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ABSTRACT

The two-sided Lanczos algorithm is known to suffer instability in the

form of serious breakdown. This occurs when the associate moment

matrix does not permit a triangular factorization. This work uses the

notion of a generalized pivot to inexpensively circumvent the break-

down in most cases, with the 2 x2 pivot examined in detail. The case

where the generalized pivot is of no avail is analyzed, introducing a

surprising characterization for that form of serious breakdown. <.
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Introduction

In 1950, Lanczos introduced his method for computing eigenvalues

and eigenvectors of n xn matrices. His method soon came to be regarded

as transforming a general matrix to tridiagonal form. Unfortunately,

! modifications involving considerable extra work were required to main-

tain accuracy. The Lanczos process lost favor when the more stable

Givens (1954) and Householder (1958) methods were introduced.

As if to seal the fate of the Lanczos process for non-symmetric

matrices (we call it the two-sided Lanczos algorithm), Wilkinson

produced an example which demonstrates the instability of the algorithm

even with infinite precision arithmetic (Wilkinson [1958]).

Recently the symmetric Lanczos has returned as a viable method for

finding some eigenvalues and eigenvectors of large symmetric matrices.

With the current interest in handling large problems, the non-symmetric

Lanczos process is ripe for reconsideration.

Chapter I presents the classical two-sided Lanczos process. The

material is not new, and is presented in an informal manner so as to

provide a background and establish notation. Much of what could be

presented as formal theorems is merely noted in passing and left

without proof.

The key to our work, which Chapter I emphasizes, is the importance

of certain underlying Krylov subspaces and the relative unimportance of

the resulting tridiagonal matrix. The weakness of the two-sided

Lanczos process lies in its inflexibility in specifying the bases

vectors in the sequence of subspaces and our remedy relaxes the Lanczos

requirements, but by as little as possible.
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Chapter II introduces the general look-ahead algorithm from two

aspects taken up in Chapter I, the two-sided Gram-Schmidt process and
N V

the LDU factorization of the moment matrix generated by n xn B and

starting p* and q. From these two perspectives we generalize the

notion of pivot to make the Lanczos process more flexible without much

extra work. There are many factors to consider in selecting the

*m appropriate look-ahead and Chapter II explores two important points.

Chapter III continues the discussion of the look-ahead procedure,

but restricts the generalization of the pivot to the 2 x2 case alone.

The relationships of classical factorizations to the look-ahead

XI procedure are shown as well as those of some less obvious factoriza-

tions. Finally, though somewhat out of place, the Kahan, Parlett and

Jiang (KPJ [1981]) residual bounds are generalized to handle the 2 x2

case.

From Chapters II and III we become aware of two forms of what

Wilkinson calls "serious breakdown". One form we call "curable", and

it is for this case that the look-ahead Lanczos algorithm is designed.

The other form of serious breakdown we call "incurable". For

this type of breakdown no simple procedure is available. However, in

Chapter IV we exhibit a surprising characterization of incurable break-

down (the mismatch theorem) shows that this rare occurrence is only

slightly less fortunate than encountering an invariant subspace.

Notation

- Throughout this work we will use B to denote the real n xn

matrix given to the algorithm, and suppose that each eigenvalue of B
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is associated with only one Jordan block. In general, upper case

*- Roman letters will denote matrices, and lower case Roman letters will

denote vectors (though a and b will denote scalars and i, j, k, Z,

m and n are reserved as integers). Upper case Greek letters are

used for special matrices (usually diagonal), lower case Greek letters

are scalars. Script letters are spaces.

Square brackets ([ ]) indicate a matrix so that [ql,...,qn ] is

a matrix with columns qi" The matrix, Ik9 is reserved as the kxk

identity matrix. N(A) denotes the column nullspace of the matrix A.

The norms 1.1 and 1.1F are the Euclidean and Frobenius norms,

respectively. Conjugate transpose is denoted by * (eg. A*) with -*

denoting conjugate transpose of the inverse.
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I. The Two-Sided Lanczos Algorithm

1.1 Introduction

In this chapter we describe the Lanczos algorithm as applied to

a nonsymnetric n xn matrix B. In fact, we shall describe it in three

different ways: (i) the Gram-Schmidt process applied to Krylov

sequences, (ii) the three term recurrence relation and (iii) the trian-

gular factorization of the moment matrix. None of these viewpoints is

new, but each is relevant to the modification of the Lanczos algorithm

that is the focus of this work. Moreover, these sections establish

our notation.

