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“; Abstract
The present paper deals with the problem of computing a few of the eigenvalues with largest (or
smallest) real parts, of a large sparse nonsymmetric matrix. We present a general acceleration
technique based on Chebyshev polynomials and discuss its practical application to Arnoldi’s method
and the subspace iteration method. The resulting algorithms are compared with the classical ones in

a few experiments which exhibit a sharp superiority of the Arnoldi-Chebyshev approach.
¥

Chebyshev.acceleration techniqua for
solving nonsymmetric eigenvalue problems

Youcef Saad
Technical Report # 255
December, 1982

Noooly- 7 & —
This work was supported in part by the U.S. Office of Naval Research under grant NO0OSt¥-80-
C-O‘ﬂb(and in part by NSF Grant MCS-8104874

7

BISTRIFC 3% 77T AL |
Approved for pullic rolense
Distribution Uplimited J

Sandeand P SO N . Soandhoind, LRP— A




T Y
.

T

T Y. TTe T Te ¥ W W %o oy o, m s s 2w 5T

1. Introduction

An important number of applications in applied sciences and engineering require the numerical
solution of a large nonsymmetric matrix eigenvalue problem. Such is the case for example, in
economical modeling [5, 18] where the stability of a model is interpreted in terms of the dominant
eigenvalues of a large nonsymmetric matrix A.In Markov chain modeling of queueing
networks {17, 18, 34], one is interested in an eigenvector associated with the eigenvalue unity of the
transpose of a large nonsymmetric stochastic matrix. In structural engineering [6, 9, 10, 32, and in
fluid mechanics [33] one often seeks to solve a bifurcation problem whereby a few of the eigenvalues
of a family of nonsymmetric matrices A{a) are computed for several values of the parameter o in
order to determine a critical value a_ such that some particular eigenvalue changes sign, or crosses
the imaginary axis. When it is a pair of complex eigenvalues that crosses the imaginary axis, the
bifurcation point a_ is referred to as a Hopf bifurcation point. This important problem was recently
examined by Jepson [15] who proposes several techniques most of which deal with small dimension
cases., Commun bifurcation problems can be solved by computing a few of the eigenvalues with
igrgest real parts of A(a) and then detect when one of them changes sign. The study of stability of
electrical networks is yet another interesting example requiring the numerical computation of the
eigenvalue of largest real part. Finally, we can mention the occurence of nonsymmetric generalized
eigenvalue problems when solving the Riccati equations by the Schur techniques [20].

As suggested by the above important applications, we will primarily be concerned with the
problem of computing a few of the eigenvalues with algebraically largest real parts, and their
associated eigenvectors, of a large nonsymmetric matrix A. The literature in this area has been
relatively limited as compared with that of the more common symmetric eigenvalue problem. The
subspace iteration method {2, 4, 13, 36, 37], seems to bave been the preferred algoritbm for many
years, and is still often recommended [12]. However, this algorithm computes the eigenvalues of
largest modulus while the above mentioned applications require those of largest (or smallest)
algebraically real parts.

Furthermore, it is well-known in the symmetric case that the Lanczos algorithm is far superior to
the subspace iteration method [24]. Some numerical experiments described in [30] indicate that
Krylov subspace based methods can be more effective in the nonsymmetric case as well. There are

two known algorithms that generalize the symmetric Lanczos method to nonsymmetric matrices:
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1. The Lanczos biorthogonalization algorithm [19);
2. Arnoldi's method [1].

The first method has been recently ressucitated by Parlett and Taylor {26, 38] who propose an
interesting way of avoiding break-downs from which the method may otherwise suffer. The second
was examined in [30] where several alternatives have been suggested and im [31] where some
additional theory was proposed. With the appropriate initial vectors, both of these approaches
reduce to the symmetric Lanczos algorithm when the matrix A is symmetric.

In the present paper we will describe a hybrid method based on the Chebyshev iteration algorithm
and Arnoldi’'s method. These two methods taken alone face a number of limitations but, as will be
seen, when combined they take full advantage of each other’s attractive features.

The principle of Arnoldi's method is the following: start with an initial vector v, and at every step
compute Av, and orthogonalize it against all previous vectors to obtain v, At step m, this will
build a basis {vi}i-l.n
to K is then represented in the basis {v.} by a Hessenberg matrix whose elements are the
coefficients used in the ortbogonmalization process. The cigenvalues of this Hessenberg matrix will

provide approximations to the eigenvalues of A. Clearly, this simple procedure has the serious

+1°
of the Krylov subspace K, spanned by v,, Avl,...A“’"vl. The restriction of A

drawback of requiring the presence in memory of all previous vectors at a given step m. Also the

amount of work increases drastically with the step number m. Several variations on this basic scheme

bave been suggusted in [30] to overcome this difficulty, the most obvious of which is to use the
method iterstively, i.e. to restart the process after every m steps. This alternative was shown to be
5 quite effective when the number of wanted eigenvalues is very small, and outperformed the subspace
ﬁ iteration by a wide margin in an application related to the Markov chain modeling of queueing
i petworks [30].

g There are instances, however, where the iterstive Arnoldi algorithm exhibits a poor performance.
F In some cases the minimum number of steps m that must be performed in each inner iteration in
3 order to ensure convergence of the process, is t0o large. Another typical case of poor performance is
when the cigenvalues that are to be computed are clustered whsle the unwanted ones hsve s very
Javorable separation as is illustrated in the next figure, for example:
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Then, it is observed that the iterative process will have some difficulties to extract the wanted
cigenvalues because the process will tend to be highly dominated by the convergence in the
eigenvectors associated with the right part of the spectrum. These difficulties may be overcome by

taking a large enough m but this can become expensive and impractical.

