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1.0 INTRODUCTION AND LITERATURE SURVEY

1.1 INTRODUCTORY COMMENTS

The simulation of boundary layer transition in test facilities
would be a useful capability to bhave in the development of higher
performance and more efficient vehicles. An obstacle to our developing
the capability to simulate transition has been the freestream
disturbances in the test facilities which are not completely similar to
the disturbances in the atmosphere. Another cbstacle has been that the
surface roughness and other fine geometric details of the subscale
models are not completely similar to those detalls on the full-scale
flight vehicle. A related prcblem is our inability to systematically
develop boundary layer trips to fix transitien in a specified region.
However, ({(dimensional) duplication or (nondimensional} complete
gipilarity of the disturbances and roughness are excessively severe and
impractical requirements, The practical need exists to identify the

significant properties of the freestream disturbances and roughness
which influence stability and transition.

An obstacle to identifying those properties has been the inability
of theory to link freestream disturbances to tne instability waves and
other osclllations in an initial-walue problem. Another obstacle has
beer the inability to show how roughness, either isolated elements or
distributed roughness, affects the initial amplitudes of the various
oscillaticns. When analyzing such a problem, the theoretician must
know all of the possible solutions so that the energy from the
freestream disturbances is channeled to the proper waves,

When the author and Dr. Shunichi Tsuge studied an initial-~value
problem in space, their ohjective was to describe the evolution ot
disturbances in the downstream direction in terms of a superposition ot
gsolutions of the Orr-Sommerfeld equation. The set of stability waves
and two solutions representing vortical freestream disturbances appear
in the analysis. However, two additional mathematical poles appear in
the analysis. These poles indicate that two additional solutions exist
of the Orr-Sommerfeld equation. These standing wave solutions are
generalizations to oscillations previously analyvzed by Rogler and
Reshotke (Refs. 1,2), This report documents the structure of these
standing waves. The initial-value problem, which provides tne
framework to link the initial conditions with the amplitudes and phases
of the various waves, will be summarized in later writings.

Waves which do not travel or propagate are called standing waves.
They may be steady or unsteady. Standing waves of a simplier form than

considered herein have been studied using the unsteady houndary layer
eguations with the oscillating freestream

U = G+ fae“"“"f (1.1)

This freestream oscillation does not depend on position. BAnalytical
solutions, and related numerical calculations and experiments have been
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extengively reported in the 1literature, as surveyed by Rogler and
Reshotko (Ref. 3) and Telionis (Ref. 4), Loehrke, Morkovin, and Fejer
{Ref, 5) reviewed the stability and transition literature in
oscillating boundary layers. The author believes that this simple

standing wave is a limiting cagse of a more general standing wave with
far broader applicability.

Before we examine the more general case, however, we wish to
illustrate how an oscillating freestream (1.1) interacts with a
parallel-flow boundary layer, Since the x-derivatives vanish, the
momentum equations for small-amplitude fluctuations reduce to
~el”
= = -2 w2 - - “
/j’, Q, & x T4, wrhere {?/a: mfée (1.2)

The reduced form is merely the one-dimensional, unsteady diffusion
equation with a known forcing term, p /. The longitudinal velocity
fluctwation, u, is wuncoupled from bhoth the mean £flow and tne
fluctuation velocity normal to the plate. It is merely the flow driven
by the exterior pressure gradient (which oscillates in time) and
altered by the diffusion of vorticity to and from the wall s¢ that the
no-alip condition is satisfied.

However, another form of standing waves is possible in the form of
waves which grow or decay exponentially in space, as well as
ogcillating sinusoidally in time. Generally these waves have both u
and v velocity fluctuations and are coupled with the mean boundary
layer profile. To our knowledge, these waves have not be studied in
any shearing 1layers before, although they have appeared in several
studies with uniform mean flows which are summarized in the following
sections. These oscillations are believed to arise in many practical
situations, and have a role in the initial-value problem in space for
disturbances described by the Orr-Sommerfeld eguation. These waves
also have a role when specifying boundary conditions for numerical
solutions of the Navier-Stckes equations on a rectangular domain.

Qur objectives are to formulate and solve the mathematical systen
for 2-D, unsteady, standing wave disturbances with amplitudes which
vary exponentially in the streamwise direction, The mean flow will be
represented by a parallel-flow boundary layer., The first evidence
which we saw of the existence of these waves was in an analytical
solution of spatially-decaying vortices in the freestream. We will
summarize those results in the next section. In later sections, we
will extend these analytical solutions to include the presence of a
nearby wall, and later &to© numerical solutions with Falkner-Skan
boundary layers. While our attention here is focused on either
oscillations in the freestream or with a wall {and bounaary layer)
present, these disturbances should arise in a wide variety of shear
layers, jets, wakes, etc,
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1.2 STANDING WAVES AND VORTICES IN A UNIFORM MEAN FLOW

The Navier-Stokes equations can be geparated into mean and
disturbance quantities, the (time or ensemble) average taken, those
mean equations subtracted from those equations with separated
quantities, and simplified for a parallel-flow boundary layer with
small-amplitude disturbances. With appropriate derivatives in the x
and y directions taken, a fluctuating vorticity equation can be found
and nondimensionalized. For a uniform mean flow, this vorticity
equation is

5* E," _e(§*+§’!) =0 (1.3)

where § =v, -u,. In Refs.l1,2,Rogler and Reshotko sought the spatially
decaying solution of this equation subject to the initial condition on
vorticity

$(0s 4, ¢) = 2w sen(7y+yg) s vt Qo

and the far-downstream condition that the vorticity vanishes

F~0 as x—a (1.5)
Conditions on the velocity field are imposed later. By generalized
Fourier transforms, a solution was extracted as

. . m X+enl x—-ewl
y=__(”50?(”y*g} [e 3 _ eﬂfﬁ } (1.6)

where i/2
£.2 :
7y, = [/ = (7+#7%e 2 477¢€) ]/ZE (1.7
or equivalently
_ -Frx
§=-27sw(my+y)e ' swrrf (x-ct) (1.8

This result is a slowly decaying wave in the downstream direction
pPropagating at speed c2 1.

The solution of interest here follows from Poisson's equation
which links the vorticity field and the streamfunction

Z - .
ve¢g =¢ (1.9)

vhere we imposed an initial condition on the streamfunction
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#Ho,4,¢) = - ;’ scr(my+y) scrat

{1.10)
Again, far downstream, the streamfunction vanishes
¢ > O a2s X+ (1.11}
If a solution of form
¥ = sen(myry) 6(x;¢, €) (1.12)
is sought of Poisson's equation, then it reduces to
-£rx
z — 4 -
subject to the conditions
_ _ senml N -
@(0;t €)= - 22— and &—0C as X~ (1.18)
The complementary solution is
X - 7TX
G(x;t,€) = q(t)e”” + c(¢)e (1.15)

and it is this solution which serves as the initial seed for this
research, We shall return to this solution after we have written the
particular integral, obtained by the method of varlation of parameters.
Cembining the complenmentary and particular solutions and applying the
boundary conditions, then the disturbance gtreamfunction is

: -7X ~fax
¢ = ;" sir(myry )7 (¢ e)e” » X(xde)e
Term (/) Term(2) (1.16)
where the following are defined

-/
}V'Cz(z"E): ["75(‘053’2’" +(}’+1§')5(qgf}[({+,f‘)z+ {:z‘z]
2.~/ .
+[ £ cos 7l +(1-£) 5(}37;3‘}[(1—{)2+€ ] -senult

X (s34 &) = L(/# ) scnn(x-t)+ £ cosmlgu-2)lL(1+£)+ 4]

-/
w[(1-£) sena(fx-¢) ~£ cosn(£x-£)I[ (/- ;f)z-l- éz] (1.17a,b)

Term {1} represents a near-grid effect which is an irrotational,
standing wave which decays exponentially downstream. The second term
is a traveling wave and represents the flowfield of the convecting and
diffusing vorticity field. The streamlines for tnese two flowtields
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are plotted in Fig, 1.l

The standing wave was "initiated” by the initial condition imposed
on the streamfunction. It would have been possible to describe initial
conditions in which that standing wave vanished, and indeed for the
case studied, this wave vanished in the inviscid limit. With other
initial conditions, that wave would remain in the inviscid limit.

1.3 STANDING WAVE ARISING IN A QUARTER-PLANE PROBLEM

In Ref. 6, a more complex standing wave showed up in an inviscid,
quarter-plane problem of an array of vertices input along the y-axis
with a plate positioned along the x-axis as shown in Figurel.2. The
mathematical system solved was

P18 =0 3 §=-z2wsier(x-t) sen(ny+y) (1.18)
V‘z?‘ = § (1.19)
¥ = gl ?m ' (1.20)
@@ _ ;f sen(wy+y) s 7(x-¢) (1.21)
72e. o (1.22)

jl'(‘:)=3—fﬂ}z$ serw(x-£)~-C for y=0,%x>0
$“=0 forx=0, yg>0

e et 2 ol a5 X—~@
g w0 as g~ ¥ 05 boerde {1.23a-3)

and the solution was extracted by a half-range Fourier transform in the
y-direction. The solution for the streamfunction ¥ = ¥~ g/ 4ag

S S AN .
;4 = }.[5{,?(79/4-5}’)— 5(/?9/’6 J 5(/??7(-’(“ )
7erm(4,) 7erm (Ay)
v F(2) ey searl
Te/v??(é')
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(1.1a) Irrotaticnal standing wave which decays exponentially.

(1.1b} Rotational vortices which propagate downstream.

~/

Figure 1.1 The standing and traveling waves downstream of a grid.
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2= X+eY

A(2)=- %272 {mag g ci(me)coswz + Sé(7E) sz}wz} (1.25a,b)

and cilwz) and silrz} are the cosine and sine integrals. Term (Al)
denotes the flow induced by the vorticity in an unbounded flow, with
term (A2) representing an irrotational, traveling wave superimposed and
associated with the impermeability condition. The term of importance
here is term (B) which is a standing wave, and oscillates only in time.
Far downstream of the grid, it vanishes.

