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" Orthogonal Arrays; Codes; Simultaneous and/or Sequential Experiments.

Abstract: The concept of pairwise orthogonal Latin square designs is applied

to r row by c column experiment designs which are called pairwise orthogonal

F-rectangle designs. These designs are useful in designing successive and/or

simultaneous experiments on the same set of rc experimental units, in construct-

' ing codes, and in constructing orthogonal arrays. A pair of orthogonal F-rectangle

,: designs exists for any set of v treatments (symbols), whereas no pair of orthogonal

Latin square designs of orders two and six exists, and one of the two construction

methods presented does not rely on any previous knowledge about the existence of

a pair of orthogonal Latin square designs, whereas the second one does. It is

shown how to extend the methods to r = pv row by c = qv column designs and how

to obtain t pairwise orthogonal F-rectangle designs. When the maximum possible

number of pairwise orthogonal F-rectangle designs is attained the set is said to

be complete. Complete sets are obtained for all v for which v is a prime power.

The construction method makes use of the existence of a complete set of pairwise
V 1),

orthogonal Latin square designs and of an orthogonal array with yv' columns,
" vb h

(vA-l)/(v-l) rows, v symbols, and of strength two. SlF '-_
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1. Introduction and Summary

The existence of complete sets of pairwise orthogonal Latin squares of order

n, a prime power, has been known for 60 years; see, e.g., MacNeish (1922). The

existence of complete sets of pairwise orthogonal F-squares of order =s m

with s treatments (symbols) for s a prime power was demonstrated by Hedayat et al.

*(1975), while the existence of complete sets of F-squares of order 4t, t=l,2,...,

with two treatments was proved by Federer (1977). Mandeli (1975) showed how to

-construct complete sets of pairwise orthogonal F-squares with a variable number

- of treatments for prime powers. Mandeli et al. (1981) showed how to construct

.- sets of pairwise orthogonal F-squares of order n = 2 sm with s treatments and for

s a prime power. The set was not complete, but became asymptotically complete

as s and/or m approached infinity. Cheng (1980) and Mandeli and Federer (1981)

presented results on the construction of complete sets of orthogonal F-hyper-

* rectangle designs for the number of treatments a prime power.

During the conduct of investigations, r row by c column experiment designs

" with v treatments may be conducted simultaneously and/or sequentially on the same

set of experimental units. The question of existence of pairwise orthogonal r

*. row by c column designs with the same v or different v treatments arises. We

*" call a r row by c column design with v treatments a F-rectangle design (FRD).

We show how to construct a pair of orthogonal FRDs for any v. Then, we show how

*'- to construct t pairwise orthogonal FRDs for any t for which t pairwise ortho-

" gonal Latin squares [POLS(v,t)] exist. Also, we show how to construct a com-

plete set of pairwise orthogonal FRDs for v = 2, r = 2, and c = 4k; this set

exists for all 4k for which a Hadamard matrix exists. It is further shown how

to construct the complete set of pairwise orthogonal FRDs for v a prime power

and how to construct the set (not complete) of pairwise orthogonal FRDs for which



a POLS(v,r)-set exists. Then it is shown how to decompose a set of pairwise

* orthogonal FRDs into pairwise orthogonal FRDs with smaller numbers of treatments.

- Finally, we point out the application of these results to coding theory and to

orthogonal arrays. The definitions in the above cited references are used here.

2. Pair of orthogonal F-rectangle designs for any v

It is well known that at least a pair of orthogonal Latin squares exists

for all Latin squares of order v except v = 2,6. The question arises concerning

the existence of a pair of orthogonal F-rectangles for v treatments (symbols).

The question can be answered in the affirmative for any v, even 2 and 6, as

indicated in the following Theorem.

Theorem 2.1. For every v, there exists a pair of orthogonal v X 2v F-rectangle

designs.

Proof. For every v except 2 and 6, there exists a pair of orthogonal Latin

squares of order v. Denote these as Ll(v) = LI and L2 (v) = L2 . Then, form

two F-rectangles as F= 1 = and F2 = L--2, or alternatively as

and I . Obviously, F1 and F2 are orthogonal to each other from the property

of pairwise orthogonal Latin squares. For v = 2, we exhibit a pair of 2 X 4

orthogonal F-rectangles.

