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Significance points for some tests of uniformity
on the sphere

J. Keilson, D. Petrondas, U. Sumita, J. Wellner

Abstract
\/ /"'\—\
Beran (1968) and Giné (1975) have proposed several omnibus tests
for uniformity on the unit sphere in three dimensional Euclidean space.
While several authors have contributed to providing approximate per-
centage points for the limiting distributions, no tables of the limit-
ing distributions, percentage points thereof, or finite sample dis-
tributions or percentage points have been available.

. G;’ﬂzr\y .
—we-fill this gap by:

In this paper

(1) finding the exact distributions of the statistics of
Beran and Giné for n = 2;

(2) presenting some percentage points for selected small and
ﬁoderate sample sizes obtained by Monte-Carlo methods;

(3) evaluating numerically the cumulative distribution func-

tions and significance points of the limiting distribu-

tions via the Laguerre transform method, (Keilson and
'.f.‘ -

Nunn (1979), Keilson, Nunn and Sumita (1981), and

"'\-

\
Sumita (1981)).
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§1. Introduction

Beran (1968) and Giné (1975) have proposed several omnibus tests
for uniformity on the unit sphere S = {x ¢ RS: ]§] = 1} in three-
dimensional Euclidean space. These tests are consistent against all alter-
natives and are locally most powerful for specific alternatives. Beran and
Gin¢ have shown that the limiting distributions of these statistics, under
the null hypothesis of uniformity, are those of weighted sums of independent
Chi-square variables. While Prentice (1975) has applied the methods of
Zolotarev (1961) and Hoeffding (1964) to provide approximate percentage
points for the limiting distributions, no tables of the limiting distribu-
tions, percentage points thereof, or finite sample distributions or per-
centage points have been available.

Our purposé here is to fill this gap bv:

(1) finding the exact distributions of the statistics of Beran and

Giné for n = 2;

(2) presenting some percentage points for selected small and moderate
sample sizes obtained by Monte-Carlo methods;

(3) using the Laguerre transform method - Keilson and Nunn (1979),
Keilson, Nunn and Sumita (1981), and Sumita (1981) to compute the cumula-
tive distribution functions and significance points of the limiting distri-
butions.

In Section 2, we summarize the result on the limiting distributions due
to Beran and Giné and give the exact distributions for n = 2, Section 3 con-
tains the ﬁonte-Carlo results for finite sample sizes and description of

the methods used. We discuss, in Section 4, the numerical procedure for
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evaluating the limiting distributions via the Laguerre transform method.
An application is given in Section 5 where we test uniformity of orienta-
tion of dendritic fields in the retinas of cats subject to controlled

visual environments. The numerical results are summarized in Section 6

in tables and graphs.
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§2. The statistics: limiting distributions and exact distributions for
n=2

Let 31"°"5n be independent and identically distributed unit vectors in

R3 with distribution v (so v(S) = 1, where S = {x ¢ R3: |§| = 1}). Let

eij = Zixj = arc cos(§i-§j) = the angle between Ei and §j for i,j = 1,2,...n.
For testing the null hypothesis that v is the uniform distribution on

S, Beran (1968) and Giné (1975) have suggested the statistics

dd . -1 ¢ ¢
° ! 2

Y = n {1 - (2/m)8..} (2.1)
n i=1 j=1 )
n n
yeVer = oot 7Y - @/msin e, ) (2.2)
n . L 2 1)
i=l j=1
- ,odd .even
YOEY e Y . (2.3)
Giné proposes Y;ven and finds that ded is simply Beran's form of Aine's sta-
s s odd . odd
tistic: Yn = 4Tn (Beran, 1968). It is also known that Yn = 4A2,n
(Prentice, 1978) and ngen = G, . (Prentice).
3

Let {Zj};=1 be independent Chi-square random variables with 2j+1 degrees

- L2 Y
of freedom (so £2k-1 xdk-l’ Z2k X4k+l)' Set

%1

T (2k-1)'2[(%9k/k1]2 (2.4)

R i ekt ]

Kt
[ O B A WL LN

ady = -0 e, A’ (2.5)

where (3) = %-(% . 1)....(% + k-1) and define

Yodd - 2

82k-1%2k-1 (2.6)

H~18

k=1

even s 2
Y = kzl aZRZZk , (2.7)
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Y = YO0 ey . (2.8)

Theorem 1 (Giné): If v is the uniform distribution on S, then

F 1im Py <y = P < yy
L N
p.
: lim PSS < y) =AY < y]
n--o
and’ lim P[Yn <y) =P[y<y] for all ye R
n-><

Prentice (1978) uses the methods of Zolotarev (1961) and Hoeffding (1964)
to provide approximate percentage points for these limiting distributions.
We will compute the distributions with precision via the Laguerre transform
method [Keilson and XNunn (1979), Keilson, Nunn and Sumita (1981), and
Sumita (1981)] in Section 4 and present tables and graphs in Section 6.

