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Significance points for some tests of uniformity
on the sphere

J. Keilson, D. Petrondas, U. Sumita, J. Wellner

Abstract

VBeran (1968) and Gin6 (1975) have proposed several omnibus tests

for uniformity on the unit sphere in three dimensional Euclidean space.

* - hile several authors have contributed to providing approximate per-

centage points for the limiting distributions, no tables of the limit-

. ing distributions, percentage points thereof, or finite sample dis-

tributions or percentage points have been available. In this paper

-wefill this gap by:

(1) finding the exact distributions of the statistics of

Beran and Gin6 for n = 2;

(2) presenting some percentage points for selected small and

moderate sample sizes obtained by Monte-Carlo methods;

(3) evaluating numerically the cumulative distribution func-

tions and significance points of the limiting distribu-

tions via the Laguerre transform method, (Keilson and

Nunn (1979), Keilson, Nunn and Sumita (1981), and

Sumita (1981)).
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§1. Introduction

*... Beran (1968) and Gind (1975) have proposed several omnibus tests

for uniformity on the unit sphere S = (x E R lxi = 1) in three-

dimensional Euclidean space. These tests are consistent against all alter-

natives and are locally most powerful for specific alternatives. Beran and

GinC have shown that the limiting distributions of these statistics, under

the null hypothesis of uniformity, are those of weighted sums of independent

Chi-square variables. Mhile Prentice (1975) has applied the methods of

Zolotarev (1961) and Hoeffding (1964) to provide approximate percentage

points for the limiting distributions, no tables of the limiting distribu-

tions, percentage points thereof, or finite sample distributions or per-

centage points have been available.

Our purpose here is to fill this gap by:

(1) finding the exact distributions of the statistics of Beran and

Gin6 for n = 2;

(2) presenting some percentage points for selected small and moderate

sample si:es obtained by Monte-Carlo methods;

(3) using the Laguerre transform method - Keilson and Nunn (1979),

Keilson, Nunn and Sumita (1981), and Sumita (1981) to compute the cumula-

tive distribution functions and significance points of the limiting distri-

butions.

In Section 2, we summarize the result on the limiting distributions due

to Beran and Gin6 and give the exact distributions for n = 2. Section 3 con-

tains the Monte-Carlo results for finite sample sizes and description of

the methods used. We discuss, in Section 4, the numerical procedure for
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evaluating the limiting distributions via the Laguerre transform method.

An application is given in Section 5 where we test uniformity of orienta-

tion of dendritic fields in the retinas of cats subject to controlled

visual environments. The numerical results are summarized in Section 6

in tables and graphs.

r.--J
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2. The statistics: limiting distributions and exact distributions for
n = 2

Let X1 ... ,Xn be independent and identically distributed unit vectors in

R3 with distribution v (so v(S) = 1, where S = {x e : ixi = l)). Let

0.. - X.X. arc cos(Xi.X j) = the angle between X. and X. for ij = 1,2 .... n.

For testing the null hypothesis that v is the uniform distribution on

S, Beran (1968) and Gin6 (1975) have suggested the statistics

Sodd - - [ i - (2/v)e. } (2.1)
,..n i-- j

i=l j=l

"ee -.ljl J(22

i:.. _= Odd even (2.3)
n n n

Gine proposes yeven a1 finds that yodd is simply Beran's form of Aine's sta-

n nOdd odd
tistic: Y = 4T (Beran, 1968). It is also known that Y odd= 4A

n n n .,n

(Prentice, 1978) and Y even G (Prentice).
n 2,n

Let {Z.} i. be independent Chi-square random variables with 2j+l degrees
.2 2

of freedom (so Z2k-l X4k-l' Z2 k~ X4kl)" Set

2 -2[( 2
a k-1 (2k-i) [) A! (2.4)

2 -1 -i 1 2 (2.5)

ak = (2k-l)- (2k+2) [( k!] (2.5)
b'"k

1 1 1
where ()k = (-* 1) .... -+ k-l) and define

dd
Y k=1 a 2k-1 2k-1 (2.6)

.even = _ a2kZ2k (2.7)

k=l
I.
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- .odd yeven (2.8)

Theorem I (Gin6): If v is the uniform distribution on S, then

,rn P[Yodd < y] = p[yodd < An

lim p[yeven < A = Plyeven < A
nn-co

and lir PlY < y] P lY -5 y]  for all y E R

n• ..- n--o

Prentice (1978) uses the methods of Zolotarev (1961) and Hoeffding (1964)

to provide approximate percentage points for these limiting distributions.

We will compute the distributions with precision via the Laguerre transform

method [Keilson and Nunn (1979), Keilson, Nunn and Sumita (1981), and

Sumita (1981)] in Section 4 and present tables and graphs in Section 6.

