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Abstract

The present paper deals with the problem of computing a few of the eigenvalues with largest (or

emallest) real parts, of a large sparse nonsymmetric matrix. We present a general acceleration

technique based on Chebyshev polynomials and discuss its practical application to Arnoldi's method

and the subspace iteration method. The resulting algorithms w compared with the classical ones in

a few experiments which exhibit a sharp superiority of the Arnoldi-Chebyshev approach.
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1. Introduction

An important number of applications in applied sciences and engineering require the numerical

solution of a large nonsymmetric matrix eigenvalue problem. Such is the case for example, in

economical modeling [5, 181 where the stability of a model is interpreted in terms of the dominant

eigenvalues of a large nonsymmetric matrix A. In Markov chain modeling of queueing

networks [17, 18, 341, one is interested in an eigenvector associated with the eigenvalue unity of the

transpose of a large nonsymmetric stochastic matrix. In structural engineering [6, 9, 10, 32], and in

fluid mechanics [33] one often seeks to solve a bifurcation problem whereby a few of the eigenvalues

of a family of nonsymmetric matrices A(a) are computed for several values of the parameter a in

order to determine a critical value a such that some particular eigenvalue changes sign, or crosses

the imaginary axis. WThen it is a pair of complex eigenvalues that crosses the imaginary axis, the

bifurcation point c is referred to as a Hopf bifurcation point. This important problem was recently

examined by Jepson [15] who proposes several techniques most of which deal with small dimension

cases. Commuu bifurcation problems can be solved by computing a few of the eigenvalues with

.argest real parts of A(o) and then detect when one of them changes sign. The study of stability of

electrical networks is yet another interesting example requiring the numerical computation of the

eigenvalue of largest real part. Finally, we can mention the occurence of nonsymmetric generalized

eigenvalue problems when solving the Riccati equations by the Schur techniques [201.

As suggested by the above important applications, we will primarily be concerned with the

problem of computing a few of the eigenvalues with algebraically largest real parts, and their

associated eigenvectors, of a large nonsymmetric matrix A. The literature in this area has been

relatively limited as compared with that of the more common symmetric eigenvalue problem. The

subspace iteration method [2, 4, 13, 38, 371, seems to have been the preferred algorithm for many

years, and is still often recommended [121. However, this algorithm computes the eigenvalues of

largest modulus while the above mentioned applications require those of largest (or smallest)

algebraically real parts.

di Furthermore, it is well-known in the symmetric case that the Lanczos algorithm is far superior to

the subspace iteration method [24]. Some numerical experiments described in [301 indicate that

Krylov subspace based methods can be more effective in the nonsymmetric case as well. There are

two known algorithms that generalize the symmetric Lanczos method to nonsymmetric matrices:
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1. The Lanes.. biorthogonalization algorithm [191;

2. Arnoldi's method [I].

The rust method has been recently ressucitated by Parlett and Taylor 126, 381 who propose an

interesting way of avoiding break-downs from which the method may otherwise suffer. The second

was examined in 130] where several alternatives have been suggested and in [311 where some

additional theory was proposed. With the appropriate initial vectors, both of these approaches

reduce to the symmetric Lanczos algorithm when the matrix A is symmetric.

In the present paper we will describe a hybrid method based on the Chebyshev iteration algorithm

and Arnoldi's method. These two methods taken alone face a number of limitations but, as will be

seen, when combined they take full advantage of each other's attractive features.

The principle of Arnoldi's method is the foliowing start with an initial vector vI and at every step

compute Av i and orthogonalize it against all previous vectors to obtain vi ,. At step m, this will

build a basis (vi~ij,m of the Krylov subspace K. spanned by vl, Avl,...Am'v. The restriction of A

to K, is then represented in the basis (vi) by a Hessenberg matrix whose elements an the

coefficients used in the orthogoaalisatioa procem. The eigenvalues of this Hessenberg matrix will

provide approximations to the eigenvalues of A. Clearly, this simple procedure has the serious

drawback of requiring the presence in memory of all previous vectors at a given step in. Also the

amount of work increases drastically with the step number m. Several variations on this basic scheme

have been suggtsted in 1301 to overcome this difficulty, the most obvious of which is to use the

method iteratively, i.e. to restart the pro e after every m steps. This alternative was shown to be

quite effective when the number of wanted eigenvalues is very mal, and outperformed the subpace

iteration by a wide margin in an application related to the Markov chain modeling of queueing

networks [301.

There are instances, however, where the iterative Amioodi algorithm exhibits a poor performance.

In some cases the minimum amber of steps m tha must be performed in each imer itestiam in

order to ensure convergence of the procen, is too large. Another typical ease of poor performance is

when the eigenvalues that are to be computed are clustered while ehe vnwented once have a v

favorable feqaration as is illustrated in the next figure, for example:



3

Wanted Unwanted
-- > < ...............----...............-

- 1111 I I II
0

Then, it is observed that the iterative process will have some difficulties to extract the wanted

eigenvalues because the process will tend to be highly dominated by the convergence in the

eigenvectors associated with the right part of the spectrum. These difficulties may be overcome by

taking a large enough m but this can become expensive and impractical.

In order to avoid these shortcomings of the iterative Arnoldi process, and, more generally, to

improve its overall performance we propose to use it in conjunction with the Chebyshev iteration.

The main part of this hybrid algorithm is a Chebyshev iteration which computes a vector of the form

zi==Pi(A)z 0, where pi is a polynomial of degree i, and z0 is an initial vector. The polynomial pi is

chosen so as to highly amplify the components of z0 in the direction of the desired eigenvectors while

damping those in the remaining eigenvectors. A suitable such polynomial can be expressed in terms

of a Chebyshev polynomial of degree i of the rmt kind. Once z1-p(A)z 0 is computed, a few steps of

Arnoldi's method, starting with vj-z,/jjij, ae carried out in order to extract from the dered

eigenvalues.

We will also discuss the implementation of a Chebyshev accelerated subspace iteration algorithm

following ideas developed in [311.

In the context of large nonsymmetric linear systems, extensive work has been devoted to the use of

Chebyshev polynomials for accelerating linear iterative methods [11, 21, 22, 23, 411. Manteuffel's

work on the determination of the optimal ellipse containing the convex hull of the spectrum of A

[231, has been decisive in making the method reliable and effective. For eigenvalue problems,

Rutishauser has suggested the use of Chebyshev polynomials for accelerating the subpace iteration

in the symmetric case [29, 40J. However, Chebyshev acceleration has received little attention as a tool

" for accelerating the nonsymmetric eigenvalue algorithms. The algorithms that we propose in this

paper can be regarded as a simple adaptation of Manteuffel's algorithm the nonsymmetric eigenvalue

problem.

