AD-A128 136 ON DEADLOCK DETECTION IN DISTRIBUTED COMPUTING SYSTEMS 1/4
(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
-. D Z BADAL ET AL. APR 83 NPS52-83-005
UNCLASSIFIED F/G 9/2

-
e
23 it e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

NPS52-83-005

NAVAL POSTGRADUATE SGHOOL

Monterey, Galifornia

AA128136

ON DEADLOCK DETECTION IN DISTRIBUTED
CMPUTING SYSTEMS

)

D. Z. Badal and M. T. Gehl

April 1983

e R i ol s BN

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research

S
Arlington, VA 22217 83 0 5 16 0 1

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Adnitai J. J. Ekelund David A. Schrady
Superintendent Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided i v
the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

L 4
/o
“/

DUSHAN Z. BADAL
Associate Professor of
Computer Science

Reviewed by: Released by:

ikl Koo~ e oIl

DAVID K. HSIAO, Chairman WILLIAM M. TOLLES
Department of Computer Science Dean of Research

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

e B L i

S PERFORMING ORG. REFPOAT NUNBER

REPORT DOCUMENTATION PAGE BEFORE CoMpL B FORM
U GOVY ACCEISION WO 3. RECIPIENT'S CATALOG NUMBER
NPS52-83-005 /
4 TITLE tand Subitsle) = 8. TYPE OF REFPORT & PENIOCD COVERED .
On Deadlock Detection in Distributed Technical Report :
1 Computing Systems |

LT T TS TRAEY SR SARY St
Dushan Z. Badal and LCOR Michael T. Gehl, USN '

. PERFORMING ORGANIZATION NAME AND ADORESS u'jm
2’8 WORK UNIT NUKSERS

£ Naval Postgraduate School 61152M;RR000-01-10 !
: Monterey, CA 93940 NOOO1483WR30104 1
1l. CONTROLLING OFFICE NAME AND AODRESS 1. M’Y OATE
Naval Postgraduate School ___Am!g.%
Monterey, CA 93940 '3 NuMBER OF Sac2s 28
[TE WMONITORING AGENCY NAME & ADORESI(I! diiforent frem Contreiling Offiss) | 5. SECURITY CLABS. (of this oport)
Chief of Naval Research Unclassified
Arlington, Va 22217 s YT

{ T6. OISTRIBUTION STATEMENT (of thie Roport)

i Approved for public release; distribution unlimited

17. DISTRISUTION STATEMENT fof the sbetract entoced in Bloak 30, if diiferant from Report)

18. SUPPLEMENTARY NOTES

This paper has been published in the Proceedings of the 2nd Joint
Conference of the IEEE Computer and Communication Societies, INFOCOM83,
San Diego, CA, April 1983.

19. KLY WORODS (Continwe on olde It y and idontify by block mamber)

e

Deadlock Detection, Distributed Computing Systems

has been essentially solved for centralized computing systems, has reappeared.
Existing centralized deadlock detection techniques are either too expensive

3 or they do not work correctly in distributed computing systems. Although]
several algorithms have been developed specifically for distributed systems, the 4
5 majority of them have also been shown to be inefficient or fncorrect. A new f
; algorithm is proposed which is more efficient than any existing distributed
deadlock detection algorithm.

. r————_
- With the advent of distributed cCompUting systems, the problem of deadlock, which

*
DD (3 W73 cormow or 1 wov e8 18 cesoreTR Unclassified
3/N 8102 LK 614 4401 SCTRTY CLARRIIEATION 87 Tk FAdT s Baas Eovareey

A e L P o “. L o8 b e b S At Y P P - - - o .
o~ Sl il SR s 0 e S VA e
. - N - . Q.,,,M W .,«,u} <] .‘ e e Canicd . -

ON DEADLOCX DETECTION IN DISTRIBUTED Eéf_sj?f_?? For

5 T COMPUTING SYSTEMS NTIS GRA&I
i DTIC TAB

Unannounced 8]
) Justification . __ |
D. Z. Badal and M. T. Gehl

By.
Distribution/

Computer Science Department Availability Codes

Naval Postgraduate School Avail and/or
Monterey, CA 93940 Dist Special

\
\ ABSTRACT

\ l

~ With the advent of distributed computing systems, the problem of
deadlock;, which has been essentially solved for centralized computing systems,
aas reappeared. Existing centralized deadlock detection techniques are either
tec expensive or they do not work correctly in distributed computing systems.
Although several algorithms have been developed specifically for distributed sys-
terns, th? majority of them have also been shown to be inefficient or incorrect. A
naw algorithm is proposed which is more efficient than any existing distributed

deadlock detection algorithm. (,.
————

I. INTRODUCTION
Deadlock is a circular wait condition which can occur in any muitiprogramming, .

multiprocessing or distributed computer system which uses locking if resources
are requested when needed and processes are not assigned priorities. It indi-

cates a state in which sach member of a set of transactions is waiting for some
other member of the set to give up a lock. An example of a simpls deadlock is
shown in Mgure 1. Transaction T1 holds a lock on resource Rl and requires
resource R2; transaction T2 holds a lock on resource R2 and requires R1. Nei-

e

T T T e T

o

| e T

-

[N

‘B?J.,«v;l_"j‘ PR L. PR t ' o
e e ARSI AR s N T N L T o

ther transaction can proceed, and neither will release a lock unless forced by
some outside agent. There have been many algorithms published for deadlock
detection, prevention or avoidance in centralized muitiprogramming systems.