In the course of establishing the Lanczos algorithm in the context

of exact arithmetic we want to bring out the underlying subspaces and

those which reflect a particular basis in the space. We propose that

the basic algorithm of this chopter be called the two-sided Lanczos

algorith to distinguish it from its better known--and stable--version

for symmetric matrices. In the symmetric case the temptation to iden-

tify Rn with its dual R is too strong to resist and the algorithm

simplifies significantly in exchange for identifying objects which are

logically different.

The final sections of this chapter seem to be out of place being

motivated by considerations such as avoidance of overflow or underflow

in computer implementations. In exact arithmetic the particular

scaling of the Lanczos vectors is of no consequence; in practice it

does matter. We give a thorough discussion of the subject and

reconunend a novel, and slightly redundant formulation.
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The material covered in this chapter is not new so that the

presentation is less formal than might be expected. Also, the reader

is assumed to be familiar with the Gram-Schmidt process for ortho-

normalizing a sequence of vectors.

1.2 Krylov subspaces and sequences

Given non-zero q E cn p* E , the KryZov matrices K and

K are defined by

K = K (q,B) = [qBq,...,B -q]

R* R*L p.B),P B

The columns of Kj form the Krylov column sequence generated from q.

Similarly, the rows of K* from the Krylov row sequence generated

by p*.

These column and row sequences are the primary vectors which

determine the column and row Krylov subspaces defined by

K K Z (q,B) = span K, = K C

K. K.(p*,B) = span = .KR*

These subspaces play the central role in the understanding of the

Lanczos algorithm.

The fact that B q converges to the dominant eigenvector of B

as 2- is misleading in the context of Lanczos. There is no

interest in letting X. exceed n (in the symmetric case, Z is
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typically about 3/n) and an important topic in approximation theory is

derivation of expressions which measure the closeness of certain eigen-

vectors to K2  and K*.

If K2+I = K2  then it is easily verified that (z is invariant

under B. Such subspaces are what we want, and there is no loss in

assuming that we have not achieved our goal, i.e. we may assume that

dim(K ) = dim(K.) = 2.

For theoretical purposes the columns of K (or the rows of )%2.

form a satisfactory basis for K z (K) and show the key role of

polynomials.

LEIMMA 1.1 There is a one-to-one correapondence between K z(q,B) and

- fir(t), ,r(t) = t For each E E P2-I there is a

X(B)q (B q)7ri E K a nd vice-verea. Sirilarly, p (B) E K,.
1=0

1.3 Two-Sided Gram-Schmidt (TSGS)

In his original paper (Lanczos [1950]), Lanczos remarked how

round off errors made the Krylov vectors useless for computation. He

proposed better bases for Kk and KI by applying the Gram-Schmidt

process to the Krylov vectors. This produces a biorthonormal pair of

bases {qPql,...,qq and *,p in each space. The nature

of the Gram-Schmidt process forces qj to be the component of BJ-lq

orthogonal to KJ& and p' the component of p*BJ l orthogonal to

KJ . The algorithm then is as follows:
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Select p* and q so that p*q 1 1. Set p1 = p*  ql =q.

For j = ...,21-I

,.,:. Bjq

r = q q (p!B q)

j+l I=:": S+l -P*BJ " ((P*BJqi)P!,
i--1 (1.1)

qj+l = 'j+l/B(j+I
)

9* 0 (+i)
j+I= j+l/Y

where a(j+l)y(j+l) =(J+l) :=9* -rjl.

j+ l

Note that qj4 l is the unique vector (to within scaling) in

KJ+l orthogonal to KJ. Similarly, Pj+l is unique in KJ I  ortho-

gonal to K1 . The specification of 8(j+l) is postponed until later.

For now, it is simply a non-zero scalar.

It is convenient to regard these Lciczoa vectors as columns (or

rows) of matrices,

IPi

Q = [q qj P* =

with P = I by construction.

Note that the Krylov vector Bklq is not needed until the kth

iteration in (1.1). In fact, the Xrylov vectors are not needed

explicitZy at all. At step j in (1.1) BJ-1 q and p*BJ-I  can be

replaced by Bqj.1  and Pj-l B , respectively. To see this we use the

result of the previous section that KJ'I(q,B) = {r(B)q: wEP_ 2}. In

particular, qJ-I "(B)q where the degree of - j-2 (otherwise,

qj-I would be in KJ
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span{q,....,q 1,$Bq } • ... •

= span{q 1,...,qj~ l 4 2BJq+¢(B)q} E p j-2

i span{q ... q 1j-I , -2B 'I q}

-Sspan{q,,...,qj B 1 ,q1 Ko(qB)

Similarly for p!_B and p*B~l

The algorithm (1.1) is then replaced by:

For j = 2,.•,,-l

': r = Bqj - qi(PBq)

s 1 -B p(p Bqi)p i  (12)

= j 1 'j+l (12
qj+l = rj+I/j+l

sji j+1 /Yj+1

: where 8j+lyj+l : =5+l rj+l•

The beauty of (1.2) is that the sums simplify to only two non-zero

terms as shown in the following lemma.

