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ON FATIGUE CRACK GROWTH IN A Ti-4.5A1-5Mo-1.5Cr
ALLOY WITH METASTABLE g~PHASE

Charles M. Gilmorel, George R. Yoder? and M. Ashraf Imaml

Mechanics of Materials Branch
Material Science and Technology Division
Naval Research Laboratory
Washington, DC 20375

INTRODUCTION

The Ti1-4.5A1-5Mo-1.5Cr or "CORONA 5 alloy has been successfully devel-
oped as a superhigh toughness o/B alloy [l-4], though preliminary work has
not revealed a similar superiority in resistance to fatigue crack growth
- particularly at lower levels of stress~intensity range (AK). Work in the
recent past with conventional a/B alloys has shown, however, that resistance
to fatigue crack growth can be significantly enhanced through microstructural
modification [5-7] - and indeed, such efforts have been attempted with the
CORONA 5 alloy [4,8].

One of the more fascinating approaches toward enhancement of resistance
to fatigue crack growth is through use of TRIP (transformation-induced plas-
ticity) effects, as successfully demonstrated in the case of steels [9,10].
Moreover, Imam and Gilmore [11-13] have ascribed a considerable enhancesent
of fatigue life in a Ti-6A1-4V alloy to TRIP effects associated with seta-
stable f-phase, as water quenched from s solution trestment temperature high
in the o/8 phase field.

The purpose of the present study is to exsmine, ou a preliminary basis,
whether such a TRIP effect llght be found to enhance fatigue crack growth

1gchool of Engineering and Applied Science, George Washington University,
Washington, DC 20052

2Material Science & Technology Division, Naval Research Laboratory, Washing-
ton, DC 20375
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resistance 1in the CORONA 5 alloy. This alloy is hardenable after water
quenching from the solution treatment temperature, and to a lesser extent,
hardenable after air cooling [14]. Therefore, results are examined for two
cases: the alloy as (i) water—quenched, and (ii) as cooled in helium at
approximately an air-cooling rate from a solution treatment temperature of
899°c.

EXPERIMENTAL

A description of the plate material used has already appeared in Ref.
[4]. The alloy was high 8 processed, with a reported beta transus of 938°C
and the following chemical analysis (in wt pet): Ti-4.4A1-5.1Mo-1.46Cr-
0.1830-0.011N~0.00188~0.20Fe-0.065C. In the present study, the material was
annealed at 982°C (1 hr), then coaled in vacuum to 899°C and held for &
hours, followed by either a water quench or helium purge to rooa temperature.

Determinations of fatigue crack growth rates (da/dN) were made from pre-
cracked MC(T)(T-L) type specinenshllsl, with a thickness (B) of 10.2 mm, a
width (W) of 64.8 ma and a half-height to width ratio (h/W) of 0.486. Speci-
men geometry is illustrated in Fig. 1; the equation for calculating the
stress~intensity factor (K) for this specimen is given in Ref, [16]. Speci-
mens were cyclically stressed with a haversine loadform of constant sapli-
tude, a stress ratio (opin/omax) of R = 0.10 and a frequency of 5 Hz ia
anbient air, using a closed-loop servohydraulic loading machine. The pre-
cision measurement technique described in Ref. [17] was employed to determine
fatigue crack growth rates in accord with ASTM E647-81 [18]. Crack length
was determined as a function of elapsed cycles from measurements of crack-
mouth—opening displacement, using the calibration equations of Ref. [16]. 1In
some instances, crack length was also measured optically at the two faces of
the specimen with a traveling microscope at 15x. Values of da/dN were deter-
mined for levels of stress-intensity range between 12 and 30 MPa/a.

Mechanical properties were determined from cylindrical tensile specimens
of the T orientatfon [19], with s diameter of 6.3 -mm. A gage length of 25.4
mm was used; the rate of stressing was g = 175 MPa/min.

RESULTS AND DISCUSSION

The photomicrograph in Pig. 2 of the alloy as quenched from 899°C indi-~
cates that ~70% f-phase was present at the solution treatment tesperature.
The thin-foil transaission electron micrograph in FMg. 3(a) snd the selected




area diffraction pattern in Fig. 3(b) illustrate that a signifféiht fractiba
of the B-phase remained untransformed in material water quenched from 899°C.
By contrast, material cooled more slowly in_ helium from 899°C exhibits s
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i.! . significant degree of precipitation of fine, secondary a-phase (Widman—-
f - statten morphology) as shown in the thin-foil micrograph in Fig. 3(c).

