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1. INTRODUCTION

1.1 Project Description

This is the First Yearly Technical Report on a three year

effort to study physical processes of relevance to the mass

spectrometric measurement of stratospheric ions. The effort
involves the development of a Monte Carlo model of the freejet

expansion occurring within the mass spectrometer including the

effects of agglomeration onto, and fragmentation of, ionic

clusters.

The attempt to carry out in situ mass spectrometry in the

stratosphere is complicated by changes that may occur in the
gas stream as it expands after passage through the orifice.

Both positive and negative ions exist in the stratosphere with

clustered polar molecules surrounding the ion core. As these

ion clusters are carried along in the expanding gas stream, the
falling temperature will tend to favor the formation of larger

clusters. The charge-dipole interaction is characterized by

large cross sections, so agglomeration of polar molecules may

change the cluster size distribution that the quadrupole sees
from the distribution that exists in the undisturbed stratos-

phere. Conversely, the measured cluster size distribution may

be driven towards smaller clusters via fragmentation. As the

:.1: ionic clusters are selectively accelerated by the electric field
within the mass spectrometer, high energy collisions with

neutrals may break apart the clusters.

The present effort involves a Monte Carlo simulation of
these processes, so that a model can be used to relate the

measured properties to those existing in the undisturbed

atmosphere. Sections 2 through 8 describe the method in

i6
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general terms, although most of the new results were in fact

accomplished in support of the present contract. Section 9

describes particular results obtained when the procedures were

applied to the freejet expansion within a mass spectrometer.

1.2 Overview of the Direct Simulation Monte Carlo Method

The direct simulation Monte Carlo method, as pioneered by1
G. A. Bird, provides a powerful technique for the simulation

of real gas flows. It bridges the gap between continuum and

free molecular flow, retaining validity in either extreme. It

can be used to describe complex mixtures, including effects of

chemical reactions, heat conduction, viscosity and diffusion

for flows in three dimensions. To date, it is the only

approach which can demonstrate these abilities for general

.; fflow configurations.

The basic calculational technique is well described by its

originator in Reference 1, to which frequent reference will be

made. The present purpose is to describe how the technique is

implemented at Spectral Sciences, Inc. (SSI), with special

emphasis on extensions developed at SSI and elsewhere after

the publication of Reference 1. Elementary concepts and

relations which are essential to a coherent explanation are

included here for clarity.

The direct simulation Monte Carlo method involves storing

a discrete number of molecules (via their velocities, positions

and other pertinent information) in a computer. The solution

1 Bird, G. A., Molecular Gas Dynamics, Clarendon Press,
Oxford, 1976.

7
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region is broken up into a number of separate cells, and the

solution is stepped forward in time in a two stage process.

First, the molecules are advanced along their trajectories by

an amount appropriate to their velocity and a time increment

Atm . In this first stage some molecules will leave the solution

region and some will be introduced as determined by the boundary

conditions for a particular problem. The second stage is to

simulate collisions in each cell appropriate to Atm so that

-* collision frequencies are properly simulated. A basic hypothe-

sis of the method is that if the time step is made small enough

the processes of translations and collisions can be uncoupled

in this manner.

Periodically, the solution is sampled by accumulating

statistical sums of number densities, velocities and other

basic properties. The solution is run repeatedly until statis-

tical deviations are reduced to a desired limit, and then

physically meaningful output quantities are computed from the

statistical sums. The number of molecules represented is typi-

cally a few thousand at a time, which is vastly fewer than the

number of molecules occurring in virtually all real flows.

Hence, the construction of a dynamically similar flow to be

simulated in the computer is an essential feature of the

method.

2. GAS MODEL AND EQUILIBRIUM PROPERTIES

2.1 Preliminary Equilibrium Gas Relations

For most problems of interest there is a far field equil-

ibrium state whose properties are of relevance to the problem

to be solved. Frequently length and velocity scales for the

problem are obtained from the far field state and used to



nondimensionalize the internal code variables. Even when the

far field state is not used for scaling purposes, it still

provides an important comparison case.

For a rest gas in equilibrium the normalized distribution

function for the relative speed, cr, between molecules of spe-

cies i and molecules of species j is given by2

',:i ',4a3/2

fj (Cr} = i-L c 2 exp (-a.jc2  , (1)
1) r r

.,

where

ai , (2)

and pi. is the reduced mass of the pair; i.e.,

1 3 (3)Pi j] m i + mj 3

.with m i and m representing the masses of the two species. In

these relations, T. is the far field temperature and R0 is the

.I universal gas constant. (R0 is used instead of Boltzmann's

constant since the molecular masses will be consistently repre-

sented in atomic mass units rather than grams.) The available

translational collision energy between two molecules, Ec, is

given by

1 2(4

2Chapman, Sydney, and Cowling, T. G., The Mathematical Theory

of Non-Uniform Games, 'rd ed. :ambridge University Press,
Cambridge, 1970, pp. .
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2.2 Analytical Form of The Collision Cross Section

Whenever the direct simulation Monte Carlo method is

applied, it is necessary to make tradeoffs between accuracy

and simplicity in molecular models. It does no good to use a

complex molecular potential surface and then find that reason-

able computer run times result in very large statistical fluc-

tuations in the output. Since the final output will reflect

errors in the statistics as well as errors in the models, there

is a strong impetus to use models which contain the essential

physics, but which can be applied in a computationally efficient

manner. The current state-of-the-art is the Variable-Hard-

Sphere (VHS) model.3 In this model molecules have a collision

cross section which varies as an inverse power of the available

collision energy. Hence, if a.. is the collision cross section

for collisions of species i with species j, then aij is given

by a relation of the form

)= Aij E. (5)

where Aij is a constant coefficient. It follows that the

effective diameter for molecules of species i, di, is implicitly

defined as a function of available collision energy by the
relation

a = ird = A. EcW (6)

A.. can be determined from a reference cross section and

velocity via

3Bird, G. A., "Monte-Carlo Simulation in an Engineering Context,"
Proceedings of the 12th International Symposium on Rarefied Gas
Dynamics, Vol. 74, Progress in Astronautics and Aeronautics,
AIAA, New York, 1981.
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.Ai aiimiCr/4 (7)

If a reference cross section is given for a reference tempera-

ture rather than a reference velocity, then the usual choice for

the reference velocity is that velocity which has a collision

energy equal to the mean collision energy occurring in colli-

sions at the reference temperature. Mathematically, this is

equivalent to

2) =  r a i , 
(8)ref r ai

where the bars over the quantities indicate averages taken over

the distribution function given in Eq. (1) evaluated for mi = m.

and T., = Tref . Equation (8) can be simplified to give

/ ,\21 = 4(2 - W)RoTref
r ref mi (9)

For simulations involving a large number of species, ref-

erence cross sections are frequently not available for all

possible collision pairs. In this case it is possible to

specify A for self collisions only, and then use Eq. (6) to

get a molecular diameter as a function of collision energy.

Then, applying the relation

a = [(d + dj)/2] (10)

the coefficient in Eq. (5) for interspecie collisions is given

by

2

Aij = + %F(ii)

-1
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For the internal workings of a Monte Carlo code, it is

usually more convenient to express the collision cross section

as a function of the relative collision velocity rather than

the collision energy. This is simply achieved via the

relation

-2w
a.. = B.cr (12)

where

B = A (13)

The parameter w can be related to n, the exponent of

distance in an inverse power intermolecular force law via the
3relation

w= 2/(r - ) . (14)

Hence, hard sphere molecules (for which n goes to infinity) are

represented by w equal to zero. There is a substantial body of

evidence, however, that the effective size of molecules does

indeed decrease with increasing collision energy, so a positive

' value of w is usually a better choice. w can be determined

* . from molecular beam data, or from its macroscopic implications.

*.L' For example, if s is the temperature exponent for the coefficient

of viscosity, then it can be shown3 that

s = + 1/2 , (15)

so a measurement of the temperature dependence of the viscosity

e coefficient serves as an indirect determination of w.

In order to incorporate the model for internal energy

transfer to be discussed in Section 4, it is necessary that w

be assumed the same for all interactions. This represents one

*e of the major restrictions in the current state of modeling.

12



Although the sizes of molecules are allowed to vary in the
VHS molecular model in deciding whether or not a collision is

to occur, when a collision does occur the post collision velocity

components are computed as if it were a hard sphere collision

(see Section 4). This results in a substantial computational

simplification and yet retains good agreement with the macro-

scopic predictions of the more exact model.3 (See Reference 1

for a discussion of molecular scattering for general power law

potentials.)

2.3 Equilibrium Reference Properties for a Multi-Component Gas

One advantage of the VHS model is that the molecules have

a well defined cross section, so it is possible to define a mean

free path without putting limitations on the minimum deflection

angle that is considered. As is the general case for multi-

component gases, however, each component has its own mean free

path, and the overall mean free path for the mixture must be

defined as a weighted average of the mean-free paths of the

individual species. The somewhat cumbersome relations required

to calculate the overall mean free path are given here. It

should be noted that the mean free path is calculated only once

for a given problem, so the computational effort required to

evaluate it is completely negligible.

An individual molecule of species i will suffer collisions

with molecules of species j with a frequency v? given by

1 = n~ air (16)

where n., is the number density of species j and acris the

average product of cross section times relative velocity for

* the two species, obtained by integrating over the distribution

function given in Eq. (1). When this operation is performed,

the result is

13



1F (2 w) (

where r denotes the gamma function.

The total collision frequency for an individual molecule

of species i, vi, is obtained by summing Eq. (15) over all

species, i.e.

P

V. = (18)

7, j=l

and the mean free path, n, for molecules of species i is

given by

F.se s ,i is (19)

"i~ ~ spcis ie

where an is the mean molecular speed for species i molecules.

, The mean free path for the gas mixture, X., is then defined as

the number density weighted average of the Ai via

p n i xi  
(20)

i=l

where n is the total number density:

p

=O nim (21)

i=l

A useful velocity scale is given by vs, defined by

V:- j2RoT

= Vs __ (22)

14



where m is the reference mean molecular weight, i.e.

n
m =11 (23)

n.k i=l

V s is the most probable molecular speed for molecules of the

mean molecular weight at the reference temperature.