odd even

We now consider the distributions of Yn , Y and Yn for n = 2,

Theorem 2: If v is the uniform distribution on S, then

PO < y] = M1 + cosBy-2)1} , 0y 2,
P[vaen < y} = cos{arc sin[g{l-y)]} , 1 - % <ys<1,
PIY, < y] = 241 + 1 ZG-yn]y, 05y <3
: 2 £yl =3 cosfg " (5(3-y » 0sy=<3 ,
E{ where g(t) =t + sint, 0 st < 7, and g'1 denotes the inverse of g.
0 2n ¥
F‘ Proof: First note that under uniformity P[e12 <yl = (dﬂ)'1 [ [ sinededs =
x5 ' 0 0
E: %{1 - cosy), 0 sy < n, Then, writing Ygdd = %{1 + 1+ (1 - (2/Me0) ¢
X 2 2 even _ 1,1 1 1 2 . 1 2 .
- (=381 =2 (@85 Yy =3l3r7r (G-gsingp) « (7 -7 sinby)
9 2, . 2 . . . .
| = - — = - —
ES . 1 ‘(t)s1n 612, and Y2 3 (_ﬂ)(e12 + sin 612), the stated distributions
L'l
Y are easily obtained by straightforward computation.[
-
d. For future reference, we record some moments in the following Proposi-
ﬁ! tion:
@
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Proposition 3. Under uniformity we have

odd

E (Y odd
n

) = E(Y299) =1

E(Y:ven) - E(Yeven) - l

)
: 3
E(Y ) = E(Y) = 3
while
var (0% - 1 - D2 - 2D S 2 - 2y = Lss86 .. = var[v*Y)
n n” a
var(ve'M) = (1 - %)(19; Lhymg s %a = .04038... = Var[Y®'®")
30 ° 3n”
and

. 1.,3 32 .n+,3 32
Var(\n) = (1-2G -G - =5 = .41924... = Var[Y]

3 - 3In”

Furthermore, the third and fourth cumulants of YOdd and YV are given by

Yodd odd

KS( ) = .375219... , K, (Y 7) = .56252...

4(

xs(Yeve“) = .0098016... , K4(Yeven) = .00366374...

Proof:

The finite sample means and variances are easily obtained by elemen-
tary methods upon anoting that eij and eij,are independent for j = j'; the

asymptotic means and variances follow immediately by letting n + . The

cumulants of YOdd and YVE" are easily computed using the following easily
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derived formula for the mth cumulant Km of Z

2
B.x. :
j=1 7f;

1

. m-1 y m
Kp = 2 (m-1)! .Z fjsj . 0

j=1




------ St "apad S CER o Sia vt e Ao Ae A ik el it A R AR e
- T e . . A PRI AR AN . .

§3. Monte-Carlo simulations

In our simulations, a function subprogram called RAND (University
of Rochester file #311+7+500, Computer Center) and the IBM/360 computer
are used to generate uniformly distributed random numbers. The method
of Marsaglia (1972) is then employed to generate points from a distribu-
tion on the unit 3-sphere. Using n such random points, the statistics
std, sten and Yn defined in Section 2 are computed. With Monte-Carlo
samples of size 5000 for n = 100, and 20000 for n = 5, 10, 20 and
40, the percent points of the abhove statistics are estimated for the

significance levels a = .20, .10, ,05, .025, .01 and .001. Those

emr‘rical finite sample percentage points are further smoothed in the

i; following manner. For each level o and sample size n, let a smooth func-

tion Y be defined by
a,n

. ’

4 1 2

% \a,n T et T (aa,2 B au,w) * bu,n(ﬁ" =) - ' (3.1)
R n n
-

Here Y is the estimated Y value for each n at level a. a and a

a,n a,2 a,®
are the Y values at level a for n = 2 and n = =, respectively. a, is
»

found from Theorem 2, and I from the Laguerre transform method to be

»

described in Section 4. ba n is the estimated slope obtained from the
H

original Monte-Carlo results via the straightforward linear regression.

1t should be noted that the smooth function (3.1) coincides with the known

b
r

values of Y when n = 2 or n = =,

The estimated smoothed percentage points of the three statistics are

o ¢

s
Bl

presented in Table 6.1 of Section 6.
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§4. FEvaluation of the limiting distributions via the Laguerre transform

We have seen in Section 2 that Beran's and Giné's limiting statistics

under the null hypothesis of uniformity are infinite sums of independent

. . . odd . even . .
and scaled Chi-square variates, i.e., Y , Y and Y as given in

(2.6), (2.7) and (2.8). In this section, we discuss numerical evaluation

of YOdd, Y®V®M and Y and propose a Laguerre transform approach to be
described.
S 2
It is natural to decompose the infinite sum Y = ] a:Z. in (2.8)
j=1
into two parts, the sum of the first N variates and the remainder, i.e.,

N
2
Y=sN+vN;sN=Za.z.;v= o alz, . (4.1)

