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SUMMARY

Under consideration are strict solutions u - u(x1 ,x2X3 ,t) - u(x,t) of

the differential equation

3F(u =

tt *-t

which are "radial" (or have "spherical symmetry") in the sense that u only

depends on t and on r - jxj. We prescribe initial conditions

u(x,O) - ef(r), ut(xO) - eg(r) (*)

for u, where f and g are even functions in r of class C (for

simplicity) and of compact support, and C > 0 is a parameter that measures

the "amplitude" of the initial data. We assume that equation (M) reduces to

the linear wave equation On - 0 for "infinitesimal" u, that is we assume

that

F'(0) - 0

In addition we postulate that (*) is "genuinely nonlinear" in the sense that

F"(0) V1 0

Without restriction of generality we can always assume that

F"(0) > 0

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(if necessary changing u into -u) and that f and g have their support

" in the unit ball:

f(r) = g(r) = 0 for Irl > 1

We show here that every non-trivial solution u blows up after a finite

time T if c is sufficiently small. More precisely for given f, g, F

there exists a constant e and a function A(C) such that

T < exp -A C))

for all c < c0 * Here A(C) is bounded independently of e:

c:, C =lira sup A(C) < .

This result has to be compared with the known lower and upper bounds

for T. In [4] the author showed that T-T(£) increases faster than any

reciprocal power of e, as e + 0:

lim cT( £ for any N

This lower bound for T has been improved dramatically by S. Klainerman, [1],

who showed that for radial solutions

B
T > exp(-)

C

with a positive constant B. In view of (***), Klainerman's lower bound for

T is optimal in the general case. Upper bounds for T had been given

previously (see [2], [3]) without requiring the initial data to be radial or

e to be small. But then certain inequalities for f and g had to be

postulated, and in addition assumptions had to be made on the behavior of F

for large arguments. (Results of this latter type have also been derived for

other types of differential equations with spherical symmetry by Th.' C.

Sideris (5].)

S.o.



The argument used in the present paper is based on the use of

differential equations for the second derivatives of u along characteristic

curves (as was done in (6) in the case of one space dimension). This

emphasizes blow-up as a local phenomenon. We show that for small radial

initial data singularities are formed, even if the differential equation (*)

is imposed on u just for small values of uto For the singularities in

question u and its first derivatives stay small, while certain second

derivatives become infinite. (This does however not exclude the possibility

that other types of singularities with different behavior form earlier in

other parts of the domain of u.) Blow-up takes place only after an

exceedingly long time, and only after the solution has passed through a phase

where the second derivatives are exceedingly small. Qualitatively the

behavior of the second derivatives resembles that of the function
S £

*(t) =t(1-: log t)

Setting T =e we have for that function Accession For
1/c NTIS GRA&I.(1) DTIC TAB
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BLOW-UP OF RADIAL SOLUTIONS OF Ou - IN

at
THREE SPACE DIMENSIONS

Fritz John

.; The differential equation for u(x,t) - U(Xlx2,x3,t) is

Du utt - U - F'(u t)u (la)

where it is assumed only

F"(O) - a > 0 F'(O) - 0 . (lb)

We can always continue F(k) outside of a neighborhood of the origin in such

a way that also

F'(A) < for all A (1c)

so that equation (la) is hyperbolic for all arguments; but actually we will

only need F'(AI for A near 0. The aim is to show that all nontrivial

solution of (la) with spherical symmetry and with initial data of compact

support and sufficiently small, blow up in finite time. We thus take u of

the form

u = u(rt) r - 1xi (1d)

with initial data

u -f(r) u, a g(r) for t - 01 c > 0 (1e)

f(r) = f(-r) ; g(r) * g(-r) for all r (if)

f(r) - g(r) - 0 for Irl > I . (I()

THEOREM

If e is sufficiently small the solution u either vanishes identically

or has a finite life span T. Here T satisfies an estimate of the form

T < exp(A--) (1h)

Sponsored by the U1nited States Army under Contract Mo. DAAG29-80-C-0041.
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where A(c) is a certain function which is bounded for sufficiently small

C > O more precisely

lm sup A(C) = 2(i)

_," a sup k A)

* where k is the function defined by

k(X) = (f "(A) + 2f'(A) - Xg'l(A) - g(A)) (1j)

PROOF.