We point out that a hybrid Arnoldi-Chebyshev method for solving nonsymmetric linear systems
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using ideas similar to the ones developed here is currently being developed [81.

In Section 2, we will describe the basic Chebyshev iteration for computing an eigenpair and analyse

its convergence properties. In Sections 3, 4 and 5 we will show how to combine the Chebyshev

iteration with Arnoldi's method and with the subspace iteration method. In Section 6 we will report

a few numerical experiments, and in the last section we will draw a tentative conclusion.

2. Chebyshev iteration for computing elgenv&lues of nonsymmetric matrices

* 2.1. The basic iteration

Let A be a nonsymmetric real matrix of dimension N and consider the eigenvalue problem:

Au->u (1)

Let XI,.....N be the eigenvalues of A labelled in decreasing order of their real parts and suppose

. that we are interested in XI which, to start with, is assumed to be real.

Consider a polynomial iteration of the form: zn-pn(A)%, where % is some initial vector and

where p. is a polynomial of degree n. We would like to choose p. in such a way that the vector z.
converges rapidly towards an eigenvector of A associated with XI as n tends to infinity. Assuming

i - - for simplicity that A is diagonalizable, let us expand z0 and z.mp-(A)z0 in the eigenbasis {ui):

* if
N

, - E-.u. (2)
0 11

then:

z -- i PX !) 1 u1 + 1. PA(\i ) ui (3)

Expansion (3) shows that if z3 is to be a good approximation of the eigenvector ul, then every

* pnlpj), with jqAl, must be mall in comparison with pn(\ 1 ). This leads = to seek for a polynomial

which is mall in the discrete set Rm{ XS,...,AN) and which satisfies the normalization condition

pn(xl)- 1. (4)

An ideal such polynomial would be the one which minimizes the (discrete) uniform norm on the

* discrete set R over all polynomials of degree n satisfying (4). However, this polynomial is clearly
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impossibe to compute without the knowledge of all eigenvalues of A and this approach is therefore of

I!.;le interest. A simple and more reasonable alternative, known for a long time [39], is to replace the

discrete minimax polynomial by the continuous one on a domain containing R but excluding XI" Let

E be such a domain in the complex plane, and let P denote the space of all polynomials of degree

not exceeding n. We are thus seeking for a polynomial p. which achieves the minimum

min max Ip() (5)
P' PE.4I)*I Xe E

For an arbitrary domain E, it is usually difficult to explicitly solve the above minimax problem.

Iterative methods can be used, however, and the exploitation of the resulting minimax polynomials

for solving eigenvalue problems constitutes a promising research area. An alternative around that

difficulty is to restrict E to be an ellipse having its center on the real line, and containing the

unwanted eigengalues X,im2,..N.

Let E(d.c.a) be an ellipse of center d, with d real, focii d+c, d-c, and major semi axis a, and

containing the set R Since the spectrum of A is symmetric with respect to the real axis,

we will restrict E(d,c,a) to being symmetric as well. In other words, the main axis of the ellipse must

be either the real axis or must be parallel to the imaginary axis. Therefore, a and care either real or

purely imaginary, see Figure 2-1.

Then it is known that, when E is the ellipse E(d,c,a) in (5), the best minimax polynomial is the

polynomial

ST,[(.-d)/c)]

where T5 is the Chebyshev polynomial of degree n of the first kind, see [3, 21, 41).

The computation of zn, n==,2., is simplified by the three term recursion of the Chebyshev

polynomials:

• . | ........

