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1.0 INTRODUCTION AND LITERATURE SURVEY 

i.I INTRODUCTORY COMMENTS 

The simulation of boundary layer transition in test facilitxes 
would be a useful capability to have in the development of higher 
performance and more efficient vehicles. An obstacle to our developing 
the capability to simulate transition has been the freestream 
disturbances in the test facilities which are not completely similar to 
the disturbances in the atmosphere. Another obstacle has been that the 
surface roughness and other fine geometric details of the suDscale 
models are not completely similar to those details on the full-scale 
flight vehicle. A related problem is our inability to systematically 
develop boundary layer trips to fix transition in a specified region. 
However, (dimensional) ~ or (nondimensional) F ~  
s~milaritv of the disturbances and roughness are excessively severe and 
impractical requirements. The practical need exists to identify the 
significant properties of the freestreamdisturbances anO roughness 
which influence stability and transition. 

An obstacle to identifying those properties has been the inability 
of theory to link freestream disturbances to tne instability waves and 
other oscillations in an initial-value problem. Another obstacle has 
been the inability to show how roughness, either isolated elements or 
distributed roughness, affects tne~A1~I/~ude~ of the various 
oscillations. When analyzing such a problem, the theoretician must 
know all of the possible solutions so that the energy from the 
freestream disturbances is channeled to the proper waves. 

When the author and Dr. Shunichi Tsuge studied an initial-value 
problem in space, their objective was to describe the evolution o2 
disturbances in the downstream direction in terms of a superposition o2 
solutions of the Orr-Sommerfeld equation. The set of stability waves 
and two solutions representing vortical freestream disturbances appear 
in the analysis. However, two additional mathematical poles appear in 
the analysis. These poles indicate that two additional solutions exist 
of the Orr-Sommerfeld equation. These ~ w a v e  solutions are 
generalizations to oscillations previously analyzed by Rogler and 
Reshotko (Refs. 1,2)~ This report documents the structure of these 
standing waves. The initial-value problem, which provides tne 
framework to link the initial conditions with tne amplitudes and phases 
of the various waves, will be summarized in later writings. 

Waves which do not travel or propagate are calleu ~ waves. 
They may be steady or unsteady. Standing waves of a simplier form than 
considered herein have been studied using the unsteady boundary layer 
equations with the oscillating freestream 

(g,) = + e ( l .1) 

This freestream oscillation does not depend on position. Analytical 
solutions, and related numerical calculations and experiments have been 
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extensively reported in the literature, as surveyed by Rogler ann 
Reshotko (Ref. 3) and Telionis (Ref. 4). Loehrke, Morkovin, and Fejer 
(Ref. 5) reviewed the stability and transition literature in 
oscillating boundary layers. The author believes that this simple 
standing wave is a limiting case of a more general standing wave with 
far broader applicability. 

Before we examine the more general case, however, we wish to 
illustrate how an oscillating freestream (1.1) interacts witn a 
parallel-flow boundary layer. Since the x-derivatives vanisn, the 
momentum equations for small-amplitude fluctuations reduce to 

: o ,  : - + : -,wl o 

Y 
The reduced form is merely the one-dimensional, unsteady diffusion 
equation with a known forcing term, px/~. The longitudinal velocity 
fluctuation, u, is uncoupled from bo~h the mean flow and tne 
fluctuation velocity normal to the plate. It is merely the flow driven 
by the exterior pressure gradient (which oscillates in time) and 
altered by the diffusion of vort~city to and from the wall so that the 
no-slip condition is satisfied. 

However, another form of standing waves is possible in the form o£ 
waves which grow or decay exponentially in space, as well as 
oscillating sinusoidally in time. Generally these waves have both u 
and v velocity fluctuations and are coupled with the mean boundary 
layer profile. To our knowledge, these waves have not be studied in 
any shearing layers before, although they have appeared in several 
studies with uniform mean flows which are summarized in the following 
sections. These oscillations are believed to arise in many practical 
situations, and have a role in the initial-value problem in space for 
disturbances described by the Orr-Sommerfeld equatlon. These waves 
also have a role when specifying bounoary conditions for numerical 
solutions of the Navier-Stokes equations on a rectangular domain. 

Our objectives are to formulate and solve the mathematical system 
for 2-D, unsteady, standing wave disturbances with amplitudes which 
vary exponentially in the streamwise direction. The mean flow w~ll be 
represented by a parallel-flow boundary layer. The first evidence 
which we saw of the existence of these waves was in an analytical 
solution of spatially-decaying vortices in the freestream. We will 
summarize those results in the next section. In later sections, we 
will extend these analytical solutions to include the presence of a 
nearby wall, and later to numerical solutions with Falkner-Skan 
boundary layers. While our attention here is focused on either 
oscillations in the freestream or wlth a wall (and bounuary layer) 
present, these disturbances should arise in a wlde variety of shear 
layers, jets, wakes, etc. 

6 
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1.2 STANDING WAVES AND VORTICES IN A UNIFORM MEAN FLOW 

The Navier-Stokes equations can be separated into mean and 
disturbance quantities, the (time or ensemble) average taken, those 
mean equations subtracted from those equations wltn separated 
quantities, and simplified for a parallel-flow boundary layer with 
small-amplitude disturbances. With appropriate derivatives in the x 
and y directions taken, a fluctuating vortzcity equation can be found 
and nondimensionalized. For a uniform mean flow, this vorticity 
equation is 

(1.3) 

where ~ =vx-u ~. In 9~fs.l,2,Rogler and Reshotko sought the spatially 
decaying solhtion of this equation subject to the initial condition on 
vorticity 

and the far-downstream condition that the vortlcity vanishes 

(1.4) 

Conditions on the velocity field are imposed later. 
Fourier transforms, a solution was extracted as 

m s x * t ~ t  x - t ' ~ t  
-_< . , , ,~ ,< ;~( , ,s , ,+~)  [ ~ - ~ ",+ ] 

(1.5) 

By generalized 

(1.6) 

where 

, ',,:., : [ i - ( i ÷ . ,  , , . ~ "  _+ . ,<<.~)  'i" J / ~  o 
(I.7) 

or equivalently 

-~#F/X 

This result is a slowly decaying wave in the downstream direction 
propagating at speed c_~ i. 

The solution of interest here follows from Poisson's equation 
which links the vorticity field and the streamfunction 

Vzp - 

where we imposed an initial condition on the streamfunction 

(1.9) 
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/ 

(1.10) 

Again, far downstream, the streamfunction vanishes 

~ - - - ~  0 a $ X--=-<Z:; (1.11) 

If a solution of form 

(1.12) 

is sought of Poisson's equation, then it reduces to 

-~'x ~ - ~ ' - e  = 2 ~  e 5,;~ ~(~- ~) (1.13) 

subject to the conditions 

~ ( o ; ~ ,  ~) = s,.>7 ~rt 
7/' 

The complementary solution is 

and ~ ' - ~  0 ~Z5 X --"0::; 
(1.14) 

7/'X ~ X  
~(x  ; ~ e) = q (t) e ÷ cz(1) e- (1.1s) 

and it is this solution which serves as the initial seed for this 
research. We shall return to this solution a£ter we have written the 
particular integral, obtained by the method of variation of parameters. 
Combining the complementary andparticular solutions and applying the 
boundary conditions, then the disturbance streamfunction is 

Term ( / j  Term ( Z J (1.16) 
where the following are defined 

~rC~Ct,~) = r.-~ cos~t +(l+,f) Su?~tJ[(l+,i) z÷ ~2I.-/ 

x(~;~, ~)-- Z(i÷4)5<~n(~x-e)+ 4 ~°'~(4x-t)l[(i+4) L d~] -x 

+ [( , -4), , '~,7(4x-e) - 4 ~o,,,(4x-,<)J[("-r,) ~+ 4"} - '  (~.~7~,t>> 
Term (i) represents a near-grid effect which is an irrotational, 
standing wave which decays exponentially downstream. The second term 
is a traveling wave and represents the flowfield of the convecting and 
diffusing vorticity field. The streamlines for these two flowtields 
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are plotted in Fig. i.I 

The standing wave was "initiated" by the initial condition imposed 
on the streamfunction. It would have been possible to describe initial 
conditions in which that standing wave vanished, and indeed for the 
case studied, this wave vanished in the inviscid limit. With other 
initial conditions, that wave would remain in the inviscid limit. 

1.3 STANDING WAVE ARISING IN A QUARTER-PLANE PROBLEM 

In Ref. 6, a more complex standing wave showed up in an inviscid, 
quarter-plane problem of an array of vortices input along the y-axis 
with a plate positioned along the x-axis as shown in Figurel.2. The 
mathematical system solved was 

+ ~ -- o ::> ~ = - z~" _~tk w(x -eJ  .si~ ( ~ + ~ )  (i.18) 

V'2Y = F (1.19) 

= - (1.20) 

- FI  (1.21) 

~2'Z~ " l'`'~) = O (1 .22)  

Y'<<')= " #,;,z~ ~ ' t ' ~? f ( x - ( ) -  c [ o r . c = o , x  > o  ;7[ 

F x<'~=O to,,x=O~ y>o 
it" c, J_. 0 as 6/--~ ; F ~'~5 d~o~...,Je4 o5 x - . ~  

( 1 . 2 3 a - d )  

and the solution was extracted by a half-range Fourier transform in the 
y-direction. The solution for the streamfunction ~= ~(")- ~>was 

F (4 ) ) 
xth ~Cx-~) 

Ter~It (8.,) 

9 
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(1.1a) Irrotational standing wave which decays exponentially. 

