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PAIRWISE ORTHOGONAL F-RECTANGLE DESIGNS
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Department of Mathematics, University of Illinois =t Chicago, Chicago, 111.,60680
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Va., 23284

Key words and phrases: Complete Sets; Pairwise Crthogonal Latin Squares;

Orthogonal Arrays; Codes; Simultaneous and/or Sequential Experiments.

Abstract: )Ihe concept of pairwise orthogonal Latin square designs is applied
to r row by ¢ column experiment designs which are called pairwise orthogonal

F-rectangle designs. These designs are useful in designing successive and/or

simultaneous experiments on the same set of rc experimental units, in construct-

ing codes, and in constructing orthogonal arrays. A pair of orthogonal F-rectangle

designs exists for any set of v treatments (symbols), whereas no pair of orthogonal
Latin square designs of orders two and sir. exists; and one of the two construction
methods presented does not rely on any previous knowledge about the existence of

a pair of orthogonal Latin square designs, whereas the second one does. It is

shown how to extend the methods to r = pv row by ¢ = qv column designs and how

to obtain t pairwise orthogonal F-rectangle designs. When the maximum possible

number of pairwise orthogonal P-rectangle designs is attained the set is said to

be complete. Complete sets are obtained for all v for which v is a prime power.
The construction method makes use of the existence of a complete set of pairwise
v Svb n
orthogonal Latin square designs and of an orthogonal array with ¥® columns,
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1. Introduction and Summary

s
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The existence of complete sets of pairwise orthogonal Latin squares of order

n, a prime power, has been known for 60 years; see, e.g., MacNeish (1922). The
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existence of complete sets of pairwise orthogonal F-squares of order n = s®

W 3
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2

with s treatments (symbols) for s a prime power was demonstrated by Hedayat et al.
(1975), while the existence of complete sets of F-squares of order 4t, t=1,2,-:-,
with two treatments was proved by Federer (1977). Mandeli (1975) showed how to
construct complete sets of pairwise orthogonal F-squares with a variable number
of treatments for prime powers. Mandeli et al. (1981) showed how to construct
sets of pairwise orthogonal F-squares of order n = 2s® with s treatments and for

s a prime power. The set was not complete, but became as;mptotically complete

as s and/or m approached infinity. Cheng (1980) and Mandeli and Federer (1981)
presented results on the construction of complete sets of orthogonal F-hyper-

rectangle designs for the number of treatments a prime power.

During the conduct of investigations, r row by ¢ column experiment designs
with v treatments may be conducted simultaneously and/or sequentially on the same
set of experimental units. The question of existence of pairwise orthogonal r
row by ¢ column designs with the same v or different v treatments arises. We
call a r row by c column design with v treatments a F-rectangle design (FRD).

We show how to construct a pair of orthogonal FRDs for any v. Then, we show how

to construct t pairwise orthogonal FRDs for any t for which t pairwise ortho-
gonal Latin squares [POLS(v,t)] exist. Also, we show how to construct a com-
plete set of pairwise orthogonal FRDs for v =2, r = 2, and ¢ = 4k; this set

exists for all 4k for which a Hadamard matrix exists. It is further shown how
to construct the complete set of pairwise orthogonal FRDs for v a prime power

and how to construct the set (not complete) of pairwise orthogonal FRDs for which
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a POLS(v,r)-set exists. Then it is shown how to decompose a set of pairwise
orthogonal FRDs into pairwise orthogonal FRDs with smaller numbers of treatments.
Finally, we point out the application of these results to coding theory and to

orthogonal arrays. The definitions in the above cited references are used here.

2. Pair of orthogonal F-rectangle designs for any v

It is well known that at least a pair of orthogonal Latin squares exists
for all Latin squares of order v except v = 2,6. The question arises concerning
the existence of a pair of orthogonal F-rectangles for v treatments (symbols).
The question can be answered in the affirmative for any v, even 2 and 6, as

indicated in the following Theorem.

