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I.  INTRODUCTION 

A.  PROPELLING CHARGE PHENOMENOLOGY 

In this paper several aspects of the multidimensional two-phase flow 
in the early portions of the gun interior ballistic cycle are examined. The 
two-phase flow character of ignition and flamespread has been described on 
many occasions; it is briefly recounted here, with reference to Figure 1. 
An igniter stimulus, whose intensity and distribution are system dependent, 
is applied to the propellant, venting hot combustion gases into the bed. 
These gases heat neighboring propellant grains to ignition, and the gases 
from this combustion join those of the igniter to produce a convectively 
driven ignition wave, resulting in flamespread through the charge. The 
packed propellant presents resistance to the flow of these gases, which can 
lead to large pressure gradients within the charge, and perhaps even induce 
substantial movement of the propellant. Especially in charges ignited at 
the base with ullage concentrated at the forward end of the charge, 
considerable velocities can be attained by the solid phase. Stagnation at 
the projectile base then may be accompanied by high local pressurization, 
leading to the formulation of traveling axial pressure waves, and perhaps 
even grain fracture. 

r IGNITER r PROJECTILE 

m^m!^^ 
('^^^D^^^ 

GRANULAR 
PROPELLANT 

Figure 1.  Schematic of Gun Propelling Charge 

Even in this idealized, one-dimensional view of ignition and 
flamespread, it is not difficult to see how the effects of drag offered by a 
packed propellant bed can be mitigated by the introduction of stick 
propellant. The natural channels produced by bundled stick propellant 
drastically increase the permeability of the propellant bed, allowing 
relatively easier passage of igniter and early propellant gases to other 
axial regions of the charge. In response to base ignition, rapid 
flamespread throughout the charge would be expected, since the entire length 
of the charge would be quickly bathed in igniter gases. And since the stick 
propellant offers less drag on igniter and propellant gases, there should 



not be much movement of the propellant itself. The manifestation of these 
phenomena in the past has been in reduced axial pressure waves, rather than 
in direct evidence of the functioning of a stick charge,! 

Some of the multidimensional aspects of the gun interior ballistic 
cycle are perhaps best illustrated with reference to Figures 2 and 3, which 
depict typical examples of bagged Army artillery propelling charges. One 
type, schematically illustrated in Figure 2, consists of a single increment, 
packaged in a bag, and is centercore-ignited. The intended mode of ignition 
for this charge entails a discharge of hot gases from the primer onto a 
basepad, which then burns and serves as an ignition transfer to a pouch (the 
"snake") of black powder contained within the nitrocellulose centercore 
igniter tube. Rapid flame propagation through the snake and centercore, 
with its radial venting of hot gases, should then assure uniform axial 
ignition of the charge. In reality though, the charge is undersized with 
respect to the internal dimensions of the chamber, creating ullage radially, 
in front of the charge, and between the spindle and charge (standoff). This 
allows for a variety of complex flows depending upon the initial loading 
configuration. The centercore tube does not necessarily align with the 
primer output upon loading, reducing the efficiency of ignition transfer 
from primer to centercore. The profile of heat^ and particulate output in 
the vicinity of the basepad and centercore is a complex one, both in space 
and intensity, and the burning basepad may locally ignite propellant grains 
at the rear of the charge, producing a competition between ignition of the 
charge by the centercore or by locally burning propellant at the base of the 
charge. The charge casing, a fabric bag with lead and wear-reducing liners 
attached at various points along its length, is of grossly nonuniform 
strength and permeability. Gases may pass through it at some points more 
easily than at others, and pressure differentials within the bag and betvreen 
the bag and ullage may produce complex movement of propellant, rupture of 
the bag, and the like. 

