
AMPLEE5TA T ON NGAGE (N AV P OSGRADUATESSEMSOL
7 AD-A128 M E3 N ABSTON NGAE NE NAP-3 POTOTYPUAE SCHOOS 1/

MONTEREY CA B J MACLENNAN APR 83 NPS52-83-004
UNCASFE 9/2 N

soonhmhhhmmhls
*OMNI:

W Lmi 1.0

,.. . ° -

MICROCOPY RESOLUTION TEST CHART

NATIONAL BLIREAU OF STANDARDS-1963 A

4

NPS52-83-004

NAVAL POSTGRADUATE SCHOOL
Monterey, California

ABSTRACTION IN THE INTEL iAPX-432
PROTOTYPE SY.TEMS IMPLEMENTATION LANGUAGE

Bruce J. MacLennan

April 1983

co

III Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217 3 015 0 4

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D. A. Schrady

Superintendent Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided b,
the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

BRUCE J. MACLENNAN

Associate Professor of
Computer Science

Reviewed by: Released by:

DAVID K. HSIAO, Chairman WrLLIAM r.
Department of Computer Science Dean of Research

Unclassified
~UUTV CLASSFICATION OF THIS PAGE (la.0 a . ___________________

REPOR DOCUMENTATION PAGE 8BEFORE C04PLZET FORN
NPS52-83-004 VJMyyAJ 3! RCTO

4. TITLEK rid8".i. TV"E OP REPORT a 1041410 COVERES

Abstraction in the Intel iAPX-432 Prototype Technical Report
Systems Implementation Language .PP OR PRTUSM

7. AUTHOR() IL COUNRAT OR GRAIST *0111SWO)

Bruce J. Mactennan

I. PECRFORMINC ORGANIZATION NAME AND AGGRESS 10. :WMGAM 9LEMN0T."P PRCT. TASM
AEaS WORE PJIT NME

Naval Postgraduate School 61152N:. RW00-01-1W
Monterey, CA 93940 1100031483R30104

It. CONTROLLING OFFICE NAME ANO ACORESS M REPORT DATE

April 1983
Chief of Naval Research II.NU* E .or PA639m
Arlington, VA 22217 29

14. ROTOR ING AGENCY NAME 4 ADORESS(I 41feIIMt 6010 C000v.Lidel 0OS) 114 SECURITY CLASS. (Of OW. rwQe

Unclassified

14. DISTRIDUTION STATEMENT (of We. Report)

Approved for public release; distribution unlim~ited

n I. otsmTRUTon STATELMENVT (of mke ~ata me to 0104h isat ~1All-O M= uPAWW

1SL SUPPLEMENT4ARY NOTES

AbstactType Language, xtenr'Tbe Languages, Classes, Information Hiding,

Trademarks, Seals, Capabilities, Values and Objects, Object-Oriented Pro-
gramming, Intel iAPX-432, Systems Implementation Languages, Protection,

Encapsulation, Packages.

X& AMTRACT (C=WftW dW 0". 10 Okft Itt utttr~"N~f AV &1ft .e
)This report describes the abstraction mechanism of a prototype systems

implementation language for Intel's iAPX-432 microprocessor. Full exploita-
tion of the 432's facilities places many demands on a language intended for
systems Implementation. The 432 is a capability-based machine, with hardware-
enforced typing of-01arge"CEobjects, dynamically instantiated domains (i.e.,
packages), hardware-enforc~ information hiding (seals), and hardware-support-
ed, software-defined access~rig hts (trademarks). The prototype language's
support for these facilities is described in this project. g, -

DO 1473 EUTIoN oFI Nov6 ais ossoI.E, Unclassi fied\
S/W @ 102- L 0 14- 6601 ""UCUW" CLASSCATIO OF TNIN 11,61 fWAin 16e

7- eI Accession Far

ABSTRCFIONNTXs GRA&IDTIC TAB

PROTTYPI lYSO LDM UD nO LNGAG Just iftio~

Compter cioe DeartmntAvlallability Codes

Navail Postgraduate School specijal

IKonteMe7 CA 98W4

This report describes the abstraction mechanism of a prtoy"stems mlen
tatim languages for Intel's LAPX-432 miooprocessor. The language was deasigned umn

19?? Bill. &own and myself (at Inte) and vw implemented in SlmuLa in 1978 and 1979.

Ijital has kindy declared this work non-proprietary, uo its publication is now possible

[3owDOO. The introduction to the language specification £PSIL781 describes the

prcjets g"a.

1. "To provide an adequate tool for programming the (iAPX-402].

2. "To provide experience in the implementation of languages and systems for the

CIAPX-4321.

3. "To provide a fift cut at addressing the philosophical language design Lsoue &ss-

elated with concurrency, modularity, and protection.