1 2 1 2 1 1 2 2 1

FI1 = and F2 =

Now for v - 6 construct F1 by placing side by side two cyclic Latin squares

of order 6 in standard form as follows:

• D . . . ..* *• .. . . - .... .



12 3 56 1 234 623461 2 3 4 5
3 - 5 6 1 2 34 , 561

F 3 5 6 1 2 3 4 5 6 1 2 =IL1(6) ILI(6)
S 5612 3 4 5612 3

5612 34 5612 3 4

612 34 5 6 1 2 3 4 5

Now write out a cyclic Latin square of order 6 with ones on the main right

"* diagonal and write out a second cyclic Latin square of order 6 with twos on the

* main right diagonal. Place these two Latin squares of order 6 side by side as

follows:

1 2 3 4 5 6 2 3 4 5 6 1

61345 1345 6

F2 5 6 1 2 3 4 6 1 2 3 4 5 = L(6)1_F=4 5 6 1 2 3 5 6 1 2 3 4

345612 456123

2 3 4 5 6 1 3 4 5 6 1 2

Now, F2 is J to F1 . The above procedure may be used for any v except v-2. This

is interesting because a pair of orthogonal F-rectangle designs of v rows by

2v columns may be constructed without relying on the knowledge that a pair of

orthogonal Latin squares exists.

It should be noted that the pair of orthogonal 6 X 12 F-rectangles is not

unique. Below is a pair that is nonisomorphic to the above pair:

12 34 56 12 34 56 13524 3 5 1 6 4 6 2

6 1 2 3 4  5 6 1 2 3 4  5 4 2 4 6 3 5 3 6 2 1 5 1

5 6 1 2 34 5 6 1 2 34 6 5 3 5 1 4 2 4 1 3 2 6

45 6 1 2 3 4 5 6 1 2 3 5 1 6 4 6 2 1 3 5 2 4 3

3 4 5 6 1 2 3 4  5 6 1 2 3 6 2 1 5 1 4 2 4 6 3 5

2 3 5 6 1 234 5 6 1 2 1 3 26 6 5 3 51



Several more pairs can be formed by taking L1 (6) as one of the 17 squares given

in Fisher and Yates (1938).

Theorem 2.1 can be generalized as follows:

Theorem 2.2. There exists a pair of orthogonal r-row bv c-column F-rectangle

designs for

(i) any v when r and c are multiples of 2v

and

(ii) any v 2,6, when r and c are multiples of v.

Proof. For any v, construct a pair of v x 2v F-rectangles as above and denote

these as F1 and F2. Then for r and c, which are multiples of 2v, construct

F* and F-*as

F1  F1  F2 F2  .--

F= 1 l *. and F- F

I  . n= F2  2 . Aesslon Fr
;'" l' C TALB

Since F1  F2 , then F F . e 0

For v 2, 6, construct F I F* as follows:

i D St ribUtlen/
"L L2 L2 "'" allbtilty Codes

Lv6tl and/or

1r 2 L, . n ~ 2 L2 ***la

* . .. •. .

Since L 1  L2, then F F •

Before proceeding to construct additional F-rectangles which are pairwise

orthogonal some notation is required. A well established notation for t pair-

wise orthogonal Latin squares of order v is POLS(v,t). For t pairwise orthogonal

- - -

",. . . . . . .-..... . . .. •'. " "."_ "- _ ," ," ' . .:', _: :- ,, _ .. .. .. . .
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?-square designs of order n, we use the notation POFSD(n; 1 ,X2 , ... ,Xv;t) where

ki is the frequency with which the ith treatment (symbol) occurs in each row and

each column, i = 1,2,-' ,v = number of treatments. For F-rectangles with r rows

and c columns, it will be necessary to indicate the values of r and c as well as

the frequency of occurrence in rows ni and the frequency of occurrence in columns

X1. For t pairwise orthogonal F-rectangles we use the notation POFRD(r,c;

When r = v, this may be simplified to POFRD(c;Xl,'-.*,X;t)

p and when the Xi are also equal, we use POFRD(c;kV;t). For the last situation a

simple change-over design (SCOD) results. (See, e.g., Federer, 1955, and Kershner

and Federer, 1981.)

