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1. INTRODUCTION
This report describes the abstraction mechanism of a prototype systems implsmen-
tation languages for Intel's 1APX-432 microprocessor. The language was designed in
1977 Bill Brown and myseif (at Intel) and was implemented in Simula in 1978 and 1979.
liatel has kindly declared this work non-proprietary, so its publication is now possible
[3rownB3]. The introduction to the language specification {PSIL78] describes ths
L ]
preject's goals:
1. **To provide an adequate tool for programming the [iAPX-432].
2. "To provide experience in the implementation of languages and systems for the
(1APX-432].
3. "To provide a Qirst cut at addressing the philosophical language design issues asso-
ciated with concurrency, modularity, and protection.

‘"The prototype language is explicitly designed as a learning tool to establish the real
requirements for mesting the above goals.”

Although the prototype language is now five years old, I think that it has a number of
unique characteristics that justify its description. Full exploitation of the 432's facili~
ties places many demands on a language intended for systems implementation. The
432 is a capability-based machins, with hardwars-enforced typing of 'large’ objects,
dynarnically instantiated domains (i.e., packages), hardwars-enforced information hid-




ing (seals), and hardwars-supported, software-dafined access-rights (trademaris). The
' mw'awmm-utmnmumm. The 432 also pro-
vides a very dynamio, message-based model of concwrrent exscution: prototype
language [acilities to support this model are described in a companion report
[Macl8S]. '

The rest of thu report essentially reproduces Section 3.1 and Chapter 4 of the proto-
type language specification [PSIL78]. To place this material in context it should be
gufficient to lmow that the prototype language is an extensible data-abstraction
language in the tradition of Alphard, CLUandMESA.‘Homr. to meet the require-
ments of the 432, it is generally mcre dynamic than thess languages.

2 VALUES AND OBIECTS

Natural languages distinguish between common nouns and proper nouns. Proper
nouns (or names) denote specific entities that exist (prelumabiy). Common nouns
denote concepts or abstractions, i.e., classes of entities, or classes of classes, stc.
Abstractions and entitiss are compared and contrasted below.

Both entities and abstractions have attributes. For instance, if ‘Caesar’ is a name
for a specific entity. we can speak of various attributes of this entity, such as the age of
Caesar or the father of Caesar. Similarly, if the word 3 refers to the compiex number
1+21 (which is an abstraction), then we can speak of various attributes of this abstrac-
tion, such as the real part of z, or the imaginary part of z.

Abstractions and eutities can be contrasted as follows. Entities are things that

exist: as such, they can coms into existence or go out of existence. They have attri-
butes that can be changed in time without altering the basic identity of the entity.
That is, an entity remains that same entity even though any or all of its attributes may
have been changed. This includes the 'internal attributes.,’ or state, of the entity.
Snce entities have an identity which is distinct from the attributes possessed at any
given point in tims, it is possible that there can be two entities which have the sams
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attributes, yet are different entitiss. Such entities are called differsnt instances of
each other.

The concept of existsnce is not applicable to abstractions. Abstractions are time-
Ises, Le., it i meaningiess to speek of them coming into existence or going out of
existence. Since an abstraction is completely defined by its attributes, changzing its
attributes causes it to be a different abstraction. In this sense abstractions are
unmodifiable. (It ia, of course. possible to redefine the name of an abstraction. For
instance, ths word 'pi’ might be redeflned to refer to the abstraction 17, but this
alteration doas not aiter that number which is the ratio of a circle’s circumlerence to
its diameter.) The lact that an abstraction is compietely determined oy its attributes
also implies that the concepts of ident:ty and instance are not applicably to abstrac-
tions.

Like natural languages, the prototype language distinguishes between entities; which
it calls objects, and abstractions, which it calis values. The programmer generally
deals with vaiues (such as numbers or characters), except where updating, state infor-
mation, or sharing are involved, in which cases objects are requirsd. The naming of
objects and values is discussed in Secticn 3.