In order to avoid these shortcomings of the iterative Arnoldi process, and, more generally, to
improve its overall performance we propose to use it in conjunction with the Chebyshev iteration.
The main part of this hybrid algorithm is a Chebyshev iteration which computes a vector of the form
2,==p,(A)z,, where p; is a polynomial of degree i, and z, is an initial vector. The polynomial p; is
chosen so as to highly amplify the components of z, in the direction of the desired eigenvectors while
damping those in the remaining eigenvectors. A suitable such polynomial can be expressed in terms
of a Chebyshev polynomial of degree i of the first kind. Once z,m=p(A)z, is computed, a few steps of
Arnoldi's method, starting with v m=z./||e{|, are carried out in order to extract from 2; the desired

eigenvalues.

We will also discuss the implementation of a Chebyshev accelerated subspace iteration algorithm
following ideas developed in [31].

f{ In the context of large nonsymmetric linear systems, extensive work has been devoted to the use of
Chebyshev polynomials for accelerating linear iterative methods [11, 21, 22, 23, 41]. Manteuffel's
-, work on the determination of the optimal ellipse containing the convex hull of the spectrum of A
b [23], has been decisive in making the method reliable and effective. For eigenvalue problems,
; Rutishauser has suggested the use of Chebyshev polynomials for accelerating the subspace iteration
in the symmetric case [29, 40]. However, Chebyshev acceleration bas received little attention as a tool

E:‘ for accelerating the nonsymmetric eigenvalue algorithms. The algorithms that we propose im this
o paper can be regarded as a simple adaptation of Manteuffel's algorithm the nonsymmetric eigenvalue
. problem.

We point out that a bybrid Arnoldi-Chebyshev method for solving nonsymmetric linear systems
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using ideas similar to the ones developed here is currently being developed [8].

In Section 2, we will describe the basic Chebyshev iteration for computing an eigenpair and analyse
its convergence properties. In Sections 3, 4 and 5 we will show how to combine the Chebyshev
iteration with Arnoldi's method and with the subspace iteration method. In Section 6 we will report

a few numerical experiments, and in the last section we will draw a tentative conclusion.
2. Chebyshev iteration for computing eigenvalues of nonsymmetric matrices

2.1. The basic iteration

Let A be a ponsymmetric real matrix of dimension N and consider the eigenvalue problem:

Aum=)\y

(1)

Let A,,...Ay be the eigenvalues of A labelled in decreasing order of their real parts and suppose
that we are interested in )\, which, to start with, is assumed to be real.

Consider a polynomial iteration of the form: "n-’n(“‘)‘ov where g, is some initial vector and
where p_ is a polynomial of degree n. We would like to choose p, in such a way that the vector z_
converges rapidly towards an eigenvector of A associated with A, as n tends to infinity. Assuming
for simplicity that A is diagonalizable, let us expand z; and z ==p _(A)z, in the eigenbasis {u;}:

it

o= @
then:

:, - éai M) U = 0 p (M) u, + éli P @)

Expansion (3) shows that if z_ is to be a good approximation of the eigenvector u,, thea every
p.()sj), with j9€1, must be small in comparison with p (\,) . This leads us to seek for s polynomial
which is small in the discrete set R=s{),,),,...,Ay} and which satisfies the normalization condition

Po(A;) = 1. (4)
An ideal such polynomial would be the one which minimizes the (discrete) uniform morm on the
discrete set R over all polynomials of degree n satisfying (4). However, this polynomial is clearly
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3 impossibe to compute without the knowledge of all eigenvalues of A and this approach is therefore of
;,_‘ . li..le interest. A simple and more reasonable aiternative, known for a long time (39}, is to replace the
3 discrete minimax polynomial by the continuous one on a domain containing R but excluding A,. Let

E be such a domain in the complex plane, and let P denote the space of all polynomials of degree

not exceeding n. We are thus seeking for a polynomial p, which achieves the minimum

pe P?pig,)-x vy LtV I (5)

For an arbitrary domain E, it is usually difficult to explicitly solve the above minimax problem.
Iterative methods can be used, however, and the exploitation of the resulting minimax polynomials
for solving eigenvalue problems coustitutes a promising research area. An alternative around that
difficulty is to restrict E to be an ellipse having its center on the real line, and containing the

unwanted eigengalues Xi,i—‘z,..N.

Let E(d.c.a) be an ellipse of center d, with d real, focii d+¢, d-c, and major semi axis a, and
containing the set Ra{)\z,..kN}. Since the spectrum of A is symmetric with respect to the real axis,
we will restrict E(d,c,a) to being symmetric as well. In other words, the main axis of the ellipse must
be either the real axis or must be parallel to the imaginary axis. Therefore, a and ¢ are either real or
purely imaginary, see Figure 2-1.

Then it is known that, when E is the ellipse E(d,c,a) in (5), the best minimax polyromial is the

polynomial

T, [(A=d)/c)]
PN = —— (6)
- T, [\ =d)/e)]
:Eﬁ where T is the Chebyshev polynomial of degree n of the first kind, see (3, 21, 41].
| #
'“ The computation of z, n==12. .is simplified by the three term recursion of the Chebyshev
3 polynomials:

Acrpant ,;A~i-j.1‘
T =3 To()=1. NETS  ahad “"ﬁ

LA S i1
Ty pi(M) = AT, (A) = T, ,(\), nm=12,. I :

Dok {1
Letting p, =T [(A;~d)/c|, ==0,1,.. we obtain ‘ T "K ‘ effﬁ:
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the remaining eigenvalues
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ParPastN) = Ty [(=d)fc] = 2254 5 p ()= p b (V).
Let us transform this further by setting o, “—pn/ Poot

Pagild) =20, 258 0O - 0,0, Py V)
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A straightforward manipulation using the definitions of o, p; and the three term recurrence

relation of the Chebyshev polynomials shows that 0, imsl,... can be obtained from the recursion:

1
, nm=] 2

= ¢f(A,-d ;
2, c/(l ) 4 2/01"0n

e+l

The above two recursions can now be assembled together to yield the following basic algorithm for

computing zi=pi(A)zo, jam12.. :

Algorithm: Chebyshev Iteration

1. Start: Choose an arbitrary initial vector z,; Compute
o,= c/(A\-d)
7
3= —(A-dI)z,
c
2. Iterate: for n==1.2,... until convergence do:

T em—— n-l,2,..

o
n+l
2o, -0,

%n+1
o1 ™ 2 : (A-d})) 2y = % %41 3n1

@
(8)

(9)

(10)

Note that the above algorithm uses the eigenvalue A\ which is unknown. Recall, however, that in
(6), A, appears in the denominator which is used for scaling purposes only. We can therefore choose
to scale the polynomial (6) by T, [(s~d)/c] where » is some approximation of A;. This leads to

replacing )\, by v in (7).

