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SUMMARY

This report summarizes the second phase of research in nonlinear signal
enhancement of underwater acoustic measurements. The first phase,1 in which
the nonlinear process was developed and digitally implemented, generated the
need for a mathematical model of the reflection of transient acoustic signals
from the ocean floor. This model is necessary both for verifying the signal
enhancement process by predicting the ideal response of a typical ocean floor
and for interpreting measurements that have been enhanced. Of course, many
continuous wave models are available for prediction purposes but, in this work,
a model was needed that could predict a time-varying field and relate the time-
domain features to specific propagation mechanisms.

Several classes of transient-response models have been developed and tested
ranging from a simple ray model to a numerical integration of the complete field
integral. The simple model assumes that reflection at the ocean floor can be
described by the plane wave reflection coefficient and the remainder of the path
spreading and direction can be determined by ray tracing (geometrical acoustics).
While this model is only valid for high frequency or deep water, it is flexible
and inexpensive to run. Multiple propagation paths are easily handled as are
arbitrary source waveforms.

At the other extreme is the integration of the field integral and, while
this procedure can be expensive, all of the wave effects (interface waves,
diffraction) are properly accounted for. For low frequency (below 100 Hz),
shallow water (several wavelengths or less) or source/receiver near the ocean
floor, these wave effects can be critical. Several examples of application of
this model to actual measurements are given in which the various wave effects
can be seen.

Of intermediate complexity and cost is an asymptotic model based on
approximate solution of the full wave integral. This solution accounts for
multiple paths in the ocean floor, trapped propagation through the ocean floor,
and field displacement on reflection. As an added feature, the asymptotic
solution breaks up into a number of terms each of which corresponds to a
physical mode of propagation in the bottom.

While these models were designed and developed primarily as an aid in
the interpretation of ocean floor seismic measurements, they will be valuable
in any circumstance involving propagation of transients.

INTRODUCTION

Modern systems for acoustic detection and localization of submarines and
surface ships must function in a wide range of environments. Detection may
be desired at very long ranges if large ocean areas must be protected or at
shorter ranges if the guard areas are straits or passages. Again, depending on
the area, detection and localization may have to be done in deep or shallow
water, over rough or smooth regions of the ocean floor and in many different
conditions of water temperature structure. Depending on the specific target
and tactics, the detection or localization system may operate across a
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wide spread of frequencies and the sensor itself (the hydrophone or hydrophone
array) may be anywhere in the water column from near the surface to on the
bottom.

In some of these operating environments, the ocean floor plays only a
minor role in the transmission of acoustic energy from source to sensor but
there are three cases in which the ocean floor can greatly influence propagation:

a. low acoustic frequency - below about 100 Hz in typical ocean situations,

b. shallow water - acoustic wavelength is of the order of water depth, and

c. near-bottom sensors - sensor is within an order of the wavelength of
the bottom.

For sensor environments other than these three, the ocean floor can often be
adequately treated as a planar, lossy reflector. To do so in the above-
mentioned situations will, however, introduce serious errors into the predicted
behavior of the bottom.

Since accurate prediction of acoustic propagation is crucial not only to
design and evaluation of new sensors but also to design of tactics, knowledge
of the acoustical behavior of the ocean floor is a vital part of sonar sensor
research and application. Unfortunately, the ocean floor has still not been
well characterized at low frequency. Thousands of measurements of ocean
bottom properties have been made by many laboratories but most of these
measurements are either not applicable to system operation below 100 Hz or
have not been analyzed for this information in particular. The NAVAIRDEVCEN
itself has hundreds of seismic measurements from sites around the world 2 and
these are only recently being enhanced2 sufficiently to be useful for detailed
bottom property estimation.

Because the ocean floor is often responsible for several distinct paths
of propagation, short-duration pulses are ideal for making the necessary
property measurements. A sharply pulsed source results in separate received
pulses corresponding to each path from source to receiver. Transient signals
are, however, considerably more difficult to model theoretically than continuous
wave (CW) signals and this theoretical modeling is necessary in order to
interpret measurements physically.

Assumption of continuous, sinusoidal excitation causes the wave equation
to degenerate into a simpler differential equation that can be solved by (for
example) normal modes in a straightforward manner. If, on the other hand, the
excitation is transient then either the wave equation must be solved directly
or the CW solution must be integrated over frequency. In this report, we will
not consider direct solution of the wave equation but rather we will develop
several solution techniques based on integration of the CW solution. While
CW solutions are common and highly developed, transient or time-dependent
solutions are not, so the models developed as a part of this work will be
generally useful as an adjunct to acoustic studies of the ocean floor.

2
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THE PHYSICAL MODEL

Before we actually construct a model for the acoustical behavior of the
ocean floor, let us consider the relevant acoustic properties. The most
important property, sound speed, is the speed at which a small disturbance
travels through the medium. Changes in sound speed within the medium cause
refraction or bending of the sound waves (primary effect) and diffraction of
the field (secondary effect) into regions not reached by geometrical rays.
Discontinuities in sound speed occurring at boundaries between media of
different types cause reflection (primary effect) and formation of interface
waves (secondary effect).

In fluids, acoustic waves are compressional waves which are characterized
by a compressional sound speed that is a function of both the density and the
compressibility of the fluid. Thus, we will also need to know the density
(or the compressibility) of the fluid in order to describe its behavior for
no-loss propagation.

Elastic solids, on the other hand, support two distinct types of waves:
compressional and shear waves. We then have another sound speed based on the
density and resistance to shear or twisting deformation of the solid and
another set of waves that can be reflected or refracted and can form interface
waves. We will also consider dissipation or attenuation of shear and com-
pressional waves in order to represent the real ocean floor materials more
accurately.

Certain simplifications will need to be made in our representation of
these properties so that the resulting model is not prohibitively complicated.
For example, we will not consider boundary roughness or slope. Since our
principal interest is in low frequency propagation, this will not be too
restrictive an assumption. In addition, we will restrict variations in sound
speed to one dimension (depth) and further restrict the sound speed to be
either piece-wise constant or of an analytical form that allows solution in
terms of special functions.

One final assumption concerns the manner in which attenuation is modeled.
Particularly in fluid-saturated sediments, the mechanisms for energy dissipation
can be complicated. The usual viscous resistance of the fluid is combined with
the friction between sediment grains and, possibly, the interaction of entrained
gases. Data are sparse on these processes and, even if measurements were
available, incorporation of such a complicated process into a computer program
would be a major undertaking. Consequently, we will approximate any attenuation
process as a viscous damping process in which the dissipation per cycle is
constant. This is cnly valid over limited ranges of frequency.

Figure 1 illustrates the physical model that will be used for most of this
research. This model consists of a solid basement half-space over which lies a
fluid layer with variable properties. This fluid layer can either have constant
sound speed in which case t~e field variables will vary as linear combinations
of sines and cosines or 1/c linear in depth in which case the solutions will
be linear combinations of Airy functions. Since many models are available for
acoustic propagation in water, we will not consider this part of the problem;
hence, we will use a homogeneous half-space of fluid above our ocean floor model.

3
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GEOPHYSICAL MODEL

CW HOMOGENEOUS
FLUID

7, - SUBSTRAE "--

Figure 1.Generalized Physical model of ocean floor.
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While this is a very simple model, it does allow most of the important
types of acoustic propagation to be represented. Furthermore, addition of
layers is straightforward and would permit more accurate modeling of sound speed
profiles in sediments.

In the following two sections, we will discuss the two major theoretical
approaches toward calculation of the reflected field from this bottom model.
The simpler procedure involves assuming that the incident energy is in the form
of plane waves. The plane wave reflection coefficient is relatively easy to.
compute, and a fairly complicated field can be approximated by adding different
plane wave solutions together. Unfortunately, a number of interesting and
sometimes significant effects are not treated. Interface waves, for example,
are not excited a-cording to plane wave theory.

The second type of solution procedure takes into account the curvature of
the waves emanating from a point source. This method is quite time-consuming
but it does provide an exact solution aiid will be useful in establishing the
extent of the effects omitted by the plane wave solution.

PLANE WAVE SOLUTION

Although it exists in three-dimensional space, a plane wave is essentially
one-dimensional. Its wavefront is a plane and the medium is displaced by its
passage only in the direction perpendicular to this plane. A true plane wave
can only remain plane in a medium of constant sound speed; however, we will
consider waves that are approximately plane (or, locally plane) so that we
can apply this theory to our inhomogeneous ocean floor model.

True plane waves are solutions of the three-dimensional wave equation
for constant sound speed,

c-T t (1)

where

c = sound speed

p= some scalar property of the field (pressure, velocity potential).

If we assume harmonic functions of the form e-iwt and separate the field
quantity p into a range-dependent factor and a depth-dependent factor, we can
write three ordinary differential equations: two for the range function and
one for the depth function. The depth function equation is,

d2U + k2(z)-y 2] U 0 (2)

dz
2

5
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where

k =w/c(z)

U = depth function of field property

y = horizontal wave number

If the sound speed is constant, the solutions of equation (2) are,

U = tia

where

= vertical wave number

V -y'" so that k2  y22

In conjunction with the harmonic factor e iwt  these solutions represent waves
with a vertical component of motion: the positive sign corresponds to movement
in the +z direction and the nqgttive sign to movement in the -z direction. This
is true in general for the e-1w dependence. If the coefficient of a wave
number component is positive then the wavefront is moving in the positive
direction along the corresponding axis. Keep this feature in mind when we
discuss the equations for reflection. This distinction between positive and
negative-going waves will allow separation of the incident and reflected fields.

