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ABSTRACT
N The two-sided Lanczos algorithm is known to suffer instability in the
form of serious breakdown. This occurs when the associate moment
matrix does not permit a triangular factorization. This work uses the
notion of a generalized pivot to inexpensively circumvent the break-
down in most cases, with the 2 x2 pivot examined in detail. The case
where the generalized pivot is of no avail is analyzed, introducing a

surprising characterization for that form of serious breakdown. <
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Introduction

In 1950, Lanczos introduced his method for computing eigenvalues
and eigenvectors of nxn matrices. His method soon came to be regarded
as transforming a general matrix to tridiagonal form. Unfortunately,
modifications involving considerable extra work were required to main-
tain accuracy. The Lanczos process lost favor when the more stable
Givens (1954) and Householder (1958) methods were introduced.

As if to seal the fate of the Lanczos process for non-symmetric
matrices (we call it the two-sided Lanczos algorithm), Wilkinson
produced an example which demonstrates the instability of the algorithm
even with infinite precision arithmetic (Wilkinson [1958]).

Recently the symmetric Lanczos has returned as a viable method for

finding some eigenvalues and eigenvectors of large symmetric matrices.

With the current interest in handling large problems, the non-symmetric
Lanczos process is ripe for reconsideration.

Chapter I presents the classical two-sided Lanczos process. The
material is not new, and is presented in an informal manner so as to
provide a background and establish notation. Much of what could be
presented as formal theorems is merely noted in passing and left
without proof.

The key to our work, which Chapter I emphasizes, is the importance
of certain underlying Krylov subspaces and the relative unimportance of
the resulting tridiagonal matrix. The weakness of the two-sided
Lanczos process lies in its inflexibility in specifying the bases
vectors in the sequence of subspaces and our remedy relaxes the Lanczos

requirements, but by as littie as possible.
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Chapter II introduces the general look-ahead algorithm from two
aspects taken up in Chapter I, the two-sided Gram-Schmidt process and
the LDU factorization of the moment matrix generated by nxn B and
starting p* and q. From these two perspectives we generalize the
notion of pivot to make the Lanczos process more flexible without much
extra work. There are many factors to consider in selecting the
appropriate look-ahead and Chapter II explores two important points.

Chapter IIl continues the discussion of the look-ahead procedure,
but restricts the generalization of the pivot to the 2 x2 case alone.
The relationships of classical factorizations to the look-ahead
procedure are shown as well as those of some less obvious factoriza-
tions. Finally, though somewhat out of place, the Kahan, Parlett and
Jiang (KPJ [1981]) residual bounds are generalized to handle the 2 x2
case.

From Chapters II and III we become aware of two forms of what
Wilkinson calls "serious breakdown". One form we call "curable", and
it is for this case that the look-ahead Lanczos algorithm is designed.

The other form of serious breakdown we call "incurable”. For
this type of breakdown no simple procedure is available. However, in
Chapter IV we exhibit a surprising characterization of incurable break-
down (the mismatch theorem) shows that this rare occurrence is only

slightly less fortunate than encountering an invariant subspace.

Notation
Throughout this work we will use B to denote the real nxn

matrix given to the algorithm, and suppose that each eigenvalue of B
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is associated with only one Jordan block. In general, upper case
Roman letters will denote matrices, and lower case Roman letters will
denote vectors (though a and b will denote scalars and i, j, k, 2,
m and n are reserved as integers). Upper case Greek letters are
used for special matrices (usually diagonal), lower case Greek letters
are scalars. Script letters are spaces.

Square brackets ([ ]) indicate a matrix so that [ql,...,qn] is
a matrix with columns q;- The matrix, Ik’ is reserved as the k xk
identity matrix. N(A) denotes the column nullspace of the matrix A.
The norms I-f and I-IF are the Euclidean and Frobenius norms,
respectively. Conjugate transpose is denoted by * (eg. A*) with -«

denoting conjugate transpose of the inverse.




I. The Two-Sided Lanczos Algorithm

1.1 Introduction

In this chapter we describe the Lanczos algorithm as applied to
a nonsymmetric n xn matrix B. In fact, we shall describe it in three
different ways: (i) the Gram-Schmidt process applied to Krylov
sequences, (ii) the three term recurrence relation and (iii) the trian-
gular factorization of the moment matrix. None of these viewpoints is
new, but each is relevant to the modification of the Lanczos algorithm
that is the focus of this work. Moreover, these sections establish
our notation.

In the course of establishing the Lanczos algorithm in the context
of exact arithmetic we want to bring out the underlying subspaces and
those which reflect a particular basis in the space. We propose that
the basic algorithm of this chapter be called the two-sided Lanczos
algorithm to distinguish it from its better known--and stable--version
for symetric matrices. In the symmetric case the temptation to iden-
tify R" with its dual R2 is too strong to resist and the algorithm
simplifies significantly in exchange for identifying objects which are
logically different.

The final sections of this chapter seem to be out of place being
motivated by considerations such as avoidance of overflow or underflow
in computer implementations. In exact arithmetic the particular
scaling of the Lanczos vectors is of no consequence; in practice it
does matter. We give a thorough discussion of the subject and

recommend a novel, and slightly redundant formulation.
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The material covered in this chapter is not new so that the
presentation is less formal than might be expected. Also, the reader

is assumed to be familiar with the Gram-Schmidt process for ortho-

_- __,,.,
) e Y e

normalizing a sequence of vectors.

1.2 Krylov subspaces and sequences

. XAy
O e,
et DR

Given non-zero q € tn, p* € 62, the Xrylov matrices K2 and

. kl are defined by

K, = K,(q,B) = [2,Bq,...,8%"1q]

%*

*
= k;(p*98) = p:B

o)
< *

p*Bl-]

The columns of Kz form the Krylov column sequence generated from q.

Similarly, the rows of K; from the Krylov row sequence generated

*

by p”.
These column and row sequences are the primary vectors which

determine the column and row Krylov subspaces defined by

k* = k*(q,B) = span K, = k,¢*

Kf = Kf(p*,B) = span Kz = csz

These subspaces play the central role in the understanding of the
Lanczos algorithm.

The fact that qu converges to the dominant eigenvector of B
as L—= 1is misleading in the context of Lanczos. There is no

interest in letting 2 exceed n (in the symmetric case, £ is

PR SR AL TS VAU MU U WL VU WA SUUAY YO SOV SUL UL APULEP T . SUNE SO PR LORr SR S ST P, RP SUP W W SUNPAURC S S SRS DU WA S SR S s S R v el



typically about 3vh) and an important topic in approximation theory is
derivation of expressions which measure the closeness of certain eigen-
vectors to k* and Kf.

1f kM1 = kb

= K~ then it is easily verified that Kl is invariant

under B. Such subspaces are what we want, and there is no loss in

assuming that we have not achieved our goal, i.e. we may assume that
dim(Kl) = dim(Kf) =2 .

For theoretical purposes the columns of K, (or the rows of Ez)
form a satisfactory basis for Kl (Kf) and show the key role of

polynomials.

LEMMA 1.1 There is a one-to-one eorregpaondence between Kz(q,B) and
2 1° {ﬂ(t), m(t) = Zgﬂ t }. For each w € P£-1 there is a
m(B)q = 2 (8’ q)m, €K' and vice-versa. Similarly, p*n(B) € K;.

1.3 Two-Sided Gram-Schmidt (TSGS)

In his original paper (Lanczos [1950]), Lanczos remarked how
round off errors made the Krylov vectors useless for computation. He

proposed better bases for k% and Kf by applying the Gram-Schmidt

process to the Krylov vectors. This produces a biorthonormal pair of

L 4
el
e

bases {4;,9,,...,9,} and {p;,p;,...,pz} in each space. The nature

'..-'v.

e
i S

of the Gram-Schmidt process forces qj to be the component of BJ']q

orthogonal to Ki’1 and pg the component of p*Bj'1 orthogonal to

ff Kj'l. The algorithm then is as follows:
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Select p* and q so that p*q =1. Set p1=p*, a; =a.
For j = 1,...,2-]

i ® i] 1 (p18%0)

3 = § (p*8Ta, )p?

%341 (1.1)
qj+1 = I/B(J+])

Pin * j+1/Y(J+])

where B(j+])y(j+1) (J+1) j+1~3+1

Note that q. is the unique vector (to within scaling) in

j+1
l(‘j 1 orthogonal to I<‘i Similarly, pj+] is unique in KJ + ortho-
gonal to KJ. The specification of 8(3*1) is postponed until later.
For now, it is simply a non-zero scalar.

It is convenient to regard these Lanczos vectors as columns (or

rows) of matrices,

= %

Qg = [ayseesgy] P

with quz by construction.

9.
Note that the Krylov vector Bk']q is not needed until the k

th
iteration in (1.1). In fact, the Krylov vectors are not needed
explicitly at all. At step j in (1.1) BIlq and p*B9"1 can be
replaced by qu_] and pj_]B, respectively. To see this we use the
result of the previous section that Kj'](q,B) = {n(B)q: wer_z}. In
particular, qj-] = ¢(B)g where the degree of ¢ = j-2 (otherwise,

947 would be in K-,

SRR = . e
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For . j =1,2,...,2=1
o " T By T
i o
: a1 = Ty By
* - *
Pie1 = S541/ Y541

- o x
where Bj+1yj+1 = mj+] u-Sj+]rj+1.

terms as shown in the following lemma.

p; L k%, 2 <j. Therefore, p; L ki

1 < J-]o

- " mm ' oa PR ST S Sy

span{q1....,qj_],qu_]} = span{q1,...
= span{q1,...
= span{qI,...
= span{q1,...
Similarly for p;_lB and p*Bj'].

(p*Bq;)p:
1zl(pJ q;)P;

for both. Consider q = ni(a)q, m €EP

.TMnﬁmme1J,B%EK

+95.7B6(B)q}
9qj_1’¢j_28j-]q+$(3)q} $ € PJ-Z
gd-]

1897 q} = «3(q,B)

The algorithm (1.1) is then replaced by:

- .g qi(P;qu)

(1.2)

The beauty of {1.2) is that the sums simplify to only two non-zero

* = p* = i -
LEMMA 1.2 p,qu:j = ijqi 0 for i< j-l.

PROOF. We will only consider p}qu since the argument is the same

=1 Then B, = B, (B)q =

i+1. By construction,

, 141 < j. Thus, p;qu =0,

RN W S PG SR SN

PU S P WGP PR Y |
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We isolate the non-zero coefficients by the following notation:

= n* = n*
B3 = P3895.1 (= Py
= p* =*,
Y5 ™ Pj1Bay (= 559
-
% ° P38

The familiar three term recurrence then is:

% P ©
9 = a/By » PT =P*/Y 3 ByYy = wy = PYq .
1 1° P s BNy Ty

For § =1,...,2-1 do

FE IR I I RS
* = - * _a *
L e LR LR (1.3)
qj+‘| = rj+'|/Bj+'l
* = s* /
Pi41 = 5541/ Y541
= = *
where Bie1Y341 = @541 = Sj4"41 (1.4)

Clearly, if W54y = 0 the algorithm cannot continue. An analysis
of, and a remedy for, this condition is the purpose of this work. For

the moment, though, we will assume that wy £0 for i=1,...,j+1.