Another important detail, which we have omitted to discuss for the sake of clarity, concerns the
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case when ¢ is purely imaginary. It can be shown quite easily that even in this situation the above
recursion can still be carried out in real arithmetic. The reason for this is that the scalars o, ],
become all purely imaginary as can easily be shown by induction. Hence the scalars 0y4y/c and
0,419, ib the above algorithm are real numbers. Thus, the primary reason for scaling by
T l(A\;~d)/c] in (6) is to avoid overflow but, as was just explained, a secondary reason is to avoid

complex arithmetic when ¢ is purely imaginary.

2.2. Cbnvergenee properties
In order to understand the convergence properties of the sequence of approximations 2, consider its

expansion (3):
N N
=S8 p )y = du;+ IO p(N)y;
We would like to examine the behavior of each coefficient of u,, for iyél. We have:
_ T

From one of the various ways of defining the Chebyshev polynomials in the complex plane (27}, the

pn(xi)

above expression can be rewritten as

w4+ w?
Po(}) = "'1‘—"'_;;“ (11)
where w; represents the root of largest modulus of the equation in w:
v +w)=(rd)/c. (12)

From (11), p(X,) is equivalent to [w./w,|", bence the definition:

Definition 1: We will refer to x.=sjw./w,| as the convergence ratio of ), relative to the
parameters d,c.

This definition must be understood in the following sense: each coefficient in the eigenvector u; of
tbe expansion (3) behaves like 7, 28 n tends to infinity.

One of the most important features in Chebyshev iteration lies in equation (12). Observe that
there are infinitely many points in the complex plane which have the same convergence ratio. Thus a
great deal of simplification can be achieved by locating those points that are real as it is preferable

L e e e i it ) Vaa PO VP R, YU L : - P




to deal with real quantities than imaginary ones in the above expression defining £,. The well known
mapping J(w)—é(w-l-w“), often referred to as the Joukowski transform [27], maps a circle into an

ellipse in the complex plane. More precisely, for wampel/, J(w) belongs to an ellipse of center the
origin, focal distance 1, and major semi axis a-i(p+p‘l). Given the major semi axis a, p is
determined by p—%{c + (az-l)l/ 2] As a consequence the convergence ratio «; is simply »,/#, where
pj-{,-[aj + (aj""-l)‘/z] and a; is the major semi axis of the ellipse centered at the origin, with focal
distance one and passing through ()«j-d)/c. Since a, >a;, i=2,3..N, it is easy to see that p,>p.i>1,
and hence that the process will converge. Note that there is a further mapping between Xj and
(Xj—d)/c which transforms the ellipse E(d,c,aj) into the ellipse E(O,l,aj) where 3 and a; are related

by aj= 23, /c. Therefore, the above expression for the convergence ratio can be rewritten as:

3, + (a°-1)1/?

a, + (alz-l)l/z (19)

K, = Pi/’l -

where 3 is the major semi axis of the ellipse of center d, focal distance ¢, passing through )uj. The
ratio x(\) cap obviously be also defined for any value A of the complex plane by replacing ); by A.
From the expansion(3), the vector z, converges to fu, like nj'“ where x; is the largest of the

convergence ratios K, j==2 N,

The ab~—« algorithm ignores the following important points:
e [t is unrealistic to assume that the parameters d and c are known beforchand and some

adaptive scheme must be implemented in order to estimate them dynamically.

e The algorithm does not handle the computation of more than one eigenvalue. In
particular what to do in case ) is complex, i.e. when ), and x,-rl forms a complex

pair?

Suppose that E(d,c,a) contains all the eigenvalues of A except for a few. Looking closely at the
expansion ‘of 1, we observe that it contains more than just an approximation to u, because we can
write:

z, = du + ’i,“i, +... 'i,“i, +¢ (14)

where xil,..xi are the eigenvalues outside E(d,c,a) and ¢ is 3 small term in comparison with the first r
r
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ones. All we need, therefore, is some powerful method to extract those eigenvalues from the single
vector 1 . We will refer to such a method as a purification process. One such process among many

others is the Arnoldi method considered in the next section.

3. Arnoldi’s method as a purification process
A brief description of Arnoldi's method is the following:

Arnoldi’s Algorithm

1. Start: Choose an initial vector v of norm unity, and a number of steps m.

2. Iterate: For j==1,2,.. m do:

Yir = Av = £ by, (15)
with hii-(Avi,vi), i=1..} (16)
hj+].j-” "j“ ll (17)
Vier=Via/by (18)

This algorithm produces an orthomormal basis V ==[v,v,.v | of the Krylov subsapce
K, =span{v,,Av,,..A™!v,}. In this basis the restriction of A to K_ is represented by the upper
Hessenberg matrix H | whose entries are the elements hij produced by the algorithm. The eigenvalues
of A are approximated by those of H_ which is such that Hm-VzAVn. The associated approximate
eigenvectors are given by:

=V, ¥ (19)
where 7, is an eigenvector of H associated with the eigenvalue i.'. We will assume throughout that
the pair of eigenvectors associated with 3 conjugate pair of eigenvalues are normalized 30 that they

are conjugate to each other. Note that G, bas the same Euclidean norm as §;. The following relation

is extremely useful for obtaining the residual norm of &; without even computing it explicitly:

A =X Gl = by | eaFi (20)
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;u in which em—(O,O,...O,I)T. This result is well known in the case of the symmetric Lanczos
g algorithm [25], and its extension to the nonsymmetric case is straightforward [30].