2.4 Internal Energy Model

The current state of modeling for internal energy effects

in Monte Carlo flow field simulations is the phenomenological4

model of Borgnakke and Larsen. In this model, transfer of

energy between internal and translational modes is allowed,

but it is necessary to assume that each species has a fixed

number of internal degrees of freedom, i. This is equivalent

to assuming a constant specific heat, Cpi, for each species

which can be related to the number of internal degrees of

freedom via

= 2 - 5 . (24)
R0

Alternatively, .can be related to the ratio of specific heats',i .?
for species i, yi, by the relation

5 - 3y.i*. .i - ( 2 5 )

The interchange of internal and translational energy will be

discussed in Section 4, and the selection of initial conditions

, will be considered in Section 7.

4Borgnakke, Claus, and Larsen, Paul S., "Statistical Collision
Model for Monte Carlo Simulation of Polyatomic Gas Mixture,"
Journal of Computational Physics, Vol. 18, 1975, pp. 405-420.
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3. INTERNAL REPRESENTATION

3.1 State Vector

Each simulated molecule in the direct simulation Monte

Carlo method is represented by a state vector which comprises

all of the information the code has with regard to that partic-

ular molecule. The state vector has:

* Position element(s) defining the location of the

molecule in the coordinate system being used.

For axisymmetric simulations, this is a radial

and an axial element.

e Three velocity elements. A molecular collision

is always considered as a three dimensional

event, regardless of the overall dimensionality

of the problem. For spatially one dimensional

problems it is possible to store only two pieces

of velocity information and compute the required

three velocity components as needed for collision

sampling. This is an example of the frequent

tradeoff which must be made between storage and

computing requirements.

o A value for the internal energy of the molecule.

Note that the basic model does not discriminate

between internal modes for a particular species.

This can be done, if desired, by introducing

separate species for the separate modes.

o An indicator determining the molecular species.

This indicator in turn implies all of the

properties associated with that species (molec-

ular weight, number of internal degrees of

freedom, name, etc.).

16



*An indicator giving the cell in which the mole-

cule currently resides. It is possible to

avoid allocating this particular storage element,

but it usually results in enough computational

simplification to justify its use.

3.2 Reduction to a Reasonable Number of Simulated Molecules

It is clearly impossible to run a computer simulation with

anywhere near the same number of molecules that exist in the

actual flow problem. The adjustment that is made to make the

simulation possible is to artificially increase the cross

section, and decrease the number density, by a large factor.

It is the product of number density and cross section which

determines the collision frequency for a given molecule, and

it is the collision frequency which must be correctly simulated

if the correspondence between the real and simulated flows is

to be correct. This is an essential feature of the direct

simulation method which has not always been adequately empha-

sized. It means that the internal scaling factors do not pro-

ceed on a strictly dimensional basis. For example, the scaling

factor for cross sections is not the square of the scaling

factor for lengths.

3.3 Internal Scales

Many problems are more reasonably handled if the internal

calculations are carried out with scaled or dimensionless

values. This avoids possible problems such as numerical over-

flow which can cause an execution time error. Such errors can

be particularly insidious and difficult to locate in a code

whose very essence involves the random combination of numbers.

Furthermore, examination of scaled values makes the detection

11



of erroneous values easier while debugging codes since large

exponents are usually indicative of an error when the variables

-*: are internally scaled. At SSI, at least, the output is produced

in physically meaningful dimensional form. Hence, the scaling

that is discussed here is irrelevant (or nearly so) to the

interpretation of code output; it is strictly a matter of the

internal representation.

The obvious choices for length and velocity scales are AO

and vs as defined in Section 2, which are used to nondimension-

alize the position and velocity elements of the state vector.

• oThere is no need to provide further nondimensionalization of

mass beyond representing them in atomic mass units, so none is

provided. Hence, the scaling factor for energy is just v 
2

which is used to nondimensionalize the internal energy element

of the state vector.

Number densities are scaled with respect to the far field

reference number density, n., which leaves only the cross sec-

tion scaling factor to be determined. This factor follows

from the condition of flow similarity, which requires that the

probability of a molecule suffering a collision in traveling a

given path length be accurately simulated. This dimensionless

probability can be expressed as the product of a cross section

times a number density times a path length (at least for small

enough path lengths), and it is required that this product be

the same for dimesional and scaled representations. This

implies that the product of the scaling factors for these three

quantities be unity and, therefore, the cross section scaling

factor is i/(n.X.). The internal scaling factors used for the

SSI Monte Carlo codes are summarized in Table 1.

18
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Table 1. Scaling Factors Used for the Internal
- Representation of Quantities in the SSI Direct

Simulation Monte Carlo Codes. All Variables
are Defined in Section 2.

Property Scaling Factor

Length A

Velocity vs
Time A/vs

Number Density n

Mass a.m.u.-2
Energy (a.m.u.) v2

Cross Section 1/( X

3.4 Weighting Factors

Weighting factors are a crucial element of a successful

Monte Carlo simulation, allowing trace species to be described

with reasonable statistics. The weighting factor is the number

of "real" molecules that corresponds to each "simulated" mole-

cule. A "simulated" molecule corresponds to one molecule's

worth of storage (one state vector) allocated in the computer,

and the weighting factor is its statistical weight. So, for

example, the total number density in a cell might be

represented

i-1

19



where N. indicates the number of simulated molecules of species

i in the cell, W is the weighting factor for the species in
1

that cell, V is the cell volume and p is the number of species.

The product NiWi that appears in Eq. (26) is termed the number

of "real" molecules of species i in the cell. Note that ncell

as calculated by Eq. (26) is a scaled value; it would have to

be multipled by n., as shown in Table 1, to become a dimensional

evaluation of the number density.

The weighting factors used in the SSI codes are dependent

on cell and species. Hence, flowfields where a given species

is much more dominant in one portion of the solution region

than another can be accurately represented. It is possible,

of course, to make weighting factors functions of other vari-

ables, such as velocity, for specialized purposes.

A critical error that can occur in Monte Carlo codes is to

have the number of simulated molecules exceed the dimensioned

limit of the code. On the other hand, it is generally desir-

able to have as many molecules as is feasible to obtain good

statistics. Resolution of these conflicting considerations is

complicated by lack of a priori knowledge of what the species

number densities will be as a function of space and time. The

way the resolution is achieved in the SSI codes is by a dynamic

adjustment of the weighting factors, as required. This keeps

the number of simulated molecules more or less constant while

allowing the number of real molecules to adjust as the solution

evolves. The introduction of weighting factors, with the

* ability to adjust them as the solution demands, is an important

• "- feature of a successful Monte Carlo description.
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4. COLLISION MECHANICS

4.1 Relations for Elastic Collisions

The purpose of this section is to present relations

appropriate to the simulation of a ccllision in a Monte Carlo

flowfield code. (The question of how molecules are selected

for collisions, which is crucial to the proper simulation of

collision frequency, will be taken up in Section 6.) Conser-

vation of momentum implies that the center-of-mass velocity of

the the collision pair is unchanged by the collision; and con-

servation of energy then implies that the magnitude of the

relative velocity between the collision partners is also

unchanged by the collision.5 Since the collision is treated

as a statistical event, all that remains is to select the

direction of the post-collision relative velocity vector from

the correct distribution. As mentioned in Section 2.2, colli-

sions in the VHS model are treated as hard sphere collisions

when they occur (though they do not occur with the same velocity

dependence as do hard sphere collisions). Hence, as far as the

collision mechanics is concerned, the model is a hard sphere

model. For hard sphere molecules, all directions for the post-

collision relative velocity vector are equally likely. This is

the chief computational simplicity of the VHS model.

Let the two molecules be identified by subscripts 1 and 2,

with m and v denoting their masses and velocities. If i and f

indicate initial and final states, then the relations for the

collision can be summarized via:

5.
Vincenti, Walter G., and Kruger, Charles H., Jr., Introduction
to Physical Gas Dynamics, John Wiley and Sons, 1965, pp. 348-
356.

21------......
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i mlv1  + m2v2 2i.M , (2 7 )Scm m I + m2

V r li- 2 j (28)

cos(6) = 1-28 , (29)

sin(e) = cos2) , (30)

e = 2nB , (31)

Vrf =V os(), sin(O)cos(f), sin(O)sin(O)  (32)

vif V cm + m1 + m 2 Vrf ' (33)

and

v2 f = m 1 + m 2  rf (34)

In these relations, and throughout this report, 0 indicates

a random variable which is evenly distributed on the interval

zero to one. Each time that 8 appears a different evaluation

of the random variable is implied. Note that the expression

for the post-collision relative velocity vector (Eq. (32)) is

not coordinate system specific. The indicated vector components

can apply to any locally orthogonal coordinate system, since the

direction implied is random. The convenient coordinate system

to use, of course, is the coordinate system used to define the

velocity elements of the state vector. For axisymmetric simu-
lations this will be radial, azimuthal and axial velocity

components.
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4.2 Simulation of Inelastic Collisions

4The SSI codes use the Borgnakke and Larsen phenomenolog-

ical model for transfer of energy between internal and transla-

tional modes. In this model, a collision is assumedto be

either perfectly elastic or perfectly inelastic, via a user

specified probability. A perfectly inelastic collision is

achieved by summing the total pre-collision energy (internal

energy of both molecules plus the translational energy of their

relative motion, Eq. (4)) and then assigning post-collision

. values from the equilibrium distribution for collisions with

that total amount of energy, taking into account the number of

internal degrees of freedom in the two molecules. Note that
this model has the ability to relax from a nonequilibrium to an

equilibrium state via an effective collision number. The abil-

ity to exchange internal energy in such a manner comprises a

significant increase in capability for Monte Carlo codes beyond

the previous models where molecules had no internal energy.
It is this capability which enables the codes to realistically

predict the macroscopic effects of polyatomic gas flow.

Let l and C2 be the number of internal degrees of freedom

of the two molecules in an inelastic collision, and Es be the

total collision energy defined by

Es = Eci + Eli + E2i (35)

where Eci is the initial translational collision energy defined

by Eq. (4), and E and E2i are the pre-collision internal

energies of the two molecules. If is defined by

= Ecf/Es , (36)

where Ecf is the post-collision translational energy, then F is

selected according to the distribution
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f( ) = A i-(i 1b (37)

where

AW -,(3 8 )

1b = >-1 , (39)

and

= ( + C21/2 . (40)

The sampling of Eq. (37) is done via a technique that is

used frequently in Monte Carlo flowfield codes, the acceptance-

rejection method. Equation (37) has been normalized so that

the maximum value of the function is unity, and the parameter

of the distribution, E, varies from zero to one. The sampling

is done as follows:

* Choose a random value of F. I.e., set E equal

to 8, a random variable.