"TMe prototype language ts explictly designed an a learning tool to establish the real

requirementa for meeting the above goals."

Although. the prototype language is now &9v yeaws old. I think that it haa a number of
* ~~uim arcests that justify its description. rull exploitation of the 4W a f actli-

tUse places many demands on a Language intended for "stems implementatIon. The
402 in a capelllrbaued machine, with hardware-enforced typing ot 'large, objects.

dynamically Intantiated domains (I.. packages). hardware-*nforced information hid-

-1
_ _

ing (neals). and has mepotd. uoftware-dafned accesuwrlght~s (trademarks). The

otpelagug's rupport for the.. facililes is described below. The 4432 also pro-

vidse a very dynaia, UMe-smg-baued mo"de atofoturent exseutiomz prototype

laguae facilities to support this model are described In a compaknion report

The rest of this report essentially reproduce. Section 3.1 and Chapter 4 of the proto-

type language specification (PSIL70]. To place this material in context it should be

sufficient to know that the prototype language Is an extensible data-abstraction

language In the tradition of Aiphard. CLU and MESA. However. to meet the require-

ments of the 4432. it is generally more dynamic than these languages.

Natural. lanages distinguish between oomman noun. and paope. noting. Proper

noun. (or name.) denote specific entities that exist (presumably). Common nouns

denwoe concepts or abstractions, Lae., clause. of entities. or classes of classes, etc.

Absruaimteu and mnt~tiss are compared and contrasted below.

Both entities and abstractions have attributes. For instance. 1f 'Caesar' is a name

for a specific entity. we can speak of various attributes of this entity, such as the age of

Caesar or the father of Caesar. Similarly. if the word s refers to the complex niumber

1+21 (which, is an abetr'action), than we can speak of various attributes of this abstrac-

tion, such as the real part of z. or the Imaginary pert of .

Abstractions and entities can be contrasted as follows. Entities are thing. that

exist as such. they can come Into existence or go out of existence. They have attni-

bates that can be changed in time without altering the bsic identity of the entity.

Tha is. an entity remnains that ame entity eve though any or all of its attribute. may

have been changed. This includes the 'internal attributes.' or state. of the entity.

Sims entities have an identity which La distinct from the attributes possessed at any

given point In time, It Is possible that there can be two entities which have the same

attributes. yet are di br.at szets Such entities we called dtflert *Wancee of

each other.

The onceprt oests=* is not appicable to abstractions. Abetractions re time-

less. Le.. I Is meangle. to speak o them cMin nto extence or goig out of

ezItme. Sine an abstraction is completely defined by its attributes, chanliag its

attributes causes it to be a different abstraction. In this sense abstractions are

unmodifilbe. (It is, of course. possible to redeflne the name of an abstraction. For

instance, the word 'pf' milit be redefned to refer to the abstraction 17, but this

aLteration does not altar that numberwbich is the ratio of a circle's circumference to

its fdameter.) The fact that an abstraction is completely determined by its attributes

also Implies that the concepts of ldenLtty and instance are not applicabli to abstrac-

tians

Like natural languages, the prototyp Language distinguis es between eiititleso which

It calls objets, and abstractions, whch it calls wafter. .l.e proramz.er generally

deals with values (such as numbers or characters), except where updattnq:. state intor-

maUon, or sharing are involvec, in which cases objects are reqir'd. The naming of

objects and values is discussed ini Sectlc 3.

i u ail €m Inumm~G

As was discumed in Section 2 the prototype language is capable of describing both

values (abstractions) and objects (entities). To facilitate such description. values and

objects can be denoted by words (or names). These correspond to the common and

proper nouns of natural languages. This chapter describes how these words are

defted, a process called IdWnq. Values can also be described by 'denotatiom.' which

we self-definil names for values. For example, '2' to a denotation for 2; it does not

have to be explicitly defned. This chapter discusses the denotations for non-primitive

Maus$.

i_

It h been on that both objects and valuem have attributes. Thse attributes ie

umiy amid. but can be denoted by indexes. as is the can with ays.. (UltimateLy

all name are onsidered at&tr names. since the names of vuabLes, procedures,

et.. are atribute ot the evirommA.) This chapter discusses the ways n which

name we maciated with vaune and objects (bindin'), the ways in which one a

restrict the class at values or objects to which a name will later be bound

('specic iton!). the ways of speciying clan of values and objects ('types'). the ways

in which values can be constuted from more primitive values and objects ('compo-

site values). and the rules governing the context in which names are known ('scopng').

speide,on- bind-mode spec.

Vp: [pecoJfn] 4 i0;.
bd: bmdbi .

gins f.(-. In -> Int

e fmctO:

binuOw bhm ound -par

lm elmel nfc(n.It);

bond-ot fec:P w

P1g. 3 Specficasion and indingS Eamp

The cspt ot a bidhng is of central Importance in the prototype Lang~uagle. A bind-

-4-

, _. . _. _ , * "' • .i ;. -. .