1.4 DECAYING WAVES WITH SEMI-INFINITE PLATES

Decaying, oscillating waves have been found in several problems
where freestream disturbances interact with the leading edge of a
semi-infinite plate. The author has investigated these waves for many
forms of freestream disturbances, including

(1) Arraysof square vortices (Refs. 1,7,and 8) arrays of rectangular
veortices (Refs.9 and 10}, and oblique plane waves of vorticity (Refs. 9
and 10).

(2) Vortex sheets (Refs. 9 and 10) convecting downstream at speed
¢ =1. This is interesting case which c¢learly illustrates the blockage
caused by the plate and differences between the flows above and below
the plate.

(3) Vortex streets (Refs, 9 and 10} composed of potential vortices
in a stable {Karman) configuration. These vortices propagate at a
speed dictated by the strength, sense, and spacing of the vortices.
This speed can be less than or greater than unity {depending on the
direction of rotation), and reduces to ¢ = 1 in the limit of wvanishing
circulation or infinite spacing.

{(4) Fluctuations wholly irrotational (Refs. 9 and 10) which propagate
at arbitrary speeds. Many examples are poasible, depending on the
relative strengths and phases of the irrotaticnal waves. While this
model blows up exponentially in the directicn normal to the plate, the
model is useful in analyses {(and perhaps computations) for some studies
with freestream fluctuations.

Despite the different characters and speeds of these £freestream
disturbances, the streamfunctions for the case of freestream

disturbances with a semi-infinite plate can all be written in the
unified form
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Clogt) = ¥ “ny2) - ¢ “Unyt) (1.26)

where ¢Ju£s the streamfunction for the freestream disturbance (if <the
plate were not present) and ¢%is the streamfunction of an irrotational
flow which causes the impermeability condition to be satisfied. We
illustrate this second streamfunction in Figure 1.3. Interestingly,
this streamfunction is also the linearized solution of a semi-infinite,
2-D {i.e., ribbon=-shaped) snake swimming through the water.

As suggested in Figure 1.3 and supported by the theory of Refa. 9
and 10, the streamfunction has a simple asymptotic 1limit
far-downstream of the leading edge

() ~ot|y| e(x-c€) 1)
¢ —~e e = Vosymp. (1.27)

which is a traveling, irrotational wave which decays away f£from the
plate. If {for simplicity) we consider the quarter-plane on tne top ot
the plate beginning at the leading edge and extending ggwnstream.q then
one could subtract out the asymptotic solution ¥%..., from #“ The
result is an irrotaticnal flow decaying downstream of the leading edge,

fed e}
— e
¢ ’irym,a O as X~ (1.28)
1374 fed

If this flow (¥ - %,,,,. ) were Fourler-analyzed in tne
y-direction, then one would obtain the spectrum of waves which
oscillate neutrally in the y-direction and decay exponentially
downstream. These spectral components are related to the spectral
waves investigated in this report. Thus we believe that such waves

arise for a wide class of practical freestream disturbances which
intersect with the leading edges of plates.

1.5 DECAYING AND GROWING WAVES WITH FINITE-LENGTH PLATES

If the plate has finite length, with both leading and trailing
edges, then the resultant flow has some features similar to those
summarized in the previous section, although made more complicated by
the trailing edge. The flow also has some new features associated with
the oscillating circulation aboot the plate and the wvortex sheet
emitted from the trailing edge and convecting downstream.

For the purpcse of identifying physically-realizable situations
where standing waves grow or decay in the streamwise directien, we
offer the following observations based on the analyses of Ref., 7:

(1) The irrotational flow associated with the bound circulation
oscillates in time and has streamlines as plotted in Fig. l.4. This
Elow is irrctational, oscillates sinuscidally in time, decays from the
leading edge to the midspan, and grows from the midspan to the trailing
edge.

13
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Pigqure 1.3

The streamlines for an irrotational flow which arises
when a semi-infinite plate encounters a traveling-wave
freestream disturbance. The leading edge is at the origin.
Downstream of the leading edge, this flowtield consists
of a superposition of standing waves and a traveling wave.

r-£8-41-203V
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Figure 1.4

Streamlines for the oscillating, bound circulation about
a finite-length flat plate (Ref.7). This flow decelerates
from the leading edge to the mid-span, and accelerates
from the mid-span to the trailing edge. This flowtield is
irrotational and oscillates sinusoidally in time. It
is one of the fluctuations arising when an airfeil
encounters a traveling-wave freestream disturbance,

+-EB8-H1-2Q3v
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{2) The trailing vortex sheet induces an oscillating, irrotational flow
about the plate as shown in Fig,., 1.5.

(3) To satisfy impermeability, another irrotational wave is produced
which is related to the wave discussed in the previous section. If thne
Plate is very long, then this wave has the character of standing waves
near the leading and trailing edges. A traveling wave is also present
everywhere along the plate. The streamline pattern associated with
this flow has not been drawn; the explicit solution is presented in
Ref. 7.

In summary for freeatream dieturbances interacting wikh
finite-length plates, growing and decaying standing waves are present
simultaneocusly. Several mechanisms exist to produce standing waves,
While a unified theory is available, n¢ attempt has been made to
compare the relative strengths of these various waves.

1.6 RELATED STUDIES OF FOURIER-LAPLACE AND POTENTIAL FLUCTUATIONS

This study is concerned with the solutions of the incompressible
parallel-flow equations for a boundary layer on an impermeable plate.
To help provide some perspective for the wvarious Fourier-Laplace
solutions, the following references are cited. Of course, many other
investigators have made significant contributions to  analyze,
calculate, and measure these cacillations, and to extend and apply them
to many other problems.

Tollmien (Ref. 11} first obtained neuktral eigenvalues and a
critical Reynolds number for the fundamental stability wave. Jordinson
(Ref. 36}, Mack (Ref. 12), Antar and Benek {(Ref, 37), Corner, Houston,
and Ross (Ref. 13) obtained the (temporal and/or spatial) eigenvalues
Eor the higher discrete modes with a Blasius layer. Rogler and
Resahotko (Refs. 1,2,3}, the present author (Refs.l5 and 39}, Murdock
(Ref. 40), Salwen and Grosch (Refs. 41,14), and Ellinwood (Ref, 42)
obtained solutions with downstream propagating vortical fluctuations in
the freestream, The forced response of a boundary layer to a Karman
vortex sheet was obtained by Rogler (Ref., 38). Rogler and Reshotko
(Ref. 2), Rogler and Tsuge (Refs. 17), and the present author {Ref. 27)
obtained solutions for waves travelling in the upstream direction.
Those authors (Ref.16) also obtained solutions for the standing waves,
with details summarized in the present report. In Ref. 17, spatial
solutions £for longitudinal vortices in a boundary layer were
summarized. Related temporal solutions were obtained by Rogler and
Reshotko (Ref, 18) and Bultgren and Gustavsson (Ref. 19). The
boundary-value and initial-value problems will be reviewed in a later
repert.

FPor temporal solutions of the Orr-Sommerfeld equation in a
channel, Mac (Ref. 12) presented numerical evidence of how the

discrete solutions for a channel carry over to the solutions for a
semi-infinite domain (0<y<™). There should be a link between the
standing waves ¢f the present report (as E--OJ and oscillations in a

16
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finite-length plate

leading
edge

Figure 1.5

trailing oscillating vortex sheet
edge convecting downstream

Streamlines of the . flow induced by the vortex sheet
emitted from the trailing edge of a finite-length plate
{Ref. 7). Only the top half has been drawn. Except at tne
vortex sheet itself, the flow is irrotational, oscillates
ginusoidally in time, and has characteristics o¢f both

traveling and standing waves.
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channel {as the channel width —& and the x-wavenumber — 0). The
neutral oscillation v=0, u=f(y)exp(-izt} should be a limiting solution
for both cases.

The importance of these Pourier-Laplace solutions are that
(1) they can be superimposed to represent more general disturbances,
{2) the separate solutions contain many of the features arising through
instabilities, walls, viscosity, details of the mean shearing layer,
roughness, freestream disturbances, etc., and (3) the Fourier-Laplace
tools lead to a powerful and flexible £framework for the study of
transition and mixing. This framework is important because progress is
often based upon generations of work by many investigators, a diversity
of (analytical, numerical, and experimental) tools, and engineering and
scientific problems of many types. The usefulness of stability theory
has been firmly established. MNow, the potential exists for a broader
theory, which includes the normal modes, but also incorporates some
features of freestream disturbances, surface waviness and roughness,
surface vibration, and forcing.

The reader i3 reminded, however, that not all monochromatic
Fourier-Laplace disturbances in the freestream yield a monochromatic
response in a parallel-flow boundary layer, nor even in a uniform mean
flow near a wall. In the temporal initial-value problems which have
been worked, the wavenumber of the freestream disturbance is preserved,
but the frequency is transformed into a spectrum. In the gpatial
boundary-value problems carried out by the author for an inviscid flow,
the frequency of the freestream disturbance is preserved, but an
integral spectrum and/or a series of wavenumbers result.

The work by Bechert and Michel (Ref. 20) is an example of a
potential fluctuation in the form of an oscillating source/sink used to
excite a step—function free-shear layer in an inviscid analysis. The
experimental investigation of Dovgal, Kozlov, and Levchenko (Ref. 21)
is believed to include, amongst the varicus fluctuvations, the standing
wave, In other experiments, the author cannot distinguish whether
compressibility is an essential feature of the input disturbance, or if
the input disturbance is partly composed of incompressible standing
waves. Other incompressible feedback problems with free-shear Jlayers
emitted from trailing edges, and the incompressible coupling between
the trailing edge and a leading edge positioned further downstream also
have some elements of the standing waves which are investigated here.
Additionally, some of the incompressible, potential fluctuations in
unsteady airfoil theory also have certain characteristics of the
standing waves, as discussed in Section 1.5.