' The problem of deadlock in those systems has been essentially solved. With the

advent of distributed computing systems, however, the problem of deadlock
reappeared. Certain peculiarities of distributed systems (lack of global memory
and non-neglibible message delays, in particular) make ceWed techniques
for deadlock detection expensive. Recently there have been published several
deadlock detection algorithms for distributed systems [OBEB2, GLI80, MEN79,
GRA78, TSAB2]. However, most of them have been shown to be incorrect or to be
too complex and expensive to be practical. In this paper, we propose a new dis-
tributed deadlock detection algorithm for distributed computing systems which
is more efficient than any other published deadlock detection algorithm. The
major differences between the proposed algorithm and existing algorithms are
the concept of a Lock History which each transaction carries with it, the notion
of Intention Locks and a three staged approach to deadlock detection, with each
stage, or level, of detection activity being more complex than the preceding. In
this paper, we first present thse algorithm, then an informal proof of correctness.
and finaily a performance comparison of the proposed algorithm with the algo-
rithm presented in {OBE82]. Obermarck’s algorithm is used for comparison for
two reasons. First, it is the most recently published distributed deadlock detec-
tion algorithm and it is ajso shown to be more efficient than other algorithms.

><I

Fig. 1 - A simple deadlock cycle

T
» -
2 "

|

e v s wORAA A b e aT

N 5 ey

Second, Obermarck’s algorithm is being implemented on IBM's distributed data-
base System R*.

II. THE PROPOSED ALGORITHM
A INTRODUCTION

Thie proposed algorithm assumes two types of locks: Exclusive Write(W) and
Shared Read(R). Additionally, the proposed algorithm uses an Intention Lock (1)
which indicates that a transaction wishes to acquire a lock on a resource, either
to modity it (IW) or to read it (IR). The Intention Locks are piaced in a resourcs
Lock Table when an agent is created at a site of a locked resource which it
requires, or when a resource at the same site {s requested but is already locked
by another transaction. The Intention Locks are also placed in the Lock Table of
the last locked resource(s) once the transaction can determine which
resource(s) intends to l;:ck in its next execution step. The Intention Locks are '
not the same as the Intention Modes used by Gray when he discusses hierarchi-
cal locks in [GRA78]. Gray uses the Intention Mode to "tag” ancestors of a
resource in a hierarchical set of resources as a means of indicating that locking
is being done on a “finer” {evel of granularity, and therefore preventing locking
on the ancestors of the resource. The rules for locks in the proposed ailgorithm
are the same as for conventional locking, i.e., any number of transactions or
agents may simultaneousiy hold Shared Read Locks on a particular resource,
but only a single transaction or agent may hold an Exclusive Write Lock on a
resource. Any nmumber of Intention locks (IW or IR) may be placed on a
resource, which means that any number of transactions may wait for a resource.
Each site must therefore have some method for determining which transaction
will be given the resource when it becomes free. Our algorithm uses Lock His-
tory {LH) of a transaction which is a record of all types of locks on any resources

k4 i 4 I
~ - » gt - . S
~r—y- T W N T ot o . w2

— - e I T o B
~ rp Y ‘I S = Bt - LN .q‘ -
i 3 LR TS KPR > - EARE XY . ’a
it e O ST R ~ iy

-

. A

" E ALY A e
IR AL e
et SRS

~

A g e e
oL

IR :
TR S g A ey AP Poar oo b

which have been requssted or are held by that transaction. An example of a
Lock History for transaction T1 is LH(T1): {W(R3C), W(R2B). R(R1A)}. This LH
shows that T1 holds a Write Lock on resource R3 at site C, a Write Lock on
resource R2 at site B, and a Read Lock on resource R: at site A. The information
contained in a Lock Table for a resource includes a) the transaction or agent ID
and its Lock History, b) the type of lock and c) the resource (and type of lock)
which that transaction holding this lock intends to lock next. The fleid contain-
ing the current lock will be referred to as the "current” fleld of the Lock Table,
and the Beld containing the future intentions of that transaction holding the
“current” lock will be called the "Next" fleld. For clarity, Lock Histories will be
shown as separate entities. An example of a Lock Table is LT(R2B): T1{W(R2B),
IW(R3C){: T2{IW(R2B){. The Lock Table for resource R2 at site B shows that T!
holds a Write Lock on R2. and that T2 has placed an Intention Write Lock on R2.
T1 has also indicated that it intends to place a Write Lock on resource R3 at site
C. The proposed algorithm assumes a distributed model of transaction execu-
tion where each transaction has a Site of Origin (Sorig). which is the site at
which it entered the system. Whenever a transaction requires a remote
resource, {a resource at a site other than the site it is currently at), it
“migrates” to the site where that resource is located. Migration consists of
creating an "agent” at the new site. The transaction agent then executes, and
may either create additional agents, start commit or abort actions, or return
execution to the site from which it migrated. This transaction model is con-
sistent with recent literature [OBEB2, GRAB1B]. When a transaction migrates, it
carries along its Lock History. A Wait-For Graph (WFG) is constructed by the
deadlock detection algorithm, using the Lock Histories of transactions which are
possibly involved in a deadlock cycle, any time a transaction or agent attempts
to place a lock on a resource which is already locked, or when it determines that
a remote resource will be required. There are two types of nodes in the WFG;