W4 ti the fnaltlon at the natrallanguage proem of defiing a word or name. In

thi proess a commen noun te mociated with a particular concept, or a proper MM

is moeated with a particular entity. In the same way a binding associates a name

with a particular value. or object (the languisa does not distinguish between commOn

nom. and proper names). The name is said to be bound to the value of object. For

Instance.

contpi reel=- 3.1 41 5;

binds the name 'p' to the value denoted '3..4159.' The binding can be paraphrased "pi

is defed to be the real num ober 3.14159." The word cckst Means that thnw defnitlon is

constant, or permanent. within the scope of the definition.

It is often useful to bave a name that at vanous times can refer to different

members at a class of values or objects. An example of sui:h a 'variable' binding is:

vei reed = 114,59;

This could be paraphrased "x currently stands for -he real number 3.14159." The bind-

ing is variable because the name 'x' can be rebound to ar other value of the same type

(Le.. real) anywhere within the scope of 'x." This -s accomplished with an assignment

operation. Formally, variables are just cbang obie attributes os a /im a6ject (Section

5) representing the current environment. As a matter of convenience, the type can be

omitted when it can be deduced from the bound value. Also. ceast is assumed if it is

omitted.

For the following discussion an understanding of AlgoL scope rules will suffice. It will

usually be the cam. an in AlgoL that the current environment of known names is com-

posed of the defined in the current (local) program unit together with those con-

taMed in outer (non-loca) program units. In Algol. if the current program unit defines

a name that already is defined in the non-local environment, then the new name super-

sedes the old. Such impLicit redefinition is illegal in the prototype language. since it in

a , eqimnt source of errors. An name oaw be redefed in an inner scope, but the

-8-

-_ --. .

prorammer must mae his intention exphllt. by writing rede. For exampLe:

let. zlt.I

Ast redo- VW = ;

In the prototype language, all bindings established within a given scope are inter-

preted to be mutually recursive. This means that the bodies on the rilght of he blnd-

Lngs 'see' the names on the left. This allows simply recursive functions to be defined L

the obvious way. e.g..

pru fac(n-'nt) = (n=O => 11 n'fao(n-I));

This ruI als3 allows sets of mutually recursive procedures to be defined. e.g.,

prf ... g... ;

proo

Sometimes isis useful to redefi e a name in terms of its previous (more gLobal) mean-

ing. For this purpose the mutually recursive interpretation can be suppressed by writ-

ing noare. This means that the rLght-hand-side of the binding will 'see' only the zion-

local environment. For instance. It it were desired to redefine 'Sin' so that it worked M

terms of radians rather than degrees, this could be done by.

natume pe Sfn(theta:xel) = Sin(theta/180*pt);

A binding defnes the name on the left to be the cumrwd value or object described by

the expresson conts right. Thus. the binding 'omst w = Sam.car.weight;' can be para-

phrased "defte w to be the current weight of Sam's car." The fact that the car's

weight may latrr change wil not effect the value of w. Occasionally it is desirable to

introduce a name to stand for an attribute's value at ail time.. Thus, It might be desir-

able to define 'w' to mean the weight of Sam's car, at any time. This can be done with

L=7-

LL - .

the binding:

Nme ow =SaLcarmtht;

Ibis to an example at a 'name defnl lon.' After this definition. cw can be used any-

where 'Sam.car.we lg ' could have been used. For example. the weighL of the car can

be changed by 'cw := 4015.'.

A pMee~iutiow is essentially a binding without an Initial value. It is used to restrict

the set of values to which the name will be later bound (say by extension).

SpeciceaUons usually occur in class-d4notatlons (section 4). Examples of

specideatIons ,ill be found throughout this report.

(ca~ z-deni
r.oord -two -dPn

goar: te with.

recovrd -Top-d:ieot d Bdend reord.
uion -type -dan: union 'end (union].

enwn -ve -drn: enum

.igme .S yntax of Types

4TTF

The concept of a type in the prototype language is very uimilar to a Pascal type or

an Algol 68 mode. The differences will be diseussed later. The type denotations (type-

don) are the primitive. which, with the type operators. are used to construct type-

ezreeslons. Throughout this document. the non-terminaL type is used to denote such

a type-.zpressuLoo As in Pascal and Algol 68 a type denotes a set of values or objects

* that share certain attribute, and operators. The specifc sets are described below.