£ ae e 4 ey
i R AR
T pe e, LUl

This ends the tranditional description of the (two-sided) Lanczos
algorithm. The discussion of the problem of termination is postponed

until our stabilizing algorithm is presented (Chapters II and III). We

now illuminate various relationships which govern the coefficients «a,

5 B and vy, and the Lanczos vectors {pj} and ({q,}.
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1.4 The Lanczos polynomial and the moment matrix

From the previous section we have 9, = n(B)q where m is of

degree k-1. It is convenient to specify w as follows

% * (TR (B)a (1.5)

where xk-](t) is a monic polynomial of degree k-1 and B(k) is
defined in (1.1). The three term recurrence (1.3) for the qi's yields
a related recurrence for the Lanczos polynomials x;. Set x_;(t) =0,

xo(t) = 1. Then, by substituting (1.5) in (1.3) one obtains
Xk(t) = (t'ak)xk_](t) - Uka_z(t) (1.6)

where o and w, were defined in (1.4). Similarly,

Pk = (;&-;)p*xk-](B) :

Moreover, 8(k) = 8]°82°'-"Bk and y(k) ol OB PARRRRA % Further, it
is the product Wy (= Bkyk) which determines the Lanczos polynomials.
The choice of Bk only affects the norms of 9 and p:.

Next we relate the Lanczos polynomial to a certain triangular

matrix. Recall

*

p
. - *
Ky = [9,8a,...,897%q] ,  R¥=|PB

p*BJ-1

The two-sided Gram-Schmidt process dictates that

-k =]

Qy = [ays...095] = KyLyag (1.7a)

N . . L. e =
W W S PN P N LU W S U S R X - B i bm b Bon om } UL - Sl e




where LI* is some JxJj unit upper triangular matrix and

AB = diag{s(]),...,s(j)}, and, similarly,

p; 1-=1
P* = | | = AT 'LYKY (1.7b)
j } Y "33

Pj

1

where AY = diag{y(I),...,Y(j)} and [5 is unit lower triangular.

Note that the inverse of a unit lower triangular matrix is also

h

unit lower triangular. Thus, the it row of Eg] contains the coeffi-

cients of the (i-l)St Lanczos polynomial Xi-1 since

Py = (;f%;&p*xi_,(B)

- (:(]17)(x((,i'”.x§i'])....,xgi;),l)R’; .

th

Similarly the i~ column of LE* contains the coefficients of the

(1'-1)St Lanczos polynomial, so that Y= 31,
J J

Note, now, that
-~ = *
ngj : Mj(p »q,B) (1.8)

the moment matriz whose (1,k) element is p*al(1=11+(k-1)1o  qing
(1.8), along with a rearrangement of (1.7a) and (1.7b) and P}'Qj = IJ,

we have
= *
Mj ijj
= * *3 *
LJAYPJQjABLj LjﬂjLJ (1.9)

where QJ = AYAB = diag{m1,m1w2,...,m]w2---mj}. That is, running the
Lanczos algorithm for j steps is equivalent to the triangular factori-

zation of the moment matrix MJ. In particular, a breakdown in the

v i soen anme mat i At Sadh g N N T - -
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Lanczos algorithm (wi==0) corresponds to failure in the triangular
factorization and vice versa. We may, if it helps, consider the
problem of stability in terms of the extensively studied triangular
factorization.

As noted before, these relationships are not new (Lanczos himself
used Gaussian elimination in his original algorithm), but neither are

they widely comprehended.

1.5 Matrix formulation of the Lanczos Algorithm

The three term recurrence can be written compactly by the intro-
duction of a tridiagonal matrix, J. Consider algorithm (1.3), and

i = * = *
write r; qisi and s YiPj- Then

[rz’ eee ’rk+1 ] = [Bq]-q1a] ’BqZ-QZGZ-q'lYZ’ coe ’qu'qkak-Qk_‘lYk]

and
* %* *
S2 PyB-ayPy
: %* : * *
Sk+1 PB4 P =ByPi1
becomes
| : I
i l Jk
g : = B Qk - Qk (] .10a )
1N
+
r
and k1

TP R P W S S WS W W WL IPG S G AR L G T P - W S U Y W E VR V. SO TS,
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-1 Pk
B
(1.10b)
= PLBQ, . (1.10¢)
. .'Yk
By % d

A simplified notation for the rank one matrices simplifies the

matrix formulations (1.10a) and (1.10b) to

* _
Pee1® = BQ - QY

* *

*
&Sk

with the convention that the e, is the last column of the kxk
identity matrix, Ik’ while the other vectors are of dimension n.
Finally, we relate Jk to the Lanczos polynomials by considering

its characteristic polynomial, det(tIk-Jk). Expanding by the bottom

row, we find

Further, det(tI]-J1) = t-ay = xl(t)' Recall that By, = w, and
compare with (1.6) to see that

X is the characteristic polynomial of Jk .

LA S it ) Tl EY Y TROUY s T Y LY .
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Another approach to formulating some of these results comes from
the theory of orthogonal polynomials with respect to an inner product,
in our case the X, are orthogonal with respect to the inner product
induced by the moment matrix M(p*,q,B) (see Brezinski: [1980]). But
we will not make explicit use of this viewpoint, since M is not
guaranteed to be positive definite, and one's intuition may be misled

by the improper inner product induced by it.

1.6 The moment matrix and the Lanczos polynomial

Up to this point, we have linked the moment matrix to the Lanczos
algorithm but not to our goal of finding some eigenvalues of a
nonsymmetric matrix. The dependence of approximate eigenvalue on only
the moment matrix will be of importance in later chapters.

Let

m1 m1+] LRI ] mj
M

ij = |
M3 M4 *" Mog-in
where m, = p*qu. Then

LEMA 1.3 x, (t) = det[tMo,k_1-M1’k]/(m(])---m(k)), o) gy

*
PROOF. 3, = P8O,
. A;:L;‘R;BKkL;*A;‘ from (1.7a), (1.7b)
RS TR TR |
L
and
= *
Iy = Py

-1, -1 -* =]
AL Mo k-1tk B8 -

e et . .. PR .
AP SUEPEIP JPNS S U NP SN e i) PP B AP SN ) Ledonsadions PP SN P | avtecsioedimtinde, By
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Since Lk is unit lower triangular

X (t) = det(tI -J,)

-1 -1
det(AY )det(tMo,k-l'M1,k)det(As )
= det(tMO,k-]-M'l ’k)/(w“)- . -w(k)) .

The moment matrix M, j is a special Hankel matrix (the (k,z)th
element is a function of (k+2)) and this fact yields another deter-

minental description of the Lanczos polynomial.

LEMA 1.4 ’b m] . llk
) 1 T My ot My )
X (t) = det| : : 1.1
k STk S
M-y Mg ©=° Mooy
1 t ... tk ]
PROOF. The (k+1) x (k+1) matrix on the right of (1.11) can be expressed

as
oK)
k

M0,k-1
(1t---t5 1) ¢

| |

Observe that

[ : At o 0] i ! 7
! -1t : !
1 (k) - t (k)
Mo, k-1 Mo - o = |™Mo,k-17Mk "
I et I
""" T | K T
RIEEEER AL AN | I EETN Iy 0 0! t* |
Take determinants, cancel tk, and use Lemma 1.3 to obtain the

formula.

-t~
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1.7 0ff-diagonal elements of J

Up to now, no mention of the selection of Bj (and thus yj) has
been made. In exact arithmetic no consideration is necessary, since
the directions of the pj's and the qj‘s are the determining factors.
In finite precision, this is not the case.

Such practical considerations may appear out of place in our
discussion of the two-sided Lanczos process, but are necessary and
propert. The problems of stabilization must be attacked in the con-
text that they are encountered, not in the ideal. Thus we assume that
we are now working in finite arithmetic and must adjust accordingly.

We certainly wish to avoid extremes in the selection of Bj.
Taking Bj to be the largest machine number, for example, is unrea-
sonable. Not so obvious is the innocent choice of Bj =1 as the

following example shows.

EXAMPLE 1.1

where m is some small positive integer (say 4) and oy is arbitrary.

It is easily verified that the Lanczos algorithm produces

; = 2(2-1 )me*

P )

2 o(1-2)m
qy = 2 )

._—-*_—r—rf—v—_—v—,vﬁ'r'-','.-.-.—-T
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From this example we see that even for a symmetric matrix, the
sacrifice of symmetry causes exponential growth in the elements of one
set of vectors and exponential decline in the other.

If symmetry is such a desirable property, perhaps the selection
of 8y = |Yj| = /FQET would be better. As it turns out, we gain

nothing over Bj = |1 as the following example demonstrates.

EXAMPLE 1.2
- m -
o 2
2™ oy 2"
B = 2., . ., Py q» M and o, as before
: 2"
| 2" g |
* o o(2=1)m » o o{1-2)m
Here again Py 2 e, and q, 2 e, while
‘;‘1 L
Jl = " .
PR |
L 1 ap

So the entity of interest is again not the resulting matrix, but

the bases with which we are dealing.

. W




The risk of element growth (or decline) can be reduced by forcing
the norms of the resulting vectors, p; and q,» to be equal. This

criterion forces

8, = (luylir 1/1s,0)!/2
Y, - sign(mz)(lwzllsll/lrzl)I/z

= s¥p

Since wy Ty

19312 = 19,17 = (lu, |/(1r,11s21)) !
= (cos(L(sk,r,))) !

= sec(L(s},r,)) = sec(L(p;,q,))

Therefore, the norms of each vector is not less than one and
becomes large only as the vector pair (p;,qz) approach orthogonal.
Further if B8 1is symmetric, the process reduces (with Py = q]) to
the symmetric Lanczos algorithm.

1.8 The generalized problem

An alternative to allowing any growth in the elements of pz and
q, is to force the norms of these vectors to be unity. We then have
that p;qz = cos(L(p;,qz)). In terms of the ultimate goal of our work,
we have generalized the probiem to finding eigenvalues for the matrix

pencil Jz-sz where

= o
'Jz PJLBQR.
and

= = *
¥, diag{w1,w2....,w2} PzQz .

18
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Pictorially, (1.10a) and (1.10b) become

T
*| _ ¥ J
Fer1®ef = 8 Q-1 % % L
% - * - - *
eS| = | P B J |1 ¥ Py
The three term recurrences (1.3) then are
ol = By = aglap/vy) - a (v /v, ,)
* - % * %
Sg+1 = P8 = (ap/u,)py - (B,/v, )P 4 (1.12a)

= *
W+l ¥ S+ 4

and

= * = * *
Apay = Toat/IMpls  Ppay 52+1/'52+1|
Boe1 = Ppa1Bay = wp /15,541 (1.12b)
* = ‘
Yol * PgBAger = Opa1/ITpuq!

Vo1 * Poafgy = C0S(L(PY4040549)) = wppy/(IsT iy 1)

1.9 Summary
The insight that comes from relating the Lanczos algorithm to the

moment matrix is this: once p* and q are chosen the success or
failure of the process is determined. If any of the moment matrices
Mj is singular then the algorithm will halt at step j-1 with Wy = Q.
If either rJ =(Q or s; = 0¥ then an invariant subspace, our goal,

has been captured; otherwise (i.e. wy =0, s;#O and r,#0), the

3
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3 choice of p* and q was unfortunate. It could happen that no eigen-

value of Jj is close to an eigenvalue of B and in such a case, the

effort seems wasted. This is called serious breakdown.