. The method of Arnoldi amounts to a Galerkin process onto the Krylov subspace K (1, 30]. A few
SRR variations on the above basic algorithm have been proposed in [30] in order to overcome some of its
impractical features, and a theoretical analysis was presented in [31].

One important property of the algorithm is that if the initial vector v, is exactly in an invariant
subspace of dimension r and not in any invariant subspace of smaller dimension, i.e. if the degree of
“ the minimal polynomial of v, is r, then the above algorithm cannot be continued after step r, because
we will obtain ||V, ||=0. However, the next proposition shows that in this case K  will be invariant

which implies, in particular, that the r computed eigenvalues are exact.

r. Then Arnoldi’s method stops at step r and K is an invariant subspace. Furthermore,

'h Proposition 2: Assume that the degrec of the minimal polynomial of v, is equal to
the eigenvalues of H_are the cigenvalucs of A associated with the invariant subspace K .

Proof: \Without loss of generality we will assume that the eigenvalues associated with the
invaraint subspace are ),i==1,r. We will use the following result proved in [31]: at every step k of
Arvoldi’s method, the characteristic polynomial of H, is the polynomial which minimizes the norm
HIp(A)v,[| over ali monic polynomials of degree k. By assumption there is a monic polynomial p of
degree r such that p(A)v, =0, namely the minimal polynomial of v,. Therefore the characteristic
polynomial of H_is precisely p. Furthermore, comparing the recurrence relation satisfied by the
characteristic polynomial of H,, and that of the sequence v,, it is clear that we bhave:

v, 41™=a.plA)v, where a is some scalar. Hence ¥, ,=0. Finally, as a result of this and from the

thay S aue auh 4
o

rel
relations Av.=YX h..v.,
I m 91

AV r-err

which means that K_ is invariant and completes the proof.00

j==1,..r we clearly have:

)

4. The Arnoldi-Chebyshev method

In order to exploit the above proposition, notice that the vector 2, in (14) produced after n steps of
Chebyshev with the appropritate parameters ¢,d, will almost be in the invariant subspace spanned by
the eigenvectors ni‘,u. ""“i,’ Suppose that we can find an ellipse E{(d,c,a) that contains all the

b
eigenvalues of A except the r wanted ones, i.c. the r eigenvalues of A with largest real parts. We will

v
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describe in a moment an adaptive way of getting such an ellipse. Then an appealing algorithm would
be to run a certain number of steps of the Chebyshev iteration and take the resulting vector z, as
initial vector in the Arnoldi process. From the Arnoldi purification one obtains a set of m eigenvalues
r of which are approximations to the r wanted onmes, while the remaining ones will be helpful for
adaptively constructing the best ellipse. After a cycle consisting of n steps of Chebyshev iteration
followed by m steps of the purification process, the accuracy realized for the r rightmost eigenpairs
may not be sufficient and restarting will then be necessary. The following is an outline of a simple
algorithm based in the above ideas:
e Start: Choose an inijtial vector AT number of Arnoldi steps m and a number of
Chebyshev steps n.

e Iterate:

1. Perform m steps of the Arnoldi algorithm starting with v,. Compute the m
eigenvalues of the produced Hessenberg matrix. Select the r eigenvalues of largest
real parts il,..ir and take ﬁ-{ir +l"";‘m}' If satisfied stop, otherwise continue.

2. Using R, obtain the new estimates of the parameters d and ¢ of the best ellipse.
Then compute the initial vector z, for the Chebyshev iteration as a linear

combination of the eigenvectors ﬁi, jmml..r.

3. Perform n steps of Chebyshev iteration to obtain z,. Take v,=z /||z || and go
back to 1.

Next, some important details left unclear in the above simplistic description will be examined.

4.1. Getting the optimal ellipse

As explained earlier we would like to find the ‘best’ ellipse enclosing the set R of remaining
eigenvalues, i.e. the eigenvalues other than the ones with the r algebraically largest real parts. We
must begin by clarifying what is meant by “best” in the present comtext. Consider Figure
4-1 representing a spectrum of some matrix A and suppose that we are interested to the 4 rightmost
cigenvalues, i.e. ramq,

In the context of linear systems, there is only one convergence ratio {21, 23}, and the best ellipse is

defined as being the onme which maximizes that ratio. In our situation we have r eigenvalues and




>

13

/
J

- N\ %
o u;.x.u“u:uu“:anulunluuu".n*xwuu*a.'
5 - ! T 3%
. »
™~ *
\_*_—/ :

nnlnlnnnluuunn||||l[ptulnlulln(lllnnn'llH)

Figure 4-1: Example of a spectrum

therefore r different convergence ratios each given by (13). Recall that 3 is the major semi axis of

the ellipse with center d and focal distance ¢, passing through Xj and that the unknowns are d and c.

Initially, assume that A, is real. It is easily seen from our comments of Section 2.2 that if we draw
a vertical line passing through the eigenvalue )\, all eigenvalues on the right of that line will
converge faster than those on the left. This will be true for any ellipse containing R. Therefore, when

A, is real, we may simply define the best ellipse as the one maximizing the convergence ratio x_of A

When ), is not real, the situation is more complicated. We could still attempt to maximize the
convergence ratio for the eigenvalue ), but the formulas giving the optimal ellipse do not extend to
the case where \_is complex and the best ellipse becomes difficult to determine. But this is not the
main reason why this choice is not suitable. A close look at Figure 4-2, in which we assume re=$§,
reveals that the best ellipse for A\, may pot be a good ellipse for some of the desired eigenvalues.
More precisely, in the figure, the pair As Ay is enclosed by the best ellipse for A;. As a consequence

the components in u,,u; will converge more slowly than those in some of the undesired eigenvectors,

(TGP G GO i PN P
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e.g. Ay in the figure.
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Figure 4-2: Case where y == )\_(complex): the

eigenvalues A, and ), are inside the “best” ellipse.