3. A set of t pairwise orthogonal F-rectangle designs

Given that a POLS(v,t)-set exists, one can write the following theorem.

Theorem 3.1. A set of t pairwise orthogonal pv by qv F-rectantles exists for

every POLS(v,t) set.

Proof. Let L, i = 1,2,"',t, be the t pairwise orthogonal Latin squares of

order v in the set POLS(vt). Construct F-rectangle Fi as follows:

Li  Li .. Li

Li Li Li

Fi= : • . •

Li Li •.. Li

Fi is pv X qv and is denoted by FRDi(pv,qV;qv,pv), since each treatment occurs

q times in each row and p times in each column. The set of t orthogonal F-

rectangle designs is denoted as POFRD(pv,qv;qV,pv;t). For all v 2, 6,
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2 f t'S v-i. When p = 1, a simple change-over design (SCOD) results.

Now the question arises concerning other values as well as the maximal

value of t. In this connection we can say the following:

Theorem 3.2. The maximal value of t is the integer part of (r-l)(c-l)/(v-l).

Corollary 3.1. The maximal value of t for p - 1 and c = qv is qv-i.

Proof. In an r = pv by c = qv row by column design, there are (pv-l)(qv-l)

*-- degrees of freedom associated with the row by colunn interaction. Each set of

treatments in a FRD is associated with v-I degrees of freedom, and each of the

*2 t sets of the v-I degrees of freedom must come from the interaction degrees of

freedom in order to be orthogonal to row and column contrasts. Hence, there

are at most (r-1)(c-l)/(v-1) = (pv-1)(qv-l)/(v-1) sets. When p = 1, the maximal

value for t is qv-l; note that these are the simple change-over designs, (SCODs).

Definition ).1. When t = (pv-l)(qv-l)/(v-l), the set POFRD(pv,qv;qv,pv;t) is

said to be complete.

_. Complete sets of pairwise orthogonal F-rectangles for v =2, p

In a simple change-over design with v = 2 symbols, there are two rows and

2q columns. Now, when 2q = 4k, k = 1,2,..., a complete set of pairwise mutually

orthogonal FRDs exists as described below.

Theorem 4.1. A POFRD(4k;(2k)2;4k-l) set exists for all 4k for which a Hadamard

matrix exists.

1 ad2
Proof. Ir a FRD(4k, (2k)2), there are two sequences of symbols, namely 2 and

in the 4k colums. Denote one of the sequences as +1 and the other as -1.



When a Hadamard matrix is normalized there are 4k plus ones in the first column

and in the first row. In the second through the 4kth row, there are 2k plus ones

and 2k minus ones, and every row is orthogonal to every other row. Now con-

struct 4k-i FRDs from the last 4k-i rows of the Hadamard matrix where a plus one

indicates the sequence 2 and a minus one indicates the sequence l Since any

2 
V

two rows of the Hadamard matrix are orthogonal, any two corresponding two FRDs

will be orthogonal. Since 4k-1 = t is the maximum number of FRDs that can be

constructed, the set is complete. Hence, a POFRD(4k;(2k)2 ;4k-1) set exists if

a Hadamard matrix of order 4k exists.

Now we can also prove the following.

* Theorem 4.2. t = 0 or 1 for all 2q A 4k, k =1,2,''

Proof. When the number of columns is equal to 4k-1 or 4k-3, k = 1,2, '--, no FRl l

exists, i.e., t = 0. When 2q = 4k-2, k = 1,2, .-, one can easily construct a

FRD; hence, t is at least one. Now, in constructing +1 and -1 (4k-2) x (4k-2)

contrast matrices containing (2k-i) plus ones and (2k-i) minus ones, one may

construct the first row with all plus ones and the second row with (2k-i) plus

* ones and (2k-i) minus ones. Now it is impossible to construct a third row of the

matrix which has (2k-i) plus ones and (2k-i) minus ones and which is orthogonal

to each of the first two rows of the matrix. This is so because it is impossible

* ' to divide an odd number, 2k-i, into two equal parts. Since this is not possible,

t = 1 for all 4k-2. Note that when k = 1, we have a 2 X 2 Latin square, and we

know that it is mateless, i.e., t = 1.