EXAMPLE 1.3 (Wilkinson, [1958])

51 -1 .6
B=|-50 1|, p*=1[.6.3-.1], q=|-1.4
10 1 .3
p; = p*B -ap™ = [.6 .2 -.267]
.5
q, = Bg-qax = | -.833
.5

*
where a = p1Bq]/p;’q1 = 4/3,
pzq2 = 0 serious breakdown!

The foregoing analysis shows that the Lanczos scheme is too rigid
to be stable. The great practical advantage is that the projection of

B onto k* and Kf is tridiagonal. If these spaces contain good

approximations to the desired eigenvectors, then the computation of

these approximations requires the calculation of certain eigenpairs of

an 2 x2 tridiagonal matrix, a relatively easy task.
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II. The Look-Ahead Lanczos Algorithm

2.1 Introduction

The ideas presented in Chapter I not only establish the Lanczos
algorithm from a general mathematical perspective, but lay the founda-
tion for the modifications that give it more flexibility. That the
subspaces, and not the particular bases, are important, allows a
modification of the Lanczos process which furnishes a potentially
powerful tool.

The "look-ahead" Lanczos algorithm presented below is a way to
relax the two-sided Lanczos algorithm. As in Chapter I, the two-sided
Gram-Schmidt process and the factorization of moment matrices play
important roles in the understanding of our new algorithm.

We will assume here that K" =R and Kﬂ = Rﬂ. This is not
necessary for the study but simplifies the presentation. In these
places where K" =R s assumed, we might'ﬁust as easily assume a
sufficiently large invariant subspace, but such conditions add nothing

to the presentation and conceal key ideas.

2.2 Breakdown and the Two-Sided Gram-Schmidt

To understand breakdown in Lanczos and our remedy for it, it is
necessary to focus on the generation of two inter-related sets of
vectors. The sets, related by biorthogonality, form bases for the row
and column spaces Kﬂ and K". respectively.

First, though, let us consider the general case. Let
K a span{fy,....f 1, K = span{gy,...,g,} with F"=R" and
Gﬂ = R". Define the matrices




where the columns of Fk form the primary vectors of Fk and the rows
of GE form the primary vectors of GE. Note that rank(Fk) =
rank(G:) = k.

Applying the two-sided Gram-Schmidt process to -1 and G&'],
we get
k-1 _ span{?],...,?k} - pk-1
65'1 = span{gy,....§,} = 65'1

2 i A% i 2 - A - ARD - .

s

; = cos L(§:.Fi). Next we apply TSGS to Fi and Gi by forming

~h
[]

k-1
k (fk"iz1?i(§;fk/wi)
(2.1)

k=1
iy (g;-iz](gﬁ?i/wi)QQ

and then normalize to obtain

?o= FED
g = 3/130
Y = &fy -
Note that neither ?k nor §, 1is zero since the f's and g's form
bases for R" and R2 (this point will be elaborated below).
Let us assume that §;?k =0 and thus Y, = §;?k = 0. We cannot

continue the Gram-Schmidt process since that would involve division by

zero in (2.1). A different pair of sets may be selected to replace

22

o d




®

T&TT T

] :',.""'T"‘_ i

IR St g Ael it St RS i MR

{f],...,fn} and {91,...,gn} since the latter pair proved unsatis-
factory. Unfortunately, we have no more guarantee of success with a

new pair of sets than we did with the original pair.

EXAMPLE 2.1: n=3

(10 o} 101
- * =
Fa= {010 65=(001
00 1] 110
-1
f=]0 §) = [.5,0,.5]
L0
[0 (7] fro
~ = - * =
f,=f1]-0%0 1
0 ] 0 0
a3 = [0,0,1] - 0*[.5,0,.5] = [0,0,1]
and 65?2 =0.

2.3 Look-ahead in Two-Sided Gram-Schmidt

The defect with the standard TSGS does not 1ie with the primary
vectors {fl""’fn} and {g;,...,g;} since these form bases for R"
and Rﬂ. Rather, one (or both) sequences of vectors was used in an

For each f. such that

J
g;fj # 0. We formalize this concept in the following Temma.

unfortunate order. there must be some m > j

LEWMA 2.1. Lot FX = span(fy,...,f,} and Gs = spanfg}....,gf} with

F'=R" and 6 =R]. et f

2 al-l
f, Le,

Further, for 1 <k, let by = ﬁ??i # 0. Then there is8 an m > k

, bedefinedby 14 =1, # €F,

such that

R SLLEP . . N

, and let §; be defined by 1§j1 =1, §; €6, §L1F.

23
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PROOF. First, since Fk = [f],...,fk] has rank k and ;k has a

non-zero component in the direction fk (from (2.1)), fk = Fkv # 0.

*
9

Now, G: = | has full rank, so G;fk # 0. Thus there is some m
93

such that 9n f # 0. By construction, ngk =0 for 2 <k, so

k-1
m> k. Let g g - 2 (g £, /¥ )g By noting that g fk = g*fk #0,

the result follows. ]

Thus, on breakdown, we can switch q; and g: and continue

the process.

2.4 The look-ahead scheme and subspaces

What effect does the switching of primary vectors have on the
subspaces? The exchange of g; with g: can be considered a

reselection of subspaces of 62. Thus, for i=k,...,m-1
Gl becomes éi = Span{g-l*, ces ,g:_] ’g;’g:.FI P 99:} .

For all other i, Gi remains unchanged.

This dynamic interpretation may not preserve all properties of the

i+1

original subspaces (such as BKi CK in the case of Krylov sub-

spaces). We, therefore, present the following interpretation.

When gkfk = 0, we find the first gm such that Im f #£0,

k-1
generate gk = g { (g /wi)gi. and normalize fk and gk to

form ?, and gk Now, in place of §; €G,, we have §r € .
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Further, for 1 = k+1,...,m (from 2.1),

~k
G 2 (s;,fJ/wJ)sJJ € 6y

since 3; is included in the sum. In other words, instead of
generating one row basis vector from each G&,...,GT, we are
generating (m-k+1) row basis vectors from GT.

The set of vectors we finally generate is, in fact, a basis for
the subspace GE\GE'1 cdl (i.e., GE\G':'1 is the subspace of G
orthogonal to Fk']). Thus, a solution to serious breakdown in TSGS

consists of selecting a basis from a larger subspace.

2.5 The look-ahead scheme and matrices

We do not need to restrict ourselves to only changing the row
subspaces. We can, in fact, "look-ahead" in both row and column sub-
spaces and select bases from GE\G';"1 and FMFET,

*
"
If we let H* = | : and C = [c1,...,c2], L=m-k+1, with

*
hl

k-1
L I, - * 2 ak
I ST VR SR LA

€ = frga1 - 2 (83F a1/,

then any bases we choose have the matrix representation

V*H* for row vectors

CU for column vectors
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for some invertible, % x 2% matrices U and V*.
Further, if we let N = H*C, the "connection" matrix of inner

products, and E;‘ = elV'H* and &, = Cle,, then

a1

N=V W

where ¥ = diag{ﬁ?& ,ﬁ;&z} (assuming biorthogonality of the ﬁ;'s

1,--.
and Ei's). Thus, to each selection of bases vectors corresponds a

particular factorization of the inner product matrix N.

2.6 Two-Sided Gram-Schmidt and LDU factorization

We have related the "look-ahead" scheme to some factorization for
a matrix. We wish now tc weld this concept onto our LDU factorization
of the moment matrix. Again, we will discuss general spaces and will
return to our actual objective, Krylov subspaces, in the next section.
Consider the modified two-sided Gram-Schmidt process, i.e. at
step k,
k-1, A
fo = Fe- iélfi(a?fz/"’i) = f-fea@afin) 22k
k-1 A
9y 9~ L /08 = - (/M) ek
f = /RN, 8 — ai/hgpl, y — GiF
So, by construction g;?j = ﬁgfz =0 for j <k, %>k (here g;

and fi denote vectors updated at each step).
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In matrix notation this becomes

Fg; 1
-1 .
L, .
kL e % |-
E |I n g* k
k 1 'n=k k+1
L9y
and
-1
U 1 2
k k -1 _ r2 2 _ g
Fn-——:——-°k -[f],oo.,fk,fk_’_-‘,oo.,fn]‘F
t nek
where T = diag{lg;l,...,lg:l,l,...,1}
and 9, = diag{lfll,...,lfkl,l....,1} .
Then
p- ‘ -
l')'I.. | 0
ow | _'I
A*?ka —-—l(.lr_—— =I‘l.(] Lk c(]) Uk
| E I
0 ; c(k) k n"k
L |
where
* AL o
AR L

) .

Lg;?J g;fj+l

is the matrix of inner products at step k.

9Ty Gl

93+lfn

%'n

k

Here we have just reiterated the correspondence between TSGS and

the LDU factorization of c(‘). Now, to what does the look-ahead scheme

correspond?

PP AP PG TP S22 G G G S A U W VL WU S-S VU Sy




.....

. L ant il Sihk o et il il S et ot ML M AN A A A
Ll Sl el GuiChut Mgl Shat R dra et SRR A S AR R AN TS O T ST e T

As shown in the previous section, the extraction of biorthogonal

basis vectors from Gf”\Gk and Uk gk

F" corresponds to the factori-

zation of an & x % inner product matrix. This £ x2 matrix is the kth

principle submatrix of C(k).
The matrix interpretation of the look-ahead scheme is as follows:

We perform Gaussian elimination for k-1 steps and then
encounter a zero pivot. We do not wish to use either partial
or complete pivoting for various reasons (e.g. not all ele-
ments are readily available). Following Kahan (Parlett and
Bunch [1971]) we prefer to generalize the notion of a pivot,
from a scalar quantity to a matrix. We then search for a
suitably well-conditioned principle submatrix, and using an
appropriate factorization, use that as our pivot.

Pictorially, the final factorization is then

o)

2.7 Lanczos and look-ahead

We now have a method to remedy the breakdown of the two-sided
Gram-Schmidt process. To interpret this for Lanczos we replace Fk

k and Gf with KE.

with K
As we have seen, the selection of bases vectors corresponds to the
factorization of a particular matrix. In the Lanczos process, it is
convenient not to use the principle submatrix of the moment matrix
(matrix of inner products) but to use a scaled version. This will become

clear as we present the look-ahead..

PP NI P W AT Y P WD AP P I WY Wl Sl D PU G G PUL L. W Y PRI UL AP P PP S Ype
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Let
5
& L i
2. |5k L[k ] p*B
2 E A N R B
. k  “n-k+1 Lp;Bn-]
Ny

and

NI
R = [? ’Q'O’F ’; ’.oc’F ] = [q,Bq,...’B - q]
1 k*Tk+1 n Inoiel

k-1

where ik is such that 33 is orthogonal to K (and, by symmetry,

¥

;5 is orthogonal to Kf']) for j > k. Then

I*

r -~ -
Ly ”:QRJ 0 1[‘-? k J
L2y TnogndL O ”n-k+1-| Inek+1

S o L
s (k
R0 SRS | NI R | I Ml SR

3 = se e T -*
with 9k-1 d'iag{m.l.m.lmz,...,m.l wk-l}’ and Lk and .Lk no longer

- v*r =
M) = KiKa

with unit diagonals. In Lanczos, it is the principle submatrices of

M rather than those of ﬁn- with which we have interest.

n=k+1 k+1
We thus consider the 1x1 principle submatrix of Mn-k+1’ Wy o If

0, = 0, we try the 2x2 principle submatrix of M 1 and so on

n-k+
until we have a suitable pivot.