The multidimensional and physical complexity of Army bagged artillery 
charges is perhaps even more strongly pronounced in a multi-increment 
charge, as shown in Figure 3. This charge consists of several bags of 
propellant tied together, with a basepad serving as the sole ignition 
stimulus. This type of charge is generally even more undersized with 
respect to chamber dimensions than is the single-bag charge, creating more 
radial ullage for venting of early combustion products toward the front of 
the chamber. Parasitic components attached to and embedded within the 
charge may serve to block the passage of igniter and propellant gases. A 
multiple-increment charge may have more than one granulation propellant, and 
the localized ignition and brisant combustion of a fine-web, base-increment 

A. W. Horst and T. C. Minor, "Improved Flow Dynamics in Guns Through the Use 
of Alternative Propellant Grain Geometries," 1980 JANNAF Propulsion Meeting, 
CPIA Publication 315, Vol. I,   pp. 325-351, March 1980. 

2 
^E. B. Fisher,  Continued Investigation of Early Time Propellant  Charge 
Behavior,"   Report No. 6816-I>-1, Calspan Corporation,  Buffalo, NY, June 
1981. 
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Figure  2.     Phenomenology,   Single-Increment,   Bagged Artillery  Charge 
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Figure 3.  Phenomenology, Multiple-Increment, Bagged Artillery Charge 



propellant may induce pressure waves and perhaps even considerable movement 
of relatively massive, entire packages of propellant. Several distinctive 
phenomena associated with this type of charge have been previously 
reported. Igniter gases were seen to flow through the radial ullage, with 
several acoustic oscillations along the chamber. Later, a very intense, 
possible gas-phase combustion was observed at the forward end of the 
chamber, and separation and movement of the forward charge bag at high 
velocity was observed. 

B.  SCOPE OF THE INVESTIGATION 

The results of several studies to investigate some of the multi- 
dimensional and multiregional related aspects of the early interior 
ballistic cycle are presented here. Specifically addressed are flamespread, 
chamber pressurization and solid-phase movement in one-dimensional, stick 
and granular propellant charges. Also described are the results of further 
experiments with multi-increment charges to investigate flow of gases 
through radial ullage, gas-phase combustion, and propellant movement. 
Lastly, a discussion of our first experiments to measure pressure and 
propellant temperature within an Army artillery propelling charge is given. 

II.  EXPERIMENTAL 

A.  APPARATUS 

The apparatus used to conduct the studies described here is shown in 
Figures 4 and 5. The massive mount, constructed of armor plate, accepted 
either plastic chambers (Figure 4) or axially reinforced, filament-wound 
fiberglass chambers (Figure 5). The plastic chambers were commercially 
available, cast acrylic tubing with nominal inner and outer diameters of 165 
mm and 191 mm, respectively. The clear plastic offered much better 
visibility of the events transpiring within than did the fiberglass, but it 
fractured at significantly lower pressures. The pressure limit for these 
tubes was found to be variable from sample to sample and was pressure-rise- 
rate dependent. The fiberglass chambers were manufactured by the Naval 
Surface Weapons Center, Dahlgren, VA, and were wound on a mandrel to the 
interior dimensions of the 155-mm, M199 cannon chamber. The chambers were 
wound in a near-hoop mode, with occasional layers of a fiberglass/epoxy 
fabric sheet for axial strength, to a finished thickness of approximately 3- 
4 mm. After curing, a steel plate bearing Kistler gage ports was attached 
with sufficient fiberglass wraps to hold it in place, and holes were drilled 
from the adapters through the chamber wall. For all the chambers the muzzle 
end of the chamber was closed by a projectile seated in a section of gun 
tube machined to the dimensions of the Ml 99. The breech end of the 
apparatus was closed by an M185-type spindle with centrally aligned 
spithole. As Figure 6 shows, the spindle accepted three Kistler 607C 
piezoelectric pressure transducers, and an array of five additional pressure 
gages could be mounted on the fiberglass chamber sidewall along its axis. 