‘::f;' The figure explains the difficulty more clearly: the problem comes from the relative position of A
|- and A, with respect to the rest of the spectrum and it can be resolved by just maximizing the
T convergence ratio of A, instead of ) in this case.

L\ In a more complex situation it is unfortunately more difficult to determine at which particular
E eigenvalue A\ or more generally at which value 4 it is best to maximize x(p). Clearly, one could
r—_! solve the problem by taking y==Re() ), but this is not the best choice.

As an alternative, we propose to take advantage of the previous ellipse, i.c. the ellipse determined
from the previous purification step, as follows. We determine a point s on the real line having the
;_.‘ same convergence ratio ae )\ with respect to the previous ellipse. The next best ellipse is then
o

| S e .
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determined so as to maximize the convergence ratio for that value u. This reduces to the previous
choice pa=Re() ) when ) is real. At the very {irst iteration one can set s to be Re())).

)
) K
:'
-
)

The question which we have not yet fully answered concerns the practical determination of the
best ellipse. At a typical step of the Arnoldi process we are given m approximations S‘i' jm=l .m of
the cigenvalues of A. This approximate spectrum is divided in two parts: the r wanted eigenvalues
il,..ir and the set R of the remaining eigenvalues ﬁ-{i, “,ir +2,..:\m}. From the previous ellipse
and the previous sets R, we would like to determine the next estimates for the optimal parameters d

and c.

Fortunately, a similar problem was solved by Manteuffel {21, 23] and his work can easily be
adapted to our situation. The change of variables {==(u — \) transforms g into the origin in the ¢

plane and the problem of maximizing the convergence for p is transformed into one of maximizing a

similar ratio in the £ plane for the origin. An effective technique for solving this final problem has
been developed in [21, 23] but we will not describe it here. Thus, all we have to do is pass the shifted
eigenvalues p-kj to the appropriate codes in [21], and the optimal values of u-d and c will be

returned.

4.2. Starting the Chebyshev iteration

Once the optimal parameters d and ¢ have been estimated we are ready to carry out a certain

_—— ML LA LA M A
a ety T PR PR

number n of steps of the Chebyshev iteration (10). In this subsection we would like to indicate how
to select the starting vector 2, for this iteration. Before doing so, we wish to deal with a minor
difficulty encountered when ), is complex. Indeed, it was mentioned after the algorithm described in
Section 2.1 that the eigenvalue X, in (7) should, in practice, be replaced by some approximation v of
A I il is real then v can be taken to be u--il and the iteration can be carried out in real
arithmetic as was already shown, even when ¢ is purely maginq-y. However, the iteration will become
complex if il is complex. To avoid this it suffices to take » to be the point on the real axis where the
ellipse E(d,c,s,) passing through il, crosses the real axis. The effect of the corresponding scaling of

the Chebyshev polynomial will be identical with that using X, but will present the advantage of

avoiding complex arithmetic.

Let us now indicate how one can select the initial vector z;. In the hybrid algorithm outlined in

T T T T,
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the previous section, the Chebyshev iteration comes after an Arnoldi step. It is then desirable to start
the Chebyshev iteration by a vector which is a linear combination of the approximate eigenvectors

yoy -
R ~~ DA SN perhan @) ATty
. 4.
—
O

(19) associated with the rightmost r eigenvalues.

BRI

Let § be the scalars of the desired linear combination. Then the initial vector for the Chebyshev

process is

=L {E=Z LV, 5 =V, L §F

Hence

2= V_y, where y—él 3 (21)
Therefore, the eigenvectors &, i==1,r must not be computed explicitly. We only need to compute the
eigenvectors of the Hessenberg matrix H | and to select the appropriate coefficents §; An important
remark is that if we choose the {'s to be real and such that {m=§ _, for all conjugate pairs ),
N _H—Ii. then the above vector z, is real.

Assume that al] eigenvectors, exact and approximate, are normalized so that their 2-norms are
equal to one. One desirable objective when choosing the above linear combination is to attempt to
make 2z, the vector which starts the next Arnoldi step, equal to the sum of the eigenvectors u,
imel,.r. For this purpose suppose that for each approximate eigenvector ii; we have U=, + ¢,

where the vector ¢ has no components in .0, Then:
L™= 61‘71“1 + 62 L] Uy +.. f,. L) u, +€
where

¢ == EJ‘ ¢

Near convergence || is close to one and [l¢;|| is small. The resuit of n, steps of the Chebyshev
iteration applied to 2, will be a vector z, of the form:

t‘ L S el”l“l + "? fz T U2 +. “-r‘ fr %Y + p‘(A)(

: Since ¢ has no components in u;, i==1,.r, p (A)e tends to zero faster than the first r terms, as n
t tends to infinity. Hence, taking §;==x will give a vector which has componants +; in the eigenvectors
“ u,, i==1,,..r,. Since =] near convergence this is a satisfactory choice.

e
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Anotber possibility suggested in [30] for the iterative Arnoldi process is to weight the combination
of i, according to the accuracy obtained after an Arnoldi step, for example:

&= || (A-N]) @ ||

Notice that the residuals of two complex conjugate approximate eigenelemnts are equal, so this
choice will also lead to a real z,. The purpose of weighting a vector §; by its residual norm is to
attempt to balance the accuracy between the different cigenelemetns that would be obtained at the
next Arnoldi step. Thus if too much accuracy is obtained for u, versus the other approximate
eigenvectors, the above choice of the §'s will put less weight on i, and more on the other vectors in

order to attempt to reduce the advantage of u, in the next Arnoldi step.

In the experiments reported later, we have only considerd the first possibility.

4.3. Choosing the parameters m and n

The number of Arnoldi steps m and the number of Chebyshev steps n are important parameters
that affect the effectiveness of the method. Since we want to obtain more eigenvalues than the r
desired ones, in order to use them for acquirivg the paramaters of the ellipse, m should be at least
r+2 (to be able to compute a complex pair). In practice, however, it is preferable to take m several
times larger than r. In typical runs m is at least 3r or 4r but can very well be much larger if storage
permits it. It is also possible to change m dynamically instead of keeping it fixed to a certain value
but this will not be considered here.