CHPET D WP YT W W PRy B S TR P W P VAL WL NI W G U WL U WL T T UL S . € S .
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2.8 Effects of the look-ahead scheme on the J matrix

We must pay a price for stepping outside the strict sequence of
N Krylov subspaces.
%i; For this section we need to adjust our notation. Let i denote
- the ith step of the "look-ahead" algorithm whether the pivot is 1x1,
2x2, or larger. Let 2 denote the actual vector index and let
Py ]
Py [ : and Q; = [9,,....0,,, ]
LPE+k-1

whenever a kxk pivot is used. Then

PP;]
In = | 5 [BL0eeeey]
P
(Py8a; - P??Qm]

PXBO; - P;quJ

The P's and Q's enjoy the same orthogonality properties that the p's
and q's did in the two-sided Lanczos algorithm. That is

*n o s
Pin 0, i#j.
Thus, Jm reduces to block tridiagonal

ATy 1

B2 A2 .
m c"

. '..rn
L By An

(BJ here denotes upper case B8); the dimensions of the blocks being




...........
...............

determined by the dimensions of the P's and Q's.

2.9 Subspaces for look-ahead Lanczos

v vv'H1’71 v
BN et te

Recall that factorization of the pivot matrix corresponds to
selection of a pair of bases. The factorization used needs to hold some

advantage over the infinite number of other choices; an advantage that

L Danndion 4 Uy
o ¥ v s PR
PRI NN

must be reflected in the selection of the associated basis vectors.

L
.

Before continuing, it is necessary to indicate precisely what the

subspaces are and how they are produced. These spaces correspond to

GE\GE-l and Fm\Fk of section 2.6.

Let k-1 be the number of successful steps of the two-sided

Lanczos process, that is, we have successfully found bases for Kk']

and K5'1. Let us now assume that breakdown has occurred. We need to

find m such that K™KK"1 and K™kX1 have m-k+1 dimensional

_r.,nﬂhrr‘r’"-‘rrr

biorthogonal bases. How do we find them?

First we need a set of primary vectors spanning the appropriate

ey
LR PR T

!l subspaces. Recall from Chapter I that qu_] € Kj. Similarly,

Br, € k*1 since r, € KK, re € k1. Further, Bzrk e kk*2,
B3rk € Kk+3 and so on. So, with e at hand, the representative
k=1

vectors for K through K" are obtained by matrix products with

\ane e s e
'Tr AR
R N I R

B. To obtain vectors in I("'\l(k'1 we need only orthogonalize each

Birk to KE'T. Such orthogonalizations require that bases vectors

for (perhaps all) k-1 and KE'] be available.

S P A

We can avoid keeping these bases around by following the two-sided
Lanczos algorithm. Let Fk be the current residual, and generate the

- rest of the primary vectors for K™MKK"! as follows.

- e - a T T e TR e T R e e e T e e e e
| aaf ™ % i s e pute ) A T e e tuae e UNR I s 20de JibeL e L N CINE iy b G R SN S R e . . B B - - 1
AONICN \ R N L o . . .
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FOP j = k’noo,m-]

-~ - ~ _ * -~
Y'J-+-| = BY‘J- qk-] (Pk_]Brj/wk_] ) (2.2a)
LEMA 2.2. Ry L KET
PROOF. ¥, 1 K5'1 by construction so BF¥, L Kf'z. Since q,_; 1 KE'Z,
k=2 * = ¥ - * =0
P L K" Now oy gy = PeqBr- Y (PkaiBrid ¥y ) = 05 thus
Py L K&IL The result follows by induction. .

Similarly, we may generate KT\K&'] by the following: Let 3,
be the current residual.

For j = k’o.o’m-]

* k4

~ - -~ L4
Sj+1 = SJB - (squk-]/wk-])pk-] . (2.2b)

2.10 Choosing orthogonal bases

We now have row and column vectors spanning the subspaces of

consequence. From these vectors we will generate bases to continue
our process. But how shall we decide between different bases?

Assume that Q is nx2 (£=m-k+1) matrix whose column space is
KMkK1 and P* s such that P*Q 1is diagonal and the row space of
P* is Kf\Ki']. There is no loss in generality in forcing all bases

vectors to have Euclidean norm of unity. It follows that
T<IPE </, 1<HQ0 </,

A prevalent measure of the linear independence of P*'s rows is

cond(P*) = IP*1IP"N = o) (P*)/a, (P*)

where P*  denotes the pseudo-inverse of P*,
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c](P*)ioz(P*)g_---g_cz(P*) >0 are the singular values of P*. Our
normalization ensures that v > 0;(P*) and so our interest focuses

on °2,(P*)' Note further that
0y (P*) < (aq (P*)e--a, (PNVE = get(p*p)1/2

There seems to be little prospect of estimating Uz(P*) or 0o,(Q)
directly.
We try another approach. Let £ = n and suppose that P*Q = Qn

= diag{o],...,on} with 120,20,>-+->0,>0. In this case

p* = Qn,',‘ i
cond(P*) = 1P*11P" |
- -1 |

1PrIGR;

in

/n/mn 0;1 = n/o,

This suggests that among biorthogonal bases we should prefer those

which maximize
N *
min Ipya;| - (2.3)

The assumption £ = n was for simplicity only. In general, for

g <n, P*= QQ;] and so
cond(P*) = 1P*11GR; 1 < IP*IIQNIR; 'Y < 2o, .

To return to the look-ahead Lanczos, we wish to select bases which
maximize (2.3) over k < 1 <m. This is a non-trivial problem. We
will discuss the 2 x2 pivot in Chapter III but leave the general case

as beyond the scope of this work.
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2.11 Practical side of pivot selection

In the previous section we discussed the selection of bases for
a particular pair of subspaces k™KK and KﬂkK&']. In particular
we must not only select bases within subspaces, but between subspaces

themselves. If say cos L(rk,sz) were very small but non-zero, exact

arithmetic would allow the Lanczos process to continue, whereas finite
precision would cause the Lanczos process to behave erroneously.

ﬁ-. To employ the cosines of angles between the different possible
;]} bases, we must first decide which angles are important and which are

not. We do not wish, for example, to only compare all possible bases .

Tqy in k™k* 1 and KT\K&']. By ignoring the bases of smaller subspaces,
[ we may miss a smaller subspace coupled with a subspace beyond considera-
E“‘ tion at step k which would yield a superior pair of bases.

ﬁi‘ Instead we assume that to each pivot block corresponds one

:;; "optimal" pair of bases and we then

3

maximize ~minimum |pla,| . (2.4)
J=leeeaa i=1,...,]
This criterion gives a way to determine the "best" pivot at each step.
Of practical consideration is fast memory limitations. We need
to reduce memory requirements as much as possible. Further, the block
tridiagonal form is not immediately amenable to eigenvalue analysis.
Thus some restrictions on the form of the J matrix are in order.

Recall that the blocks of the J matrix are of the form P?BQj

| where |i-j| <1. If Py iskxnand Q; isnxm, P;BQ; is kxm.
L" Thus, with a maximum pivot size of &, the bandwidth of J may be as

large as 3%.
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We can reduce the maximum bandwidth tn 2%+1 by preserving the
order of one Krylov sequence. For example, if q; € Ki for all i,

prqi =0, |i-j] <1, and the J matrix retains the Hessenberg form.

2.12 Summary

We now have a method for stabilizing the two-sided Lanczos process.
This stabilization preserves as much as possible of the Krylov space
structure. The cost of our remedy may seem expensive, several extra
matrix-vector products, but will be absorbed in use, as seen in
Chapter III.

Further, (2.4) gives a clear measure of the superiority of one
pair of bases over another and one pivot size over another. The
differences in dimension of the competing subspaces is unimportant.
That is, if, at step i, we use a kxk pivot instead of an £x 2 pivot,
k < 2, the problem of selecting bases vectors at step i+1 is indepen~
dent of the selection at step i, in spite of the overlap of subspaces.

Finally, we can not ignore the fact that there is available only
a limited amount of storage. The vectors we can retain in memory and
the size of the J matrix are limited. The storage crunch is reduced
by forcing one Krylov sequence to remain intact. Further, by limiting
pivot size we can limit the bandwidth of J and the number of vectors
that must be kept in fast storage.

In other words, the look-ahead mechanism allows us to balance the
competing demands for well-conditioned bases and limited fast storage.
It turns out that the simple extension to allow 2 x2 pivots eliminates
many instances of bad bases without a significant increase in storage

requirements.
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III. 2x2 Pivot

3.1 Introduction

In this chapter we complete our discussion of the generalized
pivot. The analysis is non-trivial so we confine ourselves to the.
2x2 case and leave the general case to subsequent work.

The relationship between the pivot factorization and the bases is
exhibited for some familiar factoring schemes. Further, the angles
between the subspaces, a 1a Davis and Kahan, is presented. This
approach gives bases independent of the primary vectors and presents
us with a tool for finding the best bases in the sense of Chapter II
(section 2.11).

To complete the discussion of the look-ahead algorithm, we need
a criterion for judging approximate eigenvalues. Alas, none exists.
However, Kahan, Parlett and Jiang have produced residual bounds on
approximate eigensystems and we generalize their discussion of residual
bounds for Lanczos to encompass the look-ahead Lanczos.

Much of the discussion refers to quantities defined in Chapter II.

As a brief review, recall. s; and rj denote the row and columns
residual vectors at step j with 53 L k371 and ry 1 Ki']. Further,

the look-ahead procedure determines biorthogonal bases vectors in
kM- (all vectors in K" orthogonal to Ki']) and KT\Ki'].

The pivot matrix will be defined explicitly for the two dimen-
sional case. The explicit relationship between the pivot factoriza-
tion and the bases determined by that factorization (section 2.6) will

be used without being rederived.
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3.2 Subspace considerations

As in Chapter II, assume that the two-sided Lanczos has proceeded
for j-1 steps without serious breakdown. That is the bases vectors
* * i * i
{q1,...,qj_]} and {p],...,pj_]} are such that a4 € K' and P; € K,.

We now assume that the current residuals rj and sg are too nearly

orthogonal to proceed with the Lanczos process.

Following section 2.9, we generate the primary vectors which
determine the subspaces of interest, Kk3*'\k3"! and K2+]\Ki'].
With r. and s* already present, the remaining primary vectors are

J J
defined from (2.2a) and (2.2b) by

Fie1 = Bry-agq(w/vy )

~k

(3.1)
= * - *
sj+'| sjB (w/wj_'l )pj']

= g* = p*
where « ;5 and L2 Pj-195-1°

et R = k31 and Sy = K31 be the planes for which

we wish to generate biorthogonal bases. Then
- n
R span{rj, j+1} CR

S, = span{s},&'gﬂ} cr} .