Perhaps the most familiar type denotation is the record-type denotation. A record

(n-tupl. structure) denotes a unordered heterogeneous data structure. See the exam-

__ -7-

- -- .- ,* f .

md re: toek I= roo a

Gu Mw. feam : it
- ioet. Indigo. blue,

yellow. orange. e

aim proe more -> Bbnmm
pno reset;
Pns next -> QhWm

Irspr. 4- Emnples of Types

pie In Figure 4 Records in the prototype Language provide facilities now quite comn

mmn. such as initial (default) valuse for fieds and position-independent Initiakization of

fieldit. Thee facilit~es are Justified and described in [MacL75]. Chapter 5.

Since theme are no 'references' in the prototype language, records can be directly

recursive in definition. For exampie the following In a definition of LISP-style lists:

cell = unn atom: string

nonnulL list-

Host a rem car. cell. odr. celkL am*

If L In at type ceill. then we can discuiminate Mte variants by expressions like 'L in atom'

or by a wiat own statemen (see [Hoare73D.

In natural language. a cawe (concept, abstraction) in defned. by stating the genus

to which. the membwe of the class belong and the attributes, attribute ranges or attri-

bvte values that distinguish the membe of the class trafm the other members of the

gem.. This metbod of definition. scaptured by the casm construct in the prototypoe

Leguge. Pleaders actiuainted withi the Simula or Snialitalk aim should be an familiar

ground. 1.4uider the claim binding

The clasm being defined is 'n.' the genus is V and the difufawaft are d. The binding can

be paraphrased 7define, Wa to be the class ot all V much that d." Tbe effect of the

definition is to atmch a name to ail values or objects which are in the genus and satisfy

the differenia, (which are specifications). Eachi specification associates a set of possi-

ble values with an attribute name. If the attribute already exists as an attribute of the

gens then the respeclieation must be compatible with the old specification. i.e.. the

now set of values must be compatible with (Le., be a subset of) the old set. A4n attni-

but. is required to hav-e a particular value by specifying a sAngleton set of value.

An example may clarity theme ideas. Suppose class 'animal' had already been

dufinnu4 The following additional classes are defned:

bird = class Anmal with wingspan; in&~ emA

pami~t =clame bird with

color: anm Jgrjeen. blue, grey, brown. rnixedi;

name: stig

greem..parrot = cdam parrot wit~h

color Igreenj;

large-.parrot = cuin parrot with

wingspan: 150 to 10004;

These bindings defne a hierarchy of abstractions, each being a reflih.ment of a

proceeding abmtraction. Thus. a 'bird' is defined to be any animual with a wing span. a

4-

parrot to defined to be a bird with one of the specified colors and a name, a ireen par-

rot in defned. to be a parrot with color green and a large parrot Ii defned, to be a par-

rot with a wingspan greater than 50 cm

A more ueful clan than parrots i defined by the btadinf.

file z class

Piroc resnt;

Proo more-> BOGISM.

pros next -> claw.

pMo put (c:cmr):.

This defines a 'file' to be any object or value that has 'reset.' 'more' 'next' and 'put'

attributes an specified. A procedure to copy one Mfe to another could be defned:

Pros copy (IfllMe. (0to *) Mafle) Lu

fi .reset;

wblo fl more repeat

f2.put (fi-next);

andcopy;

hUs procedure will work on any values or objects that have the specified attributes.

For instance, they might be disk or tape Mien or array. or sequences of characters in

memory.

Sometimes the only attributes two or more types share is the fact that they partici-

pate in a collection of operations or relations. To allow this the prototype language

provide. for the denotation of types which ane the discriminated union of other types.

(See the preceding definition of 'el'

-10-

-~-P

form-den: fam :extension] form-body and (tarm].

extensio n:p tb.

fwor-bodr I Lu~e]Bd Is

S5. Synt.x ot Forms

Forms provide a mechanism for directly constructing values by defining their attri-

bute In terms of other values and objects. A form is a collection of bindings, wch

comprise the attributes of the value. The attributes may be procedural. data, type. or

other values or objects. Unlike classes. the attributes of a form are divided into two

1roups, the private a~t-.butes i±.d the .3ublic attr.butes. The public attribut3s -

signifed by the word public pioc=eding the budings. These attributes can be made

visible outside the form through the witt 'itatement (described later). The names and

types of the public attributes detirvmine Ifre type of the form.

An object can be constructed iotmrdb to a form by preceeding the form with obj.

This is the primary mechanism "OZ direcily constructing objects from other values and

objects. Exam les will be seen be!-w.