When chosing n, we have to take into account the following facts:
e Taking n too small may result in a slowing down of the algorithm; ultimately when n==0,
the method becomes the simple iterative Arnoldi method.

o It may not be effective to pick n too large: otherwise the vector 2, may become pealry an |
eigenvector which could be troublesome for the Arnoldi process.

Recalling that the component in the direction of u, will remain constant while those in Y, iws2,.r,
will be of the same order as £,™ we should attempt to avoid having a vector g, which is entirely in
the direction of u;. This can be done by requiring that all x;™", j==2,...r be no less than a cetain

tolerance 7, i.e.:
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n ~ log( )/ log [ x;] (22)
where x; is the largest convergence ratio among x;, i=2,..r.

Other practical factors should also enter into consideration. For example, it is desirable that a
maximum pumber of Chebyshev steps L - be fixed by the user. Also in case we are close to
coavergence, we should avoid to perform an unnecessaryly large number of steps as might be dictated
by a straightforward application of (22).

8. Application to the subspace iteration algorithm

5.1. The basic subspace iteration algorithm
The subspace iteration method, or simultaneous iteration method, can be regarded as a (Galerkin)
projection method onto a subspace of the form A"X, where Xm(x,,.x ] is an intial system of m
linearly independent vectors. There are many versions of the method [4, 13, 36, 37, but a very
simple one is the following:
1. Start: Q = X

2. Iteration: Compute Q &= A™Q

3. Projection step: Orthonormalize Q and get eigenvalues and eigenvectors of C-QTAQ.
Compute Q= QF, where F is the matrix of eigenvectors of C.

4. Convergence test: If Q is not a satisfactory set of approximate eigenvectors go to 2.

The algorithm presented in [13] is equivalent to the above algorithm except that the approximate
cigenelements are computed without baving to orthonormalize Q. The SRRIT algorithm presented by
Stewart [36, 37] aims at computing an orthonormal basis Q of the invariant subspaces rather than a
basis formed of eigenvectors. It is also mathemaically equivalent to the above in the restricted sense
that the corresponding invariant subspaces are theoretically identical. We should point out that this
final approach is more robust because an eigenbasis of the invariant subspace may not exist or may
be badly conditioned which will lead to serious difficuities for the other versions. We should stress
however that the Chebyshev acceleration technique can be applied to any version of the subspace
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steration although it will only be described for the simpler version presented above.

5.2. Chebyshev acceleration

The use of Chebyshev polynomials for accelerating the subspace iteration was suggested by
Rutishauser [29, 40] for the symmetric case. It was pointed out in {31] that this powerful technique
can be extended to the nonsymmetric case but no explicit algorithm was formulated for computing
the best ellipse.

We will use the same notation as in the previous sections. Suppose that we are interested in the
rightmost r eigenvalues and that the ellipse E(d,c,s) contains the set R of all the remaining
eigenvalues. Then the principle of the Chebyshev acceleration method is simply 1o replace the powers
A" in the first part of the basic algorithm described above by p (A) where p_ is the polynomial
defined by (6). It can be shown [31; that the approximate eigenvector §,, i==1...r converges towards
u,, as T (a/c)/T,[(\,=d)/c], which, using arguments similar to those of Section 2.2, is equivalent to ¢’

with

a+[a®-1)}/2 23
qi-m (23)

The above convergence ratio can be far better than the [\ _,/A;| which is achieved by the classical

algorithm!.

On the practical side, the best ellipse is obtained dynamically in the same way as was proposed for
the Chebyshev-Arnoldi process. The accelerated algorithm will then have the following structure:
1. Start: Q == X
2. Iteration: Compute Q += p (A)Q

3. Progection step: Orthonormalize Q and get eigenvalues and eigenvecion of C—QTAQ.
Compute Q «= QF, where F is the matrix of eigenvectors of C.

!The subspace iteration method computes the eigenvalues of largest modulii. Therefore, the regular subspace iteration

method and the accelerated method are comparable only when the r+1 rihgtmost eigenvalues are also the r+1 dominant
ones.
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4. Convergence test: If Q is a satisfactory set of approximate egenvectors then stop, else get
new best ellipse and go to 2.

Most of the practicalities described for the Arnoldi process extend paturally to this algorithm and
we now discuss briefly a few of them.

1. Getting the best ellipse. The construction of the best ellipse is identical with that seen in
Section 4.1. The only difficulty we might encounter is that the extra eigenvalues used to build the
best ellipse are now less accurate in general than those provided by the more powerful Arnoldi
technique. More care must therefore be taken in order to avoid building an ellipse based on inacurate

eigenvalues as this may slow down considerably the algorithm.

2. Parameters n and m. Here, one can take advantage of the abundunt work on subspace
iteration available in the literature. All we have to do is replace the convergence ratios |A./X _,| of
the basic subspace iteration by the new ratios n; of (23). For example, one way to determine the
number of Chebyshev steps n, proposed in |29} and in |14] is:

2~ }[ 1+ log (¢")/log(n, ) |
where ¢ is some paramater depending on the unit round off. The reason for this choice is to attempt
to avoid the rounding errors to be grow beyond the level of the error in the most slowly converging
eigenvector. The parameter n is also limited from above by a user supplied bound n__, and by the
fact that if we are close to convergence a smaller n can be determined to ensure convergence at the

next projection step.

The same comments as in the Arnoldi-Chebyshev method can be made concerning the choice of m,
namely that m should be at least r+2, but preferably even larger although in a lesser extent than for
Amoldi. Note that for the symmetric case it is often suggested to take m==2r or m==3r.