*

S
Let R = [ry,F;q], S* = [gi ] then the pivot matrix W 1is defined
by

(See section 2.7, Chapter II.) For this chapter, W is assumed to be
non-singular.
Note that for any selection of biorthogonal bases R = [F,f+] and

$* = (s,8+] in R and S,, respectively, there exist invertible
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2x2 matrices U and V* such that

R =RU

§* = v*s . e-2)
Further, from Chapter II

W= vy (3.3)

where ¢ = §*R = diag{$1,$z}.

Assume that R, §* is the pair of bases which is produced by the
look-ahead procedure. Recall that to compare this choice with the
biorthogonal pair of vectors produced by the two-sided Lanczos process
((2.4) with 2=2), we must calculate the cosines between the possible
bases vectors.

This appears to be extra work, since it seems to require the
generation of R and S*. However, by utilizing (3.2) and (3.3) the
cost becomes minimal (see the algorithm in the appendix for details).
The labor involves the primary vectors for the subspaces but does not
require R and §* explicitly. Further, if the two-sided Lanczos is
used instead of the 2 x2 pivot scheme, the matrix-vector products in
(3.1) are not wasted (again, details accompany the algorithm in the

appendix).

3.3 Pivot factorization

When discussing factorizations of matrices, some obvious candi-
dates come to mind. These factorizations are exhibited below in terms
of their correspondence to bases vectors in the underlying subspaces

R and S*, and their effect on the J-matrix. Here, we are only
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concerned with the directions of the bases vectors, and ignore the

effects of scaling.

1. LU Factorization

W= [e}w ?] [W uu-ee")-/mll

Here both the row and column Krylov sequences are preserved. Thus,

locally, the J-matrix is both upper and lower Hessenberg.
This factorization corresponds to two successive steps of the

two-sided Lanczos process.

2. UL Factorization

1 0/87 [w-ez/ag
W= 10 1] 8 W

Here both Fj and 3% are preserved but "5 and s* are modi-

J+l J
* * ~
fied. This is equivalent to exchanging §j+l and sj and rj+] with

+1

rj in the Krylov sequences. We can preserve a mixed symmetry in J
(Ijk £|= 13, k|) with appropriate scaling, but the Hessenberg form is
9 9

lost.

3. QR Factorization

L =1w -8 [t° o(w+w)] -1
W=r [e w]L O uﬁ-eg]’
2 g2

Here the Hessenberg form of J 1is again preserved. The row space

P41

bases vectors, though, are both in Ki so that a definite bump above

the super-diagonal is created.

i)




4, LU with Interchange

NN
1 0|0 e~ww/d

The factorization corresponds to partial pivoting in the LU factoriza-

tion of W. In terms of the residual vectors the column Krylov

sequence (q jeK‘], q eKj”) is preserved (thus the Hessenberg form

NAg

of J) but in the row Krylov sequence S; and §§+] are exchanged

(thus a definite bump above the super-diagonal of J).

5. Spectral Decomposition

. ; - e Bt VR LA LA
- £ . "ot v I‘.:
i -' * " ” l‘_lil'

P :t .a " 'l fr e Ty

W= Uu'w
u=1, v= diag{y; ¥y}
w-l = %—(w+ﬁ+ ((w-&'))'z + 482)1/2)

5"

Yy = %-(w"-ﬁ- ((m—&])2 +482)]/2)

;’""4

Here the row vectors both come from Ki+] and the column vectors come

from Kd+]. Thus the J-matrix bulges on both sides of the off-diagonal

oy T
DRy 5 b, et
el IR R

N AP
P - u [ [V

ik

as in the UL factorization. Also, with appropriate scaling mixed

symmetry is preserved.

) l‘;"‘ al
o L
la [

T
'

3.4 The angles between 9y and p;

We digress slightly to lay the foundations for a useful analytic
tool. Recall (from section 3.2) that R and S (not S,) are sub-
spaces of R".

In [Davis & Kahan, 1970] it is shown to be proper to speak of the
(two) angles between R and S. In addition to the well known minimum

angle between a vector in R and a vector in S, there is another
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well defined angle which has to be included in a full assessment of
the relationship between R and S. These angles depend only on R
and S but, nevertheless, there is a distinguished pair of bases
associated with them. This "angle basis" will be useful in our

analysis.

We denote this basis by columns of § = [6,&+] for R and the

columns of P = [ﬁ,6+] for S. (For this section only we "transpose"

,‘ . S, and P* in order to consider R and S subspaces of the same R".)
i_ The matrices ﬁ and B are distinguished by four properties:
.:. AgA =
8 (1) Pq=1,
. A*A =
(ii) P”P I2

(i11) @9 =1,
(iv) £4(§,p) = min L(r,s) over r€ER and S €S
When L(q,p) < £(q,,p,) then P and § are unique to within . For
reasons given below this pair of bases is not preferred in the Look-
Ahead Lanczos algorithm.
We note in passing that properties (i) and (iv) together deter-

mine P, and G, (provided that p and § are unique).

PROOF. The vector §,_ is in the one dimensional subspace of R
orthogonal to p. Similarly 6+ is in the one dimensional subspace

of S orthogonal to q .

3.5 The angle basis and the SVD of P*Q

Kahan and Davis show how to find G and P from any pair of
orthogonal bases of R and S. Let P* and Q be orthonormal bases

for S* and R. Then
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P* = v*s*
(3.4)
Q =RU
where V* and U are invertible 2 x2 matrices.
The bases P* and § are then found as follows:
p* = J*p*
(3.5)
Q=0q0

where P*Q = VI(* is the singular value decomposition (SVD) of P*Q
and I = diag{o],cz} is the matrix of the cosines of the angles between
R and S*.

Of practical interest is the fact that 9 and g, can be
obtained from R and S* without forming any intermediate vectors.

This follows from rearranging (3.4) and substituting in (3.5) to get

x o

vel* = vt .

So the angle basis comes from an unobvious factorization of W.

3.6 Maximizing bases
We now wish to find a pair of bases which is the best in the sense

of (2.11), that is, the bases {p*,p}} and {g,q,} such that

maximum minimum {lp*ql,lpzq+|}
P.q

is attained. The maximum can be determined as the following theorem

shows.

.......... . . - T et . - .
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THEOREM 3.1. Zet y(P*,Q) = minimum {{p*q|,[p}q,|} where P* = {p*,p}}
and Q = {q,9,} are awy pair of biorthogonal bases for S* and R,
respectively, with Ip*l = Ip:l =1 and lql = lq .0 = 1. Then
20102
maximum y(P,Q) = s (¢ harmonic mean of oy and o,)
’ 172 \
where 0y > 0, > 0 are the cosines of the angles between S* and R.
Further,
0y < maximum (P,Q) 29 .
P2 p*p,=0

PROOF, Let P* and ﬁ denote the angle bases of section 3.4. Let

3 p*

¥ P* = [ﬁi] and § = [§,3,]

F be any other biorthogonal bases with 1p*1 = Iﬁ:l =1 and 4§l = I'd+l
¥ = 1. Thus, if we let V be such that

P* = y*p*

cos9 sineg
siny cosy

Further, to preserve biorthogonality, if

then V* = [ ] for some pair of angles o and vy.

=

then U has the form

r;]cz cos ¥ -1-5102 sing

U=l -1
-7, 9 siny T, 0, cos ]
where rf = o$51n2w+o§coszw and rg = c%cosze+c§sinze. Then
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P*q = diag{d,,3,} with

-1

17 c]ozcos(6+w) . 82 = 15]

al

o]czcos(e+w) .

Define ;](e,w) and cz(e,w) by

z,(8,9) = 0,0,cos(6+y)/T,(v)
T5(8,9) = 070,c05(6+y)/1,(8)
where
(T1(w))2 = c%sinzw + cgcoszw
(rz(e))2 = o%cosze + ogsinze .
Then
w(P,Q) = minimum{c, (6,¥),2,(8,¥)}

for appropriate 6, y. Our problem thus becomes finding

max imum minimum{c](e,w),cz(e,w)}. We do this with the help of two
8,y

Temmas. The first isolates stationary points on level curves.

LEMMA 3.1. PFor fized Y, ¢,(8,¥) has a relative mux%mum at 8 = =y
! o}
and Cz(e.w) has a relative maximum at 6 = arctanbnigtanw).

o}
", A 2
Further V*P* is orthomormal at 6 = -y and QU <8 orthonormal at
ot
9 = arctan(-—z-tan v).
92

o]ozsin(e+w)

PROOF. -2z (8,9) = - =0 when 8 = -y

2
3
(8,v) = -0,0,/T,(¥) < 0
Tae 1 - 192/
B2, (0,0) = =040, (a2sin 6 cos v +c%cos 8 siny)/(t,(9))3
36°219,¥ 0q9p103s1n b+oy 2
= 0 when tan 6 = -c%/o% tany

-
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2
:—ezv;z(e,w) = -c.loz[(ozcosecosw-cfsinesin q;)/(-rz(e))3
+ (ogsinecosw+o$cosesin W)°—a§e-[(‘tz(6))-3]]

-c]oz(o]czcosze/rz(e) + o]ozsinze/rz(e))/(rz(e) )3
when tan 9 = (-cf/cg)tan ¥
~(070,)%/(15(8))* < 0

When 8 = -y
Vvt = cosy =-siny
siny cosyp| °
92 9
Now let o—tan 6 = --c-—tanw = tan a for some a. Then
1 2

sin a = cz(sin e)/rz(e) = -0](5‘"\ b)/tq(¥)
cos a = o;(cos 8)/ty(6) = g,(cos ¥)/Ty(¥)
so that

U = [ cosa S'inu]

[-sina cosa

The second lemma establishes the point where y changes from

z1(8,9) to 5,(8,4).

LEMMA 3.2. ;1(9,14:) = cz(e,w) = olozsin(Zw)//cY{sinzw+c§coszw (3.6)

when © = w-g-.

PROOF. cl(e,w) = ;Z(e,w) when 11(\9) = rz(e), i.e.
o%sinzw + ogcoszw = c%cosze + cgsinze

or %-((o%*-og) - (o%-ag)cos 2yp) = %—((of*-cg) + (c%-og)cos 20)

which reduces to

............

T
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cos 2y = -cos 28

which occurs when
29 = 20+
or Y= e+%= (3.7)

Substituting (3.7) into ;1(e,w) and cz(e,w) gives the result. s

We now have two lemmas which seem unrelated to the problem.
However, for a fixed y, max(¥) must occur either at a relative

maxima or when %y = Zo- That is, for fixed ¢, either

¥

%o for all o

Z, when t,(v) < 1,(8)

% when 'r](w)?_rz(e)

The symmetry of the properties of the two planes R and S,
means that for orthogonal bases, only ;z(e,w) with 6 = -p need be
maximized along with maximizing (3.6).

When 06 = -y

9y 5.;2(-w,w) = 0102//5§coszw-+o§sinzw <04 (3.8)

However, when cz(-w,w) > c](-w,w), ¥ = 61(-¢,w). so that the
cross-over point from %o to 5 is of interest. Thus, we are again
concerned with maximizing (3.6). (Note that (3.8) constitutes the
second part of the theorem.)