T. C. Minor, "Characterization of Ignition Systems for Bagged Artillery 
Charges," 17th JANNAF Combustion Meeting, CPIA Publication 329, Vol. II, 
pp. 45-67, November 1980. 
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Figure 4.  155-mm Simulator, Plastic Chamber 

Figure 5.  155-mm Simulator, Fiberglass Chamber 
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Figure 6.  Schematic of 155-min Howitzer Simulator 

A change in the apparatus from earlier investigations was introduction 
of transducers into the propelling charge itself. Provisions were made to 
extend the pressure gage holders inside the chamber, using low-pressure, 0- 
ring seals at the chamber wall. This permitted direct measurement of 
pressure within the propelling charge at any of the positions P4 . . . P8, 
at selectable radial depths within the propelling charge. Propellant grains 
instrumented with thermocouples were placed within the charge, and the 
signal wires brought out through the projectile base. 

Photographic data were recorded with a Hycam 40, high-speed, 16-mm 
camera. For the tests reported here, the data were recorded on Kodak 
Ektachrome 7241 film at a framing rate of approximately 5000 pictures per 
second. A 1-kHz timing signal was placed on the film by electronics 
internal to the camera, and the firing fiducial (time at which the firing 
voltage is applied to the gun) was also recorded on the film to aid in 
correlation of the film data with other data. For some of the tests, a 
mirror was positioned behind the mount to allow simultaneous recording on a 
single frame of events occuring on both sides of the chamber. 

Flash X-rays were used on some of the tests to monitor the movement of 
the solid phase. A total of four, 300-kV X-ray heads was used, two at one 
axial location, separated by approximately twenty degrees (Figure 7), 
and another two at a further axial location, similarly separated, to cover 
the length of the tube. The overlapping images from the two sets of heads 
were recorded on a single sheet of film, yet it was possible to determine 
the X-ray source of each image. One image was created by X-rays triggered 
by movement of the propellant bed, as determined by a break circuit inserted 
into the tube, and the second image was made by the X-ray heads triggered at 
a predetermined time delay after the first. Particular grains in the 
propellant bed were identified by small steel cylinders embedded within 
them. The combination of seeded grains and radiographic images of known 
time separation allowed measurement of an average velocity of the propellant 
bed. The radiographs were recorded on Kodak XR-5 film using Dupont 
Lightning Plus intensifier screens. The film was protected from the blast 
of the disposable chamber by a wooden cassette, with the forward face 
composed of layers of air spaces and sacrificial wooden plates. 

12 



Figure 7 depicts the system for experiment control, data acquisition, 
and data reduction. The Ballistic Data Acquisition System (BALDAS) 
performed these tasks, driven by a PDF 11/45 minicomputer. By starting a 
programmed sequence timer, BALDAS controlled the firing of the high-speed 
camera and enabled an X-ray trigger circuit. At the appropriate time, 
BALDAS exercised an in-line, five-step, calibration for each data channel, 
then fired the cannon and acquired and digitized analog data through a 16- 
channel, 10-bit, 24-K word analog-to-digital converter. At the same time, a 
backup analog record was made on a 14-channel FM tape recorder. BALDAS- 
resident digital counters recorded the time of the firing fiducial and other 
events, such as X-ray trigger pulses. After the data were acquired, BALDAS 
calibrated the data via a second-order, least-squares fit to the calibration 
staircase, and then reduced the data, through suitably introduced gage 
constants. 

B. CHARGE DESIGN 

A schematic of the one-dimensional, M30A1 propelling charges is shown 
in Figure 8. The charges were made to full-chamber diameter and loaded in 
an aluminum screen bag, to allow unobstructed visualization of the flame 
within the charge. The charges were ignited with 142 g of Class 1 black 
powder. The black powder basepad was spread out as uniformly as possible 
over the base of the charge in an attempt to produce a planar ignition 
stimulus. The granular charge was made from propellant lot RAD-79E-069960, 
and had a mass of 15.30 kg. The propellant cylinders were seven-perforated, 
with a length of 24.3 mm and an outer diameter of 10.5 mm. The stick charge 
was made from lot RAD-PE-480-55, and had a mass of 17.23 kg. These single- 
perforation,  unslotted sticks had a length of 737 mm and an outer diameter 

BAIDAS 

EXPERIMENT 
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DATA   ACQUISITION 