One common use of form velues is to define 'libraries' of related procedures, con-

stants and types. For instance. a Lbrary for complex arithmetic could be defined as in

FIgure 7. When such a library has been defined, it can be used as follows:

vith CompArIth do

oLe mw = complex:

lt vw a. b, c: complex;

Lfz=Lthaz:=a*b/c: nd

d-o-

frm-

puMeerm mudpmubba ver r. ae
puma FM rho a (X2 + yO)XI/2);
po pros tht&a a aretan(y/.):

Old

r1g.e & Enagd of Farm

Snce a library is just a set of bindings between names and objects or values, and as

such has no 'memory' (i.e., state information) it in appropriate that it be dezd as a

farm vuhu (as opposed to a form object). An eample of a structure which does have

memory. and thus should be implemented as a form-object., is a stack. A particular

mesage stack. 'M~gstk' can be defined by a binding such am that in Figure 8 (the

-qumm operation are built in and the type mmuag is assumed to have been

lefined). It is now possible to push masages onto and pop messages off of Msgstk.

let var =.n message;

Msptk.push (m);

f ot Mgstk. empty than n: = Nipptkpop; end

The combined powers of classes and forms provide a very useful facility, namely, the

ability to have multiple implementatlns at a single abstract type. As an example, the

abstract type 'memage stack' will be defned. One form will use tbe sequence imple-

mentation used In the previous exampLe. the other wil use fnite arrays. The abstract

concept of a menage stack is defined by the Wlowing close.

meseagetack = mstk ableat

,e instk a ohm

pm push (m: mssage):

prus pop -> mesage:

pius empty -> odem,

GO*

CompArfth u tw
pubis complex a recardre: seek Im: real: em*
Pabis g0 I a complex (0.1);- pus 6 (Iz complex) + (Y. complex)a

ompilex (re + yre, zim + y.im):
Pills Pmusa (rx complex) - (r. complex)

colx re - y-re. zrn - Y1)
puNS wee (x complex) 0 (r comPlex)
complex (.re • y.re - xU, • y.Im.

ire 0 y.im + x=m, 0 y.re)

gwe 7. Form for Complex Arithme c
A procedure 'seq.mstack' (for 'sequence..ype' message stack) is now defined which

returns a new seqtuee-boned stack object. The actuaL deflnition of t4ese o.bjects is

the same a Magtk. see Figure 9.

An alternative implementation of 'message stacic' Ls provided by Lhe p.-ocedure

,arr.mstaclc (for 'array-type' meaage stack) which return2s a rier arry-bazsed stack

object of a given size. See Figure 10. Note that a form-returnLng proct dure has been

used to get the affect of 'generic' forms; un"lke in Ada. a 3eparate geaeric mechanism

is not required in the prototype language. Note also that 'arr..m.tack': have an addi-

tional attribute, 'full' which inquires whether the stack is fulL nTu attrbute makes no

sense for 'seq..mtack's since they are unbounded In sxze. RegardLeis of Lzs extra

attribute, both 'seq-mstack's and 'arrm.stack's are of type 'mossage-stack.' This Is

because they both satisfy the definition of 'mesage.stack.' Le., they have the required

attributes with the given specifications.

The following program fragment declares several stacks using these procedures

(lciuding Msogtk) and decLares a 'stack variabLe.' CurrentStack. which at various

times will reter to either sequence or array baed stacks.

1669k -OW Mom

ver "t m orlti

puma me push (m meumg) isat:= [W- + at;am
-mm rMS pop-> =e.sge b
Ut top a rutft

t : .t.al;k
Mn top;

pums Wosempty a (st a D;
A f'm

pnm A. AMessge Stack Farr-Object

let MaPk s eq-Matack;

d Anu tk -arruta k 150);

aim m urrentStack: masage.stacik

(um'entStack := utk;

(:urrentStack : arr...wstack (100); X A new array stack

If CurrentStack hi full then

int CurrentStack.ful the

CurrentStack.push (m);

The last stement uem the hw operation to determine if the stack now referred to by

CurenStack ha 'fu,' attribute.

The eenstma part of a farm aullow o- form to be created which i an extamton of

amibar form That ia. a new form can be created by addlng or reupectying attributes

at en *xe t form. which is smilar to the Sikula and Snalntalk subclam echaniuma.

It is here iusat*e by an example adapted from the DEC-10 31i11a manual. Consider

a torm that mnipulate vetor (Ftgure 11). Note that the procedure 'orm' is not

bound. it It oly spelfcud. even though it is used in the 'normalize' procedure. A

-14-

- -. ~ .- - K fSimla,.

p (t messgee is e0p m posh (RE mmeing) I.
st:a md t =a

pu epe pop Is
let top a t.ht
t at. Analr top.

end:
puma IPm empty = (=t(D;
wad fan

rprgos 9. Sequencetype Message Stacks
specifi anirm' procedure can be bound in an extension o'row.' To continue the exam-

pie. two extensions of 'row,' with differeat 'norm' procedure. are defined; see Figure

