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SUMMARY
Under consideration are strict solutions u = u(xq,X,Xx4,t) = u(x,t) of
the differential equation

3F(ut)
ot

= - = *
Ou L Au (*)

which are "radial® (or have "spherical symmetry”) in the sense that u only
depends on t and on r= Ix|. we prescribe initial conditions

u(x,0) = ef(r), ut(x.O) = eg(r) (**)
for u, where £ and g are even functions in r of class c. (for
simplicity) and of compact support, and € > 0 is a parameter that measures
the “amplitude” of the initial data. We assume that equation (*) reduces to
the linear wave equation [Cu = 0 for "infinitesimal™ u, that is we assume
that

F'(0) =0 .

In addition we postulate that (*) is "genuinely nonlinear" in the sense that

F"(0) # 0 .
Without restriction of generality we can always assume that

F"(0) > 0
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(if necessary changing u into =-u) and that f and g have their support

TN
\_."." o Tet

in the unit ball:
£(r) = g(r) =0 for |rx| > 1 .
We show here that every non-trivial solution u blows up after a finite
time T if € 1is sufficiently small. More precisely for given f, g, F

there exists a constant eo and a function A(e) such that

T < exp(éﬁgl) (*9s*)

for all € < €° Here A(€) is bounded independently of €:

C = lim sup A(€) < »
€+0

This result has to be compared with the known lower and upper bounds
for T. In [4] the author showed that T=T(e) increases faster than any
reciprocal power of €, as € + 0:

lim eNT(s) = o for any N .
e+0

fhis lower bound for T has been improved dramatically by S. Klainerman, [1],
who showed that for radial solutions

T > exp(%)
with a positive constant B. 1In view of (***), Klainerman's lower bound for
T is optimal in the general case. Upper bounds for T had been given
previously (see [2], [3]) without requiring the initial data to be radial or
€ to be small. But then certain inequalities for £ and g had to be
postulated, and in addition assumptions had to be made on the behavior of F
for large arguments. (Results of this latter type have also been derived for
other types of differential equations with spherical symmetry by Th. C.

Sideris [5]).)
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The argument used in the present paper is based on the use of

differential equations for the second derivatives of u along characteristic
curves (as was done in (6] in the case of one space dimension). This
emphasizes blow-up as a local phenomenon. We show that for small radial
initial data singularities are formed, even if the differential equation (*)
is imposed on u just for small values of u.. For the singularities in
question u and its first derivatives stay small, while certain second
derivatives become infinite. (This does however not exclude the possibility
that other types of singularities with different behavior form earlier in
other parts of the domain of u.) Blow-up takes place only after an
exceedingly long time, and only after the solution has passed through a phase
where the second derivatives are exceedingly small. Qualitatively the

behavior of the second derivatives resembles that of the function
€
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"‘ BLOW=UP OF RADIAL SOLUTIONS OF Ou = pvy IN

THREE SPACE DIMENSIONS
&c ; Fritz John

Zg The differential equation for u(x,t) = u(x4,X,,X3,t) is

Zi : Du =u,, = & =F'(uju, (1a)
- where it is assumed only

F"(0) =a>0 ; F'(0) =0 . (1b)
;ﬁ We can always continue F(A) outside of a neighborhood of the origin in such
" a way that also

: F'(M) <3 for all A (1)

so that equation (1a) is hyperbolic for all arguments; but actually we will

t; only need F'(A) for ) near 0. The aim is to show that all nontrivial

;E ) solution of (1a) with spherical symmetry and with initial data of compact
support and sufficiently small, blow up in finite time. We thus take u of
*: the form

:i u=nulr,t) ; r=|x| (1d)
L with initial data

o u=¢f(r) ; u , " eg(r) for t =0; ¢> 0 (le)
53 Jiace;

/‘ f(r) = £(-x) ; g(r) = g(-xr) for all r (1£)
w

f: f(r) = g(r) = 0 for |r| > 1 . (1g9)
THEOREM

i

5 . If e 1is sufficiently small the solution u either vanishes identically
‘E or has a finite life span T. Here T satisfies an estimate of the form

? . T < exp(Q%EL) (1h)
2

- Sponsored by the linited States Army under Contract Mo. DAAG29-80-C-0041.
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where A(e)

€ > 0;

more precisely

lim sup A(e) =

e+»0

where k 1is the function defined by

PROOF.