In the spherically symmetric case we can write (la) as

(ru)tt (l+p2 (rurri - 0 (2a)

where p is defined by

1+p = I (2b)
( /I-F' (u )

We introduce the vector

vI  (ru)
I rV = = (2c)

Then (2a) yields the system

V +AV = 0 with A- (2d)

Here A has the eigenvalues i(l+p) and eigenvectors

* 1 -(1p) ' 1ipJ * (2e)., ) = (+p

Set

V - w 1  + w (3a)

: where then
r 2  1 2

1 2 VIr 2(+p) V2r

r((l+p)u -u )+2(1+plu -u
rr tr r t~2(1 +p I

4

-2-



rn-v + -
2 Ir (+p) v2r

r((1+p)u +u )+2(l+p)u +f *(c
-rr tr r t

2(1 +p)

By (2d), (3b,c)

v 1(+~ I (ww)+ 1 p -w- 3d)

wt ( -
2(l I P( -w+i r3w (3e)

V2 t 2  (+p) Pt 1 2~ 2 Pr(wI+3V2)

By (2b)

(l+p) FuU

- 2r ((l+p)(W -vi)-ut (3f)

5
(l+p) F*(u t( W(g

Pt2r ( 14v2) 3

By (1b), (2b) for small ut

a +O 2 (3h)
2 t- t

We can express then utin terms of p from (2b), writing for small u

S(l+P)p) (ut) _ P(P) -- a + O(p) (4a)
t 2

1 +P3p(tu _ Q(p) 2. + 0(P2 ) (4b)

T h e n b y ( 3 f , g ) P p ( I w 2 Q P + P ( ) w i w 2
-r rPp~ -Qp'Pt -r 2'(4c)

and by (3d,e)

p +I+Ppr I(+p) (2P(p)w 2-Q(p)) (a

(l+p) (2P(p)wv1+Q(p)) (b

v +1+pv -2P(p)(w 2 - 1 2)+Q(p)(3w 1 2 4Vc

it i1r 2r

* 2

w 2- (1+p)v 2r 2P(p)( C 2 -wIw 2 )-Q(P) (w1 +3w2) (5d)
2t 2r2r

-3-



In what follows we shall just deal with equations (5a,b,c,d). Blow-up

will be based on the occurence of the term with w 2 in (5c). The aim will be|1

to show that the other terms in (5c) can be neglected near the wave front for

large posttive r. Equations (5a,b,c,d) represent ordinary differential

equations along the characteristic curves defined by

dr = ±(l+p) (5e)[: dt

Here

0 < l+p < 2 (5f)

* by (2b), (Ic). If u(r,t) is a strict solution for r e R, 0 4 t < T, each

.* of the two families of characteristic curves will cover that region in a

"schlicht" manner. Since u(r,t) by (ig) vanishes for Ir > t+1, we also

.* have

w1 (r,t) = w2 (r,t) = p(r,t) = 0 for Irl > t+1, 0 4 t < T . (5g)

Hence the characteristics reduce to the line rt = const. for Ir[ > t+1.

We introduce the characteristics as coordinate lines in the region of interest

dr
to us. For that purpose we denote by C5  the characteristic d- = -(I+p)

passing through the point (s+1,s) of the wave front. Choosing a positive

fixed so  (actually so = i//c ) we denote by r the characteristic: T
dr

d l+p passing through the point of C for which t = so + T. (See

Figure 1.)