5. Complete sets of pairwise orthogonal FRDs for v a prime power, r = v

Prior to presenting the general result for complete sets of pairwise ortho-

gonal F-rectangle designs with v symbols, v a prime power, v rows, and v
n= qv



,. columns, let us consider a POFRD(9;3P;8)-set. To construct this set we use the

"* POLS(3,2)-set and the orthogonal array 0A(9,4,3,2)-set which are:

POLS(3,2) set OA(9,4,3,2)

L1  L2  000 111 222

012 012 012 012 012

120 201 012 120 201

201 120 012 201 120

Now use L1 and associate the symbols 0, 1, 2 in the OA with the columns of L1 .

* Using the four rows of the OA, we obtain the following four FRDs:

;- L1

Row 1 of OA Row 2 of OA Row 3 of OA Row 4of OA

000 111 222 012 012 012 012 120 201 012 201 120

l1 222 000 120 120 120 120 201 012 120 012 201

222 000 111 201 201 201 201 012 120 201 120 012

Now use L2 in the same manner to obtain four more FRDs:

L2

Row 1 of OA Row 2 of OA Row 3 of OA Row 4 of 0A

000 111 222 012 012 012 012 120 201 012 201 120

222 000 111 201 201 201 201 012 120 201 120 012

111 222 000 120 120 120 120 201 012 120 012 201

We now have qv-1 = 8 pairwise orthogonal FRDs, and the set is complete.

Now consider a POFRD(27;93;26)-set. To construct this set use L1 and 2

above and the OA(27,13,3,2) which is
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000 000 000 111 11l Il1 222 222 222

000 111 222 000 111 222 000 111 222

000 111 222 111 222 000 222 000 111

000 222 111 ll 000 222 222 ll 000

012 012 012 012 012 012 012 012 012

012 012 012 120 120 120 201 201 201

S 021 021 021 102 102 102 201 201 201

012 120 201 012 120 201 012 120 201

021 102 210 021 102 210 021 102 210

012 120 201 120 201 012 201 012 120

021 102 210 102 210 021 210 021 102

- 012 201 120 120 012 201 201 120 012

021 210 102 102 021 210 210 102 021

Thus, the POLS(3,2)-set and the OA(27,13,3,2) may be used to construct the

3-1 = 26 POFRDs which is the complete set.

Following the above procedure we state the following theorem:

-. Theorem 5.1. A complete set of pairwise orthogonal F-rectangle designs exists

for v a prime power and qv equal to vn , that is a POFRD(vn;(vn-l)v;vn-l)-set

exists.

*] Proof. The proof follows the construction method outlined above. Use a POLS(v,v-l)-

set and the orthogonal array 0A(vn ,(vn-l)/(v-1),v,2). Take the first Latin square,

L, from the POLS(v,v-l)-set and the first row of 0A(vn,(vn-l1)/(v-l),v,2) to form

the first FRD(vn;(vn'l)v). Take LI and the second row of OA to form a second

FRD(vn;(vn-')v). Continue using rows of OA until (vn-l)/(v-l) FRD(vn;(vn'l)v)s

- have been formed. These (vn-l)/(v-l) FRDs are pairwise orthogonal since the

rows of the OA are orthogonal. Now take a second Latin square from the

* POLS(v,v-l)-set and form an additional set of (vn-l)/(v-1) FRDs. This set forms

a pairwise orthogonal set, and is pairwise orthogonal to the first set of
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of (vn-1)/(v-1) FRDs. Continue this process until the last Latin squ'are in the

POLS(v,v-l)-set has been used. There will be (v-1)(vn-l)/(v-1) = vn-i POFRDs.

Since vn-l is the maximum number, the set is complete. Cheng (:980) and

Mandeli and Federer (1981) present Theorem 5.1 in more generali-y.

6. Other sets of POFRDs

It is not known what values of t are possible when v is no* a prime power

and/or qv vn . For example, consider the following three row zy six column FRDs:

FRD!  FRD

00 11 22 00 11 22

22 00 11 11 22 00
11 22 00 22 00 11

It is not known if t can be greater than two in a POFRD(6;23 ;t)-set.