In the spherically symmetric case we can write (la) as

2

a sup k(\)

PT——— _-_v,uv_v.’

is a certain function which is bounded for sufficiently small

k(1) = % (AE"(A) + 2£°(2) - Ag'(A) - g(A)) .

where p is defined by

We introduce the vector

_ 2
(ru), = (14p)

1

Then (2a) yields the system

Here A has the eigenvalues 1(1+p)

Set

where then

P R A )

V_+AV
t r

(rurr) =

1+p = .
/1-?'(ut)
v1 (ru)r
v, (ru)t
0
0 with A = 2
=(1+p)

-1

0

and eigenvectors

' - (-(11p)) 2 (119) )

w

1

1
vr w1£ * w2€2

1, 1
2

1+ - + -
r(( p)urr utr) 2(1+p)ur u,

1Ix ~ 2(1+p) ‘2r

2(1+p)

(1i)

(13)

(2a)

(2b)

(2¢c)

(24)

(2e)

(3a)

(3b)
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+ +
r((1 p)urr+utr)+2(1 p)ur+ft
2(1+p)

‘ By (2d), (3b,c)
9 1

Wit ORIV = 20ep) PelTWy ) * g P (73w Twy)
w, =(1+p)w -'—1—p(v-v)*lp(w+3w) .

2t 2r = 201+p) Pel¥4™¥2) * g P w PV,

By (2b)

(14p)°F*(u,)

Py - 2r

((1*p)(w2-w1)-ut)

(1+p)5F'(ut)
Py 2r
By (1b), (2b) for small u,

(w1ﬂ2) .

p= % u, + O(ui) .

We can express then u_ in terms of p from (2b), writing for small u
t t

(1+p)4F'(ut) = P(p) = % a + 0(p)

Nij-

N |=

3 1 2
(1+p) F'(ut)ut = O(p) = 2P + 0(p) .

Then by (3f,g)
-P(p)(w1-w2) - Q(p) (1+p)P(p)(w1+w2)

P, = r PP " r !

and by (34,e)

‘(1+p)(29(p)w2-Q(p))
pt+(1*p)pr r

2 (1+p)(2P(p)w1+Q(p))
- -(1+p)p
L Py r r

) 2P(p)(w2 -w W, )4Q(p) (3w 4w,)
w, +(1tp)w, = L 12 1.2
1t 1r 2r

2
2P(p)(w2-w1w2)‘Q(P)(w1+3w2)

Wae(1*PIV,, 2r

T —T——— _-._..—‘_-_"‘_“_"_T

(3c)

(3d)

(3e)

(3f)

(3g)

(3h)

(4a)

(1b)

(4c)

(5a)

(5b)

(5¢)

(54)
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In what follows we shall just deal with equations (5a,b,c,d). Blow-up

will be based on the occurence of the term with w2 in (5¢c). The aim will be

1
to show that the other terms in (5c) can be neglected near the wave front for
large positive r. Equations (5a,b,c,d) represent ordinary differential

equations alony the characteristic curves defined by

dr

— = + o

at t(1+p) (Se)
Here

0 < 14p < V2 (5€)

by (2b), (1c)e If nu(r,t) is a strict solution for r € R, 0 <t < T, each
of the two families of characteristic curves will cover that region in a
"schlicht” manner. Since u(r,t) by (1g) vanishes for |r| > t+1, we also
have

wylr,t) = wy(r,t) = p(r,t) =0 for |r| > t+t1, 0 <t < T . (5g)
Hence the character;stics reduce to the line rit = const. for |r| > t+1.
We introduce the characteristics ‘as coordinate lines in the region of interest
to us. For that purpose we denote by cs the characteristic gf = =(1+p)

passing through the point (s+1,s) of the wave front. Choosing a positive

fixed s, (actually s, = 1//? ) we denote by PT the characteristic

0

dr
at - 1+p passing through the point of Cso for which t = S, + 1. (See

Figure 1.)