Correspondingly, let

odd _ odd odd , ,even _ .even even
Y = SN + VN HEE ¢ = SN + VN (4.2)
odd odd

where SV and V respec-

N are the sums of odd index terms of SN and V

N’

tively. The variates SS are defined similarly for even index

ven nd veVen
N

terms. SN is the finite sum of independent scaled Chi-square variates and

such linear combinations may be regarded as positive-definite quadratic

forms in normal variables. Many papers have been published on the distri-

bution of such quadratic forms, and the reader is referred to Johnson and
Kotz (1970, Ch. 29) for a comprehensive survey of the literature. An

i. excellent approach to the numerical evaluation of such distributions is
that of Johnson, Kotz and Boyd (1967). They expand the distribution func-

& tion in a series of generalized Laguerre functions and evaluate it effi-

ciently by taking advantage of the recurrence relation of the Laguerre

functions. When this procedure is applied directly to the distribution of




SN’ however, one encounters numerical difficulty. The coefficients

a? decreases rapidly and the distributions of a?Z. become very concen-
trated, resulting in quite slow convergence of the corresponding
Laguerre series. Our procedure restructures the method of Johnson,
Kotz and Boyd and overcomes this numerical difficulty.

The Laguerre transform method for convolving functions has been
introduced by Keilson and Nunn (1979), Keilson, Nunn and Sumita (1981),
and further studied by Sumita (1981). The method has advantages of
accuracy and speed which make it an attractive candidate for problems
of this type. The Laguerre transform method has peculiarities and
limitations, however, which require careful refinement for particular
contexts, such as that here. The reader is referred to three basic
papers for the underlying theory. A brief summary is given in Appendix

A for the convenience of the reader. Our basic strategy is to approxi-

dd even

mate Y°°¢ and Y by
,odd* _ _odd ,odd* even* _ _even even*
\N = SN + \N ; YN = SN + VN (4.3)
* *
where Ygdd and Viven are the Gamma variates having the same first two
odd even

moments of VV and VV , respectively. Correspondingly, Y is approxi-

mated by
'* 44
= § + \y . (4.4)

In the subsections to follow, the Laguerre transform procedure is des-

odd* Yeven*

*
cribed for evaluating the distribution of YN » Yy and YN. The




3

TS TV ¥
[] : l. t

e "‘Tﬁ D R iair i)
P Pl RN

.‘ BN

- C i i
—— Ltat gt et Sah ik SRl SRS AN AL -

-10-

validity of the results is also examined.

(A) The Laguerre sharp coefficients of the Gamma variate T'(a, 28)

Let T'(a, 28), a,B > 0, be the Gamma variate with p.d.f.

1
- == X
1 ‘a-l e 2B , 0gx <> | (4.5)

g(x) = ———
r(a)(28)®

5
It is clear that the variates agzi belong to this family with o = j +

2 # o
and B8 = a;. Hence the Laguerre sharp coefficients (gn)o of g(x) pro-

o) —

vides a basic tool for the procedure. From the Laplace transform

¥(s) = [ e Sg(x)dx = (1 + 285)" and the identity To(w) = ] g =
0 g n=0
y(%—* %;SJ, those coefficients are found by (cf. Sumita (1981), Section
6.2)
& -Qn
gh T (1+8) z bn-mcm (4.6)
m=0
where
b= 1 (1. ke 21, b, = 1
n= B -7, n2l, b=
r=1
4.7)
1-g.n 1 1-a
" T 0-EH L ne1e e

The accuracy and efficiency of the Laguerre transform method depend
heavily on one's ability to represent the functions present with a sequence
of Laguerre coefficients of reasonable length (say, at most around 500
coefficients to attain 5 digits accuracy). As studied theoretically in
Keilson, Nunn and Sumita (1981) and Sumita (1981), the Laguerre transform

method, when applied in a straightforward manner, cannot tolerate functions

FRUREPUTETIN YUIPUPAE S S WYY TP WH- Gl WO W G epweee . Py
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too closely concentrated at zero or functions too great in extent.
For the Gamma variate, this point can be observed explicitly in (4.6)
. and (4.7). When a is extremely large, bn and c become so large in
- absolute value that the computer may not tolerate them. The other

numerical difficulty arises when B is extremely small or large. 1In

1-8

this case, the ratio 13

becomes very close to 1, and one would

expect (cn) to have a long tail. This, in turn, implies a long tail

of g;. Fortunately, these numerical difficulties can be avoided by
taking advantage of the divisibility of the Gamma variates and employ-
ing scaling. In brief, the first difficulty can be solved through the

identity y(s) = [YM(S)]M

, where M > 0 and Ty(s) = (1 + 285]-(!/M corre-
sponding to tne Gamma variate TI'(a/M, 28). By an appropriate choice of
positive integer M, the Laguerre sharp coefficients of T(a/M, 2B) are

obtained with reasonable length. We then convolve them M times on the

lattice to recover the Laguerre sharp coefficients of the original

Gamma variate T'(a, 28). For the second numerical difficulty, we replace

1-cB
1+cB

. . #
(4.7) decreases rapidly in absolute value and therefore g, decreases

B by cg& so that the ratio

becomes well below 1. Then (cn) in

rapidly. After the inversion of the Laguerre sharp representation, the

proper scale factor for the probability density function is restored.