(1.1b) Rotational vortices which propagate downstream. 

Figure 1.1 The standing and traveling waves downstream of a grid. 

lO 
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Y (a) i=O 

ft'llI((((( 

(b) t-l14 

0 ~ ( c ) t = l / 2  ~ y, (d)~=3/4 
~-- 

)jsJbjj,!,,.i~!l,,i!,~,ttt~ ;;;}Jli/,ijj]ll,: l l ! , [ttt(~ I'nl[!l;', III! i,~,t~ , I,::. l, i, i.,! ~ 

- 

HI i l'i [ ,/ll, i Fi[~!'~ ( 

0 x x 

r w  

Figure 1.2 Disturbance streamlines at different times as vortices 
are introduced along the upstream boundary and propagate 
downstream. This flowfield consists of both irrotational 
and rotational parts. The irrotational part is composed 
of both standing and traveling waves. 

II 
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= X +~ 

-- ~Z (l.25a,b) 

and ci(~z) and si(#z) are the cosine and sine integrals. Term (AI) 
denotes the flow induced by the vorticity in an unDounded flow, with 
term (A2) representing an irrotational, traveling wave superimposed and 
associated with the impermeability condition. The term of importance 
here is term (B) which is a standing wave, and oscillates only in tlme. 
Far downstream of the grid, it vanishes. 

1.4 DECAYING WAVES WITH SEMI-INFINITE PLATES 

Decaying, oscillating waves have been founa in several problems 
where freestream disturbances interact with the leading edge of a 
semi-infinite plate. The author has investlgated these waves for many 
forms of freestream disturbances, including 

(I) Arrays of square vortices (Refs. 1,7,and 8) arrays of rectangular 
vortices (Refs.9 and i0), and oblique plane waves of vorticity (Refs. 9 
and I0). 

(2) Vortex sheets (Refs. 9 and i0) convecting downstream at speed 
c = I. This is interesting case which clearly illustrates the blockage 
caused by the plate and differences between the flows above and below 
the plate. 

(3) Vortex streets (Refs. 9 and i0) composed of potential vortices 
in a stable (Karman) configuration. These vortices propagate at a 
speed dictated by the strength, sense, and spacing of t~e vortices. 
This speed can be less than or greater than unity (depenaing on the 
direction of rotation), and reduces to c = 1 in the limit of vanishing 
circulation or infinite spacing. 

(4) Fluctuations wholly irrotational (Refs. 9 and 10) which propagate 
at arbitrary speeds. Many examples are possible, depending on the 
relative strengths and phases of the irrotational waves. While this 
model blows up exponentially in the direction normal to the plate, the 
model is useful in analyses (and perhaps computations) for some studies 
with freestream fluctuations. 

Despite the different characters and speeds of these freestream 
disturbances, the streamfunctions for the case of freestream 
disturbances with a semi-infinite plate can all be written in the 
unified form 

12 
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where ~is the streamfunction for the freestream disturbance (if the 
plate were not present) and ~is the streamfunction of an irrotational 
flow which causes the impermeability condition to be satisfied. We 
illustrate this second streamfunction in Figure 1.3. Interestingly, 
this streamfunction is also the linearized solution of a semi-infinzte, 
2-D (i.e., ribbon-shaped) snake swimming through the water. 

As suggested in Figure 1.3 and supported by the theory of Refs. 9 
and 10, the streamfunction has a simple asymptotic limit 
far-downstream of the leading edge 

¢ : = , y , , , p .  c l . 2 v ,  

which is a traveling, irrotational wave which decays away from the 
plate. If (for simplicity) we consider the quarter-plane on tne top oz 
the plate beginning at the leading edge and extending dgwnstream, then 
one could subtract out the asymptotzc solutzon ~ from ~ . The U 
result is an irrotational flow decaying downstream of ~eleadzng edge, 

a~ymp (1.28) 

If this flow • " o~y/np. ) were Fourier-analyzed in tne 
y-direction, then one would obtain the spectrum of waves which 
oscillate neutrally in the y-direction and decay exponentially 
downstream. These spectral components are related to the spectral 
waves investigated in this report. Thus we believe that such waves 
arise for a wide class of practical freestream disturbances which 
intersect with the leading edges of plates. 

1.5 DECAYING AND GROWING WAVES WITH FINITE-LENGTH PLATES 

If the plate has finite length, with both leading and trailing 
edges, then the resultant flow has some features similar to those 
summarized in the previous section, although made more complicated by 
the trailing edge. The flow also has some new features associated with 
the oscillating circulation about the plate and the vortex sheet 
emitted from the trailing edge and convecting downstream. 

For the purpose of identifying physically-realizable sinuations 
where standing waves grow or decay in the streamwise direction, we 
offer the following observations based on the analyses of Ref° 7~ 

(I) The irrotational flow associated with the bound circulation 
oscillates in time and has streamlines as plotted in Fig. 1.4. This 
flow is irrotational, oscillates sinusoidally in time, decays from the 
leading edge to the midspan, and grows from the midspan to the trailing 
edge. 

13 
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Figure 1.3 The streamlines for an irrotational flow which arises 
when a semi-infinite plate encounters a traveling-wave 
freestream disturbance. The leading edge is at the origin. 
Downstream of the leading edge, this flowtield consists 
of a superposition of standing waves and a traveling wave. 
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Figure 1.4 Streamlines for the oscillating, bound circulation about 
a finite-length flat plate (Ref.7). This flow decelerates 
from the leading edge to the mid-span, and accelerates 
from the mid-span to the trailing edge. This flowtield is 
irrotational and oscillates sinusoidally in time. It 
is one of the fluctuations arising when an airfoil 
encounters a traveling-wave freestream disturbance. 
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(2) The trailing vortex sheet induces an oscillating, irrotational flow 
about the plate as shown in Fig. 1.5. 

(3) To satisfy impermeability, another irrotational wave is produced 
which is related to the wave discussed in the previous section. If the 
plate is very long, then this wave has the character of standing waves 
near the leading and trailing edges. A traveling wave is also present 
everywhere along the plate. The streamline pattern associated with 
this flow has not been drawn; the explicit solution is presented in 
Ref. 7. 

In summary for freestream disturbances interacting with 
finite-length plates, growing and decaying standing waves are present 
simultaneously. Several mechanisms exist to produce standing waves. 
While a unified theory is available, no attempt has been made to 
compare the relative strengths of these various waves. 

1.6 RELATED STUDIES OF FOURIER-LAPLACE AND POTENTIAL FLUCTUATIONS 

This study is concerned with the solutions of the incompressible 
parallel-flow equations for a boundary layer on an impermeable plate. 
To help provide some perspective for the various Fourier-Laplace 
solutions, the following references are cited. Of course, many other 
investigators have made significant contributions to analyze, 
calculate, and measure these oscillations, and to extend and apply them 
to many other problems. 

Tollmien (Ref. Ii) first obtained neutral eigenvalues and a 
critical Reynolds number for the fundamental stability wave. Jordinson 
(Ref. 36), Mack (Ref. 12), Antar and Benek (Ref. 37), Corner, Houston, 
and Ross (Ref. 13) obtained the (temporal and/or spatial) eigenvalues 
for the higher discrete modes with a Blasius layer. Rogler and 
Reshotko (Refs. 1,2,3), the present author (Refs. 15 and 39)~ Murdock 
(Ref. 40), Salwen and Grosch (Refs. 41,14), and Ellinwood (Ref. 42) 
obtained solutions with downstream propagating vortical fluctuations in 
the freestream. The forced response of a boundary layer to a Karman 
vortex sheet was obtained by Rogler (Ref. 38). Rogler and Reshotko 
(Ref. 2), Rogler and Tsuge (Refs. 17), and the present author (Ref. 27) 
obtained solutions for waves travelling in the upstream direction. 
Those authors (Ref.16) also obtained solutions for the standing waves, 
with details summarized in the present report. In Ref. 17, spatial 
solutions for longitudinal vortices in a boundary layer were 
summarized. Related temporal solutions were obtained by Rogler and 
Reshotko (Ref. 18) and Hultgren and Gustavsson (Ref. 19). The 
boundary-value and initial-value problems will be reviewed in a later 
report. 

For temporal solutions of the Orr-Sommerfeld equation in a 
channel, Mack (Ref. 12) presented numerical evidence of how the 
discrete solutions for a channel carry over to the solutions for a 
semi-infinite domain (0~y<m). There should be a link between the 
standing waves of the present report (as ~-~0) and oscillations in a 
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channel (as the channel width--~ and the x-wavenumber-~0). The 
neutral oscillation v=0, u=f(y)exp(-i~t) should be a limiting solution 
for both cases. 

The importance of these Fourier-Laplace solutions are that 
(1) they can be superimposed to represent more general disturbances, 
(2) the separate solutions contain many of the features arising through 
instabilities, walls, viscosity, details of the mean shearing layer, 
roughness, freestream disturbances, etc., and (3) the Fourier-Laplace 
tools lead to a powerful and flexible ~ for the study of 
transition and mixing. This framework is important because progress is 
often based upon generations of work by many investigators, a diversity 
of (analytical, numerical, and experimental) tools, and engineering and 
scientific problems of many types. The usefulness of stability theory 
has been firmly established. Now, the potential exists for a broader 
theory, which includes the normal modes, but also incorporates some 
features of freestreamdisturbances, surface waviness and roughness, 
surface vibration, and forcing. 