LEMMA 1.2 p'Bqj = pBqi = 0 for i < j-l.

PROOF. We will only consider p*Bq, since the argument is the same

for both. Consider q,= ni(B)q, i 6 p-l• Then Bqi * B~i(B)q =

,it(B)q, 1 6 Pi Then from Lemma 1.1, Bqj 6= Ki1  By construction,

Pj . Kt, .< J. Therefore, p*± Ki~l  i+l < J. Thus, p;Bqi 0,

1-< J-l.
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We isolate the non-zero coefficients by the following notation:

8 p pBq P'~r.)
J J - i *jj

j -_ (- s*qj)

a= p*Bqj

The familiar three term recurrence then is:

qo = PO = 0
q, = q/al , P* p*/y ; ly w1 l p q "

For j = do

r = Bqj - -qj

J+l1 - (1.3)
qj+l = j+1/ j+1

where oj+Iyj+1 = 4j+ 1 = s* irj+ (1.4)

Clearly, if laj+l = 0 the algorithm cannot continue. An analysis

of, and a remedy for, this condition is the purpose of this work. For

the moment, though, we will assume that wi # 0 for I =l,...,J+l.

This ends the tranditional description of the (two-sided) Lanczos

algorithm. The discussion of the problem of termination is postponed

until our stabilizing algorithm is presented (Chapters II and III). We

now illuminate various relationships which govern the coefficients a,

8 and y, and the Lanczos vectors {p*1 and {qi}.

4
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1.4 The Lanczos polynomial and the moment matrix

From the previous section we have qk = v(B)q where 7T is of

degree k-l. It is convenient to specify 1r as follows

q (--)xR-(B)q (1.5)

where (t) is a monic polynomial of degree k-l and B(k) is,:-L-"Xk. 1

defined in (1.1). The three term recurrence (1.3) for the qi's yields

a related recurrence for the Laozzoe poZynomiaZ Xi. Set X_l(t) - 0,

Xo(t) = 1. Then, by substituting (1.5) in (1.3) one obtains

Xk(t) = (t-ck)Xk-l(t) - wkXk.2(t) (1.6)

where ak and wk were defined in (1.4). Similarly,

Pk= ( )p Xk-l(B)

Moreover, a(k) = -  k and y(k) = YI*2 ° " Yk Further, it

is the product wk  (= Okyk) which determines the Lanczos polynomials.

The choice of 0k only affects the norms of q and p*.

Next we relate the Lanczos polynomial to a certain triangular

matrix. Recall

/ FPi

K= [q,Bq,...,B'lq , = p

The two-sided Gram-Schmidt process dictates that

=Qj Kj Lj (l.7a)



A.-

where L* is some j xj unit upper triangular matrix and

= diag{O(I) ,B(J)} and, similarly,

FP1
P A L K (1.7b)

where A diag{y() ...,y(J)) and CI is unit lower triangular.
Y3

Note that the inverse of a unit lower triangular matrix is also

unit lower triangular. Thus, the ith row of L;1  contains the coeffi-

stcients of the (i-1) Lanczos polynomial xi_l since

P! ( )P*Xi- (B)

Y

..::Similarly the it column of L;* contains the coefficients of the

-";: (i-I) st Lanczos polynomial, so that

M Note, now, that

K7(P*,q,B) (1.8)

the momnth imrt' whose (f,k)th element is pBe(-l)+(k-l)q. Using

(1.8), along with a rearrangement of (l.7a) and (l.7b) and P*Q =

we have

j ii
-LA P*QA L* L QL* (1.9)

. Y J J a

where AA g{ w ..wj . That is, running the
whr S1 aglw1,ww23 ... lwlw 2**w.

Lanczos algorithm for j steps is equivalent to the triangular factori-

zation of the moment matrix M In particular, a breakdown in the

_ _j,
.. ... 1. .
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Lanczos algorithm (wi =0) corresponds to failure in the triangular

factorization and vice versa. We may, if it helps, consider the

problem of stability in terms of the extensively studied triangular

factori zati on.

As noted before, these relationships are not new (Lanczos himself

used Gaussian elimination in his original algorithm), but neither are

they widely comprehended.