We always take

s »s

If Cs and PT intersect in the domain of existence 0 <t < T, we denote
the intersection by

(s+1-R,s+L) (5i)

where R and L are functions of s and T

R =R(s,7), L. = L(s, 1) . (53)

Al
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In particular

L(SOIT) =1 ; R(s,0)=0 |, (5k)

{(s+1,s)

Figure 1

We can approximate u by the solution of the linear homogeneous wave

equation with the same initial data. Let u! be the solution of (see (2a))
(tu‘) - (ru1) =0 (6a)
tt rr
with
-




u‘(r.O) = f(r) 3 u:(r,O) = g(r) . (6b)
Then
1
U(rut) - e (r,t)
and its first and second derivatives are of order O(E?) for t < 1/e2 for
small € (see John [7)], [2)). Here
1 o drtt)f(xtt)+(r-t)f(r-t) 1 _ (r+t
v (r,t) 2r * o7 Jp-p P 9lP)AP . (6c)
We shall restrict ourselves to the region
r+t > 1 (6d)
whexe by (1£,9)
1 o Sx=t)f(r-t) na
u (r,t) 2r o Ir-t p gl{pldp . (6e)
Using the expressions (3b,c) for Wqs Wy we find that for r+t > 1,
t < 1/e2
€ 1 1 1 1 2
v, =3 (t(urr “tr)+2ur-“t) + 0(re)
(6f)
= ¢k(r=t) + O(rezl
with k defined by (1j). sSimilarly
€ 1 1 1. 1 2 2
wy, =3 (r(urr+utr)+2ur+ut) + 0(re) O(re’) . (6g)

It is plausible from (6f,g) that the leading term in wy, w, is given by

ek(r-t). We have to make sure of the behavior of the function k(A). By

(1g,k)
k(A) =0 for (Al > 1 .
Moreover
14
k(A) = 2 ax (A (A+E(A)=XAg(A))

It follows that

1, xuar=o .

Then

K= Max k(i) > 0
=-1<A<1

«
.

= . - - " . - - ~ * - - - . v . . .
. v A TN . - A S I v T e e .
DGR T SR € SRR E T R A S T V. T P

(7a)

(7b)

(7¢c)

(7d)
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unless u is the trivial solution of (la). For K < 0 implies by (7a,c)
that k(A) vanishes identically. But then also by (1f,k)

0 = k(A)=k(=X) = A"(A)+2£'(A)

0 = k(A)+k(=A) = =M'(N=g(r) .
Since £ and g have compact support, it would follow that f, g and hence
also u vanish identically. We exclude the trivial solution so that (74d)
holds.

We can find constants Ky, x2, K3, A1, A2 such that

=1 <A< *z <1 5 K >K,>K, >0 (8a)
k(d)) > K, (8b)
k() > K; for x1 <A< xz (8¢c)
k(A) < xz for Az <A< (8d)

(see Figure 2). We need only to choose for 11 the "last" total maximum
point of Xk, i.e. such that
k(l1) =K 1 k(M) <X for X1 <A< 1 . (8e)
Since K > 0 we can find a Az such that
A1 < Az <1 : k(i) >0 for A1 < A< Az . (8f)

We then take for K4s K5, K3 any numbers with

sup k(A) < K2 < K‘ <K (8qg)
A, <A<
2
0 <K, < inf k(A) : K, <K . {8h)
3 3 2
A1<A<A2

(Notice that K; can be chosen arbitrarily close to K.)

We set

8§ = Ve I 8y = % . “ (9a)

In what follows we always assume that 6 is “sufficientiy” small, that ih §

is small compared to any positive constant that turns up in the computation.

e, e .. . - .
.t e < e . PN
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We first discuss the behavior of Wqs Wy oON Cso for so+1 >t > Sg° Since

here dr/dt = =(1+p) we have by (5f)

-~

*a
L]
%

hl]

Pl S
3 L
. "‘t

e
-

RN ONUSRY ;

~
- — e e e e e e e e e —

>
—

>
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Figure 2
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r < st = s, (1+8) = s 11+ (9b)
r> s, - V2 (t-s) > 8g- 2 > 8,(1-0(8) >0 . (9¢)
Thus on Cso for Sg €t < so+1