x"I xf PR A

* * *
(B) Algorithms for finding the sharp coefficients of YOdd YEVENT and v

:
F (1) For a desired small variance of VN’ select N for SN and VN‘

E Then choose the dividing factor M for VN’ and the scale factor c¢ in keeping
ié with the coﬁditions of (A). The number L of Laguerre coefficients before
g truncation will be discussed in (C) below.

N
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(2) Using (4.6) and (4.7) witha = j + > and 8 = ca?, calculate
(g (i £ L £ 2, ¢ 1<3 <N
g1 ) © cajZ, or 1 <3 <N\.

#
(3) Obtain (ggdd#)g of ¢s2% by convolving (e()M)h for § odd,

even¥ even

1 £ i < N. Obtain (gw )O of CSN similarly.

(4) Calculate the means uvgd and usxen and the variances osgd and
osxen“ of VOdd and sten, respectively, from (2.6), (2.7) and Proposition
. . _ ..odd, odd,2 _ ...0dd2 . odd
3. Using (4.6) and (4.7) with a = (u By /o Sy }*/M and 8 = ¢ OyN /21.1\,N s
# # .
calculate (hOdd (M,N) )g. By convolving (hOdd M, N)n)g M times with
itself, find (hOdd ) of v°dd . Obtain (h gvﬁn ) of veven similarly.
odd# L odd* dd L odd# L
(5) Calculate (f )O YN by convolving (gV )0 and (h N,n ]0.
Obtain (fe‘e“ )0 of cyzve“ similarly.
. # L odd#.L
(6) Finally, calculate (fN,n)O of cY by convolving (f N )0
e\en-
CAMISH

Remark

¢ oo
When one has the Laguerre sharp coefficients (fn)O of a p.d.f. f(x)

¥ o
on (0,=), the inversion of (f')o to the values of f(x) and its survival

[ ]

function F(x) = f f(x)dx can be done in the following manner (cf. Keilson
X

and Nunn (1980)).

(R1) Calculate (Zn(x)); for 0 £ x < = by

£n*1(x] = =3 [(2n+1-x)£n(x) - nﬂn_l(x)] , nzl
- where Eo(x) = e X
'.' : . n M
= (R2) Obtain f_ = ] f and calculate f(x) = } £ z (x)
4 n m=0 ™
_}-—* -
L i o © +
. (R3) Calculate f = -2 ] (-1) fn+l+m and F(x) = ] f £ (x)
e m=0 n=0
{
b
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We note that the Laguerre transform bypasses numerical integration. We

A
b._
P
;-
&

_*
also note that the algorithm with (R1), (R2) and (R3) produces Fw(x/c)
where fx(x) = P[YN > x].

(C) Validation of the results

For the calculation of the distributions needed, the scaling factor
is taken to be ¢ = 40. The two values N = 2 and N = 4 are used and the
dividing factor M = 12 is chosen for V; and M = 25 for V;. The length
of the Laguerre sharp coefficients is L = 502, which provides 12 digits
accuracy of the p.d.f. of a‘J?Zj for 1 £ j < 4,

There are two different factors which introduce numerical errors,

the truncation of the Laguerre sharp coefficients and the Gamma approxi-
. mation of VY' In general, it is quite hard to quantify truncation error
E. of the Laguerre coefficients. (Such error bounding has its counterpart

in Fourier series theory, where error bounding is known to be extremely

difficult.} Theoretical error bounds are available, so far, only for a
-certain familyv of functions (cf. Keilson and Sumita (1981) and Sumita
(1981)). Extensive numerical evidence, however, suggests that when one

chooses L large enough to attain a given accuracy for the following iden-

;; tities, then the function values are likely to satisfy the same accuracy.
L~ pst #
- £(0+4) = - ) nf (4.8)
- n=0
i
L © ©
| [ fodx = § (-n"¢" (4.9)
n
0 n=0
. [ xfdx = ax [ -D"nfl (4.10)
0 - n=0
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[ Fade =16 x ] -D"’f (4.11)
0 =

n=0

# 502

For N = 4, (fJ,n)O

*
of Y4 provides 10 digits accuracy for all equations
{4.8) through (4.10) and the truncation error seems to be negligible.