Hence the present work might be viewed as a contribution toward
bringing these additional features into an Orr-Sommerfeld description
of unsteadiness in a shearing layer. As discussed by Reshotko
{Ref, 22), a mathematical and physical understanding of the processes
at the beginning of transition "would be most welcome."

In the next chapter, the mathematical system describing the
standing waves in viscous, parallel-flow boundary layers is formulated.

18
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2,0 FORMULATION OF THE MATHEMATICAL SYSTEM

2,1 THE ORR-SOMMERFELD EQUATION AND BOUNDARY CONDITIONS

The linearized, parallel-flow, viscous momentum equations can be
combined into the following fourth-order partial differential equation
in terms of the fluctuating velocity, v(x,y.t), in the y-direction (and
normal to a plate)

b — - F4 2 . a _
{31‘+ U(ng_x EV}V ’ %“"(g)g\; ° (2.1)

The inverse Reynolds number based upon the freestream velocity 'and
characteristic thickness of the boundary layer is &€ =2//1,§. PFor
Falkner~Skan boundary layers, the characteristic thickness is taken as

_ 2 X ljz
s= (Fm a0

where /77, = ?Fs/( Z- fes) (2.2a,b)

Zqiqsis the vertex angle of the wedge along which the boundary 1layer
develops. The lengths in egn. 2.1 have been nondimensionalized against
& and the time has been nondimensionalized against §/0,. We now seek
solutions of form

td X = 00T

VX, 4 £) = ¢l¢)e (2.3)

where the x-wavenumber {times i) for the cases of interest here are

(N = -.*ﬁ = r,g or X = —-a'/'/s (2,4)

where is pure real, and where the coefficient r has values +1 and -1
corresponding to the cases

t = +1 for a wave growing as exp (+8x)
r = -1 for a wave decaying as exp(-PxJ (2.5a,b)

The x-wavenumber is pure imaginary. Substituting eqn. 2.3 into 2.1,
then after some rearrangement, the Orr-Sommerfeld equation resultg

~ z — / z
{(U‘ %)(9 ~%) - Yy _ﬁ-?»?&(pz‘*z) }5‘? =0 (2.6a)
or equivalently
- - z _=z)% _
{(U‘ (T;g)(oz”*lsz)" %y —rFi.AZ. (¢ "*/5) } =0 (26w

The phase speed is pure imaginary for the standing wave solutions
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C= afex = (m//e (2.7

Either equation is subject to impermeability and no—-slip at the wall

F=0P¢=0 o y=0 (2.8)

When U = 1 outside the boundary layer, then the system reduces to

{( -%—‘Q A (.02‘“[52)} (19%*!52)%=0

;s /?gﬁz (2.9
with sclutions e-f‘j? or cosFy and singy (which oscillate neutrally)
+ 72
and € 4 (which oscillate and grow or decay). (2.1l0a,b)

where m is the rcot of the quadratic equation with positive real part

(/=65 ) mm (") =2
(2,11}

oxr /7% =(r'/5.4§.—{52— ('.«(3. w)l/z with r = +1 for exp(i-.sx) waves (2,12)

The exterior solution is

‘Vm(y) =de i ge™ . Ccas{é?_gf + Dﬂffz‘/ﬁy (2.13)

where B = 0 in the present problem and we normalize by setting C = 1.
Thie normalization is not always appropriate; see Appendix A.) for an
exception. We require that the exterior soluticon and the first three
derivatives agree with the interior solution and the corresponding
derivatives at the “edge® of the boundary layer, Y=Y

9”44’(.9{) = Pﬂﬁfﬂ;) for 1=, 4 2, 3 (2.14)

Our objective now is to solve the mathematical system composed of
the Orr-Sommerfeld equation {egn. 2.6a,b), the two wall conditions
(egn. 2.8), and the four conditions at the bouncary layer edge
{egne. 2.13 and 2.14), The exponents m and the other parameters for
the cases of decaying and growing waves are given in Table 1 as a
typical example. Note that the exponent m for the decaying case is
nearly i times m for the growing case. The slight difference arises
from the term _?z. in the square root,
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2.2 COMPLEX AMPLITUDES FOR LONGITUDINAL VELOCITY, VORTICITY,
STREAMFUNCTION, AND PRESSURE

Let the velocity fluctuations in the x and y directions be
represented as

{f@% ﬁ@j}e(&x—t&/f

(2,15)
Substituting into the continuity equation, uy,+ v,=0, then (= + @: o

and the amplitude of the longitudinal velocltj'f fluctuation is related
to the amplitude of the normal velocity fluctuation by

) = <% (y% (2.16)

. . . ot X =t

The fluctuating vorticity is F= V-4 . Letting F=Z(y/e ’

lElfman the vorticity amplitude is related to the two velocity amplitudes
4

Zly) = ex P - £ = ———( —*24") (2.17)

X~ (wa’
Letting ¥ = ¥yle ‘ ; since the normal velocity and
streamfunction are related by v = 5";( ¢+ then the amplitude of the

streamfunction is
;0-@) = ¢(9,/%'q, {(2.18)

The pressure disturbance c¢an be found from the 1linearized,
parallel-flow, x-momentum equation

& + U4 + %V'—‘—"}//O*ﬂf”xx*%’yy) (2.19)

Introducing the dimensionless variables u—-qu, v-—e-qv, t+=£t/0 , U--LL,U,
p—-pqlp , x-&x, and y—+8y, where q is the characteristic disturbance
velocity, then

- ~ /
@-—'—4‘{‘—6’4{\.-{_{,fo$‘(%} + tyy) (2,20)
Letting 2 = zr[g)emx"' (2.21}
then
77, L-U)F+? =£
(9)= ( ) ( ) (2.22)

Thus knowing the amplitudes of the velocity fluctuations and the mean
velocity profile, then the pressure fluctuation can be found. In a
manner analegous to the streamlines, the pressure isobars can be
calculated and plotted.
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2.3 ROOT-MEAN-SQUARE QUANTITIES AND OTHER CORRELATIONS

Let a disturbance quantity Qm be represented as
)L <
&l yt) = ﬁ{(é’(' ‘e “WNeos(=x-at)+ e sm(c-ex—wz‘))}

0r) 'e 7 B
= @ (9’)r05(°(X"wz‘)" 9{.@5::’?(@0&’—602‘) {2.23)
{2
Similarly, a second disturbance quantity & )can be represented as

6“Ing ¢ q.“,’fy) cos(«x-wt) - 6}“@) ser(wx-al) (2.24)

The product of these two (real) quantities is
€1} () (2 (2} (n' (z) ;
6 = &g & ‘cos otx =) + ser (<x-at)

_(e e, (a) o (2)) cos (wx- wz‘).sm(oe'r‘ ~w?) (2.25)

By the mean of a variable in a spatial analysis, we refer to the time
average over one time period T = 22/« of that variable
7'

9(’)5(2)5 -F/'S (z) (zdz,_

?=0

Carrving out the integrals for 5"9( the contributions arise only Efrom
the squared gquantities, and the result is

(.z) 4 (2 _(2) ', (.z))
e (Q, & + & & (2.27)

The autocorrelations are thus

@7 =5 £2)e)

(2.26)

= g )l

(77 = (7" )2}
The Reynolds stress is — OV = - (£ @+ £ #)/2 (2.29)
The energy production is — & &Ly (2.30)



AEDC-TR-83-4

The {instantaneous) kinetic energy per unit masa sts o
qiz;;z_._f_("'z “4.2/47"/;,7' z)
2("’? v (Y rUa+ 0+ - v (2.31)
The mean of this quantity is
Ho - 7)

which has a contribution from the mean flow and__another contribution
from the unsteady flow. The quantity {uZ+4v2)/2 is plotted in the

fellowing chapter, along with the other variables intreduced above,

(2.32)

Table 1
Example Numerical Value of the Exponent m

8w A = 2z
exp(-px) mode 0.5 0.5 1000 0.5 10.1743201 -i24.5716664

exp(+|5x) mode 0.5 0,5 1000 -0.5i 24.5629806 -il0,1779179 -
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3,0 NUMERICAL SOLUTIONS FOR STANDING WAVES

3.1 SUMMARY OF THE NUMERICAL TECHNIQUE

To obtain the coefficients U(y) and Uyy(y) of the mean flow,
numerical solutions of the Falkner-Skan equation are obtained by the
method of Nachtsheim and Swigert (Ref. 23) as modified and summarized
in Ref. 3. The equation is golved by shooting from the wall outward,
using 4th-order Runge-Kutta integration in double-precision arithmetic.
The exterior boundary condition, E,—~1 as #—=@ , is not specified at
the boundary layer edge, y = y,, but ‘rather the error is minimized in a
least squares sense.

The Orr-Scmmerfeld aystem of equations (2.6b, 2.8, 2.13, 2.14) is
solved by an expansion in Chebyshev polynomials

roand

40(’?7 = Z G Z'-n(é‘)
mma0 (3.1)
with polynomials defined as
7,;7(7")= cos [m(arcces )] (3.2}

and where the variable -f is related to the dimensionless y by the
linear transformation

A
7 = 2_-9' -/
4, (3.2}
A pet of linear, algebraic equations results from the Orr-Sommerfeld
eqquation, the two wall boundary conditions, and the four matching
conditions at the boundary layer edge. The matrix of coefficients
related to this system is reduced by Gauss-Jordan eliminaticn with
maximum pivoting by column and rows. With the coefficients known, the
expansion 3.1 can be carried out for #(y}, and identities used to
obtain the y-derivatives of ¢@(y). With ¢ and its derivatives
knovn, the longitudinal velocity, vorticity, and vorticity production
are calculated. From the x-momentum equation, the pressure
fluctuations are found, and then the correlations are calculated for
rms quantities, Including Reynolds stress, kinetic energy, etc. The
streamlines, iso-vorticity contours, pressure lsobars, and equi-value
contours of the vorticity production term are drawn.