3 SPECIFICATIONS AND BINDINGS

As was discussed in Section 2, the prototype language is capable of describing both
valuss (abstractions) and objects (entities). To facilitate such description, values and

cbjects can be denoted by words (or names). Thess correspond to the common and
proper nouns of natural languages. This chapter describes how these words are
defined, a process called dinding. Values can also be described by 'denotations,’ which
are seli-defining names for values. For exampls, ‘2’ is a denotation for 2; it doea not
have to be explicitly defined. This chapter discusses the denotations for non-primitive
values.




R has been shown that both objects and values have attributes. These attributas are

| usually named, but can be denoted by indexss, as is the case with arrays. (Ultimately
«ll names are considered attribute names. since the names of variables, procedures,
eto., are attributes of ths environment.) This chapter discusses ths ways in which
pamaes are associated with values and objects ('binding'), the ways in which one can
restrict the class of values or objects to which a name will later be bound
(‘specification’). the ways of spscifying classes of valuss and objects ('types’). the ways
in which valuss can be constructed from more primitive values and objects {'compo-
site’ values), and the rules governing the context in which names are known ('scoping’).

specification: bind-mode spec.

spec: [name] L.ﬂ';ﬁ..f”".w}

spocifﬁ:aﬁan

bound —part: [nacns] {g«m}
it -made: [TogES] voasitey .
" volaty: [R5

.lp sptciﬁeuﬂm
bd: binding .

Ngure 1. Specification and Binding Syntax

Specification:
ver x real
proc [ac(n: int) -> int;

varx mal =0;

pi = 3.14159;

proe fac(n: int) -> int is
if =0 then return 1;
else return n*fac(n-1);
end if;

end fac;

Figure 2. Specification and Binding Examples ]
The concept of a binding is of central importance in the prototype language. A bind- ;
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ing is the formalization of the natural-language process of defining & word or name. In
this process a common noun is associated with a particular concept, or a proper namse
is amsociated with a particular entity. In the same way a binding associates a namse
with a particular value or object (the language does not distinguish betwesn common
nouns and proper names). The name is said to be bdound to the value of object. For

instance,
const pi: real = 3.14159;

binds the name 'pi' to the value denoted *3.14159.' The binding caz be paraphrased ''pi
is defined to be the real pumber 3.14156.”” The werd const means that this definition is
constant, or permanent, within the scope of the definition

R is often useful to bave a name that at varous {imes can refer to different
members of a class of values or objects. An examp!s of sw:h a ‘variable’ binding is:

var x real = 3.14.59;

This could be paraphrased '"x currently stands ier l1e real number 3.14159." The bind-
ing is variable because the pame 'x’' can be rebourd to acother vaiue of the same type
(L.e.. real) anywhere within the scope of ‘'z’ This :s accomplished with an assignment
operation. Formally, variables are just changezbie attributes o a form odject (Section
S) representing the current environment. As a matter of convenience, the type can be
omitted whan it can be deduced from the bound value. Also, const is assumed if it is
omitted.

For the following discussion an understanding of Algol scope rules will suffice. It will
usually be the case, as in Algol, that the current environment of known names is com-
posed of those defined in the current (local) program unit together with those con-
tained in outer (non-local) program units. In Algol, if the current program unit defines
a name that already is defined in the non-local environment, then the new name super-
sedes the old. Such implicit redefinition is illegal in the prototype language. since it is

a frequent source of errors. An name con be redefined in an inner scope, but the




programmer must make his intention explicit, by writing redefine. For example:

Jot var x: reul:

lot redefinevarx int = {;

and

In the prototype language, all bindings established within a given scope are inter-
preted to be mutually recursive. This means that ths bodies on the right of the bind-
ings ‘see’ the names on the left. This allows simply recursive functions to be defined in
the obvious way, e.g..