Even though we may expect the Gamma approximations for the remainders

V?dd, véven’ and V_ to introduce little error since Var[V, ] drops rapidly
N N N N

(e.g., Var[v4] = 6.6 x 10'4), no analytical justification is available,

and we are forced to take indirect means for testing the validity of the

*

N
* *
c.d.f.'s of Y, and Y4 are calculated and compared. The absolute difference

S. For

approximation. To test this validity we note that Y ] Y as N » =, The

of the two c.d.f.'s is found numerically to be bounded by 1 x 10~

a second accuracy check of the Gamma approximation, the third and the
* v *

fourth cumulants of Ygdd and Yj\en are calculated using the Laguerre

sharp coefficients and compared with exact values. The higher moments

* r
Ygdd and Yj‘e”* can be found from (4.10), (4.11) and (R3) of (B)

" .
with the identity f_ = £ - ff ,n =21, and f# = f+. The cumulants needed
n n n-1 n 0

of

are then obtained by

.o 3
K, = Hy - 3U1“2 + 2u1

(4.12)

4
1

. 2 2
Ky = by - 305 - dujug + 12u0m, - 6

-

where Wy o= E[Xl]. The corresponding exact values are given in Proposition

3. The computations are shown in Table 4.1. The absolute difference is

bounded by 3 x 107°.
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ii Finally, we study the asymptotic behavior of the survival function

of Y, and compare it with the values computed via the Laguerre transform
method. From the Laplace transform of Y, one finds through asymptotic

analysis that

e-2x

A

- 0 1

F(x) = P[Y > x] ~ [2A.V72x + (— + A /7) —) (4.13)
Y 0 5 =

/r X

as x + +=, where AO ~ 4.95221 and Al ~ .4,27140. Details are given in
Appendix B. In Figure 4.2, the asymptotic expansion of ?}(x) in (4.13)
is plotted with the survival function of Y; derived via the Laguerre
transform method. Their absolute difference is found to be bounded by
1 x 10°° for x > 3.5.

A similar approximation for the remainder of an infinite sum of
independent variates is employed in Sumita {(1979) to evaluate the
multiple convolutions of the Logistic variates. There a direct accuracy
check is possible and accuracy to seven decimal places is attained.

All calculations were carried out on a DEC10 computer, in a time-
sharing mode using APL as the programming language. Relevant formulae

are coded in a straightforward manner, with no attempt made to optimize

the subroutines for speed and accuracy. In spite of this, the results
;{5 displayed here were obtained with CPU times in seconds with no evidence

of numerical problems.
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K, (y°dd) 0.3752193777 K, (y°dd, 0.5625201543
Ky (ded') 0.3752164153 K, (Yidd*) 0.5625200535
Absolute ” Absolute
Difference 0.0000029624 D3 fference 0.0000001008
Ky (YEVeh 0.0098016768 K, (YEVeny 0.0036637420
K, (Yjve“*) 0.0098007718 K, (Yjve“*) 0.0036637195
Absolute Absolute
Difference 0.0000009050 Difference 0.0000000225
* *
Table 4.1. The cumulants: odd and YVE" ys, and vaen
8.9 Asymptotic Expansion of FY(X) = P[Y 2 x]
9.85
0.84 vs. .
0.75- the Survival Function FY* (x) = P[Y4 2 x]
8.7 ia the Laguerre Transf : Method
.65 V1 e agg Tre ransiorm .)e (o]
X
4.5 s
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§5. Application

In an experiment to determine the effect of different visual stimuli,

Ej: :

six cats were divided into three groups of two, and each group was subjected
to a different visua' stimulus: horizontally polarized light (H), vertically
polarized light (V), and unpolarized or 'mormal" light (N). Orientations of
the dendritic fields were then measured at 15 to 16 sites in the retinas of
each of the six cats. The complete data set, in coordinates described by
Figure 5.1 below, is given in Appendix C.
The orientation of the dendritic fields of the two cats exposed to

normal light is, presumably, uniform, with no preferred orientation, and
the question is: what is the effect of polarized light? Hence we wish to
test the null hypothesis of uniformity of orientation (on the unit hemisphere)
of the dendritic fields of the H and V groups. To test this hypothesis, we

n n
even _ n-l z Z

. . L 1 2 . A AV
] —_— - -_—
use Giné's statistic Yn (2 (“) sin xixj), where xixj is

i=1 j=1
the angle between the observations Xi and Xj‘ Since Xi is represented by a

vector x, = [cosii sing,, sing, sine,, cosei] with |[§1I[2 = 1, one easily
finds that cos xixj = §?§j and therefore
. A 1
(5.1 xixj = arc cos[-é-cos(ei - ej){l + cos(¢; - ¢j)}
+ l-cos(e. +0.){1 - cos(d, - 6.)1]
2 i j i j
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Figure 5.1

A summary table of the P-values using Table 6.1 is given below.