0 Evaluate the distribution function for this

value of E, and call it ftest"

e Get a second random variable, and check to see

if it is greater or less than ftest" If it is

greater than ftest' go back to the first step

and repeat the process. If it is less than

ftest' then keep the value of 4 obtained in

the first step.

Note that the probability that any original value of will be

kept is proportional to f(t). This is an extremely general

technique and, as such, is very powerful. It is not always

efficient, however, and direct sampling of distributions is

usually to be preferred if it can be accomplished. In this
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case, if one molecule is monatomic and the other is diatomic,

i.e., if < > 1, then a direct sampling of the above distri-

bution is achieved, via

8[/(2-w] , (<.> = 1) (41)

Once , and therefore the post-collision translation

energy, is determined, the magnitude of the post-collision

relative velocity is defined via

yr =4 cf (42)

For inelastic collisions, this relation takes the place of Eq.

(28) in the determination of the post-collision velocity ele-

ments of the state vectors.

The remainder of the collision energy must be divided up

between the internal modes of the two molecules. If one of the

molecules is monatomic (i.e., has zero internal degrees of free-

dom), then all of the internal energy goes to the other by

default. Otherwise, if x is defined by

x = Eif/(E s - Ecf) , (43)

where Elf is the post-collision internal energy of the first

molecule, then x is just the fraction of the total post-

collision internal energy that ends up in the first molecule.

x is distributed with a probability proportional to f(x),

given by

f(x) = B xC (l-x)d , (44)

where

B =[<>-2) (<>)/cdd (45)
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c Cl1/2- 1 (46)

and

d C2 ~2/ 1 (47)

Equation (44) can be sampled via the acceptance-rejection method

to determine the allocation of the internal energy for the gen-

eral case. For the special case of both molecules being diatomic,

Eq. (44) becomes singular, with the limit being the trivial case

that all distributions of internal energy are equally likely,

i.e.,

X =l = ,2 ( 2= 2) .(48)

For the special case of just one of the molecules being diatomic

(molecule 2, for instance), then the distribution for x can be

sampled directly via

xa = 2) 01 (49)

with the obvious reciprocal relation applying for C 2. The

SSI codes recognize these special cases so that the sampling

can be expedited when possible, while retaining the full gener-

ality of Eqs. (37) and (44) when required.

4.3 Collisions for Molecules with Distinct Weighting Factors

There is an obvious problem when considering a collision

between two simulated molecules with distinct weighting factors,

since they represent a different number of real molecules. If

W U and W L represent the weighting factors for the two molecules,

with W U being greater than WL , then the collision is always

counted as W L "events". This is accomplished by always assign-

ing post-collision velocity and energy components to the state
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vector of the molecule with the smaller weighting factor, but

only changing the components of the molecule with the greater

weighting factor some of the time. The probability that the

molecule with the greater weighting factor will have its com-

ponents changed is simply W L/W U. Statistically, this means

that for a large number of simulated collisions, each such

simulated collision will average out to WL real collisions for

each species, even though their weighting factors differ. It

should be noted that this does violate conservation of momentum

and energy on an individual collision basis, but these quanti-

ties are conserved in the aggregate over a large number of

collisions.

4.4 Reactive Collisions

A realistic simulation of chemical reactions is a crucial

element of many problems. If a bimolecular reaction of the

form

B C + D (50)

has an Arrhenius rate constant of the form

k A ArT nexp(-E a/R 0T) (51)

then it is possible to define a reactive cross section as a

function of translational collision energy such that the above

rate constant is implied for a gas in translational equilibrium.

(In Eq. (51), T is temperature, E a is the activation energy,

n is a dimensionless exponent and A is a prefactor.) Ther
product of reactive cross section, a*, times relative velocity

can be expressed 
3

(l (+ 6  Y)VTr AEa
r 2R~ 0Nn + 3/2) E- c (E~ a)(2
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where 6ij is unity for like reactants and zero for unlike reac-

tants. The probability of a collision resulting in a reaction

is given by the ratio of the reactive to the gas kinetic cross

section at the existing relative velocity between the molecules.

In the SSI Monte Carlo codes, the following procedure is

used to determine which, if any, reaction will occur:

* All possible reactions are identified for the pair

of molecules which are selected to experience a

collision. If there are no such reactions, the

procedure is bypassed.

o The probability of each allowed reaction is calcu-

lated by computing the reactive to gas kinetic

cross section ratio.

o If somehow the reactive cross section(s) total

to a greater value than the gas kinetic cross

section (which will rarely be the case) then

the probabilities are normalized by their sum.

o The collision is taken to be reactive with a

probability equal to the sum of the individual

reaction probabilities.

o If the collision is reactive, the reaction that

occurs is selected in accordance with its

probability.

o If no reaction is decided upon, then the colli-

sion is either elastic or inelastic according

1to the user specified probability.

Equation (52) becomes singular for n < -3/2, and this

procedure cannot handle that case. The major limitation of

this procedure is that it ignores the effect of internal energy
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in determining whether or not a reaction can occur, assuming
that the entire activation energy barrier must be overcome

through translational energy. If a specified fraction of the

molecular internal energy is allowed to contribute to overcoming

this barrier, then the restriction on n is relaxed somewhat (see

Ref. 3), but this feature is not presently implemented in the

SSI codes.

4.5 Post-Reaction State Definition
The post-reaction state is simply determined by adding the

heat of reaction to the total collision energy (translational

plus internal) and then computing reactant state vectors for

the products based on this total energy and the reactants

center-of-mass velocity, as for inelastic collisions. Although

this is clearly an oversimplification, it is quite consistent

with the phenomenological nature of the model.

The position state vector components for the products are

randomly selected from the position state vector components of

the reactants, which are not the same (see Section 6). The
major additional complication of chemical reactions is that of

distinct weighting factors. Since the reaction is WL "events"

(see Section 4.3), it only destroys the reactant with the

greater weighting factor with a probability of WL/WU. If W
L U p

is a product weighting factor, it is necessary to produce W L/Wp
simulated molecules of that product. In general this is not
an integer quantity, so it is necessary to interpret the ratio

statistically so that the expectation value is proper. That is,

sometimes the next lower integer is selected and sometimes the

next higher one, with a probability that reflects how close each

integer value is to the desired fractional quantity. (See the

discussion of molecular cloning in Section 5.2.) Of course, the
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weighting factors for the two products will in general be dif-

ferent, resulting in a different number of simulated molecules

being produced for the two products. Sometimes this process

could result in a very large production of simulated molecules

for a product with a small weighting factor. In order to pre-

vent overflow of code dimensions it is necessary for the code

to sense when this is happening and automatically increase the

product weighting factor to prevent it.

4.6 Dissociative Reactions

The situation for dissociative reactions is somewhat com-

plicated by the presence of three rather than two products. With

a little manipulation, however, it is possible to use the previous

relations for this case as well. Let Mi, M2 and M3 represent the

three product molecules from a dissociative reaction, with a

known center-of-mass velocity and total energy. The procedure

for defining the post-reaction state is to first define an arti-

ficial complex comprised of the (M2,M3) pair. (There is no
implication that there actually is any such collision complex.)

The complex is assigned a number of internal degrees of freedom

equal to c' given by

" c C2 +  3 + 2(2 - w) ,(53)

where the last term represents the contribution of the relative

translation between M2 and M3

The fact that this term is not simply three, as it would

seem it should be, merits some explanation. It is due to the

fact that these molecules are not random samples from the gas

but rather special molecules owing to their being created in a

reaction. This point can perhaps best be seen by considering

microscopic reversibility, where the inverse reaction is a
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three body recombination. For this reverse process, molecules

participating in it are not all equally probable, since those

with greater relative velocities are more likely to collide.

Hence, the term does take on the value three for the special

case of w equal to 1/2, which is precisely the case of collision

frequency being independent of relative velocity. Examination

of Eqs. (37) and (44) demonstrates that translational energy

in collisions behaves like another source of internal energy

with 2(2 - w) degrees of freedom.

With the number of degrees of freedom defined, the separa-

tion of M from the (M2,M3 ) complex is treated as an inelastic

collision. The resulting velocity for the complex is then

treated as the center-of-mass velocity for M2 and M 3, and the

internal energy assigned to the complex becomes the total energy

for the pair. Using these values, M and M3 are then separated

in another application of the rules for inelastic collisions.

5. MOLECULAR TRANSLATIONS

5.1 Translation in an Axisymmetric Coordinate System

As discussed in Section 1, an essential element of the

direct simulation Monte Carlo method is the periodic advancement

of simulated molecules along their trajectories. Formally, this
Pis accomplished by updating the position and velocity elements

of the state vector. For a cartesian coordinate system this is

a trivial process, but the relations are slightly more compli-

cated for the often used axisymmetric coordinate system. Let

Vr0 , v00 , and vz0 represent the initial radial, azimuthal and

axial velocity components of a molecule, with r0 and z0 repre-

senting its initial radial and axial position. Additionally,
L% let 0 represent the initial azimuthal angle for the molecule.

31

S. . . . . . . . .



This is included here just for demonstration purposes; it will

not generally be known, nor, as will be shown, will it be

needed.