I. For any v, we can state the following:

Theorem 6.1. Given a POLS(v,r)-set and an OA(vn,t,v,2), the method of construc-

tion for Theorem 5.1 produces rt pairwise orthogonal F-rectangle designs, i.e.,

*_the POFRD(vn; (v-)V;rt)-set.

However, it is not known if the set can be extended for values greater than rt.

7.Decomposition of FRIs

When v = ph, p a prime power and h a positive integer, a v row by vn column

! FRD can be decomposed into (ph-l)/(p-1 ) POFRDs with p symbols. If an integer k

divides h, then the above FED can be decomposed into (pn-l)/(pk-1 ) POFRDs with

pk symbols. Likewise, for a set of t POFRDs with ph symbols, each of the t FRDs

.".
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can be decomposed into (ph-l)/(pk-l) sets of POFRDs, resulting in a total of

t (ph-l)/(pk-1) POFRDs with pk symbols. One can also decompose this set of t

POFRDs with ph symbols into sets with variable number of symbols. For example,

if h = 6, k 1 1, 2, 3 and 6, resulting in POFRDs with , , p2 , and p symbols.

Theorems 7.1 and 7.2 embody the results described above.

Theorem 7.1. If v = ph, where p is a primp power and h is a positive integer,

for all integers k which divide h, then a v row by vn column FRD with v symbols

U can be decomposed into (v-l)/(pk-l) POFRDs which are of size v rows by vn columns

and contain p symbols.

Theorem 7.2. Given the conditions in Theorem 7.1 for each POFRDi, i = l,2,... ,t,
POFRDi with ph symbols can be decomposed into kl) POFRDs, which are of

size v rows and vn columns and contain p symbols. The t POFRDis can be decom-

posed into E =, ( p h - 1 )/ ( p k 1- i  POFRDs of size v rows bx vn columns and variable

numbers of symbols pi

The above theorems and their proofs follow from a more general result ob-

tained by Mandeli (1975) and Mandeli and Federer (1981).

Also, partial OAs can be formed from POLS(v,t < v - l)-sets, and they can

also be formed from a set of t POFRDs with a variable number of symbols to give

OA(vn+l,bl,sl,2) + OA(vn+,b 2 ,s 2 ,2) + ... + OA(vn+l,ba,sa,2).

8. Formation of orthogonal arrays and codes

Just as POLS(v,v-l)-sets may be used to construct orthogonal arrays, the

POFRD(vn;(vnfl)V~vn-l)-set may also be used to construct arrays of the OA(vn+l,vn,v,2'

+ OA(v+ 1,l,vn,2) type. Perhaps a better notation for orthogonal arrays with a

sets of symbols, 1,2,...,Sa, bl,b2 ,*,ba rows (assemblies) with si symbols

s o s. . . . . . . . . . . . . . . . . . . . . . . - -
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being associated with bi rows, and cr runs, would be QA(cr;bl,b2 ,-..,ba;

sl,s 2 ,-'-,Sa;2). For example, the orthogonal array formed from the pair of

orthogonal 6 x 12 rectangles would be OA(72;1,3;12,6;2). That is, there would

be one row with 12 symbols and 3 rows with 6 symbols. These orthogonal arrays

are then used to construct codes in the same manner as they are for the OAs

formed from POLS(V,t)-sets.

The set of POFRDs obtained from Theorems 7.1 and 7.2 can be used to con-

struct orthogonal arrays with p symbols for all k. which divide h. Likewise,

codes from these orthogonal arrays can be constructed with variable numbers of

symbols.

A previous limitation in constructing codes was the width of the orthogonal

array. This limitation has now been removed in that the width of the code for

v symbols, v a prime power, is vn where n may be any positive integer. The

* length of the code has been no problem, since the orthogonal array may be re-

peated as often as required. Also, the above results allow construction of codes

with variable numbers of symbols.

Remark

The above discussion was confined in some instances to FRDs which had v

" rows. The results, as shown by Mandeli and Federer (1981), can easily be

extended to the case where there are vm rows and vn columns in the FRDs.
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