3. Deflation. Another special feature of the subspace iteration is the deflation technique which
conmsists in working only with the non converged eigenvectors, thus ‘locking’ those that have already
converged, see [14, 29, 30]. Clearly, this can be applied to the accelerated subspace iteration as well
and will enhance its efficiency.
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6. Numerical experiments
The numerical experiments described in this section have been performed on a VAX11-780
computer using double precision (unit round-off ¢==6.9x10~ 18)

6.1. An example of Markov Chain modelling

An interesting class of test examples described by Stewart [37] deals with the computation of the
steady state probabilities of a Markov chain. This example models a random walk on a (k+1) by
(k+1) triangular grid.

j: *
j: ] ‘

j=4 * * *

j=3 = * * *
j=2 = » * * *

js1 » * * * =

j=0 » » * * . * »

i= izl  1=2 =8 i=4 i=b =

Figure 8-1: Random walk on a triangular grid

A particule moves randomly on the grid by jumping to one of the (at most) four adjacent grid
points, see figure. The probability of jumping from the node (i,j) to either of the nodes (i-1,j) or
(i,j1) is given by:
i+]
pd(iyj) = TS
this probability being doubled if either of i or j is zero. The probability of jumping from the node
(i,j) to either of the nodes (i+1,j) or (i,j-1) is given by

pu(i,j) = 3~ pd(i)
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(Note that this transition does not occur when i+jmsk, which is expressed by the fact that pu(i,j) is
then equal to zero). We are interested in the steady state probality distribution of the chain. Such
probabilities are the components of the appropriately scaled eigenvector asociated with the
eigenvalue unity the transpose of the transition probability matrix [18, 34)].

The nodes (i,j) are labelled in the order (0,0), (1,0)...(k,0);(0,1),(1,1)... (k-1,1);..{0,k). With this it is
easy to form the matrix A. But this is not even necessary, nor is it necessary to store A in any way

because the operations y==Ax for any vector x can be performed by a simple subroutine.
In our first test we have taken Lk==30, which means that the dimension of the problem is
Ne=}(k+1)(k+2)=496.

The subspace iteration method SRRIT was tested in [37] for this case. We have tried our simple
version of the algorithm described in Section 5. As initial system X we bave taken the system
[x,Ax...A'""x] where x is a random vector. The following resuits were obtained for various values of

the parametrs m and

Table 1: Subspace Iteration

Matrix - Vector | Execution Residual
m | nmax |Iterstions| Multiplications | times (Sec.) noras
6 20 2562 1389 62.7 6.4 E-06
] 50 262 1883 56.8 3.8 E-06
8 20 180 1487 68.2 8.5 E-06
8 §0 182 1413 59.5 7.5 E-08
10 20 145 1422 74.3 6.4 E-06
10 50 150 1457 3.3 4.1 E-06

The stopping criterion was that the residual norms of the eigenpair corresponding to the eigenvalue
unity is less than c==1075.

The difference with the number of matrix by vector multiplications reported in [37), is due mostly
to the fact that the two implementations are different. Part of the difference is also due to the

VI JPUE SPRTEPUE TIPUR WU CRUPUPT W W SO YT PR PR P - - ORI VNS SR SO PGS DU Sy VU SO Wi SO G LN PN T P P




.............

LN A S 4k A0"RodEit st gy AlamS TR T T W T W, e g

23

stopping criterion which, in [37], deals with the two dominant eigenvalues 1 and -1 (-1 is also known
to be an eigenvalue). An important observation is that for the same block size m, the performance is
better with the larger n =50 than with n_ =20

The next table shows the same example treated by the Chebyshev accelerated subspace iteration.

Table 2: Chebyshev - Subspace Iteration

Matrix - Vector | Execution Residual
m | nmax [Iterstions| Multiplications | times (Sec.) noras
6 50 25 1019 60.2 1.2 E- 07
6 20 30 645 41.1 4.6 E-0
8 20 42 903 59.7 4.9 E-os
8 50 28 1063 66.0 3.8 E-09
10 20 45 909 64.3 1.0 E-0
10 50 27 979 62.3 1.9 E- 07

The stopping criterion and the initial set X were the same as for the previous test. Notice that
here the effect of the upper limit . of the number of Chebyshev iterations can be quite important,
as for example when m==6. As opposed to the observation made above for the non acelerated
algorithm, the performance is now better for smaller values of the parameter D, .. The reason for
this is provided by a close examination of the successive ellipses that are adaptively computed by the

process. It is possible to observe that when the ellipse does not accurately represent the convex hul

of the remaining eigenvalues, a larger L N—_- leads to wasting an imporiant amount of computational

work before having the chance of evaluating new parameters. Thus, for smaller values of n the

max’
process has a better ability to correct itself by computing a better ellipse more frequently. This is
less critical with the Arnoldi process because the eigenvalues provided by Armoldi's method are

usually more aceurate.

It is instructive to compare the above performances with those of the iterative Arnoldi method and
of Chebyshev Arpoldi method. The next two tables summarize the results obtained with the
iterative Arnoldi method (Table 3) and the Arvoldi-Chebyshev method (Table 4). The stopping
criterion is the same as before, and the initial vector used in the first Arnoldi iteration is random.
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Table 3: Iterative Arnoldi

Arnoldi Matrix = Vector | Execution Regidual
m [Iterations| Multiplications | times (Sec.) norms

5 36 180 21.8 7.5 E-06

10 14 140 22.2 9.3 E-06

15 8 120 25.7 7.8 E-06

20 6 120 33.3 6.2 £-06

Table 4: Chebyshev - Arnoldi

Arnoldi Matrix - Vector | Execution L Residus!

m | nmex calis Multipliestions | times (Sec.) noras
5 20 8 130 9.4 8.9 E-08
5 50 4 142 8.9 3.9 E-07
10 20 5 130 13.9 5.0 E-06
10 50 3 113 9.6 7.1 E-C6
15 20 3 85 11.9 6.8 E-06
15 50 3 122 14.8 3.2 E-10
20 20 3 100 18.8 1.5 E-07
20 50 3 88 14.2 4.3 E-09

The results of Table $ constitute a considerable improvement over those of the subspace iteration,
both in execution time and in number of matrix by vector multiplications. Notice that in this

example we are also able to reduce the execution time by a factor of nearly 2.5 from the iterative
Arnoldi method.
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8.2. Computing several eigenvalues

The above experiments deal with the computation of only one eigenpair and we would like next to
compare the performances of our methods on problems dealing with several eigenvalues. Consider
tbe following partial differential linear operator on the unit square, with the Dirichlet boundary

conditions, derived from [7}:

] ou 0 dun dgu da
Lll-—-(l;x-)'f's;(b;;)'l’-a—x-i' g;x- (24)

The functions a, b, and g are defined by:
Ax,y) = e ; b(x,y) == ¥

gix.y) = ~x+y) ;  fxy) = r,.l;;:..y

Discretizing the operator (24) by centered differences with mesh size hmel/(p+1) gives rise to a
nonsymmetric matrix A of size N==n®. The parameter ~ is useful for varying the degree of symmetry
of A.