The initial position and velocity of the molecule can then

be referenced to a standard cartesian coordinate system, yielding

v = r0 cos(0) - v.0 sin( 0]

+ sin(O0 ) + v 0 cos(

.:+ Vzok

S= x0 i + Vy 0 j + Vz0 k (54)

and

= 0 r0 cos( 0 )]i + tr0 sin( 0)] + z0 k

Sx i + y j + z0 k (55)
0

After a time increment Dt, the position vector of the molecule

will be

r 1 (x0+vX0 D)i + (yo + v yDt)j+ z+voDtk

= x1 i + yl j + zl k (56)

* and, in the absence of perturbing forces, the velocity vector

will remain unchanged in the cartesian coordinate system. It

will change in the axisymmetric coordinate system since the

basis vectors are a function of position and the molecule has

moved. The new radial position is
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- Ix 1
2 + 2

-- rI 2 2l2 (57)l

(r0 + V Dt) + (v Dt) (57)

and the new axial position is

zI  z0 + VzO Dt (58)

The radial velocity component in the coordinate system appro-

priate to the new molecular position can be determined by noting

Vrl (v0 ) * (r)/rl

V r0 (r0 + VrODt) + v, 0 (vO0Dt rI (59)

and it can similarly be shown that

S 0l = 0(r 0/r1 ) (60)

and

Vz - Vz (61)

Equations (57) - (61) give the updated position and velocity

elements of the state vector for a translation in an axisymmetric

coordinate system. Note that these relations are indeed independ-

ent of 0 A similar procedure applies for molecular transla-

tion in other coordinate systems.

5.2 Molecular Cloning

When a simulated molecule is translated from one cell to

another, the weighting factor for that species will generally

be different in the new cell. Since it is the number of real

molecules rather than the number of simulated molecules which
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must be preserved when crossing cell boundaries (statistically,
at least), it is necessary to correct for the distinct weighting

factors (see Section 3.4).

If the weighting factor before translation is W0 , then the
simulated molecule represents that many real molecules. If the

weighting factor in the new cell is WI , then WO/W simulated
molecules would be required to represent the same number of

real molecules in the new cell. If this ratio were a whole

integer, then this could be accomplished by introducing that

many "clones" of the molecule in the new cell. That is, that

many simulated molecules would be placed in the new cell, all

with the same state vector.

When the number W /W is not an integer (the usual case,

of course), then the cloning must be done on a statistical

basis. So, for instance, if W0/W1 were equal to 2.7, then 30%
of the time two clones would be produced and 70% of the time

three would be produced. Note that the ratio may be less than
unity, and the molecule may not be introduced into the new cell

at all. (In which case the molecule is removed from the

simulation.)

Cloning is a necessary evil inherent in a system with spa-

tially dependent weighting factors. It enables such a system

to maintain the statistically correct flux of mass and momentum

across cell boundaries, but it misrepresents the flux of random-
ized or thermal energy. This can be seen by an extreme case

where a very large number of clones is produced when a simulated

molecule crosses a cell boundary. The resulting molecules in

the new cell have the correct mass and momentum flux, but since

they all have precisely the same velocity they have a null

relative velocity, and therefore a zero temperature. If the
weighting factors are not too different between adjacent cells,
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then the errors introduced by this process are acceptably small.

However, it does mean that one cannot arbitrarily improve

statistics in one portion of the solution region by selectively

reducing the weighting factors there. This was a difficulty

which was encountered in the early stages of the direct simu-

lation Monte Carlo method while trying to improve statistics

along the axis of axisymmetric simulations, since the cell

volumes (and therefore the sample sizes) tend to be smallest

on the axis.

As was the case for simulated molecules produced via

chemical reactions, it is possible for the weighting factors

between successive cells to be so different that a prohibitively

large number of simulated molecules would be required to produce

the same number of real molecules. This is most frequently the

case when a new species is being introduced, since before the

species gets there the weighting factor is initialized to a

very small number. The codes sense when a disproportionate

number of simulated molecules are being produced for a given

species and cell, and adjust the weighting factor automatically.

As the weighting factor is increased, a proportionate fraction

of molecules of that species and cell are removed from the

simulation in order to keep the number of real molecules properly

represented. This process enables the weighting factors to seek

their own proper level without a priori knowledge of the solu-

tion. (Periodically, the cells are examined to determine if a

certain species has been underrepresented in terms of number of

simulated molecules. If it is found to be the case, then the

weighting factor is decreased, allowing weighting factors to

float downwards as well as upwards. It is the danger of weight-

ing factors b .ing too smiall, causing an overflow of code dimien-

sions, which is most critical, however.)

35



6. COLLISION SAMPLING IN A MULTI-COMPONENT VHS GAS

6.1 General Considerations and Approach

The two general considerations in the sampling of colli-

sions are, as usual, accuracy and efficiency of the simulation.

As far as accuracy is concerned, it is crucial that the method

in which molecules are selected for collisions be proper. It

is imperative that the correct collision frequencies be simu-

lated between various species, and, in fact, between the dif-
ferent portions of the velocity phase space for the various

species. Furthermore, this frequency of simulated collisions

must remain correct without any requirements put on the velocity

distribution function; it certainly must not be assumed that

there is a Maxwellian velocity distribution.

As far as efficiency is concerned, it is highly desirable

to use a method of collision sampling involving a computational

effort which is proportional to the number of simulated mole-

cules, N, in a cell. Methods which are proportional to a power

of N greater than unity can become prohibitively time consuming

as the number of molecules is increased - a limit which should

be made as accessible as possible for obvious physical reasons.

6.2 Collision Sampling for a Single Component Gas

The simplified situation of a simulation involving only

one species is considered here. This problem is significant in

part due to all the attention it has received and, as will be

seen, it serves as an important reference case. When there is

just one species, then there is just one gas kinetic cross

section (though it is still, of course, a function of collision

energy), just one molecular weight and just one weighting factor

for each cell. In short, just one of everything that has a
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molecular subscript. Hence, in this subsection all such quanti-

ties will be presented without subscripts. The most important

simplification of having a single species is that there is just

one collision class, i.e., only self-collisions of the given

species with itself are possible.

6.2.1 Collision Pair Selection

As discussed in Section 1, in the direct simulation Monte

Carlo method collisions are sampled on a cell by cell basis

until the number of collisions simulated is appropriate to the

overall solution time step, Atm . The only spatial requirement

placed on potential collision partners is that they be within

the same cell. In particular, it is not required that they be

within a molecular diameter of each other. (Note that if all

pairs of molecules were inspected to find those that were suf-

ficiently close to each other, this would involve a computa-

tional effort in proportion to the square of the number of

molecules in the cell.) The rationale for this is that the

cells should be taken small enough such that macroscopic prop-

erties can be assumed constant across the cell. When this is

the case, then a molecule within the cell can be considered

typical of a molecule which might exist anywhere within the

cell, and molecular location can be ignored when selecting

potential collision pairs.

Spatial consideration aside, the probability of any two

molecules experiencing a collision is proportional to ocr , the

product of their mutual cross section times their relative

velocity. This probability is correctly simulated via an

application of the acceptance-rejection method if pairs of

molecules are selected at random, and then kept or rejected as

collision partners with a probability proportional ocr. This
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is accomplished by keeping a maximum value for ocr for each
cell (which is updated if a larger value is encountered) and

computing the ratio r defined by

c
(r cc . (62)

r max

A random variable, B, is then generated, and the pair of mole-

cules is accepted as collision partners if r is greater than 8.
This produces the proper relative collision probability without

regard to the existing velocity distribution function.

6.2.2 Collision Time Counter for a Single Component Gas

The volumetric collision frequency for a single component

gas, v (collisions per unit volume per unit time), is given by

v= n 2 (63)
2 jCr

where, as in Section 2, n represents the number density of the

species and oc-r is the average product of collision cross sec-

tion and relative velocity. At first inspection, it would seem

from Eq. (63) that a correct simulation of collision frequency

would require evaluation of --r , which would mean that all pairs

of molecules in a cell would have to be considered. Such a

procedure involves a computational effort proportional to N
2

and is to be avoided, if possible, in preference to a method

which is simply proportional to N.

The alternative approach, introduced by Bird, is the time

counter approach. For each collision a time counter, tc, is

incremented by an amount that depends on the relative velocity

of the collision. Collision sampling continues in a cell until

its time counter has been advanced beyond the overall flow

simulation time, at which time the code proceeds to the next
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cell (which has its own time counter). The time counter incre-

ment, Atc is given by

Ltc _ 2 (64)AVn 
2cr

where V is the cell volume and n is the species number density

given by

n = NW/V , (65)

with W being the weighting factor for the species. (Equation

(65) is just a special case of Eq. (26).) It should be stressed

that Eq. (64) applies for each real collision. As is discussed

in Sections 3.4 and 4.3, each simulated collision corresponds to

W real collisions, so when a simulated collision occurs the

actual applied increment to tc is W times the value given by

Eq. (64).

It is not obvious that Eq. (64) will lead to a proper

simulation of the overall collision frequency, so a demonstra-

tion will be presented. Let f1 (cr) be the normalized distribu-

tion function for relative velocity appropriate to a given cell

at a given time. (Note that most problems solved by a Monte

Carlo technique involve repeated runs, where the total number

of collision pairs can be made arbitrarily large. The intro-

duction of a distribution function, and therefore the demonstra-

tion of the correctness of Eq. (64) is strictly valid only in

the limit of infinitely many runs. Since the essence of the

method is a correct statistical representation, it could not

be otherwise.) By definition,

f (crldCr = 1 , (66)

0

°.
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irrespective of the particular form for fl" Let f2 (Cr) be the

normalized distribution function of relative velocity occurring

in collisions. Since collisions occur with a probability pro-

portional to ccr, f2 can be constructed from fl via

ocr

f 2 (Cr) = fl(Cr) , ' (67)
ccr

where cr can now be formally defined via

ocr = (cr)c dc . (68)

0

(Note that in Eq. (68), as in the rest of this demonstration,

the functional form of the dependence of cross section on rela-

tive velocity need never be specified. The time counter repre-

sented by Eq. (64) is therefore not restricted to any particular

model for the cross section.)

The average increment of the time counter that is applied

over many simulated collisions is therefore given by

Atc = f2 (cr) At (cr)dcr . (69)

0

If Eqs. (64) and (67) are substituted into Eq. (69), the result

is

2
2- (70)

c n2V-cr

where the normalization condition (Eq. (66)) has been utilized.

The implication of Eq. (70) is that, on average, the frequency

of collisions in the cell is Vn2 -cr/2. Since this is simply

40



the product of cell volume times the proper volumetric colli-

sion frequency (Eq. (63)), the validity of the time counter

given in Eq. (64) has been demonstrated.