DATA   REDUCTION 

X-RAY 
CASSETTE 

Ll 

X-RAY 
TRIGGER 
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HIGH SPEED 
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Figure  7.     Instrumentation,   Experiment  Control,   and Data Acquisition  for 
155-mm Howitzer  Simulator. 
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Figure 8.  Charge Schematic, One-Dimensional Charge Tests 

of 7.3 mm. The finished length of the charges was approximately 750 mm, 
which left some axial ullage between the forward end of the charge and the 
projectile base. This ullage was employed to allow some movement of the 
charge before the X-ray trigger circuit was activated. As described 
earlier, several seeded grains were placed throughout the granular charge to 
assist in interpreting the flash radiographs. 

A schematic of the multizone charges fired in these tests is shown in 
Figure 9. This charge, based on the 155-mm, XM211, development of which has 
been terminated, is identical to that fired in an earlier study that showed 
separation and acceleration of the forward charge increment, and possible 
gas-phase combustion of igniter and pyrolized propellant products at the 
forward end of the chamber. Only Zone 5 charges were fired in this study. 
The base increment. Zone 3, consisted of 1.67 kg of 0.33-mm, single- 
perforation. Ml propellant. Zones 4 and 5 contained, respectively, 0.79 and 
1.45 kg of 0.97-mm, Ml, seven-perforation propellant.  The baseline charge 

Ml, single per£ seven per£ 

BASE 
IGNITER PAD 

CB1 

dimensions in inches 

Figure 9.  Charge Schematic, Multi-Zone Charge Tests 
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was ignited with an 85-g basepad of Clean Burning Igniter (CBI). Another 
baseline charge was fabricated, to be fired in a chamber purged with 
nitrogen, in order to assess the effect of available oxygen on the 
combustion. To investigate the effect of igniter composition on early gas- 
phase combustion, a second charge with an 85-g basepad of Class 5 black 
powder was fabricated. 

A photograph of the 155-mm, M203 charge used to investigate propellant 
grain temperatures within the charge and pressures within and without the 
charge is shown in Figure 10. Figure 11 is a schematic depicting 
modifications to the charge for the experiments. Two charges were made, one 
to monitor the pressure inside the charge in the region where the casing 
consisted of only fabric, and one in the region surrounded by fabric, lead 
foil, and wear-reducing liner. A pouch, 38 mm in diameter and 32 mm in 
depth, and in each case made of the casing materials of the region, was sewn 
into the bag sidewall to allow introduction of the gage holder into the 
charge. A hole was cut in the casing material at the bottom of the pouch to 
permit the pressure gage to be placed directly inside the propellant bed. 
Four thermocouple-instrumented grains were placed in each charge. The 
locations of pressure transducers and thermocouples in each of the two 
charges are given in Figure 12. - 

Figure 13 portrays a thermocouple-instrumented propellant grain. The 
thermocouple, a butt-welded, 0.005-mm thick chromel-alumel junction, was 
attached with acetone to a flat surface of a live M30A1 propellant grain, 
from which the graphite coating had been removed. Care was taken that the 
junction was not placed over a perforation. The thermocouple leads were 
glued to the side of the grain, again with acetone, and were attached to 
fine copper wires at the base of the grain. The copper-alumel and copper- 
chromel junctions were protected with a thermal jacket of fiberglass and 
aluminum foil. A heat source that produced a response of the thermocouple 
and ignited the propellant grain produced only an 80-raicrovolt (2°C) 
response when directed at the protected area. 

III.  RESULTS AND DISCUSSION 

A.  ONE-DIMENSIONAL CHARGE TESTS 

The one-dimensional, full-bore charges were fired in fiberglass 
chambers. There was no charge standoff, and M82 primers were used to 
initiate the charges. The charges were conditioned to 21°C before firing. 
Figures 14 and 15 present, respectively, the chamber pressures from the one- 
dimensional, M30A1, granular and unslotted-stick charges. Figures 16 and 17 
display portions of the flamespread data from these same tests. The key to 
the pressure traces can be obtained from Figure 6; each gage was separated 
from its neighbor by 165 mm. The times are referenced to the instant at 
which the firing voltage was applied to the cannon. In the photographs, the 
breech is at the bottom and the projectile at the top. 