The complete solution to equation (1) is,

= oei t (3)

where
: vector wave number, YxT + Yy i +

: position vector, xT + yJ + zk

w angular frequency, 27f

=o amplitude

and

2 2 2 = 2
'Yx + y y + a (/c)

The vector wave number gives the direction of the normal to the wavefront and
gives the frequency of oscillation for the single frequency wave or equation (3).

Since the properties of a plane wave are identical anywhere on a plane
perpendicular to the wave number vector (i.e., on a wavefront), boundary
conditions are very simple to write. For a fluid-fluid boundary, we must maintain
continuity of displacement (or velocity) normal to the boundary and continuity
of pressure across the boundary. At a fluid-solid boundary, the condition of
zero resistance to transverse displacement of the solid is also needed.

6
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Only the lower half-space of our physical model is elastic so we will not
consider propagation in elastic media; just reflection from them. The plane
wave reflection coefficient is the ratio of reflected field amplitude to
incident field amplitude. For a fluid over an elastic half-spaced, the plane
wave reflection coefficient is,3

G1 -G V = -]TG(4)

where

G = QlB 212

2 2GI = B1((2f-1) + 4f B2 BS)

= ( (C v / C _2
12 -,2

B =

= shear sound speed of solid

c = compressional sound speed of fluid

c2 = compressional sound speed of solid

cv = vertex velocity of wave (y=w/C V)
f = 2/C 2

v

i density of fluid

2= density of solid

Because we will be placing a layer over the solid, we will need to use
this reflection coefficient as a boundary condition.4 First, we write the
pressure in a homogeneous fluid overlying the solid half-space (the z-axis being
perpendicular to the interface),

p = p [e-i z + Vei 'z]

where

Po = pressure amplitude of incident wave

= vertical wave number

7
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and the normal derivative of the pressure (which is proportional to particle
velocity),

-P = i~p [ e i8z + 1z]z aPo e i z+ Ve ti z

The ratio of these quantities is proportional to acoustic impedance and can
be used as a boundary condition. At the interface, z=O; therefore this
impedance is,

Co = i (5)o ap/a ~ z=o

This relation will be identical for any quantity that is a solution of the
wave equation.

At this point, we must also consider the addition of attenuation to this
model. We will assume viscous attenuation which is a constant loss per cycle
equivalent to the addition of imaginary part (linear in frequency) to the
wave number,

k' = k + iw (6)

so that the plane wave function becomes,

eik'R e-waR ikR

and the loss A (in decibels) over some distance Ar is,

A = -20 log [e
- aArj

= 8.69 waLr

This loss is generally given in decibels per distance Ar at some frequency f,
therefore,

A
54.6 fAr (7)

In practice, the attenuation is inserted by modifying the sound speed, not
the wave number. Equation (6) can be written,

k' = w/c' = wCl + iacj/c

therefore,

c' = c/(1 + iac) (8)

This substitution will allow the ad hoc addition of small amounts of attenuation
to relations derived for conservative systems like the reflection coefficient
equation (4).

.. . mll, i i ... . . . ... ..... i ............... . .. .. . .. ... . ... .
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Next, let us consider reflection of plane waves from a fluid layer over
a solid basement. Appendix A presents a solution for the general case of a
multilayered reflector, so we can just simplify these results. For a constant
sound speed layer, the model is shown in Figure 2. In the fluid half-space,
the field can be written as,

00 = e + Vte

where

Vt = plane wave reflection coefficient of layer plus basement

o = velocity potential.

Also, the field in the layer is,

I = al Cosa1z + bl sina 1z.

Using equation (A-4), we can evaluate the ratio of coefficients of 01,

sinB 1h + cos 1h

I  cosB 1h - sina 1h

where is given by equations (4) and (5). The overall reflection coefficient
is then given by equations (A-2) and (A-3),

I= a1 + ir ioP /0(
t ro  -l + irio 0 l/po (10)

We will also consider a layer with variable sound speed: in particular,

1/c2 (z) = 1/c - giz (11)

This model is shown in figure 3 and the solutions associated with this sound
speed function are discussed in appendix B. The resulting field expression
is a linear combination of these solutions (called Airy functions),

= Ai(Z + Bi(Z) (12)

1 i 1) + i 1)

where

A., Bi = Airy functions

and, from equation (B-5),

Z = qz - I (4 - 2) (13)

9
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FLUID P0
Co

FLUID C1 P,

SOLID Pa j c

Figure 2. Single, constant sound speed layer over solid basement.

10



REPORT NO. NADC-82254-30

co FLUID 0

SOLID PBcB

Figure 3. Single gradient layer over solid basement.
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where

h e q gIW2 1/3

Therefore,

Ai A i az'= - - - qAi (Z). (14)

az - z

As in the case of the constant sound speed layer, we solve for the overall
reflection coefficient by means of equations (A-4), (A-3), and (A-2) of
appendix A. These yield, respectively,

-B (Z ) + q Bi(Z)

I 1 A'i(Z ) (15)
Ai Z1 z=-h

I I

ro 1 ' B 1 (16)-p0o[rlAi + ]+ i op  [rlA + Bi ] (6

Po[rA i + Bi] + iaopl [riAi + Bii

and

Vt = 1/r.

We now are able to compute the reflection coefficient for either a constant
sound speed layer over a solid (equations (5), (9), and (10)) or a gradient
layer over a solid (equations (5), (15), and (16)). Each of these equation
sets provides a value for Vt for a specific frequency and a specific incident
angle of the wavefront. This incident angle is actually determined by the
components of the wave number vector so that we will use y, the horizontal
wave number as the independent variable. The relationships between y, a, and
the grazing angle e (angle to the horizontal plane) of the wavefront normal are,

y = k cose

= k sine (17)
k 2  2 2

Although these single-layer models are very simple, they do include most of
the important types of propagation. The gradient layer model allows reflection
from the top of the layer, refraction within the layer, reflection from the
solid basement, and interface propagation along both the fluid-fluid and the
fluid-solid interfaces.

12
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As we have mentioned, one calculation of Vt is needed for each frequency
and each grazing angle. In order to compute the response of this model to
an impulse, we must first compute the reflection coefficient at many frequencies
throughout the band of interest. The inverse Fourier transform then yields
the impulse response in the time domain. For a specific incidence angle
(which we would normally compute for a particular path by ray tracing through
the ocean medium), the time-domain response is as follows,

p(t) = f Vt(w)e'i wtd (18)

where

p = acoustic pressure.

(The -iwt exponent reflects our choice of e- i t as the harmonic time dependence
of the acoustic disturbance. This is contrary to the convention in signal
processing.) While we have derived Vt in terms of the velocity potential p,
we can consider it to be the pressure reflection coefficient also since both
p and p identically satisfy the wave equation. Equation (18) gives the pressure
time-history for the reflection of a unit pressure impulse. This result is
identical to the velocity potential time-history for an incident unit impulse
of velocity potential. A source of unit pressure impulse is considerably
easier to understand than a unit impulse of velocity potential so we will
continue our discussion in terms of pressure only.

Once we have found the impulse response, we can add a source waveform in
one of two ways. In the time domain, the source time function can be convolved
with the impulse response to produce the time history for reflection of that
source waveform,

r(t) = p(t) * s(t) (19)

where

pit) = impulse response of reflector by equation (18)

r(t) = reflected signal

s(t) = source waveform.

Alternatively, we can make use of the fact that a convolution in the time domain
is a multiplication in the frequency domain and multiply the reflection
coefficient Vt by the source spectrum prior to transforming so that,

r(t) 1f Vt(w) S(l)e-td (20)

13
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where

S(w) = Fourier transform of s(t)

f s(t)eiwt dt"

In short, the procedure for computing the time-domain response for a
particular propagation path given a nonsinusoidal source is as follows:
compute the water path from source to ocean floor to receiver by ray tracing.
Using the grazing angle (relative to the ocean floor at the point of reflection)
of this ray, calculate the horizontal wave number and then compute Vt at many
frequencies across the band of interest. Adjust this result for the spreading,
time delay, and phase shifting incurred along the ray path in the water.
Multiply this function by the spectrum of the source waveshape and take the
inverse Fourier transform. The result is then the received signal for the
selected propagation path. Plane wave reflection theory is used to account
for the effects of the reflection model (the layer and solid basement, in this
case) while ray theory is used to predict the water-borne effects. We can
repeat this procedure for as many paths as are significant in a particular
environment and combine the results, as shown in figure 4, to produce a complete
prediction for the received signal.

This technique for building a signal from its component parts is a flexible
and computationally fast method for predicting the propagation of transient
acoustic energy. It is, however, limited by the restrictions of both ray
theory and plane wave reflection theory. In instances in which the source
or receiver is near the ocean floor, or in shallow water, or at low frequency,
this approach may be inadequate. In these circumstances, interface waves,
both compressional and shear, may contribute substantially to the field.
There may also be considerable diffraction at low frequency which cannot be
predicted by ray tracing methods. For these reasons, we will consider in the
next section a more sophisticated and, consequently, a more expensive model
that represents the wave field itself without the approximations implicit in
ray tracing and plane wave reflection.

SPHERICAL WAVE SOLUTION

A small source (small in relation to the dimensions of the medium and
boundaries) generates a spherical wavefront in a homogeneous medium and such
a wave acts differently at boundary reflection than a plane wave. Usually,
the assumption is made that the source is far enough removed from any boundaries
so that the wavefront may be considered plane. As we will see, this assumption
cannot be justified at low frequency or when the source is near the ocean bottom.
We will develop a quantitative measure by which we can determine the validity
of the plane wave assumption in any practical case but for now it is sufficient
to recognize that in some instances wavefront curvature cannot be neglected.

14
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In a homogeneous fluid, the free-field expression for a harmonic point
source is,

ei(kR-wt)
e (21)

R

where

k = wave number, w/c

R = distance from source

= velocity potential.