2

x4t > € > 80 > 1 1t <5+l < € (9d)
so that (6f,g) hold. Moreover by (6e)
1 2 € 2 3
= + = - + =
u, = eu 0(e) O(r) 0(e ) = 0(8) (9e)
and hence by (3h)
p=0(&8) . (9£)

Then, because of dr/dt = =(1+4p)

r =8

t 3
o*! IBO (1+p)at = 2s,+1-t f: p dt = 28 +1-t+0(5) . (99)

0
It follows from (6f,g) that on cso for 8y < t < s+l

w, = 62 (k(1=2(t=a)) + 0(8)]) = & k(1-2T) + 0(6)] (9h)
w, = 008 . (94)
Considering wq on Cso as a function of Tt = t-so for 0 < T <1, and
setting
1 ' .
T3 (1-Xi) for 1 = 1,2 (935)

we have from (8a,b,c,d), (%h)

v, = 0 for T =0
2 2

w, = s (k(k1) +0(8)) > 6 K1 for T = T (9%)
2

w1 > § K3 for 12 < 1t < 11 (91)
2

v, < § K2 for 0 < 1 < rz (9m)

provided € and hence § are sufficiently small. (See Figure 3.)

Introducing the characteristics as coordinate lines we have by (5i,j) for
the coordinates (r,t) of a point in terms of the characteristic parameters
S, T

r = g+1=R(s,1) + t =38 + L(s,T) . (10a)
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We introduce the extrema of the quantities w,, wye P ORN the portion of Cg

lying between Po and PT:

M (s,7) = sup w, (s+1-R(s,0), s+L(8,0)) for i = 1,2 (10b)
i i
0<o<T
m.(s,T) = sup =-w, (s+1-R(s,0), stL(s,0)) for i = 1,2 (10¢c)
i i
0<o<t
N(s,T) = sup p(s+1~-R(s,0), s+L(s,0)) (10d)
0<o<t
n(s,T) = sup -p(s+i-R(s,0), s+i+L(s,q)) . (10e)
0<o<t
Here
Hi,mi,N,n >0 (10f)

since w,, wp, p vanish for T = 0.

We introduce the abbreviations

0 0
Hi(t) ui(ao,r) : mi(r) mi(so,r) P

(10g)
0 0
N (1) = N(so,T) in(7) = n(so,1< W

By (9f), (9h,i)

2,"2 0(6 ) 2 No,no,mg,no 0(63) for 0 < T<1 . (10h)
More specifically we have from (9k,%,m)

1(t ) > 6 K (10i)
0 .
1(-r) > 6 K3 > 0; m (1) = m (t ) for L, <t (103)

0
‘(T) < 6 K for 0 < t < 12 . (10k)

We show first that we can estimate L, n, N, M2 in terms of m, and

0
M1 without involving m, and M,. For that purpose assume that we have a

bound 4 on m,
m1(s.t) < u(t) for 0 < T ¢ 13, 8, <8 <S (11a)

where

-11-
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n= 0(62); 0< T, €1; s_¢<8 . (11b)

3 0
We shall show that then (for § sufficiently small)

s .2au(T)

L(s,T) < 21 (=) (11c)
s
0

(s, ) < 3a (;)L(s 1) (114)
s

3aM1(s,t)L(s,r)

N(s, 1) < Y (11e)
SE(T)L(S‘T)
Mz(s,r) < 2as (11f)
N(s, ) <33T 2 M) + 3u(n (11g)
so 21

with a defined by (1b). For the proof it is sufficient to show that if
% (11c,d,e,f,g) hold for S, € 8 ¢S then also for s = S, and also to show
i that these relations hold for s = 8q°

Relations (10h), (11b,c,d,£f,g) imply that

g 2 1

% Lis, ) < 238 (52201 (2B (54 (12a)
X o o 0

.. 3
il M2, n, N=0(§) . (12b)
& On Cs for s < t < s+L(s,T) we have

N

> 8 <t < stL < s(1+2§) (12b*)
: +

r = s+l = j: L (1+p)dt = s+1 - L(1+0(53)) = s(1+0(8)) . (12¢c)

- In addition by (4a,b), (12b)

» P(p) =2 (140(6°)); Qlp) = E (1+0(83)) . (124)

By (5b) along Cg

aw,(1+0(6)) + 1 p(1+0(8))

- .92 =

-: dt s »