12. Thus 'rowl.normaLize; wl normal"e its army using the frst 'norm' and

row0norraljze;' will normalize its array using the second 'nrm.'
& A7~TZ B PGh

The attribute composition operators allow the manipulation of the attributes of

v~las and objects. The expresslon

z mcdudfg (Id .id .. U)

is Lbe same object or value as x, except that the attributes Id1 , da U6 are no

longer available; they have essentially been made private. For instance. Itf it were

desired to pan SymTab to a procedwe P in such a way that P could not enter anything

into SyinTab, then an approapriate invocation would be:

P(SymTab emzudin (enter));

Sometimes it Is easer to statse the attributes that are to be kept than to state those

that ar to be deleted. Thin the purpose of the ImtudMg operator. The expression;

*~ Uzndg Nd I -id.. WO,,

in the sane object or value a x. except that all attributes other UW it 1 ids. ... , 44

are no longer available; i.e., the only public attributes are Id, I4 U. For

hstanme. It center to a two-dimowa position (with both Cartesian and polar

-16-

-*
.,z

.. ~..L - ' 1 *0. 1*

Pm aTmrutack (size: a

1W atmenae envII toisal.
'vW L 10 to sisel a 0;
Powm P"e pu.b 0m: manasge) Is

It full Man error. me
t: t + 1;
.tl]:a m:

Pa pefe pop -> message I.
it empty tbmi error an
t:= t -1;
rdmu t~t + 1];

palM. Pro empty = (t = 0);
pabhe PeeM full =(t = size);

Ilgur 106 Amy-type Mienage Stacks
no ordinates), then a strictly polar version of the value il:

center IinkwbW (rho, theta)

The last attribute composition~ operaoto isr it. zf and V are objects or values.

then z nmeru v i a value with all of the attributes of both:z ad V. More precisely, for

every attribute of either:x or V. there is an attribute in:3 nmwp VWith the same name

as that attribute in:x or V. Of course. x amere Vis defined only if the identifters for

the attributes at:x and V are disjoint. The =erg operator is usually used in conjunc-

tion with the wit statement. For example. if Math.b and PloLJib are two forms con-

taming libraries of proedure.. then all the attributes of both can be made available

with MathJUb nwp PIoLL~b do

If the only procedures needed from Math TA are Sin and Cos. then the following would

be better.

with PlaLL~b

Ow"~ Math..I&bwbs (Sin. Cos) do

-My- h - - -= M0 -

row U "bj tmrn
piu~i ver A. ree mmW
PmaiPo w ip m -> Vopdhft prmornzalm I

let w tnpor!2
9 t <> 0 Uam

t : 1/t;
for am* at In A ropest

ai:u al. t;
e4d*

m d farn

TM , U. Form Object to Manipulate Vectors

ad vitm*

7. 731= AM SU

7.1 Tidomuf

As discussed Ln section 4, a set of named (or numbered) attributes and the set of

valies or objects to which they may be bound determine a claim. In that tection the

class Me wa defined

me clom

Pw reset.

PnW more -> Bieolm

pron neit-> chwm

Pro put (a: Obe);

Ths defines a 'Sol' to be any object or vaLue with attributes 'reset, more, next' and

'put, of the types specifed. Tbis s a powerful md deOsble facility. It alloaws the

dofmtUm of procedures such as Copy (defned in Section 4) that copies any 'file' to any

otbr 'Mie.' There may be many mpLemefta s at Mae, e.g.. disk-files, character

usquesinu and character generators, an Long as they define the stated attributes.

There ig, of course, no juarantee that the attributes of a particular fe implement the

-17-

rowi .bi fam raw . .pvMe pree nor= In

fAr @Lim A reqs
t:W t + a1

reur t t'.5;
",iaorm:

rowg a " am row vfthPWWWO iPn norm Inlet val s red .Q.

W wt t: rmk
for aIn A rqeat
t := s a
It t~v thou a: at; and

ad norm:
and farm

lq guM 1 Extensions of Row

functions Implied by their English names; it is only required that the types match. This

In sometime. unsatisfactory. In particular there will be circumsta=es in which a file

(for example) Is required which has been formally or informally veriflid to satisfy cer-

tam properties. For instance. we would expect that writing a ile, resetting it. and then,

reading it would produce the original data. Since the prototype language incLudes no

direct support for verification. iome other means must be provided for this protection

This in the frusmeork. It is emntially the same as the transprent sad described in

lmorri5731-

Anyone can construct 'fles.' The danger Is that, although they must satisfy the

cam denition. the film may be detective in some subtle way (e.g., are write-only) or

we otherwise "m "*able. In the red world tbh caomnmer am protect himself by

obtainig bit fie from a 'reliable smu ,' Le., a souroe that he to confi&nt will provide

him wt n amoptable 'So.' In the real world there ae two way* a consumer can

ensue that a givan 'e' comas &o this reliable source:

I. Request it directly form the reliable source.

-18-

t ".g

Syntax;
.gfr- erion: tr -team ue•e•.