We always take

s ; s 0 0 C T 4 1 ( 15h)

If Cs  and r intersect in the domain of existence 0 4 t < T, we denote

the intersection by

(s+1-R,s+L) (5i)

where R and L are functions of s and T:

R = R(s,T), L = L(S,T) (5j)

-4-
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In particular

L(so#T) =T ; R(s,0) =0 *(5k)

I t

1"r

____T__ 0

1C

Figure

Weca aprxiat ubyth sluin f heliea hmoenou Lv

equtin it te am iitaldaa.Le u b te oltin f se (R)

C1

T ~ 0 r rr=0(a

(si+1h
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u (r,O1 f(r) ,u I(r,0) -g(r) .(6b)
t

Then

u(r,t) -u I (r,t)

and its first and second derivatives are of order 0Cc 2 for t < 1/c2 for

small C (see John (7], 12]). Here

1 (r+tf(r+t)+(r-tf(r-t) + 1 fr+t gpd .(6c)

(r~) =2r 2r fr-t

We shall restrict ourselves to the region

r+t > 1 (6d)

where by (1f,g)

(r,t) p (rttrt g(p)dp .(6e)2r 2 r r-t

-aUsing the expressions 3bc) for v1, w2  we find that for r+t > 1,

w r ur1u-u I )+2 urI-utI) + O~re2

(6f)

e k(r-t) + O~re 2

with k defined by (0ji. Similarly

I uI+u I)+2u 1+u I + O~re 2 O~re 2 (6g)w2 2 rr tr r t

It is plausible from (6f~g) that the leading term in w1, w2  is given by

4.' ck( r-t) * We have to make sure of the behavior of the function k( X). By

(1g,k)

k(A)= 0 for IX > 1 ( 7a)

M4oreover

I dk(A) = 2 d I (f(A)+f (A)- Ag(J A) (7b)

it follows that

.4 k(A)dA - 0 *(7c)

Then

K- Max k( A) > 0 (7d)

-6-



unless u is the trivial solution of (la). For K 4 0 implies by (7a,c)

that kA) vanishes identically. But then also by (Of,k)

0 -klA)-k(-A) - Af"(A)+2f'IA)

0= klXl+k(-X) - -g'(A)-g(A)

Since f and g have compact support, it would follow that f, g and hence

also u vanish identically. We exclude the trivial solution so that (7d)

holds.

We can find constants KI, Y2 13 Air A such that

-1 < < 2 < I I K > K > K > 0 (8a)
1 2 1 2 3

k(A 1 ) > K (8b)

kA) >K 3  for A 1 4 A(' (8c)

k(A < K2 for 2 e 2 A 4 1 (Sd)

(see Figure 2). We need only to choose for A I the "last" total maximum

point of k, i.e. such that

k(A I K k(k) < K for A I < A < 1 (8e)

Since K > 0 we can find a 2 such that
2

A1 < A 2 < I , k(A) > 0 for A 1 < A < '2  (8f)

We then take for KI, K2 , K3 any numbers with

4"i sup k(A) < K < K < K (8g)

22

0 < K < inf k(A) K < K (8h)
A: I1 < A) < 12

(Notice that K can be chosen arbitrarily close to K.)

We set
/ I

0 s " (9a)

In what follows we always assume that S is "sufficiently" small, that ih 6

is small compared to any positive constant that turns up in the computation.

. - , . - -- , . .. . . - ... - - . .



We first discuss the behavior of w1, w2 on Cso for s0+l ;o t > so.* Since

here dr/dt =-(l+pi we have by (5fj

-92'

1 2

a Figure 2

-8-



r so+l s011+6) = 51(1+6) (9b)
0 0

r ) s0- r2 (t-s 0 > s0 - 2 > s0 (1-0(61) > 0 (9c)

0o 0.:"Thus on C0 for so (t s0+1l2(d

r+t > t > s > I t < s0+1 < C (9d)
0 0

so that (6f,gI hold. Moreover by (6e)

S ui + 0( . 0 ) + 0 (, (9e)

and hence by (3h)

p 0(6) 3 (9f)