proe fac(n:int) = (n=0 => 1 | n*fac(n-1));
This ru/e also allows sets of mutually recursive procedures to be defined, e.g.,

proc!t=..g....
procg=..t..;

Sometimes is is useful to redefine a name in terms of its pravious (more giobal) mean-
ing. For this purpose the mutually recursive interpretation can be suppressed by writ-
ing nonrec. This means that the right-hand-side of the binding will 'see’ only the non-
local environment. For instance, it if were desired to redefine 'Sin’' so that it worked in
terms of radians rather than degrees, this could be done by:

nounree pros Sin(theta:real) = Sin(theta/180%pi);

A binding defines the name on the left to be the current valus or object described by
the sxpression on its right. Thus, the binding 'const w = Sam.car.weight.' can be para-
phrased '‘define w to be the current weight of Sam's car.” The fact that the car's
weight may later change will not effect the value of w. Occasionally it is desirable to
introduce a name to stand for an attribute’s vaiue at all times. Thus, it might be desir-

able to define 'cw’' to mean the weight of Sam's car, at any time. This can be done with
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the binding:
Name cw = Sam.car.weight;

This is an example of & ‘name definition.' After this definition, '‘cw’ can be used any-
where ‘Sam.car.weight' could have besn used. For example, the weighi of the car can
be changed by ‘cw := 4015;".

. A specification is essontially a binding without an init{al value. It is used to restrict
L the set of valuss to which the name will be later bound {say by extension).
Specifications usually occur in class-denctations (section 4). Exampies of
specifications #ill be found throughout this report.

[ class—den
! record

union -type —dsn
, type~dam: | opoem -type —den |-
2edural
' { wyld iar]
f class —den: zloms (genus | Sp* end [class] .
| genus: type with .

record —type —ien: 1ecord 5d* end [record] .
umion —type —den: uaion Sp * end [union] .

am-bypc-m:m‘%"‘)

Figure 3. Syntax of Types
4 TYPES

The concept of a type in the prototype language is very similar to a Pascal type or
an Algol 68 mode. The differences will be discussed later. The type denotations (typs-

den) are the primitives which, with the type operators, are used to construct type-
expressions. Throughout this document, the non-terminal fype is used to denote such
a type-expression. As in Pascal and Algol 68 a type denotes a set of values or objects
that share cartain attributes and operators. The specific sets are described below.

Perhaps the most familiar type denotation is the record-type denotation. A record
; (n-tupl, structure) denotes a unordered heterogensous data structure. See the exam-

i
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record —type ~den:

union —fype ~den;
undon In:int: Ri:real; snd
onan ~fype ~den.;
-némn.hm.ml
e (violet, indigo, blue,
yellow, arange, red
class ~cdan :
ciass proec more -> Boolean:
pros reset;
proc next -> char:
opd

Ngure 4. Examples of Types
ple in Figure 4. Records in the prototype ianguage provide facilities now quite com-

mon. such as initial (default) vaiues for fieids and position-independent initialization of
felds. These Iacilities are justified and described in [MacL75), Chapter 6.

Since there are no ‘refersnces’ in the prototype language, records can be directly
recurzive in definition. For example, the following is a definition of LISP-style lists:

cell = union atorn: string;
nonnuil: list;
oull: §3;
end:

list = recard car: cell, cdr: cell: end:

If L is of type ceil, then we can discriminate its variants by expressions like 'L is atom’
or by a variant case stutemant (see [Hoare?73]).

- In natural languages, a class (conoept, abstraction) is defined by stating the genus
| to which the members of the class belong and the attributses, attribute ranges or attri-
bute valuss that distinguish the members of the class from the other members of the
genus. This method of definition is captured by the class construct in the prototype
language. Readers acquainted with the Simula or Smalltaik cisss should be on familiar

|
|
|
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ground. Gonsider the class binding
n=ciamg with d end;

The class being defined is ‘n.' the genus is g and the ¢ifferentia are d. The dinding can
be paraphrased ''define 'n' to be the class of all g such that d.”" The effect of the
definition is to alcach a name to all values or objects which are in the genus and satisfy
the difforsntia (which are specifications). Each specification associates a set of dcss-
ble values with an attribute name. If the attribute aiready exists as an attribute of tke
genus, then the respecification must be compatible with the old specification. i.e., the
nsw set of valuss must be compatibie with (Le., be a subset of) the old set. An attri-
bute is required to have a particular value by specifying a singleton set of valus.