1.5 Matrix formulation of the Lanczos Algorithm

The three term recurrence can be written compactly by the intro-

duction of a tridiagonal matrix, J. Consider algorithm (1.3), and

write ri = qi and s= yip!. Then

[r2 ," ,"rk+l = [Bql-qltlBq2-q2 2 qY 2 B... qk-kkk-lYk]

and

PlB-al Pl

:+l I =[B-kP.kp~ I
becomes

. - BQk (1.10a)

r
and k+l



0* Pk I *
Sk+1

I I( (.10b)

where

OLI Y2
82 c2 Y3

= B3 = P*BQk o (1.lOc)

"" " Yk

..- L k ak J

A simplified notation for the rank one matrices simplifies the

matrix formulations (1.10a) and (1.10b) to

rk+lek = BQk -Qkjk

ekSk k k k

with the convention that the ek is the last column of the k xk

identity matrix, Ik, while the other vectors are of dimension n.

Finally, we relate Jk to the Lanczos polynomials by considering

its characteristic polynomial, det(tlk-Jk). Expanding by the bottom

row, we find

det(tlk-Jk) = (t'ak)det(tk-l'Jk-l) - ('Sk)(-Yk)det(tlk-2-Jk- 2)

Further, det(tll-JI ) t-a1 - Xl(t). Recall that akyk wk and

compare with (1.6) to see that

Xk is the characteristic polynomial of Jk

I
t

I; k mmlm 'l~m -- ,. .m-lm b k 'm lm l l m( d ili d .L 'k ,. . . . .. " " : " : " : " ' '
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Another approach to formulating some of these results comes from

the theory of orthogonal polynomials with respect to an inner product,

in our case the Xk are orthogonal with respect to the inner product

induced by the moment matrix M(p*,q,B) (see Brezinski, [1980)). But

we will not make explicit use of this viewpoint, since M is not

guaranteed to be positive definite, and one's intuition may be misled

by the improper inner product induced by it.

1.6 The moment matrix and the Lanczos polynomial

Up to this point, we have linked the moment matrix to the Lanczos

algorithm but not to our goal of finding some eigenvalues of a

nonsymmetric matrix. The dependence of approximate eigenvalue on only

the moment matrix will be of importance in later chapters.

Let

i z+l : i

Lmj mj+l . mzj-i+ l.

where mk  p*Bkq. ThenLEMM/1.3(1) .. (k)) (t) l"t

LEMMA 1.3 Xk(t) det[tMok.l-Ml,k)/(w •..W ) W •

PROOF. k  P*,.... k kBQk

lL lKBKL Al from (l.7a), (l.7b)
Ay k k k k

-l L 1M L -* -1
Y k ,kLk A8

and

.Y Lk ,k-1 k AB



Since Lk is unit lower triangular

Xk (t) = det(tI k-Jk)

=det( AY )det (tn Ok-l-Ml ,k )det(A a)

=det(tMOk-.l-Mlk)/(w l..Wk)

The moment matrix M~ is a special Hankel matrix (the (k,I)t

element is a function of (k+Z)) and this fact yields another deter-

minental description of the Lanczos polynomial.

LEMM4A 1.4 1 "1 mk

ml ta2..mk+l
Xk(t) y~l Wkdet :(1.11)

1 t ... tk

PROOF. The (k+l) x(k+l) matrix on the right of (1.11) can be expressed

as

k-l ki

Observe that

I rt 0 ... 0'

k) -l(k)
MO,k.l 'm1  0 -1 0 = tMO, k-1l-Ml ,k :m

l t".t tj L .. . 0 -1 *J LO ... tk

Take determinants, cancel tk and use Lemmna 1.3 to obtain the

formula.
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1.7 Off-diagonal elements of J
1Up to now, no mention of the selection of 8. (and thus yj) has

been made. In exact arithmetic no consideration is necessary, since

the directions of the p.'s and the qj s are the determininq factors.

In finite precision, this is not the case.

Such practical considerations may appear out of place in our

*, discussion of the two-sided Lanczos process, but are necessary and

propert. The problems of stabilization must be attacked in the con-

text that they are encountered, not in the ideal. Thus we assume that

we are now working in finite arithmetic and must adjust accordingly.

We certainly wish to avoid extremes in the selection of B.

Taking aj to be the largest machine number, for example, is unrea-

sonable. Not so obvious is the innocent choice of 8. = 1 as thej
following example shows.

T "EXAMPLE 1.1

2m

2 -m 2n

where m is some small positive integer (say 4) and a is arbitrary.