We now consider the distributions of Yodd Yeven and Y for n = 2.
n n n

Theorem 2: If v is the uniform distribution on S, then

p[yodd < 1 cos[-(y-2)]), O y 2
2

p~yeven < y] cos{arc s (n[.(1-y)]} 1 5

PlY 2 
- y] = "1 + cos[g 1 (1(3-y))]} , 0 5 y 5 3

where g(t) = t + sint, 0 < t 5 71, and g denotes the inverse of g.

Proof: First note that under uniformity 
P( 12 < y] = (47)

- I f sin2d-d- =

• 0 0
1 odd 1 00". -( - cosy), 0 5 y - r. Then, writing Ydd'-2+ 1 + (1 ( 7b 12 2 even 11 1 1 2 , 2

( -- 8 )} = 2 - (-)1 Y = -{.++ (I - sin 6) + -sin )
121 Y!1' 2 2 2 21!1 2 i 21

(2)sin el2' and Y = 3 - )( 6 12 + sin 812), the stated distributions

are easily obtained by straightforward computation.I

For future reference, we record some moments in the following Proposi-

tion:
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Proposition 3. Under uniformity we have

E(Eodd( = E dd =
n

..even E(yeven) 1.E(Y n  ) -=(e~ =
n2

3
E(Yn) n E(Y) :

while

odd 1 16 n- 16 oddVar )n ( 1)(2 _ ) -> (2 - : .37886 ... : Var[Y I

e v en )  16 1 a- 6 1 evenVar(Yn ) (- - 2 .04038 .. VartY e n

n n3-

and

ra( = 1 3 32 n-- c3  32
n 2 )->rS- 2 _) : .41924... = Var[Y]

Furthermore, the third and fourth cumulants of Yodd and Yeven are given by

K (Y ) ; .375219... , K4 (Y 
d ) .56252...

K3(Yeven : .0098016... K (yeven)  .00366374...

Proof:

The finite sample means and variances are easily obtained by elemen-

tary methods upon noting that and are independent for j x j'; the
¢.j

asymptotic means and variances follow immediately by letting n - . The

cumulants of Yodd and yeven are easily computed using the following easily
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derived formula for the mth cumulant K of 2FZ "
Km = 2  Mn- 1)! f..$'. []j-l -

Ji

4-
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§3. Monte-Carlo simulations

In our simulations, a function subprogram called RAND (University

S-" of Rochester file #311.7"500, Computer Center) and the IBN/360 computer

-.- are used to generate uniformly distributed random numbers. The method

of Marsaglia (1972) is then employed to generate points from a distribu-

tion on the unit 3-sphere. Using n such random points, the statistics

yodd Yeven and Y defined in Section 2 are computed. With Monte-Carlo
n n n

samples of size 5000 for n = 100, and 20000 for n = 5, 10, 20 and

40, the percent points of the above statistics are estimated for the

significance levels a = .20, .10, .05, .025, .01 and .001. Those

emr' ical finite sample percentage points are further smoothed in the

following manner. For each level a and sample size n, let a smooth func-

tion Y be defined by
a ,n

4 a + b 1 2 (3.1)
Y =a +-(a I -a +a,n a, n2  a,- a, 0 znn (1n n

Here Y is the estimated Y value for each n at level a. a and a
Her ,n a,2 a,

are the Y values at level a for n = 2 and n = , respectively, a isa,2

found from Theorem 2, and a from the Laguerre transform method to be

described in Section 4. b is the estimated slope obtained from the

original Monte-Carlo results via the straightforward linear regression.

It should be noted that the smooth function (3.1) coincides with the known

'4 values of Y when n = 2 or n =

The estimated smoothed percentage points of the three statistics are

presented in Table 6.1 of Section 6.
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§4. Evaluation of the limiting distributions via the Laguerre transform

We have seen in Section 2 that Beran's and Gind's limiting statistics

under the null hypothesis of uniformity are infinite sums of independent
- oddee

and scaled Chi-square variates, i.e., yeven and Y as given in

(2.6), (2.7) and (2.8). In this section, we discuss numerical evaluation

of yodd y even and Y and propose a Laguerre transform approach to be

described.