This is the simplest expression of a spherical wave and it is true not only
for velocity potential but for any field quantity (pressure, particle velocity,
displacement potential) that satisfies the Helmholtz equation for acoustic
vibrations. Also, the expression is true in the immediate vicinity of a
point source in an inhomogeneous medium.

Unfortunately, equation (21) is spherically symmetric while the boundaries
are typically parallel planes. Therefore, either cylindrical or Cartesian
coordinates would be more suitable for ocean propagation problems. Just as
the spherical wave, given by equation (21), is the elementary solution of the
vibration equation in spherical coordinates, the plane wave, equation (3), is
the elementary solution in Cartesian coordinates and the cylindrical wave,

= J0 (yr)ei(Lnwt) (22)

is the elementary solution in cylindrical coordinates.

Since an integral superposition over wave number of the elementary plane
wave solutions is a Fourier transform integral and the result must be identical
to the free-field expression equation (21), we can invert the transform to
find the weighting function.3 The complete superposition integral can then be
written,

ei(kR-wt) e'iWt efikfR dy x d-f y (23)

where

x Yy x, y components of horizontal wave number-

i kNotice that the inteqral comprises the elementary plane wave expression e
and a weighting tunction i/(2i2).

16
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Furthermore, an integral superposition of the elementary cylindrical waves
is a Hankel transform and can be inverted similarly. The result is identical
to a conversion of equation (23) to cylindrical coordinates,

ei (kR 'wt )  eJ~ J (yr )e -''
R -i tB ydy (24)

0

Figure 5 illustrates the general reflection geometry that we will consider.
In particular, a point source and receiver are located above an inhomogeneous
half-space that is characterized by a plane wave reflection coefficient.
Since equations (23) and (24) were derived for the source located at z=O, we
will have to modify the expressions accordingly.

Actually, two field expressions are required: one for the propagation
directly from the source to the receiver (r units horizontally and d-z units
vertically); and one for the propagation from the source down to the half-space,
modification by the reflection coefficient, and up to the receiver (r units
horizontally and a total of d+z units vertically). Only this second field is
of interest here. In terms of plane waves, this field is,

e-iwt 00ei(Y x~ + Yyy) eia(z+d)

ie e e V(y) d-yxdy
'~2~ JJxy

or, in cylindrical coordinates,

: ie t f J (yr)eia(z+d)

i V(-y)ydy. (25)

0

This integral can be interpreted as follows: first, the point source is
represented as an infinite sum of plane waves each travelling in the direction
given by the horizontal wave number . The horizontal wave number is related
to the constant wave number by the angle of the direction of propagation with
the horizontal,

,( = kcos,.

Hence, as , increases, the plane wave travels more nearly horizontal. Eventually,
I is greater than k and this angle becomes imaginary. These waves are evanescent
waves. They travel horizontally but the field amplitude decays exponentially
in the vertical direction. This can be seen by substituting an imaginary into
the elementary plane wave expression, equation (3). The vertical wave number,

ksin, k k
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becomes imaginary when y is greater than k. The integral of equation (25) thus
states that a point source cannot be completely described by superposition of
real plane wave but these evanescent waves must be included also.

The second point to notice in equation (25) is that the elementary waves
inside the integral are each modified by the appropriate value of the plane
wave reflection coefficient. In this way, the influence of the inhomogeneous
reflector is accounted for completely. Finally, the exponent involving the
vertical wave number is positive which correctly describes the upward direction
of travel of the reflected field.

Equation (25) then describes the field at the receiver po*nt including
all of the effects of the reflecting medium. Unlike the plane wave model,
this expression explicitly involves the source and receiver locations so that
the solutions will not be as simple to extend to other geometries as they were
with the plane wave model. We do, however, have a means for describing all
of the types of propagation that result from the reflecting medium. Before
we solve this equation numerically, we will examine some of the properties
of this equation through an approximate analytical technique.

By using the identities,
6

Jo(Yr) H (1)(yr)+ H (  ( 1yr)
Jo 2 1o 0~H()

Ho(1)(yr) = -H (2) (-yr)

where

H (1), Ho(2) = Hankel functions,

we can rewrite equation (25) in the following form,

i ew f H (1)(-r) V(y)ydy (26)
2 Jo

as long as V(y) = V(-y). This, of course, is always true for physically
realizable problems since it does not matter whether the plane wave is coming
from the right or the left - only the magnitude of the angle is important.

If ,r is large compared to 1, we can further reduce the integral by using
the asymptotic form of HO(),

Ho(1) ( r)  2r e i (-,r- 7/4 ).
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Equation (26) becomes,

i e-i(wt + 7/4) ei[yr + a(z + d)]
V V(y) V Y dy (27)

This is the form of the integral that we will consider in the following
approximate techniques. Although we will not consider this aspect until the
next section, notice that the integral itself has the form of a Fourier transform,

I f F(y)e iYr dy (28)

where

F(y) = v I )  ei B (z + d)

As a result, the solution can be computed by means of the fast Fourier transform
(FFT) algorithm.

We can learn quite a bit about the physics of reflection by considering
the integral in equation (27) as a complex contour integral. In general,
the reflection coefficient V will have poles for some complex (and possibly,
some real) values of y and a nontrivial branch cut emanating from the value
of y at which 3=0. As we will see, each of these singularities is related to
a specific type of propagation and it is possible to isolate these mechanisms
in the solution process.

Given that equation (27) is a complex contour integral, there are several
ways to find a solution. First, the integral can be evaluated (numerically)
along the original contour which is the real axis of the y-plane. Second, the
contour can be deformed in such a way that only pole residues and branch line
integrals remain and the branch line integrals can be evaluated numerically.
Also, the contour can be deformed so that it passes through the saddle points
of the integrand. The contribution to the integral's value becomes concen-
trated at these saddle points and the integral can be evaluated approximately
in the neighborhood of each saddle and the remainder of the path can be
neglected. Finally, various combinations of these methods may be used as long
as the rules for contour deformation are observed.

The direct integration method and the residue/branch-line-integral solution
are standard methods so we will only consider them briefly in subsequent
discussions. The steepest descent method or saddle point method is based on
locating the regions in the -plane in which the integral becomes concentrated
and then determining the integral's value in these regions. 3,7 Since the
integral is concentrated in a small area, the value can be found by series
approximation. In addition, the regions of concentration (the saddle points)
correspond to physical propagation mechanisms.
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To locate the saddle points, we first separate the integrand into a slowly
varying magnitude function and a complex exponential. In our case, the
reflection coefficient phase can vary quite rapidly so we will have to consider
this phase as part of the complex exponential. Thus, we can write the integral
part of equation (27) as,

S m()f )V7 ei[ -(r + (z + d) + (29)

- f

where

VAf = Vm(y)e i ( A

and we will assume that the factor Vmv-,/ is slowly varying. This is not, in
fact, true in some instances (particularly near 3=0) but as long as we are
aware of the assumption we will be able to compensate for any problems it
introduces.

Since the exponent of the exponential in equation (29) is, in general,
complex, it controls the rate of change not only of the phase of the integrand
but also of the magnitude (as long as the rest of the integrand is slowly
varying). We would expect that if the phase is changing rapidly, the individual
elements of the integration will add out of phase and, therefore, contribute
little to the integral's value. On the other hand, when the phase of the
integrand is stationary, the elements will add constructively. At the saddle
point, both the magnitude and phase are stationary and we can find a path
through this point along which the magnitude decay is most rapid. This is
the path of steepest descent and, by virtue of the behavior of analytic functions,
the phase alonq this path is constant. Physically, this means that the integral
is actually made of discrete groups of wavefront arrivals. Each group is given
by a small amount of waves of slightly different wave number that are in-phase
at the receiver point. The saddle points locate each of these groups.

In order to locate the saddle points and descent paths, rewrite equation
(29) in the followino form,

I f G(-,)e f ( !) d -,  (30)

where

f(-.) = ijr + .-(z + d) + :/kR

G(,) V V

R = r2 + (z +d)

= kR.
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The parameter P is introduced so that we have an adjustment on the rate of
descent of the function away from the saddle point. When p is large, the
magnitude will decrease quickly on either side of the saddle and our approxi-
mation will be good. The stationary points of the exponent are given by,

Df=0

or

i r (z + d)] 0

or

Yr- (z + d) - (31)

yo

At this point, let us examine the geometry of the reflection process.
In figure 5, we have shown the ray path (the normal to the wavefront) for a
wave with horizontal wave number yo. The length of the projection of the
legs of the ray path onto the interface is y0 (z + d)/a. Thus, tne displacement
of the field on reflection is given by the difference,

r - - (z + d) 6

which is, by equation (31),

4 - (32)

This quantity is usually known as beam displacement because of its derivation
in terms of bounded beams3 , but any nonplanar wavefront exhibits a similar
displacement so field displacement may be a more appropriate term.

Notice that, if we had not included the phase of the reflection coefficient
in the exponent, we would have obtained the naive result that there is no
displacement of the field on reflection. The most obvious case in which there
is a displacement of the field is a reflector that is a positive gradient
half-space. A ray that enters the gradient half-space will eventually exit
further downrange as it is refracted upwards by the sound speed gradient.
The displacement given by equation (32) is identical to the displacement given
by ray theory. There is also a displacement on reflection from a homogeneous
half-space. This is a wave phenomeon as ray theory predicts no such displace-
ment. This displacement has, however, been observed experimentally.3
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By the method of steepest descent the integral's value resulting from
one saddle point is,

10 = e of(Yo) -2 G(yo )  (33)

where only the first term of the series expansion of G about the saddle point
has been retained. As long as kR>>1, this will be a valid approximation.
Substituting equation (33) for the integral in equation (27), we can write
the field as,

iV(Y) ei(Yor + a(z + d) -wtl 2_ __I (34)
rS2 [ 1 (z + d) + 6]

The significance of the factor under the radical is not immediately obvious but
it represents the geometrical spreading loss over the propagation path including
the displacement on reflection. This can be seen in the construction shown
in figure 6.