:TI, I~ (X) X ;To (X)- . : ;'.; Ie .

~~~T,,+l(\)- 2XT,,(.I- To.,I(X), n-1,2,.. !':T: T

Letting p.mTI(X -d)/c, n-O,.... we obtain

A
r

Dist4 q
c4K / lnt (f0 d.
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Figure 2-1: Ellipses containing the set R of
the remaining eigenvalues
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(- T,,+,[ (-d)/c J - 2 p pa()-.jp.(X).

Let us transform this further by setting :

, Pn+Il) - 2 o+ 1  pEn) - 'UnU+ 1 Pa.,
()

A straightforward manipulation using the definitions of vi, pi and the three term recurrence

relation of the Chebyshev polynomials shows that a%, i-l,... can be obtained from the recursion:

a C/ 1 -d)- , n-1,2,..

The above two recursions can now be assembled together to yield the following basic algorithm for

computing z1=p.(A)z,, i-1,2,..

Algorithm: Chebyshev Iteration

1. Start: Choose an arbitrary initial vector z0; Compute

|vl / (X,-d) (7)

z1-  f-(A-d1lz (8)
c

2. Iterate: for n-1.2.... until convergence do:1 1
(A 2 . , n-1,2,.. ()

Zn+! =2 !n±l(A-d I)z u -nun+1 z. (10)

Note that the above algorithm uses the eigenvalue X1 which is unknown. Recall, however, that in

(6), X, appears in the denominator which is used for scaling purposes only. We can therefore choose

to scale the polynomial (6) by TJ(&.-d)/cl where v is some approximatioi of X1.This leads to

replacing X, by v, in (7).

Another important detail, which we have omitted to discuss for the sake of clarity, concerns the

-p



cwe when c is purely imaginWy. It can be shown quite easily that even in this situation the above

recursion can still be carried out in real arithmetic. The reason for this is that the scalars OF, i-,...

become all purely imaginary as can easily be shown by induction. Hence the scalars iyn+€/c and

rn+leV8 in the above algorithm we real numbers. Thus, the primary reason for scaling by

T,[(j\-d)/c] in (6) is to avoid overflow but, as was just explained, a secondary reason is to avoid

complex arithmetic when c is purely imaginary.

2.2. Convergence properties

In order to understand the convergence properties of the sequence of approximations zn consider its

expansion (3):
N N

-zn  i. pn(.i) ui  = f l1u + Ei. pn(.i) u|
• 1 1s2

We would like to examine the behavior of each coefficient of ui, for i341. We have:
,-... T [(Pi-d)/e)I

From one of the various ways of defining the Chebyshev polynomials in the complex plane (271, the

above expression can be rewritten as

*n i wl+ -n
___)_-_w (11)

where wi represents the root of largest modulus of the equation in w:

(12)

From (11), pn(.i) is equivalent to [w,/wJn, hence the definition:

Definition 1: We will refer to &-1 [wi/w 1l as the convergence ratio of Xi relative to the
parameters d,c.

This definition must be understood in the following sense: each coefficient in the eigenvector ui of

the expansion (3) behaves like m, a n tends to infinity.

One of the most important features in Chebyshev iteration lies in equation (12). Obsere that

there ame infinitely many points in the complex plane which have the same convergence ratio. Thus a

great deal of simplification can be achieved by locating those points that are real as it is preferable
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to deal with real quantities than imaginary ones in the above expression defing mi. The well known

mapping J(w)-1(w+w-1), often referred to as the Joukowski transform 1271, maps a circle into an

ellipse in the complex plane. More precisely, for w-pe, J(w) belongs to an ellipse of center the

origin, focal distance 1, and major semi axis a- p+p-). Given the major semi axis a, p is

determined by I-4( + (a2-1)1/ . As a consequence the convergence ratio i, is simply pi/p ! where

,.Yo.j + (orj 2 -1)1/ ] and a. is the major semi axis of the ellipse centered at the origin, with focal

distance one and pasing through (Xj-d)/c. Since aI> o, i-2,3..N, it is easy to see that p,>p,iJ>1,

and hence that the process will converge. Note that there is a further mapping between XI and

x (-d)/c which transforms the ellipse E(d,c,a,) into the ellipse F40,1,arj) where aj and aj are related

by a,= a,/c. Therefore, the above expression for the convergence ratio can be rewritten as:

,a + (a1,2-) 1l2  
(13)

a1 + (a1
2 -1)'/

where a. is the major semi axis of the ellipse of center d, focal distance c, passing through X.. The

ratio x(X) can obviously be also defined for any value X of the complex plane by replacing X, by ).

From the expansion(3), the vector %0 converges to On1 like x,-n where a. is the largest of the

convergence ratios rci' i-2..N.

The ab--- algorithm ignores the following important points:

e It is unrealistic to assume that the parameters d and c are known beforehand and some

adaptive scheme must be implemented in order to estimate them dynamically.

* The algorithm does not handle the computation of more than one eigenvalue. In

particular what to do in case AI is complex, i.e. when X1 and X2- 1 forms a complex

pair!

Suppose that E(dc,a) contains all the eigenvalues of A except for a few. Looking closely at the

expansion of s., we observe that it contains moe than just an approximation to uI because we can

write:

zn - 1 u I1+ a iu r... Uir + e (14)

where X, ,I.Air are the eigenvalues outside E(dc,n) and e is a small term in comparison with the first r

i.;.' ., ,'' ,'. I. r . .. ; . m' ,. - ~ m ~ m m m'm m ~ - '- m -'.t- - --
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ones. All we need, therefore, is some powerful method to extract those eigenvalues from the single

vector z We will refer to such a method as a purification process. One such process among many

others is the Arnoldi method considered in the next section.

3. Axnoldi's method a a purification procem

A brief description of Arnoldi's method is the following.

Arnoldi's Algorithm

1. Start: Choose an initial vector v1 of norm unity, and a number of steps m.

2. Iterate: For j==12,.. m do:

Vi j+I Avi - i ivi [S

with hii=(Av,v,), i=1,..j (18)

|j1jl (17)

This algorithm produces an orthonormal basis Vmm-[vl,v 2 ,..vml of the Krylov subsapce

Km=Wspan{v,Av,...Am'lv,). In this basis the restriction of A to K. is represented by the upper

Hessenberg matrix HM whose entries are the elements hij produced by the algorithm. The eigenvalues

* of A are approximated by those of H, which is such that H m-VTAV . The associated approximate

eigenvectors are given by:

,,, 1

where Yi, is an eigenvector of H. associated with the eigenvalue .. We will assume throughout that

k the pair of eigenvectors associated with a conjugate pair of eigenvalues ae normalized so that they

are conjugate to each other. Note that Ii has the same Euclidean norm as Yi. The following relation

is extremely useful for obtaining the residual norm of i without even computing it explicitly:

II (A - 1.*) sill - hb ,m I eTi1 (20)

r-
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in which ea-(0,,...0,1)T. This result is well known in the case of the symmetric Lancos

algorithm 1251, and its extension to the nonsymmetrie cue is straightforward 1301.

The method of Arnoldi amounts to a Galerkin process onto the Krylov subspace Km [1, 30]. A few

* variations on the above basic algorithm have been proposed in [30] in order to overcome some of its

impractical features, and a theoretical analysis was presented in 1311.

One important property of the algorithm is that if the initial vector vI is exactly in an invariant