XathJAb mnsPoLI~b
SymTab inIang (enter)
center Ioumg (rho. theta)

Plg. 1. Syntax of Attribute Composition
2. Require that it bear the 'trademark' of the reliable source.

Case (1) is straight-forward amd requires no further discussion. The trademark which

an object or value bers is an attribute. just ,L% for Instance that objects's or value's

color. The difference is that the generation and attachng of trademarks is strictly

controlLed. In the real world this is a NnctoLn of the government (since a trademark iu

private property); in a computer syntim it is administered by the programming

language and enforced by the operating-ryutet and hardware.

In the prototype Language, tradema.k- are declared only in form. and classes. Such

a declaration takes the form.

tradmerk Acme;

which declares the trademark 'Acme.' This as two effects within the form in which

the declaration appears, an expression such as x ~qa Acme returns a verston of x with

the trademark Acme. Outside of the form of declaration the trademark's name can be

seen (like other publics of the form), but not used for applying trademarks. An expres-

ulonunscha

It y ti A th ...

will determine whether y has the Acme trademark A Me bearing the Acme trademark

is deoted by 'Acme & le.' using &. the type-intersection operator. Thus, if it were

desired that Copy only work on Acme Mios. its procedure head could be written:

pns Copy (fl: Acme & file, M. Acme M file) i.

-19"

label -bf lo : ll-4we Id-a

tsoomick standard.
eal atom. nuiI

Figure 14. Syntax for Trademarka and Seals
Of course it is pomble to have mre then me trademark o a value or object. or to use

the sami tr emark on several ceases of values or objects. (Acme may also make

very fne stan kl)

The example in Flgure 15. which allows the use of both degrees acd riazs , Ls a

non-tradltional ue of trademrk (L.e., u=t). Note that we have also overloaded the

asignment operabon; this deines coercions between radians and degrees.

DoubleTrig - form
budmtw dog:
trd fk :rad
p = 3.14159 26653W9,
public type degrees a dog & real:
public type radians = rad & reeL
pubIo aa righLngle 90 qua degrees:
pubic iowma proe Sin (Theta: degrees) = Sin (Theta);
publie awe pram Sin (Theta: radians) = Sin (Theta • pi/180);
pubi proe (nas Thetal: radians) := (Theta& degrees) is

Thetal : (Theta2 p/ 10) qua rad:

publi proa (nm.s Thetal: degrees) := (Thetal: radians) is
Thetal := (Theta • laO/pt) qua dog:
e4

publi prin (Thstal: degrees) + (Theta2: degrees) a
((metal + Theta2) \ 30) qua deg;

tWM. 1L Im etng Units with Trademarks
Thae declaratn allow the use of angles measured in either radians or degrees.

fthrt. they ensure that the appropriate Sin routine in used for each unit.

me man purpose of a trademark Is the protection of the user of a value or object.

-go-

This I -acmplshed by unfargeably identifying the source of a vaLue zr object to Lts

potantul user (which users may Include the object or vaLue's creators). A related

aesruct i the seaL which can loei@v be desasibed as tradmarked box r~forri]s71.

That is. the object's or value's originator is unambiguouuly Identidfed as with a trade-

mark. buL al other attributes of the value or object are hidden outside of th frm in

vich It to declared. That is. the object or vaLue appears atomic outside the form in

whtch the seal is declared. Inside this form the seal acts just like a trademark, ..e.. all

the attributes are visible. For example, the form in Figure 18 provides a collecLion of

procedures for creating and manipulating 'particle' values. Outside the form. 'parti-

Cles' are atomic.

PartLcle.-Lb = form
seal particle;
part = rcowd

charge: -3 to 3J;
strangeness: J+1. 0. -1j;
charm: 1-1. 0. +11.4n*

pub u.quark = part (+1. +2. 0. 0) qua particle;
pubul d-quark = part (-1. -2. 0. 0) qua particle;
pul a.quark = part (+1. -1. +1. 0) qua particle;
puls c.quark = part (41. +2. 0. - 1) qua particle;
public pm charge (p: parUcle & part) -> rea = p.charge/3;
publo proton a part (+1. +3. 0. 0) qua particle:

pubic pro (p: partcle & pert) 4- (: particle prt)
- part (p.spin q.spin

p.charge + q.charge
p.strangeneu + q.strangeneus.
p.charm + q.charm) quaparticle;

r4Ww 16L Example of Seals
It will then be possible to write statements such an:

M"b Parude.Lib do

it proton u.quak + uquark + d.quark the.

The 'qumt husmbers' (such as spin and charge) are hidden outside the form except

-82-

whore explicitly made available (a is done with charge. above).