The numerical checks included numerical experiments to determine
the effects of number of terms in the expansion, precision of
arithmetic for the matrix reduction, and influence of the y-value where
the edge boundary conditions were imposed. Comparisons were made
between analytical and numerical solutions for the cases of (1) a
uniform mean flow, and (2) the viscous sublayer. The same computer
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program used to obtain solutions for the standing waves, except with
different patching conditions at the boundary layer edge, was also used
to recover the Tollmien-Schlicting waves.

To assist the reader in comparing the figures with different
values of the parameters, different wall boundary conditions, and the
two cases of growing or decaying waves, Table 2 has been prepared.

3.2 NUMERICAL RESULTS FOR DECAYING WAVES IN PFALKNER-SKAN BOUNDARY
LAYERS

3.2.1 Blasius Case with Decaving Waves

The velocity profile and derivatives for the Blasius boundary
layer are plotted in Fiqure 3.1 with tnhe same y=-scale as the following
fiqures for amplitudes, streamlines, etc., except for the sublayer
plots where the y-scale is stretched.

To aid in the interpretation of these calculations, since

-8x~ il _
v=(g+cg)e Gr- et | #(g)cosal+ @ (g)secont]e e -
3.

then for wlé=0, vixgo)= ﬁ(y)e_ﬁx
wl =7/2, vixygt) = q:‘-(y)e_gx
wl =7, V(xygt) = —g{(y)e“ﬁx
wt=3m/2, v(xgt) = _g(y)e-—f”‘ (3.5a-d)

Hence the real and imaginary parts of the complex amplitude are the
velocity profiles at the times wt=0 and #/2 respectively. With a
reversal of sign, they are the velocity protiles at the
times wt=7 and 37/2. At wt=27, the flowfield at time t=0 is
repeated in this sinusoidal oscillation. Analogous interpretations
also apply for the other complex amplitudes.

Figures 3.2 through 3,19 are plots for a decaying wave with
y—wavenumber and freguency, §=6ﬂ= 0.5, and Reynolds number Rg=1000. 1In
Figure 3.2 for the normal  welocity, note that the impermeability
condition is satisfied at the wall and note the oscillatory behavior of
the selution. Far from the boundary

Py} —~ Sxk?lﬂ_y - D cosgy asy—w (3.6)

Also note, based on the above interpretation of the real and imaginary
parts, that the flow structure shifts up ag the time increases from 0
to #/2uw, The structure nearest to the wall expands outward. To see
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Table 2. Tabular-List of Figures for Chapter 3

e P*or & F*vave e e BX e B* e fx

Wall BC no-glip -
y-wavenumber, g 0.5 0.5 0.5 0.5

x-wavenumber , of 0.5i 0.51 0.51 -0.51
frequency, <« 0.5 0.5 0.5 0.5

complex phase speed, c=«//o¢ -1.0i -1.0i -1.01 1.0i
Reynolds number, Rg 1000 1000 1000 1000
FPalkner-Skan parameter, me; 0.0 0.5 -0.05 0.0

4,0, ,0 Pigure 3.1 3.20 3.27 3,1

4:(33' # g 3.2 3.21 3.28 3,42
£ly) 3.3 3,22 3.29 3.43
£({y) sublayer 3.4

streamlines 3.5

Ziy) 3.6,3.7 3.23 3.30 3.44
iso-vorticity contours 3.8

- w — 3.9

equi-value contours of VS} 3.10

7{y) 3.11 3.24 3.31 3.45
pressure isobars 3.12

ms v 3.13

rms u 3.14

rms § 3.15

rms p 3.16

—lﬁ_ 3.17 3.25 3.32 3.46
(u"+vT) /2 3.9

el
no-shear

0.5
0.51
0.5

-1-01
1000
0.0

3.1
3.48
3.49

3.50

3.51

Figures illustrating the effects of fregquency, Reynolds number, and y-wavenumber

Effects of frequency on rms v

Effects of frequency on rms u

Effects of frequency on ms u in sublayer
Effects of Reynolds number on rms v
Effects of Reynolds number on rms u

Effects of Reynolds number on rms u in sublayer

Effects of Rg and «/ , holding #/A; constant
Effects of y-wavenumber or decay rate

3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41

tr-€8-41-203v



iZ

AB6 12 U, UY, UYY

.{

8.0 4

6'0 q T
Distance from
wall, y T

4,0 -

UYY UY [§]
2.0 1
0.0 T L) L] 1 ) ] ¥ ) ¥  § 1 F L T r | | L) 1 ] L§ ¥ ) L) L] L L) L ¥
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Mean velocity and derivatives, U(y),Uy(y), and TUyy(y)

Figure 3.1 The mean velocity profile and first twe derjivatives for a
Blasius boundary layer.

+-EB-ULi-J03y



4

10.0
8.0
6.0
Distance from
wall, y “Jg
4.0 N
N
1
1
//j
2-0 ‘J‘,’
0.0 T T T Li T L J

L) T T T L) 1 L ¥ L) L4 I
-215 -2.0 -1.5 -1.0 -0-5 0.0 0.5 1-0 1-5 2-0 2-5

Complex amplitude of the normal velocity fluctuation, @(y)

Figure 3.2 The variation of the normal velocity fluctuation with
distance from the wall for a decaying wave, exp(-gx}, for
F=w= 0.5 and Rg=1000 with a Blasius boundary layer.
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this, observe that the node where 4&=0 shifte upward teo the node
where #=0.

In Figure 3.3 for the longitudinal velocity, note that the no-slip
condition is satisfied and again note the general oscillatory behavicr
further away. The fluctuating velocity inside tne boundary layer is
much larger than the wvelocity in the boundary layer with decaying,
vortical structures in the freestream.

In Pigure 3.3, also note the thin viscous sublayer near the wall,
with a velocity overshoot at the sublayer edge. In Figure 3.4, the
ordinate is stretched and the longitudinal velocity is plotted for the
sublayer region. The analytical solution for the sublayer, as
presented in Appendix B, is also plotted in Figure 3.4. This solution
is

Hy)= £(1—e %)

. (3.7)
, iz
where 27 = ((WAZ—)

and é= complex constant representing the wvalue of £ at the
sublayer "edge".

The streamlines for the fluctuating flow at time zerc are plotted
in Figure 3.5. Note the oscillatory pattern in the y-direction and tne
effects of the exponential decay in the streamwise direction,
exp(-@8x)., A 16mm movie of the standing wave has been prepared using a
sequence of 64 streamline patterns representing the flowfield at 64
times during a half-cycle. .

The fluctuating vorticity, § =v,-u,, is plotted in Figure 3.6,
which shows a large spike of vorticity near the wall associated with
the wviscous sublayer. This worticity mainly arises from the
derivative -u while the derivative vy is zero or small, The large
gagnitgdg gf he derivative Uy in the sublayer can be seen in Figures

L) an - -

The abscissa in Fiqure 3.6 was stretched in Figure 3.7 to better
display the layer of vorticity appearing about midway in the boundary
layer; the much larger gpike of wvorticity in the sublayer is not
completely plotted in Figure 3.7. Note in either Figure 3.6 or 3.7
that far above the boundary layer into the freestream, the flow is
irrotational. The iso-vorticity contours are plotted in Figure 3.8
which shows the highly skewed nature of the vorticity waves in the
sublayer. The single contour toward the center of the boundary layer
represents the bulge in vorticity near y = 2 in Fiqure 3.7,

The fluctuwating vorticity positioned approximately midway in the

boundary layer has interesting properties which we will describe by
posing two mathematical systems for inviscid flows:
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Figure 3.3 The variation of the longitudinal velocity fluctuation
with distance from the wall for a decaying wave,
exp(~gx), for == 0.5 and Rg=1000 with a Blasius

boundary layer.
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Solution (1): Numerical
4 solution of Orr-Sommerfeld |
'
;
i
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equation with Blasius data.
0.40 ¥ so1ution (2): Explicit
solution for the viscous

1 sublayer presented in
Appendix B. For £, the
0.30 A measured value from solution |
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Figure 3.4 The longitudinal velocity £fluctuation in the sublayer
for a decaying wave, exp(-gx), for fs =&/= 0.5 and Rg=1000
with a Blasius boundary layer.
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Figure 3.5 The streamlines of the unsteady flowfield for a decaying
wave, exp(-sx), for A= 0.5 and Rg=1000 with a Blasius
boundary layer.
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Figure 3.6 The variation of the vorticity fluctuation with distance

from the wall for a decaying wave, exp{(-8x), for

g=w= 0,5 and Rg=1000 with a Blasius boundary layer. This

figure shows the vorticity in the sublayer. Figure 3,7
shows the vorticity in the middle of the boundary layer.
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Figure 3.7 The variation of the vortieity fluctuation with distance

A =w= 0.5 and Rg=1000 with a Blasius

from the wall for a decaying wave, exp(-gx), for
boundary layer,
The abscissa has been stretched to show the details of

the vorticity in the center of the boundary layer.
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Figure 3.8 The iso-vorticity contours of the unsteady flowfield for
a decaying wave, exp(-gx), for S=w= 0.5 and Rg=1000
with a Blasius boundary layer. Fifty-seven contours were
plotted with unequal increments of vorticity.
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(1) If there were no vorticity production term, the relevant
vorticity equation would be

L+ U(y)5 =0 (3.8

i.e., the vorticity at any station x,y at time t is the

vorticity at x=0 at the earlier time t-x/U(y). The

vorticity would merely convect downstream with the local mean

velocity, U(y). Since the wvorticity at x=0 oscillates in

time -
—- e

Flo,4,7) = Z{g)e 3.9

the solution further downstream would be
—te(E— X/ (lg()f“&f)
';'(x,y,z‘) = Z@‘)E ( / )= 'z(y/‘e v {3.10)

hich 1 travelling wave, in disagreement with the assumed
g:agdin; ;axg solution of form
- gx~- cewl
¥ = £(yle (3,11)

One may wonder then, for a standing wave, what causes the
vorticity to decay exponentially in the streamwise direction
(at one instant of time)? To an observor travelling with the
mean flow, U(y), how can the vorticity oascillate?