The geometrical spreading loss is given by the square root of the ratio of the
elemental areas zm and zomo :

Io rS2  r[ (z + d) + 5]

(The field intensity is inversely proportional to the cross-sectional area of
the ray bundle, but is field amplitude which is proportional to the square
root of fieid intensity.) Consequently, the first level of approximation
(equation (34)) by the method of steepest descent represents the field as
ordinary plane wave reflection with an appropriate displacement on reflection
and geometrical spreading. If the reflection coefficient is considered to be
a constant, then there will be no field displacement and equation (34) reduces
to the simple plane wave result,

1 Lor + (z + d) - wt]
= V(-,o) e

V e r + (z + d ) 1

So far in this section, we have established the relationship between the full
wave solution for reflection and the ray theory solution (geometrical spreading)
with plane wave reflection. The general criterion for validity of the latter
technique is that the quantity kR be much greater than unity. Another way of
considering this criterion is to define a local wavelength angle > . At the
range in question (the range to the reflector, for example), this is the angle
subtended by an arc one wavelength long along the spherical wavefront. Thus,
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kR >> 1

becomes,

where
6y R

Therefore, the validity of the plane wave assumption depends not on the wave-
front curvature alone but on the curvature-wavelength product. If one wavelength
of arc along the incident spherical wave represents at least a substantial part
of a whole circle, then spherical wave theory should be considered.

As we have noted, this is an area in which some caution must be exercised.
While we have examined the full solution and an intermediate approximation
in which the more pronounced effects of a nonplanar incident wavefront are
considered, we must not forget the underlying assumptions. For example, we
are depending on slow variation of the magnitude of the reflection coefficient.
We are also neglecting the magnitude variation of the /y/s factor in the
integrand. Both of these assumptions are violated in certain regions (such
as near a critical angle) and we must allow for these violations. In the
next section, we will consider an example in which we can see the effects of
some of these problem regions and also how to extract meaningful solutions
in spite of the difficulties.

REFLECTION FROM A THIN LAYER

To illustrate the effects of poles and a branch line integral while
maintaining some simplicity in mathematics, let us consider reflection from a
finite fluid layer over a rigid reflector as pictured in figure 7. The plane
wave reflection coefficient for this case (evaluated at z=O) is,

o cos Ih + ib 1 sin 1h (35)
3o Cos ih - ib I sin Ih

where

b

2 2 2o~i=  ( /c , ) -"

For real angles of incidence (y<w/co), the reflection coefficient magnitude is
always one since all the incident energy is returned either by total reflection
at z=O or by reflection from the rigid surface at z=-h. The reflected field is
given by equations (27 and (35). Since equation (35) is symmetric in ,1, but
not in 20, there will only be one branch line integral and that will be
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Figure 7. Homogeneous fluid layer over a perfectly rigid reflector.
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associated with the pole at ao=O. In addition, we can expect a number of poles
for complex values of y that are associated with modes partially trapped in
the finite layer. Since cl>C o , there will be no completely trapped modes.

Before we examine the wave theory solution, let us consider what ray
theory would predict. There should be one path directly from the source to
the upper surface of the layer and back to the receiver. Also, there will be
an infinite number of paths that reflect from both the rigid reflector and
from the underside of the layer's upper surface some number of times before
exiting the layer. These paths will be progressively less important as the
number of internal bounces increases since some energy is lost at each reflection
with the upper surface of the layer. While we should expect some differences
in the wave theory treatment, we would not expect the descent method to predict
only a single path, reflected and displaced.

As a starting point for any of the wave solutions, figure 8 shows two
possible configurations of the integrand of equation (27) in the complex wave
number (y) plane. In the first case, deformation of the original integration
contour leads to a branch line integral only, while in the second case,
residues from each of tie poles must be added to a somewhat simpler branch
line integral. These techniques are straightforward; however, we must specify
the particular branch of ao. In each of the regions (of the right half-plane)
of figure 8, the branches of 6o are as follows,

II) = +Y

III) ao ;k 0

For convenience in the following discussion, we will refer to the sheet of the
integrand on which the positive root of 3o is used as the upper sheet and the
sheet on which the negative root is used as the lower sheet. By this definition,
the poles shown in figure 8 are on the upper sheet. Also, this definition implies
a branch cut extending along the real y-axis to the right of the pole at %=0.
This is the conventional branch used by computer complex square root routines.

We will now consider a solution by means of the method of steepest descent.
Although the numbers are themselves unimportant, we will use the following case
to illustrate the method:

co  = 1500 m/s

cI  = 2000 m/s

h = 100 m

z d = 50 m

0i/n2 = 0.5

f = 50 Hz.
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Figure 8. Two possible branch cuts in the y-plane.
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The first step involves locating the saddle points or stationary phase points
by means of equation (31). Since the right-hand-side of this equation is
independent of the source-receiver geometry, we can plot this function
separately and then plot the left-hand-side parametrically in range. The points
of intersection determine the stationary phase points. Such a plot is shown
in figure 9. Most of the time, each pole (evidenced by the peaks in the field
displacement curve) gives rise to a pair of stationary phase points and then
there is one additional stationary point to the right of all of the pole pairs.
Thus, the influence of each pole (the partially-trapped modes) is felt through
a pair of saddle points and the path related to the reflection from the top of
the layer is accounted for by the remaining stationary point.

Once the stationary phase points have been located, the contours of steepest
descent must be found. In case it is necessary to cross poles or branch cuts
in order to deform the original contour into the descent path, the appropriate
residues or BLIs must be added to the saddle point solutions. The descent
paths for our example (and r=300 m) are shown in figure 10 for only the reflec-
tion coefficient and exponential factors of equation (27). The branch cut of
figure 8b is used because the descent contour must be continuous. We can see
that in the process of deforming the original contour (the real y-axis) into
the descent path, no poles are crossed and the branch cut is avoided. Hence,
the solution is complete with only the saddle points considered. Also, notice
the path of descent: between each pair of saddle points associated with a
pole, the path dips into a zero rather than going to negative infinity. As
can be seen from figure 9, as the range increases the two stationary phase
points of a pair draw closer together. Consequently, the descent from either
saddle into the zero becomes less steep and more terms may be necessary in the
approximate solution. Fortunately, the modes which cause this trouble first
are the modes that correspond to steeper angles of penetration into and out of
the layer and, therefore, lose more energy than the "shallower" modes.

As we have mentioned, the assumption that the v77 factor is slowly varying
is not always a good assumption. Figure 11 shows the descent paths and saddle
points for the entire integrand of equation (27). While the pattern is very
similar to that in figure 10, there are some important differences. First,
the saddle points have moved slightly (both figures 10 and 11 are exaggerated
in the vertical direction by a factor of ten). Since the 177factor could
be expressed as a complex exponential, the resulting exponent will add another
term to the stationary phase point relation, equation (31), which would predict
the shift. Second, as a consequence of the saddle point shift associated with
the most lossy mode (farthest to the left and away from the real axis), the
descent path has made a definite change. The path passes through only one
of the saddle points now and does not venture into the zero below this pole.

From the stationary phase plot in figure 9, we would expect that as the
range increases, first, there would be two saddle points for a given mode,
then at some particular range, they would somehow coalesce into a single saddle
which would then disappear for greater ranges. This is not, in fact, the case
as we see in the sequence in figure 12. Here, we have plotted the contours of
the entire integrand for three ranges - 200, 300, and 400 m - in the vicinity
of the left-most pole-zero combination. At 200 m, the two saddles are nearly
symmetrical and the descent path passes through both saddles and the zero.
At 300 m, the ,.- factor has warped the contours so that, because the saddles
have drawn closer together, the steepest descent path swings positively upward
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Figure 12. Migration of saddle points and descent contour associated with pole E for

increasing range: (a) r = 200m, (b) r = 300m, (c) r = 400m (Continued).
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in either direction away from the right-hand saddle. Thus, the left-hand
saddle is bypassed in the contour deformation. As the range increases further,
the right-hand saddle turns so that the path becomes horizontal while the left-
hand saddle turns toward the vertical. The contour plot at r = 400m illustrates
this state and shows that, even though no stationary phase point is predicted
by equation (31) through figure 8, one does, in fact, exist with a related
descent path. This illustrates a short-coming in equation (31). The steepest
descent method will produce the correct answers only if the relevant saddle
points are properly identified. Equation (31) gives good approximations for
most of these saddle points but, in some instances, one or two may be repre-
sented improperly or missed entirely.

Pernaps it is safer practice to solve for the field by a hybrid techniaue
in which we deform the contour past all of the poles but still let it pass
through the right-most saddle point in order to avoid the branch line. In
this way, the solution becomes a sum of residues and a series approximation at
one saddle point.

This solution process tells us something about the resultant signal's
phase. Since this modeling effort was undertaken to develop a tool useful
for nonlinear signal processing, I we are particularly interested in the phase
of the field. From figure 9, we can see that the phase change is rapid in the
vicinity of the poles of the reflection coefficient. This will lead to
problems in phase reconstruction of sampled signals unless the direction of the
phase change is known. In order to have a positive field displacement (negative
displacements have not been observed in any of the test cases), the rate of
change of phase with respect to wave number must be negative by equation (32).
Since horizontal wave number is directly proportional to frequency at constant
ray geometry, the rate of change of phase with respect to frequency must also
be negative:

cv

where

c = ray equivalent vertex velocity.v

If the field displacement is always positive in real physical reflection
problems, then we know that the phase progression must be characterized by
rapid decreases in the vicinity of the reflection coefficient poles. This
principle would be of great value in phase reconstruction of noisy, sampled
signals. See reference I for a more complete discussion of phase reconstruction
problems and techniques.