Theorem 2.1. For every v, there exists a pair of orthogonal v X 2v F-rectangle

£ designs.
Proof. For every v except 2 and 6, there exists a pair of orthogonal Latin

squares of order v. Denote these as Ly(v) = L; and Lp(v) = Ip. Then, form

two F-rectangles as Fl = |Ly|L1| and Fp = |Ly|Ly|, or alternatively as |L, |L,

and L2 Ll . Obviously, Fl and F2 are orthogonal to each other from the property

of pairwise orthogonal Latin squares. For v = 2, we exhibit a pair of 2 x 4

orthogonal F-rectangles.

1 212 1 1 2 2
F. = and F
2 1 2 1 2 2 1 1

Now for v = 6 construct Fl by placing side by side two cyclic Latin squares

of order 6 in standard form as follows:




..............
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1 2 3 « 5 6 1 2 3 4% 5 6

2 3 L 5 6 1 2 3 4 5 6 1
Fl=3h5612 31*5612=L1(6)Ll(6)

b 5 6 1 2 3 4 5 612 3

5 6 1 2 3 L 5 6 1L 2 3 &4

6 1 2 3 k5 612 3 4 5

Now write out a cyclic Latin square of order 6 with ones on the main right
diagonal and write out a second cyclic Latin square of order 6 with twos on the

main right diagonal. Place these two Latin squares of order 6 side by side as

follows:
1 2 3 & 5 6 2 34 5 61
6 1 2 3 4 5 1 2 3 4 5 6
S 6 1 2 3 & 6 1 2 3 4 5
F, = = (6) (6)
21456123 5 6 1 2 3 &4 f2 2
3 L 5 6 1 2 L 5 6 1 2 3
2 3 4 5 6 1 3 4 5 6 1 2

Now, F2 is J_ to Fl. The above procedure may be used for any v except v=2. This
is interesting because a pair of orthogonal F-rectangle designs of v rows by
2v columns may be constructed without relying on the knowledge that a pair of

orthogonal Latin squares exists.

It should be noted that the pair of orthogonal 6 X 12 F-rectangles is not

unique. Below is a pair that is nonisomorphic to the above pair:
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Several more pairs can be formed by taking L,(6) as one of the 17 squares given

in Fisher and Yates (1938).

Theorem 2.1 can be generalized as follows:

Theorem 2.2. There exists a pair of orthogonal r-row by c-column F-rectangle

designs for

(1) any v when r and c are multiples of 2v

and
(1i) any v £ 2,6, when r and c are multiples of v.
Proof. For any v, construct a pair of v X 2v F-rectangles as above and denote

these as Fy and F,. Then for r and ¢, which are multiples of 2v, construct

B |

FI and Fg as
Fp Fp - Fo Fp cee
F*=|F, Py --- and F*=|F, F ol
1 .l . . C .2 .2 . hhpcggalon Fer
. : *. : : ‘o || NTTS  omaRl
Fv7C TAB

'
[

Since My l Fo, then FI l F! . anaouneed

0
; J.atifieatiom __

For v # 2, 6, construct F¢ 1 F# as follows:

v

22

vee

_Distributien/
L, L - L, L ** J| Avallebtlity Codes
) Aveil emd/or
FI = cee and Fg = cee DI Speeial

]

Since Iy | L, then F¥ | F§ .
Before proceeding to construct additional F-rectangles which are pairwise

orthogonal some notation is required. A well established notation for t pair-

wise orthogonal Latin squares of order v is POLS(v,t). For t pairwise orthogonal

.......... P
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T-square designs of order n, we use the notation POFSD(n;Ay,An,::¢,A ;t) where

\{ is the frequency with which the i*? treatment (symbol) occurs in each row and
each column, i = 1,2,-**,v = number of treatments. For F-rectangles with r rows
and ¢ columns, it will be necessary to indicate the values of r and ¢ as well as
the frequency of occurrence in rows m and the frequency of occurrence in columns

Xi' For t pairwise orthogonal F-rectangles we use the notation POFRD(r,c;

M, M A, ,Ap3t). When r = v, this may be simplified to POFRD(cjAy,:**,Ay;t)

and when the Xi are also equal, we use POFRD(c;XV;t). For the last situation a
simple change-over design (SCOD) results. (See, e.g., Tederer, 1955, and Kershner

and Federer, 1981.)