(2) We believe that. one mechanism which influences the
vorticity to behave as a standing wave is the vorticity
production term, =-vU,, , which is a linearized vereion of the

convection term V§, in the veorticity equation. The
linearized, inviscidvequation for Eluctuating wvorticity is
U + vE =0 @¢an
rate of change of vorticity rate of

as seen by an observor moving production
with the local mean flow

For high Reyneclds number, small y-wavenumber conditions, we
suspect that fluctuwating vorticity is created in the central
region of the boundary laver, as described by the production
term, in such a manner that a standing wave is possible. The
magnitude of the vorticity which is produced depends on the
time available, and hence the frequency. While this process
occurs in the central region of the boundary layer, diffusion
is possible in the sublayer. The relative roles of the
production term and the two diffusion terms {(in the wviscous
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equation) could be determined by plotting the terms
separately.

The complex amplitude of the vorticity production is plotted in
Figure 3.9. The production vanishes at the wall and in the freestream.
The contours of equi-value of the production,-vix,y,t}Ug,~ly} at time
zero are plotted in Figure 3.10.

The diffusion term in the streamwise direction
2 —8x- el
¥, = eF Z(y)e g

z
is merely €8 times the vorticity itself. The other diffusion term,
€ ?ﬁ, has not been plotted,

The smoothly oscillating amplitudes #(y) = Zn+<Z: of the
fluctuating pressure are plotted in Figure 3.11. Note the relative
constancy of the pressure across the sublayer, but clearly the pressure
varies across the mean boundary layer itself. The corresponding
pressure isobars are plotted in Figure 3.12.

The rms quantities for the velocities, vorticity, and pressure are
plotted in Figures 3.13-3,16. The oscillatory behavior in the
direction normal to the wall is apparent in these figures. The viscous
sublayer is shown clearly by the longitudinal velocity in Figure 3.14,
and by the spike of vorticity near the wall in Figure 3.15.

_The Reynolds stress, =-uv, and the kinetic energy production,
-GvdU/dy, are plotted in Figures 3.17 and 3.18. The Reynclds stress
oscillates into the freestream. The energy production is confined to
the boundary layer, of course, where it is mainly negative although
having a small positive region. It vanishes at the wall where v=0 and
in the freestream where Uy=0.

The averaged kinetic energy {u®+v®)/2 of the fluctuation flow is
plotted in Figure 3.19 which clearly shows the sublayer and overshoot
at the sublayer edge. In the freestream, the kinetic energy is uniform
in the y-direction; it decayvs as exp(—zgxl in the streamwise direction.

3,2.2 Favorable and Adverse Pressure Gradient Cases with Decaying Waves

Figures 3.20-3.26 are results for the decaying wave with a
favorable pressure gradient boundary layer. Figures 3.27-3.33 are
results with an adverse pressure gradient boundary layer. The
corresponding figure numbers for these two casea and the Blasius case
are tabulated below for reference.
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Figure 3.9 The variation of the vorticity production with distance
from the wall for a decaying wave, exp{(-gx), for
p=w= 0.5 and Rg=1000, and a Blasius boundary layer.
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The equi-value contours of the production of f£luctuating

vorticity for a decaying wave, exp(-gx), for A=w= 0.5,
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Figure 3.12 The pressure isobars for a decaying wave, exp(-gx), for
p=da= 0.5, R6=1°°°' time t = 0 with a Blasiug houndary
layer.

¥-£89-41-003vY



g

5S40 B4 VRMS

10.0

8.0 -

6-0 -

Distance from
wall, y -

4.0 -

2-0 b

0.0

n ¥ Ll | 1

1.5 2.0

L L | 4 L1 T ¥ L] T

L .
0.0 0.5 1.0

rms normal fluctuating velocity, (323VZ
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favorable Blasiue adverse

Falkner-Skan parameter, Mg 0.5 0.0 -0,05
G, §,, and Uy Figure 3.20 3.1 3.27
3.21 3.2 3.28

f 3,22 3.3 3.29
z 3.23 3.6 3.30
/4 3.24 .11 3.31
-uv _ 3.25 3.17 3.32
-0vav/dy 3.26 3.18 3.33

A plot-by-plot comparison of the three cases shows that the solutions
for the standing wave depend on the Falkner-Skan parameter. The
maximum values and the y-positions for those maximum wvalues depend onh
the mean profile.

The general trend is that the curves are shifted wupward as the

decreases. The energy production acquires a

posltive region near the boundary layer edge as the Falkner—Skan
parameter takes on negative values.

Based upon the idea that one effect of surface roughness is to
alter the mean velocity profile, then our calculations with different
Falkner-Skan parameters indicates that the surface roughness would
influence the standing waves.

3.2.3 Effects of Frequency

As shown in Figures 3.34 and 3.35, the frequency significantly
influences the rms normal and longitudinal velocities, Both figures
indicate that the amplitude increases as the frequency increases. In
these figures, the frequency is increased by a factor of 16 from
We 1/B to &= 2, The points of minimum amplitude also shift upward as
the frequency increases. It may be useful to normalize in other ways
to reduce this dependence’ of the amplitude in the freestream on

frequency.

A possible explanation for the larger amplitudes as fIrequency
increases is based on the analytical solution (A.9) of Appendix A for
the viscous, uniform flow case. The amplitude is

,my 777 .
Ply)=-e + CO5 5"‘"“5”?(5.9’/ (A,9)
— 2 . ‘/2 lf-l- /z_ w/E >
where m-(—-'a.ﬁg—(e-:wzg) = o A: (_%_-() ﬁr@”ﬁ (A.8)
Hence, the coefficient of sinFy is proportional to the sguare root of
frequency when @/« <<K1. 'For other cases, egn.{(A.8) above also

suggests that the coefficient m/2 would increase as «/ increases. We
offer this explanation as tentative, however, because the above
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Figure 3.23 The variation of the vorticity fluctuation with distance
from the wall for a decaying wave, exp{(-sx), for
g=w= 0,5 and Rg=1000 for a favorable pressure gradient
boundary layer with a Palkner-Skan parameter 0.5
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Figure 3.24 The variation of the pressure fluctuation with distance
from the wall for a decaying wave, exp(—Px), for
=c/= 0.5 and Rg=1000 for a favorable pressure gradient

boundary layer with a Falkner~Skan parameter 0.5
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argument seems unable to provide any guidance on the influence of
Reynolds number, as discussed later.

The solution for the wvelocity fluctuation in the viscous sublayer,
derived in Appendix B, shows that the ratio

sublayer thickness/boundary layer thickness = 1/0wR5)V1

Hence, as the frequency is increased, the shorter times available for
viscous diffusion to take place during one oscillation cycle leads to
thinner sublayers. Calculations of the rms wvelocity for five
frequencies differing by a factor of 5 are gshown in Figure 3.36.
These calculations show the thinning of the sublayer as frequency
increases.

3.2.4 Effects of Reynolds Number

Calculations of the rms velocities with Reynolds numbers varying
by a factor of 10 (from = 100 to 1000) are shown in Figures 3.37 and
3.38. Clearly, the velocities are rather insensitive to the Reynolds
number, except in the sublayer.

From our discussion of the previous section, one would expect that
one effect of 1ncrea lng the Reynolds number would be to thin the
sublayer, 8s /& = (wR;) Evidence that this is true is shown in
Figqure 3.39 where ihe rms longitudinal velocity is plotted in the
sublayer region for nine Reynolds numbers differing by a factor of 20.

In Figure 3.39, also note the apparent coalescence of the curves
above the sublayer, which further supports our conclusion that the
velocities are rather insensitive to Rg except in the sublayer,

3.2.5 Effects of Revnolds Number and Frequency When wRg is Held
Constant,

Sinﬁ? the ratioc of sublayer thickness to boundary layer thickness
is : then if the fregquency and Reynolds number are changed but
their product is held constant, then one would expect the sublayer to
be relatively unchanged. To test this hypothesis, we calculakted the
following cases

w = 2.0 Ry= 250 w Rg= 500
w = 1.0 Rg= 500 @ Rg= 500
w = 0.5 Rg= 1000 w Rg= 500
@ = 0.25 Rg= 2000 @ Rg= 500
& = 0,125 Rg= 4000 « Rg= 500

The rms longitudinal wvelocity in the sublayer is plotted in Figure 3.40
for these five cases. The sublayer thickness appears to be unchanged
although the frequency and Reynolds number separately have been changed
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by a factor of 16.

3.2.6 Effects of y-wavenumber or Decay Rate

To obtain evidence of the influence of the y-wavenumber (or decay
rate in the streamwise direction), we calculated the rms wvelocity for
8=0,10, 0.25, 0.50, and 0.75 with the other parameters fixed. These
results are plotted in Figure 3.41. The higher frequency oscillations
associated with increasing the y-wavenumber are apparent. Also, the
naximum amplitude increases as /& decreases. Baged upon the guidelines
of Appendix A, the coefficient of %npy is

< a}é’)
AN Al Sy B
-4 ( [ A/
Hence, as € decreases, this coefficient increases, in agqreement with
our calculations for a Blasius layer.

3.3 NUMERICAL RESULTS FOR GROWING STANDING WAVES
3.3.1 Inviscid Relationship Between Lhe Solutions for Degaying and
Growing Waves

The Orr-Sommerfeld equation (egn. 2.6b)} can be separated into the
following two real equations:
(1) Equation coriginating from the real part:

—-y 2 .2 —~ / 2, o2 r e 2 =0
- - &, - o+ )}4""*-———494- )¢“

{u(p /3) %4 ’”ﬁ"fg( Fr/1%" ¢ ( % s

(2) Equation originating from the imaginary part:

—_y a2 R ] 7 2. &% - 2 827 =0
$O(0%)- Gy (P } 4~ FH(P*P D200
fold”
where r=+1 or -1 for growing or decaying waves, respectively.