Then, because of dr/dt -1(+p)

s+1 -f (1+pdt 2so+1-t -f p dt 2So+)-t+(63) (9g)0 5o0 9

It follows from (6f,g) that on C for so < t < S0 +1So 0

V1 w "- 62[(k-2(t)01 + 0(6)] = 62[kll-2t) + 0(61] (9h)

.3
w2 = 0(6) (9i)

Considering w, on C. as a function of T- t-s0  for 0 - T 1 1, and

setting

Ti  (1-)i  for i 1,2 (9j)

we have from (8a,b,c,d), (9h)

W, = 0 for T - 0

W, = a21k(X 0(6)) > a2KI for T T I  (9k)

2
wI > 6K 3  for T2 < 4 T (9)

S1  6 2  for 0 < T < 2  (9m)

provided e and hence 6 are sufficiently small. (See Figure 3.)

Introducing the characteristics as coordinate lines we have by (5i,j) for

' the coordinates (r,t) of a point in terms of the characteristic parameters

s, r

r - s+I-R(swT) t = S + L(s,T) , (10a)

-9-
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We introduce the extrema of the quantities w1, w2, p on the portion of Cs

lying between r and FTt

Mi (s8,T) - SUp W (s+1-R(s,a), s+L(s,a)) for i = 1,2 (10b)i O<ol<T

m.(s,r) = sup -w i(s+1-R(s,O), s+L(s,c)) for i = 1,2 (00c)
" O<O<T

N(s,T) - sup p(s+I-R(so), s+L(s,a)) (10d)
O<C<T

n(sT) = sup -p(s+1-R(s,O), s+I+L(s,o)) . (10e)
O<O<T

Here

MiuiNin ) 0 (1Of)

since w 1, w2, p vanish for T " 0.

We introduce the abbreviations

0 0
H (T) m (T) - mi(80,T)i N (10 mg(r a

(log),0n0

N a (T) - N(s 0 ,T) i n (T) n(s 0 ,T< W

By (9f), (9h,i)

0 0 2 0 0 0 0
0(6I0( N On I 2 'M2 0(o) for 0 T 4 1 (10h)

More specifically we have from (9k,X,m)

0 2
M (T I ) >6 K (1i)

M0(T) > K O m 0(T)- M0(T 2 ) for 2 T < T1 (10j)
1 3 1 fo r2 <r I
0 622

M0(T) < for 0 < T < (10k)1 2 T2

We show first that we can estimate L, n, N, M2 in terms of m, and

0
M 01without involving m2  and M14. For that purpose assume that we have a

bound P on mI

ml(sT) < P(T) for 0 4 T 4 T3, 0 s < S (Ila)

where

-11-



2( 2O 0 < 'r 4 1; s 0 < S (11b)

We shall show that then (for 6 sufficiently small)
I (s 2a p( -)

L(S,T) <T (S - (11c)

3au( WLls, T)
n(s,T) < 2s (lid)

:: 3aMI ( s, )L( s, T)

N(s,T) < 2s (11e)2s

'22~M2(S,T ) < 5Uj(T)L(S, T)(1f
2 2as

N~st) 3T~ a 0Ns,T) < O 1M,(T) + 3U(T)) (11g)

with a defined by (ib). For the proof it is sufficient to show that if

(i1c,d,e,f,g) hold for so 0 s < S then also for s = S, and also to show

that these relations hold for s - so.