To summarize this section, let us review the levels of approximation we
now have available:

1. By neglecting the rate of phase change of the reflection coefficient,
.e locate a single stationary phase point which corresponds to specular reflec-
tion with no displacement. Any multipath phenomena associated with the reflector
are ignored.
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2. If we locate all of the stationary phase points (saddle points) that
result from considering the reflection coefficient phase variation, then we
can write approximations for the multiple paths of propagation from the
reflector. The possibility does exist for misinterpreting one or more of
these points because of the effects of other factors in the integrand.

3. We can also consider the entire integrand in order to fix the location
of the saddle points and descent path. This will improve the accuracy of the
saddle point approximations at the expense of substantially increased computa-
tional labor.

4. In some cases, the poles themselves may be relatively straightforward
to locate, in which case many of the saddle point approximations can be replaced
by residues.

5. Finally, the integral can be numerically integrated as it appears in
equation (27). This procedure can be expensive particularly when the impulse
response of the reflector is desired since an additional integration over
frequency is required.

NUMERICAL IMPLEMENTATION

Because most of the procedures discussed above are, in practice, applied
nt ,erically rather than analytically, we will now consider some numerical
techniques for solving the field integral. In order to start with as close
to an exact soluti n as possible, an algorithm has been developed based on
Bucker's technique to integrate the field integral, equation (27) directly.

Since variations in the integrand are irregular in that along some portions
of the contour the function is smooth and along other portions the function
changes rapidly, the integration procedure should be adaptive. This is accom-
plished by integrating over a segment (in this case, by Gauss-Legendre
Quadrature with n=5) and comparing this result with the sum of two integrations
over the two halves of the same segment. If the difference is negligible, the
step size is increased for the next segment. Otherwise, the step size is
halved and the integrations are performed again. In this way, the step size
is continually adjusted according to the rate of variation of the integrand.

As in some of the processes to follow, a small amount of attenuation is
introduced so as to effectively move the integration contour slightly off the
real axis. This avoids the complications associated with integration through
the pole at 0=0. The attenuation is treated as viscous attenuation (constant
loss per cycle) by adding a small imaginary part to the wave number. Actually,
this is done by making the sound speed complex in such a way as to prescribe
the appropriate wave number.

Besides direct integration of equation (27), another solution technique
involves applying the FFT algorithm to the Fourier transform integral of
equation (28). This approach is particularly convenient if we would like the
field at many different ranges.9 Direct numerical integration only gives one
range value per integration while, for example, a 512 point FFT would produce
field values at 512 evenly spaced ranges. The principal disadvantage of this
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method is that the integrand (or, rather, the F(y) function of equation (28))
varies quite rapidly over some values of y thereby requiring, as a consequence
of the sampling theorems, fine sampling of the entire function. Much of this
computational work is wasted because the function can be smooth over other,
large segments of y where the sampling does not need to be as frequent. Since
the sampling must be uniform over the entire range of Y (a restriction imposed
by the FFT), the regions of rapid variation determine the overall sampling rate
and, therefore, the transform size. Without any special treatment then, this
method can involve expensive computation of many more points than are necessary
to define the function and very large transform sizes.

It is possible, however, to use digital filter theory to greatly increase
the efficienty of the FFT technique. Let us consider the development of such
a process. Equation (28) can be written in a slightly different form so that
the integrand function F and the field function ¢ are a Fourier transform pair,

}(r) = f F(,)eiyrd-t (36)

Here, the function F can be determined from equation (27).

Since and F are a Fourier transform pair, we can filter either function
in either the wave number or the range domain and also we can expect that once
the functions are sampled, the theorem, relating sampling rate and bandwidth,
will apply. We shall see later that this is true. Meanwhile, it is sufficient
to say that if we can restrict the "bandwidth" of in the range domain (that is,
restrict the span of relevant ranges), then we can sample the function F at a
much lower rate than would normally be required to properly define the function.
If we knew p, we could restrict its bandwidth by setting all values of : above
some maximum range R to zero. This is equivalent to filtering F(y) in such a
way that the high rate variations are suppressed (low pass filtering). To
perform this operation, then, we must locally sample F(-,) densely enough to
describe the function variations, filter these sections, and reduce the sampling
rate according to the sampling relations derived below. We then would have an
efficient technique for field integral solution by FFT.

Now let us examine the conversion of equation (36) into a discrete Fourier
transform suitable for the FFT algorithm. We know that the FFT operates on a
finite length series of samples of a function. Since a periodic function can
be exactly represented by a Fourier series expansion in place of a continuous
Fourier transform, we can convert the integral of equation (36) into a summation
if we are willing to accept a field function periodic in range. If we select a
period R that is greater than the maximum range of interest this will not
present a problem in itself. We will have to filter F(,) as discussed above
so that :(r) is zero for r-R prior to sampling F(,). If we do not filter,
then (r) will be distorted by aliasing.
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To make the summation finite, we can taper F(y) to zero beyond some
maximum r. This will cause smoothing of the function 0 (i.e., low pass
filtering) in range but this is actually desireable in a wave theory solution.
At this point, we have reduced equation (36) to the following form,

N-1

o (k~r) E F(nAy)e-iknAr y Ay (37)

n=O

where

k,n = integer indexes

Ar = sample interval of range

Ay = sample interval of wave number

N = transform size such that N~r = R.

One more modification is now necessary before the FFT can be applied. Let,

krArY = 21kn/N

or

ArAy = 27/N (38)

so that,

N-I

(kr) = Ay F(nAy)e
- i2nkn/N

n:O

= AY FFT (F(n.y)] (39)

Equation (38) is essentially a statement of the sampling restrictions for this
problem. Since we can determine the maximum range R and

R = N r

then the increment y is no longer arbitrary but, by equation (38),

= 27/R (40)

and therefore, the relevant span of wave number is,

c = NY = 27/.,r (41)
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In practice, we would select the transform size and either R or Ar. This
fixes the rest of the parameters and also means that only as many F(y) points
are needed as range points are desired. Once again, the function F(y) must
be initially sampled in such a way that its variations are locally well defined -

close sampling in regions of rapid variation and infrequent sampling in regions
of slow variation - but then the function is filtered and resampled uniformly
and at a low rate given by equation (40). The simplest filter to use is a
convolutional filter designed by the window method based on a function in the
range domain that is unity between r=O and r=R and zero otherwise. The
transform of this range function is truncated by one of the standard windows
in the wave number domain and then applied in a point-by-point convolution to
the F(y) function. The convolution is only performed at those locations that
will be new sample points of F(y).

We have seen how the FFT can be used to compute many range points of the
field function efficiently. Since this study is primarily concerned with time-
domain results, we will now examine the use of the FFT in obtaining time series
waveforms from the field integral solutions. Before we considered any of the
field integral solutions, we reduced the wave equation to a Helmholtz equation
by assuming a time dependence of e-iwt. This reduction could also have been
done by taking the Fourier transform of equation (1). We can thus see that,
in order to obtain the time series, we need only take the inverse Fourier
transform of the field function p. Hence,

p(t) = i_ f (w)e-iwtdw (42)

where

p = pressure as a function of time.

This is basically the same result as equation (18). Notice that the independent
variable in the function p is frequency w rather than range. As a result, we
must compute the field function at many frequencies and a single range for each
p(t) function.

As before, we can recast equation (42) in a form suitable for using the FFT.

N-1

p(n.t) = ,f Z ,(kf)e- i
2 kn/N

k=O

= f FFT-[ (k ,f)] (43)
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where

Af= discrete form of dw/27

N = 1/(Atf).

The pressure response p is the impulse response whose spectrum is given by ().
The implied impulse strength can be found by evaluating equation (43) at n 0
(which is to say t=O),

Po = NAf

or

PoAt = N~fAt = 1

which is the impulse strength. We will find it convenient to make all of the
time-domain (impulse response) calculations in terms of impulse strength so
that the results are independent of transform size. We will then compute,

p(n~t)At I FFT 'rI¢(k~f )]1(4

N

Before we leave our discussion of numerical techniques, let us consider
two more aspects of the FFT techniques. One of these we have mentioned before
and that is the inclusion of thE source waveform by spectrum multiplication.
In particular, we will be modeling a source in the next section that can be
approximated by an exponential function,

s(t) = Ae- t (t > 0)

where

= decay time constant.

First, we would like to normalize the source so that, when applied by convolu-
tion to a uniform level, it does not change the power of the time function.
This can be assured by letting,

1 f Ae"'tdt

0

or

Therefore, we will use a normalized source function of,

s(t) = e-" t (t > 0) (45)
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although it will be applied by multiplying the field function ( by the
source spectrum S(w),

S(4 = J ce - at ei wt dt

0

a a+ iw] (46)

and the desired pressure response is then,

r(t)At - gFFT ([+i 2 ] (

where

r = simulated received signal.

Finally, the truncation of p(w) beyond some maximum frequency introduces
spurious oscillations into the p(t) function. The truncation is necessary
because of the finite length of the transform; however, the truncation does
not have to be abrupt. If we taper the upper edge of the spectrum by some
function (perhaps half a cycle of a raised cosine) prior to transforming, we
can reduce these oscillations substantially. In practice then, the simulated
received signal is computed as follows,

r~)t FFT-I + I.W W(47)
N 2 + 2

where

W(-) weighting function.