The reader is reminded, however, that not all monochromatic 
Fourier-Laplace disturbances in the freestream yield a monochromatic 
response in a parallel-flow boundary layer, nor even in a uniform mean 
flow near a wall. In the ~ . ~  initial-value problems which have 
been worked, the wavenumber of the freestreamdisturbance is preserved, 
but the frequency is transformed into a spectrum. In the 
boundary-value problems carried out by the author for an inviscid flow, 
the frequency of the freestream disturbance is preserved, but an 
integral spectrum and/or a series of wavenumbers result. 

The work by Bechert and Michel (Ref. 20) is an example of a 
potential fluctuation in the form of an oscillating source/sink used to 
excite a step-function free-shear layer in an inviscid analysis. The 
experimental investigation of Dovgal, Kozlov, and Levchenko (Ref. 21) 
is believed to include, amongst the various fluctuations, the standing 
wave. In other experiments, the author cannot distinguish whether 
compressibility is an essential feature of the input disturbance, or if 
the input disturbance is partly composed of incompressible standing 
waves. Other incompressible feedback problems with free-shear layers 
emitted from trailing edges, and the incompressible coupling between 
the trailing edge and a leading edge positioned further downstream also 
have some elements of the standing waves which are investigated here. 
Additionally, some of the incompressible, potential fluctuations in 
unsteady airfoil theory also have certain characteristics of the 
standing waves, as discussed in Section 1.5. 

Hence the present work might be viewed as a contribution toward 
bringing these additional features into an Orr-Sommerfeld description 
of unsteadiness in a shearing layer. As discussed by Reshotko 
(Ref. 22), a mathematical and physical understanding of the processes 
at the beginning of transition "would be most welcome." 

In the next chapter, the mathematical system describing the 
standing waves in viscous, parallel-flow boundary layers is formulated. 

18 
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2.0 FORMULATION OF THE MATHEMATICAL SYSTEM 

2.1 THE ORR-SOMMERFELD EQUATION AND BOUNDARY CONDITIONS 

The linearized, parallel-flow, viscous momentum equations can  be 
combined into the following fourth-order partial differential equation 
in terms of the fluctuating velocity, v(x,y,t), in the y-direction (and 
normal to a plate) 

(2.1) 

The inverse Reynolds number based upon the freestream velocity and 
characteristic thickness of the boundary layer is ~ =z2/U~6. For 
Falkner-Skan boundary layers, the characteristic thickness is taken as 

Z z2X 

where / ~ . S  = I.s/(Z-~/:s~ ( 2 o 2 a , b )  

7/ ~sis the vertex angle of the wedge along which the boundary la er d ~, Y evelops. The lengths in eqn. 2.1 have been nondimensionalized against 
and the time has been nondimensionalized against ~/U~. We now seek 

solutions of form 

v(  x,.o,, ~ )  = ~,(y,) e (2.3)  

where the x-wavenumber (times i) for the cases of interest here are 

where ~ is pure real, and where the coefficient r has values +I and -1 
corresponding to the cases 

r = +I for a wave growing as exp(+@x) 
r -I for a wave decaying as exp(a~x) (2.5a,b) 

The x-wavenumber is pure imaginary. Substituting eqn. 2.3 into 2.1, 
then after some rearrangement, the Orr-Sommerfeld equation results 

or equivalently 

{(o-  <"= ==+ = "- (==+A=) =} ~ - o -6- )( e ; -  %', -.f~= , , - . ~ ,  

The phase speed is pure imaginary for tle standing wave solutions 
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C ~ ~/o¢ = t ' / '~.)/p (2.7) 

Either equation is subject to impermeability and no-slip at the wall 

q~ = ,a~ = o #t~,- o (2.8) 

When U = I outside the boundary layer, then the system reduces to 

t(/ <'y J- _ _  

with solutions e +- t~ "9' 

and e -+ ,~9' 
or cos~ and sin~y (which oscillate neutrally) 

(which oscillate and grow or decay). (2.10a,b) 

where m is the root of the quadratic equation with positive real part 

or = - with r = +i for exp(_+~x) waves 

The exterior solution is 

(2.11) 

(2.12) 

(2.13) 

where B = 0 in the present problem and we normalize by setting C = 1. 
This normalization is not always appropriate; see Appenaix A.1 for an 
exception. We require that the exterior solution and the first three 
derivatives agree with the interior solution and the corresponding 
derivatives at the "edge" of the boundary layer, y=yf 

(2.14) 

Our objective now is to solve the mathematical system composed of 
the Orr-Sommerfeld equation (eqn. 2.6a,b), the two wall conditions 
(eqn. 2.8), and the four conditions at the bounuary layer edge 
(eqns. 2.13 and 2.14). The exponents m and the other parameters for 
the cases of decaying and growing waves are given in Table q as a 
typical example. Note that the exponent m for the decaying case is 
nearly i times m for the growing case. The slight difference arises 
from the term -~z in the square root. 
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2.2 COMPLEX AMPLITUDES FOR 
STREAMFUNCTIONw AND PRESSURE 

LONGITUDINAL VELOCITY, VORTICITY, 

Let the velocity fluctuations in the x and y directions be 
represented as 

~, v : { ,9"g;> ~,¢,;}~<<<"-<w~" 
(2.15) 

Substituting into the continuity equation, Ux+ v~-0, then e~'/÷ ~= O 
and the amplitude of the longitudinal velocitgfluctuation is related 
to the amplitude of the normal velocity fluctuation by 

r(~J - <'~ ( .e/~ '  (2.16) 
_ . ,  ,~x-e~ 

The fluctuating vorticity is ~ = V x- ~ . Letting ? = f(~]e 
then the vorticity amplitude is related to the two velocity amplitudes 
by 

Letting ~ = ~9"t/',,4#'Je"~'lX'"~ since the normal velocity and 
streamfunction are related by v = ~ , then the amplitude of the 
streamfunction is 

16(..6,; = qg('~,j/~< (2.18) 

The pressure disturbance can be found from the l~nearized, 
parallel-flow, x-momentum equation 

Introducing the dimensionless variables u--qu, v--qv, t~-~tlU , 0--U~0, 
p-.~qUp , x~x, and y-P&y, where q is the characteristic disturbance 
velocity, then 

Letting 

then 

px = _ , ~ _  ~ x _  ~ ,  _' 

P -  ~(.9,)  e 

~ ;  = (~- ~; f + < ~  ~ _ _ { ~ -  

(2.20) 

(2.21) 

(2.22) 

Thus knowing the amplitudes of the velocity fluctuations and the mean 
velocity profile, then the pressure fluctuation can be found. In a 
manner analogous to the streamlines, the pressure isobars can be 
calculated and plotted. 
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2.3 ROOT-MEAN-SQUARE QUANTITIES AND OTHER CORRELATIONS 

Let a disturbance quantity ~OJbe represented as 

<~<. 3J(~o=m,-~e¢ , - ,~m,-~  
..~ C#). 

Similarly, a second disturbance quantity ~(Z)can be represented as 
i 

The product of these two (real) quantities is 

d ' ~  <=~ o%~=><.<.~{:<x_~,~<j < ;  <=>  . ~ .  . 

= ,, ,, + ~ .  ~ .  5<',~ f .< ,< -w~<J  

_ 6~) (a) E,) <z)i 

By the ~ of a variable in a spatial analysis, we refer to the time 
average over one time period T = 2~/~ of that variable 

-= T 

Carrying out the integrals for ~<'~,c'~the contributions arise 
the squared quantities, and the result is 

(2.26) 

only from 

(2.27) 

The autocorrelations are thus 

~Tj,/• : [ C ~ +  ~=j/~ ]'/~ 

C~,/~: i(~=+ ~=j/~ ]'/~ (2.28) 

(2.2~) 

The energy production is -U-V dU/~ (2.30) 
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The (instantaneous) kinetic energy per unit mass is 
O O 

-' (~'~+ v =) = ~ (J~+~, <~< + -= + S +  . ~ +  ,.~J 2 (2.31) 

The mean of this quantity is 

(2.32) 

which has a contribution from the mean flow and another contribution 
from the unsteady flow. The quantity (u~+vZ)/2 is plotted in the 
following chapter, along with the other variables introduced above. 

Table 1 
Example Numerical Value of the Exponent m 

exp(-~x) mode 0.5 0.5 1000 0.5i 10.1743201-i24.5716664 

exp(+~x) mode 0.5 0.5 i000 -0.5i 24.5629806-ii0.1779179 
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3.0 NUMERICAL SOLUTIONS FOR STANDING WAVES 

3.1 SUMMARY OF THE NUMERICAL TECHNIQUE 

To obtain the coefficients U(y) and Uyy(y) of the mean flow, 
numerical solutions of the Falkner-Skan equation are obtained by the 
method of Nachtsheim and Swigert (Ref. 23) as modified and summarized 
in Ref. 3. The equation is solved by shooting from the wall outward, 
using 4th-order Runge-Kutta integration in double-precision arithmetic. 
The exterior boundary condition, F¢--1 as ~ ,  is not specified at 
the boundary layer edge, y = Ye, butTather the error is ~ in a 
least squares sense. 