: Hence

5 1 n g 1 N

. s (am1 + a)(1+0(6)) < at < s (aM1 + a)(1+0(6)) . (12e)

-12-
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It follows that

L n L N
-= = = - . 12
5 (am1 + a)(1+0(6)) < p < s ﬂaM1 + a)(1+0(6)) (12f)

Since here by (12a)

L .08
as

we find that for 0 € 1 < 13, so < s <S8

aLm aL aLM
(140(8)) < -;-! (140(8))3 N <

(1+0(8)) .

n < .
This implies (11d,e) for s = § and sufficiently small §.
For the intersection of I‘T and Cg we have (see Figure 1)
t = g+L (13a)
and
r=gs+1 + | ar at = s+1 - f (1+p)at = g+1-L - [ p at
cs ac c c

dar
= g +1-1 - fc p at + Ir 3t 4t = s*1-1 Ic p dt + Ir (1+p)at
Bo T so T

's+1+L-21-fc pat+jr pa .
8 T
0

Thus

(13b)

where the last integral is taken over the curve rt. On that curve by

(11¢c,d), (12a), (12b*)

.13~
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n < 3;5& < 3aut szau-l < 3agr t2au—1(‘+0(6),

2ay 2ay
%0 8o
18t g < 3T (s+1)PH140(6)) < 3 w22 M(140(8)) .
2 go+r 4sZau 4 so

0

Then (13b) yields for 8, <8 <S8

L(1 - -_:; n) < (1 + luo)r +3 t(s—)zau(1+0(6))
2 4 s

0

< (1 + 122 e
8
0
7

s
L < 3 t(so)

238 140(8)) .

This implies (11c) for s = S,
For s = s; relation (11c) holds trivially for s = 83, since then
L = 1, and relations (11d,e) follow in the same way as for s > sg .

We turn to the proof of (11f). Along Cg by (5d)

2
dw 2Pw2 - w1(29w2+Q) - 3Qw2

2
at 2r . (14a)

Here 2Pw2 + Q>0 unless

w ‘-ma-Lp(1+0(6)) <!\_(1+0(6)) <3n(S‘T) .
2 2P(p) a2 az 232

Thus for any point of C_, with s8; < t < so+L(s,T) either

w, 305,07 ‘ (14b)
2 2
2a
or 2Pv2 +Q>0, wy > 0, and
dw2 aM: +m1(aM2 + i N) + % nH2
at < T 28 (1+0(8)) . (14c)
Now either (14b) holds for all t with 8, <t < sO+L(s,t). in which case
M, (s, 1) < 2215511 (144)

2a
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or there is a t* in the interval for which
an

v, > —
2 2.2

In the latter case we can find a t** with s, € t** ¢ t* sguch that

w, =3B gor te=t*;w >3B for t* <t < tev .

2 2.2 2 2a2
Then for t = t*
aw
3n te 2
Y2 2 Yl 3 O
2a

where the integrand satisfies the inequality (14c). It follows that

an L 3 1
H2 < ;:5 + 2s (H2(1H2+am1+ Y n) + "y Nm1)(1*0(6))
SL L 3.2
< tas + %8 (llz(nlzﬂu* . n)+ Y Nu) (140(8)) .
Here
nL B ML o Sut
- 0(8) » p 0(8) ; . 0( P )
and hence
Ly 2
M, < tas (140(8)) + 0(6n2) .
If here
My = o(") (14e)
it would follow that
9L
nz < YT (1+0(8)) 0(s) . (14fF)

Now (14e) and hence (14f) certainly holds for small T, since wy = 0 for

T = 0. By continuity then for all <« < 13. Thus (14f) holds for 8g <8 ¢<S,

which implies (11f) for s = S. The same argument yields (11f) for s = 8g°

Finally along Pt by (Sa), (114,f,¢), (12b*,c)

8=
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1
> -
4 ‘ anz 2 "
at 8

(140(8)) < — (1+0(6))
8

<-°-'2‘-:-; 28672 4 .0(6)) <—"— 2au=2 4.0(8)) .

