduce
a small lagging phase error in the modeled results. Computed hydrographs for simulations having
either a Omin of 0.0 or no limitation upon 0 min are presented in Figure 19 for CRM 73.7 and 67.2.
Figure 19 reveals that the timing of wave arrival is not greatly affected by the Om In limitation,
but wave damping and mass balance are extremely sensitive to the limitation. Limiting 0 to
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Figurt 19. Hydrographs at downstream extent of" the long pool and downstream extent of Norris taiiwater

study reach computed with maximum Courant number of 0.25, spatial grid resolution of 2640 ft (805 m,
and variable 0 either limited to positive values or allowing negative values.

positive values results in an increase in mass of 14% at the downstream end of the study reach.

Relaxing the 8 limitation to be greater than -1.0 reduces the increase of mass to 8%. Removing
the limitation altogether yields a 4% decrease of mass at the downstream end of the reach.

Only minimal differences between the simulations existed upstream of the 2.5-mile (4.0-kin)

pooled reach where bed slope is relatively large and the 8 min limitation is imposed infrequently.
Downstream of the pool at CRM 73.7, the flow and stage differences between the simulations are
pronounced and continue to increase to the downstream extent of the study reach. Much larger

wave diffusion is expected and is evident in the results of the simulation without a minimum 0
limitation. Limiting 0 to positive values did not produce attenuation of the modeled stages that
was adequate to reproduce the prototype stage measurements.

A comparison of measured and computed stages without a 0mIn limitation at five locations on
the tailwater is given in Figure 20. The stage measurement locations do not coincide exactly with
the modeled sections and proper interpretation of the offsets between measured and computed

stage requires that these differences be considered. Overall agreement between the model and the
data on wave timing, damping and shape is excellent. At the upstream-most gage (CRM 78.85)
the model (CR14 78.7) reproduces the shape and timing of all the releases. An error in the chart

speed of the stage recorder beginning at hour 100 leads to an increasing timing discrepancy toward
the end of the test.In Figure 20 the gagle at the head of the long pool, CR14 76.1, is compared to the model output

at CRM 76.2. The timing of the wave arrivals is well represented in the model. The modeled stages
for the smaller waves are slightly less damped than in the prototype. In the pool, almost all rough-
ness elements were submerged at !ow flow. Small but physically reasonable, values of Manning's

roughness, 0.015, were required to attain the proper depths of flow in the model for the pooled
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Figure 20. Measured and computed stage at several locations on the Norris taiwater.

A maximum Courant number of 0.25, spatial grid resolution of 2640 ft (805 in), and
variable 0 without a lower bound were conditions of the numerical simulation.
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reach. At the downstream end of the long pool, CRM 73.7, the wave shape and damping is well
represented in the model. Only the smaller waves with short wavelengths are lagged in the model.
The linear analysis of the model projected this behavior for short period waves through reaches
where diffusion is large and the value of 0 required for adequate diffusion in the model is small or
negative.

Comparison between the stage data at CRM 71.4 and the numerical simulation at CRM 71.2 also
reveals excellent model-prototype agreement. The origin of the timing error of the wave arriving
at hour 136 is most likely cumulative, as this error is also evident in the model-prototype comparison
at CRM 73.7. Finally, the comparison between prototype stage at CRM 67.3 and modeled stage
at CRM 67.2 is again excellent. Due to negative 0 values in the model, smagl, short period waves
arriving between hours 70 and 90 lag slightly in the simulation.

The success of the simplified flow routing model of the Norris tailwater has important implica-
tions. The presence of backwater reaches in natural rivers does not significantly affect unsteady
flow waves and need not be considered explicitly. Pooled reaches are adequately characterized by
a small bottom slope and roughness. Again in this study, dynamic waves were not observed moving
ahead of the main flow or propagating upstream as a result of a wave reflection. The reproduction
of all features of the measured stage-time traces by the model demonstrates that steep-sided hydro-
graphs in a mildly sloping stream are not affected significantly by inertia. As the relative importance
of the inertia terms is greatest for these conditions, it follows that inertia is unimportant in shallow,
free-flowing rivers. The extension of this conclusion to deeper rivers was indicated by Stoker (1957)
in his study of rapidly rising flood waves on the Ohio River. He reported that the first measurable
disturbance traveled far behind the initial dynamic wave at the wave speed used in simplified
routing methods.