The Orr-Sommerfeld system of equations (2.6b, 2.8, 2.13, 2.14) is 
solved by an expansion in Chebyshev polynomials 

iv-/ 

= E ",,, 
,~--o (3.1) 

with polynomials defined as 

= cos  [ , , , (  ¢o5 )1 c3.2) 

and where the variable ~ is related to the dimensionless y by the 
l i n e a r  t r a n s f o r m a t i o n  

Z_g_/ 
(3.3) 

A set of linear, algebraic equations results from the Orr-Sommerfeld 
equation, the two wall boundary conditions, and the four matching 
conditions at the boundary layer edge. The matrix of coefficients 
related to this system is reduced by Gauss-Jordan elimination wltn 
maximum pivoting by column and rows. With the coefficients known, the 
expansion 3.1 can be carried out for ~(y), and identitles used to 
obtain the y-derivatives of ~(y). With ~ and its derivatives 
known, the longitudinal velocity, vorticity, and vorticity production 
are calculated. From the x-momentum equation, the pressure 
fluctuations are found, and then the correlations are calculated for 
rms quantities, including Reynolds stress, kinetic energy, etc. The 
streamlines, iso-vorticity contours, pressure isobars, and equi-value 
contours of the vorticity production term are drawn. 

The ~ c h e e k ~  included numerical experiments to determine 
the effects of number of terms in the expansion, precision of 
arithmetic for the matrix reduction, and influence of the y-value where 
the edge boundary conditions were imposed. Comparisons were made 
between analytical and numerical solutions for the cases of (I) a 
uniform mean flow, and (2) the viscous sublayer. The same computer 
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program used to obtain solutions for the standing waves, except with 
different patching conditions at the boundary layer edge, was also used 
to recover the Tollmien-Schlicting waves. 

TO assist the reader in comparing the figures with different 
values of the parameters, different wall bounoary conditions, and the 
two cases of growing or decaying waves, Table 2 has been prepared. 

3.2 NUMERICAL RESULTS FOR DECAYING WAVES IN FALKNER-SKAN BOUNDARY 
LAYERS 

3.2.1 Blas~us Case Wit2a D ~  Waws 

The velocity profile and derivatives for the Blasius boundary 
layer are plotted in Figure 3.1 with the same y-scale as the following 
figures for amplitudes, streamlines, etc., except for the sublayer 
plots where the y-scale is stretched. 

TO aid in the interpretation of these calculations, since 

v =  ( ~  ÷ <~,.) e-?"-'~'t= [ ~<'~,),-os~,,'+ ~(~,)s<~,we] e-?" 

then for 

m t = ~/z, 

P = 3F/2, 

~(x,~. a) = ~('y)e-~ x 

v(x.y, e) w.Cg) e-~ ~ 

v(x.,. ~) = - ~ (~) e-? ~ 

v (.~,~ ~ ) = - ~ ly) e -~ x 

(3.4) 

(3.5a-d) 

Hence the real and imaginary parts of the complex amplitude are the 
velocity profiles at the times ~t=0 and ~/2 respectively. With a 
reversal of sign, they are the velocity profiles at the 
times udt=~ and 3~/2. At ~2t=2~, the flowfield at tlme t=0 is 
repeated in this sinusoidal oscillation. Analogous interpretations 
also apply for the other complex amplitudes. 

Figures 3.2 through 3.19 are plots for a decaying wave with 
y-wavenumber and frequency, ~=W= 0.5, and Reynolds number R&=1000. In 
Figure 3.2 for the normal -velocity, note that the impermeability 
condition is satisfied at the wall and note the oscillatory behavior ot 
the solution. Far from the boundary 

ct('~'J--- 5t,'~f..~÷ D cos~ aSj~ -~ 
(3.6) 

Also note, based on the above interpretation of the real and imaginary 
parts, that the flow structure shifts up as the time increases from 0 
to F/2~4 The structure nearest to the wall expands outward. To see 
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y-wavenumber, ~ 0.5 0.5 
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Effects of Reynolds number on rms v 3.37 
Effects of Reynolds number on rms u 3.38 
Effects of Reynolds number on rms u in sublayer 3.39 
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Figure 3.2 The variation of the normal velocity fluctuation with 
distance from the wall for a decaying wave, exp(-~x), for 
~=w= 0.5 and R~=I000 with a Blasius boundary layer. 



AEDC-TR-83-4 

this, observe that the node where ~=0 shifts upward to the node 
where ~=0. 

In Figure 3.3 for the longitudinal velocity, note that the no-slip 
condition is satisfied and again note the general oscillatory behavior 
further away. The fluctuating velocity inside the boundary layer is 
much larger than the velocity in the boundary layer wltn decaying, 
vortical structures in the freestream. 

In Figure 3.3, also note the thin viscous sublayer near the wall, 
with a velocity overshoot at the sublayer edge. In Figure 3.4, the 
ordinate is stretched and the longitudinal velocity is plotted for the 
sublayer region. The analytical solution for the sublayer, as 
presented in Appendix B, is also plotted in Figure 3.4. This solution 
is 

where 

fc 'yJ -- { ,  - 

(3.7) 

and ~= complex constant representing the value of f at 
sublayer "edge". 

the 

The streamlines for the fluctuating flow at time zero are plotted 
in Figure 3.5. Note the oscillatory pattern in the y-direction and the 
effects of the exponential decay in the streamwise direction, 
exp(-~x). A 16mm movie of the standing wave has been prepared using a 
sequence of 64 streamline patterns representing the flowfield at 64 
times during a half-cycle. 

The fluctuating vorticity, ~ =vx-uw, is plotted in Figure 3.6, 
which shows a large spike of vorticity near the wall associated with 
the viscous sublayer. This vorticity mainly arises from the 
derivative -u~ while the derivative v X is zero or small. The large 
magnitude of hhe derivative u~ in the sublayer can be seen in Figures 
3.3 and 3.4. 

The abscissa in Figure 3.6 was stretched in Figure 3.7 to better 
display the layer of vorticity appearing about midway in the boundary 
layer; the much larger spike of vorticity in the sublayer is not 
completely plotted in Figure 3.7. Note in either Figure 3.6 or 3.7 
that far above the boundary layer into the freestream, the flow is 
irrotational. The iso-vorticity contours are plotted in Figure 3.8 
which shows the highly skewed nature of the vortlcity waves in the 
sublayer. The single contour toward the center of the boundary layer 
represents the bulge in vorticity near y = 2 in Figure 3.7. 

The fluctuating vorticity positioned approximately midway in the 
boundary layer has interesting properties which we will describe by 
posing two mathematical systems for inviscid flows: 
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Figure 3.3 The variation of the longitudinal velocity fluctuation 
with distance from the w~ll for a decaying wave, 
exp(-~x), for ~ =w= 0.5 and R~=1000 wlth a Blasius 
boundary layer. 
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(1) If there were no vorticity production term, the relevant 
vorticity equation would be 

y# + O(yJ  ~ = o (3. o) 

i.e., the vorticity at any station x,y at time t is the 
vorticity at x=0 at the earlier time t-x/U(y). The 
vorticity would merely convect downstream with the local mean 

velocity, U(y). Since the vorticity at x=0 oscillates in 
time 

-t~t 
f (o,~ ~) - -  z(yJe 

(3.9) 

the solution further downstream would be 

 /oj o0 
#'(x,y, ,+) = z ( y J e -  = ~'(s/Je (3.1o) 

which is a ~ ~ in ~ W/~hh hn~ 
wave ~ of form 

f = z ( 9 ' ) e -  ( 3 . n )  

One may wonder then, for a standing wave, what causes the 
vorticity to decay exponentially in the streamwise direction 
(at one instant of time)? To an observor travelling with the 
mean flow, U(y), how can the vorticity oscillate? 

(2) We believe that one mechanism which influences the 
vorticity to behave as a standing wave is the vorticity 
production term, -vU~, which is a linearized version of the 
convection teem V~" in the vortlcity equation. The 
linearized, inviscidequation for fluctuating vorticity is 

rate of change of vorticity rate of 
as seen by an observor moving production 

with the local mean flow 

(3.12) 

For high Reynolds number, small y-wavenumber conditions, we 
suspect that fluctuating vorticity is created in the central 
region of the boundary layer, as described by the production 
term, in such a manner that a standing wave is possible. The 
magnitude of the vorticity which is produced depends on the 
time available, and hence the frequency. While this process 
occurs in the central region of the boundary layer, diffusion 
is possible in the sublayer. The relative roles of the 
production term and the two diffusion terms (in the viscous 
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equation) could be determined by plotting the terms 
separately. 

The complex amplitude of the vorticity production is plotted in 
Figure 3.9. The production vanishes at the wall and in the freestream. 
The contours of equi-value of the production,-v(x,y,t)Uyy[y) at time 
zero are plotted in Figure 3.10. 

The diffusion term in the streamwise direction 

is merely 6S z times the vorticity itself. The other diffusion term, 
E~, has ~ot been plotted. 

The smoothly oscillating amplitudes ?/(y) = ~ ÷ c~- of the 
fluctuating pressure are plotted in Figure 3.11. Note the relative 
constancy of the pressure across the sublayer, but clearly the pressure 
varies across the mean boundary layer itself. The corresponding 
pressure isobars are plotted in Figure 3.12. 

The rms quantities for the velocities, vort~oity, and pressure are 
plotted in Figures 3.13-3.16. The oscillatory behavior in the 
direction normal to the wall is apparent in these figures. The viscous 
sublayer is shown clearly by the longitudinal velocity in Figure 3.14, 
and by the spike of vorticity near the wall in Figure 3.15. 

The Reynolds stress, -u-~, and the kinetic energy production, 
-~dU/dy, are plotted in Figures 3.17 and 3.18. The Reynolds stress 
oscillates into the freestream. The energy production is confined to 
the boundary layer, of course, where it is mainly negative although 
having a small positive region. It vanishes at the wall where v=0 and 
in the freestreamwhere UH=0. 