Cats n Y:ven P-value Cats n Y:ven P-value
& H) 15 .4508 >> .20 H, + H 31 9181 N 040
}'.-: 1 2
- . H, 16 .7321 ~ 120

vy 16 .4923 >> .20
F s V, +V 32 .8603 ® 056
E_w 1 2
i v, 16 .6239 > .20
ES N, 15 .6260 > .20
ﬁ’ N, + N, 31 .4421 >> .20
W N, 16 .6076 > .20

Table 5.1

As the table shows, the test of uniformity is not significant for any indi-
vidual cat. Grouping H, and H, or V1 and VZ’ however, does give significant

results, whereas grouping N1 and N2 is still not significant.
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§6. Graphs and Tables

In Table 6.1, the estimated smoothed percentage points for various
values of n and significance levels a are presented, using the method
described in Section 3. For n = 2 and n = =, the values are taken from
the formulae in Theorem 2 and Table 6.2, respectively. For comparison
purposes, we record the approximate significance points of Prentice
(1978). The quantiles of the limiting distributions of Y°4d, yeVen
and Y are given in Table 6.2, where a = P[Y > y], etc. More detailed
values of the distributions are presented in Table 6.3, with step size
0.05, Figure 6.1 and Figure 6.2 show the graphs of the c.d.f. and the

odd ,even

p.d.f. of Y , Y and Y. All the values associated with the limit-

ing distributions are calculated by the Laguerre transform method des-

cribed in Section 4.
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Table 6.1

dd

even
> Y
n

and Y
n

3 Sample Significance level a
o Size Statistics 20 .10 .05 .025 .01 .001
8 Ygdd . 4097 1.5903 1.7129 1.7978 1.8725 .9597
2 Yi“e“ .6180 0.7225 0.8012 0.8585 0.9102 .9715
(Exact)
Y .9004 2.2084 2.4359 2.5991 2.7458 .9195
Yﬁdd L3171 1.7788 2.0771 2.3456 2.6704 .3946
5 ste“ .6269 0.7345 0.8348 0.9323 1.0598 .3838
Y .9132 2.2767 2.6154 2.9387 3.3338 .3277
Y:dd .4162 1.8063 2.1534 2.4802 2.8914 .8606
10 Yﬁ“e“ .6353 0.7490 0.8567 0.9619 1.1000 .4476
Y .9278 2.3124 2.6803 3.0389 3.4927 .6366
Ygdd .4151 1.8135 2.1832 2.5385 2.9935 .0913
20 Yﬁve“ .6405 0.7582 0.8696 0.9777 1.1183 4657
Y .9372 2.3327 2.7137 3.0866 3.5652 .7610
Yidd 4144 1.8155 2.1959 2.5654 3.0424 2060
10 sze" .6434 0.7634 0.8765 0.9858 1.1270 4712
Y .9423 2.3434 2.7306 3.1098 3.5997 .8156
Ygdd .4140 1.8161 2.2029 2.5808 3.0712 .2747
,even
100 Ye .6452 0.7666 0.8809 0.9908 1.1320 .4735
Y . 9455 2.3501 2.7409 3.1236 3.6199 .8460
yodd .41363  1.81631 2.20727  2.59079  3.09000 .32040
® yeven .64643  0.76879  0.88384  0.99413 1.13534 .47452
;; Y .94776  2.35459  2.74772  3.13268  3.63309 .86522
Kf Prentice (1978)
[; (£3) yodd . 1.7750 2.1750 - 3.0500 .3000
p
% (+16) yeven ] 0.7625  0.8813 - 1.1313 .4680
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Table 6.2.

Y

0.18563
0.22343
0.24414

.2830%
0.,32650
0.39123
0.,44743
0.50073
0.55346
0.60486
0.66181
0.71904
0.77939
0.84376
0,91324
0.98921
1,07352
1.16916
1.28013%
1,413643
1,358259
1.81631
2.20727
2.59079
3,09000
3.,4463237
4,32040

-21-

(e.g., P[Y > 0.47887] = 0.999)

0.14005
0.185467
0.20184
0.22580
0.24%992
0.28234
0.30844
0.33171
0.35351
0.37460
0.39553
0.414674
0.43850
0.46113
0.48501
0.51060
0.5384°9
0.36940
0.60472
0.64643
0.69823
0.76879
0.88384
0.99413
1.13534
1.23944
1.47452

The Quantiles of the Limiting Distributions

0.47887
0.55003
0.58984
0.65%944
0.73038
0.82748
0.90397
0.97212
1.03633
1,09897
1.16151
1.22509
1.29091
1.35992
1.43340
1.51289
1.40028
1,69861
1.81215
1.94776
2.11887
2.35459
2.74772
3.,13268
3.63309
4.00709