Uniaxial tensile properties for these two material conditions are pre-

sented in Table 1. Though the difference in ultimate tensile strength for

. the two conditions 1is relatively small, the yield strength of the helium

cooled material (1007 MPa) is more than twice that for the water quenched

s condition (466 MPa) - an observation consistent with the precipitation appar-

ent within the #-phase pools of the former, as shown in Fig. 3(c)*. A lower

value of Young's modulus (E) is also apparent for the water quenched material

(95 vs. 112 GPa) - which is consistent with the higher volume fraction of 8-

phase, which is anticipated to have a lower modulus than the a-phase

|- [20,21].
‘ Fatigue crack growth rates (da/dN) for the two material conditions are
; :{ j plotted in Figs. 4 and 5. As shown 1in Fig. 4, the fatigue crack growth é
' : resistance of the helium cooled material {s virtually coincident with the

lower bound data trend line ("LB") from an earlier study [4]. A bilinear
form of the data plot is apparent, as anticipated [7], with a transition
point at AKr. As shown in Fig. 5, the water quenched material exhibits a

G L TR 2

fatigue crack growth resistance that appears to be marginally enhanced rela-
‘ tive to that in Fig. 4 - possibly owing to the greater potential for a TRIP
; 1 effect to be operative**,

%“ i f It is important to elaborate on the three different sets of data plotted
‘ . in Fig. 5. First of all, it is evident that data obtained from readings of
' crack length made optically at the specimen faces (ag) are nmot 1in agreement
with those made from measurements of crack-mouth-opening displacement, using

21 N -
. e

the value of modulus obtained from the tensile test (a., Er = 95 GPa). How-
ever, if the modulus is measured from the crack growth specimen itself ([17],

#This observation could conceivably be linked to a TRIP effect, though evi-
dence has yet to be obtained in support of this possibility.

*#Unfortunately, at the higher levels of AK in Fig. 5, invalidity of the data
is a problem associated with deviation of the fatigue crack froa the Mode 1
crack plane in excess of 5°.
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then values of da/dN obtained via the crack-mouth-opening displacement tech~-

nique (3., Ec = 83 GPa) are in excellent agreement with those determined from
the surface optical measurements, ag. The much lower value of modulus
obtained in the latter case might be related to a greater potential for phase
transformation to occur in the triaxial stregss field of the crack growth

specimen.
CONCLUSIONS
1. Fatigue crack growth resistance appears to be marginally enhanced .
with the presence of metastable 8~phase in a microstructure also containing
some primary a-phase (~30Z) of high aspect ratio. .
2. This enhancement appears slightly greater for S-phase water quenched
from 899°C than as cooled more slowly in helium (at approximately an air-

cooling rate). In the case of the former, nearly full retention of solute in
: the B~phase is apparent, while in the latter, significant precipitation of
t ! secondary a-phase is evident.

f 3. The potentiel for msjor TRIP effects on fatigue crack growth in the
' ‘{ presence of metastable S-phase requires further study - e.g., a wide range of
: solution treatment temperatures needs to be explored, ss prior experience
SN with Ti-6A1-4V suggests.
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Table 1 ~ Mechanical Properties

0.2 Pet Tensile Reduction Elongation Young's
Material Yield Strength, in Areas, in 25.4 mm Modulus,
Condition Strength;" ‘ouég(MPR) = Pet 6. L., Pct E (GPa)
oy(MP&) RPN : '
Helium 1007 moe . v 9 s 111.7
Cooled o _ '
Water 466 . 1046 © 10 8 95.3
Quenched o
81.3 mm
e : . o
64.8 mm
— , —
12.7 mm
¥ T ¥
3
- E /+r\
s & 1 W £
< =
1 = T == @
Y
N
12.7 mm DIA.

rig.

Mo ,ions of crack growth specimen.

7-




Fig. 2 - Light optical photomicrograph of alloy as water quenched from 899°C.
Etched with Kroll's reagent.
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Pig. 3(a) - Transmission electron micrograph of material water quenched from
899°C. The matrix phase, marked “"B”, was identified to be a
mixture of retained S~phase and martensite. The a-phase is

marked “A".

RN

Fig. 3(b) - Electron diffraction pattern taken from the matrix of the water
quenched material showing

A. (1010) lattice point of the [0001] BCP sone axis
B. (101) lattice point of the [111] BCC zone axis
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Fig. 3(c) - Transmission electron micrograph of the material cooled in
helium from 899°C.
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Fig. 4 - Fatigue crack growth rates for alloy as cooled in helium from 899°C.

i B e
- .
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Fig. 5 - Fatigue crack growth rates for alloy as water quenched from 899°C.