The averaged kinetic energy (uZ+v~)/2 of the fluctuation flow is 
plotted in Figure 3.19 which clearly shows the sublayer and overshoot 
at the sublayer edge. In the freestream, the kinetic energy is uniform 
in the y-direction; it decays as exp(-2~x) in the streamwise direction. 

3.2.2 ~ and Adverse Pressure ~ Cases with D~.~in~ Waves 

Figures 3.20-3.26 are results for the decaying wave with a 
favorable pressure gradient boundary layer. Figures 3.27-3.33 are 
results with an adverse pressure gradient boundary layer. The 
corresponding figure numbers for these two cases and the Blasius case 
are tabulated below for reference. 
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Figure 3.9 The variation of the vorticity production with distance 
from the wall for a decaying wave, exp(-~x), for 
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.486 Z5 .VORTI CITY PRODUCTION 

%D 

Figure 3.10 The equi-value contours of the production of fluctuating 
vorticity for a decaying wave, 6xp(-@x), for ~=~= 0.5, 
R~=I000 at time t = 0 with a Blasius boundary layer. 

m 
O 

9 
-m 

& 



10 .0  

Distance from 
wall, y 

.488 1Z PI 

8.0 

6.0 

4.0 

C~ 

'11 

CO 

2 .0  

/ 
~ o  'F 

0.0 . . J, . i .... L • I U I 

- 3 . 0  - 2 . 0  -1 0 0 .0  1 .0  2 .0  3 

Complex amplitude of the pressure fluctuation, W(y) 

Figure 3.11 The variation of the pressure fluctuation wlth distance 
from the wall for a decaying wave, exp(-px), for 

=~= 0.5 and R6-I000 with a Blasius boundary layer. 



.486 Z3 PRESSURE iSOBARS 

$ 

A 

Figure 3.12 The pressure isobars for a decaying wave, exp(-~x), for 
=~= 0.5, R~=1000, time t ~ 0 wlth a Blasius boundary 

layer. 

m 

& 



4~ 

54Z  Z4 .VRMS 
10.0 

8.0 

6.0 

Distance from 
wall, y 

4.0 

2.0 

0.0 , , 9 , , i , • , , , , , , , , , ," , 
0.0 0.5 1.0 1.5 2.0 

rms normal fluctuating velocity, (~-~)~z 

m 

-m 

4~ 
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favorable 
Falkner-Skan Parameter, mFs 0.5 

Blasius adverse 
0.0 -0.05 

5, Figure 3.20 3.1 3.27 
3.21 3.2 3.28 

f 3.22 3.3 3.29 
Z 3.23 3.6 3.30 

3.24 3.11 3.31 
-U-~ 3.25 3.17 3.32 
-~-~dU/dy 3.26 3.18 3.33 

A plot-by-plot comparison of the three cases shows that the solutions 
for the standing wave depend on the Falkner-Skan Parameter. The 
maximum values and the y-positions for those maximum values depend on 
the mean profile. 

The general trend is that the curve~ are shifted ~ ag the 
~ ~ .  The energy production acquires a 

positive region near the boundary layer edge as the Falkner-Skan 
parameter takes on negative values. 

Based upon the idea that one effect of surface roughness is to 
alter the mean velocity profile, then our calculations witn different 
Falkner-Skan parameters indicates that the surface roughness would 
influence the standing waves. 

3 . 2 . 3  E f f e c t s  o f  

As shown in Figures 3.34 and 3.35, the frequency signlficantly 
influences the rms normal and longitudinal velocities. Both figures 
indicate that the amplitude increases as the frequency increases. In 
these figures, the frequency is increased by a factor of 16 from 
W= 1/8 to ~= 2. The points of minimum amplitude also shift upward as 
the frequency increases. Zt may be useful to normalize in other ways 
to reduce this dependence of the amplitude in the freestream on 
frequency. 

A possible explanation for the larger amplitudes as frequency 
increases is based on the analytical solution (A.9) of Appendix A for 
the viscous, uniform flow case. The amplitude is 

= - e - ' ' y  + - g y  

Hence, the coefficient of sin~y is proportional to the square root of 
frequency when ~/~<<<1. 'For other cases, eqn.(A.8) above also 
suggests that the coefficient m/~ would increase as ~ increases. We 
offer this explanation as t~ntative, however, because the above 
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argument seems unable to provide any guidance on the influence of 
Reynolds number, as discussed later. 

The solution for the velocity fluctuation in the viscous sublayer, 
derived in Appendix B, shows that the ratio 

sublayer thickness/boundary layer thickness = 1/~UR~) ~ 

Hence, as the frequency is increased, the shorter times available for 
viscous diffusion to take place during one oscillation cycle leads to 
thinner sublayers. Calculations of the rms velocity for five 
frequencies differing by a factor of 5 are shown in Figure 3.36. 
These calculations show the thinning of the sublayer as frequency 
increases. 

3.2.4 Effects of ~ Number 

Calculations of the rms velocities with Reynolds numbers varying 
by a factor of I0 (from R$ = 100 to 1000) are shown in Figures 3.37 and 
3.38. Clearly, the veloclties are rather insensitive to the Reynolds 
number, except in the sublayer. 

From our discussion of the previous section, one would expect that 
one effect of increasing the Reynolds number would be to thin the 
sublayer, ~/~ = ~R~)-I/~ Evidence that this is true is shown in 
Figure 3.39 where £he rms longitudinal velocity is plotted in the 
sublayer region for nine Reynolds numbers differing by a factor of 20. 

In Figure 3.39, also note the apparent coalescence of the curves 
above the sublayer, which further supports our conclusion that the 
velocities are rather insensitive to R~ except in the sublayer. 

3.2.5 Effects of E~mnld~ Number and ~ When ~E~ is Held 

Since the ratio of sublayer thickness to boundary layer thickness 
is (~-I/z, then if the frequency and Reynolds number are changed but 
their product is held constant, then one would expect the sublayer to 
be relatively unchanged. To test this hypothesis, we calculated the 
following cases 

u2 = 2.0 R~= 250 w R&= 500 
=2 = 1.0 R&= 500 W R&= 500 
w = 0.5 R~= i000 mR&= 500 
~2= 0.25 Rs= 2000 ~R~= 500 
~2= 0.125 R&= 4000 ~R~= 500 

The rms longitudinal velocity in the sublayer is plotted in Figure 3.40 
for these five cases. The sublayer thickness appears to be unchanged 
although the frequency and Reynolds number separately have been changed 
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by a factor of 16. 

3.2.6 Effects ofy_-~KE~lU~or~Rate 

To obtain evidence of the influence of the y-wavenumber (or decay 
rate in the streamwise direction), we calculated the rms velocity for 
~=0.I0, 0.25, 0.50, and 0.75 with the other parameters fixed. These 
results are plotted in Figure 3.41. The higher frequency oscillations 
associated with increasing the y-wavenumber are apparent. Also, the 
maximum amplitude increases asp decreases. Based upon the guidelines 
of Appendix A, the coefficient of.s~n~ is 

_ f _  W - 

Hence, as ~ decreases, this coefficient increases, in agreement with 
our calculations for a Blasius layer. 

3.3 NUMERICAL RESULTS FOR GROWING STANDING WAVES 

~ ~ . ~  

The Orr-Sommerfeld equation (eqn. 2.6b) can be separated into the 
following two real equations: 

(1) Equation originating from the real part: 

-- / ~ f,.~. _ 2 1  

(3.13) 

(2) Equation originating from the imaginary part: 

where r--+l or -i for growing or decaying waves, respectively. 

If~(y) ~(y)+i~/(y) is a solution for a decaying wave (r=-l;, 
then we ask: ;s the complex conjugate solution ~=~-i~. a solution for 
the growing wave case (r=+l)? If one substitutes r=-I with ~=~+i~,', 
and if one substitutes r=+l with ~=~-i~, one finds the two systems 
are identical~l~if the flows are ~ .  The viscous term does 
not transform in that manner. 

AS we shall see from numerical calculations for growing and 
decaying waves, this inviscid rule, well known from inviscid stability 
theory, is a practical guideline for the high Reynolds number viscous 
case as well. 
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3 . 3 . 2  B l a s i u s  c a s e  w i t h  ~:/lWi11; waves  

Figures 3.42-3.47 present numerical results for a 
exponentially in the streamwise direction as exp(+#x). 
can be compared with the results for the decaying wave 
below. 

wave growing 
These figures 
as indicated 

exp(-~3x) wave exp(+~x)  wave 

Figure 3.2 3.42 
3.3 3.43 

Z 3.6 3.44 
F 3.11 3.45 

-u-v 3.17 3.46 
-~dU/dy 3.18 3.47 

While ~ for the exp(+~x) wave is not exactly the complex 
conjugate of ~ for the exp(-~x) wave, the inviscid theorem appears to 
be a reasonable guideline for the large Reynolds number cases. The 
longitudinal amplitude, f=fr+i~ - , for the decaying wave is 
approximately -re+if/ for the growlng wave outside of the sublayer. 
The overshoot of fr at the sublayer edge for a decaying wave appears to 
be similar to the overshoot of f/ for the growing wave. A significant 
discrepancy from the inviscid guideline arises for the pressure. 

The Reynolds stress in Figure 3.46 has a reversal of sign compared 
with that stress in Figure 3.17. This sign change leads to a sign 
change in the energy production, Figure 3.47 as compared with 3.18. A 
positive energy production indicates that energy is being transferred 
from the mean flow to the disturbance flow. 