The progression of the pressure front through the packed granular 
propellant bed is clearly seen in Figure 14. The tube fractured before any 
wave reflected by the projectile base passed any of the sidewall gage 
positions. The first discernible luminosity at the spindle was not seen 
until approximately  7.2 ms after application of the  firing voltage, and 
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Figure 11.  Charge Schematic, Instrumented M203 Propelling Charges 
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Figure 12.  Locations of Pressure and Temperature Transducers in M203 
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Figure 13.  Thermocouple-Instrumented M30A1 Propellant Grain 

though the base area continued to burn after this time, there was no obvious 
movement of the flamefront Into the propellant bed until approximately 13.6 
ms. The record of the flamespread through the charge was difficult to read, 
due to the lack of a well-defined front, but the forward-most reaches of the 
flame could be located at several later times. 

The ease with which Igniter gases and the products of early propellant 
combustion pass through the stick propellant charge is Illustrated in both 
Figure 15 and Figure 17. The delay between pressurization of the breech and 
forward ends of the case is substantially less with the stick charge than 
with the granular. The evidence is even more striking in the flamespread 
photographs, displayed in Figure 17. First light from the base region of 
the charge was seen at 6.2 ms after application of the firing voltage to the 
cannon. The base region continued to burn, and at 8.0 ms there was 
considerable luminosity only at the base, with light nowhere else within the 
chamber. At 8.4 ms, faint luminosity was seen at the forward end of the 
chamber; it became more Intense by 8.6 ms, due to stagnation of Igniter 
gases and early combustion products at the projectile base. Before 9.0 ms, 
no luminosity was seen along the length of the charge; at this time flame 
appeared throughout the chamber, outlining the propellant sticks. The 
luminosity continued to Increase uniformly throughout the charge until the 
chamber fractured at 9.8 ms. 

18 
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Flash X-rays were used to monitor movement of the solid and granular 
stick propellants. The average velocity of the granular propellant before 
impact on the projectile base was on the order of 60 m/s. While the X-rays 
recorded no movement of the stick propellant up to a base pressure of 7 MPa, 
a witness plate attached to the projectile base showed that some of the 
grains from the center of the charge impacted the projectile. 

B.   MULTIZONE CHARGE TESTS _ I ■ 

Each of the three niultizone charges was fired in an acrylic chamber 
with a charge standoff of 25 mm. Portions of the high-speed photography 
data are displayed in Figure 18 and pressure-time records are shown in 
Figure 19 for each of the following shots: 

Multizone Round  1 -   Zone 5 charge,  85-g CBI basepad,  ambient 
chamber atomsphere 

Multizone Round 2  -   Zone 5 charge, 85-g Class 5 black powder 
basepad, ambient chamber atmosphere 

Multizone Round 3  -   Zone 5 charge, 85-g CBI basepad, nitrogen 
chamber atmosphere. 

The results from Round 1 mostly reproduced those reported earlier.^ 
After initiation by the primer, the basepad began to burn. Concurrent with 
this combustion were several acoustic oscillations of a small luminous front 
in the radial ullage. As the cycle proceeded, there was a very strong 
luminosity at the forward end of the chamber before any substantial burning 
of the base region of the charge proper. Again, this phenomenon was 
probably due to gas-phase combustion of products pyrolized from the igniter 
and propellant early in the cycle. The charge proper then began to burn, 
and the plastic tube fractured. Though this was a repeat of tests we 
reported earlier, and to a large degree reproduced the earlier results, it 
is important to note one substantial difference. The forward. Zone 5 
increment detached from the package and was propelled toward the projectile 
at a velocity of about 150 m/s in the earlier test. No such separation and 
movement was noted here. 