From (3.6) we have

\y("’) = C‘I ('b"g'ﬂb) = CZ(w'g‘sW) = O]OZSin Z\P//Ois'intw*'d%cosq

= 010,810 y//(ot/oz)tan“y+1 .

| -y
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204 c0S u/vV({{g1/02)tan y)* +1
°$ 2 9 2, ,3/2
- Zo]sin w(—ztanwsec w)/((c—tan p)-+1)
95 2
20

] [cos ¥( (%)Ztanzw +1)

o9 . 2
- —zsmxptanwsec w}

%
1 (=)
>3
tanw)zms/z czcos ]

9

({

%2

20

A
%

({

. (c%coszxp sinzxp + ogcos4w - c%sinzxp)

c(-cfsin“w + ogcos%)

o]
0 when tan4w =_(—1-)2, i.e. when y = arctan /o]/oz
2

(o]

1/& o ‘/02 924
¥(arctan c,2) 201 — / Eé’o, ]

1702

= Zc] 02/ (c:.I +02) . s

3.7 Practical 2x2 pivot

The column basis vectors for which ¥ attains its maximum, in
general, will have non-zero components of qu. Similarly, the row
basis vectors maximizing ¥ will have non-zero components in the
direction p*Bj. Therefore, the J-matrix is not Hessenberg, and to
preserve Hessenberg form the optimum basis must be sacrificed.

This is not a great sacrifice. Recall that the max min cosine is
gge harmonic mean of the cosines of the angles between R and 'S;,

o
3;%55; But
gy < 20102/(014-02) < 202

..........
...........
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with the upper bound achieved only when 02-*0. Further, from

Theorem 3.1, for P* orthonormal

o, < Ip*al,Ipia,l < o

Thus, by forcing P* to be orthonormal, ¥ will never be less than

half its maximum possible value. Further,

CLAIM. For fized q€R, S*q#0, there are p* and p) €S, ad

q, € R, such that

P*Q <s diagonal

and P*p =1 .

PROOF. Let q €R. Llet span{p;,p,} = S* with IpJl = Ip3l = 1,
pfl"q # 0. Let

By = P - (P3a/P}a)Py .
Then

BL/1B
(p] - (PP, )PY)/(1 - (PyP,

*
Py
*

p

12)1/2
Let 3ER, §#q, then
q, = §-(p'd/p*a)q .

If q is set as rj/ﬂrjl and P* s orthogonal, the J-matrix
remains Hessenberg while the cosine of the maximum angle is no worse

than half the optimum.

R
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3.8 Residual bounds

For symmetric matrices, the Rayleigh-Ritz procedure gives the
best approximation to eigenvalues when approximate eigenvectors are
known, and this theory has been exploited in the symmetric Lanczos pro-
cess (Parlett [1980]). Kahan, Parlett and Jiang ([1981]) approached
the non-symmetric case and produced residual bounds to measure conver-
gence in the sense of backwards error analysis.

We summarize the results below and extend them to handle the look-
ahead procedure. The terminology established for the symmetric case,
though not precisely correct in the non-symmetric case, is used. Thus
“Ritz value" denotes an éigenvalue of the J-matrix, and "Ritz vector"
corresponds to a particular approximation to an eigenvector of B.

It is important to note that for scalar 8 and vectors x and
y* we are not producing a bound on [A(B)-8| as can be done in the
symmetric case, but a lower bound on IB-B! where nxn B has
(e8,x,y*) as an eigentriple [(a,z,w*) is called an eigentriple of C
if Cz = za and w*C = aw*]. Thus we assess the convergence of
(8,x,¥*) to eigentriples of B in terms of the deformation needed to
make them exact.

The main results of the Kahan, Parlett and Jiang paper (KPJ) will
be presented without proof, beginning with the main theorem of their

work.

THEOREM 3.2 (Kahan, Parlett and Jiang). Let nxn B and nxm ortho-

normal P and Q be given. For ay mxm D let

R = BQ-QC
s* = p*B - DP*

_______ pe————— - TR, —w
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¢ = (P*Q)"'p(P*q)

and Z,, = P*(PQ-QC) = (P*B-DP*)Q .

11
Then there extist solutions E of

(B-E)Q = QC and P*(B-E) = DP*

with minimal norms; some with

IED = min UEN = max{ORI,01S*1}
E
and others with
o - (1rr2 4 peky2 2\1/2
IEI. = min 1ED, (HRHF-+lS IF-HZ]]IF) .
Let (0,z,w*) be an eigentriple of Jj, the J-matrix from the
J’th step of the look-ahead procedure. Let QJ. = [q1,...,qj] and
”
Pg = | ¢ |, then the "Ritz vectors" x and y* are defined by
*
pj - g
x = Q 2
* o APt
y w PJ

Assume that w*z = 1 and P;Qj = ], so that y*x = 1. Then

J
COROLLARY 3.1 (KPJ). The closest matriz to B with (08,x,y*) as an

eigentriple, i8¢ B-E for E satisfying

T-IET NI LN [ -1 |
- §+1>3 54173413 441
BE} = max{ |X| ) lyi-i }

where BQ; - Q44 = [0.....0.qj+]Bj+1]
P;B'JJP; = [0,...,0,pj+1;j+'|]
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L. 18 the last element of Z

J

- *
w3 the last element of W and 3j+'|Yj+] B sj+1rj+1

and

COROLLARY 3.2 (KPJ). Let (6,z,W*) be an eigentriple of JJ. with

w*z = 1. Then for all k > j, (0,Z,W*) s an eigentriple of Jk-Gk

and with e. the it

i columm of Ij

B._Ht;. — Y.+.|w. .~ %
= (Hipphe gt + (Ephliel, -

[
=
]

Moreoven,

-
(2]
~
=
[}

18349831 1v50qus]
max{—Fr—fo}

2 2
2 _ IBJ+]C| + le+‘|wj|
121° w12

-
o
~
)
-n
!

and both norms are independent of K.

The proof of the above corollary does not require strict use of

the Lanczos process, but requires that the jth

step be done using 2
1x1 pivot. Further, we can modify the proofs to handle the 2 x2

pivot.
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3.9 Residual bounds with 2 x2 pivots

The key to generalizing Corollaries 3.1 and 3.2 is to remember

the block tridiagonal structure of the J-matrix (section 2.8) so that

A
L

e
p"
W
N
'~.l
.'-I
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(recall that the i in Aj refers to the step count and is indepen-

dent of the pivot size used). Let Boe1 = [Cj+l’8j+1]’
Toe] = [Sj+]’§j+l]* be the additions to the J-matrix for a 1x1 pivot.

Then by putting Bz+] in place of Bj+1 and T in place of Yo+

2+1
in Corollary 3.1, we get

COROLLARY 3.3. The closest matriz to B with (8,x,y*) as an eigen-

triple 18 B-E satisfying

[B: 4183405183 11 |V qws 6 qws 4]
- J+1°] Tj+17i-1 bR e B S e 3 ARYCR |
* * _ ‘< - *
PjB-ijj - (pj"'](o’...’aj"']’yj*'])) (3.9b)

W* = (‘D'Isoo-’wj)s z = (C]H":CJ)*

and X = sz , y's= w*Pg .

PROOF. The equations (3.9a) and (3.9b) drop out of the Look-Ahead
Lanczos algorithm. We may post multiply (3.9a) by any vector in Rj.
The most useful choice is the eigenvector 2z associated with the Ritz

value 6, so that

Bx-x6 = Bsz-sze
= Bsz-Qijz = QJ(Os---’oon+]sBj+] )z
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Similarly

m y*B - Gy*

* ¥ *pyk
P- - -
w JB ewPJ

,_
n

Yo% %* *
0
s *
P-
6j+] J+]
Yj+]

L]
x

By applying Theorem 3.2 with m=1, the result follows. -

The trick of replacing Bj+1 by BM,| and Yj by ', in the

+1 [}

KPJ proof, Corollary 3.1 goes over to Corollary 3.3 in a straight-

forward way. Similarly, Corollary 3.2 generalizes to

COROLLARY 3.4. Let (6,2,w*) be an eigentriple of Jj with w2z = 1.
Then for all k > j, (0,2,W*) 1is an eigentriple of Ji -6y and
(with e, the 'lth eolum of Ij)

Bi,18stp:,10 Yi,qws+S ., qw
= (d*¥17] Pi+17i-1 +1%3 77 3+1 0 =1\~
Gy ( izl )ej”i + (_1 T )wejﬂ .

Moreover,

185,98:%03,18:_7) 1¥34194%85 99511
16,1 = mx{_tLlrz_i.ﬂ_JL_J:LdeltLJL}

2 2
16,12 = EJ*‘CM‘?”—CJ-” 2 19548540951
k'F 1z lw*'z

and the norms are independent of K.
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LR AL A A AN

. R T U ;
e e s a0 oa aa o] LI S A

Though at present we have restricted ourselves to the 2 x2 case,
the generalization holds for any pivot size. The replacement of Bj+]

and Yj-ﬂ by Bj+l. and T j+1° respectively, is independent of the

.......................
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length of Bj+] and Pj+]. Note that the residuals remain of rank
one.

So now we can, in principle, test all the Ritz values, 8, at
each step and determine which are acceptable in the sense of being

eigenvalues of matrices close to B.

3.10 Summary

We now have an understanding of the effects of various factoriza-
tions of the 2x2 pivot, just as we saw the effects of various factori-
zations of the 1x1 pivot in Chapter I. Further, we have seen that the
natural bases, the angle bases, are not the most desirable either for
keeping J sparse or to xeep L(qi,p;) minimal.

Moreover, we determined just how much can be gained from any
factorization and how to weigh this against a more convenient structure
for the J-matrix. The increase of maximum min{|p*q|,|pja,|} by a
factor of 2 may be the difference between continuing the Look-Ahead
Lanczos process and admitting failure. However, without a convenient
method for solving the eigenvalue problem for non-Hessenberg J, what
was gained with the optimum basis is lost converting J to Hessenberg
form.

Finally, the assessment of convergence of eigenelements of J to
eigenelements of B has also been discussed. Though seemingly out of
place in this chapter, this presentation completes the material neces-
sary for producing a working (though not necessarily efficient)
procedure. As noted, the residual bound calculations may be performed
for every Ritz value at each step, and convergence of appropriate eigen-

elements can be determined.
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IV. Serious Breakdown

4.1 Introduction

We have presented Lanczos without serious breakdown, and the
Look-Ahead Lanczos for some cases of serious breakdown. However, there
are cases where the Look-Ahead Lanczos process cannot succeed, no matter
how large the pivot we use. This form of breakdown we call "incurable".

Incurable breakdown at first glance seems a disaster. We are in
possession of non-zero residuals which are mutually orthogonal, for
which there is no foreward looking remedy. We will show, however,
that incurable breakdown is a blessing peculiarly related to the
encountering of a zero residual.

To complete the discussion of the Look-Ahead Lanczos algorithm,
we present a characterization motivated by the foregoing analysis of
breakdown for which the look-ahead algorithm is successful. This

characterization rounds out the analysis of the look-ahead.

4.2 Invariant subspaces

Suppose by some special relation of the starting vectors, that
the Krylov subspaces become invariant before the nth step. Say, let
Kk(q,B) and Kf(p*,B) be invariant subspaces with k, £ < n. Note
that in the discussion of incurable breakdown, we may disregard the
case of k=n or of 2=n, since Chapter II shows that such break-
down is impossible.