It is natural to decompose the infinite sum Y = Z a-Z. in (2.8)
j=l 3

into two parts, the sum of the first N variates and the remainder, i.e.,

Y=2 +2v 2

N' N co a+Z. a Z~ j (4.1)
N ' j=l N j=NI 3

Correspondingly, let

yodd Sodd v odd yeven veven V even (4.2)

N N N N

odd odd
where S and VN  are the sums of odd index terms of SN and VN, respec-

.even and "even

tively. The variates S V are defined similarly for even index
N N

terms. SN is the finite sum of independent scaled Chi-square variates and

such linear combinations may be regarded as positive-definite quadratic

forms in normal variables. Many papers have been published on the distri-

bution of such quadratic forms, and the reader is referred to Johnson and

Kotz (1970, Ch. 29) for a comprehensive survey of the literature. An

. excellent approach to the numerical evaluation of such distributions is

that of Johnson, Kotz and Boyd (1967). They expand the distribution func-

tion in a series of generalized Laguerre functions and evaluate it effi-

4ciently by taking advantage of the recurrence relation of the Laguerre

functions. When this procedure is applied directly to the distribution of

:I
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SN, however, one encounters numerical difficulty. The coefficients

a- decreases rapidly and the distributions of aZ. become very concen-
s1 Jo

""." trated, resulting in quite slow convergence of the corresponding

I Laguerre series. Our procedure restructures the method of Johnson,

Kot: and Boyd and overcomes this numerical difficulty.

The Laguerre transform method for convolving functions has been

Uintroduced by Keilson and Nunn (1979), Keilson, Nunn and Sumita (1981),

and further studied by Sumita (1981). The method has advantages of

accuracy and speed which make it an attractive candidate for problems

of this type. The Laguerre transform method has peculiarities and

limitations, however, which require careful refinement for particular

contexts, such as that here. The reader is referred to three basic

papers for the underlying theory. A brief summary is given in Appendix

A for the convenience of the reader. Our basic strategy is to approxi-

mate Yodd and yeven by

Sodd* =sodd + vodd* y Yeven* = seven + Veven* (4.3)
N N N N NN

where Vod d * and V v en * are the Gamma variates having the same first two

momnt o ~odd an evenmoments of VIN and \N respectively. Correspondingly, Y is approxi-

mated by

Y Yodd* yeven* *(4.4)

N N N N N

In the subsections to follow, the Laguerre transform procedure is des-

odd* even* a
cribed for evaluating the distribution of YN ' N and Y"N The
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validity of the results is also examined.

(A) The Laguerre sharp coefficients of the Gamma variate r(a, 2 )

Let r(a, 2 ), B, > 0, be the Gamma variate with p.d.f.
1

1 a- 1 2a
g(x) x e , 0 x < (4.5)i..i:r (a)(28

It is clear that the variates a belong to this family with a = +

and B -a-. Hence the Laguerre sharp coefficients (gndo of g(x) pro-

vides a basic tool for the procedure. From the Laplace transform

y(s)= f e SXg(x)dx = (1 + 2 s) - a and the identity T# (u)# n
0 n~n=O

L " -), those coefficients are found by (cf. Sumita (1981), Section

6.2)

n
n = (1+)a b c (4.6),.m=- n-in m"'.-. m=O

where

n

b -- ) , n > 1, b 1
r= r-

(4.7)
n"..= r -gn 1-a

c , -, n (1 - -a n > 1 c = 1n 1+6 r=- r 0~r=l

The accuracy and efficiency of the Laguerre transform method depend

heavily on one's ability to represent the functions present with a sequence

of Laguerre coefficients of reasonable length (say, at most around 500

coefficients to attain 5 digits accuracy). As studied theoretically in

* Keilson, Nunn and Sumita (1981) and Sumita (1981), the Laguerre transform

method, when applied in a straightforward manner, cannot tolerate functions

at-
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too closely concentrated at zero or functions too great in extent.

For the Gamma variate, this point can be observed explicitly in (4.6)

and (4.7). When a is extremely large, b and c become so large in|n n

absolute value that the computer may not tolerate them. The other

*" numerical difficulty arises when P is extremely small or large. In

this case, the ratio 1 becomes very close to 1, and one would

expect (cn) to have a long tail. This, in turn, implies a long tail

of g. Fortunately, these numerical difficulties can be avoided by

taking advantage of the divisibility of the Gamma variates and employ-

ing scaling. In brief, the first difficulty can be solved through the

identity y(s) [y (s)] where M > 0 and y,1(s) (1 + 26s) corre-

sponding to tne Gamma variate r(a/M, 2B). By an appropriate choice of

positive integer N1, the Laguerre sharp coefficients of r(a/M, 2S) are

obtained with reasonable length. We then convolve them M times on the

lattice to recover the Laguerre sharp coefficients of the original

Gamma variate r(a, 2S). For the second numerical difficulty, we replace

. by ce so that the ratio + becomes well below 1. Then (cn) in

(4.7) decreases rapidly in absolute value and therefore g decreasesn

rapidly. After the inversion of the Laguerre sharp representation, the

proper scale factor for the probability density function is restored.

odd* even*
(B) Algorithms for finding the sharp coefficients of Yd, y and Y

(1) For a desired small variance of VN J select N for SN and Vy .