%o ’o

Hence integrating along PT

0 s+L dp 8ut
N<CN + at < N, + (1+0(6))
o+T at 0 Zau(1 2au)s1 -2a
0 (14qg)
3aM T
<’ +—”—(1+om) ¢« —1 + BET (q4008)) .
8 2'o 8

This implies (11g) for s = S.
Having established (11c,d,e,£f,g9) under the assumptions (11a,b) we now
turn to estimates for m, and u in terms of M,;. Assume that

H1(s,t) <a for g, €g<s,0<T<T, <1 . (15a)

0 2

Then, with a specific choice of u, -

. L 0 3L
m, < - (an1+5u)6 0(s8 s) (15b)
m, < u-zm‘:«r 8 = 0(8%) (15¢)
for 8, <s8<CS, 0< ¢ 12, provided § is sufficiently small.

It is again sufficient to prove these assertions for s = § if they hold
for 8 < S and to prove them for 8 = s;.
Along C, we have by (5d)

aw (-wz)(-ZPw1-3Q)+Qw1

2
3t < o™ . (16a)
Again for a point (r*,t*) on cs with wy < 0
dw
t* 2
v, = [ae (- 35 )ee ‘ (16b)

where the integral is taken along cs, where 8 € t** ¢ t* and wy, =0 at

t = tre, ) <0 for t** < t € t*, It follows from (16a) that in the

-16=
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....................
--------




interval of integration

3 1
+ = + -
dwz ‘ mz(am1 a n) a(NM1+nm1)

Then in the interval of integration

-17-
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- + 16
at s (140(68)) (16c)
making use of (10b,c,d,e), (12c). Hence
L 3 1
— - - + . 1
m, < 25 [mz(am1+ " n) + a(NM1+nm1)](1 0(6)) (16d)
Here by (12a), (15¢c), (11d), (15a,b,c,), (11g)
L L 3 L L2 4
5 m, = 0(; u) = 0(87) ; ol B 0(;5 B) = 0(§)
1 3L 2 a_0 2
a(NH1+nm1) <N+ =< 36(2 M +30) ¢+ 3u' s
a_o0
< 36(5 M1+3u)(1+0(6) )
It f.llows from (164) that
m, < -:-E 2 MI+31) 60140 (8))
for S <8 ¢<S. This implies (15b) for s = S and sufficiently small .
The same argument yields (15b) for s = Sq¢ while (15c) is trivial for
8 = 8pe
Along I',r with 0 < T < 12 we find from (5¢) that
) dw1 ) ZPw,wg-Q(Bw,+w2) (17a)
dt 2r *
At a point (r*,t*®*) of PT with s, + T < t* ¢ 8+L, we have again
aw
0 * 1
wy smg 4 [l (- g at (17b)
where 8, + 7T <Ct* € t* and
. -, > m? >0 for t** <t < t* . (17¢c)

P I P S A W S -'--A'J




aw (-w1)(-2Pw2+3Q)-Qw2

1

T < 2r
3 1 (174)
m, (am_ + = N) 4+ (nM_+Nm_)
<12 2 2‘ 2 2 (1+0(8)) .
r
Here by (15a,b,c), (11e), (11c), (12b*)
3 L
+* - = -
a“z a N 0(8)
3 (17e)
m_ (am_, + = N)
LA LI | 2 a_ - +L, -2ay 2ap-2
o == dt = 0(m, Igo*’ sy Lt dat)

I =
0(Bo m1) 0(&n1)

and by (114,£f,9), (15b), (12b)

nM_+Nm_ = 0(65 f)

2 2
and thus
t* 1 - 5 @stL =-2ap  2ap~2 - 6
ft,, Tar (M, #m,)dt = 0(6 5T s, t at) =0(8) . (17f)
It follows from (17d,e,£f) that on Pt for 0 ¢ 1 < 1:, '0 <s ¢S
0 6
-w1 < m1 + O(Gm1 + §)
and thus also
0 -6
m, < m, + 0(6m1+6 ) for 8, <sgs <s ., (179)

This implies (15c) for s = S,

We shall show that the quantity M1(s,t1) tends to infinity as s
approaches a certain finite value. Thus we cannot assume that H1(s,t) < a
for 1, <t< Tye Nevertheless we need the estimate (15c) also in that
T~interval in order to assure the validity of (11c,d,e,f,qg). This is achieved
by proving that wy > 0 for T, < 1, which implies that m,(s,r) =

m1(s,12) for 1> T,. More precisely we prove:

-18-
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Let S be such that

89 <S8 (18a)
t = g*L(8,7) <T for 0 €< 1 < Ty, 8, <8 €S (18b)
H,(l,t) <a for 0 < 1<« 12, 8, <g <8 . (18c)
Then
»K 62 m (s, 1) = ( ) < = 2mo(t ) + 63 (184d)
Wy 2 K300 mylis, B8, < w 1'%
for
tz €T¢< Tye 8, €8 €S . (18e)
For the proof we observe that (18d) holds trivially for Tz < 1< Ty

8 = 8 by (91). 1If (18d) is not satisfied for all points satisfying (18e)
there would be a point Qith the smallest s, say s = s* for which

w, = K362, while

1
m,(s,t) <y for 0 ¢ 1 ¢ Tye 8, <8 < s8* ., (18f)
If that point lies on a certain PT we must have dw1/dt < 0 for the

derivative taken along Pt. Now by (5¢)

2

B
'S

dl1 . (2?"1*39)01 - (2Pw1-Q)w2 (184)
at 2r * 9

Here by (4,a,b), (114,9)

» a7
~aa.

3 3
Q= 0(x36 ) = 0(&11) 1w, <M, = 0(x36 ) = 0(&:1) .

It follows that
2pw, + Q= aw'(1+0(6)) >0; 2pw, - Q = aw1(1+0(6)) >0

(18h)

)
€
- N

» (1-0(&)) >0 .

7| 2
-b
N

r
This completes the proof of (184), for s, satisfying (18e).
Relation (18h) has further consequences. Let b be any number with
a
b<2 N (19a)
Let (18a,b,c) be satisfied. Let T be any value with

T, €< T<T {19b)

2 LI




Then in the points of PT with

We shall show that
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so + 1 < t < S+L(S, 1) (19¢c)
we have 2
dvy bw,
— ) — 1194
dt > t !
(provided § 1is sufficiently small). Then on Pt
0
. w1
L w, > (19e)
¥ Vel 109 &
o 1 t
o 0
" where
~ t =g +1t, t = s+tL(s, 1) (19f£)
A 0 0
'i and w? is the value of ﬁ, in the point of intersection of PT and Cg.»
Here
& geoten 35 .
0 0 0
It follows that wy must become infinite for some point of PT if
1
s > 230 exp(-—a) . (19qg)
bw
1
0 2
Taking here Tt = T, we have v, > 8§ K1 by (9k). Thus blow-up occurs
certainly for some point with
. .
4 TE T, . 8, <s<s§s
if
1
s > 28, exp( 62) (19h)
bK
1
and S is such that (18¢c) holas.
It remains to show that there exists S satisfying both (18¢c) and
{19h). By (18g) we have along a trajectory PT with 0 € T ¢ T,
v ) (2;v«,:1+39—21>wg£z‘+Qwa (208)
dat 2r *
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v, <a for 0< < 7,0 8, <8<S (20b)
if
1
S < 28 exp ) (20c)
0 2
ck,.§
2
where c is any number with
a
c > > (204)
It is sufficient to prove that (20b) implies
v, <a for 0€ ¢ 12, s =8 . (20e)
Let then (20b) hold. Take a T with 0 € t € T, Then along I‘T for

8 +1 € t < S+L(S,T) either

2
v, < K26

or there exists a point with t = t* on rr where w, > K262. In the latter

1
cagse we can find a t** with 8, + T < t** ¢ ¢t* guch that w, = x262 at
t** and v, > x262 for t** < t < t*. In any case at t = t*

’ dw

*
w, € K262 + ft L

1 tow “gr 9t

where the integration is taken along Pf over some sub-interval of

8.+t < t < S+L(8,t) in which

w, > K262 . (20f)

1
Then by (4a,b), (114,f,g9), (15b)

0= 0(83) = 0(8w,)

3 6 22
sz = 0(87) = 0(6v1) H sz = 0(8§) = 0(8 w1) .