Define the row and column generalized eigenvectors of B, w; and

2;, respectively, so that w;zj = 8;4- Then it follows from the
Jordan form of B that for some i],...,ik and J1....,jk that




K" = span{zi sevesZs }
1 k
L. * *
K span{wj ,...,sz}
We may assume that
3
q= az. a #0, m=1,...,k (4.1a)
m=1" 'n m
2’ *
and p = m}g:]bmwj b #0, m=1,...,% (4.1b)

k and Kﬁz), respectively, and may be

since such vectors exist in K
used to generate the Krylov subspaces.
Let s; and r be the row and column residual vectors,

respectively, at step m. Then incurable breakdown at step m is

defined by
* *
Sm $ 0O
n £0
*nJ = .
and S8 Ty=0, J320.

Thus incurable breakdown occurs when s; 1 Kk (or equivalently
"n L Kf). Note that incurable breakdown must occur at step m <
min{2,k}, since at step j = min{2,k} one residual is zero, which is

not breakdown.

4.3 The moment matrix and incurable breakdown

Eventually we will 1ink fncurable breakdown to the eigenexpansions
(4.1a) and (4.1b). We will accomplish this in steps, the first

relating incurable breakdown to the rank of the moment matrix.
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LEMMA 4.1. Let Mn be the nxn moment matrix generated by p*, q
and B. Let E; be the row Krylov matrix and Kn the columm Krylov

matrix. Then incurable breakdowm occurs if and only if

rank(M ) < min{rank(R;),rank(Kn)}
= min{dim(k}),dim(k")}

PROOF. Sufficiency: Assume that the Look-Ahead Lanczos algorithm
suffers incurable breakdown at step m. Since the look-ahead algorithm
is a modified two-sided Gram-Schmidt process, it is equivalent to
making elementary matrix operations on R; and K. Llet U and v*

be the matrices which perform these operations so that

* .
YR = P; . J<m K. = 9y J<m
i~ n sl‘;B‘]'"I i>m nJ Bj""rm i>m

where eJ is the jth

column of I .
Recall that incurable breakdown means s:‘:Bir-m =0 for i>0.

Hence,

*pky = y*M o= | M) _
VIKKU = VMU = |- —cr e - - .

Since U and V* are invertible
Rank(M ) = rank(V*MnU) =m-1.

To complete this part of the proof, note that




rmfo implies dim(Kn) = rank(l(n) = rank(l(nu) >m

and s¥#0 implies dim(K}) = rank(K*) = rank(V*k*) > m

Necessity: Let m-1 = rank(M_ ) = rank(K ) 5_rank(k*) (say).

Let U and V* be as above. We need only show r. =0 to complete

EXAMPLE 4.1 (Incurable breakdown). Let

0001 {1
=1 00 0 gl %1 p*-0n1.0000.
0100 1
oo1o_| 0]
Then
[T 010 1100
01 01 . |1 0001
Ke=11 010 @ K=1g 01 1"
01 01 011 0
so that

—t et b omd
[ R
—_——
L]

=

-9

[]
—
-— b
— wd b b

the proof. Let Q , = [q1,...,qm_]], P;_ } There is no
loss in generality in assuming P;_]Qm_] L1 Rank
implies rm = Qp-1¢ for some vector c. Now
= = * =
0 - Pm-]rm Pm-'lQ _'lc (o . L
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rz = BQ'qa = -'I and SZ p*B'O.p* = [0’-1 ,O,]] .

Further, sEBJr2 =0, j >0, sowe have incurable breakdown. Also
note

rank(M4) =1, rank(K4) =2, rank(KZ) =3,

4.4 The mismatch theorem

The previous lemma characterizes incurable breakdown in terms of
the rank of the moment matrix. Here we give a more illuminating

explanation.

THEOREM 4.1 (Mismatch Theorem). Let p, 9 and B be given. Let

k o span{q,Bq,...,Bk']q} and Kf = span{p*,p*B,..,,p*Bz']} be

K
invariant subspaces of dimensiom Kk and %, respectively. Then
incurable breakdowm occurs at step 1 if and only if there are
generalized row eigenvectors {w;....,w?,w;+1,...,wz} and generaliszed

column eigenvectors {ZyseeesZisZg qseeesZyyy i} with

"1.%, " %4, (4.2)
such that
Kk = span{z],...,zi,zz+],...,zk+£_i}
and K% = SPAN{W] e s W]y WS qseee sy}

.............................
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Condition (4.2) departs from the ordering which produces the Jordan

canonical form for Jordan blocks, i.e.

. = Z A+ 2.
BzJ JA zJ+]
* * *
W.B = Aw. +w. .
J j 3=l

There is no loss in generality in assuming (4.2) and reduces the

complications in subscripts.

k

PROOF OF THEOREM. Sufficiency: Consider K and R*. Since K

is invariant

]
~

rank(Kn) = dim(Kn) = dim(Kk)

Similarly

rank(ﬁz) = dim(Kﬂ) = dim(K&) L .

k

Thus using the invariance of K~ and Kf, there are invertible X

and Y such that

Knx = Ez‘l’.'.’zi’z£+'|9-..’2k+2’-i’o,.o-’0]
= [2,2,0] s Z=zpseeanzys 2=2Zg 90000024 4

and

i
~p -~
[w W= WaseensWos

w= wi”,...,wl

I P NP P PPN Yo PR Y T PP P S U S YT a2 A s S — _a

e




-~ 2 ~
W'z w*z

'1;-2 *Tk
L. Thus, Y KnKnX = Wz

I
x
N

— 9

i
0o 0 o

i; L0 0 0

Ei So, rank(Mn) rank(R;Kn) = rank(Y*K;KnX) = i < ky&. Thus, by Lemma

by (4.2)

EAd
—
o
o
t— 1 101010

4.1, we have incurable breakdown.

Necessity: Assume that there is no mismatch, i = k = min(k,%)
(say). Then

Kl = span{zys...,24}
and rank(K ) = dim(k") = dim(K') = i = rank(M ) .
Thus by Lemma 4.2, there is no incurable breakdown. L]

EXAMPLE 4.2. Let B, p* and q be as in Example 4.1. The matrix B

“is normal so w; = z; with eigenvalues 9, j=1,...,4, i=/-1 and

eigenvectors
.51 .5 .51 .5
.5 -5 -.5 .5
2y * | ..5d 22" .5 23 % | .5 Zg = | .5
-os - SJ 05 .5
In this case
p*sz;+z;+zz q=2y+2,

4

3 = span{z;,z;,zZ} K* = span{z,,z,}
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4.5 Ritz values and incurable breakdown

For discussion of the Ritz values of the matrix Ji’ let us

assume, temporarily, that B has simple roots, so that w?B = xiw;

d .= 2L, i j .
an BzJ zJ j for a1l i and J

The case of defective matrices,

though not uniike the non-defective case, is somewhat more complicated

and its discussion is postponed until

the next section.

What the Mismatch Theorem has given us is that in the case of

incurable breakdown

L
* ~%k *
p T =p + b.w;
j=§+l 3
k#g-i (4.3)
q=74 a.z,
j=i1 3
h ~k i %
where = W
P j{lewJ

i
q = jZ=]ajzj

With aj # 0’ j = ],...,i,f."’],k"'l“i;

Then any element of the moment ma

] k+2-1
p*Bq = (5*+ | bwi)B™(G+ I
j=i+1 34 j=i+1

k+2-1
p*8™g + p*( ) aijz.) +
jeasl ¥
k+&=1i

. * m
+ (3=§+1bjw3)(3=§+1a33 25)

k+2=-1i
F*8"g + p* T ATa.z, + (

jeiar 33T Tyain

kg~

A
%* m

j=1 J j=g+

bm#OQ ms= ]’.00’20
trix Mn(p,q,B) has the form

ajzj)

( y b w*B"
j=§+1 AR

L
m, %y~
I A bjwj)q




= p*a™g + k+§-ikma p*z. + f AW
z+|2<-i f o .
+ b, A. a. w: 2.
3171 §p=aH 323y 132 9

p*8™g

Thus we get the following lemma:
LEMMA 4.2, et p*, p*, @ and § be defined by (4.3), then
Mn(p*,q,B) = Mn(ﬁ*sa:B) .

We can now show that incurable breakdown is not a misfortune as

the following surprising result shows.

THEOREM 4.2. Let B have distinct eigenvalues and let Ji be the
block tridiagonal J-matrix produced by the Look-Ahead Lanczos process
at step 1, with p* and q starting vectors. If incurable breakdowm

occurs at step i+l then each Ritz value of J‘i 18 an eigenvalue of B.

PROOF. By the Mismatch Theorem p* and q have the form (4.3).
Consider now the Look-Ahead Lanczos with the p* and § defined by
(4.3). The subspaces Kl(ﬁ*,B) and Ki(a,B) are invariant, so that
each Ritz value of the J-matrix generated using P* and § is an
eigenvalue of B. By using Lemma 4.2 and Lemma 1.4 (Chapter I) the

result follows. (]
EXAMPLE 4.4. Let p*, q and B be as in Examples 4.1 and 4.2. Then

Iy = AJy) = oy = p*Bq = 1 = A4(B) .

]




4.6 Defective matrices

By their biorthogonality, the generalized eigenvectors of the

expansions in (4.3) influence only those components associated with
N its Jordan block, thus, the interaction within a single Jordan block
_ to generalize Theorem 4.2.

Therefore, let B be a Jordan block of grade n, that is nxn B

has the form

Al 1
Al
B = A,
.1
A
Then
k+2 N n
LEMMA 4.3. Let p* = Zbiei and q = E a;e. where e; is the
= i=k+1
th

i“" eolum of In and aii‘O and bifO. Then the J-matrix

generated by p*, @ and B 1is similar to a Jordan block of degree 2.

For simplicity we make the following notational convention. Let

€11 €92 *°* €1 |

- C=legyd=) 2 :

Ft’, a1 Sn2 °°° Cnn-l
-

= and define

d Sy 4441 **" C4j |
- C(1,4) ’l_ - : J
= 31 G310 77T Sy

E;‘ The proof of Lemma 4.3 is simplified by the following technical lemma.
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LEMMA 4.4 (B)(i

i) = Ni+j+1 where Nk 18 the k x k Jordan block.

Further,

B (1,9) = Miagn)” -

th m 0 k>4
PROOF. The (k,2)" element of B = m . m-k
(z_k)k k<
A ~th 0 k>3
Similarly the (k,2) " element of N = A n .
’ i+j+1 (g\:)xmm k= 1+m, m>0
K+2 k+2
PROOF OF LEMMA 4.3. Llet P = i b1ei and § = E ]aiei so that
+1 i=k+

n
2 bei+p* and q =3+ ] a;el. Consider any element of the
i= ] i=k+e+1
moment matrix
K n
p*8lq = (5*+ bie’{)Bj(6+ I ael).
i=1 i=k+2+1

Using an argument similar to that of the proof of Lemma 4.2 we have
p*qu = ~*Bja

. Z sl e
= e
1T e

L .
= (izl 1+k 1)(3 Yk, k+2.)( X °1+kei) = B*Na

where gi is the ith

column of Il. Thus the moment matrix generated
by p*, q and B d{s the same as that generated by p*, § and N,
with i&f(ﬁ*,uz) =Ry and K*(d,N,) =R*. Thus, the J-matrix generated
A

by p*, q and B 1is the same as that generated by §*, § and Nl’
the latter J-matrix being similar to Nz' .

5




Thus we have the following extension of Theorem 4.2.