6.3 Collision Class Sampling in Gas Mixtures

The above procedure for a single species gas can be extended

to a multi-component mixture via consideration of distinct col-

lision classes. In this approach, collision classes are defined

by the colliding pair identities. Hence, if there are p species

in the simulation then there are p(p+l)/2 collision classes,

which can be identified by the subscripts of the corresponding

molecular pair. (The number of classes is not p2 since the

order of molecule specification is not taken to matter in deter-

mining a collision class. Hence, the class identified by the

subscripts i,j is not distinct from the class identified by the

subscripts, j,i.)

In collision class sampling, which is the method used by
1Bird, each collision class is sampled separately, and the

collision sampling in a cell is not complete until all classes

have been considered. Each collision class has its own stored

4 value of (aijcr)max , and its own separate time counter, tci j .

By a comparable analysis to that presented above, it can be

shown that the appropriate time counter increment in this case

is

A(1 + dij)

cij = ninjVi.cr , (71)

where, as in Section 4, 6.. is the Kronecker delta which is
1)

unity for i = j and zero otherwise. As in the previous section,

the above increment applies for each real collision. A simu-

lated collision corresponds to WL real collisions, where WL is
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the lesser of W. and W. (see Section 4.3), so when a simulated

collision occurs, the applied increment to tc is WLtimes the

result of Eq. (71).

6.4 Glob~al Collision Sampling in a Gas Mixture

Although the procedure described above is quite reasonable

for, say, a two component mixture, it becomes quite complicated

as the number of species increases. For 10 species, for instance,

the program must loop over 55 distinct collision classes for each

cell, and storage must be allocated for 110 quantities in each

cell. As the number of species increases, the storage require-

ment for the collision sampling constants quickly becomes

greater than the storage required for the molecular state vectors!

The obvious simplification is to search for a technique where

collisions are simulated simultaneously for all collision classes,

with each class having its proper relative probability of being

selected. The overall collision sampling then continues until a

single time counter indicates that sufficient collisions have

been sampled in the current time step and cell.

6.4.1 Global Collision Time Counter

If molecular pairs are selected for collisions such that

the various collision classes automatically appear with the

proper relative frequency (see below), then it is not necessary

to consider separate time counters for all the various collision

classes. One approach that could then be applied is to keep a

collision time counter for just one collision class, and incre-

ment it when collisions of that class occur. If the various

collision classes are being selected according to their correct

relative frequency, then simulating the proper frequency for

one collision class will ensure, in the long run, that all
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collision classes are occurring with the correct frequency. A

disadvantage with this approach is the necessity of making an

arbitrary choice for the collision class which is to have a

time counter. Furthermore, there may be no good choice in a

reacting flow where the dominant species may vary strongly

from place to place. (Clearly, one would not want to select a

class of collision that does not occur in a given cell, since

the result would be a never ending sampling of collisions of

other classes.)

The preferred approach is to define a global collision

time counter, tg, which is a weighted average of the time

counters of all collision classes; i.e.

p i
Di ij t cij

tg i=l p =l i  (72)

ZZ D
i=l j=l

where the Di are nonnegative coefficients which can be selected

at will. Note that in this formulation every collision will

result in some increment of the global time counter (unless

Dij = 0 for that class), so the collision sampling frequency

is not dependent on any one collision class.

It remains, of course, to specify the D i. A very conven-

ient choice is given by

nin.

D i i (73)

Firstly, Eq. (73) is convenient because it tends to make the

collision classes with the higher collision frequencies count

more, resulting in good statistics for t irrespective of cell
g
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location. (Note that Dij is cell dependent since the species
iJ

number densities are cell dependent.) Secondly, Eq. (73)

results in a particularly convenient form for tg. The normal-

izing factor in the denominator of Eq. (72) can be summed to

give

ip ji nin"

tg R L +u 16.. c
n 1 j=1 1)

Hence, a collision of class ij, which would produce an incre-

ment of Ati.. to its own time counter produces an increment At

to tg given by

nin.

Atg = ( Atcij (75)

where, again, n is the total number density of all species in

the cell. If eq. (71) is substituted into Eq. (75), the result

is

At 2 r (76)g Vn2o.i.c

Equation (76) is extremely significant since it recaptures the

precise form of the time counter increment for a single species

(Eq. (64)), but indicates that it is completely valid for a

multi-component mixture so long as the various collision classes

are sampled with the proper relative frequency.

6.4.2 Collision Pair Selection in Multi-Component Mixtures

When considering selection of collision pairs, it is cru-

cial to remember the distinction between real and simulated

molecules discussed in Section 3.4. Given two simulated
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molecules selected at random from within the cell, the probabil-

ity of their having a real collision is proportional to WiW aijr

However, real collisions cannot happen individually; they come

Watatime, where WL is the lesser of W. and W..* Hence, when
a collision is decided upon in the program, W L of themi will

occur. To compensate for this, potential collision pairs should

be accepted for collision according to the size of Q given by

Q = WU aij cr (77)

The relative frequency of real ij collisions will then be pro-

portional to the product OW L (the relative probability of a pair

being accepted for collision times the number of real collisions

occurring when the pair is accepted), which is the desired rela-

tion. Selection of collision pairs with the correct relative

frequency then assures that incrementing the global time counter

as discussed above will give a statistically correct sampling

of all collision classes simultaneously.

6.4.3 Summary of Collision Sampling in Multi-Component

Mixtures

The results of this section can be summarized via the fol-

lowing procedure for the sampling of collisions:

e Each cell has a (current) maximum value of Q,
Omax' that has been encountered so far in the
collision sampling process. Whenever a larger
value is encountered, Qmax is set equal to that
larger value.

*Each cell has a current value of the global
time counter, tg.

e Pairs are selected at random from all molecules
within the cell.

*For each pair, Q as defined by Eq. (77)) is
computed.
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e The ratio of Q to Qmax is computed, and a random
variable is generated. The pair is accepted for
collision if the random variable is less than
the ratio. (If the pair is not accepted, then
another random pair is selected. The process
continues until a pair is accepted.)

* For an accepted pair, the collision mechanics
are computed as described in Section 4. This
always corresponds to WL collisions.

* The global time counter is incremented by
WLAtg, where Atg is given in Eq. (76).

e The process continues until the global time
counter goes beyond the overall flow time.
At that point, the collision sampling is com-
menced in the next cell.

. When all cells have had collisions simulated,
then the code proceeds to the translation portion.
(See Sections 1 and 5.)

7. INITIAL AND BOUNDARY CONDITIONS

7.1 General Considerations

The initial and boundary conditions necessary to simulate

a problem frequently do not receive their fair share of consid-

eration. It is these conditions which usually distinguish one

solution from another, and their correct and efficient specifi-

cation should be a central concern. Nonetheless, there is

clearly room for advancements, particularly in the specification

of boundary conditions. Many gas dynamic solutions involve

boundary conditions specified at infinity, which are currently

simulated by placing boundaries very far from the main flow

region. It would result in a substantial computational simpli-

fication if boundary conditions applicable closer in to the flow

region of interest could be generated for free gas boundaries.

Wall boundary conditions also frequently involve a fair degree
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of approximation, usually taking the form of accommodation

coefficients (though in this case the problem is as much a lack

of basic physical understanding of the gas-surface interaction

process as it is a lack of a good numerical simulation).

7.2 Initial Conditions

Since the direct simulation Monte Carlo method is inherently

an unsteady technique- an initial state must be specified in

order to advance the solution. (For situations where a steady

state result is desired, it is obtained as the long time solu-

tion to an unsteady problem. In this case the initial condi-

tions have no effect on the eventual solution, but they may well

have an impact on the speed with which that state is achieved.)

It will be assumed here that the initial conditions correspond

to a uniform flow with the translational and internal modes

being in equilibrium. The specification of the initial condi-

tions therefore involves determining the state vector elements

consistent with this condition for the desired number of

molecules.

7.2.1 Number of Simulated Molecules and Weighting Factors

The desired number of simulated molecules of each species

in each cell (referred to here as Mc) will usually be an input

quantity. (Typically, simulations aim for a total number of

molecules per cell in the neighborhood of twenty.) Given the

initial number density to be simulated for a species, ni ,

(which will have been converted in the code to internal dimen-

sions - see Section 3) the weighting factor for a species in

a cell can be dervied from an application of Eq. (26) to give

W- Vn,/M (78)
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where V is the cell volume. If a species is not initially pre-

sent in a cell, then the weighting factor is set to a very small

but positive number, typically that which would correspond to

an initial mole fraction of one part per million or So. A

weighting factor of zero would cause an attempt to divide by

zero when molecules of that species move into the cell, but it

is generally best to start the weighting factors off small.

As the solution proceeds, the weighting factors are automatically

adjusted, but the adjustment upward is more direct and immediate

than the adjustment downward (see Sections 3.4 and 5.2).

7.2.2 Initial Positions

The initial molecules assigned to a cell should have an

equal probability of being placed in any volume element of the

cell. The rules for accomplishing this will change with the

coordinate system being used, but they are readily derivable

from the general principle. As an example, consider an axisym-

metric simulation where a cell is bounded by the radial posi-

tions r1 and r2 (r < r ), and the axial coordinates z1 andz

(z 1 < z 2  Since the basic volume element in this coordinate

system is 2'nrdrdz = id~r )dz, the volume elements will be
sampled with equal probability if r2 and z are sampled randomly.

Hence, a molecule can be assigned axial and radial positions via

r = r2 + Cr 2 2 _ r 1 2  (79)

and

4z = z1 + a(Z2 -z 1 ) .(80)

(Recall that every time the symbol 0occurs it implies a separ-

ate random variable. In particular, one should certainly not
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use the same random variable to determine radial and axial

coordinates. The second application would hardly qualify as

"random".)

7.2.3 Initial Velocity Components

The thermal velocity components for a molecule in transla-

*i tional equilibrium (neglecting, for the moment, any mean flow

contribution) should be selected from the normalized Maxwellian

velocity distribution, f0 (v), given by

2.'" 0 xp -(av)2]
= exp, (81)

where

, (82)

m is the species molecular weight, R0 is the universal gas con-

stant and T. is the temperature. Equation (81) applies for each

of the molecular velocity components, and must be sampled three

times for each molecule that comprises the initial state of the

* simulation. A method for directly sampling from this distribu-

tion, as presented in Ref. 1, is

A = 2ir , (83)

A =(84)2 = -log(S)l ,)

- v = A2 sin(Al) . (85)

After the thermal velocity components are determined for each

molecule, then any mean flow velocity is simply added on. The

velocities are then transformed to internal units (see Section

3.3).
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7.2.4 Initial Internal Energies

The only remaining element of the state vector to be speci-
fied is the internal energy. Internal energies for a gas in

equilibrium are distributed according to the normalized distri-

bution function f, given by

f, = T( /2) exp (-c) (86)

where represents the number of internal degrees of freedom

for the species in question, r is the gamma function and E is a

dimensionless internal energy, i.e.