3.4 NUMERICAL RESULTS WHEN THE NO-SLIP CONDITION AT THE WALL IS 
REPLACED BY A NO-SHEAR CONDITION. 

To give some indication of the role of the viscous sublayer, in 
Figures 3.48-3.51 we replaced the no-slip condition, u = 0 or ~= 0, 
with a no-shear condition at the wall 

.7 

= O or ¢PFY =O u~y=o (3.15) 

These figures with a no-shear condition may be compared with the 
corresponding ones with a no-slip condition as tabulated below: 

no-slip no-shear 

Figure 3.2 3.48 
f 3.3 3.49 
Z 3.6 3.50 
F/ 3.11 3.51 
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The impermeability condition at the wall was imposed for both sets of 
figures. 

As expected and shown clearly in Figure 3.49 for the longitudinal 
velocity, no sublayer forms when the no-slip condition is replaced by a 
no-shear condition. For the variables plotted, the values above the 
sublayer region in Figures 3.2, 3.3, 3.6, and 3.11 are nearly the same 
as the values in Figures 3.48-3.51. 

We conclude that the sublayer is relatively passive, i.e., it is 
driven by the external flow above the sublayer, and that external flow 
is not influenced very greatly by the sublayer. Except in the sublayer 
region itself of thickness 0(1/(~)~), the results indicate that if the 
Reynolds number and frequency"are large, (~/z >>I, then the 
replacement of the no-slip condition by a no-shear condition has a 
relatively small influence on the solutions. This result differs 
sharply from the active role which the sublayer takes for the 
Tollmien-Sohlichting wave. 
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4.0 SUMMARY, DISCUSSION AND CONCLUSIONS 

4.1 INTRODUCTORY COMMENTS 

This report documents the analytical and numerical evidence of the 
existence of a pair of standing waves in a boundary layer. These waves 
oscillate sinusoidally in time, but because of the purely imaginary 
x-wavenumber and phase speed, the waves do not travel. The amplitudes 
vary exponentially in the streamwise direction without any spatial 
oscillation. Both growing and decaying solutions are possible. Far 
above the boundary layer, these irrotational fluctuations oscillate 
neutrally in the y-direction. 

Some evidence of the existence of these waves is based on several 
numerical solutions of the Orr-Sommerfeld equation, analytical 
solutions of simplified forms of the Orr-Sommerfeld equation, and an 
asymptotic solution of the Orr-Sommerfeld equation. Theasymptotic 
solution by Shunichi Tsuge as applied to the stability problem is 
summarized in Ref.26. The use of that asymptotic solution in the 
spatial initial-value problem will be summarized in another report. 

The Orr-Sommerfeld equation describes the evolution of 
small-amplitude fluctuations in a boundary layer growing sufficiently 
slowly such that it is meaningful to represent it as a layer of uniform 
thickness. The characteristics of the boundary layer enter into the 
equation as two coefficients. The Falkner-Skan family of boundary 
layers was used so that evidence could be obtained for fluctuations in 
boundary layers with favorable, zero, and unfavorable mean pressure 
gradients. Also, since roughness can influence the mean profile, these 
profiles provide some indication of how roughness can influence the 
standing waves. Other profiles will be used later. 

To illustrate how standing waves originate, the interaction 
between freestream vortical fluctuations and leading and trailing edges 
of a flat plate are summarized in Chapter I. Those studies, while 
including the features of leading and trailing edges, do not include 
all of the features of the 0rr-Sommerfeld equation. However, the 
problems share three essential features of the fluctuations in the 
freestream: (i) they oscillate in time, (2) decay or grow in the 
streamwise direction, and (3) are irrotational. This report documents 
the evidence that the Orr-Sommerfeld admits solutions with those 
characteristics, and that other features arise because of the shearing 
mean flow and viscosity. The problem of predicting the origin of the 
various waves is a topic of continuing research. 

4.2 SUMMARY OF THE FORMULATION AND NUMERICAL TECHNIQUE 

For small-amplitude disturbances in shear layers which develop 
sufficiently slowly such that the parallel-flow representation is 
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adequate, the objective is to obtain solutions of the equation 

which are of the Fourier-Laplace form 

v(x. v,÷) = @(yj x-< t 

(4.1) 

(4.2) 

solutions are where ~ andS/ are pure real. These standing-wave 
exponentially growing or decaying in the streamwise direction, and 
oscillate sinusoidally in time. The motivations for seeking solutions 
of this form are that such waves appear in several analytical solutions 
where the mean flow is uniform. Furthermore, in an asymptotic analysis 
of an initial-value problem with a boundary layer, two mathematical 
poles indicate that waves of this form would exist in boundary layers. 
For solutions of this form, the x-wavenumber is 

• -r = +i for a growing wave 
(4.3) 

(4.4) 

r = -1 for a decaying wave 

The complex phase speed, which is pure imaginary, is C m¢#"gu/I 

Letting M =-i~ , the Orr-Sommerfeld equation is 

The impermeability and no-slip boundary conditions at the wall, 
and the boundedness condition of the solution far-away, are 

~=o9'=o ePy=o ; 2' t~'+?ded"s3/-*'m (4.5b,c,d) 

When O = 1 and Ujvy= 0, the Orr-So~erfeld equation has the 
solutions 

(4.6) 

or equivalently 

"#s (4.7) 

where the ex lxment  is m=(P~-~-,'~) II" (4°8) 
/ 

For the boundary layer case, B = 0. For most cases, we normalize by 
setting C=I in eqn.(4.6). In retrospect, the analytical results of 
Appendix A and the calculations suggest that setting the coefficient 
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D=I would be a better choice, and might lead to amplitudes of the 
freestream disturbances to be less sensitive to the parameters. 
However~ for any normal modes analysis, the amplitude ~(y) can be 
multipl~ed by a complex constant and rescaled. The essential 
requirement in carrying out calculations for the initial-value problem 
is consistency between the normalizations of the normal modes 
calculations and the initial-value theory. 

from the boundary layer edge where the term Aexp(-my) is 
negligible, the flowfield varies sinusoidally 

= f"<<>:p.y 
÷ (4.9) 

This ~ ~ is //J~d~l~LO1~l. The constant D is 
obtained numerically. 

In general, the constant D and the solution ~(y) of the 
Orr-Sommerfeld equation depend on the frequency, y-wavenumber, Reynolds 
number, mean velocity profile, and the choice of whether the wave is 
growing or decaying. The effects of the mean pressure gradient and one 
of the effects of surface roughness can be introduced through the mean 
velocity profile, ~(y). 

Numerical solutions of the Orr-Sommerfeld equation are obtained by 
an expansion in a series of (typically 48) Chebyshev polynomials. The 
coefficients of those polynomials are obtained as solutions of a set of 
linear, algebraic equations. The matrix of coefficients is reduced by 
Gauss-Jordan elimination. 

Calculations are carried out on a Digital Equipment Corporation 
PDP-11/23 computer using 64K bytes of memory and another 64K bytes of 
extended memory for virtual arrays. The disk-overlayed FORTRAN IV 
program executes in about 145 seconds when using the KEFI1-AA floating 
point chip, beginning with data for the mean velocity profile, and 
ending with the coefficients of the polynomials and the amplitude ~y) o 
The program executes in about 80 seconds when using the FPF-11 floating 
point processor. 

4.3 SUMMARY OF RESULTS, DISCUSSION AND CONCLUSIONS 

The calculations for the standing waves indicate that the 
~ ~ can be ~ a s L ~ £ n ~ t n e  

~ l ~ . E ~ t h e ~ ~ n t h e f . ~ J ~ .  This conclusion 
differs significantly from the solutions with decaying vortices in the 
freestream, as can be seen for the rms longitudinal velocity in 
Figure 4.1 from Ref. 15. This plot has the same frequency, 
y-wavenumber, Reynolds number and mean velocity as for Figure 3.14, but 
the velocities deep inside the boundary layer are small in Figure 4.1. 
The corresponding plot for rms vorticity from Ref.15 is shown in Figure 
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4.2. This plot shows that a layer of vorticity exists near the 
boundary layer edge. The phase of this vorticity is such that the flow 
induced by this layer of vorticity tends to cancel the flow induced by 
the freestream vortical fluctuations. This cancellation process does 
not appear to take place with the standing waves. Inviscid, analytical 
solutions of the Rayleigh equation with broken-line mean velocity 
profiles would help clarify this process. However, tne author has 
learned from several studies that tne 2-D response in boundary layers 
is sensitive to the phase speed of freestream disturbances. 

The rms longitudinal velocity for a Tollmien-Schlichting wave is 
plotted in Figure 4.3 for comparison with the other waves. 

Although the "freestream disturbance" for the standing wave is 
irrotational, the fluctuating flow inside the bounuary layer is 
rotational. That vorticity originates primarily from two sources: the 
production of fluctuating vorticity inside the boundary layer by the 
term -vUg~ , and by diffusion in the y-direction, 6~j, to and from the 
wall in -t~e unsteady viscous sublayer. 

The main features of a thin viscous sublayer can be described by 
the unsteady, forced diffusion equation (B.1). The forcing arises from 
the pressure gradient impressed on the sublayer by the flow above the 
sublayer. 