3. A set of t pairwise orthogonal F-rectangle designs

Given that a POLS(v,t)-set exists, one can write the following theorem.

Theorem 3.1. A set of t pairwise orthogonal pv by qv F-rectantles exists for

every POLS(v,t) set.

Proof. Let Ly, i=1,2,"*°,t, be the t pairwise orthogonal Latin squares of

order v in the set POLS(v,t). Construct F-rectangle F; as follows:

Li Li s e Li

F4 is pv X qv and is denoted by FRDi(pv,qv;qv,pv), since each treatment occurs
q times in each row and p times in each column. The set of t orthogonal F-

rectangle designs is denoted as POFRD(pv,qv;q¥,p 3t). For all v £ 2, 6,

". - . - . - . . - - . - - - . . - . B
- - . . . - - - . o v y ¥ . . - . . .
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2 <t< vy.l, When p = 1, a simple change-over design (SCOD) results.

Now the question arises concerning other values as well as the maximal

value of t. In this connection we can say the following:

Theorem 3.2. The maximal value of t is the integer part of (r-1)(c-1)/(v-1).

Corollary 3.1. The maximal value of t for p = 1 and ¢ = qv is qv-1l.

Proof. In anr = pv by ¢ = qv row by column design, there are (pv-1)(qv-1)
degrees of freedom associated with the row by colunn interaction. Each set of
treatments in a FRD is associated with v-l1 degrees of freedom, and each of the

t sets of the v-1 degrees of freedom must come from the interaction degrees of
freedom in order to be orthogonal to row and column contrasts. Hence, there

are at most (r-1)(c-1)/(v-1) = (pv-1)(qv-1)/(v-1) sets. When p = 1, the maximal

value for t is qv-1; note that these are the simple change-over designs, (SCODs).

Definition 3.1. When t = (pv-1)(gqv-1)/(v-1), the set POFRD(pv,qv;q¥,p';t) is

said to be complete.

4. Complete sets of pairwise orthogonal F-rectangles for v =2, p=1

In a simple change-over design with v = 2 symbols, there are two rows and
2q columns. Now, when 2q = 4k, ¥ = 1,2,°++, a complete set of pairwise mutually

orthogonal FRDs exists as described below.

Theorem 4.1. A POFRD(bk;(2k)2;4k-1) set exists for all 4k for which a Hadamard

matrix exists.

Proof. Ir a FRD(4k;(2k)2), there are two sequences of symbols, namely ; and i

in the 4k colums. Denote one of the seqiences as +1 and the other as -1.

PP e e ete s e . . . . - BRI
M L TR L S TR T e e . - Tt R
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When a Hadamard matrix is normalized there are 4k plus ones in the first column
and in the first row. In the second through the 4k'® row, there are 2k plus ones
and 2k minus ones, and every row is orthogonal to every other row. Now con-
struct bk-1 FRDs from the last 4k-1 rows of the Hadamard matrix where a plus one
indicates the sequence ; and a minus one indicates the sequence i. Since any

two rows of the Hadamard matrix are orthogonal, any two corresponding two FRDs
will be orthogonal. Since bk-1l = t is the maximum number of FRDs that can be
constructed, the set is complete. Hence, a POFRD(kk;(2k)Z?;4k-1) set exists if

a Hadamard matrix of order 4k exists.

Now we can also prove the following.

Theorem 4.2. t = O or 1 for all 2q £ 4k, k = 1,2,-** .

- Proof. When the number of columns is equal to 4k-1 or 4%k-3, k = 1,2,***, no FRD
!l exists, i.e., t = O. When 2q = 4k-2, k¥ = 1,2,:+-, one can easily construct a

FRD; hence, t is at least one. Now, in constructing +1 and -1 (bk-2) x (Lk-2)

contrast matrices containing (2k-1) plus ones and (2k-1) minus ones, one may

construct the first row with all plus ones and the second row with (2k-1) plus
ones and (2k-1) minus ones. Now it is impossible to construct a third row of the
S matrix which has (2k-1) plus ones and (2k-1) minus ones and which is orthogonal
to each of the first two rows of the matrix. This is so because it is impossible
E to divide an odd number, 2k-1, into two equal parts. Since this is not possible,
t = 1 for all 4k-2. Note that when k = 1, we have a 2 X 2 Latin square, and we
know that it is mateless, i.e., t = 1.
-