Then choose the dividing factor M for VN, and the scale factor c in keeping

with the conditions of (A). The number L of Laguerre coefficients before

truncation will be discussed in (C) below.

11
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1and B c2
(2) Using (4.6) and (4.7) with a = j + 2 d ca., calculate

(g(i) of ca-. for 1 - j - N.

Oti odd# L odd#L
(3) Oa n o of cS by convolving (g(j) for j odd,'"i 3)Obai (N,n 10 nn0

•evens .L even

1 5 - N. Obtain (gN n ) L of cSN similarly.

odd even2oand
(4e) Calculate themeans V and and the variances , and:" 4)Clclae h man VN UVN V

vn2 of V dd and VNen respectively, from (2.6), (2.7) and Proposition

2...od andd. odd2. odd

.3. Using (4.6) and (4.7) with a odd/N, /CF o )2/M and a = c rovN /21VN ,

o-d L odd# L
calculate (h 0"N) By convolving (h (M,N) )N times with

n 0 nO0
isl f dh L o odd* Oeven# L of cVeven* similarly.
"itself, find(h N ,n 

)o of CVNd  Obtain (hN,n )0 N

odd# L odd* odd# L odd# L
(5) Calculate (fN,n )o of cydN by convolving (gN n 10 and (hNn )0

event L even*
Obtain (f of cYN similarly.

o# L * odd# L
(6) Finally, calculate (of cYby convolving (N,n and

. even-" L" tN ,n )0'

Remark

h en one has the Laguerre sharp coefficients (fn) of a p.d.f. f(x)

on (0,-), the inversion of (f) 0 to the values of f(x) and its survival

function F(x) = f f(x)dx can be done in the following manner (cf. Keilson
x

and Nunn(18)

(R1) Calculate (.n(x))0 for 0 i5 x < by

(x) [(2n+l-x)fn (x) nn (x)] n >
n+l n+1 n n -

where t(e) = e

n 00 : n x

4 (R2) Obtain f' f  and calculate f(x) : fn m m n n

co co

.4- it
(R3) Calculate fn -2 Y ( +l)mf and F(x) e n xn

m=0 n++m n=O
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We note that the Laguerre transform bypasses numerical integration. We

: also note that the algorithm with (RI), (R2) and (R3) produces FN(x/c)

- where F (x) = PY> x]

(C) Validation of the results

For the calculation of the distributions needed, the scaling factor

is taken to be c = 40. The two values N = 2 and N = 4 are used and the

dividing factor M = 12 is chosen for V and M = 25 for V4. The length
24

of the Laguerre sharp coefficients is L 502, which provides 12 digits

2,accuracy of the p.d.f. of a.Z. for 1 5 j 5 4.
3 .

There are two different factors which introduce numerical errors,

the truncation of the Laguerre sharp coefficients and the Gamma approxi-

mation of V N. In general, it is quite hard to quantify truncation error

of the Laguerre coefficients. (Such error bounding has its counterpart

in Fourier series theory, where error bounding is known to be extremely

difficult.) Theoretical error bounds are available, so far, only for a

* certain family of functions (cf. Keilson and Sumita (1981) and Sumita

(1981)). Extensive numerical evidence, however, suggests that when one

chooses L large enough to attain a given accuracy for the following iden-

tities, then the function values are likely to satisfy the same accuracy.

f(0+) - 7 t (4.8)
nf

n=0

f f(x)dx = 7 (-1) f# (4.9)
0 n=O n

f xf(x)dx 4x (1)n nf# (4.10)

4n

- 0 n:On

,?J
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f x2d(x)dx= 16 x I (-1) 2f (4.11)

0 n=0 n

#,5 0

For N = 4, (fn50 of Y4 provides 10 digits accuracy for all equations

(4.8) through (4.10) and the truncation error seems to be negligible.

Even though we may expect the Gamma approximations for the remainders

... N N ,e and V to introduce little error since Var[VNI drops rapidlyN' N ' N

(e.g., Var[V 4 ] = 6.6 x 10- 4), no analytical justification is available,

and we are forced to take indirect means for testing the validity of the

approximation. To test this validity we note that Y d Y as N The
N

c.d.f.'s of Y2 and Y4 are calculated and compared. The absolute difference

of the two c.d.f.'s is found numerically to be bounded by I x 10 - . For

a second accuracy check of the Gamma approximation, the third and the~,odd . ,even*

fourth cumulants of Yod d * and Y are calculated using the Laguerre
4 4

sharp coefficients and compared with exact values. The higher moments

odd* ,even*
of Y' d  and Y can be found from (4.10), (4.11) and (R3) of (B)

4 4
it t 4 #

with the identity f f- fV n > 1, and f # f The cumulants needed. n n n-l' n 0

are then obtained by

K3 = 1- 3Ul2 +

(4.12)

K 4 114 3 2 4p I ]J ~3 + 12 J2 6
;Ii

where i = E[Xi. The corresponding exact values are given in Proposition

3. The computations are shown in Table 4.1. The absolute difference is

bounded by 3 x 106.