.. 
Round 2 displayed the same very early behavior as seen in Round 1, with 

the oscillation of the primer pulse in the ullage. There was some 
combustion in the forward area of the chamber prior to the obvious burning 
of the rear of the charge, but the luminous intensity was not nearly as 
great. Round 3, a repeat of the baseline charge with a nitrogen atmosphere, 
was markedly different from Round 1. The primer pulse and its oscillations 
were not nearly as pronounced as with the baseline case, and there was almost 
a total lack of any combustion in the forward portion of the chamber until 
the rear of the charge proper began to burn. As with the previous rounds, 
the charge did not move measurably. 

A great deal of the difference in the luminous intensity between Round 
1 and Round 2 can probably be attributed to the difference in the flame 
temperatures of CBI and black powder. Yet other factors could combine to 
produce the same result.  The output from CBI is clean and gaseous, while 
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that from black powder Is much dirtier with a substantial amount of 
particulate. These black powder products are optically dense, so that much 
of the luminous output is prevented from escaping the chamber. In addition, 
the large amount of heat-absorbing surface area within the chamber might 
tend to cool the lower-temperature black powder gases to less luminosity 
more quickly than the hotter CBI gases. The oxygen in a chamber filled with 
propellant has no real significance in high-pressure combustion since the 
small amount available is consumed rapidly. A comparison of the results of 
Rounds 1 and 3 demonstrates, however, the significance of the oxygen at low 
pressures (<2MPa). In place of the very intense gas-phase burning of Round 
1, there was essentially no early gas-phase combustion in Round 3. 

C.  M203 CHARGE TESTS 

The results of the multidimensional, or perhaps more correct, multi- 
regional, tests with M203 Propelling Charges are presented in Figures 20- 
25. The charges were fired in the 165-mm diameter cast acrylic chambers 
with a standoff of 25 mm. The charges were supported in the chamber to make 
the loading configuration axisymmetric, and since the average diameter of 
the charges was approximately 145 mm, there was a radial distance of about 
10 mm between the chamber wall and charge. The charges were fired at an 
ambient temperature of about 27°C.  They were initiated with M82 primers. 

Figure 20 presents a comparison of pressure measured in the ullage with 
that recorded inside the propellant bed in the region where the charge 
casing is solely fabric. At this scale, the pressure traces essentially 
overlay one another; an examination of the digital records of the event at 
several points shows no difference greater than 0.15 MPa until the plastic 
tube failed at 4.5 MPa, with the pressure in the ullage being slightly 
higher than that within the bed. Whether this measured difference is 
experimentally significant is questionable, given the noise of the traces and 
the lack of an absolute, side-by-side calibration of the gages. The lesson 
here is that the bag fabric and radial porosity discontinuity do not support 
large pressure differences in this pressure regime. It should be noted that 
calculations with a two-phase flow, two-dimensional axisymmetric interior 
ballistics code have shown no significant pressure difference between these 
two regions. '^ 

Figure 21 depicts the temperatures measured at 25 mm from the base of 
the charge at two radial locations, and Figure 22 shows temperatures 
measured at the two radial positions at a distance of 203 mm from the 
base. As Figure 12 illustrates, these sensors are within the region of 
fabric only. 

4 
P. S. Gough,  "Two-Dimensional Model of the Interior Ballistics of Bag 
Charges," 18th JANNAF Combustion Meeting, CPIA Publication 347, Vol. II,  pp. 
193-199, October 1981. 