4.86522
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odd even

IR Table 6.3. The Cumulative Distribution Functions of Y , Y nd Y
- % 7-0ph (%) _gvEn(x) r(x) x P-0DD(X) PogvEN(X) F )
b 0.00 0.00000 0.00000 0.00000 2,55 0.97308 1,00000 0.92899
! 0.05 0.00000 0.00000 0.00000 2,60 0.97542 1,00000 0.93500
0.10 0.00000 0.00000 Q.00000 2.85 0.972756 1.00000 0.94053
! 0.15 0.00005 0.00025 0.,00000 2.70 0.979%2 1.00000 0.9455?2
i 0.20 ©.00180 0.00887 0.00000 2,75 0.98131 1.,00000 0.95021
F 0.25 0.01147 0.05008 0.00000 2.80 0.9029% 1.00000 0.954446
b -. 0.30 0.033353 0.1322 0.00000 2.85 0.98444 1.00000 0.95836
S 0.35 0.06670 0.24367 0.00000 2.90 0.98%81 1,00000 0.94194
L 0.40 0.10739 ©.36068 0.00006 2,95 0.98706 1.00000 0.96522
F o 0.45 0.1523% 0.47607 0.00040 3,00 0.96820 1.00000 0.96822
o 0.50 0.19930 0.58021 ©.00170 3.05 0.968924 1.00000 0.97096
L 0.L5 0.24473 0,46972 0.00500 3.10 0.99019 1.00000 0.97348
u 0.60 0.29367 0.74401 0.01152 ET] 0.,99105 1.00000 0.97578
- 0.45 0.33945 0.80405 0.02228 3.20 0.99164 1.00000 0.97708
SN 0,70 0.38348 0.85158 0.03792 3.25 0.99257 1,00000 0.97981
0.75 0.42606 0.88H60 0.05860 3.30 0.99323 1,00000 0.98157
0.80 0.44643 0.91703 0.08408 3.35 0.993083 1.00000 0.968318
0.85 0.50471 0,93843 0.1148% 3.40 0.99438 1.00000 0.90445
0.90 0.540865 0.95487 0.14748 3.45 0.9v488 1.00000 0.96400
0.95 0.57484 0.9469Y 0.183131 3.%0 0.99533 1.00000 0.%8223
1.00 0.60678 0.,97597 22144 3.55 0.99575 1.00000 0.981U3S
1.0% 0.43645 0,985y 0.26084 3.60 0.99613 1.00000 0,9uv3?
1.10 0.846455 0.94743 0.30083 3.85 0.994842 1.,00000 0.9v031
1.15 0.69056 0.9909S 0.3408% 3.70 0.99479 1.00000 0.99116
1.20 0.71474 0.99351 0.33043 3.7% 0.99707 1.00000 0.99194
1.25 0.73726 0.,9vL36 0.41917 3,80 0.99734 1.,00000 0.99264
.30 0.75813 0.vv68% 0.456/u 3.85 0.99757 1,00000 0.9v33L
1,35 0.77748 0.99744 0.493503 3,90 0.99779 1.00000 0.99390
1.40 0.79339 0.9vH33 0.52776 3,95 0.99799 '1,00000 0.9v444
1.45 0.811%96 0.y9402 0,54065 4.00 0.9v817 1.00000 0.9v493
1.30 0.822227 0.9vv16 0.59224 4.0% 0.99831 1.00000 0.99L38
1.55 0.84141 0.vyva1 0.482191 4.10 0.99848 1.00000 0.99580
1.40 0.85445 0.99v%8 0.64785 4.15 0.99862 1,00000 0.994612
1.65 0.66647 0.9v971 0.67409 4,20 0.99874 1.00000 0.99451
1.70 0.87755 0.,9v9729 0.70067 4.25 0.99886 1.00000 0.99482
17% 0.88774 0.99506 0.72464 4.30 0.99094 1.00000 0.997211
1.H0 0.849713 0.99¥90 0.7435068 4.35 0.9990% 1.00000 0.99232
1.u% 0.90L76 0.999y93 0,755%01 4,40 0.99914 1.,00000 0.99760
1.90 0.91369 0.99v9S 0.78455 4,45 0.99922 1.00000 0.99282
1.9% 0.9209?7 0,99992 0.80074 4,50 0.99929 1.00000 0.99u01
2.00 0.927267 0.9v998 0.81671 4,53 0.9993% 1.00000 0.99819
aasl 2.0% 0.93381 0.¥Yyyyd 0.83148 4,460 0.99v41 1.00000 0.9v81%
o= 2,10 0.93944 0.¥999Y 0.u4534 4.65 0.99v45 1.00000 0.99850
o 2.1y 0.94461 0.99v9y 0.4777 4.70 0.99951 1.00000 0.99843
N % $,20 0.94935% 0.YYYYY 0.H6942 4.7% 0.99956 1,00000 0.99878
Lj‘-_ 2,04 0.9.,470 1.00000 0.8101?7 4,80 0.99940 1.00000 0.99a8?7
»-:'- 2.30 0.9%/40 1,00000 0.u7000 4,484 0.,99v63 1.00000 0.99uv?
L. Qe8Y 0.946133 1.00000 0.1ivyy 4.90 0.99947 1.00000 0.99904
2.40 0.V4467 1.00000 0.9Y07482 4,95 0.99970 1,00000 0. 99915
t“ 2.4y 0.96/72 1.,00000 0.7153% $.00 0.999722 1.,00000 0.99923
e 2.4 0.9705%2 1.00000 0.9246
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Fig. 6.1. The cumulative distribution functions of YOdd, YEVEM ang v
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Fig. 6.2, The'probability density functions of YOdd, YEVED and v
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APPENDIX A