THEOREM 4.3. Let B be non-derogatory (i.e. each eigenvalue of B
i8 asgociated with only one Jordan block) and let J ; be the J-matrix
generated at step i of the Look-Ahead Lanczos. If incurable breakdoum

oceurs at step i+1, then each Ritz value of J1. 18 an eigenvalue of B.

4,7 Curable breakdown

We now have a characterization of incurable breakdown in terms of
the row and column eigenvector expansions of the starting vectors.
Such a characterization is also possible with curable breakdown
(breakdown which the Look-Ahead algorithm with a suitable pivot
circumvent)f We start by defining curable breakdown of degree 2.

Let diagonalizable B and vectors p* and q be given. Let
s:+1 and Pt be the residual vectors after the kth step of the
Look-Ahead Lanczos. Then we say the look-ahead process suffers

curable breakdown of degree % at step k if

Se1B e = 0 M=0,...,0-1 (4.4a)
2
SksqB Tia1 7 0 (4.4b)

With this breakdown, the (2x1) x (2x1) pivot matrix, X, is Hankel

matrix of the form




where £ = s:+182r # 0 and * denotes a possibly zero element.

k+1
The point here is that X'] exists so that the look-ahead process can

continue.

Let
n

and q= J a.z; (4.5)
j=1 !

where each (Ai,w;,zi) is an eigentriple of B. Then using (1.5),
(4.4a) becomes
0= 53,80y = (V)10 (818 (B)a(s(K))T
= (m(k))']ig1 jgl b,-W’;Bm(xk(B))zajzj
= (3800 0)°  agpypdzg)rul

n
- (L (x (34112 b))

(k) (k)

where B

s Y and m(k) are as in Chapter I. If we let

X = (XgaeeesXy) with x, = acb (4.6)
then

n
m m 2
e = LA )%
= (aeeead)ax s m=0,...,2-1 (4.7)

where A = diag{(xk(k]))2,....(xk()\n))2}. So (4.4a) in matrix form

becomes

VzAkx = 0

with VL the £ xn Vandermonde matrix

- RSP I G W W PR |




r] | 7
A e o o A
= n
Az-] . AE-]
- 1 n -

Further (4.4b) is

* 2 P '
SkB rk+1 b (A],...,Kn)AkX # O .

So

THEOREM 4.4. Let p* and q be as in (4.5) and nonm-defective B be
gtven. Then curable breakdown of degree 2 occurs at step k if and
only if

Akx € N(Vz) (the nullspace of Vz)

but Bx € N(V, ;)

where x = (x1,...,xn) as defined in (4.6), by = diag{(xk(l]))z,...,
(xk(ln))z}, V, %e the mxn Vandermonde matriz for m = £,5+1.

The above characterization is not entirely satisfying. We cannot
escape the dependence of Ak on x and Vk. But we can see that the
Tikelihood of selecting p* and q generating such an x decreases

with the increase in the degree of curable breakdown.

EXAMPLE 4.3. Consider

o O - O
o - O O
- O O O
O O O -~

1
E

]s p* = (1,0,0,0], q= 0 .
J o
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0
] *

Then rr =1 g and S, [0,0,0,1] ,
0

R Tich) A cRNDK UL R AL A § P
L LUty RO
B . REPERA A ot

s;Brz = [0,0,1,01[07 =0,
1
0
L0
and s;Br, = [0,1,0,01[ 07 = 1.
1
0
[ 0
* 4 * 4
Here pr= 1w, a= 12z, x=[.25,.25,.25,.25] ,
i=1 i=]
1111 .25
- Vy= |11 d-i| (1=/T), ax=| B
L1114 =25
_ -.25 |
:;f; and Voyx =0, Vaax =1,
E ’ 4.8 Curable breakdown and defective matrices
To handle the case of defective matrices (a matrix is defective
if it has at least one Jordan block of grade > 1), we may again

confine ourselves to a single Jordan block. So let nxn B be of the
form

Al
Al
B b o.o (4.9)
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............................................................

Let p* and q be as in (4. 5) let s¥

k+1 © §=1 i
Z §;z; so that
i= ]
R min(k+i-1,n) (dj-i )
b, = b (——x, (t
i j=i T ged=i7k |t=A
R i i-J
3 = T e ()
j=max(1,k-i+1) ° dt t=\

Consider from (4.4a)

- m.
0 sk+]B

k+1
%y M n‘\
= ( 2 51‘“1)3 ( Z aiz‘i)

i
= b m Am-J
( 2 " iZI J=max(?am-1+l)(3) )

Rearranging we get
= z il z (Pamd z 35924
2 ((j) Z A a +j)A J)
.A1 a
= (MU (A 1,0,..4,0)%

-JA A

where X = (X-loo--!xn) j z bi J+i

- Thus (4.4a) becomes

i VZ:‘E =0

where Vz {s the generalized Vandemonde matrix

PR ———. et - CRTE Ty R T T TR AR ACEET) aeR M-S N MRS e I e “1

N e e et - .1
ta. et nn alalia’m & em
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(4.10)

(4.17)
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2-1 ,2-1,.%=2 =T+, L-k=1 )
RS i I OO Gl it vei 1 e 0

so that

THEOREM 4.5. Let p* and q be defined by (4.5) and B by (4.8).
Let Bi and 3, be defined by (4.10) and X by (4.11). Then curable
breakdown of degree L occurs at step k if and only if

% €N
X € N(Vz+]) .
PROOF. The proof is completed by showing X € N(¥,,,). From (4.4b)
* L
0# sk+]8 el

= (N OnE LA, 1,0,.L 00

A

*
= epnlin®
where e is the (2.+1)st column of In. .
4.9 Summary

We now have the characterizations for serious breakdown in terms
of the eigensystems. Further, we have that one form of serious break-
down can be remedied and that the other form is fortuitous in the
search for eigenvalues.

Though the result of Theorem 4.2 is counter-intuitive at first,
it becomes more tangible when we consider the case of only one residual

vector becoming zero. The other residual vector does not interfere
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with one important feature of the J-matrix (that is, each Ritz value
?5 of J being an eigenvalue of B). We only lose one set of eigenvectors.
?]’ In the case of incurable breakdown we preserve the relationship

between Ritz values of J and some of the eigenvalues of B, but

cannot extract either row or column eigenvectors directly from the
subspaces generated.

Finally, we can characterize curable breakdown, from which we see
that the curable breakdown of degree k becomes less likely as k
increases. Thus the restrictions on pivot size due to practical
considerations such as storage do not unduly restrict the effectiveness

of the algorithm.
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Appendix. Look-Ahead Lanczos Algorithm

The algorithm below leaves the 2 x2 pivot factorization (i.e. U

and V*) arbitrary. Recall (section 2.8) that the step i corresponds

to the number of pivots (1x1 or 2x2) used and 2 corresponds to the

number of bases vectors generated.

Step i:
Action O:

Action 1:

(Collect and evaluate data from the previous stpe, i-1)
* * * =k

On hand are Fos Sgs Irzl, Iszl, Pi-l’ Qi-l’ 245 23, w.

If |rzl or Is;l less than some tolerance, then exit with

invariant subspace.

Check residual bounds for converged eigentriples.

(Perform look-ahead to determine pivot size
s*
. = = * _ L
a: (Complete R, [rl,rz+]] and S3 = §E+l
Foeq and §;+] from r, and s% (see section 2.9))

by generating

~

Foal < Bry = Q4%
* <%
Ty, — 1B~ 2P

2+1 i=1
b: (Compute needed inner product matrices)

*

Ni -~ SiRi
*

Xy < RiRy
*

Yy = S3S4

(Six inner products are needed since the (1,1) element
for each matrix comes from step i-1).
¢: 1. (Compute cosines of important angles)
¢ (= p;qz) = w,/(IrMst)
¢2 (= min max {|Bg, |, |Pf,qf,4q13) = O
(set for W, singular)
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Action 2:

Action 3:

.........

74

If wi cannot be factored skip to action 2.
. -% -] .
Factor Ni into Vi U and wy into BzYz'
(This version uses p*q = 1)
2. (For norms of prospective bases vectors)
- - 1/2

Iﬁz+]l <'-'(eEU‘%'XiUiei)]/z

— (o*y* 1/2
!ﬁ;l (e]ViYivie1)

LR CIHARN
If any of the above norms is less than some tolerance,
then skip to action 2.
3. (Form angles between prospective bases vectors)
by cos L(F},8,) = 1/(1B51-15,1)
g = cos L(B7,4,) = 1/(05) 105, ,41)
4. (Get the minimum angle for comparison)
¢y —min{|y,],|v,[}
(Test for failure)
If |¢1| and ¢, are too small, exit with error.
(The look-ahead process with the 2 x2 pivot is not guaranteed
to work in all cases (see Chapter IV) and the only reasonable
response is to flag these cases and exit.)
(Select bases)
If [¢;] > (some bias} * ¢, then take a single step (1x1
pivot), otherwise, take a double step (2x2 pivot).

Single step , Double step
a. (Form Q, and P;)
Qg+ To/By Q — RyYy

ot = s, °t Vs
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g.

NOTES

~t
Zin = ()

Single step Double step
(Form B; and Fi)
~ keok ~
Bi ~— Bzz* Bi — (ViSi)rkz
Ty« 247, Ty = 2355(RU;)

(Note that both Bi and ry are rank 1 matrices)

(Form the new residuals)
=1

Porl “ TasiBy Posg  (BQy=Qy_yT4)x

* -1 * ok *

Serl T Y4150+ Sgep Y (PyB-B4PYT 1)

(x and y* 2 element vectors)
(Form Ai)
- ¥ %*

Aj oy = eqisey/uy Ay + P3BQ;
- {1* *
= UjlWe,,S3Br 41V,

(Orthogonalize)
Fotl T Toa1 ~ 9%y Poe2 * Taz - QiA4x

* * o ook * * _ _y*p p*
So#1 T Sg4 "Ry Sge2 T Spay Y AP

(Form inner products for next step)

-a
2y41/2,-1 1/2
Irg gl = (o, 1% 0170 7%, e ol = (rg Ty 0s)

1550 = (oY O 2ET 1831 = (515,00
wgey + det(i “’;.2 Wrg T Spealie2
(Set z,,; and i;+])
2y = (1) 2,7 = (Viep)/ (y*Viey)

~% = * *
Zia = (eU)/(e3Uyx)
end of step 1

The above algorithm assumes that pyq, = 1 rather than ipgl =1,

qul = 1, Further, no assumption is made about the actual factorization




of w

or wi.

2
The vectors x and y* (action 3c) allow flexibility in specify-

2

ing the components of the new residuals strictly within K¥*¢  and

k2

s respectively.

The bias factor in action 3 is a programming device which permits
the Look-Ahead Lanczos to implement standard Lanczos (bias=0) or a
sequence of double steps (2x2 pivots, bias ==),

The look-ahead process modifies the two-sided Lanczos algorithm
to the extent that the next residuals are already being formed before
the bases vectors of the previous step are set (action la). Further,
if the 1x1 pivot is used (two-sided Lanczos) the horms of residual
vectors and the 1x1 pivot are calculated without more vector inner
products (action 3f).

Finally, note that the relevant cosines (see section 2.10,

Chapter II) are calculated without calculating the bases vectors

involved (actions 1b and 1c).
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