Relations (10h), (11b,c,d,f,g) imply that

<2 Ts sj_ 2a p- 1 2 T
L(s,T) < S ()2 4 - ( 26s (12a)

0 ~00

M2 , n, N 0(6) 3 (12b)

. On C for s < t < s+L(s,T) we have

S

s < t < s+L < s(I+26) (12b*)
-,s+L3

r = s+1 - J (1+p)dt = s+1 - L(1+0(6)) = s(I+0(6)) (12c). --S

. In addition by (4a,b), (12b)

"" 2 63 = 3 •
P(p) = 0 M(1+0(6 )) (12d)

=2 a

By (5b) along Cs

1
aw (1+0(6)) +- P(I+0( 6 ))

dp 1 a
dt s

Hence

I (am + n)(I+0(6)) 4 1 (aM + N)(+0(6)) (12e)
s a dt s 1 a

-12-



It follows that

-- (am +1)(1 +06)) < (aM +-!)(1+0(6))(2f
s 1 a s. a

*Since here by (12a)

L 06
as

we find that for 0 4 T 4 73 01 so 0 4 < S

n < - (1+0(6)) < (1+0(6)); N < -L4 (1+0(6))

This implies (lld,e) for a S and sufficiently small 6.

For the intersection of r Tand C. we have (see Figure 1)

t - *+L 013a)

and

rs+1 + a ft 8+1 fC (+p)dts+-L - p dtfCdt Cc

8s+1-T - t+ -rdt s+1-T d
0 fc3 s t fr~ T 0 f d fr 1 (1+P)dt

s+1+L-2i- ~ p dt

a0

Thus

~ fc P dt + fc P dt f r P dt
5 50

(13b)

T 1 1 0 n+ 1 NO s+L nd
2 2 2 0 +

where the last integral is taken over the curve r * On that curve by

(llc,d), (12a), (12b*)

-1 3-



3auL 3apr 2ap-l 3 a.JT 2atr1( 0 6)

1 ~ 2 s+L 2 t< r2a s2j

-f:+L -t<3 (s+L) a (1+0(6)) < 2 T(1_)2 p( 1+0(62 0T 2ap 4 s0

Then (13b) yields for s~ 0 sC S

L(l - - n) < (1 + -NO IT + - 2a(( (1+0()
2 2 4

< (1 + -)j(1_) 2u( 1 +0(6 T

7 s 0

L <~ (I_)2a(1+0(6))
0

This implies (lic0 for s =S.

For a so relation (11c) holds trivially for s so, since then

L - , and relations (lld,e) follow in the sae way as for s > so.

We turn to the proof of (11f). Along C. by (5d)

2_
dv 2Pv 2 w I(2Pw2 ) 3w22 2 1 ~ - Q~i2 (14a)
dt 2r

Here 2Pv2 + Q > 0 unless

2 2p) -2p(1+0(8)) ICi (1+0(6)) 'C 2nST
2 2p) a2 a 2 2a2

Thus for any point of C5  with s ( t < s +L(s,T) either

or 2Pw 2 +>, 2 0 and

2 ~ +2 Q 1w2>0

w2 2 1 2 a a 2 (+() 1c
dt 2s

Now either (14b) holds for all t with s~ 4 t 4 S +L(S,T), in which case

3n (8, Tr)
M 2(8,T) 4; 2 (14d)

-14-



or there is a to in the interval for which

2 2a2

In the latter case we can find a t** with s 4 te  < t* such that0

| . m3n
V2  for t- t** 1 v2 > in for t* < t < t**

2a 2a

Then for t - t*

3n t* J w2
w2 -2a 2  t * * -dt

where the integrand satisfies the inequality (14c). It follows that

< nL2 + h lN21M+am1+ a n) + -a n 1 )( 1+ 0 6 ))
2a

<9L + L (li2 a3 14aa + +ama+ -2 n)+ - p) (1+0(6))

a 2s' a a(a

Here

and hence

N < (LA 11+0(6)) + o163M2
2 4as 2

If here

N2 - 0(1) (14.)

it would follow that

2 - (1+0(6)) - 0(81 (14f)
H2 <4as

Now (14e) and hence (14f) certainly holds for small T, since w2 - 0 for

r -0. By continuity then for all T < T3 Thus (14f) holds for < s < S,

which implies (1f) for s - S. The se argument yields (11f) for s - so.