subspace of dimension r and not in any invariant subspace of smaller dimension, i.e. if the degree of

the minimal polynomial of v, is r, then the above algorithm cannot be continued after step r, because

we will obtain IJ,.~r+10. However, the next proposition shows that in this case K. will be invarian

which implies, in particular, that the r computed eigenvalues are exact.

Proposition 2: Aaume that the degree of the minimal polynomial of vi is equal to
r. Then Arnoldi's method atops at step r and K, is an invariant subspace. Furthermore,
the eigenvalues of H,. are the eigenvalues of A associated uith the invariant subspace K'.

Proof: Without loss of generality we will assume that the eigenvalues associated with the

invaraint subspace are X,i--lr. We will use the following result proved in [31]: at every step k of

Amoldi's method, the characteristic polynomial of Hk is the polynomial which minimizes the norm

Ip(A)vj11 over all monic polynomials of degree k. By assumption there is a monic polynomial p of

degree r such that p(A)v-0, namely the minimal polynomial of v,. Therefore the characteristic

polynomial of H is precisely p. Furthermore, comparing the recurrence relation satisfied by the

characteristic polynomial of Hk , and that of the sequence vk, it is clear that we have:

*,r+1 a=.p(A)v, where a is some scalar. Hence "r+1-0. Finally, as a result of this and from the

relations Av.-S -vi j-l,..r we clearly have:

AVr=VrHr

which means that Kr is invariant and completes the proof.rO

4. The Arnoldi-Chebyahev method

In order to exploit the above proposition, notice that the vector z. in (14) produced after n steps of

Chebyshev with the appropritate parameters c,d, will almost be in the invariant subspace spanned by

the eigenvecto is uU,...Uir. Suppose that we can find an ellipse E(d,c,a) that contains all the

eigenvalues of A except the r wanted ones, i.e. the r eigenvalues of A with largest real parts. We will

4
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describe in a moment an adaptive way of getting such an ellipse. Then an appealing algorithm would

-. be to run a certain number of steps of the Chebyshev iteration and take the resulting vector z. as

initial vector in the Arnoldi process. From the Arnoldi purification one obtains a set of m eigenvalues

*r of which are approximations to the r wanted ones, while the remaining ones will be helpful for

adaptively constructing the best ellipse. After a cycle consisting of n steps of Chebyuhev iteration

followed by m steps of the purification process, the accuracy realized for the r rightmost eigenpairs

may not be sufficient and restarting will then be necessary. The following is an outline of a simple

algorithm based in the above ideas:

* Start: Choose an initial vector v1, a number of Arnoldi steps m and a number of

Chebyshev steps n.

* Iterate:

1. Perform m steps of the Arnoldi algorithm starting with v I. Compute the m

eigenvalues of the produced Hessenberg matrix. Select the r eigenvalues of largest

real parts Xl..Xr and take R-== 4 1 ,... 0 ). If satisfied stop, otherwise continue.

2. Using R, obtain the new estimates of the parameters d and c of the best ellipse.

Then compute the initial vector z. for the Chebyshev iteration as a linear

combination of the eigenvectors AU, i-1,.Z.

3. Perform n steps of Chebyshev iteration to obtain in. Take v -z/llzI jI and go

back to 1.

Next, some important details left unclear in the above simplistic description will be examined.

4.1. Getting the optimal ellipse

As explained earlier we would like to find the 'best' ellipse enclosing the set R of remaining

eigenvalues, i.e. the eigenvalues other than the ones with the r algebraically largest real parts. We

must begin by clarifying what is meant by "best" in the present context. Consider Figure
0 4-1 representing a spectrum of some matrix A and suppose that we are interested to the 4 rightmost

eigenvalues, i.e. r==4.

In the context of linear systems, there is only one convergence ratio [21, 231, and the best ellipse is

defined as being the one which maximizes that ratio. In our situation we have r eigenvalues and

Le
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i Figute 4-1: E.xample of a spectrum

* - therefore r different convergence ratios each given by (13). Recall that aj is the major semi axis of

-. the ellipse with center d and focal distance c, passing through ). and that the unknowns are d and c.

Initially, assume that Xr is real. It is easily seen from our comments of Section 2.2 that if we draw

,*.. a vertical line passing through the eigenvalue X,,, all eigenvalues on the right of that line will

• 'converge faster than those on the left. This will be true for any ellipse containing R. Therefore, when

Xr is real, we may simply define the best ellipse as the one maximizing the convergence ratio x. of Xr"

When Xr is not real, the situation is more complicated. We could still attempt to maximize the

* convergence ratio for the eigenvalue Xy but the formulas giving the optimal ellipse do not extend to

"" the can where Xr is complex and the best ellipse becomes difficult to determine. But this is not the

main reason why this choice is not suitable. A close look at Figure 4-2, in which we assume r-$,

reveals that the best ellipse for X. may not be a good ellipse for some of the desired eigenvalues.

More precisely, in the figure, the pair X., X3 is enclosed by the best ellipse for X,. As a consequence

" the components in u.,u3 will converge more slowly than those in some of the undesired eigenvectors,
:.1
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e.g. XN in the figure.

r4

*'N I

-i ,

I ',,

- N- I
: I /

Figure 4-2: Case where p -X (complex): the
eigenvalues X2 and X3 are inside the "best" ellipse.

The figure explains the difficulty more clearly: the problem comes from the relative position of X.,

and X2 with respect to the rest of the spectrum and it can be resolved by just maximizing the

convergence ratio of X instead of5 in this case.

In a more complex situation it is unfortunately more difficult to determine at which particular

e nvalue Xk or more generally at which value p it is best to maximize x(p). Clearly, one could

solve the problem by taking -Re(Xr)' but this is not the best choice.

As an alternative, we propose to take advantage of the previous ellipse, i.e. the ellipse determined

;- from the previous purification step, as follows. We determine a point J on the real line havinp the

ame convergence ratio as Xf with reapet to the previoue ellipse. The next best ellipse is then

0
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determined so as to maximize the convergence ratio for that value p. This reduces to the previous

choice p,-Re(\r) when Xr is real. At the very rut iteration one can set p to be Re(X,).

The question which we have not yet fully answered concerns the practical determination of the

best ellipse. At a typical step of the Arnoldi proem we awe given m approximations ), i--,..m of

the eigenvalues of A. This approximate spectrum is divided in two parts: the r wanted eigenvalues

and the set R of the remaining eigenvalues r From the previous ellipse

and the previous sets R, we would like to determine the next estimates for the optimal parameters d

and c.

Fortunately, a similar problem was solved by Manteuffel [21, 231 and his work can easily be

adapted to our situation. The change of variables -(p - X) transforms p into the origin in the