[18

transactions (or agents) and resourcas. A directed arc from a resource node to

a transaction node indicates that the transaction has a lock on the resource,
while a directed arc from a transaction node to a resource indicates that the
transaction has placed an Intention Lock on that resource. A cycle in the TWG
indicates ths existence of the deadlock. The WFS is a list of transaction - waits -
for - transaction strings {obtained from the site’s WFG), in which each transac-
tion is waiting for the next transaction in the string, and the Lock History for
each transaction in the string. For example, the WFS [T1{W(R2A), IW(R3B)i.
T4{W(R3IB){] shows that T1 is waiting for T4, and each transaction's Lock History
is in brackets, A transaction may also bring along other information such as a
metric representing its execution cost, but such information is not included in
this paper as it is outside the primary function of the proposed deadlock detec-
tor. We assume that each transaction or agent will have a globally unique
identifier which indicates its Site of Origin. Age nts can be in any of three states:
active, blocked (waiting), or inactive. An inactive agent is one which has done
work at a site and created an agent at another site or returned execution to its
creating site, and is now awaiting further instractions, such as commit, abort or
become active again A blocked transaction is one which has requested a
resource which is locked by anbther transaction. An active agent is one which is
not blocked or inactive. To allow concurrent execution, a transaction may have
several active agents. Each site in the system has a distributed deadlock detec-
tor, which performs deadlock detection for transactions or agents at that site.
Several sites can simultaneously be working on detection of any potentfal
deadlock cycle. The basic premise of the proposed algorithm is to detect
deadlock cycles with the least possible delay and number of inter-site messages.
Based on the findings by Gray and others {GRA81A] that cycles of length 2 occur
much more frequently that cycles of length 3, and cycles of length 3 occur much
mors frequently that cycles of length 4, and so on, the proposed algorithm uses

N~ o v e

A Jauie

.

a staged approach to deadlock detection. We distinguish two types of deadlock
cycles to be considered; a) those which can be detected using only the informa-
tion available at a sits, and b) those which require inter-site messages to detect.
In the proposed algorithm, the first type has been divided into two levels of
detection activity. DBecauss the proposed algorithm checks for possible

deadlock cycles every time a remote resource ia requested and another transac-
tion is weiting for a resource being released by the transaction making the
remote resource request or a local resource is requested but already locked,
the level one check should be as quick as possible. If the requested resource is
still not available “after X units of time” {GRA78], then the probability of a
deadlock has increased sufficiently to justily a more complex and time-
consuming check in level two. Therefore the proposed algorithm has three lev-
els of deadlock detection activity. Levels one and two correspond to the first
type of deadlock cycle, while level three corresponds to the second type. The
first level is designed to detect cycles of length 2, although certain more com-
plex deadlock cycles could be detected, depending on the topology of the
deadlock cycle. This level uses only information available in the Lock Table of
the requested resource if the resourcs is local, or the last locked resource if the
requested resource is at another site, and in the transaction Lock Histories.
Due to the information contained in the “Next" fleld of the Lock Table and in
each transaction's Lock History, this level of detection activity can detect all
direct deadlocks of cycle length 2 involving one or two sites. The deadlock is
direct if at least one transaction is blocked, i.e., is waiting for the resource R
locked oy another transaction T" and R is the last resource locked by T before it
becomes blocked too. The direct deadlocks occur mostly due to locks being
reieased after the transaction does not require the resource any more. The
indirect deadlocks can occur when the resources are kept locked until the tran-
saction termination as is done in database systems which use two-phase locking.

As an example, let transaction T1 at site A Write Lock resource R1. Let transac-
tion T2 at site B Write Lock resource R2. These locks would be placed in the Lock
Tables of the respective resources, and also in the Lock Histories for the respec-
tive transactions. Transaction T1 now determines that it must lock a remote

resource R2, so it places that information in the "Next" fisld of its lock entry of
resource Rl and in its Lock History. It then migrates to site B, where its agent
places an Intention Lock in the Lock Table for R2, and then becomes blocked,
waiting for resource R2 to be released. A level one check is made using the Lock
Table of R2, showing no deadlock cycles. Now transaction T2 determines that it
requires a Write Lock on a remote resource R1. It places that information in the
"Next” fleld of its lock entry in the Lock Table of R2 and in its Lock History. As
T1 is waiting for R2 a deadlock detector triggers level one of the deadlock detec-
tion algorithm before T2 migrates to site A. The deadlock datection algorithm
combines the Lock Histories of all transactions holding or requesting locks on R2
{T1 and T2) into a WFG, and detects a deadlock. In this example, the cost of
creating an agent of T2 at site A was saved by a very quick check for cyclies of
length two. Inasmuch as the majority of deadlocks occurring will be of this
length, this simple and inexpensive check will detect the majority of deadlocks
as they occur. I, in the example just given, transactions T1 and T2 had simul-
tansously determined the need for locks at the other site, the initial level cne
check would not have been performed because no transactions were waiting for
those resources. Both transactions would have migrated and placed Intention
Locks at the new sites. A level one check is then made at each site when it is
noted that the requested resource is not available. Each site constructs a WFG
from the Lock Histories of the transactions in the Lock Tables of the requested
resources, and each site will detect a deadlock cycle in the WFG without any
inter-site messages. Even if the first level of detection activity fails to detect a

deadlock cycle, there can still be a more complex deadlock cycle in existence.