If #ly) = i) +i&(y) is a solution for a decaying wave (r=-11,
then we ask: Is the complex conjugate solution #=#£-i& a solution for
the growing wave case (r=+1)? If one substitutes r=-1 with & a@+id,
and if one substitutes rs+l with ¢ =#-i#, one finds the two systems

are identical only if the flows are inviscid. The viscous term does
not transform in that manner.

As we shall see from numerical calculations for growing and
decaying waves, this inviscid rule, well known from inviscid stability

theory, is a pracktical quideline for the high Reynolds number viscous
cagse as well.
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3.3.2 Blasius case with growing waves

Pigures 3.42-3.47 present numerical results for a wave growing
exponentially in the streamwise direction as exp(+gx}. These figures

¢an be compared with the results for the decaying wave as indicated
below.

exp(-Px) wave exp{+'5x] wave

& Figure 3.2 3.42
£ 3.3 3.43
Z 3.6 3.44
7 3.11 3.45
—W __ 3.17 3.46
-avdl/dy 3.18 3.47

While ¢ for the exp(48x) wave is not exactly the complex
conjugate of ¢ for the exp(-gx) wave, the inviscid theorem appears to
be a reasonable guideline for the large Reynolds number cases. The
longitudinal amplitude, f£=f.+if;, ©Ffor the decaying wave is
approximately -f-~+1if; for the growing wave outside of the sublayer.
The overshoot of f£. at the sublayer edge for a decaying wave appears to
be similar to the overshoot of f; for the growing wave. A significant
discrepancy from the inviscid guideline arises for the pressure.

The Reynolds stress in Figure 3.46 has a reversal of sign compared
with that stress in Figure 3.17. This sign change leads to a sign
change in the energy production, Figure 3.47 as compared witnh 3.18, A
positive energy productlion indicates that energy is being transferred
from the mean f£low to the disturbance flow.

3.4 NUMERICAL RESULTS WHEN THE NO-SLIFP CONDITIOCN AT THE WALL IS
REPLACED BY A NO-SHEAR CONDITION.

To give some indication of the role of the wiscous sublayey in

Figures 3,48-3.51 we replaced the no-slip condition, u = ¢ or = 0,
with a no~shear condition at the wall
= = e =
(‘Iy o or % al =0 (3.15)

Thege figures with a no-shear condition may be compared with the
corresponding ones with a no-slip condition as tabulated below:

no-elip no-gheat
#  Figqure 3.2 3.48
£ 3.3 3,49
a 3. 3.50
77 3.11 3,51
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The impermeability conditicn at the wall was imposed for hoth sets of
figures.

As expected and shown clearly in Figure 3,49 for the longitudinal
velocity, no sublayer forms when the no-slip condition is replaced by a
no-shear condition. For the variables plotted, the values above the
sublayer reglon in Figures 3.2, 3.3, 3.6, and 3.1l are nearly the same
as the values in Fiqures 3,48-3,51,

We conclude that the sublayer is relatively passive, i.e., it |is
driven by the external flow above the sublayer, and that external flow
is not influenced very greatly by the sublayer. Except in the sublayer
region itself of thickness 0(1/WR)), the results indicate that if the
Reynolds number and frequency are large, (@R)Y*>>1, then the
replacement of the no-glip condition by a no-shear condition has a
relatively small influence on the solutlons. This result differs
sharply from the active role which the sublayer takes for the
Tollmien—-Schlichting wave.
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4.0 SUMMARY, DISCUSSION AMND CONCLUSIONS

4.1 INTRODUCTORY COMMENTS

This report documents the analytical and numerical evidence of the
existence of a pair of standing waves in a boundary layver. These waves
pscillate sinuscidally in time, but because of the purely imaginary
x-wavenumber and phase speed, the waves do not travel. The amplitudes
vary exponentially in the streanwise direction without any spatial
ogscillation. Both growing and decaying solutions are possible., Far
above the boundary layer, these irrotational Fluctuations oscillate
neutrally in the y-direction.

Some evidence of the existence of these waves 1s based on sgeveral
numerical solutions of the Orr-Sommerfeld equation, analytical
solutions of simplified forms of the Orr-Sommerfeld equation, and an
agymptotic solution of the Orr-Sommerfeld equation. The asymptotic
solution by Shunjchi Tsuge as applied to the stability problem is
summarized in Ref.26. The use of that asymptotic solution in the
spatial initial-value problem will be summarized in another report.

The Orr-Sommerfeld equation describes the evolution of
small=-amplitude £luctuations in a boundary layer growing sufficiently
Blowly such that it is meaningful to represent it as a layer of uniform
thickness. The characteristics of the boundary layer enter into the
equation as two coefficients. The Falkner-Skan family of boundary
layers was used so that evidence could be obtained for fluctuations in
boundary layers with favorable, zero, and unfavorable mean pressure
gradients, Also, since roughness can influence the mean profile, these
profiles provide some indication of how roughneas can influence the
standing waves. Other profiles will be used later.

To illustrate how standing waves originate, the interaction
between freestream vortical fluctuations and leading and trailing edges
of a flat plate are summarized in Chapter 1. Those studies, while
including the features of leading and trailing edges, do not include
all of the features of the Orr-Sommerfeld equation. However, the
problems share three essential features of the fluctuations in the
freestream: (1) they oscillate in time, (2) decay or grow in the
streamwise direction, and {3} are irrotational. This report documents
the evidence that the Orr-Sommerfeld admits solutions with those
characteristies, and that other features arise because of the shearing
mean flow and viscosity. The problem of predicting the origin of the
various waves is a topic of continuing research.

4.2 SUMMARY OF THE FORMULATION AND NUMERICAL TECHNIQUE

For small-amplitude disturbances in shear layers which develop
sufficiently slowly such that the parallel-flow representation is
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adequate, the objective is to obtain solutions of the eguation

> L gle)d eV VY. &
is?*u(y)s"" eV } v %(5’)%"=0 (&.1)
which are of the Fourier-Laplace form
rax -
Ving,¢)= y)e F (4.2)

wvhere {9 and &/ are pure real. These standing-wave soluticns are
exponentially growing or decaying in the streamwise direction, and
oscillate sinusoidally in time. The motivations for seeking solutions
of this form are that such waves appear in several analytical solutions
where the mean flow is uniform. Furthermore, in an asymptotic analysis
of an initial-value problem with a boundary layer, two mathematical
poles indicate that waves of this form would exist in boundary layers.
FPor solutions of this form, the x-wavenumber is

=—erB (4.3)
£r = +1 for a growing wave
~1 for a decaying wave

r

The complex phase speed, which is pure imaginary, is C=(}"% {4.4)

Letting of =-ir}£ r the Orr-Sommerfeld equation is

(@t~ ) ep)- 02 (%) VD 4y 50

The impermeability and no-slip boundary conditions at the wall,
and the boundedness condition of the solution far-away, are

P=0F=0 at y=0 ; @ 5 bomded as g+ (4.5b,c,d)
When O =1 and Uy= 0, the Orr-Sommerfeld equation has the
solutions
_ - 724 Y ,
Ply)=Ae + Be + C ca.-?sy + psz,q/ay (4.6)
or eguivalently ) A
- 777 - 4
Py)=ae e 8™ o & FE pe T (4.7)
where the exponent is #~77 = (I;ei?‘ -'32-;'4;.(4!) '!2 (4.8)

For the boundary layer case, B = 0. For most cases; we normalize by
setting C=1 in egn.(4.6)}. In retrospect, the analvtical results of
Appendix A and the calculations suggest that setting the coefficient
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D=1 would be a better choice, and might lead to amplitudes of the
freestream disturbancese to be 1less sensitive to the parameters,
HBowever, for any normal modes analysis, the amplitude ¢(y) can be
multiplied by a complex constant and rescaled. The essential
requirement in carrying out calculaticns for the initijal-value problem
is~ consistency between the normalizations of the normal modes
calculations and the initial-value theory.

= from the boundary layer edge where the term Rexp(-my) 1is
negligible, the flowfield varies sinuscidally
i'sx—- teol

vix,9,¢) = (rosfy-:- ﬁ:z;z/ay)e

(4.9)

freestream di is Jlrrotatiopal. The constant D is
cbtained numerically.

In general, the constant D and the solution @#y) of tne
Orr-Sommerfeld equation depend on the frequency, y-wavenumber, Reynolds
number, mean velocity profile, and the choice of whether the wave is
growing or decaying. The effects of the mean pressure gradient and one
of the effects of gurface roughness can be introduced through the mean
velocity profile, Uly}.

Numerical solutions of the Orr-Sommerfeld eguation are obtained by
an expansion in a series of (typically 48) Chebyshev polynomials. The
coefficients of those polynomials are obtained as sclutiong of a set of
linear, algebraic equations. The matrix of coefficients is reduced by
Gauss—Jordan elimination.

Calculations are carried out on a Digital Equipment Corporation
FDP-11/23 computer using 64K bytes of memory and another 64K bytes of
extended memory for virtual arrays. The disk-overlayed FORTRAN IV
program executes in about 145 seconds when using the KEFll-AA floating
point chip, beginning with data for the mean velocity profile, and
ending with the coefficients of the polynomials and the amplitude y).
The program executes in about 80 seconds when using the FPF-11 floating

point processor.

4.3 SUMMARY OF RESULTS, DISCUSSION AND CONCLUSIONS

The calculations for the standing waves indicate that tne
longitudipal welocity fluctuation gcan be about as large inside tne
layer as the fluctuation in the freestream. This conclusion
differs significantly from the solutions with decaying vortices in the
freestream, as can be seen for the rms longitudinal wvelocity in
Figure 4.1 from Ref. 15. This plot has the same frequency,
y-wavenumber, Reynolds number and mean velocity ag for Figure 3.14, but
the velocities deep inside the boundary layer are small in Figure 4.l.
The corresponding plot for rms vorticity from Ref.15 is shown in Figure
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4.2, This plot shows that a layer of vorticity exists near the
boundary layer edge. The phase of this vorticity is such that the flow
induced by this layer of vorticity tends to cancel the flow induced by
the freestream vortical fluctuations. This cancellaticn process does
not appear to take place with the standing waves. Inviscid, analytical
solutions of the Rayleigh equation with broken-line mean vwvelocity
profiles would help clarify this process. However, the author has
learned from several studies that tne 2-D response in boundary layers
is sensitive to the phase speed of freestream disturbances.