IO



Finally, we study the asymptotic behavior of the survival function

of Y, and compare it with the values computed via the Laguerre transform

method. From the Laplace transform of Y, one finds through asymptotic

analysis that

-2x x
Fy(x) PEY > x] ~ [2o 2+ (.A+ l/  ) (4.13)

0 r2 r

as x - + , where X0 I 4.95221 and X -4.27140. Details are given in

Appendix B. In Figure 4.2, the asymptotic expansion of Fg(x) in (4.13)

is plotted with the survival function of Y4 derived via the Laguerre

transform method. Their absolute difference is found to be bounded by

1 x 10- for x > 3.5.

A similar approximation for the remainder of an infinite sum of

independent variates is employed in Sumita (1979) to evaluate the

multiple convolutions of the Logistic variates. There a direct accuracy

check is possible and accuracy to seven decimal places is attained.

All calculations were carried out on a DECI0 computer, in a time-

sharing mode using APL as the programming language. Relevant formulae

are coded in a straightforward manner, with no attempt made to optimize

the subroutines for speed and accuracy. In spite of this, the results

displayed here were obtained with CPU times in seconds with no evidence

of numerical problems.

,°

0;.
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K Yodd odd
K Y0.3752193777 K4 (Y )0.5625201543

odd* odd *
K3 (Y 4  ) 0.3752164153 K 4 (Y 4  )0.5625200535

Absolute 0.00264Absolute
Difference 0.00264 Difference 000010

even even
K 3(Y ) 0.0098016768 K 4 (Y )0.0036637420

K3 (Yeven* .08078 K( even * 0.0036637195
3 4 ) 009071K 4 ( 4

Absolute Absolhut e
Diferece 0.0000009050 Difrne0.0000000225

Difeddc aDffevence d* vn

Table 4.1. The cuniulants: Y d n vnvs. Y d*and Yevn

egAsymptotic Expansion of F y(X) =P[Y 2! X]
9 .68
0.8- VS

6.75 the Survival Function F y*(x) =P[Y 4 2! X]
0.7'Y 4

0.7 via the Laguerre Transform Method

.6

0.45

9.4F Y*(x)

9.3S- 4

0.3

0.2S'

0.2re4.
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§5. Application

In an experiment to determine the effect of different visual stimuli,

six cats were divided into three groups of two, and each group was subjected

to a different visua' stimulus: horizontally polarized light (H), vertically

polarized light (V), and unpolarized or "normal" light (N). Orientations of

the dendritic fields were then measured at 15 to 16 sites in the retinas of

each of the six cats. The :omplete data set, in coordinates described by

Figure 5.1 below, is given in Appendix C.

The orientation of the dendritic fields of the two cats exposed to

normal light is, presumably, uniform, with no preferred orientation, and

the question is: what is the effect of polarized light? Hence we wish to

test the null hypothesis of uniformity of orientation (on the unit hemisphere)

of the dendritic fields of the H and V groups. To test this hypothesis, we

even 1n n 2 A A
use Gina's statistic Y n n j sin XX) where X i s..'.n n i=l j=l (- si ijwhe X.X. j

the angle between the observations Xi and X. Since Xi is represented by a

vector xi = [cos i sinei, sin i sinei, cosei] with I iI12 = 1, one easily

A Tfinds that cos X.X. = x.x. and therefore
13 -1-J

A 1
(5.1) XiX j = arc cos[ 2 cos(e i - 6){l + cos(o i - j)}

1 cos(e i + O.){l - cos( i - }

. . . . .. .1 J 1
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" -"elevation"

x

figure 5.1

A summary table of the P-values using Table 6.1 is given below.