Hence in the interval of integration

2
M
dt t
It follows that for t = t* with ty = s +T < t* < S+L(S,T)

0

2, e
w, € K8 + fs

c 2
- w, dt
1 0 t 1

+1
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e and thus

< K 62 X 62

' w, < 2 < 2

M *

‘. 1 1-cK 62 log 5 1=cK 62 1ng 2s
% 2 t 2 s
".' 0 0
.

as long as the last denominator stay positive. Take now

v

1
s = 280 exp ) . (20q9)

bk, &

)

MO

3 Then

L ck

L 2 28 2

i 1 cxzs log 2 1 cK262 log 4 blt1 N

We can choose b and c¢ such that in addition to (19a) and (20d} the

relation
L 4
c 1 1
S == (14— )
b 2 2
is satisfies, since K, < K,. Then for sufficiently small §
&
1-cx6210q-2-§--'-n-—2-;-ex 6210g4
2 s 2 l‘ 2
and
2 x, &
v1 < 52 < a .
K, K, -2cK K, §" log 4

This completes the proof of (20b) for S given by (20g) and shows that

for that S

S+L(s,1) > T

for some T =1 and hence that

1'
T < S(1+0(6)) < 2s

< 450 exp(bx:dz)

or
T < exp(A%EL) . (21a)

Here

-22-
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1 € 1

i = e—— + - - o 1
N A(e) X, € log 4 + 5 log ¢ (21b)
o Since here K, can be chosen arbitrarily close to the value K defined by

f (7d), and b arbitrarily close to %, provided € is sufficiently small, we
s have

" 2

- lim sup A(e) < x ° (21¢c)
kt;;. 8*0

o
L
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ABSTRACT (continued)

u(x,0) = ef(r), ut(x.O) = gg(r) (**)

for u, where f and g are even functions in r of class c {for
simplicity) and of compact support, and € > 0 is a parameter that measures
the "amplitude" of the initial data. We assume that equation (*) reduces to
the linear wave equation [Ou = 0 for "infinitesimal" wu, that is we assume
that

F'(0) =0 .

In addition we postulate that (*) is "genuinely nonlinear" in the sense that
F"(0) # 0 .

Without restriction of generality we can always assume that
F"(0) >0

(if necessary changing u into =-u) and that f and g have their support
in the unit ball:
f(r) = g(r) =0 for |r| >1 .

We show here that every non-trivial solution u blows up after a finite
time T if ¢ is sufficiently small. More precisely for given £, g, F
there exists a constant €g and a function A(e) such that

A(e)
€

T < expl ) (%**)

for all ¢ < €y Here A(e) 1is bounded independently of ¢:

C = lim sup A(g) < o ,
e-»0

This result has to be compared with the known lower and upper bounds
for T. 1In [4) the author showed that T=T(ec) increases faster than any
reciprocal power of ¢, as ¢ + O:

lim eNT(e) = o for any N .
-0

This lower bound for T has been improved dramatically by S. Klainerman, [1],
who showed that for radial solutions

T > exp(%)

with a positive constant B. 1In view of (***), Klainerman's lower bound for
T is optimal in the general case. Upper bounds for T had been given
previously (see [2), [3]) without requiring the initial data to be radial or
€ to be small. But then certain inequalities for £ and g had to be
postulated, and in addition assumptions had to be made on the behavior of F
for large arguments. (Results of this latter type have also been derived for
other types of differential equations with spherical symmetry by Th. C.
Sideris ([S].)
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ABSTRACT (continued)

The argument used in the present paper is based on the use of differential
equations for the second derivatives of u along characteristic curves (as was
done in [6] in the case of one dimension). This emphasizes blow-up as a local
phenomenon. We show that for small radial initial data singularities are formed,

v even if the differential equation (*) is imposed on u just for small values of
9 u,. For the singularities in question u and its first derivatives stay small,
! while certain second derivatives become infinite. (This does however not exclude

the possibility that other types of singularities with different behavior form
earlier in other parts of the domain of u.) Blow-up takes place only after an
exceedingly long time, and only after the solution has passed through a phase
vhere the second derivatives are exceedingly small. Qualitatively the behavior
of the second derivatives resembles that of the function

€
o(e) = t(l-e log t)

we have for that function
$(1) = ¢

Setting T = el/¢

$(T/e) = ee-ll €

¢(T-1) ~ 1

$(T) = = .
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