In summary, it a be men that seals provide another Level of security beyond

trademarks. Sel li trademarka, guarantee that only the owner of the seal can

create the sealed objects or value. Seals enforce the further restriction that only the

owner of the seal can inspect the attributes of the seaLed objects or values.

& Y W . - MD 10 is

The prototype language distinguishes between the wope of a variable and the intiWi-

*y of a variable. The scope of a binding is determined by the type of the binding and

the static nesting of program components. Generally, a binding can be seen only

within its scope, although there are circumstances in which it is vLswe outside its

stope. For instance, the with construct provides access to the publcs of a form; in

o1.her words, ith makes the publics visible throughout the body of the with.

The environment in which a binding is made is defined to be the ouwWr of that bind-

ig, and any object or value created in that environment is likewise owned by that

ezvironmenLt The owner of bindings, objects and values has special privileges not pos-

sessed by other environments to which the names, values and objects may be visible.

These special privileges are, however, inherited by any environments in the scope of

the bindings.

The above named privileges hinge around the ability to see the private bindings of a

form. In particular. in the scope of a form creation the private bindings will be accessi-

ble just like the publics. This is especially important to the extension operation since

an extension to a form will 'see' the private binding, of that form only if the extension

Is made in the environment of the form's creation. An example may clarity these

idea. Recall the definition of .seqmxtack' (sequence-based message stackcs) in sec-

tion 5. Assume that this is a public binding in some form F. Further, assume that

someone not In environment F wants to extend seq.mstacks with a new operation.

'pusheil., Such that

-22-

- .M-4
-r *-

S.puhAI[X12, ... X]

IW push ull of XI, = Xn onto S. Tbe with construct must be used to make the

name nq-mtack visible. The form denotation is then used to pertorm the extenmon.

Note. however, that since only the publics are visible in the extension only they can be

used to Implemement 'pushan' (figure 17).

vith F d
let pro multtLseq.mstack =

bj fmm seq..mstack with
DaN, Pro pushail (ms. message s umce) in

farm inms rpeat
push m;

endpusbal;
end tmar

end';ift

lgure 17. Extending a Form
If. however, the extension were made in the owning envimen. F, then the private

bindings of the seq.-mstack would be available, thus permiting a simpler implementa-

tion;

proc multLueq - tack =

obj farm seqnstack with

publi proc pushall (ms: message sequence) to

St:= St + ms;

end pushail:

mfm~m

In this case pushal is implemented by directly manipulating the private data-

structure, St.

[BrownB] Brown. W.L. personal communication. March 11. 198.

[Hoare72] Hoare, C.A.R., Recursive Data Structures, Stanford University Computer Sci-

__ -- or

*nce Department STAN-CS-?3-400; also Stanford Artificia Intelligence Laboratory

1O AIR-= October 1973.

[XcL75J KacLennan.. B.J.. Sawwa*ic and Spitatc 51waeaUn~w wd Zxteniswn of

Lwuuaqes. Purdue Universty PhD Dissertation. December 1975.

CMCLS3] Ma.Lennan. B.J.. Concurrency and Synchronization in the Intel iAFX-432 Pro-

totvpe systems lementAtion Language, Naval Poutgraduate School Computer

Science Department Technical Report. 1983.

[Morris73] Morris. J.a. Types are not Sets. Pr¢o. ACM Symp. Privw. of Arog. Lngs.,

120-124. October 1-3, 1973.

[PSIL78] Brown. W.L and MacLennan. B.J.. INTEL 8800 Prototype Systerm Impl.vmant-

tion lwguagm Spe'cu,-afamL March 8, 1978 (revised August 2. 1978; January 24.

1979; December 21. :.979).

-24-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Hq 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52MI 12
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Dr. Robert Grafton
Code 433
Office of Naval Research
800 N. Quinch
Arlington, VA 22217

Dr. David W. Mizell
Office of Naval Research
1030 East Green Street
Pasadena, CA 91106

John M. Hosack
Department of Mathematics
Colby College
Waterville, ME 04901

Dr. David B. Lomet
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Jim Bowery
Viewdata Corporation
3rd Floor
1111 Lincoln Road
Miami Beach, FL 33139

-25-

J. Craig Cleaveland
1F35
Bell Laboratories
1600 Osgood Street
North Andover, MA 01845

Professor John M. Wozencraft, 62Wz
Department of Electrical Engineering
Naval Postgraduate School
Monterey, CA 93940

Mark Hinuneistein
1323 Tulip Way
Livermore, CA 94550

Mr. William L. Brown1
Intel Corporation
5200 N.E. Elam Young Parkway
Hillsboro, OR 97123

Mr. H. M. Gladney
IBM Research Laboratory
5600 Cattle Road
San Jose, CA 95193

-26-

'14