APPLICATIONS

One of the first decis-ons that must be made in using these models for
transient propagation is whether to use a model based on plane waves or
spherical waves. Predictions based on plane wave theory are generally fast
and easily applied to complicated multipath propagation. On the other hand,
there are instances in which the plane wave assumptions lead to grossly
incomplete results. In this section, we will duscuss those effects predicted
by both the plane and spherical wave theories, develop the criteria for decision
between the two, and illustrate prediction by the full wave theory.
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Generally, the plane wave theory is used as an adjunct to ray or geometrical
acoustics. Spreading losses and refraction in the water are accounted for by
ray tracing and the ray path is modified in magnitude and phase at the ocean
floor according to the plane wave reflection coefficient. We will add to this
the possibility of a displacement (or even multiple displacements) on reflection
from the ocean floor because this phenomenon is included by the degenerate form
of the full solution, equation (34). This displacement is a legitimate feature
of the field as long as the magnitude of the reflection coefficient is slowly
varying with wave number.

Plane wave theory then includes the following effects: time delay,
refraction, and spreading in the water by ray acoustics; phase and magnitude
changes and field displacement on reflection from the ocean floor; and phase
distortion at ray turning points. The last effect amounts to a uniform 7/2
phase shift at a turning point (caused by refraction) and is evidenced by
formation of doublets in the time series (a single positive impulse becomes a
positive impulse followed immediately by a negative impulse). This doublet
formation is obvious in the time series and can be used to identify refraction
turning points either in the water column or in the ocean floor. Most of the
other effects are more difficult to use in direct interpretation of measure-
ment signals but the time delay is valuable for isolating distinctly different
propagation paths.

Figure 4 illustrates the construction of a plane wave model that treats
a number of different paths. Each path is characterized by a water path delay
and loss, and a bottom reflection characterized by the plane wave reflection
coefficient. Since the paths are not mutually dependent, they can be added or
deleted as necessary to represent any aspect of an ocean environment. This
feature, coupled with the dependence of the reflection coefficient only on
angle, yields a model that can be easily adapted to different situations.
This approach should be used whenever it is applicable because it is not only
flexible but also very inexpensive compared to the spherical wave solution.

As we will outline more specifically, there are important applications i,
which the plane wave solution is inadequate. Besides the effects covered by the
plane wave model, the spherical wave solution includes boundary waves of several
types and ducted propagation in layered or refracting bottoms. Particularly
at low frequency or in shallow water, these mechanisms can contribute a sub-
stantial, if not dominant, portions of the received energy.

In the case in which the ocean floor is modeled as a homogeneous fluid,
an interface wave can be excited which travels horizontally while continuously
radiating energy back into the overlying ocean. This interface wave is excited
by energy incident to the boundary at the critical angle and the re-radiation
appears to be coming from the boundary at that same critical ancle. Because
of the continuous re-radiation associated with this boundary wave, the energy
in the advancing wave decays much more rapidly than the specularly reflected
wave. (The amplitude of the interface wave drops at approximately r-2 while
that of the reflected wave drops at r-1.) As a result, this interface wave
is only significant at shorter ranges, but it can change the propagation
characteristics substantially at ranges where the specular reflection is close
to the critical angle (figure 13). This type of wave is also known a a
critically ref-acted wave or lateral wave.
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If the fluid representing the ocean floor is layered or has a sound
speed profile that produces a duct, then partially trapped or ducted propaga-
tion can take place. Ray theory can be used to model ducting but, especially
when the acoustic wavelength is of the order of the duct width, the integral
wave theory provides much better representation of the ducted energy. Typically,
there will be a number of stationary phase points corresponding to the poles
which, in turn, represent the leaky modes in the duct.

Additional types of waves appear if the bottom model is made of an elastic
material (that is, a solid). At least two other types of interface waves can
propagate in this case: a shear wave analogous to the compressional interface
wave for the fluid reflector and a Stoneley wave in which the particle motion
is confined to the vertical plane containing the source and receiver. The
Stoneley wave has its own pole in the reflection coefficient for some complex
wave number and it loses energy (as does the other shear interface wave) at a
rate similar to that of the compressional interface wave.

Ducts caused by solid layers or gradients in the shear sound speed give
rise to ducted shear propagation or Love waves. One noteable characteristic
of either shear or compressional ducted propagation is that it is dispersive:
different frequencies travel with different speeds- This results in a dis-
tortion of the time waveshape that the plane wave technique is unable to
describe. This also can make replica deconvolution (inverse filtering)
difficult since the dispersion effectively distorts the source waveform.

An important aspect of shear propagation in real ocean sediments is
attenuation. Shear attenuation is generally much greater than compressional
attenuation because sediments are much closer to fluids than solids even though
they do have some rigidity. Consequently, if solid properties are accounted
for by the model, attenuation must be included. Otherwise, the shear propa-
gation can be unrealistically good.

Having summarized the scope of both the plane wave and the spherical
wave solutions, let us now outline the criteria for deciding which to use.
As we have shown, the mathematical criteria for validity of the plane wave
approximation are yr>>l (so that the asymptotic form of the Hankel function
can be used) and kR>>1. These are roughly equivalent and the latter criterion
amounts to insuring that a wavelength is small compared to the wavefront
circumference at the radius of interest. Another way of saying this is that
2-T times the wavefront's radius of curvature must be much greater than the
acoustic wavelength.

If we desire to simplify the plane wave theory even further by neglecting
field displacement and multiple stationary points, we need some additional
restrictions. First, trapped propagation in the bottom must be negligible.
Trapped modes are evidenced by poles in the reflection coefficient and these
poles will either lead to multiple stationary phase points or residues.
Second, the geometry must be such that the critically refracted or Stonely
interface waves are not favorably excited. In order to avoid exciting the
critically refracted wave, the geometry must be such that the ordinary
reflected path (source to interface to receiver) is not very close to the
critical angle. If this path is close to critical, then the reflection
coefficient magnitude is changing rapidly and plane wave theory, even with
displacement, is not valid.

44



REPORT NO. NADC-82254-30

Whether or not the Stoneley wave is favorably excited is not as easy to
determine. The Stoneley wave pole of the reflection coefficient must be found
and then the wave number corresponding to that pole must be used in equation (31)
to establish the critical geometry. Since we only need the geometry approxi-
mately, it should be acceptable to ignore the displacement term (the right-hand-
side) of equation (31) and, also, to use the real part of the wave number
rather than the true saddle point value.

To conclude this section, let us examine several examples of the full
wave solution and compare these results to actual measurements. The measure-
ments, made by Roever and Vining,lO are high-quality scale model measurements
of short pulse reflection from several substances with both compressional and
elastic properties.

Some objections may be raised at this point because these measurements
are scale-model measurements and not actual ocean measurements. In spite of
the vast quantity of ocean acoustic measurements available at various Navy
and university laboratories, measurements that are well-defined in terms of
precise experimental geometry, physical parameters of the medium, and charac-
teristics of the source and also are well documented as to experimental
procedures are rare. Initial validation of a model against the usual types
of measurements would involve considerable "adjustment" of the physical
parameters in order to get good agreement. This technique, although common,
always includes the possibility that the medium properties were adjusted not to
correct deficiencies in their initial estimates but to offset problems in
the model itself. I preferred, in this investigation, to use a data set that
I could model without such manipulations.

In each of the three cases, the experiment consisted of a spark-gap source
and a barium titanate receiver fixed 10 cm apart and 0.5 cm above the reflecting
material in salted tap water. The frequency content of the source pulse and
the medium properties and experimental geometry were such that the horizontal
range was between 10 and 0.1 \ (.x is acoustic wavelength). This presents the
most difficult modeling problem possible as wavefront curvature is definitely
important and, at the same time, the asymptotic methods are not valid. Hence,
the modeling in this section was done by integration of the field integral,
equation (25), and subsequent integration over frequency by FFT using
equation (47).

Physical parameters for the water and reflecting media were measured by
Roever and Vining and included compressional and shear sound speed, compressional
and shear attenuation, and density. Since these properties were measured on the
same scale as the experiment itself, the property estimates were used, as
given in reference (10), with no modifications.

The first material considered was a high viscosity pitch with the following
acoustic properties:

Water over Pitch

cI = 1496 m/sec, c2 
= 2463 m/sec

b = 1003 m/sec, .112/ = 1.27

45



REPORT NO. NADC-82254-30

A = 1 dB/cm at 500 kHzc

A = 0.6 dB/cm at 25 kHzS

where

cI = sound speed in water

c2 = compressional speed in lower medium

b = shear speed in lower medium

= density in water

02 = density in lower medium

A = compressional attenuation in lower mediumc

A = shear attenuation in lower medium.s

The measured and the predicted time waveforms at the receiver are plotted in
figure 14.

Overall, the agreement between the predicted signal and the actual measure-
ment is excellent. The first feature, arriving at about 50 lisec after trans-
mission, is the compressional interface wave. Next, just prior to 70 gsec, th
direct and simply-reflected arrivals appear but they are not individually
distinguishable because the travel time difference between the two paths is
only about 1/8 ;sec. Finally, the Stoneley wave arrives between 100 and
150 Psec. Since the shear sound speed in the pitch is less than the sound
speed in the water, there is no critically refracted shear wave in this case.

This example is of particular practical importance because ocean sediments
are usually only weakly elastic with low shear speed and high shear attenuation.
These factors might lead to a conclusion that the shear propagation could be
neglected, but there is a considerable amount of energy in the Stoneley wave
in this example. As long as the reflector has some shear rigidity, there will
be a Stoneley wave pole in the reflection coefficient. In this case, that
pole corresponds to a phase velocity of 821 m/sec which is considerably lower
than the shear speed of the pitch. Hence, the Stoneley wave arrives last.