An example may clarily these ideas. Suppose class ‘animal’ had already been
defined The following additional classes are defined:

bird = class animal with wingspan: int; end:

parrut = class bird with
color: enum j{green, blue, grey, brown, mixed;
name: string;
end;

green.parrot = clags parrot with
color: {greeny;
end

large_parrot = class parrot with
wingspan: {50 to 1000{;
end

peme

These bindings define a hierarchy of abstractions, each being a refitnement of a
preceeding abstraction. Thus, a 'bird’ is defined to be any animal with a wing span, a

- r..-f&tu';»y Sl TN




parrot is defined to be a bird with ons of the specified colors and a name, a green par-
rot is defined to be a parrot with color green, and a large parrot is defined to be a par-
rot with a wingspan greater than 50 em.

A more useful class than parrots iz defined by the binding:
file = class

proc reset;
proc mors -> Boolean;

proe next -> char:
proe put (c:char):
end flle;

This defines a 'file’ to be any object or value that has ‘reset.’ ‘more’ ‘next’ and ‘put’
attributes as specified. A procedure to copy one file to another could be defined:

proc copy (f1:6le, (® to *) f2:Ale) in

f1.reset;

while {1.more repeat
f2.put (f1.next);
end

end copy:

This procedure will work on any values or objects that have the specified ittributes.

For instance, they might be disk or tape flles or arrays or sequences of characters in

memory.

Sometimes the only attributes two or more types share is the fact that they partici-
pate in a collection of operations or relations. To allow this the prototype language

provides for the denotation of types which are the discriminated union of other types.
(See ths preceding definition of ‘cell.’)




form-den: farm {extensmon] lorm-body end [form] .

extension: exp with,

form-body: { [public] Bd | .

Figare §&. Syntax of Forms
& roEms

Forms provide a mechanism for directly constructing values by defining their attri-
butes in terms of other values and objects. A form is a collection of bindings, which
comprise the attributes of the value. Tha attributes may be procedural, data, typs, or
othsr values or objects. Unlike ciasses, the attributes of a form are dinided into two
groups, the private attr:butes wazd the sublic attributes. The public atirizutas arz
signified by the word public proczsding the bindings. These attributes can be made
visible cutside the form through the witk, statement (described later). The names and
types of the public attributes deti: nins |bs type of the form.

®

An object can be construcied sccordiyg to a form by preceeding the form with obj.
This is the primary mechanism ‘c- directiv constructing objects from other values and
objects. Exampies will be seen belcw.

One common use of form values is to define ‘libraries’ of reiated procedures. con-
stants and types. For instance, a iibrary for complex arithmetic could be defined as in
Figure 7. When such a library has been defined, it can bs used as follows:

with CornpArith do

let var z: compiex:

let var a, b, c: complex;

ifz=ithenz:=a*b/c end




form
public var x real:
pﬂh' r!:d'(a + y2)r(1/2);
proo =
.‘nﬂhmm- arctan(y/x);

Pgure 8. Exampie of Form
Smonubraryujuatnnto!bmdlnpbotmnnmuandobjoctsornlm and as

such has no ‘'memory’ (i.e., state information) it is appropriate that it be defined as a
form vaius (as opposed to a form object). An exampie of a structure which does have
memory, and thus should be implemented as a form-object, is a stack A particular
message stack, 'Msgatk’ can be defined by a binding such as that in Figure 8 (the
ssquance operations are built in and the type messags is assumed Lo have been
defined). It is now possible to push messages onto and pop messages off of Msgstk:

lat var m.n: message;
Msgstic.push (m);

if not Msgstic smpty then n := Msgstk pop: end .