plane and the problem of maximizing the convergence for p is transformed into one of maximizing a

similar ratio in the f plane for the origin. An effective technique for solving this final problem has

been developed in [21, 231 but we will not describe it here. Thus, all we have to do is pass the shifted

eigenvalues p-X j to the appropriate codes in [21), and the optimal values of p-d and c will be

returned.

4.2. Starting the Chebyshev Iteration

Once the optimal parameters d and c have been estimated we are ready to carry out a certain

number n of steps of the Chebyshev iteration (10). In this subsection we would like to indicate how

to select the starting vector z0 for this iteration. Before doing so, we wish to deal with a minor

difficulty encountered when X, is complex. Indeed, it was mentioned after the algorithm described in

Section 2.1 that the eigenvalue X, in (7) should, in practice, be replaced by some approximation v of

XI, if i! is real then v can be taken to be im-1 ! and the iteration can be carried out in real

arithmetic as was already shown, even when c is purely maginary. However, the iteration will become

complex if i is complex. To avoid this it suffices to take v to be the point on the real axis where the

ellipse E(d,e,a1 ) passing through i1, croses the real axis. The effect of the corresponding scaling of

the Chebyshev polynomial will be identical with that using 11 but will present the advantage of

avoiding complex arithmetic.

Let us now indicate how one can select the initial vector z0 . In the hybrid algorithm outlined in
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the previous section, the Cebyshev iteration comm afta an Arnoldi sep. It i then desirable to WALK

the Chebyshev iteration by a vector which is a fbea combination of the approximate eigenvectors

(19) associated with the rightmost r eigenvalues.

Let Ci be the scalars of the desired linear combination. Then the initial vector for the Chebyshev

process is

"o - C C.I- - Yi. -v . .
14 jai lotm3 am

Hence

zo -V y, where y - yi. (21)
Therefore, the eigenvectors Bi, i-l r must not be computed explicitly. We only need to compute the

eigenvectors of the Hessenberg matrix Hm and to select the appropriate coefficents fi. An important

remark is that if we choose the f's to be real and such that Ci-Ci+l for all conjugate pairs Xi,
i+lmi. then the above vector z. is real.

Assume that all eigenvectors, exact and approximate, are normalized so that their 2-norms are

equal to one. One desirable objective when choosing the above linear combination is to attempt to

make z., the vector which starts the nexf Arnoldi step, equal to the sum of the eigenvectors ui,

i-l,..r. For this purpose suppose that for each approximate eigenvector Ui we have U i "+ fit

where the vector ei has no components in ul,..U,. Then:

z- flY1U1+ ( 2 ' 2 U2 +" C4 rUr +

where

. Near convergence h-i is close to one and JeiJJ is small. The result of nsteps of the Chebyshev

iteration applied to z0 will be a vector z. of the form:

Since c has no components in u, i-l,..r, pa(A)e tends to zero faster than the frt r terms, as n

tends to infinity. Hence, taking fi4 nwill give a vector which has componants -1in the eigenvectors

Gig ,,.r,. Since "tiol near convergence this is a satisfactor7 choice.

I4
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Another possibility suggested in [30] for the iterative Arnoldi proce is to weight the combination

of Si according to the accuracy obtained after an Arnoldi step, for example:

.- II (A-XiI) U I

Notice that the residuals of two complex conjugate approximate eigenelemnts are equal, so this

choice will also lead to a real zo. The purpose of weighting a vector 6i by its residual norm is to

attempt to balance the accuracy between the different eigenelemetus that would be obtained at the

next Arnoldi step. Thus if too much accuracy is obtained for uI versus the other approximate

eigenvectors, the above choice of the fi's will put less weight on Ul and more on the other vectors in

order to attempt to reduce the advantage of uI in the next Arnoldi step.

In the experiments reported later, we have only considerd the f'uzt possibility.

4.3. Choosing the parametes m and a
The number of Arnoldi steps m and the number of Chebyshev steps n are important parameters

that affect the effectiveness of the method. Since we want to obtain more eigenvalues than the r

desired ones, in order to use them for acquiring the paramaters of the ellipse, m should be at least

r+2 (to be able to compute a complex pair). In practice, however, it is preferable to take m several

times larger than r. In typical runs m is at least 3r or 4r but can very well be much larger if storage

permits it. It is also possible to change m dynamically instead of keeping it fixed to a certain value

but this will not be considered here.

When chosing n, we have to take into account the following facts:

. Taking a too small may result in a slowing down of the algorithm; ultimately when n-O,

the method becomes the simple iterative Arnodi method.

e It may not be effective to pick a too large: otherwise the vector zn may become nealry an

eigenvector which could be troublesome for the Arnoldi process.

Recalling that the component in the direction of uI will remain constant while those in ui--2,..r,

will be of the same order as 0-2we should attempt to avoid having a vector za which is entirely in

the direction of ur  This can be done by requiring that all &- ', i-2,.. be no less than a cetain
tolerance r, i.e.:



a log( r W/ log [a0% j (22)
where x, s the largest convergence ratio among x,, i-2...r.

Other practical factors should also entw into consideration. For example, it is desirable that a

maximum number of Chebyshev steps sma be fixed by the wer. Also in cane we are close to

convergence, we should avoid to perform an unnecessaryly large number of step as might be dictated

* by a straightforward application of (22).

S. Application to the subspace Iteration algorithm

* 5.1. The basic subspace Iteration algorithm

The subspace iteration method, or simultaneous iteration method, can be regarded as a (Galerkin)

projection method onto a subspace of the form A5X, where Xin[xl,..xmj is an intial system of m

* linearly independent vectors. There ame many versions of the method [4, 13, 38, 371, but a very

simple one is the following:

1. Start: Q X

2. Iteration: Compute Q-A 3Q

3. Projection step: Orthonormalize Qand get eigenvalues and eigenvectors of CmQTAQ.

Compute Qom QF, where F is the matrix of eigenvectors of C.

4. Convergence test: If Qis not a satisfactory set of approximate eigenvectors go to 2.

The algorithm presented in [13] is equivalent to the above algorithm except that the approximate

* cigenelements are computed without having to orthonormalize Q. The SRRIT algorithm presented by

* Stewart [38, 371 aims at computing an orthonormal basis Q of the invariant subspaes rather than a

basis formed of eigenvectors. It is also mathemasically equivalent to the above in the restricted sense

that the corresponding invariant subspaces an theoretically identical. We should point out that this

final approach is more robust because an eigenbasis of the invariant subspace may not exist or may

be bay conditioned which will lead to serious difficulties for the other versions. We should stress

