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ON FATIGUE CRACK GROWTH IN A TI-4.5AI-SNo-l *5Cr

ALLOY WITH METASTABLE $-PHASE

Charles M. Gilmorel, George R. Yoder 2 and M. Ashraf Imaul

Mechanics of Materials Branch
Material Science and Technology Division

Naval Research Laboratory
Washington, DC 20375

INTRODUCTION

The Ti-4.5A1-5No-l.5Cr or "CORONA 5" alloy has been successfully devel-

oped as a superhigh toughness a/B alloy [1-4], though preliminary work has

not revealed a sailar superiority in resistance to fatigue crack growth

- particularly at lower levels of stress-intensity range (AK). Work In the

recent past with conventional */0 alloys has shown, however, that resistance

to fatigue crack growth can be significantly enhanced through microstructural

modification [5-71 - and indeed, such efforts have been attempted with the

CORONA 5 alloy [4,81.

One of the more fascinating approaches toward enhancement of resistance

to fatigue crack growth is through use of TRIP (transformation-induced plas-

ticity) effects, as successfully demonstrated in the case of steels [9,101.

Moreover, luan and Gilmore [11-13] have ascribed a considerable enhanemut

of fatigue life In a Ti-6AI-4V alloy to TRIP effects associated with Ita-

stable 0-phase, as water quenched from a solution treatment temperature high

in the a/$ phase field.

The purpose of the present study is to examine, an a preliminary basis,
whether such a TRIP effect might be found to enhauce fatigue crack growth

1School of Engineering and Applied Science, George Washington University,
Washington, DC 20052

2Naterial Science & Technology Division, Naval Research Laboratory, Washing-
ton, DC 20375
Ianuseript approved february 23, 1M3.
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resistance in the CORONA 5 alloy. This alloy is hardenable after water

quenching from the solution treatment temperature, and to a lesser extent,

hardenable after air cooling [141. Therefore, results are examined for two

cases: the alloy as (i) water-quenched, and (ii) as cooled in helium at

approximately an air-cooling rate from a solution treatment temperature of

8990C.

EXPERIDENTAL

A description of the plate material used has already appeared in Ref.

[4]. The alloy was high 0 processed, with a reported beta transus of 938*C

and the following chemical analysis (in wt pct): Ti-4.4A1-5.lMo-l.46Cr-

0.1830-O.011N-O.00181-O.2OFe-O.065C. In the present study, the material was

annealed at 982C (1 hr), then cooled in vacuum to 899*C and held for 4

hours, followed by either a water quench or helium purge to room temperature.

Determinations of fatigue crack growth rates (da/dN) were made from pre-

cracked !C(T)(T-L) type specimens [151, with a thickness (B) of 10.2 -s, a

width (M) of 64.8 m and a half-height to width ratio (h/W) of 0.486. Speci-

men geometry is illustrated in Fig. 1; the equation for calculating the

stress-intensity factor (K) for this specimen is given in Ref. [161. Speci-

mens were cyclically stressed with a haversine loadform of constant ampli-

tude, a stress ratio (Ozin/amax) of R - 0.10 and a frequency of 5 Rs in

ambient air, using a closed-loop servohydraulic loading machine. The pre-

cision measurement technique described in Ref. [171 was employed to determine

fatigue crack growth rates in accord with ASTh E647-81 [181. Crack length

was determined as a function of elapsed cycles from measurements of crack-

mouth-opening displacement, using the calibration equations of Ref. [161. In

some instances, crack length was also measured optically at the two faces of

the specimen with a traveling microscope at 15x. Values of da/dN were deter-

mined for levels of stress-intensity range between 12 and 30 Wa/i.
Mechanical properties were determined from cylindrical tensile specimens

of the T orientation [191, with a diameter of 6.3-un. A gage length of 25.4
am e used; the rate of stresing was a - 175 Mra/aln.

RESULTS DISCUSSION
The photomicrograph In Fig. 2 of the alloy as quenched from 899C Lodi-

cates that -701 -phase was present at the solution treatment temperature.

The thin-foil transmission electron micrograph In Fig. 3(a) and the selected
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area diffraction pattern in Fig. 3(b) illustrate that a signikfcdut fract t"4 r

of the O-phase remained untransformed in material water quenched from 899C.

By contrast, material cooled more slowly in- helium from 899"C exhibits a

significant degree of precipitation of fine, secondary a-phase (Widman-

stitten morphology) as shown in the thin-foil micrograph in Fig. 3(c).