One very important consideration when modeling shear propagation in
sediments is the inclusion of shear attenuation. Since the Stoneley wave can
be a fairly efficient transporter of energy at short ranges, if attenuation
is neglected, the Stoneley wave can appear to dominate the arrival. The
water-over-pitch example was run with zero shear attenuation and, while the
events before 100 .sec remained virtually unchanged, the Stoneley wave arrival
grew both in its positive and negative cycles to the point where the negative
peak (at about 130 ..sec) was more than three times the amplitude of the direct
arrival peak at 68 i.sec. Obviously, this would have resulted in a gross
over-estimate of the role of shear propagation. As it is in figure 14, the
level of the predicted Stonely wave is slightly less than the actual event.
This difference is not surprising considering the difficulty of measuring shear
attenutation.
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The next reflecting medium was cured plaster-of-paris and the experimentally
determined properties were:

Water over Plaster

c1  1484 m/sec, c2 = 3192 m/sec

b 1814 m/sec, 021D1 = 1.89

A = 0.6 dB/cm at 500 kHzc

A = 0.2 dB/cm at 25 kHz.s

The three features present with pitch can be seen here again in figure 15.
The compressional interface wave is much lower in level (the vertical scale
is identical to that of figure 14) appearing at 40 sec. At about 70 lisec,
the combined direct/reflected pulse appears and a rather large amplitude
Stoneley wave appears between 60 and 100 ,sec. The direct arrival is at about
the same place as before because the water has almost the same sound speed in
both cases, but both the compressional interface wave and the Stoneley wave
have arrived earlier because the speeds in plaster are higher than those in
pitch. Also, the plaster is more rigid with less attenuation of shear waves
so the Stoneley wave amplitude is larger.

An additional event can be seen at 60 ,sec and this, according to Strick,10

is a combination of a small, critically refracted shear wave and a psuedo-
Rayleigh wave. Both of these waves are interface waves that travel at the
shear speed of the lower medium.

Finally, the results for water over iron are shown in figure 16 and the
physical properties are tabulated below,

Water over Iron

c = 1500 m/sec, c2 = 5837 m/sec

b = 3247 m/sec, ,21, 1 = 7.87

A = 0.01 dB/cm at 500 kHzc

A = 0.01 dB/cm at 25 kHz.s

No attenuation measurements were made in this case by Roever and Vining so
very small values were used merely to avoid numerical problems associated
with integration exactly along the real axis.

Because the impedance discontinuity is extremely large in this case (the
compressional impedance ratio is over 30), the combination direct/reflected
arrival dominates the waveform. The Stoneley wave is much shorter in time
than before and only the negative cycle can be seen at about 66 -sec. A very
small compressional interface component is just visible at 25 -.sec and, again,
there is a combination shear interface and pseudo-Rayleigh wave at 40 -sec.
As in the other two examples, the agreement between the theory and the
experiment is excellent.
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These examples are, in one sense, difficult problems because the wave
effects are fully developed so that even the asymptotic methods do not work
well. They are, however, simple examples in that the reflector is a homo-
geneous half-space. More complicated reflector structures can easily be
accommodated though, since the model really only needs a reflection coefficient
and, given enough time, this can be computed for very complicated structures
(see appendix A).

CONCLUSIONS

In this work, we have examined two general types of models for propagation
of transient acoustic signals. For one type, we developed the field integral
that exactly represents the acoustic field for a given source and medium. The
other type is actually a very special case of the exact solution. If enough
assumptions are valid, the field can also be represented by ray theory with
plane wave reflection at boundaries. The latter model is much simpler and
more flexible; however, these advantages are gained by sacrificing some
important features of propagation associated with wavefront curvature. In
many cases, wavefront curvature is negligible but, when it is not, some form
of the field integral must be evaluated.

Whatever model is used must suit the environment in question. In deep
water or at high frequency, the plane wave model may be quite accurate. At
low frequency, near the ocean floor or in or near leaky ducts, the plane wave
model may omit significant or dominant propagation mechanisms.

Fortunately, there are some techniques that are intermediate in complexity
and still offer at least approximations to the full wave solutions. The
saddle point or steepest descent method reduces the field integral to one
or more integrals that can be evaluated over short intervals and, possibly,
some rasidues or branch line integrals. As long as the true saddle points
are located and all of the poles and branch lines are accounted for, this
approach is still exact. The first approximation that can be made is to
integrate only over a small region near each saddle point. Also, we can
neglect the offset of the saddle points from the real axis. At this point,
the procedure can be coupled with ray theory for each of the possible paths
and some representation of interface waves, trapped modes, and field dis-
placement will be maintained. Finally, if the phase of the reflection
coefficient is neglected the solution reduces to classical ray theory with
a single specular reflection at the ocean floor.

The decision to use either plane wave or spherical wave methods should
be based on the wavefront curvature criterion. If an acoustic wavelength is
an appreciable part of the circumference of the acoustic wave at the boundary,
then the full wave solution is justified. Some weight must be given to the
relative cost of the approaches though. The ray theory model is easily
adapted to complex multipath situations and is fast and inexpensive to run.
In some cases, this may justify its use even when the full wave solution is
indicated by the wavefront curvature criterion, as long as the shortcomings
of the ray approach are acknowledged.
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We have seen both in the theoretical development and in the experimental
comparisons that the models can be used to interpret propagation results
physically. The plane wave and ray theory approach obviously treats each
path distinctly. The saddle point method also breaks the solution down into
a number of physically distinct "paths" and special wave effects may be
interpreted in light of these components.

Finally, we have outlined several ways in which the FFT can be used to
speed the calculations required by these models. The integration over
frequency can be done very easily using the FFT and, at the same time, the
source spectrum can be included so that the resulting response is not the
impulse response but, instead, a simulation of the complete received response.
In addition, the field integration over wave number is suited to evaluation
by FFT, especially if results are required at many different source-to-
receiver ranges.
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Appendix A

REFLECTION FROM MULTILAYERED MEDIUM

In order to provide for future expansion of the reflection model, the plane
wave reflection coefficient for a general, multi-layered medium is derived below.
Although this derivation could just as easily be done for any quantity that
satisfies the wave equation, we will write expressions in terms of velocity
potential.

The generalized medium is shown in figure A-I. In each layer or in the
fluid half-space above the layers, the expression for the field is,

i = aipi(z) + biqi(z) (z i-1 < z < zi) (A-i)

where

ai ,bi = constants

pi,qi = independent solutions of the depth equation

i = velocity potential in it h layer

The equation for o, the potential in the fluid half-space, can be written more
specifically in terms of the overall reflection coefficient Vt,

o const + Vt e 0

-iB 0Z i 0 z
:a0e + be 0

therefore,
b o1

Vt  a 0  ro A-2)

where

r. a./b.i  ib i

The boundary conditions between each pair of layers are,

(1) continuity of pressure

i i(zi) = i+1 :i+1 (zi)

A-i
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Figure A-i. Generalized model of the ocean floor as a layered reflector.
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(2) continuity of normal component of velocity
__i_ 10i+ 1

zi jzi

These two equations can be written as one expression relating the ratio of
coefficient in the ith layer to the ratio of coefficients in the layer below,

-r [ri+iP'i+1 + q'i+ 1] + q i [ri+lpi+l + qi+l i+l1"i (A-3)

pi [ri+lpi+z + qi+l ] - p! [ri+ipi+l + qi+ 1] oi+J/pi

where the p and q function are evaluated at z~zi and the primes indicate
differentiation with respect to z.

The solution process generally begins at the solid basement half-space and
proceeds upwards layer by layer until ro and, therefore, Vt are found. Equation
(A-3) relates any two adjacent layers and equation (A-2) yields the total
reflection coefficient Vt. In order to start the process at the fluid-solid
interface at zn, we use the impedance condition, equation (5), and solve for
the initial coefficient ratio rN,

-q N (zN) + qN (ZN)
rN  (A-4)

PN(ZN) - C PN (ZN)

where the bottom impedance involves the elastic half-space reflection coefficient
from equation (4).

If the sound speed in the layered bottom becomes considerably greater than
the phase velocity of the incident wavefront (that is, the vertex velocity
of the equivalent ray), then it is neither necessary nor desireable to start
at the elastic half-space. As the medium sound speed increases beyond the phase
velocity, the depth function decays in an approximately exponential manner.
Starting the solution all the way down at the elastic half-space would mean
starting with an extremely small field amplitude. Any error in the original
value would grow unacceptably large by the time the top of the reflecting layers
was reached.

This problem is avoided by including a false basement of homogeneous fluid
at some depth where the local sound speed is substantially greater than the
phase velocity. If the sound speed of the false bottom is matched to the real
profile at this point, the equivalent impedance is,

A-3
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where
/k 2(zf (2

zf depth of false bottom.

This impedance value is inserted into equation (A-4) and the solution progresses
from zf to the reflector surface at z=O in the usual way.

A-
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Appendix B

AIRY FUNCTIONS

Origin of Airy Functions

Airy functions arise as special solutions of the depth equation that results
from separation of variables of the wave equation. This wave equation, in
axially-symmetric cylindrical coordinates,

1 , 2 1 ; ,
r 3r r) r} z2  c2 )t2

where

c = sound speed

r = horizontal range

t = time

z = depth

= field quantity (pressure, for example),

reduces to a Helmholtz equation for harmonic disturbances and then separates
into a range equation involving Bessel functions and a depth equation,

d2U 2
2 + [k2(z) - 2 U =0- (B-i)

dz
2

where

k = w/c(z)

U = depth function

= horizontal wave number from range equation

= angular frequency (2ff).