The rms longitudinal welocity for a Tollmien—-Schlichting wave is
plotted in Figure 4.3 for comparison with the other waves.

Although the "freestream disturbance™ for the standing wave is
irrotational, the fluctuating flow inside the boundary layer is
rotational. That vorticlty originates primarily from two sources: the
production of fluctuating' vorticity inside the boundary layer by the
term -vUyy , and by diffusion in the y-direction, EF}!, to and from the
wall in'%%e unsteady viscous sublayer.

The main features of a thin viscous sublayer can be described by
the unsteady, forced diffusion equation (B.1). The forcing arises from
the pressure gradient impressed on the sublayer by the flow above the
sublayer.

If the no-slip condition, u=0 or & =0, is replaced by a
no-shear condition at the wall, uy = 0 or #, = 0, calculations show
that the disturbance is not significantly affected (except £for the
sublayer itself). The sublayer does not form when tne no-shear
condition is imposed. The result that the solution outside the
sublayer region is relatively unchanged can be interpreted as the
sublayer being relatively passive under the high Reynolds number, high
Erequency condition.

A remarkable balance takes place for these standing waves. The
fluctuating vorticity decays {(or grows) exponentially in the streamwise
direction and oscillates in time in exactly the same fashion as the
irrotational fluctuations in the freestream disturbance. The vorticity
induces a flowfield which generates additional vorticity through the
production term, and that flowfield also affects the diffusion
processes in the sublayer. ~Also, the impermeability condition
essentially sets up an image system. The “history" of the
flowfield, including the oscillations and phasing, is important since
the vorticity convecting downstream in the shear flow must arrive at
each station and be altered by the productiocn and diffusion in a such a
manner that the vorticity field is also a standing wave. With these
varied processes taking place simultaneously, it is amazing that a
particular arrangement is possible such that the flowfield varies
exponentially in space and oscillates in time.

Not all irrotational fluctuations, which decay or grow
exponentially in the freestream and oscillate in time, are solutions of

the Orr-Sommerfeld equation, although they may be solutions of the
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partial-differential egquation {(2.1). In the boundary layer, the flow
may be much more complicated then the assumed solution form (2.3,2.4).

An important idea from the initial-value theories, however, is
that the more complicated solutions can be constructed by superposition
of the basic Fourier-Laplace solutions. In some cases, tne
superposition is a pummation of waves of finite amplitude. 1In other
cases, the superposition is an jpntegral over waves of infinitesimal
strengths.

The other Fourier-Laplace solutions, including the stability waves
and the two spatial-solutions with wortical fluctuations in the
freestream, alsc have remarkable balances which lead to solutions with

simple functional dependences on x and t.

From the theory of inviscid stability waves,, it is known that if @
is the solution for the wavenumber =/, then ¢*is tne solution for the
complex conjugate wavenumber, o¢*. Calculations based on the viscous
Orr-Sommerfeld equaticn, however, indicate that tne 1nviscid
relationship is a reasonable guideline for relating the solutions for
the viscous decaying and growing standing waves. The success is
probably related to the passive character of the sublayer when the
sublayer is thin, and the general insensitivaty of the standing wave
sclutions to the Reynelds number {except in the sublayer). The details
of the flow in the sublayer do not transform according to inviscid
guidelines. The wavenumber for the growing-wave case, « = -i# is the
complex conjugate of that wavenumber for the decaying case, ' = +iF .

The functional dependence of the standing waves indicates that the
waves do not travel in the streamwise direction. However, a movie
shows that wave motion takes place in the y-direction. In the boundary
layer, that motion is pnot a simple sinusoidal wave, and it does not
travel in the y-direction with a constant speed. Far abave the

layer where the only remaining influence of the boundary layer
is through the value of the constant D, eqn.(4.9} can be rearranaed as

= {e i ‘F—f) “Ee P Fﬁ}c—?xcdz.m}

This expression indicates that the irrotational freestream disturbance
is a superposition of outgoing and incoming waves. The amplitudes of
these waves are different since, in general, E # 1.

All of the available information is consistent with the conclusion
that the two unsteady, exponentially-varying standing waves are basic,
independent, Fourier-Laplace solutions of the viscous, parallel-flow
Orr-Sommerfeld equation describing small-amplitude fluctuations in a
boundary layer. This evidence is based on several analytical
solutions, a formulatjion of the spatial initial-value problem using an
asymptotic solution of the Orr-Sommerfeld equation, and the numerical
caleunlations with adverse, zero, and favorable pressure gradient
boundary layers. For mathematical completeness, these two Bsolutions
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join the list consisting of the discrete set of stability waves and the
pair of solutions accounting for the propagation of vortical
fluctuations in the freestream. While this report has focused on the
etanding waves in boundary layers, the author believes that equivalent

waves arise in free-shear layers, jets, and wakes.

4.4 DESCRIPTION OF FPROBLEMS WITH IRROTATIONAL DISTURBANCES 1IN THE
FREESTREAM

An objective of this report is to document the evidence that a
pair of standing wave solutions exists which have the characteristics
of irrotational fluctuations "far-away” from the boundary layer. 1In
all results, the vorticity and welocities satisfy parallel-flow
equations. Those solutions summarized in Chapter 1 and in Appendix A
all have a uniform mean flow., Consequently, there can be no Rayleigh,
Tollmien-Schlichting, or other instahility waves in those problems.
Yet, both rotational and irrotatjional disturbances are present. The
irrotational solutions fall into two classes:

(1) Travelling waves which arise through the impermeability
condition of the plate, In more sophisticated, viscous
solutions with shearing flows, these travelling waves are a
part of the response of a boundary layer to vortical
fluctuations in the freestream. This irrotational portion
does not survive far-away from the boundary layer.

{2} Standing waves, which can also be Bet up by the
impermeability cendition, but which do not travel. Unlike
the vortical fluctuations which have ne pressure fluctuations
in the freestream, these standing wawves have (sometimes
strong) preasure fluctvations which can be estimated from
linear equations. This flowfield is not describable by
stability waves, and is not describable by the solutions (1)
above.

An initial-value problem formally illustrates that the two
standing waves are entities distinct from the poles of the stability
waves and from the branch lines of the wvortical fluctuations. The
standing waves in this report are described by the wviscous
Orr-Sommerfeld equation with a boundary layver, rather than the uniform
flows as used in Chapter 1 and Appendix A. The formal linking of
(a) the standing waves set up by the interactions of vortical
fluctuations with the 1leading edge, as analyzed in Refs.6 and 7, and
{b) the standing waves deacribed by the Orr-Sommerfeld eguation is a
topic of continuing research which is not 1likely to be resolved
rigorously in the near future. The information presently available is
based on a sequence of problems: (a} solutions of the QOrr-Scmmerfeld
equation, (b) uniform-flow, viscous solutions, (¢} uniform-flow
inviscid solutions, and (d4d) uniform—flow invisclid solutions with a
leading edge. 1In each of the problems (a,b,c}, the standing waves
reappear in ever-simplier forms. The two problems (c¢,d) have identical
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equations and boundary conditions downstream of the leading edge, and
both problems have standing waves. In the future, the solution from
problem {(d) will be Fourier-—analyzed to show how the solutions f£from
problem {¢) formally enter into problem (d). The author has littie
doubt that such a link is possible and will serve as a quideline ¢to
analyzing the more complicated viscous cases,

The presence of irrotational fluctuations around airfoils and in
turbomachinery is no surprise to unsteady aerodynamicists. Potential
fluctuatione appear in the unsteady aerodynamice theoriese of airfoils
encountering gqusts, airfoils osclllating in angle of attack, airfoils
oscillating in the direction perpendicular to the freestream, and
unsteady flap motions. Experimental data confirms the presence of such
fluctuations. Potential fluctuations arise when rotor blades pass by
stator blades in compressors and turbines, While some of these
irrotaticnal fluctuations are travelling-waves, the unsteady
circulation about an airfoil is a standing wave for that airfoil. The
flows induced by the vortex sheet shed from the trailing edge are
irrotational ({(except at the sheet itself). These flows also have
standing and travelling wave components, where the standing wave arises
because of the interaction between the vortex sheet and the airfoil
iteself. Par-downstream of the airfoil, the principal contribution is
the travelling wave induced by the vortex sheet itself.

The model of an airfoil oscillating in a direction perpendicular

to the flow suggests that some of the linear features of model

low freguencies would appear as standing waves. The

osclllating dipole character of an osgcillating cylinder beside a

boundary layer is a unsteady standing wave. Oscillating airfoils,

oscillating source-sinks, and airfoils with oscillating flaps which are

positioned in the vicinity of a plate with a boundary layer will also

preduce standing waves. Travelling waves of various forms will also
arise in these cases.

The standing waves appear to be one of the downstream influences
of the leading edge, and one of the upstream influences of a trailing
edge of a body interacting with freestream vorticity fluctuations. The
diffusive wave which travels upstream, as described in Refs. 17 and 27,
is another mechanism for upstream influence in this elliptic problem.
. Rockwell (Ref. 25} comprehensively reviews the complex and interesting
unsteady flows arising when vortical fluctuations interact with leading
edges.