The second level of detection activity requires more time because it constructs
a WFG using all Lock information available at the sits, i.e., Lock information from
all resource Lock Tables at the site. I we assume that more complex deadlock
cycles are comparatively rare, it is advantageous to "wait X units of time”
[GRA78] before starting the second level of detection activity. If a transaction
is still waiting to acquire a lock after these X units of time, the probability of a
more complex deadlock cycle existing has increased sufficiently to justify a
more comprehensive check. As previously mentioned, the second level still
attempts to detect a cycle using information available at the same site where
tha transaction is waiting for a resource. The Lock Histories of all blocked or
inactive transactions at the site, and the Lock Histories from all transactions in
the WFSs from other sites are combined into a new Wait-For Graph. (The WFS's
are generated by the third level of the proposed algorithm). If no deadlock is
detected, and because level three of deadlock detection activity involves inter-
site communication, it might be advantageous to wait Y units of time before con-
tinuing in order to increase the probability of the wait condition being an actual
deadlock. After Y units of time, when the deadlock detection algorithm is ready
to continue, the WFG is converted into a WFS. The WFS is then sent to other
sites. The version of the algorithm presented here includes an optimization
whereby the WFS is sent to the site to which the transactior being waited for has
migrated only if the first transaction in the WFS has a higher lexical ordering
than the transaction which has migrated. This optimization is similar to one
used in [OHES2]. When a site deadlock detector receives a WFS, it substitutes
the latest Lock Histories for any transaction for which it has a later version (the
longest Lock History is the latest). It then constructs a new WFG and checks for
cycles. If & cycle is found, it must be resoived. if any transactions are waiting

for other transactions which have migrated to other sites, the current site must
repeat the process of constructing WFG's and sending them to the sites to which

the t-ansactions being waited for have migrated, subject to the constraints of

the optimization. If the transactions being waited for are at thiz site ancl active,

deadlock detection activity can ceass. Lavel three activity wil! continue until a
deadlock is found or it is discovered that there is no deadlock. The fsllowing
definitions are used in the description of the algorithm:

IL, - Intention Lock

W(v) — Exclusive Write lock on resource x

R(x) — Shared Read lock on resource x

Il'(x; — Intantion Lock(Write) on resource x

IR(x) —~ Intention Lock(Read) on resource x

Sorig(T) — Site or Origin of transaction T

LT(R) - Lock Table for resource R

LH(T) — Lock History for transaction T

"Next" — Field in Lock Table reflecting the resource the transaction intends to
acquire next

“Current” — Field in Lock Table reflecting the lock currently held by a transac-
tion

B. THE ALGORITHM

1. iRemote'resource R requested or anticipated by transaction or agent
T
A. Plece appropriate IL entry in “next” fleld of the Lock Table of
the current resource (the last resource locked by T.if any) and in
LH(T).
B. {Start level 1 detection activity at curren® sitel. If ar sther
transaction is waiting for the last resource locked b7 T, construct

a Wait-For grapk and WFS from the Lock Histories of the transac-
tions holding and requesting that resource and check for cycles.

C. If no cycles are detected or if no transactions are waiting:

1) Collect LH(T) and the WFS (generated at step 1.B) from
the current site, and have an agent created at the site of the
requested resource.

2) Stop

D. If a cycle is detected, resoive the deadlock

2. {Local resource R requested;
A. f resource R is available: {Lock it}

1) Place appropriate lock in Lock Table of resource R and
in LH(T).

2) end

B. If resourcs is not available: {Start level 1 detection activity]

1) {_’Il')ace appropriate IL in Lock Table of resource R and in
LH(T).

2) Construct a WF Graph from Lock Histories of all tran-
sactions holding and requesting R, and check for cycles.

3) If there are no cycles, and if the transaction holding

the lock on R is still at this site and active, stop. If there
is a cycle, resolve the deadlock.

4) If the transaction holding the lock on R has either
migrated to another site, or is still at this site but is
blocked by another transaction which has migrated to
another site, delay(tl).
5) If resource is now available:

a) Remove 1L from Lock Table and LH(T)

b) Go to step 2A
8) If resource is not available: {Start level 2 activity

a) Construct a WFG using the Lock Histories of the
transactions in the WFSs which have been sent from other
sites by level three detection activity, and the Lock His-
tories of all blocked or inactive transactions at this site
and check for cycles.

b) If any cycles are found, resolve the deadlock.

¢) If no cycles are found, Delay(t2)

d) If the requested resource is now ~vailable, go to
step 2A

e) If the transaction being waited for is at this site
and active, stop.

f) If the resource is still not available, go to step 3
{Start level 3 detection activity].

3. {Wait-For Message Generation)

A, {Start Level 3 detection activity] Construct a WFS by condens-
ing the latest WFG into a list of strings of transactions waiting f~r
transactions. Add the Lock Histories of each transaction in

10

B. Send the WFS to the site to which the tr =action being waited
for has gone if the transaction being waited for in each substring
bhas a smaller identifier than ths first transaction in that sub-
string.

4. {Wait-For Message Received;

A. {Start level 3 detection activityi Construct a WFG from the
Lock Histories of the transactiors in the WFS's from other sites,
and from the Lock Histories of all blocked or inactive transac-
tions at this site. (Use the latest ¥FS from each site.)

B. If this WFG shows that a transaction which is being waited for
has ;nigrated to another site, go to step 3. {Repeat WFS Genera-
tion:

C. If the transaction being waited for is active, and has not indi-
cated by an Intention lock that it will attempt to acquire a
resource which may result in a deadlock, discard the WFG and
stop.