however that the Chebyshev acceleration technique can be applied to any~ version of the suabspae
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iteration although it will only be described for the simpler version presented above.

5.2. Chebyshev acceleration

The use of Chebyshev polynomials for accelerating the subspace iteration was suggested by

Rutishauser [29, 40] for the symmetric case. It was pointed out in [31] that this powerful technique

can be extended to the nonsymmetric case but no explicit algorithm was formulated for computing

the best ellipse.

We will use the same notation as in the previous sections. Suppose that we are interested in the

rightmost r eigenvalues and that the ellipse E(d,c,a) contains the set R of all the remaining

eigenvalues. Then the principle of the Chebyshev acceleration method is simply o replace the powers

A' in the first part of the basic algorithm described above by pn(A) where p. is the polynomial

defined by (8). It can be shown [31; that the approximate eigenvector ii, i-1...r converges towards

ui, as Tn(a/c)/T[X-<d)/c], which, using arguments similar to those of Section 2.2, is equivalent to 9P

with

a+ a -- - 111/2(23)

a + [ 2_111/2

The above convergence ratio can be far better than the JX l which is achieved by the classical

algorithmI.

On the practical side, the best ellipse is obtained dynamically in the same way as was proposed for

the Cbebyshev-Arnoldi process. The accelerated algorithm will then have the following structure:

1. Start:Q 4mX

2. Iteration: Compute Q on pn(A)Q

3. Pro*ction step: Orthonormalize Q and get eigeuvalues and eigenvecton of C-QTAQ.

Compute Q o QF, where F is the matrix of eigenvecton, of C.

'The subepace iteration method computes the eigenvalues of largest moduliL Therefore, the reguiar mbupace iteration
method and the accelerated method are comparable only when the r+1 rihgtmost eigenvalues wae also the r+! dominant
ones.
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4. Convegercee tea: If Q a satisfactory set of approximate egenvecton then stop, else get

new best ellipse and go to 2.

Most of the practicalities described for the Arnoldi process extend naturally to this algorithm and

we now discuss briefly a few of them.

1. Getting the best ellipse. The construction of the best ellipse is identical with that seen in

Section 4.1. The only difficulty we might encounter is that the extra eigenvalues used to build the

best ellipse are now less accurate in general than those provided by the more powerful Arnoldi

technique. More care must therefore be taken in order to avoid building an ellipse based on inacurate

* eigenvalues as this may slow down considerably the algorithm.

2. Parameters n and m. Here, one can take advantage of the abundunt work on subspace

iteration available in the literature. All we have to do is replace the convergence ratios JX '\rl of

the basic subspace iteration by the new ratios 9i of (23). For example, one way to determine the

number of Chebyshev steps n, proposed in 1291 and in 1141 is:

n As 11+ log ((V)/Iog(q 1 )]

wheree is some paramater depending on the unit round off. The reason for this choice is to attempt

to avoid the rounding errors to be grow beyond the level of the error in the most slowly converging

eigenvector. The parameter n is also limited from above by a user supplied bound nu, and by the

fact that if we are close to convergence a smaller n can be determined to ensure convergence at the

next projection step.

-. The same comments as in the Arnoldi-Chebyshev method can be made concerning the choice of m,

namely that m should be at least r+2, but preferably even larger although in a lesser extent than for

Arnokli. Note that for the symmetric case it is often suggested to take m-2r or a-3r.

3. Deftstion. Another special feature of the subspace iteration is the deflation technique which

consists in working only with the non converged eigenvectors, thus 'locking' those that have already

converged, see 114, 29, 38). Clearly, this can be applied to the accelerated subspace iteration as well

and will enhance its efficiency.

a'
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S. Numerical experiments

The numerical experiments described in this section have been performed on a VAXI1-780

computer using double precision (unit round-off um.9x10-18).

6.1. An example of Markov Chain modelling

An interesting clan of test examples described by Stewart [37] deals with the computation of the

steady state probabilities of a Markov chain. This example models a random walk on a (k+l) by

(k+l) triangular grid.

j=

j=6

"5j=4 * * *

j=3 * * * *

•j-1 * * * * * *

j=O * * * * * * *

i:O i1 i=2 i=3 i=4 i=5 i:6

Figure 6-1: Random walk on a triangular grid

A particule moves randomly on the grid by jumping to one of the (at most) four adjacent grid

points, see figure. The probability of jumping from the node (ij) to either of the nodes (i-j) or

(ij-1) is given by.
~i~i

pd(i) - 2k

this probability being doubled if either of i or j is zero. The probability of jumping from the node

(ij) to either of the nodes (i+lj) or (ij-1) is given by

pu(ij) -- 4- pd(ij)
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(Note that this transition does not occur when i+j-k, which is expressed by the fact that pu(ij) is

then equal to zero). We are interested in the steady state probality distribution of the chain. Such

probabilities are the components of the appropriately scaled eigenvctor asiociated with the

eigenvalue unity the transpose of the transition probability matrix 118, 34].

The nodes (ij) are labelled in the order (0,0), (1,O)...(k,O);(O,1)Al,1)... (k-1,1);..40,k). With this it is

easy to form the matrix A. But this is not even necessary, nor is it necessary to store A in any way

because the operations y-Ax for any vector x can be performed by a simple subroutine.

In our first test we have taken k-30, which means that the dimension of the problem is

N-4(k+l)(k+2)-498.

The subspace iteration method SRRIT was tested in [37] for this case. We have tried our simple

version of the algorithm described in Section S. As initial system X we have taken the system

[x,Ax,..Am' tx] where x is a random vector. The following results were obtained for various values of

the parametrs m and n,:

Table 1: Subspace Iteration

Matrix - Vector Execution Residual
- namx Iterations Multiplications times (Sec.) nor=

6 20 262 1389 62.7 6.4 E-06
6 50 262 1383 56.6 3.8 E-06
8 20 180 1467 69.2 8.5 E-06
8 50 182 1413 50.5 7.6 E-06
10 20 145 1422 74.3 6.4 E-06
10 50 150 1457 63.3 4.1 E-06

The stopping criterion was that the residual norms of the eigenpsir corresponding to the eigenvalue

unity is less than -10 - .

The difference with the number of matrix by vector multiplications reported in 1371, is due mostly

to the fact that the two implementaions are different. Part of the difference is also due to the
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stopping criterion which, in (371, deals with the two dominant eigenvalues 1 and -1 (-1 is also known

to be an eigenvalue). An important observation is that for the same block size m, the performance is

better with the larger nm.,50 than with nmz==20.

*2 The next table shows the same example treated by the Cbebyshev accelerated subspace iteration.

Table 2: Chebyshev - Subspace Iteration

Matrix - Vector Execution Residual
m nmax Iterations Multiplications times (Sec.) norms

6 50 25 1019 60.2 1.2 E-07
6 20 30 645 41.1 4.6 E-06