Finally along rT  by (Sa), (11d,f,c), (12be,c)

-15-



aM+ n41
d a 2  a (1+0(6)) < (1+0(6))

dt 2

< 8 2ap-2(1+0(8)) < --- t2ap- 2(1+0( 6 ))
2aP 2a

~0 0

Hence integrating along FT

N < NO0 + f:+L d t < No + 8PT (1+0(8))0 0+T dt8 2a 1-2ap

0 0

3 0 (14g)

< NO + 8.T (1+0(6)) <aI +-!_T (1+0(6))
Sso 290  ao

This implies (11g) for a - S.

Having established (11c,d,e,f,g) under the assumptions (11a,b) we now

turn to estimates for m2 and M in terms of M1. Assume that

MI(s,T) < a for so 0 s < S , 0 4 T 4 T2 < 1 (15a)

Then, with a specific choice of V,"2 L 0 1b

0 3 2

m2  1 (aM +5P1a - 01(8 (15b)

m < - 2m + 83 - 0(6 ) (15c)

for so 0 s < S, 0 4 T C T2, provided 6 is sufficiently small.

It is again sufficient to prove these assertions for s- S if they hold

for s < S and to prove them for a - so .

Along C. we have by (5d)

dw2 (-w2)(-2Pwl-3Q)+Qw I

-2r I. (16a)dt 2

Again for a point (r*,t*) on C8  with w2 < 0

dw2
- 2- (16b)

where the integral is taken along C., where s C t** < t* and w2 - 0 at

t - t*, 2 < 0 for t** < t C t*. It follows from (16a) that in the

-16-
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interval of integration

d2 m2(am1+ 2 n) + (NM,+nm,)
w2 a a 116cS- d-C • a 2 (1+0(6)) (16c)
dt 2s

making use of (10bc,d,e), (12c). Hence
"L 3 1

*'" m2  s [m2 (aml+ - n) + I(NM 1+nml)1(1+0(6)) (16d)

Here by (12a), (15c), (11d), (15a,b,c,), (11g)

LL_ L2

m1 - n = 0( 1) - 0(6 a
S S

2 1
-. (M1+nm ) 4 N + 21 i 2 - 364 M 0+3p) + 3112 6

a 0
38(iM+3P)(1+0(6A V

It f~llows from (16d) that

in2 C 11. (A M 1+31)8(1+0( 6 ))

for so 0 s < S. This implies (15b) for a " S and sufficiently small 6.

The same argument yields (15b) for s = so" while (15c) is trivial for

.: 8 M" go*

Along rr with 0 < T < T2  we find from (5c) that

dw 1  2Pw w2-Q(3wI4W2  (17a)

dt - 2r

At a point (re,t*) of rT with a0 + T < t* < s+L we have again

dt

where so + r < t* 4 t** and

-w > m1 ) 0 for t** < t < t* (17c)

Then in the interval of integration
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dw (-w1 ) (-2PL2+3Q)-Q 2

dt 2r

m1 (am2+ 
N) a (n +m

a<2r (1+0(6))

Here by (15a,b,c), (Ile), (11c , (12b*)

m2 a

m 3 (17e)

_ft** 1 2 a1 s+L -2au 2a-2
t** t = O(m, + 0a t dt)

, 0(- ) - 0(fi 1 1

0

and by (ld,f,g), (15b), (12b)

mn2 +'4 2 N 0(6 1)

and thus

* 90t* n )dt - 0(d 5 +La -2a j t2 ajr 2 dt) - 0(6) . (17f)

It follows from (17d,e,f) that on r for 0 < T < r2, s0 4 8 < S

-W 4C m 0 + 0(am + 6 6

and thus also 0
. m1 + ( 6) for s 0 a < S . (17g)

This implies (15c) for s - S.