Uniaxial tensile properties for these two material conditions are pre-

sented in Table 1. Though the difference in ultimate tensile strength for

* the two conditions is relatively small, the yield strength of the helium

cooled material (1007 HPa) is more than twice that for the water quenched

* condition (466 MPa) - an observation consistent with the precipitation appar-

ent within the 8-phase pools of the former, as shown in Fig. 3(c)*. A lower

value of Young's modulus (E) is also apparent for the water quenched material

(95 vs. 112 GPa) - which is consistent with the higher volume fraction of 8-

phase, which is anticipated to have a lower modulus than the a-phase

[20,21].

Fatigue crack growth rates (da/dN) for the two material conditions are

plotted in Figs. 4 and 5. As shown in Fig. 4, the fatigue crack growth

resistance of the helium cooled material is virtually coincident with the

lower bound data trend line ("LB") from an earlier study [41. A bilinear

form of the data plot is apparent, as anticipated [7], with a transition

point at AKT. As shown in Fig. 5, the water quenched material exhibits a

fatigue crack growth resistance that appears to be marginally enhanced rela-

tive to that in Fig. 4 - possibly owing to the greater potential for a TRIP

effect to be operative**.

It is important to elaborate on the three different sets of data plotted

in Fig. 5. First of all, it is evident that data obtained from readings of

crack length made optically at the specimen faces (1s) are not in agreement

with those made from masurements of crack-mouth-opening displacement, using

the value of modulus obtained from the tensile test (, ET - 95 CPa). How-

ever, if the modulus is measured from the crack growth specimen itself [171,

*This observation could conceivably be linked to a TRIP effect, though evi-

dence has yet to be obtained in support of this possibility.

**Unfortunately, at the higher levels of AK in Fig. 5, invalidity of the data

is a problem associated with deviation of the fatigue crack from the Mode I
crack plane in excess of 5".
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then values of da/dN obtained via the crack-mouth-opening displacement tech-

*nique (Ia, Kc - 83 GPa) are in excellent agreement with those determined from

the surface optical measurements, i. The much lower value of modulus

obtained in the latter case sight be related to a greater potential for phase

transformation to occur in the triaxial stress field of the crack growth
s _pecimen.

CONCLUSIONS

1. Fatigue crack growth resistance appears to be marginally enhanced

with the presence of metastable 0-phase in a microstructure also containing

some primary o-phase (-302) of high aspect ratio.

2. This enhancement appears slightly greater for $-phase water quenched

from 8990C than as cooled more slowly in helium (at approximately an air-

cooling rate). In the case of the former, nearly full retention of solute in

the 0-phase is apparent, while in the latter, significant precipitation of

secondary a-phase is evident.

3. The potential for sajor TRIP effects on fatigue crack growth in the

presence of metastable 0-phase requires further study - e.g., a wide range of

solution treatment temperatures needs to be explored, as prior experience

with Ti-6A1-4V suggests.
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Table 1 - Mechanical Properties

0.2 Pct Tensile Reduction Elongation Young'.
Material Yield Strength, in Area, in 25.4 m Modulus,
Condition Stregth j- Pet 6. L., pet E ( Pa)

I elium 1007 l0 .5 111.7

Cooled

Water 466 1046 10 8 95.3
Quenched

* 81.3m
64.8mmw

2 emm.

E
E

w P
E EI

12.7 mm U&~i
RAW ,Am* o era* grewt SpeaSins



IFig. 2- Light optical photomicrograph of alloy am water quenched froft 8990C.
Etched with Kroll's reagent.
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Fig. 3(a) - Tranusmiaslon electron micrograph of uaterial water quenched from
SflC. The matrix phase, marked I, was Identified to be a
mixture of retained P-phase end martensite. The a-phase ismarked we.o

II

.2

Fig. 3(b) - Electron diffraction pattern taken from the matrix of the water
quenched material showing

A. (1010) lattice point of the [00011 HCP mono axie

B. (101) lattice point of the [1711 DCC none axis
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Fig. 3(c) -Transmission electron micrograph of the materia cooled In
* helium from 899%.

10



.. I I I .. .7. i

.17l

CORONA 5 n

(H.C.) /

EJ

Ius/
10-4* 1

I

i I

.- . 3,

I'
w K 

I

ml. SSITIST /AG.A M

Fi¥g. 4 - Fatigue crack growth rates for alloy as cooled Lu helium from 899oC.

iii
• 11



CORONAS /
'W.Q,

EIE II

INVU

LIS

2 /2

*0 IS