Cats n Y even P-value Cats n Yeven P-value
n n

H 15 .4508 >> .20 H1 + H2  31 .9181 .040

H 16 .7321 .120
2

V1  16 .4923 >> .20

V 1 + V2  32 .8603 .056

" 2 16 .6239 > .20

N1 15 .6260 > .20

N1 + N2 31 .4421 >> .20

N2  16 .6076 > .20

Table 5.1

As the table shows, the test of uniformity is not significant for any indi-

vidual cat. Grouping H1 and H2 or V1 and V2, however, does give significant

results, whereas grouping N1 and N2 is still not significant.
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§6. Graphs and Tables

In Table 6.1, the estimated smoothed percentage points for various

values of n and significance levels a are presented, using the method

described in Section 3. For n = 2 and n = , the values are taken from

the formulae in Theorem 2 and Table 6.2, respectively. For comparison

* purposes, we record the approximate significance points of Prentice

(1978). The quantiles of the limiting distributions o- YOdd yeven

and Y are given in Table 6.2, where a = P[Y > y], etc. More detailed

values of the distributions are presented in Table 6.3, with step size

0.05. Figure 6.1 and Figure 6.2 show the graphs of the c.d.f. and the

p.d.f. of Yodd yeven and Y. All the values associated with the limit-

ing distributions are calculated by the Laguerre transform method des-

cribed in Section 4.

A
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Table 6.1

Selected Smoothed Percentage Points for Y odd Yeven and Y
n n n

Sample Significance level a
Size Statistics .20 .10 .05 .025 .01 .001

yOdd 1.4097 1.5903 1.7129 1.7978 1.8725 1.9597
n

2 yeven 0.6180 0.7225 0.8012 0.8585 0.9102 0.9715
(Exact) n

Y 1.9004 2.2084 2.4359 2.5991 2.7458 2.9195

-"odd
. 1.4171 1.7788 2.0771 2.3456 2.6704 3.3946
n
yeven 0.6269 0.7345 0.8348 0.9323 1.0598 1.3838

n
Y 1.9132 2.2767 2.6154 2.9387 3.3338 4.3277
n
yOdd 1.4162 1.8063 2.1534 2.4802 2.8914 3.8606
n

10 yeven 0.6353 0.7490 0.8567 0.9619 1.1000 1.4476
n

Y 1.9278 2.3124 2.6803 3.0389 3.4927 4.6366
n
yOdd 1.4151 1.8135 2.1832 2.5385 2.9935 4.0913

20 yeven 0.6405 0.7582 0.8696 0.9777 1.1183 1.4657
n

Yn 1.9372 2.3327 2.7137 3.0866 3.5652 4.7610

Yodd 1.4144 1.8155 2.1959 2.5654 3.0424 4.2060
n

40 yeven 0.6434 0.7634 0.8765 0.9858 1.1270 1.4712
n

Y 1.9423 2.3434 2.7306 3.1098 3.5997 4.8156
n

yOdd 1.4140 1.8161 2.2029 2.5808 3.0712 4.2747
n

100 yeven 0.6452 0.7666 0.8809 0.9908 1.1320 1.4735
n

Y 1.9455 2.3501 2.7409 3.1236 3.6199 4.8460
n
yodd 1.41363 1.81631 2.20727 2.59079 3.09000 4.32040

yeven 0.64643 0.76879 0.88384 0.99413 1.13534 1.47452

Y 1.94776 2.35459 2.74772 3.13268 3.63309 4.86522

Prentice (1978)

(+4) yodd 1.7750 2.1750 3.0500 4.3000

( 16) yereP 0.7625 0.8813 1.1313 1.4680
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I
Table 6.2. The Quantiles of the Limiting Distributions

. a i(OZ, ) "(EYEN) Y

0.999 0,18563 016005 o47887
0.995 0.22343 0.18567 0.55003
0.990 0.24414 0.20184 0.58984
0.975 0.28309 0.22580 0.65944
0.950 0.32650 0.24992 0.73038
0.900 0.39123 0.28234 0.82748
0.850 0.44743 0.30846 0.90397
0.800 0,50073 0.33171 0.97212
0.750 0.55346 0.35351 1.03633
0.700 0.60686 0.37460 1.09897
0.650 0.66181 0.39553 1.16151
0.600 0.71904 0.41674 1.22509
0.550 0.77939 0.43850 1.29091
0.500 0.84376 0.46113 1.35992
0.450 0.91324 0.48501 1.43340
0.400 0.98921 0.51060 1.51289
0.350 1.07352 0.53849 1.60028
0.300 1.16916 0.56940 1.69861
0.250 1.28015 0.60472 1.81215
0.200 1.41363 0.64643 1.94776
0.150 1.58259 0.69823 2.11087
0.100 1.81631 0.76879 2.35459
0.050 2.20727 0.88384 2.74772
0.025 2.59079 0.99413 3.13268
0.010 3.09000 1.13534 3.63309
0.005 3.46337 1.23944 4.00709
0.001 4.32040 1.47452 4.86522

(e.g., P[Y > 0.47887] 0.999)

°°o
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S.Table 6.3. The Cumulative Distribution Functions of yodd yeven and Y