The combined powers of classes and forms provide a very useful facility. namely, the
ability to bave multipie implementations of a single abstract type. As an example, the
abstract type 'message stack’' will be defined. Ons form will use the sequence impie-
mentation used in the previous example, the other will use finite arrays. The abstract
concept of a message stack is defined by the following class:

message_stack = mstk object
where matk = class
proc push (m: message);
proe pop -> message;
proc empty -> Boolean:
ond;

T AN
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CompArith = form
puhblic compiex = record re: real; im: real end
publis const | = ¢ (0.1):
complex (x.re + y.re, x.Im + y.im);
puhlic proc 8§ (x: compiex) - (y: complex) =
compiex (x.re - y.re, xim - y.im);
public proe 7 (x: complex) ® (y: complex) =
complex (x.re ®* y.re - xim ® y.im,
xre *y.im + x.im * y.re);
ond form;

Figure 7. Form for Compiex Arithmetic
A procedure ‘seq.mstack’ (for 'sequenca.type’ message stack) is now definad which

returns a new sequence-based stack object. The actual definition of thiese cbjects is
the same aa Msgstk, see Figure 9.

An alternative impiementation of ‘message stacic (s providad by the procedurs
‘arr.mstack’ (for 'array-type’ message stack) which retwns a re# arriy-based stack
object of a given size. See Figure 10. Note that a form-returning procedure has been
used to get the effect of ‘generic’ forms; unlike in Ada, a separate geaecic mechanism
is not required in the prototype language. Note also that ‘arr.mstack’s: have an addi-
tional attribute, 'full’ which inquires whether the stack is full. This attr:bute rmakes no
sense for ‘seq.mstack’s since they are unbounded in size. Regardless of tais extra
attribute, both ‘seq.mstack’'s and 'arr.mstack’'s are of type ‘messaga. stack.’ This is
because they both satisfy the deflnition of 'message_stack,’ i.e., they have the required
attributes with the given specifications.

The following program fragment deciares several stacks using these procedures
(including Msgstk) and deciares a ‘stack variabie.’ CurrentStack, which at various
times will refer to sither sequence or array based stacks.




Magstk = obj form
var st: message sequanoe = {];
public pros push (m: message) is
st:=[m]+st; end

publie pros pop -> message is
let top = st.first; N
st = st.0nal;
return top;
end:
publie proe empty = (st = []);
end form:
Fguare 8. A Message Stack Farm-Object -
lst Magstk = seq.mstack; :
alwo Ansstk = arr.mstack {50); _ 4
aleo var CurrentStack: message_stack:;

CurrentStack := Msgstk;
CurrentStack := arr.mstack (100); X A new array stack

If CurrentStack has full then
If not CurrentStack.full them
CurrentStack.push (m);
onck
ond:

The last statement uses the has operation to determine if the stack now referred to by
CurrentStack has a ‘full’ attribute.

The estension part of a form allows ons form to be created which is an extension of
another form. That is. a new form can be created by adding or respecifying attributes
of an existing form, which is similar to the Simuia and Smalltalk subclass mechanisms.
It is here illustrated by an exampie adapted from the DEC-10 Simula manual. Consider
a form that manipulates vectors (Migure 11). Note that the procedure ‘norm’ is not g
bound, it is only specified, even though it is used in the ‘normalize’ procedurs. A
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public proc empty = (st=(]);
end form:

Figure ). Sequance-type Message Stacks
specific ‘norm’ procedure can be bound in an sxtension of ‘row.' To continus the exam-
ple, two extensions of ‘row,' with different ‘norm’' procedures, are defined; see Figure
12. Thus ‘rowl.normalize;’ will normalize its array using the first ‘norm’ and

‘row2.norrialize;’ will normalize its array using the second ‘norm.’