EI/RT (87)
I 0~

where El is the internal energy. In general, sampling of Eq.

(86) must be done via the acceptance-rejection method. In the

present SSI codes c is restricted to being greater than or

equal to two (or the trivial case of r equal to zero, which

just gives E identically equal to zero). If is precisely
I

equal to two, then a direct sampling of the internal energy

is possible via

= -log(S) . (c = 2) (88)

In the general case of C > 2, it proves convenient to first

introduce the transformation s = 1. s is then distributed in

proportion to the distribution g(s) given by

g(s) = 2s(-) exp(-s2 (89)

Since g(s) is to be sampled via the acceptance-rejection

method, it is first necessary to determine its maximum value,

gmax. Standard calculus serves to show that gmax occurs at

s= S*, where
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s*= -1)/2 , (90)

so

g (s) -- exp Is*2 - s2] (91)

g(m.)

The sampling of Eq. (89) proceeds as follows:

9 A value of s is selected randomly from the inter-
val Smin to Smax, where

.max = s* + 5 (92)

and

Smin = greater of {0,s* - 51 (93)

(Note that in this interval g(s) goes from its
maximum value to a value on the order of 10-10
its maximum value. The transformation from Eq.
(86) to Eq. (89) was made mainly to achieve a
probability function which dies off extremely
rapidly away from its maximum value, so that
very little error is associated with considering
a finite subinterval for the sampled variable.)

0 g(s)/gmax is calculated via Eq. (91).

" A random variable is generated, and the value of
s is kept if the random variable is less than

;7,g(s)/gmax. Otherwise, the procedure is repeated
until a value of s is accepted.

* When a value of s is selected, then the internal
energy is given by s2RoT,.

As for all the initial conditions, the codes will automatically

then express the values in internal dimensions (see Section

3.3).
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7.3 Wall Boundary Conditions

Boundary conditions in the direct simulation Monte Carlo

technique are applied for both wall and free gas boundaries.

In a wall boundary condition, whenever a molecule is simulated

to strike the wall some action must be taken. Unless the wall

is a condensing boundary the molecule will be reflected, and

one of several boundary conditions can be selected. The easiest

condition is that of a specularly reflecting wall, where the

molecule simply is replaced by its mirror image to keep it

within the solution region. Another frequently used condition

is that of a perfectly accommodating wall. In this condition,

a molecule is reemitted from the wall after being selected from

a distribution characteristic of the wall temperature and veloc-

ity. To date, wall boundary conditions have not been required

in the SSI codes, and they will not be discussed further here.

They are discussed at some length in Ref. 1, including the

intermediate case of partial accommodation.

7.4 Free Gas Boundary Conditions

In many cases, the- boundary condition is meant to simulate

a region of uniform equilibrium flow. Molecules leave the solu-

tion region in the normal course of their trajectories, and they
simply disappear from the simulation. Molecules are introduced

from outside the boundary as selected from distributions appro-

priate to incoming molecules in the undisturbed flow. It should

be stressed that this is not the same as simply sampling a

Maxwellian velocity distribution, since it is the molecular

flux across the boundary which must be correctly simulated.

Hence, molecules with a large component of velocity inward from

the boundary are more likely to be selected than they would be

in choosing molecules appropriate to a static distribution as

was done for the initial conditions described above.

L
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7.4.1 Incoming Number Flux

The first requirement is to determine the number of mole-
cules which should be introduced across the boundary during the

solution time step Atm . The incoming number flux, q, (molecules

per unit area per unit time) can be expressed
1

q =n. (exp (_w2) /yi't + w + er~))/2ax (94)

where

w = cucos(e) , (95)

and e represents the angle between the inward surface normal and
the mean flow, which has a magnitude u. (i.e., u.cos(O) is the

inward component of the mean flow velocity), n. is the far field-
number density of the species of interest and a is given in

Eq. (82).

Equation (94) must be applied for each cell on the boundary

and for each species that exists in the ambient. The number of

simulated molecules to be introduced into the cell, Nb, is

given by

Nb = qAc Atm/W (96)

where Ac is the area of the cell along the boundary and W is

the weighting factor for the species and cell in question.

7.4.2 Incoming Molecular Velocity Components

A coordinate system -'hould be set up locally at the bound-

ary such that one direction is in the direction of the inward

normal and the other two directions are perpendicular to it.

Velocity components are first determined in terms of this local

coordinate system, and then transformed, if necessary, to the
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main code coordinate system. In the local coordinate system,

the velocity components parallel to the surface are determined

as discussed above for initial state molecules, but the inward

component of velocity must be selected in proportion to the

distribution h(v) given by

h(v) =(v + w)[exp -(czv) 21] (97)

which must be sampled via the acceptance-rejection method.

(only positive v is allowed, of course, from the definition

of the coordinate system.)

7.4.3 Incoming Molecular Position

An initial entry position should be selected for the mole-

cule such that the flux is randomly distributed. Assuming there

is no variation of 0 across A Cthis means that each area element

of the exposed cell area should have an equal probability of

being selected. Once the initial entry position is selected,

then the molecule should be translated a random fraction of At m
along its trajectory to determine its actual location. All of

the consideratic-is discussed in Section 5 with regard to molecu-

lar translations apply to this translation and, in particular,

it must be possible to dynamically adjust the weighting factor

as required.

7.4.4 Incoming Molecular Internal Energies

The internal energies are selected as described in

Section 7.2.4.
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8. STATISTICAL SAMPLING OF OUTPUT

8.1 General Considerations

It is safe to say that the molecular state vectors as they

exist in the computer do not comprise the desired output of the

procedure. With rare exceptions, it is usually macroscopic

quantities such as temperature, density, mean flow velocity,

etc., which are of interest - not the microscopic quantities

represented by the state vector components of an individual

simulated molecule. The generation of the desired output

requires that the macroscopic quantities of interest be repre-

sented in terms of statistical sums of the available microscopic

quantities; and it is the main purpose of this section to pre-

sent these correspondences. All sums are kept in terms of "real"

molecules and events, i.e., the current weighting factors are

included in the suoms. This is essential since the weighting

factor determines the statistical importance of a given molecule.

Since the weighting factors are dynamically and unpredictably

adjusted as the solution progresses, it would not be possible

to go back and add in the effect of weighting factors a

posteriori.

In general, it must be decided ahead of time exactly what

output is desired from the code, and therefore what statistical

sums should be kept to generate it. There is a vast amount of

potential information in the simulation, and it is not reason-

able to store all possibly interesting quantities in all runs.

On the other hand, it is wasteful to completely rerun a case

just because the user decid-s there was an additional quantity

he was interested in. The selection of output for a given run,

therefore, unavoidably requires user judgement. once the user

* has decided upon the required output, the determination of which
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statistical sums should be kept can be done automatically by

the code. Care is taken to make sure that a statistical sum

is not duplicated internally if it is required by more than one

requested output quantity.

Some initial words of caution are required. By its nature,

the direct simulation Monte Carlo method works with far fewer

molecules than nature does, and 4t therefore exhibits consider-

ably greater statistical variation in its macroscopic predic-

tions. To reduce these variations, the codes are run repeatedly

for the same case, increasing the statistical base from which

the macroscopic output is derived. If care is taken to use

efficient techniques, such as described in this report, then

useful results can usually be obtained with a modest computa-

tional effort. This statement must be tempered, however, by a

realization of the convergence rate for Monte Carlo sampling.

Basically, the statistical error in the output converges as

one over the square root of the sample size (or run time).

Hence, if a solution looks good, but the user decides he would

like one more significant digit (i.e., he would like the statis-

tical error to be reduced to 0.1 times its current value) it

would require that the run time be increased by a factor of 100!

" It can be seen that the desire for more accuracy can very quickly

turn the most efficient code into a money gobbling nightmare.

When using a Monte Carlo technique, one must accept some statis-

tical scatter in the output.

8.2 Sampling of Instantaneous Output Quantities

Instantaneous output quantities are those which are, in

principle, derivable from an instantaneous "snapshot" of the

solution. These quantities, such as density, temperature and

velocity, can be determined by examining the molecular state
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vectors at a particular time in the simulation. The code pauses

in the simulation and uses the molecular state vector elements

to add values to statistical sums appropriate to the various

cells and the particular time that it passed. It then proceeds

with the simulation until the next sampling time. As the code

goes through its successive runs, it stops at the same points in

the simulation every time and adds to the statistical base for

the sums. The items listed below, with their statistical defi-

nitions, are selectable as output requests in the SSI codes.

Summations are made over all applicable simulated molecules,

which includes N rnseparate runs.

Total Number Density

n Wi (98)
run

Mean Molecular Weight

EZWimi
M. (99)

j'th Velocity component

V (100)
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.

Overall Translational Temperature

3"0S1  K 2  2 2 ).. 3 S+ S 4+ S5)
,-T S2 (01

2 3S 6

where

S1  = i (102)

= ZWm + o+ V (103)

S 3  = Z imvli (104)i "

S4 = .Wimiv2i (105)

i'i

S 5 = Wimiv3i (106)

S = (Wmi (107)

L i

Translational Temperature in j'th Direction

T = RoS (S 7 - 2/S6) (108)
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where

S W wm v 2 (109)

S8 = Wimivj i (110)

i:i Internal Mode Temperature

,2 W WiE ii
iT I 1 (111)

-" 0 Wi i

with the exception of Eq. (99), all of the above quantities can

also be defined and calculated for any specified species. The

sums are the same except that only molecules of that species

are considered. Before printing output quantities, they are

always transformed to standard dimensions from the internal

scales.

8.3 Sampling of Time Averaged Quantities

Some additional quantities of interest are not sampled at

a separate sampling time as described above, but rather as the

simulation evolves. Examples of such quantities are collision

rates, reaction rates, mean velocities between molecules, etc.