D. If the transaction being waited tor is active but has indicated

by an Intention Lock that it is going to a 3ite which will cause a
deadlock, or if a cycle is found, rescive the deadlock.

C. EXPLANATION OF THE ALGORITHM

Step 1. This step is executed any time a transaclion {or agent) T requests a
remota resource, or when it determines that it wil require a remote resource.
The Lock Table of the resource which the transaction is currently using (or has
just finished with) is checked to see if any other transactions are waiting (i.e.,
bhave placed Intention Locks) for that resource. if so, the Lock Histories of ail
transactions requesting and holding the resource ars combined into a WFG and a
check for cycles is made. If no cycle is found, T collects the WFS formed from
the WFG at that site and causes an agent to be created at the site of the
requested resource. Step 2. This step is executed each time a local resource is
requested, either by an agent (transaction) already at that site or by a newly
created agent. If the resource is available, appropriate locks are placed and the
resource granted. If the resource is not available, Intention Locks are placed in
the Lock Table of the requested resource and in the Lock History of the

11

requesting transaction, a WFG iz constructed using only the information in the
Lock Table of the requasted rescurce and the Lock Histaries of the transactions

holding or requesting that resource, and a quick level one check is made for pos- ,
sible deadiock cycies. If no cycles are found, the aigorithm waits for a certain J
period of time before continuing. This should allow the transaction which holds
the resource to complete its work and release the resource. If the resource is
not available after this delay, the chance of a deadlock is higher, so the algo-
rithm shifts to another level of detection. It now uses the Lock Histories from
each blocked or inactive transaction at the site, as well as from any WFS's from
other sites which have been brought by migrating transactions. If there are no
cycles in this graph, and the resource is still not available after a second delay
(also tunable by the system users), the possibility of deadlock is again much
greater, but the current site has insufficient information to detect it. Therefore
tbc proposed aigorithm progresses to the third level of detection (step 3). Step
3. The Wait-For message generated by this step consists of a collection of sub-
strings. Bach substring is a list of transactions each of which is waiting for the

next transaction in the substring. The substring also contains the rescurces
Locked or Intention Locked by each transaction in the substring. This step
inciudes the optimization that a WFS is only sent to another site if the transac-
tion which has migrated has a lower lexical ordering than the first transaction in
the substring. For example, for the WFG shown in Figure 2, the WFS would be
[T2{W(R2B).IW(R3C){, T3{W(R3C). IW(R4D)}, T4{W(R4D),IW(R1A)}]. T4 has migrated
to sits A. The WFS would be sent to site A only if T4 is less than T2.
T4 T3 T2
g T v
Fig. 2 — Example WFG
Sep 4. In this step, the Lock Histories of the transactions in the WFS's previ-

12

T IR e T 1 0.,
Al

v

R ;
TET T W v Tt s d e o e T W g - A

ously received from othsr sites, and the Lock Histories of any blocked or inac-
tive transactions at this site are added to the Wait-For information contained in
a received WFS. If there is still insufficient information to detect a cycle (a tran-
saction being waited for has migrated to another site), another iteration musat
be performed, so the algorithm repeats by transferring to step 3. If a cyels is
detected, it is resolved, and if the last transaction being waited for is still active,
the algorithm stops.

D. OPERATION OF THE ALGORITHM

The operation of the algorithm willi be shown by executing it on the following
exampile. T1 migrates to site B and locks resource R2. It then migrates to site C
and locks resource R3. T4 locks resource R4 at site D. At this point, the Loeck
Histories and Lock Tables are as in Fig. 3.

Tl now attempts to acquire resource R4. By step 1, an IL entry is placad in

Site A
LH(T1): {IW(R2B)}
Site B
LH(T1): {W(R2B),IW(R3C)}
; LT(R2B): T1{W(R2B)
» ! Site C
LH(T1): {W(R2B),W(R3C)}
LT(RAC): T1{W(RIC)}
Site D
LH(T4): (W(R4D)Y}
LT(R4D): T4{W(R4D)}

Fig. 3 Lock Histories and Lock Tables

LI{T1) and in LT(R3) at site C. As there are no Intention Locks in LT(R3C). the
WFS from site C is collected (at this point in time, none exists), and an agent of
TL is created at site D, with T1 “bringing” LH(T1): {W(R2B), W(R3C), IW(R4D)}.
Site D now applies step 2B1, and places the IL entry in LP(R4D) and LH(T1). Then
it executes step 2B2 by combining the Lock Histories of T1 ancd T4. No cycles are
found, but as T4 is still active at site D, the DDA is stopped. The current status
of the Lock Tables and Lock Histories is as in Fig. 4. T4 now determines that it
needs to write into resource R3. It applies step 1 and places an IL entry in
LH(T4) and LT(R4D). The Lock Table for R4 is now LT(R4D): T4{W(R4D),IW(R3C)}:
T1{IW(R4D){, and the Lock History for T4 is now LH(T4): {W(R4D), I'W(R3C). It
sees in LT(R4D) that T1 is waiting for R4, so it combines its Lock History with
Ti's. This reflects the cycie Ti~>T4~>T1, 30 a deadlock has been detected with

no intersite messages.