We shall show that the quantity MI(S,T1 1 tends to infinity as s

% approaches a certain finite value. Thus we cannot assume that M (8, T) < a

for T2 < T < T1* Nevertheless we need the estimate (15c) also in that

T-interval in order to assure the validity of (1lc,d,e,f,g). This is achieved

by proving that w, > 0 for T2 < T, which implies that mI (s,T)

.RI(ST 2) for T > T2 More precisely we prove:

. , .. ', , ' -. . . . _" -:i , i, - .. .



Lot S be such that

so < S (18a)

t-s+L(s,T) < T for 0 T < T1 , S 4 s I S (18b)

M (sT) < a for 0 < T < 721 s0 < a < S • (18c)

Then

2 03
W I K3 62, mI(s,T) m1 (ST 2 ) < P 2m (T 2 ) + 6 (18d)

for

T2  T 4 T1 , s o 4 8 4 S • (18e)

For the proof we observe that (18d) holds trivially for T2 < T < T1 ,

a - so by (91). If (18d) is not satisfied for all points satisfying (18e)

there would be a point with the smallest s, say s s* for which

W I - K3, while

m il(sT) < P for 0 4 T 4 T1 , so • s 4 s* (18f)

If that point lies on a certain rT we must have dw /dt < 0 for the

derivative taken along r . Now by (5c)T

aw (2Vw 1+3Q)w1 - (2Pw -Q)w2

t 2r (18g)

Here by (4,a,b), (ld,g)

g- O(K 3) O(a ) I W 2 1C M 2 = 0(K 36 3 -0(a 1

It follows that

2Pw1 + 3Q - aw1 (1+0(6)) > 0 g 2PwI - Q - aw1 (1+0(6)) > 0

2 (18h)
dv aw,
dt- - (1-0(6)) > 0

This completes the proof of (18d), for s, satisfying (18e).

Relation (18h) has further consequences. Let b be any number with

b < 2(19a)

Let (18,ab,c) be satisfied. Let T be any value with

L.
T2 4 T 4 T1  (19b)
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Then in the points of r with

s + T C t < S+L(S, T) (19c)

we have 2
dWI bW1 ,19d)

dt t

(provided 6 is sufficiently small). Then on rT

0
1 w (19e)

1-by1 log j

where

to - +T t = s+L(s,T) (19f)
00

and w1 is the value of wi  in the point of intersection of rT and Cs.

Here

t 1 -0
t0 80 2s0

It follows that w, must become infinite for some point of FT if

S > 2s 0 exp ' (19g,

bw1

0 2" Taking here T - T we have w1 > K by (9k). Thus blow-up occurs

certainly for some point with

T Ti O < S < S

if

S 0 2s 0 exp(- 2 -1g) (19h)
bK 6

and S is such that (18c) holds.

It remains to show that there exists S satisfying both (18c) and

(19h). By (18g) we have along a trajectory rT with 0 4 T 4 T2

dw1 (2Pw I+3Q-2Pw2 )w +Qw2dt 2r(2a

We shall show that
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*w < a for 0 4 T 4 T2 , 5O ( a < S (20b)

if

S < 2% exp( 62) (20c)

-9-

where c is any number with

C a (20d)

It is sufficient to prove that (20b) implies

w < a for 0( (" 2 ' s-S . (20e)

Let then (20b) hold. Take a T with 0 4 T 4 T2 . Then along r for

s 0+T 4 t < S+L(ST) either

V. I • 2.

2or there exists a point with t - t* on rT where wI > K 26. In the latter
F2

case we can find a t *  with so + T ( t * < t* such that w, 2a at

2

t* and w1  K262 for t* < t < t. In any case at t - t*

I  K + I2 - dt

where the integration is taken along rT  over some sub-interval of

a0T < t < S+L(S,T) in which

2
w1 > 2 (20f)

Then by (4a,b), (11d,f,g), (15b)

Q =- 0(6 3 0(6w 1

Pw2 = 0(8 0 Iw1) Q 2 = 0(86) . 0(8 2 w1.