=

-,/

5. Complete sets of pairwise orthogonal FRDs for v a prime power, r = v

Prior to presenting the general result for complete sets of pairwise ortho-

gonal F-rectangle designs with v symbols, v a prime power, v rows, and W = gqv




.........................

columns, let us consider a POFRD(9;3%;8)-set. To construct this set we use the

POLS(3,2)-set and the orthogonal array OA(9,4,3,2)-set which are:

POLS(3,2) set OA(9,4,3,2)
Ly L, 000 111 222
0l2 o12 012 o012 o012
120 201 012 120 201
201 120 0l2 201 120

Now use L and associate the symbols 0, 1, 2 in the OA with the columns of L,.

Using the four rows of the OA, we obtain the following four FRDs:

L

1
Row 1 of OA Row 2 of OA Row 3 of OA Row & of QA
000 111 222 012 0l2 012 012 120 201 012 201 120
111 222 000 120 120 120 120 201 012 120 012 201
222 000 111 201 201 201 201 012 120 201 120 o012

Now use Lp in the same manner to obtain four more FRDs:

b
: L

Row 1 of OA Row 2 of OA Row 3 of OA Row 4 of OA

000 111 222 012 o012 012 012 120 201 012 201 120

222 000 111 201 201 201 201 012 120 201 120 012

111 222 000 120 120 120 120 201 012 120 012 201

We now have gqv-1 = 8 pairwise orthogonal FRDs, and the set is complete.

Now consider a POFRD(27;9%;26)-set. To construct this set use L, and Ly

above and the 0A(27,13,3,2) which is




) Dt
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111
111
222
000
ol12
120
102
120
102
201
210
012
021

111
222
000
222
012
120
102
201
210
012
021
201
210

222
000
222
222
012
201
201
012
021
201
210
201
210

222
111
000
111
o1z
201
201
120
102
012
021
120
102

111
000
111
111
012
120
102
012
021
120
102
120
102

000
222
222
111
012
012
021
201
210
201
210
120
102

000
000
000
000
012
012
021
012
02l
012
021
012
021

000
111
111
222
0l2
0l2
021
120
10
120
102
201
210
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Thus, the POLS(3,2)-set and the OA(27,13,3,2)

F-1 = 26 POFRDs which is the complete set.

Theorem 5.1.

222
222
111
000
012
201
201
201
210
120
102
012
021

may be used to construct the

Following the above procedure we state the following theorem:

A complete set of pairwise orthogonal F-rectangle designs exists

exists.

Proof.

set and the orthogonal array OA(v%, (vR-1)/(v-1),v,2).

The proof follows the construction method outlined above.

for v a prime power and qv equal to v?, that is a POFRD(v2; (v=1)V; vP-1)-set

Use a POLS(v,v-1)-

Take the first Latin square,

L, from the POLS(v,v-1)-set and the first row of OA(v®,(v"-1)/(v-1),v,2) to form
the first FRD(v?; (vP"1)V). Take L; and the second row of OA to form a second
FRD(v?; (v*1)V). Continue using rows of OA until (vB-1)/(v-1) FRD(vn;(vn'l)V)s
have been formed. These (vR-1)/(v-1) FRDs are pairwise orthogonal since the
rows of the OA are orthogonal. Now take a second Latin square from the

POLS(v,v-1)-set and form an additional set of (v?-1)/(v-1) FRDs. This set forms

a pairwise orthogonal set, and is pairwlse orthogonal to the first set of
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of (vn-l)/(v-l) FRDs. Continue this process until the last La“in square in the
POLS(v,v-1)-set has been used. There will be (v-1)(v®-1)/(v-1) = v'-1 POFRDs.
Since vP-1 is the maximum number, the set is complete. Cheng (:1380) and

Mandeli and Federer (1981) present Theorem 5.1 in more generali:y.

6. Other sets of POFRDs

It is not known what values of t are possible when v is nct a prime power

and/or qv # vB. For example, consider the following three row ty six column FRDs:

FRD, FRD,

00 11 22 00 11 22
22 00 11 11 22 00
11 22 00 22 00 11

It is not known if t can be greater than two in a POFRD(6;23;t)-set.