Site A
LH(T1): {IW(R2B)}

Site B
LH(T1): {W(R2B).IW(R3C)]
LT(R2B): T1{W(R2B)
Site C
LH(T1): {W(R2B),W(R2C),IW(R4D)}
LT{R3C): T1{W(R3C),IW(R4D)}
Site D 4

LH 33 {:%?W(Rsc).m(mm; : |

LT(R4D): T4{W(R4D),T1{IW(R4D)} |
Fig. 4 Lock Tabler and Lock Histories ’ i

14

i
v

N
A

b B o

T, OGRS s T R
R S i S

~yna—y

IIl. INFORMAL PROOF OF CORRECTNESS

In general, a deadlock cycie can have many different topologies. For the model
of transaction execution used in the proposed algorithm (migration of agents of
transactions), these different topologies can be loosely grouped into four
categories. Category A involves local deadlocks in which all the resources and
transactions involved in the deadlock are local, i.e., located at one site, and thus
the transactions involved have not locked any resources at other sites.
Category B is the same as category A, with the exception that the transactions
are nonlocal, i.e.. they may have locked resources at other sites. Categery C
contains direct deadlocks of cycle length two involving only one transaction and
one resource at each of tvo sites. Category D is a generalization of category C
deadlocks; ahy nurnber of transactions and resources may be directly or
indirectly deadlocked at any number of sites. For each category, it will be
argued that the algorithm detects all possible deadlocks in that category, and
that the algorithm does nct detect "false" deadlocks except in the case where a
transaction which was involved in a deadlock has aborted, but its agents have
not yet been notified. If all the transactions and resources involved in a
deadlock are located at the same site and none of the transactions have locked
resources at other gites, each transaction’'s Lock History will be an accurate and
complete snapshot of the locks placed by that transaction. If the deadlock cycle
length is two, the combination of the Lock Histories in step 2B2 {level 1) will
detect the cycle. 1! thas length of the cycle is greater than two, step 2B8 (level 2)
will combine, for this category of deadlock cycles, the Lock Histories of all the
blocked or inactive transactions at the site. This information will be a complete
and accurate global snapshot of the deadlock cyclse, and hence the deadlock will
be detected. Deadlocks in the second category are those in which all the trar

sactions and resources involved are at one site, but the transactions involw

15

= e .y e = - - o . - ' - a oy e —;]. ‘ .v,q;'x,..:..w.:,% % 3 o8 .(.",';’ I;:..-',.__‘ L) Rk oy
’ N

may have locked resources at other sites before creating the agent at this site.
The argument to show that all deadlocks in this category will be detected by the

proposed algorithm is essentially the same as the one used for the first
category. Since all the transactions involved in the deadlock are currently at
this site, their Lock Histories are complets and accurate in so far as they per-
tain to the deadlock cycle. It is possible, in the case of concurrent execution of
a transaction’s agents, for an agent involved in a deadlock to be uneware of
resources locked by other agents of that transaction which are executing con-
currently, and will probably still be active. The only difference between this
case and the preceding is that the WFGs constructed by steps 2B2 and 22€ may
contain information about other locks held by the transactions involved, but the
information concerning the deadlock cycle will be present. Deadlocks in the
third category will be detected by level 1 because a single Lock Tabie at sach
site holds sufficient information to detect a deadlock cycle. If the migrationts
occur simultaneously, the "Next" fleld of the Lock Table of the requested
resource would show an Intention Lock on the other resource, and this cycle
would be detected by step 2B2. If the migrations occurred sequentially. the
second transaction would, before migrating, place an Intention Lock in the Lock
Table of its last locked resource. The level 1 check of step 1B would cause a WFG
to be constructed which would reveal the deadlock cycle. The fourth category of
deadlock cycles is a generalization of the third. Deadlock cycles in this category
may involve any number of transactions and resources at any number of sites.
A record is always kept of the site to which a transaction has migrated (in the
"Next” fleld of it's last locked resource at the current site.) If level 2 cannot
detect the cycle in step 2B8 with information at that site, level 3 causes a WFS
containing thia site’'s information to be sent to the site to which the transaction
bas migrated if the transaction which has migrated has a lower unique identifler
than the first transaction in the substring. Steps 3 and 4 cause this process to

18

TYIUPS PP

be continued. with each site adding additional information, until a site contains
enough information to detect a deadlock cycle or determine that no deadlock
exists, regerdless of the number of migrations made by a transaction. To show
that this process will continue until the deadlock is detected, we refer to the
proof in [OBE82), since the optimization in the proposed and in the Obermarci’s
algorithm is essentially the same. False deadlocks are an anomaly where a non-
existent deadliock cycle is detected by a deadlock detection algorithm, and are
usually a result of Incorrect or obsolete information. Since the proposed algo-
rithm uses only the latest copy of a transaction's Lock History for deadlock
detection purposes, the infcrmation used cannot be incorrect in the sense cf
invalid entries, aithough it may be incompiete. This means that a Wait-For graph
constructed from incomplete versions of Lock Histories may have insufficient
information to detect a deadlock at that partioular level of detection activity or
iteration of level three activity, but it will not have incorrect information. When
a transaction which has agents at two or mors sites commits or aborts, however,
it is possible that the commit or abort mesasages to other agents of that transac-
tion may be delayed Obviously, a transaction which is ready to commit cannot
have any of it's agents in a blocked state (and therefore in a possible deadlock
condition), so its agents can either be only active or inactive. While inactive
agents may be being waited for by agents of other transactions, no Lock History
or Lock Table can show that an agent of the transaction which is about to com-
mit is waiting for another transaction, 20 no false deadlocks can exist. There-
fore only the possibility of a transaction which is in the process of aborting and
thus causing a false deadliock to be detected must be considered. Suppose an
agent of a transaction decides to abort, but before its abort measage reaches
another agent of that transaction, a deadlock is found involving that transaction.
Technically, this could be considered a failse deadlock, since ons of the transac-
tions involved has aborted, probably breaking the deadlock cycle. If the

17

deadlock cycle is complex, and the proposed algorithm is performing level two
or three detection activity, the delays introduced in steps 2B4 and 2B6c should
allow the abort message to arrive. For what we believe to be the rare

occurences where the abort message does :bt.arrln. it would probably be more
efficient to let the deadlock detection algorithm rescive the (false) deadlock
rather than having the algorithm perform some explicit action {such as delaying
before resolving any detected deadlock cycle) each time it detects a deadlock.