In general, these quantities depend on the relative state of

more than one type of molecule, and they are by their nature

expressed as average values over a finite time interval. The

formulas for calculating these quantities are little more than
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event counters, and will not be included here. The following

quantities are currently available as output:

- Mean Relative Velocity Between any Two Species

* R.M.S. Deviation of Mean Relative Velocity
Between any Two Species

• Mean Product of Cross Section Times Relative
Velocity Between any Two Species

* Collision Rate Between any Two Species

* * Reaction Rate for any Chemical Reaction.

The sampling for all of these quantities occurs in the colli-

sion simulation routines. As pairs are considered as possible

collision partners, statistics are kept, if necessary, to gener-

ate the first three quantities. Statistics on collisions and

reactions are kept as they occur.

9. APPLICATION TO THE FREEJET EXPANSION WITHIN A
MASS SPECTROMETER

9.1 Motivation for Studying Major Species Freejet

The freejet expansion of the major (neutral) species through

a sonic orifice into a near vacuum is a classic problem repre-

senting the zeroth order solution to the problem at hand. The

numerical dominance of the major species assures that their

distribution in phase space (i.e., their density and velocity

distributions) will be negligibly affected by the minor species

of interest (e.g., ion clusters, H20, etc.). Hence, for a given

atmospheric pressure and orifice geometry the freejet expansion

of the major species can be calculated once and for all. The

physical processes of interest (ion acceleration due to electric

fields, agglomeration, fragmentation, etc.) can then be handled

by considering the minor species to be traveling within a known
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phase space distribution of major species. Considerable concep-

tual and computational simplifications result from the recogni-

tion that the freejet expansion is uncoupled from the ionic

motion.

9.2 Physical Description of the Freejet Expansion

The major features of a freejet created by expanding air

through a sonic orifice into a near vacuum are illustrated in

Figure 1. For the cases of interest (20-40 km altitude, orifice

diameter = 0.04 cm) the orifice is always considerably larger

than an ambient mean free path, so the initial portion of the

expansion is best described in terms of continuum fluid

mechanics. The orifice forms a sonic throat in which the flow

is accelerated to a Mach number of unity. If the orifice has

a finite thickness ("t" in Figure 1), then a boundary layer

forms on the edge of the orifice, restricting the flow somewhat

from that which would be predicted via one-dimensional inviscid

theory. The mass flow through the orifice can be represented

by
6

= CD(r2) PoPo [I (y + )] { (y + 1)/[2(y - 1)]} (112)

where r0 is the orifice radius, y is the ratio of specific

heats in the gas and P0 and p0 are the stagnation pressure and

density, respectively. The discharge coefficient, CD, is a

corrective factor to bridge the gap between the ideal and real

worlds. CD is less than unity due to the presence of the ori-

fice boundary layer (viscosity influence) and two dimensional

flow effects.

6Shapiro, A.H., The Dynamics and Thermodynamics of Compressible
Fluid Flow, the Ronald Press Co., New York, 1953, pp. 73-105.

61

_'I -,. - .17



44

0 1O-4~ a0
00 H E-4

.4

* 04&

0

4 E-4

0

05 01,47 r-N EA

E-4f zo

r.0

....... ...........

00

.4 Pao 0 ('
E-1~ ;P4

Z1.

0 E-0

A-
4 -4

40



As the gas passes through the orifice, an expansion fan is

formed on the inner edge of the orifice and spreads out into the

flowfield. The expansion fan is initially describable in terms

of Prandtl-Meyer theory, but is altered from that form as it

proceeds away from the orifice by axisymmetric (as opposed to

planar) flow effects.

The initial portion of the supersonic expansion is well- 6
suited for calculation via the method of characteristics (MOC),

although the interaction of the boundary layer with the expan-

sion fan is difficult to treat analytically. As the flow pro-

ceeds away from the orifice the rotational and randomized

translational energy is transferred to directed kinetic energy

of the flow. The flow expansion, and consequent reduction in

collision frequency, causes the gas to depart from thermal

-. equilibrium. A residual rotational energy remains in the gas

after collisions cease, and this is often characterized by a

rotational temperature. (The populated rotational states do

not, in general, adhere to a Boltzmann distribution;7 but this

is of no great consequence to the present investigation.) Fur-

thermore, the expansion is characterized by distinct parallel

and perpendicular temperatures representing residual randomized

kinetic energy in directions parallel to and perpendicular to

the mean flow direction.

The portion of the jet at large angles from the symmetry

axis is dominated by the slower, more easily turned, gas from

the orifice boundary layer. Also, the lighter molecular weight

.4

7 Sharafudinov, R.G. and Skovorodko, P.A., "Rotational Level
Population Kinetics in Nitrogen Freejets," Proceedings of the
12th International Symposium on Rarefied Gas Dynamics, AIAA
Press, 1980.
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specis become more concentrated at large angles front the bym-

metry axis leaving the central portion of the jet more concen-

trated in species with heavier molecular weights.8

9.3 Potential Calculational Approaches

For the most part the departure of the freejet from local

thermodynamic equilibrium marks the end of the region of valid-

ity for continuum techniques such as the method of character-

istics. (An exception to this is a recent paper by Labowski,

Ryali, and Fenn using the so-called nonequilibrium method of
9characteristics on a rotationally relaxing freejet. However,

the method does not apply when the translational modes go out

' * of equilibrium. Since the region between rotational and trans-
lational nonequilibrium is usually small, the method is inappro-

priate in the present study.)

The only presently available computational technique which

is capable of describing the critical molecular processes

occurring in the latter portions of the expansion is the direct

simulation Monte Carlo method. There is no choice to be made

for the calculational technique to be used in the nonequilibrium

portion of the expansion; the only question is whether the Monte

Carlo method should be used for the entire solution region, or

whether it should be wedded to a MOC calculation of the equil-
ibrium portion. The answer to this question depends largely on

8Bird, G.A., "Breakdown of Continuum Flow in Freejets and Rocket
Plumes," Proceedings of the 12th International Symposium on
Rarefied Gas Dynamics, AIAA Press, 1980.

Labowski, M. Ryali, S., and Fenn, J.B., "Flowfield Calculations
in Nonequilibrium Freejets by the Method of Characteristics,"
Proceedings of the 12th International Symposium on Rarefied
Gas Dynamics, AIAA Press, 1980.
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how large the equilibrium region is expected to be. (It should

be stressed that the Monte Carlo flowfield is valid for equil-

ibrium continuum flow -- but it is less efficient computationally.)

The breakdown of translational and rotational equilibrium

has been considered in some detail by Bird, 8'10 and it has been

observed to correlate well with the paparameter P given by

- 1 D(tnp) ,(113)
V D

where p is the fluid density, v is the collision frequency and

D/Dt represents the substantial derivative with respect to time.

The breakdown of equilibrium has been observed to correlate

quite well with a P value of approximately 0.05.

Figure 2 shows contours of constantP/Kn as calculated in

Ref. 8 for the expansion of a diatomic gas from an orifice into

a vacuum. in this figure the Knudsen number, Kn, is defined as

the ratio of the mean free path at the orifice to the orifice

radius. The calculation was performed via the method of charac-

teristics, so the orifice Mach number was taken to be 1.1 to

allow the calculational grid to step away from the orifice.

For the parameter range of interest (altitudes of 20-40 kin,

orifice radius = 0.02 cm) Figure 2 can be used to estimate the

position at which the onset of nonequilibrium occurs, and,

hence, the maximum range of validity for a MOC calculation

* ~. before it must be joined to a Monte Carlo calculation. The

conclusion is that a MOC calculation cannot be used beyond two

orifice radii from the orifice at 20 km and essentially cannot

BidG0. "Breakdown of Translational and Rotational Equil-
ibrium in Gaseious Expansions," AIAA Journal, Vol. 8. No. 11,
November 1970, pp. 1997-2003.
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be used at all at 40 km~ altitude. This 'very limited range of

validity for a MOC calculation strongly suggests that the pre-

ferred calculational approach is simply to use a Monte Carlo

* method for the entire flowfield.

9.4 Cell Mesh Selection

The selection of grid geometries for fluid mechanic calcu-

lations can generally be regarded as more of an art than a

science. Considerations in the sel.ection of a grid are:

*The grid should be as simple as possible, since
the program must repeatedly decide what cell mole-
cules are in as they move. If this required the
solution of a complex equation, the entire pro-
gram would run significantly slower than if the
cell can be determined easily.
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9 The grid should concentrate cells where gradients
are the largest, so that the least number of total
cells (and molecules) are needed to obtain an
accurate solution.

e The grid should provide output where it is required,
with the resolution that is desired for the answer
of interest.

The cell structure which was introduced in the first

quarterly technical report was based mainly on the second con-

sideration listed above. It concentrated cells in the vicinity

of the Prandtl-Meyer discontinuity, where the flow gradients

are largest. It suffers disadvantages, however, in that spur-

ious small cells occur on the axis and cell determination for

a molecule is somewhat difficult. As a first attempt, therefore,

a simpler cell structure was devised. The cell structure is

illustrated schematically in Figure 3, and is characterized by

the following relations:

* The orifice radius is divided up evenly into a
specified number of grid spacings. This number
can be varied to achieve convergence.

* Above the orifice, at the first axial location,
there are some additional cells of the same size
to help describe the expansion that occurs around
the orifice edge. The number of cells above the
orifice can also be varied to achieve convergence
along the flow centerline (the region of import-
ance for the present investigation).

* The cells are constructed between a series of
planes which are perpendicular to the jet axis.
The spacing between successive planes increases
as they proceed further from the orifice, since
the flow gradients will decrease in this direction.
The rule for the increase of the spacing between
the planes is given by the equation:

DZ.
D = A - constant (114)

ro0 + Zj
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Figure 3. A Drawing of a Cell Mesh of the Type Devised
for the Initial Freejet Calculations. The pictured
mesh corresponds to the coarse mesh used for the

* results presented in Figure 4, except that it has been
truncated after eight axial cells as opposed to the
ten used in Figure 4.
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where Z is the location of the j'th plane and
DZI is he spacing between it and the previous
plane (i.e., DZj = Z- Zil} , and ro is the
orifice radius. This rel tion can be solved to
give the location of Zj directly as:

Z = r0 ([/ (-A)] - I1 I (115)

This relation is easily inverted to find the
axial cell location of a particular molecule.