If the no-slip condition, u = 0 or ~ = 0, is replaced by a 
no-shear condition at the wall, ug = 0 or ~yy= 0, calculations show 
that the disturbance is not significantly affected (except for the 
sublayer itself). The sublayer does not form when the no-shear 
condition is imposed. The result that the solution outside the 
sublayer region is relatively unchanged can be interpreted as the 
sublayer being /.~l~t/M~l~~ under the high Reynolds number, high 
frequency condition. 

A remarkable balance takes place for these standing waves. The 
fluctuating vorticity decays (or grows) exponentially in the streamwise 
direction and oscillates in time in exactly the same fashion as the 
irrotational fluctuations in the freestream disturbance. The vorticity 
induces a flowfield which generates additional vorticity through the 
production term, and that flowfield also affects the diffusion 
processes in the sublayer. Also, the impermeability condition 
essentially sets up an image system. The "history" of the 
flowfield, including the oscillations and phasing, is important since 
the vorticity convecting downstream in the shear flow must arrive at 
each station and be altered by the production and diffusion in a such a 
manner that the vorticity field is also a standing wave. With these 
varied processes taking place simultaneously, it is amazing that a 
particular arrangement is possible such that the flowfield varies 
exponentially in space and oscillates in time. 

Not all irrotational fluctuations, which decay or grow 
exponentially in the freestream and oscillate in time, are solutions of 
the Orr-Sommerfeld equation, although they may be solutions of the 
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partial-differential equation (2.1). In t~e boundary layer, the flow 
may be much more complicated then the assumed solution form (2.3,2.4). 

An important idea from the initial-value theories, however, is 
that the more complicated solutions can be constructed by superposition 
of the basic Fourier-Laplace solutions. In some cases, tne 
superposition is a sunm~tion of waves of finite amplitude. In other 
cases, the superposition is an ~ over waves of infinitesimal 
strengths. 

The other Fourier-Laplace solutions, including the stability waves 
and the two spatial-solutions with vortical fluctuations in the 
freestream, also have remarkable balances which lead to solutions with 
simple functional dependences on x and t. 

From the theory of inviscid stability waves, it is known that if~ 
is the solution for the wavenumber ~, then~'is tne solution for the 
complex conjugate wavenumber, ~. Calculations based on the viscous 
Orr-Sommerfeld equation, however, indicate that tne invlscid 
relationship is a reasonable~Lt~.lin~for relating the solutions for 
the viscous decaying and growing standing waves. The success is 
probably related to the passive character of the sublayer when the 
sublayer is thin, and the general insensitivlty of the standing wave 
solutions to the Reynolds number (except in the sublayer). The details 
of the flow in the sublayer do not transform according to inviscid 
guidelines. The wavenumber for the growing-wave case, 5= -i~_ is the 
complex conjugate of that wavenumber for the decaying case, ~-- +i~ 

The functional dependence of the standing waves indicates that the 
waves do not travel in the streamwise direction. However, a movie 
shows that wave motion takes place in the y-direction. In t b e ~  
~ ,  that motion is not a simple sinusoidal wave, and it does not 
travel in the y-direction with a constant speed. Far above the 
bc~Ul~Ir~l~.Ewhere the only remaining influence of the boundary layer 
is through the value of the constant D, eqn.(4.9) can be rearranged as 

V= e ~ Ee ~ ~ 
(4.10) 

This expression indicates that the irrotational freestream disturbance 
is a superposition of outgoing and incoming waves. The amplitudes of 
these waves are different since, in general, E ~ 1. 

All of the available information is consistent with the 
that the two unsteady, exponentially-varying standing waves are basic, 
independent, Fourier-Laplace solutions of the viscous, parallel-flow 
Orr-Sommerfeld equation describing small-amplitude fluctuations in a 
boundary layer. This evidence is based on several analytlcal 
solutions, a formulation of the spatial initial-value problem using an 
asymptotic solution of the Orr-Sommerfeld equation, and the numerical 
calculations with adverse, zero, and favorable pressure gradient 
boundary layers. For mathematical completeness, these two solutions 
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join the list consisting of the discrete set of stability waves and the 
pair of solutions accounting for the propagation of vortical 
fluctuations in the freestream. While this report has focused on the 
standing waves in boundary layers, the author believes that equivalent 
waves arise in free-shear layers, jets, and wakes. 

4.4 DESCRIPTION OF PROBLEMS WITH IRROTATIONAL DISTURBANCES IN THE 
FREESTREAM 

An objective of this report is to document the evidence that a 
pair of standing wave solutions exists which have the characteristics 
of / ~ ] ~ i ~  ~ from the ~ /~. In 
all results, the vorticity and velocities satisfy parallel-flow 
equations. Those solutions summarized in Chapter 1 and in Appendix A 
all have a uniform mean flow. Consequently, there can be no Rayleigh, 
Tollmien-Schlichting, or other instability waves in those problems. 
Yet, both rotational and irrotational disturbances are present. The 
irrotational solutions fall into two classes: 

(I) Travelling waves which arise through the impermeability 
condition of the plate. In more sophisticated, viscous 
solutions with shearing flows, these travelling waves are a 
part of the response of a boundary layer to vortical 
fluctuations in the freestream. This irrotational portion 
does not survive far-away from the boundary layer. 

(2) Standing waves, which can also be set up by the 
impermeability condition, but which do not travel. Unlike 
the vortical fluctuations which have no pressure fluctuations 
in the freestream, these standing waves have (sometimes 
strong) pressure fluctuations which can be estimated from 
linear equations. This flowfield is not describable by 
stability waves, and is not describable by the solutions (i) 
above. 

An initial-value problem formally illustrates that the two 
standing waves are entities distinct from the poles of the stability 
waves and from the branch lines of the vortical fluctuations. The 
standing waves in this report are described by the viscous 
Orr-Sommerfeld equation with a boundary layer, rather than the uniform 
flows as used in Chapter 1 and Appenaix A. The formal linking of 
(a) the standing waves set up by the interactions of vortical 
fluctuations with the leading edge, as analyzed in Refs.6 and 7, and 
(b) the standing waves described by the Orr-SoE~erfeld equation is a 
topic of continuing research which is not likely to be resolved 
rigorously in the near future. The information presently available is 
based on a sequence of problems: (a) solutions of the Orr-Sommerfeld 
equation, (b) uniform-flow, viscous solutions, (c) uniform-flow 
inviscid solutions, and (d) uniform-flow inviscid solutions with a 
leading edge. In each of the problems (a,b,c), the standing waves 
reappear in ever-simplier forms. The two problems (c,d) have identical 
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equations and boundary conditions downstream of the leading edge, and 
both problems have standing waves. In the future, the solution from 
problem (d) will be Fourier-analyzed to show how the solutions from 
problem (c) formally enter into problem (d). The author has little 
doubt that such a link is possible and will serve as a guideline to 
analyzing the more complicated viscous cases. 

The presence of irrotational fluctuations around airfoils and in 
turbomachinery is no surprise to unsteady aerodynamicists. Potential 
fluctuations appear in the unsteady aerodynamics theories of airfoils 
encountering gusts, airfoils oscillating in angle of attack, airfoils 
oscillating in the direction perpendicular to the freestream, and 
unsteady flap motions. Experimental data confirms the presence of such 
fluctuations. Potential fluctuations arise when rotor blades pass by 
stator blades in compressors and turbines. While some of these 
irrotational fluctuations are travelling-waves, the unsteady 
circulation about an airfoil is a standing wave for that airfoil. The 
flows induced by the vortex sheet shed from the trailing edge are 
irrotational (except at the sheet itself). These flows also have 
standing and travelling wave components, where the standing wave arises 
because of the interaction between the vortex sheet and the airfoil 
itself. Far-downstream of the airfoil, the principal contribution is 
the travelling wave induced by the vortex sheet itself. 

The model of an airfoil oscillating in a direction perpendicular 
to the flow suggests that some of the linear features of model 
~ at l o w ~  would appear as standing waves. The 
oscillating dipole character of an oscillating cylinder beside a 
boundary layer is a unsteady standing wave. Oscillating airfoils, 
oscillating source-sinks, and airfoils with oscillating flaps which are 
positioned in the vicinity of a plate with a boundary layer will also 
produce standing waves. Travelling waves of various forms will also 
arise in these cases. 

The standing waves appear to be one of the downstream influences 
of the leading edge, and one of the upstream influences of a trailing 
edge of a body interacting with freestream vorticity fluctuations. The 
diffusive wave which travels ~Y.Le~I, as described in Refs. 17 and 27, 
is another mechanism for upstream influence in this elliptic problem. 
Rockwell (Ref. 25) comprehensively reviews the complex and interesting 
unsteady flows arising when vortical fluctuations interact with leading 
edges. 

Refs. 28-35 are examples of numerical solutions which have been 
obtained for unsteady boundary layer problems with finite difference, 
vortex filament, and spectral techniques. These investigators have 
been faced with the difficulty of properly posing the boundary 
conditions on the downstream, outer, and upstream boundaries of their 
calculational regions. This problem with boundary conditions will 
become more severe as the disturbances adopt the characteristics ot 
freestream turbulence and its interaction with the leading edge, as the 
amplitudes increase, and as 3-D and other significant features are 
i n c l u d e d .  
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The standing waves could be an important factor in obtaining 
numerical solutions in a rectangular domain, since those waves are a 
mechanism by which the upstream and downstream boundary conditions can 
influence the flow elliptically. Improperly formulated boundary 
conditions could excite extraneous fluctuations in the calculational 
domain. The magnitude of these unwanted disturbances would depend on 
the amplitudes at the boundaries, as well as the y-wavenumber which 
dictates the growth/decay rate in the domain, and the length of the 
domain itself. The reader is reminded that y-wavenumber = 0 for 
non-decaying waves is a possible limiting case of these standing waves. 
Standing waves with small y-wavenumbers would influence the entire 
calculational domain. The "purification" of a solution, by 
identification and elimination of unwanted waves in the calculation, 
could be a useful numerical procedure. 