For any v, we can state the following: -

Theorem 6.1. Given a POLS(v,r)-set and an OA(v?,t,v,2), the method of construc-

tion for Theorem 5.1 produces rt pairwise orthogonal F-rectangle designs, i.e.,

the POFRD(v?; (V*"1)V;rt)-set.

However, it is not known if the set can be extended for values greater than rt.

J- Decomposition of FRDs

When v = ph, P a prime power and h a positive integer, a v row by v column
FRD can be decomposed into (ph-l)/(p-l) POFRDs with p symbols. If an integer k
divides h, then the above FRD can be decomposed into (pn-l)/(pk-l) POFRDs with

pk symbols. Likewise, for a set of t POFRDs with ph symbols, each of the t FRDs




o can be jecomposed into (ph-l)/(pk-l) sets of POFRDs, resulting in a total of
ii t (ph-l)/(pk—l) POFRDs with pX symbols. One can also decompose this set of t
i; POFRDs with ph symbols into sets with variable number of symbols. For example,
= ifh=6, k=12, 3 and 6, resulting in POFRDs with p®, p®, p®, and p symbols.

ii Theorems 7.1 and 7.2 embody the results described above.

Theorem 7.1. If v = ph, where p is a prime power and h is a positive integer,

for all integers k which divide h, then a v row by v column FRD with v symbols

!l can be decomposed into (v-1)/(p®-1) POFRDs which are of size v rows bty v0! columns

and contain pk symbols.

Theorem 7.2. Given the conditions in Theorem 7.1 for each POFRD;, i = 1,2,:--,t,

POFRD; with ph symbols can be decomposed into (ph-l)/(pk‘-l) POFRDs, which are of

size v rows and v® columns and contain pkl symbols. The t POFRD;s can be decom-

X t k. . .
posed into zi=l(ph-l)/(p '-1) POFRDs of size v rows by v? columns and variable

numbers of symbols pk‘.

The above theorems and their proofs follow from a more general result ob-

tained by Mandeli (1975) and Mandeli and Federer (1981).

Also, partial OAs can be formed from POLS(v,t < v = 1)-sets, and they can

also be formed from a set of t POFRDs with a varisble number of symbols to give

OA(v**1,by,51,2) + OA(V™*L,by,5p,2) + -+ + 0A(V**L,b,,5,,2).

8. Formation of orthogonal arrays and codes

Just as POLS(v,v-1)-sets may be used to construct orthogonal arrays, the

POFRD(v0; (v1=1)V,f.1)-set may also be used to construct arrays of the OA(vA*l P v 2’

+ 0A(vn+1,l,vn,2) type. Perhaps a better notation for orthogonal arrays with a

sets of symbols, 81,80,°°*,8,; bl,be,---,ba rows (assemblies) with sy symbols
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being associated with b; rows, and cr runs, would be OA(cr;bl,ba,--',ba;
sl,sz,---,sa;Z). For example, the orthogonal array formed from the pair of
orthogonal 6 X 12 rectangles would be OA(72;1,3;12,6;2). That is, there would
be one row with 12 symbols and 3 rows with 6 symbols. These orthogonal arrays
are then used to construct codes in the same manner as they are for the OAs

formed from POLS(V,t)-sets.

The set of POFRDs obtained from Theorems 7.1 and 7.2 can be used to con-
struct orthogonal arrays with pk‘ symbols for all ky which divide h. Likewise,
codes from these orthogonal arrays can be constructed with variable numbers of

symbols.

A previous limitation in constructing codes was the width of the orthogonal
array. This limitation has now been removed in that the width of the code for
v symbols, v a prime power, is v? where n may be any positive integer. The
length of the code has been no problem, since the orthogonal array may be re-
peated as often as required. Also, the above results allow construction of codes

with variable numbers of symbols.

Remark
The above discussion was confined in some instances to FRDs which had v
rows. The results, as shown by Mandeli and Federer (1981), can easily be

extended to the case where there are v® rows and v® columns in the FRDs.
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