P-0,(X) F-CVEIM() F(X)__ x P'-ODD(N) P.EVKe(X) (34)
- 0.00 0.-0-00 ----000 0.00000 .- ------ --- 0-00 -------

* 0.00 0.00000 0.00000 0.00000 2.50 0.9730 1.00000 0.9299
0.1, 0.00000 0.00000 0.00000 2.60 0.97542 1.00000 0.93.00010 0.00000 0.00000 0 00000 2:65 0:97756 1.00000 0.94051
0.15 0,00005 0.00025 0.00000 2.70 0.97952 1.00000 0.94557
0.20 0.00180 0.00687 0.00000 2.75 0.98131 1.00000 0.95021
0.25 0.01147 0.05008 0.00000 2.U0 0.90295 1.00000 0.95446
0.30 0.03353 0.13223 0.00000 2.6! 0.98444 1.00000 0.95836

" 0.35 0.06670 0.24167 0.00000 2.90 0.9881 1.00000 0.96194
0.40 0.10739 0.36068 0.00006 2.95 0.98706 1.00000 0.96522
045 0.15235 0.47607 0.00040 3.00 0.98820 1.00000 0.96822
0.50 0.19930 0.5BO21 0.00170 3.05 0.98924 1.00000 0.97096
0.55 0.24673 0.66972 0.00500 3.10 0.99019 1.00000 0.97348
0.60 0,29367 0.74401 0.01152 3.15 0.99105 1.00000 0.97578
0.65 0,33945 0.80405 0.02228 3.20 0.99184 1.00000 0.97788
0.70 0.38368 0.85158 0.03792 3.25 0.99257 1.00000 0.97981
0.75 0.42606 0.98U60 0.05860 3.30 0.99323 1.00000 0.98157
0.80 0.46643 0.91703 0.08408 3.35 0.99393 1.00000 0.98319
0.85 0.50471 0.93063 0.11j85 3.40 0.99439 1.00000 0.98465
0.90 0.54085 0.95487 0.14718 3.45 0.99488 1.00000 0.90600
0.95 0.57486 0.96699 0.18331 3.50 0.99533 1.00000 0.97?23
1.00 0.60678 0.97597 0.22144 3.55 0.99575 1.00000 0.9131J35
1.05 0.63665 0.982su 0.26083 3.60 0.99613 1.00000 0.9Y37
1.10 0.66455 0.9U743 0.30003 3.65 0.99647 1.00000 0.99031
1.15 0.69056 0.99095 0.3409t 3.70 0.99679 1.00000 0.99116
1.20 0.71476 0.99351 0.3U043 3.75 0.99707 1.00000 0.99194
1.25 0.73726 0.99536 0.41917 3.80 0.99734 1.00000 0.99266
1.30 0.7t,183 0.99669 0.4t.6/U 3.b5 0.99757 1.00000 0.9V331
1.3 . 0.77748 0.99764 0.49J03 3.Y0 0.99779 1.00000 0.99390
1.40 0.79539 O.99JJ 0.t.2/76 3.95 0.99799 1.00000 0.99444

- -" 1.45 0.81196 0.V9912 0.56085 4.00 0.99817 1.00000 0.99493
1.0 0.82727 0.99916 0.59224 4.05 0.99933 1.00000 0.99138
1.5. 0.84141 0.99941 0.621V1 4.10 0.99848 1.00000 0.99580

- 1.60 0:85445 0:99958 0:64VOS 4.15 0.99662 1.00000 0.99617
1.6W 0.86647 0,99971 0.67609 4.20 0.99874 1.00000 0.99651
1./0 0.87755 0.99Y79 0.70067 4.25 0.99886 1.00000 0.99682
1.. , 0.89774 0.99906 0.72364 4.30 0.99U96 1.00000 0.99711
1.O 0.U9713 0.99990 0.7406 4.3t. 0.99905 1.00000 0.99737
1.!, 0.9076 0.99Y93 0.76501 4.40 0.99914 1.00000 0.99760
1.Y0 0.91369 0.99995 0.78$5S 4.45 0.99922 1.00000 0.99782
191. 0.92097 0.99997 0.90076 4.50 0.99929 1.00000 0.99U01
2.00 0.92767 0.9Y998 0.81671 4.55 0.99935 1.00000 0.99819
.0 0.931 0.99999a 0.93148 4.60 0.99941 1.00000 0.99835