IV. PERFORMANCE ANALYSIS

To check the efficiency (in terms of inter-site messages) of the aigorithm, it was

analyzed in several deadlock scenarios. The algorithm of Obermarck [OBE82]

was also analyzed in these scenarios. Obermarck's algorithm was chosen for

‘his comparison because it is being implemented in IBM's developmental distri-

outed database system, System R* and because its performance has been shown

TOBE82] superior to other deadlock detection algorithms. Since the majority of

deadlocks which will occur will be of length two or three, three test cases involv-

ing deadlock cycles of those lengths will be used for the comparison. It is

assumed that the transactions are lexically ordered T1 < T2 < T3. These cases

are shown in Figure 5. T1 originated at site A and holds a lock on R1, and T? ori-

ginated at site B and holds a lock on R2. In cases two and three, T3 originated at

site C and holds a lock on R3. In case one, Tl has migrated to site B and

i requested R2, while T2 has migrated to sits A and requested R1. In case two, T!

§ has migrated to site B and requested R2, T2 has migrated to site C and

: requested R3, and T3 has migrated to site A and requested R1. In case three, T1

bas migrated to site C and requested R3, T2 has migrated to site A and
requested R1, and TS has migrated to site B and requested R2.

o gimry
s

For case ons, whers the deadlock cycle is of length two, the proposed algorithm

16

v AL
. ‘5’@" N e

€

e sy e T e .

SiteA Site B | i Site B
te %(@l‘ te
-——-—l

Case 1 Case 2

1@ @
W@

- --.—-.\
X
a:\@ [
[
&
rt
o
]

:
Ry

e
S e ew e e e . e

Fig. 5 — Deadlock cycles used in performance analysis

requires no additional messages for deadlock detection, while Obermarck’s algo-
rithm requires one message. For case two, with a deadlock cycle of length
three, Obermarck’s algorithm requires two messages. The number of messages
required by the proposed algorithm is dependent on the timing of the transac-
tion migrations. If the migrations occur at different times (i.e., sequentially), no
messages are required. If, however, the migrations happen to ocour simuiltane-
ously, only one message is generated because of the optimization. A similar
situation occurs in case three. If the migrations occur simultaneously, two mes-
sages will be gensrated by the proposed algorithm, although one of these mes-

19

e @y e e v

e y

= N e S

sages is redundant, ie., any one message (s sufficient to detect deadlock. If
transaction migrations occur at different times (i.e., sequentially) then no mes-
sages are required. Obermarck’s algorithm requires three messages, regardiess
of the timing of the migrations. As pointed out in {[OBE82] it is apparent that in
the overwhelming majority of cases the giobal deadlocks are of cycles of length
two invelving two sites. No messages are required to detect direct global
deadlocks of cycle length two by the proposed algorithm. In order to provide
the evaluation of both algorithms for global deadlocks with cycle lengthn > 2 we
assume that n nonlocal (or global) transactions are involved in the global
deadlock such that at each of n sites only one transaction is blocked by another
transaction and each transaction needs to execute only at two sites. Then the
number of messages needed by the proposed algorithm for the worst case
scepario (when all the transactions involved migrate simuitaneously) can be
shown to be N-1, where N =£(n-k). Under the same circums'tances it can be
shown that Obermarck’'s algt;;t.hm [OBEB2] requires N messages regardless of
sequencing of transaction migrations, i.e., the number of messages depends only
on the number of transactions involved in the deadlock. Thus for a cycla of
length three, the number of messages required for the worst case would be two
for the proposed algorithm and the Obermarck's algorithm would require tree
messages. For a cycle of length four, the worst case would require five messages
under the proposed algorithm vs. cycle of length five, nine messages would be
required. We want to stress again that the worst case psrformance of the pro-
posed algorithm only occurs, however, when all transactions involved migrate
simuitansously, and the lexical ordering of the transactions is such that n-1
messages are aent on the first iteration. It is safe to assume that the worst case
scsnario does not always occur with sach global deadlock and therefore the real
performance of the proposed algorithm is expected to be better than we stated
here. However, we must point out that the decreass in the number of inter-site

P PR e it M s ai o LOCEEN LA

i

messoges comes at the cost of slightly more complex lock tables and at the cost
of each transaction carrying with it slightly more information (its Lock History).
The amount of time used in level ons activity is minimal, since only a single
resource's Lock Table iz used to determine the set of transactions whose Lock
Histories umlt be combined. Even with level two, the time required to construct
a WFG using all Wait For information at a site should take no longer than the con-
struction of a WFG in Obermarck's algorithm. In [OBE82], Obermarck does not
discuss the factors which trigger deadlock detection, but for this analysis, it is
assumed that it is triggered X units of time after a transaction waits for a
resource. His algorithm constructs a WFG at each iteration of the deadlock
detection cycle, regardless of the potential size of the cycle. Since the proposed
algorithm performs a comparable construction only when cycles of length two
have essentislly been eliminated as a poesibility, it appears that the proposed
nigorithm will require iess time to execute whenever it is invoked.