9 The cells are selected to have a radial increment
equal to the axial increment, and the number of
cells per axial location is kept constant. Hence,
as the cells grow larger in the axial direction,
they automatically keep pace in the radial direction.

9.5 Sample Calculational Results

Initial calculations were performed for atmospheric condi-

tions appropriate to an altitude to 30 km (ambient number

density of 3.83 x 1017 molecules/cm 3 , ambient temperature of

227 K) for a mixture of 79% nitrogen and 21% oxygen. The flow

was expanded isentropically to a Mach number of unity at the

orifice, and the flow profile was assumed uniform across the

orifice. As was discussed previously, this is recognized to

represent an idealization; but it seemed like a reasonable

place to start the calculations.

The first question that was addressed was to determine what

type of grid was required to achieve convergence of the solution.

Figure 4 shows plot* of axial number density obtained from two

separate grid spacings, for otherwise identical runs. The

coarser grid divided the orifice radius into four separate cells

(which means, of course, that the diameter was divided into

eight cells) and had two additional cells above the orifice.

The finer grid had twice as many cells within and above the

69



SSI-82-078
1018

ORIFICE DIAMETER = 0.04 cm
ALTITUDE - 30 km
IDEAL ORIFICE FLOW

e COARSE MESH

S • . FINE MESH
so

17 o1 M
101

•as

-4
toU

-a 0
0

101 1

1 0 0.04 0.08 0.12 0.16 0.20

AXIAL DISTANCE FROM ORIFICE, cm

Figure 4. Total Axial Number Density as Calculated for
a Coarse and a Fine Cell Mesh. The startline condition
for these calculations corresponds to uniform flow
across the orifice at a Mach number of unity.
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orifice radius. The calculations were carried out for approxi-

mately 3.5 orifice diameters downstream (0.15 cm), by which
? I 'distance the flow was substantially supersonic. This is impor-

tant since it means that the neglect of molecules traveling

upstream into the solution region is quite well justified.

9.6 Discussion of Freejet Calculations

The first conclusion to draw from these preliminary calcu-

lations is that the program is working, and the results look

reasonable. It can be seen, however, that the coarse grid

spacing is not adequate to achieve a convergence of the solu-

tion, and, on the basis of these results, it cannot be said

whether or not the fine grid spacing is converged. Further

calculations will clarify this issue and others regarding mesh

convergence. It is also desirable to know how many cells are

required above the orifice to achieve accurate axial profiles.

If the required number of cells to achieve mesh convergence

for the cell structure outlined in this section is too large,

then it may well be necessary to adopt another structure such

as the one outlined previously. It is expected that the ideal

orifice considered here represents a worst case, since when an

actual flow profile is introduced across the orifice, the ori-

fice boundary layer will lessen the importance of the Prandtl-

Meyer discontinuity, and therefore the importance of small cells

in that region.

Rotational relaxation was calculated for these test cases,

and a significantly higher rotational than translational temper-

ature (106 K versus 25 K) was predicted. These numbers have no

quantitative significance, since no attempt was made to input a

proper rotational relaxation collision number. However, it is

noteworthy that the code is capable of predicting this physically

real behavior.
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9.7 Real Orifice Flow Effects

In principle, it would be possible to compute the flow from

the undisturbed atmosphere into the mass spectrometer in a single

solution. In such a solution, the boundary conditions applied

would correspond to:

1) An undisturbed atmosphere bounding the appropriate
portion of the solution region.

2) A wall interaction representing the molecular
collisions with the mass spectrometer casing as
well as the sides of the orifice.

3) Possible downstream conditions if the solution is
carried to the point where interaction with the
background gas within the mass spectrometer is
important.

Although wall boundary conditions do have a degree of

approximation that reflects our incomplete understanding of the

gas-surface interaction process, the above boundary conditions

N are relatively well characterized. However, the above procedure

does involve a substantial amount of computational effort aimed

at the flow outside of the mass spectrometer, since that flow is

usually characterized by a relatively small mean free path.

Since the primary interest of the present study is to describe

the flow within the mass spectrometer, it is natural to try to

reduce the size of the solution region while retaining the

essential portion of the flow. The obvious way to do this is to

approximate the flow at the orifice, and merely compute the flow

within the instrument.

There are several reasons to believe that such a procedure

would be f ruitf ul. If the orifice were a smooth walled converging-
diverging nozzle, then the flow would expand to a Mach number of

unity at the orifice plane, and it would be known exactly (except

for boundary layer and two dimensional effects) irrespective of
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the flow downstream of the orifice. Although the actual orifice

has a sharp edge, intuition implies that the downstream flow can

have at best a small effect on the orifice flow, so it would

seem plausible to specify the orifice flow a priori. Further-

more, the present study is concerned mainly with the flow along

the centerline of the resulting jet, where boundary layer and

two dimensional effects should be minimized.

Although it would seem to be a classic problem, the expan-

sion from a uniform state through a sharp edged orifice into a

vacuum has apparently not been the object of intense study.

Liepmann11 considered the problem in some detail, and indicated

that the flow in the plane of the orifice is subsonic along the

centerline, going supersonic and then back to sonic as the edge

of the orifice is approached. Little else was said in this or

any other available reference about the actual flow in the ori-

fice plane. Measurements were presented, but they were limited

*to -ne discharge coefficient (the ratio of ideal to actual mass
flow), which was subsequently measured by Smetana, Sherrill and

Schort 12 to greater accuracy. The results of the latter study

are presented in Figure 5, which has been replotted to obtain

a more convenient form. (As presented in Ref. 12 both axes

involved the unknown mass flow, so an iteration was required to

determine the discharge coefficient. This problem is removed

when the Reynold's number is defined in terms of available

reference quantities rather than the unknown mass flow. The

two Reynold's numbers differ only by a factor of the discharge

coefficient.)

11Liepmann, H.W., "Gaskinetics and Gasdynamics of Orifice Flow,"
Journal of Fluid Mechanics, Vol. 10, No. 5, 1961, pp. 65-79.

12Smetana, F.O., Sherrill, W.A., and Schort, D.R., "Measurements
of the Discharge Characteristics of Sharp-edged and Round-edged
Orifices in the Transition Regime," Proceedings of the 5'th
Rarefied Gas Dynamics Symposium, Vol. 2, Academic Press, 1967.
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Use of the discharge coefficient presented in Figure 5

accounts for the major effect of a sharp edged orifice as opposed

to a smooth nozzle, and it is apparently the only available

effect for which measurements exist. The initial approach will

be to adjust the orifice mass flow to reflect the results of

Figure 5, but the mean flow velocity will still be assumed to

start at sonic conditions. (Individual molecules, of course,

will have a distribution of velocities. See Section 7 for a

complete description of the handling of boundary conditions.)

Any error incurred via this procedure should have little effect

on the centerline solution of interest.

9.8 Handling of Minor Species

As discussed in Section 6, a procedure has been devised

at SSI to handle sampling of collisions simultaneously between

an arbitrary number of species. For the mass spectrometer case,

however, it may be advantageous to recast this procedure in

terms of major and minor species. The solution for the major

species can be carried out once and for all for a given altitude

and instrument design. Then, since the minor species are too

numerically insignificant to affect the major species flow, it

is possible to consider several possible atmospheric concentra-

tions of various minor species in order to obtain a best fit

with the data. In order for this procedure to work, of course,

there has to be a method to go back and calculate minor species

distributions given the major species solution. It is the pur-

pose of this section to present that method.

In such a minor species solution, it is only necessary to

define a density, velocity and temperature in each cell for each

of the major species. (Actually a different effective tempera-

ture would be defined for each direction.) Then, for purposes
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of sampling collisions between major and minor species, major

species molecules can be generated from the proper distribution

as needed. These molecules need not be permanently stored, nor

is it necessary to advance them along their trajectories.

The major computational advantage, however, is the removal

of a necessity for calculating collisions of major species with

themselves. Since collision sampling is the most time consuming

element of a Monte Carlo simulation, and the collisions between

major species are the most prevalent, there is room for a sub-

stantial increase in computational speed. Within the framework

described in this report, this can be accomplished by defining

separate global time counters for major-minor and minor-minor

collisions. Each global time counter is defined as a weighted

average of the time counters for each collision class that

falls within its domain. The weighting factors are selected

to achieve tractable forms for the two time counters.

9.8.1 Time Counter for Collisions Between Two Minor
Species

Ordinarily, collisions between two minor species would be

considered unimportant in comparison to collisions between major

and minor species. However, for the present study there are

processes such as agglomeration which may not be negligible

(due to very large cross sections) even though they involve

two minor species. The handling of minor species self-collisions

can be achieved exactly as described in Section 6, with the

adjustment that total number density is taken to refer to total

minor species number density. The time counter increment is

then just as given in Eq. (76).
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9.8.2 Time Counter for Collisions Between Major and
Minor Species

A separate global time counter is easily defined for major-
minor collisions. If P denotes the number of major species and

p denotes the number of minor species, then the major-minor

collision time counter, tg, can be defined via

E• . D ijtcij

tg = i=l j=l

Z E D 3j
i=1

which is the obvious extendion of Eq. (72). The convenient

choice for Di proves to be

Sij= nin. • (117)

"In the above relations, an i subscript is now taken to refer

to a major species, and a j subscript is taken to refer to a

minor species. In Section 6 the subscripts make no such dis-

tinction.) substituting Eq. (117) into Eq. (116), and carrying

out the summation in the denominator yields an expression for

the major-minor global time counter in terms of the time

counters for the individual collision classes. The appropriate
increment in the global time counter to make when simulating a

*' collision is

Atg = 1 (117)
Vnlnj aijCr

where nI and nj refer to the total number densities of all major

and minor species, respectively, V is the cell volume, and a

is the mutual cross section for the species colliding at a
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relative velocity c r. The time counter increment represented

by Eq. (118) is much larger than the increment would be for

the same collision (Eq. (76)) if minor species were not being
handled separately. This is the quantitative realization of

the general principle that collision sampling goes a lot more

* quickly if major-major collisions need not be considered.
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