In other cases as suggested by the paragraphs above, the proper 
boundary conditions should incorporate standing waves which naturally 
enter into an d leave the calculational region. 

Possible topics for future research include the investigations of 
(i) 3-D standing waves, (2) the compressible counterparts to the 
present incompressible waves, (3) standing waves in parallel-flow jets, 
wakes, and free-shear layers, (4) standing waves in nonparallel 
shearing layers, and (5) standing waves in bounOary layers as described 
by the unsteady Prandtl boundary layer equation. More detailed studies 
are needed to (6) determine the influence of surface roughness on these 
waves. Further development of (7) the initial-value problem would 
permit an initial disturbance to be decomposed into the various 
standing and travelling waves. (8) The processes which create 
irrotational fluctuations in the freestream deserve detailed study. 
These processes include the interaction of vortical freestream 
disturbances with leading and trailing edges, the unsteady motions of 
airfoils and vibrations of models, and the combined 
irrotational/rotational disturbances set up in turbomachinery. 

In closing, many additional examples can be cited where potential 
fluctuations arise in practical engineering problems. This research is 
intended to show that they also appear as solutions of the 
Orr-Sommerfeld equation if the proper parameters and exterior boundary 
conditions are selected. 
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Appendix A. ANALYTICAL SOLUTIONS FOR STANDING WAVES 
IN A UNIFORM MEAN FLOW NEAR A WALL 

A.I INVISCID SOLUTION 

For a n  inviscid flow with U = I, eqn.(2.1) reduces to 

I ~ 5 }VZV=O 
(A.I) 

and the Orr-Sommerfeld equation, eqn.(2.6b), reduces to 

( ,  + o 
(A.2) 

where r = +i for a growing wave and -I for a decaying wave. For the 
cases of interest with ~ and ~u both real and nonzero, the leading 
coefficient cannot vanish. The solution of the equation is generally 

: A e < ~  + 8 e-<~ ~ (A.3) 
/ 

where A and B are complex constants. To satisfy the impermeability 
condition, then A=-B and the solution is 

i 

Hence-for the i n v i ~ c i d  case w i t h  a uni form mean f l ow ,  on ly  a s ine wave 
a r i s e s ,  and the complex ampl i tude ~ i s  the same fo r  both growing and 
decaying waves. This f low i s  i r r o t a t i o n a l .  

A.2 VISCOUS SOLUTIONS 

flow 
Eqn.(2.1) reduces to the following equation 

E V z } V2v = 0 

for a uniform mean 

(A.5) 

The Orr-Sommerfeld equation reduces to 

[ ( '  ' / "£ ' ) 1  ) ( ( 
7 ~ cA.6) 

The characteristic length ~ in the nondimensionalizations is a dummy 
parameter for this uniform flow case. While that length could be 
defined as the characteristic viscous length, the same 
nondimensionalizations will be used here as defined in Chapter 2 so 
that our analytical results can be compared with the numerical 
solutions. For solutions of exponential form, the four inoependent 
solutions are 
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I 
where the exponent is j I/2 I/2 ~z_ l~;) I/2 

: ( - p ~ - t ~  ~ - < ~  : % ( ' i f -  
Introducing the impermeability and no-slip conditions, then 

(A.7) 

(A.8) 

<, : _  <o:  f,,, _ f .+ <,. , ,  
The choice of growing or decaying waves influences the solution through 
the exponent m. 

Rather than normalizing the solution by setting the constant 
C = I, the choice D = 1 is also valid. With this normalization, the 
solution is 

As R~--~, m -~, and the inviscid solution is recovered except for 
the arbitrary constant. This normalization is not used below. 

From the continuity equation, the longitudinal velocity is 

From the definition of vorticity, rfx- ,~t 

the vorticity amplitude is 

Since m--~ as R ---~ the rotational region is reduced to a layer of 
vanlshzng thlckness with infinite vorticityo Hence a vortex sheet is 
positioned at the wall. For finite Reynolds numbers, note that the 
value of vorticity at the wall is proportional to the Reynolds number. 

If the no-slip condition,~(0) = 0, is replaced by a no-shear 
condition, ~y(0) = 0, then the solution is. A = B = C = 0, or 
~(y) = Dsin y. Hence, the viscous solution reduces to the invlscid 
form for all Reynolds numbers with the no-shear form of the wall 
boundary condition. No sublayer or rotational region forms. 
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Appendix B. SUBLAYER SOLUTION FOR STANDING WAVES 

When Prandtl {Ref.13) analyzed the viscous sublayer and first 
demonstrated how viscosity could be destablizing in a Dounuary layer, 
he made three assumptions: 

(1) The fluctuating pressure is impressed upon the thin sublayer. 

(2} The mean velocity is suffiolently small in the sublayer such that 
it can be neglected. 

(3) The fluctuating velocity perpendicular to the plate can 
neglected in the x-momentum equation. 

be 

These assumptions will now be applied to the sublayer of the 
standing wave. The objective is to obtain a closed-form solution which 
illustrates the essential features of the sublayer. Introducing these 
assumptions and using the same nondimensionalizations as defined in 

• Chapter 2, then the x-momentum equation reduces to the unsteady, forced 
diffusion equation 

rlSX- ,~t 
=- X P ÷  6{-~y where Z/=S(~Je (B.I) 

Outside of the sublayer but not too far from the wall, the diffusion 
term is neglected, and a balance exists between the pressure gradient 
and the unsteady term 

= -- ~ (B.2) 

where the pressure varies as 

where r=+l or -I for growing or decaying waves. 
amplitudes of the pressure and velocity are related by 

a n d  this pressure is assumed to b e  constant across the 
momentum equation then reduces to 

with boundary conditions 

(B.3) 

Hence the complex 

(B.4) 

sublayer. The 

(B.5) 

i=o of y=O and aw 
(B.6a,b) 

Seeking solutions of form exp(my), then the homogeneous solution is 
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while the particular integral is a constant with the value 

Hence the solution for the amplitude of the longitudinal velocity is 

This amplitude is plotted in Figure 3.4. 
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English 

am, am 

A,B,C,D 

c=c r +ic,. 

ci,si 

c2,D, 

D=d/dy 

D"--d"/dy" 
E=(uZ+vZ) 12 

E 

f (Y) =fr +i f," 

fro' 

m 

mF~; 

N 

P 

r 

R8 

Real [], ~'[] 

t 

NOMENCLATURE 

coefficient of the mth Chebyshev polynomial in the 
expansion of the qth derivative of 

(o) 

Z~ =0 

constants in the uniform-flow solution of the 
Orr-Sommerfeld equation 

complex phase speed 

cosine and sine integrals 

complex constants used in eqn.(4.7) 

ordinary derivative in the y-direction 

nth ordinary derivative (D°~=4) 

averaged disturbance kinetic energy per unit mass 

complex constant used in eqn.(4.10) 

complex amplitude of the longitudinal velocity 

value of f at the sublayer edge; value in the 
freestream 

exponent; index on Chebyshev polynomial 

Falkner-Skan parameter 
/V-/ 

number of terms in the series 
6~2.-O 

disturbance pressure 

integer with value +i for a growing wave 
and -1 for a decaying wave 

Reynolds number based on characteristic thickness of the 
boundary layer 

real part of the argument [] 

time 

mth Chebyshev polynomial 
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uev 
m 

U,V 

U~ 

x 

X(x,t;e) 

Y 

D 

Ye 

z=x+iy 

Z(y) 

disturbance velocities in the x and y directions 

mean velocities in the x and y directions 

mean x-velocity in the freestream. For Falkner-Skan 
boundary layers, the notation U~(x) emphasizes that 
this is the mean velocity at the boundary layer edge at 
the position x downstream of the vertex of the wedge 

coordinate parallel to plate and in streamwise direction 

function appearing in eqn.(1.16) and defined in (1.17b) 

cordinate normal to the plate 

phase shift used in Section 1.3 

y-value of the boundary layer "edge" 

complex coordinate 

complex amplitude of the fluctuating vorticity 

Greek and Script 

x-wavenumber 

y-wavenumber 

~f~ is the vertex angle of the wedge along which 
the Falkner-Skan boundary layer develops 

~7= ~'~ ÷  xJ}y 

6 

% 

gradient operator 

Laplacian operator 

characteristic thickness of the boundary layer. For a 
Falkner-Skan boundary layer, this length is defined as 

8 (2 
. . ,  

characteristic thickness of the viscous sublayer 

E=I/R inverse of Reynolds number 

f 
z~ 

viscosity 

kinematic viscosity 

vorticity vector 
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P 

disturbance vorticity in the z-direction 

amplitude of pressure disturbance 

mass density 

complex amplitude of the normal velocity 
disturbance 

streamfunction 

(12 frequency 

Superscripts, Subscripts, and Miscellaneous Notation 
m 

( ) (a) 
(b) 

ensemble average or suitable time average 
for periodic disturbances, the time average over 
one time perio~T/w 

d z = ~o ~ ~2d~ 

o 

complex conjugate 

e boundary layer edge 

r,i real and imaginary parts of a complex number or variable 

s sublayer 

()x partial derivative with respect to x 
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