4 ATTRIBUTE CONPOSITION
The attribute composition operatorz allow the manipulation of the attributes of
valuas and objects. The expression
z excluding (id,, idg, . . . , idy)

is the same object or value as z, except that the attributes id,, idg, ..., id, are no
longer available; they have essentially been made private. For instance, if it were
desired to pass SymTab to a procedure P in such a way that P could not enter anything
into SymTab, then an approapriate invocation would be:

P(SymTab exciuding (enter) );

Sometimes it is sazier to state the attributes that are to be kept than to state those
that are to be delsted. This the purpose of the including operator. The expression:

z inclading (id,, idy, . . . , idy)

is the same object or valus as =, except that all attributes other than id,, idg, ..., id,
are no longer available: i.e., the only public attributes are id;, ide, ... id,. For

instance, if centsr is a two-dimensional position (with both Cartesian and polar
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proc arr.mstack (size: int) =
obj form

var st: message arrey {1 to sizef:
vart {0 tosize] = 0;
public proe push (m: meesage) is
i full then error; end
t:=t+];
st{t] ;= m;
ek

public proa pop -> message is
if empty then error; end:

t:=t-1;
return st{t + 1];
end:

public proa empty = (t = 0);

public proe full = (t = size);
end form;

PFigure 10. Array-type Message Stacks
coordinates). then a strictly polar version of the value is:

center ineiuding (rho, theta)

The last attribute composition operator is merge. If z and y are objects or values, |
then z merge ¥ is a value with all of the attributes ot m: and y. More preciselv, for
every attribute of either = or y. there is an attribute in = mergey with the same name
as that attribute in =z or y. Of course, z merge v is defined only if the identifiers for
the attributes of z and y are disjoint. The merge operator is usuaily used in conjunc-
tion with the with statement. For example. if Math Lib and Plot_Lib are two lorms con-
taining libraries of procedures, then all the attributes of both can be made available
by:

with Math_Lib merge Plot_Lib do

end with:
It the only procedures needed from Math_Lib are Sin and Cos, then ths following would
be better:

with PlotLid
merge Hath_Lib including (Sin, Cos) do

- e
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Tigure 11. Form Object to Manipulate Vectors

and witly

7. TRADEEARKS AND SEALS

7.1 Tradmnerks

As discussed in section 4, a set of named (or numbered) attributes and the set nof
valuss or objects to which they may be bound determine a class. In that section the
class file was defined:

file = clase

pxros reset:

pros mors -> Boolean:
proec next -> char;
proe put (c: char);
end class

This defines a 'file’ to be any objsct or vaius with attributes ‘reset,’ ‘more,’ ‘next’ and
‘put’ of the types specified. This is & powerful and flexible facility. It allows the
definition of procedures such as Copy (defined in Section 4) that copies any ‘'flle’ to any
other ‘fle.’ There may be many implementations of files, e¢.g., disic-flles, character
sequences, and character generators, as long as they define the stated attributes.

There is, of course, no guarantes that the attributes of a particular flle implemant the

-17-




rowl = obj form row with

publiec pros norm ia
lstvart: resl = Q;
forai in A repeat
t:=t+al
ond
retumt t.8;
end porm:;

ond form:

row2 = obj foroe row with

public prec norm is
lotvars: real = 0;
lot var t: resi:
for ai in A repast
t .= absai;
ift>osthen 5:=t; end:
end
return s;
end norm:

ond form;

Pgure 12, Extensions of Row
functions implied by their English names; it ix only required that the types match. This

is sometimes unsatisfactory. In particular there will be circumstances in which a fle
(for exampie) is required which has been formally or informally verified to satisfy cer-
tain properties. For instance, we would expect that writing a file, resetting it. and then
reading it would produce the original data. Since the prototype language includes no
direct support for verification, somse other means must be provided for this protection.
This is the frademark. It is essentlally the same as the {ransparent seal described in
{Morris73].