V. CONCLUSIONS

The proposed algoritim has been shown to be able to detect deadlock with
smaller number of tnter-dt.o messages than any existing algorithm for deadlock
detection in distributed computing systems. We have shown that for the
deadlock scenarios analyzed in this paper the proposed algorithm requires from
2ero Lo N-1 (where N =i(n-k)) messages to detect a global deadlock, where n is
the number of t.nmc:;nl and sites involved in the deadlock cycle. It requires
no messages when the transaction migrations leading to the deadlock occur
sequentiaily. This is because when a transaction migrates, it "brings along" a

pertinent wait-for information from its current site. The worst case for the pro-
poeed algorithm is when the transactions involved migrate simultaneously. This
can resuilt in as many as N-1 messages. depending on the ordering of the unique
transaction identifiers. Obermarck's algorithm for this case requires N

i

messages, which is always one message more than the number required by the
proposed algorithm. The reason that the propoesed algorithm requirss ane less
iteration of message passing is because the Lock Histories of each transaction
are brought along with the transaction when it migrates, and thus each site has
more information than the sites would have using Obermarck’s algorittm. The
most important point is that the proposed algorithm carn Aetect the most fre-
quent deadlocks without any inter-site messages. The proposed algorithm
requires no inter-site messages for direct deadlocks of cycle length two invo v
ing two sites, or for deadlocks of cycle length > 2 when a) a sequential migration
of transactions in order of their lexically ordered unique identiflers has occured
regardless of the number of transactions or sites involved or b) the deadlock is
direct and involves only two sites where at ons site only two transactions conflict
and an arbitrary number of transactions conflict at the other site. For all other
types of deadlocks the proposed algorithm requires one less message than
Obermarck’s algorithm. The proposed algorithm could be modified by combin-
ing levels one and two, if the number of resources and transactions in the sys-
tem are small, and thsrefore the cost of creating WFG's at level 2 would be com-
perable to the cost of the level 1 WFG construction. The cost of construction of
the WFG's used by the algorithm could be saved by not constructing them at all,
but mersly examining the WFS's and Lock Hut;arles. since all required informa-
tion is contained in them. The delays which have been built-in to the alzorithm
can be adjusted empirically to determine the optimum delays for a particular
implementation.

REFERENCES

[GLI8O] Gligor, V. and Shattuck, S., "On Deadlock Detection in Distributed Sys-
tems”, /EEE Transactions on Softwars Enginesring, Vol. SE-8, p. 435
440, September 1980.

T _
7%@'?&'&%7‘ DY b

[GOLY?] Goldman, B. "Deadlock Detection in Computer Networks”, Mas-
sachusetts Institute of Technology Te<hnical Report TR-MIT/LCS/TR-185,
September, 1977.

{GRAT8] Gray, J. "Notes on Data Base Operating Systems”, [BM Research Divi-
sion Research Report RI2188(30001), February, 1978.

(GRAB1A] Gray, J., Homan, P., Korth, H. and Obermarck, R. “A Straw Man
Analysis of the Probability of Waiting and Deadlock in a Distributad Data-
base System", paper presented at 5th Berkeley Workshop, on Distributed
D;;a Management and Computer Networks, San Francisco, February
1981.

(GRAB1B] Gray, J. "The Transaction Concept: Virtues and Limitations”, Tandem
Technical Report TR81.3, June 1981.

[MEN79] Menasce, D. and Muntz, R, "Locking and Deadlock Detection in Distri-
buted Data Bases", /EEE Trensactions on Software Pnginearing, Vol. P
SE-5. No. 3, p. 196-202, May 1979.

[OBEB2] Obermarck, R. “Distributed Deadlock Detection Algorithm”, ACM Tran-
sactions on Database Systems, Vol. 7, No. 2, pp. 187-209, June 1982.

[TSAB2] Tsai and Belford, G., '"Detecting Deadlock in a Distributed System"”,
Proceedings INFOCOM, Las Vegas, 1 April 1982.

i

FETREINAREN, . 2o jory Aot
e = Ty TR i

R

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93940

O0ffice of Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Hq

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Dushan Z. Badal, Code 52Zd
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Robert B. Grafton

Office of Naval Researcn
Code 437

300 N. Quincy Street
Arlington, VA 22217

David W. Mizell

Office of Naval Research
1030 East Green Street
Pasadena, CA 91106

CDR R. Ohlander
DARPA

1400 Wilson Blvd.
Arlington, VA 22209

Col. D. Adams

DARPA

1400 Wilson Blvd.
Arlington, VA 22209

" CAPT W. Price

AFOSR/NM
Bolling AFB, D.C. 20332

24

30

Col. R. Schell N
National Security Agency

C1

Fort George Meade, MD 20755

LCDR Mike Gehl 1
Elex 814A Naval Electronic Systems Command
Washington, D.C. 20363

COR Tom Pigoski 1
3801 Nebraska Ave., NW
Washington, D.C. 20390

Dr. John Schiell 1
Naval Ocean Systems Center

Code 8321

San Diego, CA 92152

T A s LW AR an e g