^A. W. Horst, F. W. Robbins and P. S. Gough, "A Two-Dimensional, Two-Phase 
Flow Simulation of Ignition, Flamespread, and Pressure-Wave Phenomena in the 
155-mm Howitzer," 18th JANNAF Combustion Meeting, CPIA Publication 347, Vol. 
II, pp. 201-215, October 1981. 
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The thermocouple toward the center of the charge, T2, responded about 8 ms 
sooner than did that located at the charge periphery. Presumably, this 
difference was due to the output of the basepad impinging on T2 but not Tl, 
since the basepad does not cover the entire rear face of the charge. There 
was a marked change in slope of T2 at a temperature change of approximately 
135°C, which may indicate combustion of the grain. Figure 22 displays the 
temperature records axially farther into the charge. While there was some 
early heating of the propellant at 20-30 ms into the cycle, significant 
response on T3 and T4 was not seen until 80-90 ms . This delay was probably 
due to the length of time it took for the centercore to function. The usual 
Ignition delay time for this charge lot is on the order of 40-50 ms, and 
Indeed, we previously reported the detailed functioning of each component 
in the igniter train as consistent with this time. The somewhat extended 
ignition delay is difficult to understand. It should be pointed out, 
though, that ignition delays on the order of 80-90 ms for M203 charges are 
not rare. That substantial response was seen on the T3 trace before the T4 
record is not surprising, since the T3 gage was on the fabric wall and was 
subjected to heating from gases in the ullage before the centercore 
functioned, as is probably reflected in the T4 response. 

Figure 23 compares the pressure measured in the ullage with that 
measured in the propellant bed at a location surrounded by fabric, lead and 
wear-reducing liners. The responses were even more nearly Identical here; 
an examination of the digital record shows no disagreement of more than 0.10 
MPa until the chamber failed at about 7 MPa. Intuitively, this is an even 
more surprising result than that obtained with M203 Round 1. One might 
perhaps expect the parasltics surrounding the charge to induce a pressure 
gradient between the bed and the ullage. Again, two-phase flow interior 
ballistic calculations corroborate this result. ' In this pressure 
regime, the cooler initial gases are displaced from the area of burning 
propellant by the hotter combustion gases, so that while a gas-temperature 
gradient is formed between the two regions, the pressures in these regions 
rise at the same rate. 

Figure 24 displays the measured propellant grain surface temperatures 
near the base of the charge, and Figure 25 shows temperatures much farther 
forward (381 mm from the base). As before, we note a response on T2 first, 
but there was also a very fast response on Tl, with a delay between the two 
of only about 3 ms . The vagaries of the functioning of the charge supplied 
sufficient hot gases in the ullage in this region to produce a substantial 
heat flux to this grain. We note in Figure 25 that there was again a 
significant delay before response of the downstream thermocouples, and the 
previous comments on the magnitude of the delay apply here. There is one 
significant difference here, however. Previously the gage on the fabric 
periphery responded before the more centrally located thermocouple, but in 
this case there was a response of the inner thermocouple before that on the 
periphery. This should not be surprising since the T3 thermocouple is 
protected from hot gases in the ullage by the parasitic components 
surrounding the charge. 
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IV.  CONCLUSIONS 

In this paper we have presented several aspects of the multi- 
dimensional, multiregional nature of the interior ballistic cycle. 
Summarized, they are: 

a. The clear superiority of stick propellant compared to granular 
propellant in permitting passage of igniter and early propellant combustion 
gases through the charge, thus leading to more uniform charge ignition, was 
demonstrated. It was also shown that the solid-phase movement was 
considerably more pronounced with the granular propellant, though there was 
evidence that the stick propellant did move. 

b. Major effects of igniter material and oxygen on low-pressure, gas- 
phase combustion were graphically portrayed. 

c. The separation of a forward increment from a multizone charge, and 
propulsion of that package toward the projectile, were found to be 
variable. Such motion was not seen in these tests, though it was observed 
previously with similar charges. 

d. No significant differences (greater than 0.10 - 0.15 MPa) were 
found between the pressures inside the packed bed of axlsymmetrically loaded 
M203-type charges and those in the ullage surrounding the charges. 

e. The dependence of propellant heating on location within an 
axlsymmetrically loaded M203-type propelling charge was shown, and the 
effect of surrounding charge parasitic components was noted. 

The advent of multidimensional, two-phase flow models requires more 
well-instrumented firings to obtain data of the type discussed here, 
particularly that developed with the M203 charge. Future work at the BRL 
will concentrate on measurements of flamespread, radial and axial pressure 
dependence, and solid-phase dynamics in specially built axisjnimietric 
propelling charges. 
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