Anyons can coastruct ‘files.’ The danger is that, although they must satisfy the
ciass definition. the files may be defective {n some subtie way (e.g.. are write-only) or
are othsrwise unscceptable. In the real worid the consumer can protsct himseif by
obtaining his files from a 'reliable source,’ i.e., & source that hs is confident will provide
him with an acceptable 'Gle.’ In the real worid there are two ways a consumer can
snsure that a given ‘fils’ comes from this reliable source:

1. Request it directly form the reliable source.




Syntax.
atir —ezpreswion: attr —lerm merge - - .

e it |

Exampies.
Math Lib merge Plot Lib
SymTab exciuding (enter)
center including (rho, theta)

Figure 13 Syntax of Attribute Composition
2. Require that it bear the 'trademark’ of the reiiable source.

Case (1) is straight-forward and requires no further discussion. The trademark which
an object or value bears ig an attribute, just 13, for instance that objects's or value’'s
color. The difference is that the geperation and attaching of trademarks is strictly
controlled. In the real worid this is a fiicction of the government (since a trademark is
private property); in a computsr syst:m it is administered by the programming
language and enforced by the operating-gystea: and hardware.

In the prototype language, tradernarks are dsciared only in forms and classes. Such
a declaration takes the form:

tradamark: .\cme;

which declares the trademark ‘Acmse.’ This has two effects: within the form in which
the declaration appears, an expression such as x quAa Acme returns a version of x with
the trademark Acme. Outside of the farm of declaration the trademark’'s name can be

seen (ltice other publics of the form), but not used for applying trademarks. An expres-
sion such as

if y in Acme them ...

will determine whether y has the Acme trademark. A file bearing the Acme trademark
is denoted by 'Acme & flle,’ using &, the type-intsrsection operator. Thus, if it were
dastred that Copy only work on Acmse files, its procedurs head could be written:

proe Copy ( f1: Acme & flle, £2: Acme & file) is ...

-19-




Syntax.
label ~binding : ladel ~varisty id -list .

label —varisty: {""‘:t-*}

Bxampies.
tredemerk standard;
seal atom, aull;

Rgure 14 Syntax for Tradcmarks and Seals
Of course it is posmible to have more than one trademark on a value or object, or to use

the some trademark on several classes of valuss or objects. (Acme may also make
very fine stacksi)

The exampie in Figure 15, which allows the use of both degrees and ragians, is a
pon-traditional use of trademarks (i.e., units). Note that we have also overioaded the
assignment operation: this defines ccercions between radians and degrees.

DoubleTrig = form
trademark deg:
traderpark rad.
pi = 3,14150 2653589;
public type degrees = deg & real:
public type radians = rad & real;
public const right_angle = 90 qua degrees; .
public nonrec proe Sin (Theta: degrees) = Sin (Theta);
public aoorec proe Sin (Theta: radians) = Sin (Theta *® pi/ 180);
public proe (nams Thetal: radians) := (Theta2: degrees) is
mul := (Theta2 ® pi/180) qua rad;
public proc (namse Thetal: degrees) ;= (Thetal: radians) is
1:::&1 := (Theta2 * 180/pi) quaa deg:
public proc (Thetal: degrees) + (Theta2: degrees) =
((Thetal + Theta2) \ 360) qua deg;

ot

Figure 18. Implementing Units with Trademarks
These dseciarations ailow the use of angles measured in either radians or degress.

Farther, they ensure that the appropriate Sin routine is used for each unit.

7.3 Seals

The main purpose of a trademark is the protection of the user of a value or object.




This is accomplished by unforgeably identifying the sourcs of a valus ar object to its
potsntial users (which users may include the object's or valus’'s creators). A related
construct is the seal, which can loossly be described as a trademarked box Morris73].
That is, the object’s or value's originator is unambiguously identified as with a trade-
mark, but all other attributes of the valus or object are hidden outside of the form in

which it is declared. That is. the object or value appears atomic outside the form in
which the seal is declared. Inside this form the seal acts just liks a trademark, '.e., all

the attributes are visible. For sxample, the form in Figure 18 provides a collection of
procedures for creating and manipulating ‘particie’ values. Outside the form, ‘parti-
cles’ are atomic.