8 20 42 903 59.7 4.9 E-06
8 50 28 1063 66.0 3.8 E-09
10 20 45 909 64.3 1.0 E-06
10 50 27 979 62.3 1.9 E-07

The stopping criterion and the initial set X were the same as for the previous test. Notice that

* -here the effect of the upper limit nm, of the number of Chebyshev iterations can be quite important,

as for example when m=86. As opposed to the observation made above for the non acelerated

algorithm, the performance is now better for smaller values of the parameter nma. The reason for

this is provided by a close examination of the successive ellipses that are adaptively computed by the

process. It is possible to observe that when the ellipse does not accurately represent the convex hull

of the remaining eigenvalues, a larger nm, leads to wasting an important amount of computational

work before having the chance of evaluating new parameters. Thus, for smaller values of na., the

process has a better ability to correct itself by computing a better ellipse more frequently. This is

le critical with the Arnoldi process because the eigenvalues provided by Arnoldi's method ae

usually more accurate.

It is instructive to compare the above performances with those of the iterative Arnoldi method and

of Cebyshev Arnoldi method. The next two tables summarize the results obtained with the

iterative Ar ldi method (Table 3) and the Arnoldi-Chebyshev method (Table 4). The stopping

criterion is the same as before, and the initial vector used in the first Arnoldi iteration is random.

I~ '•. "- " • .I ._ -....: , / ,. .• i ..
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Table 3: Iterative Arnaldi

Arnoldi Matrix - Vector Execution Residual
* Iterations Multiplications times (See.) norms

S 36 I80 21.8 7.5 E-06

10 14 140 22.2 9.3 E-06
15 8 120 25.7 7.3 E-06
20 6 120 33.3 6.2 E-06

Table 4: Chebyshev - Arnoldi

Arnoldi Matrix - Vector Execution P.ResidualI
* noel catls Multiplications times (Sec.) norms

5 20 6 130 9.4 8.9 E-06
5 50 4 142 8.9 3.9 2-07

10 20 5 130 13.9 5.0 E-06
10 50 3 113 9.6 7.1 E-06
15 20 3 85 11.9 6.8 E-06
15 50 3 122 14.6 3.2 E-10
20 20 3 100 18.6 1.5 E-07
20 s0 3 s8 14.2 4.3 E-09

The reults of Table S constitute a considerable improvement over those of the subspace iteration,

both in execution time and in number of matrix by vector multiplications. Notice that in this

example we are also able to reduce the execution time by a factor of nearly 2.5 from the iterative

* Armoldi method.
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6.2. ComputIng several elgenvalues
The above experiments deal with the computation of only one eigenpar and we would like next to

compare the performances of our methods on problems dealing with several eigenvalues. Consider

the following partial differential linear operator on the unit square, with the Dirichlet boundary

conditions, derived from [7j:

0 Ou 0 an Bgu an
Laai b --. a- g- (24)

Blx wi By By Bx

The functions a, b, and g are defined by:

]&(X~y) - e- '7; b(xy) --e'

S(x,y) - x+y); fx,y) - + y

Discretizing the operator (24) by centered differences with mesh size h-l/(p+l) gives rise to a

nonsymmetric matrix A of size N-n 2. The parameter -y is useful for varying the degree of symmetry

of A.

Taking p-30 and -'1 2 0, yields a matrix of dimension 900 which is not nearly symmetric. We

computed the 4 rightmost eigenvalues of A by the Arnoldi-Chebyshev algorithm using m-15 and

nmax- 80 and obtained the following results:

1,2 - 9.4429 : 1.7290 ; Residual norm: 5.4 E-13

X3,4 - 8.9561 .k 1,3381 ; Residual norm: 8.4 E-08

Total number of matrix by vector multiplications required: 110

CPU time: 26.0 see.

The initial vector was a random vector, and the stoping criterion was that the residual norm be

les than emi10o. Details of the execution are as follows: rust an Arnoldi iteration (15 steps) was

performed and computed the parameters d-3.803 , c2'14.36. Then 80 steps of the Chebyshev

iterations were carried out and finally another Amnoldi purification step was taken and the stopping
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criterion was satisfied. Note that we could have reduced the amount of work by using a smaller n in

the Chebyshev iteration.

The same eigenvaues were computed by the subspace iteration method using the same stopping

criterion and the parameters mna- and nm m-S0. The results were delivered after 220 iterations

which consumed 1708 matrix by vector multiplications and 220 CPU seconds.

A similar run with the accelerated subspace iteration, with nz--15, took 104 iterations

corresponding to a total of 928 matrix by vector multiplications and 188 seconds of CPU time.

Observe that the gain in execution time does not reflect the gain in the number of matrix by vector

multiplications because the overhead in the accelerated subspace iteration is substancial.

We omitted to discuss in detail the use of our accelerated algorithms for the computation of the

eigenvalues with algebraically smallest real parts, but the development is identical to that for the

eigenvalues with largest real parts. It suffices to relabel the eigenvalues in increasing order of their

real parts (instead of decreasing order). In the following test we have computed the four eigenvalues

of smallest real parts of the matrix A defined above. Convergence has been more difficult to achieve

than in the previous test. With m-20, nu,,-,250, the Aruoldi-Cebyshev code satisfied the

convergence criterion with (-104, after 3 calls to Aznoldi and a total of 627 matrix by vector

multiplications. The execution time was 106 sec. In order to obtain the smallest eigenvalues with the

regular Chebyshev iteration. we had to shift A by a certain scalar so that the eigenvalues of smallest

real parts become dominant. We used the shift 7.0, i.e. the subspace iteration algorithm was applied

to the shifted matrix A-7.1, and the resulting eigenvalues are shifted back by 7. to obtain the

. eigenvalue of A. The process with m--10 and mmax-0 was quite slow since it took a total of 3925

matrix by vector multiplications and 625 seconds to reach the same stopping criterion as above.

The accelerated subspace iteration did not perform better, however, saince it required 4010 matrix

O by vector multiplication to converge with a total time of 736 seconds. Here we used m--10 and

nmazx25. The reason for this misbehavior was that the algorithm encountered seriou diffiul*s to

obtain a good ellipse as could be observed from the erratic variatioan of the parameters d and e. We

believe that one important conclusion from this is that the Chebyuhev subspace iteration can become

0 unreliable for some shapes of spectra or when the eigenvalues are clustered in an infavorable way. If

* the spectrum is entirely real (or almost real) this misbehavior is unlikely to happen in general.
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Perhaps, another important remark raised by this last experiment is that fitting a general spectrum

with an ellipse may not be the best idea. If we were allowed to use domains E more general than

ellipses, then the problem of fitting the spectrum would have been made easier. Clearly, the resulting

" best polynomials p. would not be Chebyshev polynomials but this does not constitute a major

disadvantage. Further investigation in this direction is worth pursuing.

'. 7. Conclusion

The purpose of this paper was to show one way of using Chebyshev polynomials for accelerating