Refs. 28-35 are examples of numerical solutiong which have been
obtained for unsteady boundary layer problems with finite difference,
vortex filament, and spectral techniques. These investigators have
been faced with the difficulty of properly posing the boundary
conditions on the downstream, outer, and upstream boundaries of their
calculational regions. This problem with boundary conditions will
become more severe as the disturbances adopt the characteristies ot
freeastream turbulence and its interaction with the leading edge, as the
amplitudes increase, and as 3-D and other significant £eatures are
included.
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The standing waves could be an important factor 1in obtaining
numerical solutions in a rectangular domain, since those wavee atre a
mechanism by which the upstream and downstream boundary conditions can
influence the flow elliptically. Improperly formulated boundary
conditions could excite extranecus fluctuations in the calculational
domain, The magnitude of these unwanted disturbances would depend on
the amplitudes at the boundaries, as well as the y-wavenumber which
dictates the growth/decay rate in the domain, and the length of the
domain itself. The reader is reminded that y-wavenumber = 0 for
non-decaying waves is a possible limiting case of these standing waves.
Standing waves with small y-wavenumbers would influence the entire
calculational domain. The T"purification" of a solution, by
identification and elimination of unwanted waves in the calculation,
could be a useful numerical procedure.

In other cases as suggested by the paragraphs above, the proper
boundary conditions should incorporate standing waves which naturally
enter into and leave the calculational region.

Possible topics for future research include the investigations of
(1) 3-D standing waves, (2) the compressible counterparts to the
present incompressible waves, (3) standing waves in parallel-flow jets,
wakes, and free-shear layers, (4) standing waves in nonparallel
shearing layers, and (5) standing waves in boundary layers as described
by the unsteady Prandtl boundary layer equation. More detailed studies
are needed to (6) determine the influence of surface roughness on these
waves. Further development of (7) the initial-value problem would
permit an initial disturbance to be decomposed into the various
standing and travelling waves. (8) The processes which create
irrotational fluctuations in the freestream deserve detailed study.
These processes include the interaction of vortical <£freestream
disturbances with leading and trailing edges, the unsteady motions of
airfoils and vibrations of models, and the combined
irrotational/rotational disturbances set up in turbcemachinery.

In closing, many additional examples can be cited where potential
fluctuations arise in practical engineering problems. This research is
intended to show that they also appear as solutions of tne
Orr-Sommerfeld equation if the proper parameters and exterior boundary
conditions are selected.
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Appendix A. ANALYTICAL SOLUTIONS FOR STANDING WAVES
IN A UNIFORM MEAN FLOW NEAR A WALL

A.l INVISCID SOLUTION

For an inviscid flow with U = 1, eqgn.(2.1) reduces to

ia - }v"v=o

and the Orr-Sommerfeld equation, egn.{2.6b), reduces to
e 2
/- Gy + =
( B )( o "ﬂ) 0 (A.2)

where r = +1 for a growing wave and -1 for a decaying wave. For tne
cagses of interest with £ and @ both real and nonzero, the leading
coefficient cannot vanish. The sclution of the equation is generally

= Ael?. ge PY . (A.3)

where A and B are complex constants. To satisfy the impermeability
condition, then A=-B and the solution is

g = .ZAr'sr}aIe_gr (3.4

Hence for the inviscid case with a uniform mean flow, only a sine wave
arises, and the complex amplitude ¢’ is the same for both growing and
decaying waves. This flow is irrotaticnal.

A.2 VISCOUS SOLUTIONS

Egn.{2,1) reduces to the following equation for a uniform mean

flow
{.a_+_§__eVz}Vzv=O
a3t X (A.5)
The Orr-Sommerfeld equation reduces to
cred /7 2 2 2, =z -
[{/- B ):_;‘_f;,%(p+‘s)](p+rg)¢ Q (A.6)

The characteristic length & in the nondimensionalizations is a dummy
parameter for thils uniform flow case, While that length could be
defined as the characteristic wviscous length, the same
nondimensionalizations will be used here as defined in Chapter 2 so
that our analytical results can be compared with the numerical

solutions, For solutions of exponential ferm, the four independent
solutiona are

101



AEDC-TR-83-4

- ”
Ply) = Ae my-f-,é/e 7 . ,e(t‘ﬂ.s/ﬂjf + ﬂ:(i?/ﬁy (R.7)
where the exponent is 0 : | /2
(rFA’J -p —(wﬁ?) ‘/2( !8-' £. m)) (A.8)

Introducing the impermeability and no-slip cond;t;ons, then

#(y) = - e~ ™+ cos 'y — -‘Bﬂ sz?z/ﬁy (A.9)

The choice of growing or decaying waves influences the solution tnrough
the exponent m,

Rather than normalizing the solution by setting the constant
C=1, the choice P =1 is also valid. With this normalization, the

solution is
-y .
=Pe’Z B cospy + sen
P(y) =5 = 5, <O f9 + 3py
As Rg—a , m —~@, and the inviscid solution is recovered except Efor
the arbitrary constant. This normalization is not used below.

From the continuity equation, the longitudinal velocity is

ax A1) PO e £1g) = (- 2T sy 2ol

From the definition of vorticity,

§=v -4 = Z(g)e

the vorticity amplitude is

Z(y) = f?(—/*——“”w) &7 (3.12)

Since m—~@ as Ry—~o , the rotational region is reduced to a layer of
vanishing thickness with infinite vorticity. Hence a vortex sheet is
positioned at the wall. For finite Reynolds numbers, note that the

value of vorticity at the wall is proportional to the Reynolds number.

rgx= et
{A.11)

1f the no-slip condition, ¢ (0) = 0, is replaced by a no-shear
cond:.t:.on, @yy 0} =0, then  the solution is-A=B=C=0, or
#{y) = Dsin y. Hence, the viscous solution reduces to the inviscid
form for all Reynolds numbers with the no-shear form of the wall
boundary condition. No sublayer or rotational region forms.
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Appendix B, SUBLAYER SOLUTION FOR STANDING WAVES

When Prandtl (Ref.l3) analyzed the viscous sublayer and first
demonstrated how viscosity could be destablizing in a boundary layer,

he made three assumptions:
(1) The fluctuating pressure is impressed upon the thin sublayer.

(2} The mean velocity is sufficiently small in the sublayer such that
it can be neglected.

(3) The fluctuating velocity perpendicular to the plate can be
neglected in the x-momentum equation.

These assumptions will now be applied to the sublayer of the
standing wave. The objective is to obtain a closed-form solution which

illustrates the essential features of the sublayer. Introducing these
assumptions and using the same nondimensionalizations as defined in
Chapter 2, then the x-mementum equation reduces to the unsteady, forced

diffusion equation

rax-ca
ﬁ'z'z =+ G@y where & = #{¢)e ﬁx

{B.1)

Qutside of the sublayer but not too far from the wall, the diffusion
term is neglected, and a balance exists between the pressure gradient

and the unsteady term
&0 = -£ (B.2)

where the pressure varies as

P E‘r?ex-aayz‘

z, {B.3)

where r=+l or -1 for growing or decaying waves. Hence the complex
amplitudes of the pressure and velocity are related by

cwrs = B 7, (B.4)

and this pressure is assumed to be constant across the sublayer. The
momentum equation then reduces to

—ewt = —rg7 + €4, (B.S5)
with boundary conditions
F=0 aly=0 and F—-{ as g~ {B.6a,b)

Seeking solutions of form expimy), then the homogeneous solution is

o= (—'(.ﬂ’f%)lfz (B.7)
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while the particular integral is a constant with the value
rz, = % {B.B)

Hence the solution for the amplitude of the longitudinal velocity is

) = % {0 - ewpl-(- N /2) 1] @.9

This amplitude is plotted in Pigure 3.4,
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ci,si
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D=d/dy
0’=a%ay”
E=(F+v2} /2
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NOMENCLATURE
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coefficient of the mth Chebyshev polynomial in the

expansion of the qth derivative of
ooy N By
% f’ - z::‘%v Z%(E?)
constants in the uniform-flow solution of the
Orr-Sommerfeld equation
complex phase speed
cosine and sine integrals
complex constants used in egn.(4.7)
ordinary derivative in the y-direction

nth ordinary derivative (0% =)

= 4y

averaged disturbance kinetic energy per unit mass

complex constant used in egn.{4.10)
complex amplitude of the longitudinal velocity

value of f at the sublayer edge; value in the

freestream

exponent; index on Chebyshev polynomial
Falkner-Skan parameter

number of terms in the series ¢ = Z_ Zrr T

disturbance pressure

integer with value +]1 for a growing wave
and -1 for a decaying wave

Reyneolds number based on characteristic thickness of the

boundary layer

real part of the arqument []

time

mth Chebyshev polynomial
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X
Xix,t;€)
y

L/

Ye
z=x+iy

2y}

disturbance velocities in the x and y directions

mean velocities in the x and y directions

mean x-velocity in the freestream. For Falkner-Skan
boundary layers, the notation U,{x} emphasizes that
this is the mean velocity at the boundary layer edge at
the position x downstream of the vertex of the wedge
coordinate parallel to plate and in streamwise direction
function appearing in egn.(1.16) and defined in (1.17b}
cordinate normal to the plate

phase shift used in Section 1.3

y-value of the boundary layer "edge®

complex coordinate

complex amplitude of the fluctuating vorticity

Greek and Script

o
$
Bes
=22 g3
"4 f Sx Jay
2, 3% 3%
5','(:4-33.2.
S
&
€=1/R
/(
z7
¢

x-wavenumber
y=-wavenunber

##-s 15 the vertex angle of the wedge along which
the Falkner—Skan boundary layer develops

gradient operator
Laplacian operator

characteristic thickness of the boundary layer. For a
Falkner-Skan boundary layer, this length is defined as

s=(Z .,z \"°

Tl EETXJ
characteristic thickness of the viscous sublayer

inverse of Reynolds number
viscosity
kinematic viscosity

vorticity vector
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TY=Z4c7

f’

Fiy)=p+id.

|4

&
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disturbance vorticity in the z-direction
amplitude of pressure disturbance

mass density

complex amplitude of the normal velocity
disturbance

streamfunction

frequency

Superscripts, Subscripts, and Miscellaneous Notation

ey

()

r;i

0,

(a) ensemble average or suitable time average
(b} for periodic disturbances, the time average over
one time perieg

o T/ e
g% = g\a‘aff
2470

complex conjugate
boundary layer edge
real and imaginary parts of a complex number or variable

sublayer

partial derivative with respect to x

107