Hence in the interval of integration

dw 2

dt t

* It follows that for t - t* with t = +T < t* < S+L(S,T)

w < K 2
2 + ft w2 dt,. 20+T I
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and thus

K2 62  K 62

--CK2 62 log F I-cK 62 log 2
l-c2

as long as the last denominator stay positive. Take now

S 2s exp(- 2 -) I (20g)

Then
1-cK2 62 25 '(2~ 2 04-

1o2 log jS I -I-K2 9 s2lo

We can choose b and c such that in addition to (19a) and (20d) the

relation
c 1 1l

b 2 K

is satisfies, since K2 < K 1 . Then for sufficiently small 6
I_cK2Y o K2)

-52 log " "- - log 4
2 0~ 2 K1  2

and
', 2K1K 2

2 1 K2 2

K 1 -K2-2cK1K26- log4

This completes the proof of (20b) for S given by (20g) and shows that

for that S

~S+L(s, T) )T

for some T =T and hence that

T ( S(1+0(6)1 < 2S

4 4s 4 0 ex9(bK1 2)

*q  or

ST< exp( A() ( 121a)

Here
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A(C) log 4 + -log -(21b)
12 C

Since here K1 can be chosen arbitrarily close to the value K defined by

(7d), and b arbitrarily close to 1, provided e is sufficiently sm~all, we

have

i. sup A(C) < (21c)

-23-
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ABSTRACT (continued)

u(x,O) = ef(r), ut(x,0) = £g(r) (**)

for u, where f and g are even functions in r of class C (for
simplicity) and of compact support, and e > 0 is a parameter that measures
the "amplitude" of the initial data. We assume that equation (*) reduces to

"* the linear wave equation Iu = 0 for "infinitesimal" u, that is we assume
that

F'( = 0

In addition we postulate that (*) is "genuinely nonlinear" in the sense that

F"(0) # 0

Without restriction of generality we can always assume that

F" (0) > 0

(if necessary changing u into -u) and that f and g have their support
* .in the unit ball:

f(r) = g(r) = 0 for Irl > 1

We show here that every non-trivial solution u blows up after a finite
time T if c is sufficiently small. More precisely for given f, g, F
there exists a constant e0 and a function A(c) such that

T < exp(A(**)

e

= for all E < E Here A() is bounded independently of e-

C = lira sup A() < -

This result has to be compared with the known lower and upper bounds
for T. In [4] the author showed that T=T(c) increases faster than any
reciprocal power of e, as c £ 0:

Nlim £CT(c) - c for any N
£40

This lower bound for T has been improved dramatically by S. Klainerman, [1],
who showed that for radial solutions

T > exp(-)

* with a positive constant B. In view of (***), Klainerman's lower bound for
T is optimal in the general case. Upper bounds for T had been given
previously (see [2], [3]) without requiring the initial data to be radial or
c to be small. But then certain inequalities for f and g had to be
postulated, and in addition assumptions had to be made on the behavior of F

* for large arguments. (Results of this latter type have also been derived for
other types of differential equations with spherical symmetry by Th. C.
Sideris (5].)

.



ABSTRACT (continued)

The argument used in the present paper is based on the use of differential
equations for the second derivatives of u along characteristic curves (as was
done in (6) in the case of one dimension). This emphasizes blow-up as a local

- phenomenon. We show that for small radial initial data singularities are formed,
even if the differential equation (*) is imposed on u just for small values of

Su t . For the singularities in question u and its first derivatives stay small,

while certain second derivatives become infinite. (This does however not exclude
"" the possibility that other types of singularities with different behavior form
*' earlier in other parts of the domain of u.) Blow-up takes place only after an

exceedingly long time, and only after the solution has passed through a phase
where the second derivatives are exceedingly small. Qualitatively the behavior
of the second derivatives resembles that of the function

E

- t(I-e log t)

* Setting T- e we have for that function

(T/e) ee-l/c

-j - *(T-l) '- 1

*(T) - -



444

4v4

4- 
1

lk r.,-

'N . -'*V