If the sound speed c is constant, the solutions of equation (B-I) are
sines and cosines; however, we would like to be able to specify some variaticn
in sound speed with depth. Since the z-variation of equation (B-i) is of the
form 1/c2 , we can make the equation linear in z if we let,

1 1 1- g(z - z )
c (z)

where

co = sound speed at z = 0

g - / -Z ) = pseudo-gradient.

B-i
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thus, equation (B-i) can be written as,

d2U+ Y 2) - gw 2(z - z0)] U = 0. (B-3)

Being linear in z, this equation can be simplified by the following transformation,

Z = a 2 Y2 - g 2(z - Zo)

dZ _ agw 2

dz

Equation (B-3) then becomes,

2 2d 2U 1

a 2(gw 2)2 d - + -a ZU= 0
d Z a

which is Stoke's equation,

d2
;- ZU = (8-4)
dZ2 -

if

a = (g2 )-2/3

or

1 2 
2Z q(z - zo) 2 -Y (8-5)

where

q = (g2 
)1/3

Stoke's equation is second order; therefore, it has two linearly independent
solutions. A particular set of these solutions comprises Airy functions or,
in symbolic notation, Ai(Z) and Bi(Z).

Standard Series Forms For Airy Functions
6

The standard form of the ascending series is a linear combination of the
ordinary power series solutions to equation (B-4).

Ai(Z) = a1f(Z) - a2g(Z)

(B-6)
Bi(Z) = ,'3 (a1f(Z) + a2g(Z)]

B-2
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where

a, = Ai(O)

a2 = Ai'(O)

f(Z) = I + Z3 + 1.-4 Z6 + 147 9

(B-7)

g(Z = z + _L Z + 2.5  Z7 + 2.5.8 ZI- +
4! 7!10!

These series are valid for any complex Z although as the magnitude of Z increases,
the number of terms required for a given accuracy also increases. For this
reason, various other series representations have been derived.

Asymptotic series, as they are called, are series that are valid when the
argument approaches some limiting value (infinity in this case). They are not
necessarily convergent series and the best accuracy is obtained by summing
until the terms start to increase in magnitude. For the Airy functions, these
asymptotic series are derived by applying the method of steepest descent to the
Airy integralsll. The derivation procedure is unimportant for this discussion
so we will merely list the various forms and their ranges of applicability

6 :

Definitions -

=o 1 ,c = (2k+1) (2k+3) ... (2k+4k-1)

216kk!
(B-8)

6k+1
do  d k ,dk 6k-I k

2 Z3/2 (B-9)
3

k ' -( 1 k d kS S (-))c dk'-k
a k=O k=O

S (1)k C S (-1)k d-k
e 2k ep k-O 2k

k -2k- , k -2k-i
S() (-1) c 2k , S p d (-1) d

k=O k=O 2k+1"
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Exponential forms -

Ai(Z) Z a '4arg Z/ <

(B-i0)

Ai'(Z) - /arg Z/ <

7 Ze - S /arg Z/ <3

.,3i (Z) 1 Ze S b /arg Z/ < -,/3

Oscillatory forms -

redefine 2 =  (-Z) /

Ai(Z , sin' /arg Z/ > 21/3
Se0

(B-12)

z (Z)- epc + S psin,' /arg Z/ > 23

1 - /arg Z/ > 2/3

(B-13)

n ' - S cos /arg Z/ > 2-/3

~~(~-- [epif' op ]
Special oscillato-y forr,.s for Bi -

e 2 i /3 3/2
-ee7 re (Ze )

B-4
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Bi(Z) q e±i7/ 4 Z- n iSinWc + In2

-S Cos(-' + 1 n2)] /(arg Z)-+/ < 27/3

Bi (Z) 2 e+i /4 z; epcos (' n2) (B-14)

+ S sin( ' T -ln2) /(arg Z)+ / < 27/3
op 2 1 ~ r /1 <21

As long as the magnitude of Z is great enough to insure sufficient accuracy of
the asymptotic series, one or another of these can be used to compute the Airy
functions or their derivatives in any region of the complex Z-plane.

Problems In Numerical Computation

It is evident from equations (B-6) and (B-7) that there is a region on and
around the positive real Z-axis in which the terms of the series for Ai (and Ai')
alternate in sign. The individual terms become very large as the series
progresses thus requiring the differences of large numbers. Since these
differences should be small as the series converges, the numerical range imposed
by quantization in the computer word is exceeded very quickly.

Consequently, the ascending series cannot be computed far enough in Z to
match satisfactorily with the asymptotic series of equations (B-10). Even with
the 120-bit double precision words of the CDC Cyber 170 computer, only seven
decimal digit3 are correct at the best matching point between the ascending
and asymptotic series. The more common 64-bit double precision word would
restrict the accuracy even further, perhaps to the point of creating problems
in iterative calculations.

Origin-Translated Ascending Series

The solution to this problem lies in modifying the ascending series so that
the terms do not alternate in sign. This is easily done by solving the
differential equation (B-4) with a power series expanded around a point dis-
placed aong the positive real Z-axis. Let,

t = Z - Z°0 (B-15)

where

Z= origin point for the series,

so that equation (B-I) becomes,

d2U (t + Zo) U = 0. (B-16)
dt

2

B-5
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Set up the power series solution in terms of the new variable t,

U : antn (B-17)
n=O

and substitute into equation (B-16). By equating the coefficients of like
powers of t, we can form the following relationships in which a and aI are
arbitrary,

z
2 o

(B-18)
an+1 + Zoan

an+2 - (n+2) (n+l)

or
Z

(Z=a alt +- o o2 13
U(Z) = a a a +t + m- [a° + Za 1 ] t

3 +

from which we see that,

ao = U(Z0 )

(B-19)

a1 = U'(Z )

The conditions of equations (B-19) allow us to develop the Airy functions if we
know Ai(Z o) and Ai'(Zo) (or, of course, Bi(ZO) and Bi'(Zo)). Notice that Zo
is not restricted to being real although we will only consider the real case
since this will solve our particular accuracy problem.

In the following section, we will consider the problem of finding the
starting values Ai(Z o ) and Ai'(ZQ) as well as the errors of each of the other
series over their regions of validity in the Z-plane. At this point, it should
be mentioned that the origin-shifted series completely eliminates the computa-
tional problems involved with the usual ascending series. When the origin-
shifted series is evaluated for Z less than Zo , the terms are no longer
alternating in sign and the series converges rapidly.

Error Analysis

Except for the problem region (roughly a +300 wedge centered on the positive
real Z-axis) discussed above, the standard against which each of the series was
evaluated is a double precision (120-bit word or about 29 decimal digits)
ascending series based on equations (B-6). After some experimentation, I
selected /Z/ = 6 as the crossover point between the single precision ascending
series and the asymptotic series. Figure B-I shows the number of digits that
correspond exactly with the double precision ascending series for each form of
the single precision series at /Z/ = 6. The problem around the positive real
axis can be seen readily in the exponential case and the ascending series case

B-6
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for Ai (note the circled numbers). In addition, we can see over what regions
the other series should be used if, as in this case, we would like at least
eight decimal digits to be correct using only single precision (60-bit).

Since no series shown in figure B-1 covers the /arg Z/ < 1/6 region
adequately, we must now consider the on 1in-shifted series. The error of an
asymptotic series is shown in reference (11) to be of the order of the last
term included. This term is easily computed because beyond this point the
terms grow. Hence, we must compare successive terms 12 ,

-i -i-I
a0 i . ai+l¢ i_

until the i+lth term is larger than the ith term or,

ai+ 1  > I
ai

The coefficients are independent of c; therefore, for any , this point can be
easily calculated. The size of the ith term then gives the order of accuracy
of the summation.

In this work, the exponential asymptotic series gave a satisfactory v lue
at Z = 12, so I first generated an origin-shifted series about this point. As
shown in figure 2, this series tracked well with the asymptotic series down
to Z = 7. Next, I constructed a series with its origin at Z = 8 using the
values of Ai(8) and Ai'(8) from the Z = 12 series. This new series was evalu-
ated all the way back to Z = 0 and, as seen in figure B-2, the agreement with
the double precision zero-origin series is excellent below Z = 4. This shows
that even the double precision (120-bit) ascending series deteriorates rapidly
beyond Z = 5. Finally, the Z = 8 series was used to compute Ai(6) and Ai'(6) -

the starter values for the series actually used in the Airy function algorithm.
These values could have been calculated from the Z 12 series to roughly the
same accuracy but this was not apparent until the Z = 8 series had been tested.

Routine For Calculation of Airy Functions

Based on the error study summarized in the last section, the argument
plane (the complex Z-plane) was divided into the regions shown in figure B-3.
These regions and the associated forms of the Airy function series are as
follows,

I) /Z/ < 3 : ascending series (Zo 
= 0) for Ai and Bi - equations (B-6),

II) 3 < /Z/ 6: ascending series (Zo = 0) for Bi - equation (B-6) and

a) /arg Z/ - /6: ascending series (Zo 
= 6) for Ai -

equation (B-17),

b) /arg Z/ > -/6: ascending series (Zo = 0) for Ai -

equation (B-6),

B-7
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III) /Z/ > 6: a) /argZ/ 24/3: oscillatory asymptotic series for Ai
and Bi - equations (B-12) and (B-13),

b) /arg Z/ < 2n/3: exponential series for Ai - equation
(B-10) and special oscillatory series for Bi -

equation (B-14).

The starting values for the ascending series are:

1)6  Zo  0

Ai(O) = 0.355 028 053 888

Ai'(0) = -0.258 819 403 793

Bi(O) = 4Ai(0)
Bi'(O) = -r3 Ai'(O)

11) Zo  6

Ai(6) = 0.994 769 436 025 x 10
-5

Ai'(6) = -0.247 652 003 970 x 10
-4

B-8
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