ol The Laguerre Transform

L The Laguerre polynomials Ln(x), defined by the Rodrigues formula

- _1 X n, n-x
. Ln(x) =T e (

9—9 (x'e "), form a set of orthonormal polynomials with
dx

weighting function w(x) = e X on (0, =) (see, e.g., Szego (1975)). The
21
associated Laguerre functions Zn(x) = e 1an(x) then provide an orthonormal

basis in LZ(O’ =), For any f(x) € LZ(O, =), one has the Fourier-Laguerre

expansion
w * + (-]
(A.1) f(x) = HZO £L(x) 5 £ = {) £(x)£, (x)dx
Let Th@w) = T £ and Thqw) = T e 4 Gewth. since T 2 (ol -
f n=0 n £ n=0 n i £ . n=0 n

(l-u)'lexp{-%x(l#u)(l-u)'l}, one has, when f(x) is integrable on (0, =),

Tew) = (-w) ] £ = ) [T £(0L (x0dx
L Tn = 0 n

n=0 n=0
= Z f(x)exp{-%X(Iw)(l-U)'l}dx » 0=u<l,
%% i.e.,
F‘__l_ (A.2)  Tgw) = ¢(xrmy)
;3 ' where ¢(s) =-? e 5Xf(x)dx is the Laplace transform of f(x). Let f(x)*g(x) =

s
o

b X
;.- - (f) f(x-y)g(y)dy. Since ¢f.g(s) = ¢f(x)¢g(s).
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(A.3) Tf*g(u) = Tf(u)Tg(u)
G
;Q for functions f(x), g(x) that are both in Ll(O, «) and LZ(O, =), From (A.3)
vl'.'\

one obtains

k n
& # #
(A.4) (fre) = I f g
m=0

The transformation via (A.3) maps functions f(x), g(x) into sequences
(f;)(gi), and their continuum convolution f(x)*g(x) is mapped into a lattice
convolution and then back onto the continuum via f: = ?0 fi and the repre-
sentation (A.1). This transformation procedure was ing;oduced originally
in Keilson and Nunn (1980). ' The Laguerre transform was extended subse-

quently in Keilson, Nunn and Sumita (1981) to handle functions on the full

continuum, and further studied by Sumita (1981).
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APPENDIX B

Asymptotic Behavior of FY(x) = P[Y > x] as x + +=

. In this appendix, we derive the asymptotic expression of FY(x) as

X >+,

The Laplace transform of the p.d.f. of Y is given by

=8 s N
B.1 )= I =) s 877

j=1 7j 2a’;

J

Let

1 372 =8 ey
(6.2)  als) = (37 "5 M) = I (=)

)| j=2 7j

We note that X(s) is regular for Re(s) > -62. Let ?Y(x) = P[Y > x] and

€)X _ =W - 8))x”
define w(w) = L{e = F (x)} = | e Fy(x)dx. Then, from (B.1) and (B.2),
0
one has
1 - ¢Y(w - 61) 1 - a(w - el) 1 - A(w - 61)
(B.3) ¥y (w) = — 91 = — 61 e A(w - 61) + o 91

After a little algebra, one finds, from (B.2), that

- -1 n-3
- 1 -a(w-286.) V6 o 2;- 2=
. 1 1 1 n,l & 2
a (8.4 Wo € T3z’ UG B

| 1 W V6w n=3

= 1

r‘:‘:'. 1-2x(w-86))

LA i

+ WY
CRNCE S, ..[ "I.'
“s s T . 2.

On the other hand, A(w - 61) and

)
(R

— 61 are regular for Re(w) > el - 62

with 6, - 8, < 0. Hence, one has the Taylor expansion

s n
(B.5) Aw - 8)) = ] aw .
n=0
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1 - Mw - Bl)

From (B.3), (B.4), (B.5) and the regularity of - for Re(w) >

1
ey - €,, we obtain the asymptotic expression of ¢(w) near zero, i.e.,

(B.6) o) ~ 4L, (2., 2B as w > 0s

W2 T

al”

This then implies that (see, e.g., Widder (1946), p. 192)

+ e X A0 1
(B.7) ?Y(x) ~ [2A0/?§ + (— + Al/ﬁﬁ——q as x -+ +w
- 5] Vx
where 61 = 2 is substituted. The constants AO and Xl are obtained from
% e, o o
+l5 n .
Aw = 6.) = 1 (22— = T A", e,
1 j=2 Gj - Cl + W n=0 n
© 6. 543
AL = L (——)"% x 4.952213394
o ., '8, -
j=2 1
(B.8)
o i+l * er T+}
A= - § 2 (2T 5 14.271400146
1 . 8., -~ 6 B - 8
j=2 7j 1 r=2 1
%)

The asymptotic expression in (B.7) agrees with Zolotarev (1961).
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