CONCLUSIONS

Physically based relationships for the diffusion and dispersion coefficients that describe wave
movement in rivers were developed from a linear analysis of the dynamic equations of open chan-
nel flow. These relationships revealed that the magnitudes of the coefficients are related and that
each is positive. By recasting the resulting equation in dimensionless form, insight regarding the
relative magnitudes of the convection, diffusion and dispersion terms describing a river flow wave
can be obtained. The magnitudes of these terms reflect upon the importance of the physical proc-
esses affecting the flow, and provide justification for using simplified models. For example, both
the adequacy of the kinematic wave approximation and the potenital for shock formation in the
channel are evaluated from the relative magnitude of the dimensionless diffusion coefficient. In
general, diffusion of short-period waves is an important process that cannot be neglected.

The diffusion wave model for flow in tailwater streams is a simplified inertia-free routing model
that allows variable wave diffusion and does not require a downstream boundary condition. The
modified equation and von Neumann analyses provided stability, diffusive and dispersive charac-
teristics of the model. The analyses are complementary, each having its particular strengths. Iden-
tical stability conditions, developed with each approach, revealed that stability does not impose a
time step limitation upon the model.

The dissipative and dispersive characteristics of the model are sensitive to the selection of
spatial grid resolution, the Courant number and the 0 parameter. As revealed in the von Neumann
analysis, model damping increases as wavelength relative to the spatial grid length, Ax, decreases.
Both analyses showed that damping increases as 0 decreases and as the Courant number increases.
An expression quantifying the numerical diffusion of the model was an important result of the
modified equation analysis. This expression was found to be an accurate representation of nu-
merical damping. The von Neumann and modified equation analyses of model phase error concurred
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and were supported over wide ranges of 8 and the Courant number by the linear routing studies.
The frequently utilized Firt analysis yielded incorrect phase relationships. The routings and analyses
revealed that damping and phase errors occur when the spatial grid is overly coarse relative to wave-

lengths of interest.
Guided by the linear analyses, selection of the spatial mesh dimension and the maximum Courant

number can be made a priori to achieve optimal accuracy for a given application. The only calibra-
ton required for model application is the adjustment of Manning's roughness.

The capabilities and accuracy of the diffusion wave model are enhanced by allowing the param-
eter 0 to vary so that a balance is maintained between physical and numerical diffusion. The nunier-
ical stability of the model does not place a lower bound on the value of 0. The limitation specified
in many simplified models-that the weighting parameter applied to the time derivative, in this case
0, be greater than 0.0-should not be generally applied. Mildly sloping rivers, modeled with a fine
spatial mesh for adequate wave resolution, require negative values of the weighting parameter for
proper wave diffusion.

A physical/numerical dispersion balance eliminating model phase error cannot be maintained
in the diffusion wave model simultaneously with the diffusion balance. Negative values of 0 cause
some amount of lagging phase error in the simulation that will be largest for the shorter wavelengths.
The phase lag introduced in the Norris tailwater simulation as a result of allowing negative values
of 0 was minimal, noticeable only for small, short-period waves. Phase lag was not apparent in the
Apalachia tailwater simulation where balanced diffusion was maintained with positive values of 0.
For many cases of interest, phase error can be minimized by judicious selection of numerical paramn-
eters.

The release hydrographs and measured stage data from the Apalachia and Norris l)am tailwaters
provided a discriminating test of model performance for wide ranges of bed channel slope and
roughness. The effect upon the flow of numerous large-scale roughness elements in the Apalachia
tailwater channel was adequately described by Manning's equation. The water surface slope term

in the stage-discharge relationship was necessary even in this steeply sloping river to accurately
model the propagation speed of the flow releases. Neglecting this term caused a time lag of each
wave arrival. The inclusion of local inflow in the Apalachia model was needed to correctly propa-
gate the small flow release. Correct wave celerity of this release could not be achieved through
model calibration.

The ability of the model to simulate flow in both tailwaters demonstrates its generality for
roing rapidly varying unsteady flow in rivers. As expected, the release hydrograph in the Apa-
lact,j tailwater experienced a small amount of diffusion relative to that in the Norris tailwater.

In each case, the effect of diffusion upon the flow was reproduced with the diffusion wave model.
loth tailwater studies indicated that backwater effects upon the flow of pooled river reaches need
not be modeled explicitly.

The relative importance of the inertia terms in the momentum equation is greatest for steep-
sided hydrographs in mildly sloped streams. In the Norris Dam tailwater test, however, dynamic
waves of a measurable size propagating in either the upstream or downstream direction were not
observed. These observations c.-upled with the success of the inertia-free Norris tailwater model
support analytical findings that inertia is not significant in shallow, free-flowing rivers where flow
typically occurs at relatively small Froude numbers.
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