2.10 0.93944 0,99999 0,14514 4.65 0.99946 1.00000 0.99850
2.1]. 0.94461 0.9Y99 0.831777 4.70 0.9V951 1.00000 0.99863
220 0.94935 0.9Y999 0."6942 4.7t) 0.99956 1.00000 0.99876
2.25 0.9:,370 1.00000 0.U11017 4.00 0.99960 1.00000 0.99087
2.30 0.9t./60 1,0000 0 OU.OOU 4,U31. 0.99963 1.00000 0.99U97
2.3t O.961J ,.00000 0.199923 4.90 0.99967 1.00000 0.99906
2.40 0,96467 1.00000 0.90/62 4.95 0.99970 1.00000 0.99915
2.4t, 0.96/72 1.U0000 0.V1535 5.00 0.99972 1.00000 0.99923
2.0 0.97052 1.00000 0.92246

• 7.
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F (x
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Fig. 6.1. The cumulative distribution functions of Y odd Y even and Y
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Fig. 6.2. The probability density functions oYod evnand Y
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APPENDIX A

The Laguerre Transform

The Laguerre polynomials L~ (x), defined by the Rodrigues formula

L(x) 1 Xd fl(f ) fr e of orthonormal polynomials with
ne e!

weighting function w(x) = e-x on (0, -) (see, e.g., Szego (1975)). The

associated Laguerre functions tn(W = e X x) hnpoiea rhnra
n n

basis in L (0, ).For any f(x) e L (0, ),one has the Fourier-Laguerre

expansion

(A.1) f(x) I fne(X W n f f f(x)Zt (x)dx
n=0 0

t tn d ef ± n
Let Tf(u) fu' and Tf(u) f u' (1 u)T Mu. Since t' W~xU -

n=0 n=0 n=0

(l-uj exp{- x(l+u)(1-u) 1 one has, when f(x) is integrable on (0, )

(u) = (-u) f fn = (1-u) I U~ f(x)t (x)dx
n-0 nn=0 0

-f f(x)exp{- x~l+u)(l-u) ljdx ,0 u <i I
0

(A.2) T (u) = 1+u

where 0() f1 eS f(x)dx is the Laplace transform of f(x). Let f(x)*g(x)=
0

f f(x-y)g(y)dy. Since O*Cg (s) 0 WfXOg(s),
0 f
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# # #,.(.A. 3) T u T ( u)= (u)(A.3) Tf~g(U =Tf(U)Tg(U

for functions f(x), g(x) that are both in L (0, ®) and L2 (0, .). From (A.3)

one obtains

n
(A.4) (f*g)n = f

n m=O

The transformation via (A.3) maps functions f(x), g(x) into sequences

(f) and their continuum convolution f(x)*g(x) is mapped into a lattice

convolution and then back onto the continuum via f n f and the repre-
n m

m=O
sentation (A.1). This transformation procedure was introduced originally

in Keilson and Nunn (1980). The Laguerre transform was extended subse-

quently in Keilson, Nunn and Sumita (1981) to handle functions on the full

continuum, and further studied by Sumita (1981).

4



-26-

APPENDIX B

Asymptotic Behavior of P (x) = P(Y > x] as x - +w

In this appendix, we derive the asymptotic expression of Fy(x) as

x +. The Laplace transform of the p.d.f. of Y is given by

:..-.(B.l) ¢y(S) = II ( e--." s ; 0. =

j=l j 2a.

Let

61 o. *j

1l 3/2 j,+"
(5.2) a(s) A- ; A(s)= - .

+ s6 + S.
- "j=2

We note that A(s) is regular for Re(s) > -e2  Let Fy(x) = P[Y > x] an.
e x -( - O)x

define p(w) = L{e F(x)) = f e Fy(x)dx. Then, from (B.1) and (B.2),
0

one has

I -y( - 61) 1 - a(w - el) 1 - A(w - 61)
(B.3) I?(w) = - w - 01 w-

Ww

After a little algebra, one finds, from (B.2), that

CO n-I n-3
(B.4) el + I +

v-1 e n=3

.;.:. I - A(w - e1
On the other hand, x(w - 61) and are regular for Re(w) > 61 =02I. w - e2

with 61 - 02 < 0. Hence, one has the Taylor expansion

n
(B.5) A(w- 61) a ' A nw

n=Q
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1 1 X~ - 01)frRew

From (B.3), (B.4), (B.5) and the regularity of for Re(w) >

e -,, we obtain the asyirptotic expression of dw) near zero, i.e.,

(B.6) )~3/ + C( +0 A 1 ) as w o+

This then implies that (see, e.g., Widder (1946), p. 192)

t - eA 0, 1
(B.7) F(x) [2X 0 + as x +0

where e1 2 is substituted. The constants X and X1 are obtained from
00G

.w- Cl) = : 6. e +) : n "'7)w= n
j=2 j 1el)

f A0  j=2 ~ + )+' Z 4.952213394

(B.8)

1. j = . I  ( r =-4.271400146
j=2 j r=2 r 1

r*j

The asymptotic expression in (B.7) agrees with Zolotarev (1961).
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