Particle_Lib = form
seal particle;
part = record
spin: §{+1, -1§:
. charge: {-3 to 3{;
strangeness: {+1, 0, -1{;
charm: §-1, 0, +1};

uark = part (+1, +2, 0, 0) qua particle;

= part (-1, -2, 0, 0) qua particle:

= part (+1, -1, +1, 0) qua particle;

= part {+1, +2, 0, ~1) qua particle;

(p: particle & part) -> real = p.charge/3;
ton = part (+1, +3, 0, 0) qua particle:

(p: particle & part) + (q: particle & part)

p-spin + q.spin,

harge + q.charge

.strangeness + q.strangeness. +

p-.charm + q.charm) qua particle;
form;
Rgure 18. Example of Seals
! It will then be possible to write statements such as:

EE
i

AR
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2.

with Particle_Lib do

ff proton = uw.quark + u.quark + d_quark then ...

The ‘quantum numbers’ (such as spin and charge) are hidden outside the form except




where explicitly made availabie (as is dons with charge, above).

In summary. it can be seen that seals provide anothsr level of security beyond
trademarics. Seals, like trademaris. guarantse that only the owner of the seal can
create the sealed objects or values. Seals enforce the further restriction that only the
ownsr of the seal can inspect the attributes of the sealed objects or values,

3 VISHELITY, OWNERSHIP AND EXTENSION

The prototype language distinguishes between the scops of a variable and the wvisibil-
ity of a variable. The scope of a binding is determined by the type of the binding and
the static nesting of program components. Generally, a binding can be seen ornlv
within its scope, aithough there are circumstances in which it is visible outside its
scope. For instance, the with construct provides access to the publics of a form; in
other words, with makes the publics visible throughout the body of the with.

*

The environment in which a binding is made is defined to be the ownar of that bind-
ing, and any object or valus created in that environment is likewise owned by that
eavironment. The owner of bindings, objects and values hes special privileges not pos-
sassed by other environments to which the names, values and objects may be visible.
These special privileges are, however, inherited by any environments in the scope of
the bindings. )

The above named privileges hinge around the ability to see the private bindings of a
form. In particular, in the scope of a form creation the private bindings will be accessi-
ble just like the publics. This is especially important to the extsnsion operation, since
an extension to a form will ‘see’ the private bindings of that form only if the extension
is made in the environment of the form's creation. An exampie may clarify these
ideas. Recall the definition of 'seq.mstack’ (sequence-based message stacks) in sec-
tion 5. Assume that this is a public binding in some form F. Further, assume that
someone not in environment F wants to extend seq.mstacks with a new operation,
‘pushail,’ such that




sa
4

e TR L LR

S.pushall [X1, X2, ..., Xn]}

will push ail of X1, X2, ..., Xn onto 5. The with construct must be used to make the
name seq.mstack visible. The form denotation is then used to pertorm the extension.
Note, however, that since only the publics are visibie in the extension. only they can be
used to implemement ‘pushall’ (Figure 17).

with F do
let proe muiti_seq_mstack =
obj form seq.mstack with
public proc pushall (ms: message sequence) is
for m in ms repeat
push m:
endfor;
end pushail;
end form;
end with;
Figure 17. Extending a Form

If. however, the extension were made in the owning envirunmeni, F, then the private
bindings of the seq_mstack would be available, thus permitting a simpier implementa-
tion:
proc multi_seq.mstack =
obj form seq_mstack with
public proc pushall {ms: message sequencs) ia
St := St + mas;
end pushail;
enud form;

In this case pushall is implemented by directly manipulating the private data-
structure, St.
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