nonsymmetric eigenvalue algorithms. The numerical experiments have confirmed the expectation

* that such an acceleration can be quite effective. To conclude, we would like to point out the

following facts:

a It is not clear that representing general spectra by ellipses is the best that can be done.

For the solution of linear systems, general domains have been considered by Smolarski

and Saylor [35] who use orthogonal polynomials in the complex plane. Thus far, this does

not seem to have been extended to solving nonsymmetric eigenvalue problems.

* Another way of combining polynomial iteration (e.g. Chebyshev Iteration) or, more

generally rational iteration, with Arnoldi's method has recently been proposed by

Ruhe [281. Briefly described the idea is to carry out Arnoldi's algorithm with the matrix

6(A), 6 being a suitably chosen rational function. Then, an ingenious relation permits to

calculate the eigenvalues of A from the Hessenberg matrix built by the Arnoldi process.

9 We have selected Arnoldi's method as a purification process, perhaps unfairly to other

similar processes which may be just as powerful as Arnoldi's. One such alternative is the

unsymmetric Lanczos algorithm 119, 28, 38). Another possibility which we have omitted

to describe is a projtion procees onto the latest m vectore of the Cheyshev iteration.

This can be realized at less cost than m steps of Arnoldi's method although it is not

known whether the overall resuking algorithm is more effective.

Aekowledgemente. This work would not have been possible without the availability of the very

useful code written by Thomas A. Manteuffel in [21].



28

Referencem

[1] W.E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvaue
problem. Quart. Appl. Math. 9:17-29, 1951.

121 F.L. Bauer. Da Verfahren der Treppeniteration und Verwandte Verfahren sur Lomung
Algebraischer Eigenwertprobleme. ZAMP 8:214-235, 1957.

[3] A. Clayton. Further Results on polynomials having least maximum modulus over an ellipse
in the complex plane. Technical Report AEEW-7348, UKAEA ; 1963.

[4] M. Clint and A. Jennings. The evaluation of eigenvalues and eigenvectors of real symmetric
matrices by simultaneous iteration method. J. Inst. Math. Appi. 8:111-121, 1971.

[5] F. d' Almeida. Numerical study of dynamic stability of macroeconomical models- Software
for MODULECO. Technical Report , INPG- University of Grenoble, 1980. Dissertation
(French).

[8] E.H. Dowell. Nonlinear Oscillations of a Fluttering Plate, II. ALA.4 Journal 5:1856-1862,
1987.

[7] H.C. Elman. Iterative Methods for Large Spars Noneyrmmetric Systeme of Linear
Equations. Technical Report 229, Yale University, 1982. Phd-Thesis.

[8] H.C. Elman, Y. Sand, and P. Saylor. A new hybrid Cheremheu algorithm for eoltial
". nonymmetrie satem. of linear equations. 1983. In preparation.

[9] K.K. Gupta. Eigensolution of damped structural systems. mn. J. Num. Meth. Engng.
8:877-911, 1974.

[101 K.K. Gupta. On a numerical solution of the supersoninc panel flutter eigenproblem. Int.
J. Num. Meth. Engng. 10:637-645, 1978.

[11] A.L. Hageman and D.M. Young. Applied Iterative Methods. Academic Press, New York, 1981.

[12] A. Jennings. Eigenvalue Methods and the Asalysis of Structural Vibration. In Sparse
Matrices and their Uses, 1. S. Duff, Ed., Academic Press, New York, 1981, pp. 109-138.

[13] A. Jennings and W.J. Stewart. Simultaneous iteration for partial eigensolution of real matrices.
J. Math. Inst. Appl. 15:351-361, 1980.

[14] A. Jennings and W.J. Stewart. A Simultaneous Iteration Algorithm for real matrices. ACM,
71ram. of Math. Software 7:184-198, 1981.

115) A. Jepson. Numerical Hopf Bifureation. Ph.D. Thesis, Cal. Inst. Tech., 1982.

16] S. Karlin. Mathematical methods and theory in game., programming, and economices,
* €1 Volume I. Addison Wesley, Reading, Massachusetts, 1959.

I



29

[17] L. Kaufman. Matrix methods for queueing problems. Technical Report TM-82-11274-1, Bell
Laboratoies, 1982.

[18] L. Kleinrock. Queucing System*, vol. 2: Computer Applications. John Wiley and Sons, New
York, London, 1976.

1191 C. Lanczos. Am iteration method for the solution of the eigenvalue problem of linear
differential and integral operator. J. Re. Nat. Bur. of Standards 45:255-282, 1950.

[201 A.J. Laub. Schur techniques in invariant imbedding methods for solving two point boundary
value problems. 1982. to appear.

I 1211 TA. Manteuffel. An iterative method for solving nonsrmmetrie linear systems with dynamic
estimation of parameters. Technical Report UIUCDCS-75-758, University of illinois at
Urbana-Champaign, 1975. Ph.D. dissertation.

[221 T.A. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems. Numcr. Mat.
28:307-327, 1977.

[231 T.A. Manteuffel. Adaptive procedure for estimation of parameter for the nonsymmetric
Tchebychev iteration. Numer. Mat. 28:187-208, 1978.

[24] B. Nour-Omid, B.N. Parlett, R. Taylor. Lane:as versus Subspace iteration for the solution of
cienvalue problems. Technical Report UCB/SESM-81/04, University of California at
Berkeley, Dept. of Civil Engineering, 1980.

[25] B.N. Parlett. The Symmetric Eipcnvalue Problem. Prentice Hall, Englewood Cliffs, 1980.
£

[26] B.N. Parlett and D. Taylor. A look ahead Lanc:oa algorithm for unsymmetric matrices.
Technical Report PAM-43, Center for Pure and Applied Mathematics, 1981.

[271 T.J. Rivlin. The Chebyshev Polynomial. J.Wley and Sons Inc., New York, 1976.

[281 A. Rube. Rational Krylov sequence methods for eigenvalue computations. Technical
Report Uminf-97.82, University of Umea, 1982.

[291 H. Rutishauser. Computational aspects of F.L. Bauer's simultaneous iteration method.
Numer. Math. 13:4-13, 1969.

" [30] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric
matrices. Linear Algebra and its Applications 34:269-295, 1980.

[31] Y. Saad. Projection methode for eolvng Larg sparse eigenvalue problem. Technical
Report 224, Yale University, 1981. To appear in Proceedings of conference on Matrix Pencils
held in Pitea (Sweden)March 1982, Springer-Verlag ed.

[32] G. Sander, C. Bon, M. Geradin. Finite element analysis of supersonic panel flutter. Int.

J. Num. Meth. Engng. 7:379-394, 1973.
'4 t



30

[331 Sattinger D.H. Bifurcation of periodic solutions of the Navier Stokes equations. Arch. Rat.
Mech. An 41-08-80, 1971.

[34] E. Seneta. Computing the stationary distribution for infinite Markow chaine. In Large Scale
Matrix Problems, A. Bjorck, R. J. Plemmons, H. Schneider, Ed., Elsevier North Holland, New
York, 1981, pp. 259-287.

[35] D.C. Smolarski and P.E. Saylor. Optimum paramatere for the eolution of linear equations by
Richardson 'iteration. 1982. Unpublished Manuscript.

[36] G.W. Stewart. Simultaneous iteration for computing invariant subspaces of non-Hermitian
matrices. Numr. Mat. 25:123-13, 1978.

(37] G.W. Stewart. SRR1T - a FOR77L4JV subroutine to calculate the dominant invariant
'ubspacce of a real matriz. Technical Report TR-514, University of Maryland, 1978.

[38] D. Taylor. The look ahead Lanezo. algorithm for urnmmetric matrices. 1982. PhD thesis
-(to appear).

[39] J. H. WNilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

140] J. H. Wilkinson and C. Reinsch . Handbook for automatic computation, Vol. II, Linear
Algebra. Springer Verlag, New York, 1971.

[41] H.E. Wrigley. Accelerating the Jacobi method for solving simultaneous equations by
Chebyshev extrapolation when the eigenvalues of the Iteration Matrix are complex. Computer
Journal 6:16-176, 1963.

L.



4

kit~

444

1-f