Taking p==30 and y==20, yields a matrix of dimension 900 which is not nearly symmetric. We
computed the 4 rightmost eigenvalues of A by the Arnoldi-Chebyshev algorithm using m==15 and
n_,, = 80 and obtained the following results:

m
Ao = 94429 £ 1.7200 Residual norm: 5.4 E-13

A; ™= 8.9561 £ 1.3381 ; Residual norm: 8.4 E-08

Total number of matrix by vector multiplications required: 110

CPU time: 26.0 sec.

The initial vector was a random vector, and the stoping criterion was that the residual norm be
less than ea=108. Details of the execution are as follows: first an Armoldi iteration (15 steps) was
performed and computed the parameters dw=3.803 , c°==14.36. Then 80 steps of the Chebyshev
iterations were carried out and finally another Arnoldi purification step was taken and the stopping

bR T
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criterion was satisfied. Note that we could have reduced the amount of work by using a smaller n in
the Chebyshev iteration.

The same eigenvalues were computed by the subspace iteration method using the same stopping
criterion and the parameters m==8 and p_  ==50. The results were delivered after 220 iterations
which consumed 1708 matrix by vector multiplications and 220 CPU seconds.

A similar run with the accelerated subspace iteration, with B, 15, took 104 iterations
corresponding to a total of 928 matrix by vector multiplications and 188 seconds of CPU time.
Observe that the gain in execution time does not reflect the gaip in the number of matrix by vector

multiplications because the overhead in the accelerated subspace iteration is substancial.

We omitted to discuss in detail the use of our accelerated algorithms for the computation of the
eigenvalues with algebraically smallest real parts, but the development is identical to that for the
eigenvalues with largest real parts. It suffices to relabel the eigenvalues in increasing order of their
real parts (instead of decreasing order). In the following test we have computed the four eigenvalues
of smallest real parts of the matrix A defined above. Convergence has been more difficult to achieve
than in the previous test. With m==20, Bpar™250, the Arnoldi-Chebyshev code satisfied the
convergence criterion with ¢m=10"%, after 3 calls to Arnoldi and a total of 527 matrix by vector
multiplications. The execution time was 106 sec. In order to obtain the smallest eigenvalues with the
regular Chebyshev iteration. we had to shift A by a certain scalar so that the eigenvalues of smallest
real parts become dominant. We used the shift 7.0, i.e. the subspace iteration algorithm was applied
to the shifted matrix A-7.], and the resulting eigenvalues are shifted back by 7. to obtain the
eigenvalue of A. The process with m==10 and m__ =30 was quite slow since it took a total of 3925

matrix by vector multiplications and 525 seconds to reach the same stopping criterion as above.

The accelerated subspace iteration did not perform better, however, since it required 4010 matrix
by vector multiplication to converge with a total time of 736 seconds. Here we used m==10 and
B, 25. The reason for this misbehavior was that the algorithm encountered serious difficultes to
obtain a good ellipse as could be observed from the erratic variation of the parameters d and ¢. We
believe that one important conclusion from this is that the Chebyshev subspace iteration can become
unreliable for some shapes of spectra or when the eigenvalues are clustered in an infavorable way. If
the spectrum is entirely real (or almost real) this misbehavior is unlikely to happen in general.
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Perhaps, another important remark raised by this last experiment is that fitting a general spectrum
with ap ellipse may not be the best idea. If we were allowed to use domains E more general than
ellipses, then the problem of fitting the spectrum would have been made easier. Clearly, the resulting
best polypomials p, would not be Chebyshev polynomials but this does not constitute a major
disadvantage. Further investigation in this direction is worth pursuing.

7. Conclusion
The purpose of this paper was to show one way of using Chebyshev polynomials for accelerating
ponsymmetric eigenvalue algorithms. The numerical experiments have confirmed the expectation
that such an acceleration can be quite effective. To conclude, we would like to point out the
following facts:
e [t is not clear that representing general spectra by ellipses is the best that can be done.
For the solution of linear systems, general domains have been considered by Smolarski
and Saylor [35] who use orthogonal polynomials in the complex plane. Thus far, this does

not seem to have been extended to solving nonsymmetric eigenvalue problems.

e Apother way of combining polynomial iteration (e.g. Chebyshev Iteration) or, more
generally rational iteration, with Armoldi’s method has recently been proposed by
Rube [28]. Briefly described the idea is to carry out Armoldi's algorithm with the matrix
o(A), ¢ being a suitably chosen rational function. Then, an ingenious relation permits to

calculate the eigenvalues of A from the Hessenberg matrix built by the Arnoldi process.

e We have selected Arnoldi's method as a purification process, perhaps unfairly to other
similar processes which may be just as powerful as Arnoldi’'s. One such alternative is the
unsymmetric Lanczos algorithm [19, 26, 38]. Another possibility which we have omitted
to describe is 3 projection procese onto the latest m vectors of the Chebyshev iteration.
This can be realized at less cost than m steps of Arnoidi's method although it is not
known whether the overall resuting algorithm is more effective.

Acknowledgementes. This work would not have been possible without the availability of the very
useful code written by Thomas A. Manteuffel in [21].
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