It is easily verified that the Lanczos algorithm produces

m)m

p 22eq -



" 2-2m

3 1 a2  2-2m

2.2

a 1

From this example we see that even for a symmetric matrix, the
sacrifice of symmetry causes exponential growth in the elements of one

Kset of vectors and exponential decline in the other.

If symmetry is such a desirable property, perhaps the selection

of 0= = 4T would be better. As it turns out, we gain

nothing over Bj = 1 as the following example demonstrates.

EXAMPLE 1.2

al

m

B 2" P , q,, m and a, as before

V -m2 a
. 2. (l

Here again p* - 2('1)me* and q= 2(l'me while

[ a2

So the entity of interest is again not the resulting matrix, but

the bases with which we are dealing.-. ~ * , .
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The risk of element growth (or decline) can be reduced by forcing

the norms of the resulting vectors, p and q to be equal. This

criterion forces

. (IW.:Ir I/Is 1)1/2

y9, = sign(w)(lw=lIs~I/Ir~l)1/2

Since w s ,r,

np*1 2 = Iq m2  (IWI/(Ir nns~n)) "

= (cos(L(s*,r

= sec ,r )) = sec(l-(p*,q,))

Therefore, the norms of each vector is not less than one and

becomes large only as the vector pair (p*,q,) approach orthogonal.

Further if B is symmetric, the process reduces (with p1 = ql) to

l: :the symmetric Lanczos algorithm.

1.8 The generalized problem

An alternative to allowing any growth in the elements of p* and

qt is to force the norms of these vectors to be unity. We then have

thatp*q* = cos(L(p*,q,)). In terms of the ultimate goal of our work,

we have generalized the problem to finding eigenvalues for the matrix

pencil J where

:S. J¢= P BQg

and

, diag{* l'42 "'",W ,} ="
r *..94t jP
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Pictorially, (l.lOa) and (l.lOb) become

The three term recurrences (1.3) then are

, -

s p *B (a/ (~ )p* -ah )p-l- (1.12a)

and

rL+,/IrS• / Is I

Z9l* IW l (1 .12b)
-Z+ p, qt~l , w,*i/Ir *.~I

gj+ p lj = cos(L.(p* ,9q,+,)) = +/(Is*+ 11r~, 1)

-~ 1.9 Summnary

The insight that comes from relating the Lanczos algorithm to the

moment matrix is this: once p* and q are chosen the success or

failure of the process is determined. If any of the moment matrices

M Iis singular then the algorithm will halt at step J-i with =0.

O"* *

If either rj 0 or s, 0* then an invariant subspace, our goal,

has been captured; otherwise (i.e. w -0, s* #0 and r #0O), the

s +1-- B -( / )p (B/, _~p l  (11Za

4g+ [ 1 r+



20

choice of p* and q was unfortunate. It could happen that no eigen-

value of J. is close to an eigenvalue of B and in such a case, the

effort seems wasted. This is called serious breakdown.

EXAMPLE 1.3 (Wilkinson, [1958])

: B =  -5 0 1 p* [.6 .3 -. 1], q = -1.

1 . 0 1 .3

p2 = - = [.6 .2 -. 267)

q= Bq- qa = -33

*2

where a = PlBql/plql = 4/3,

p2q2 = 0 serious breakdown!

The foregoing analysis shows that the Lanczos scheme is too rigid

to be stable. The great practical advantage is that the projection of

B onto K and K, is tridiagonal. If these spaces contain good

approximations to the desired eigenvectors, then the computation of

these approximations requires the calculation of certain eigenpairs of

an z xt tridiagonal matrix, a relatively easy task.

"0
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II. The Look-Ahead Lanczos Algorithm

2.1 Introduction

The ideas presented in Chapter I not only establish the Lanczos

algorithm from a general mathematical perspective, but lay the founda-

tion for the modifications that give it more flexibility. That the

subspaces, and not the particular bases, are important, allows a

modification of the Lanczos process which furnishes a potentially

powerful tool.

The "look-ahead" Lanczos algorithm presented below is a way to

relax the two-sided Lanczos algorithm. As in Chapter I, the two-sided

Gram-Schmidt process and the factorization of moment matrices play

important roles in the understanding of our new algorithm.

We will assume here that A? =Rn and Kn, = R. This is not

necessary for the study but simplifies the presentation. Tn thosvr

places where Kn - Rn is assumed, we might just as eas fly assume a

sufficiently large Invariant subspace, but such conditions add nothing

to the presentation and conceal key ideas.

2.2 Breakdown and the Two-Sided Gram-Schmidt

To understand breakdown in Lanczos and our remedy for it, it is

necessary to focus on the generation of two inter-related sets of

vectors. The sets, related by biorthogonality, form bases for the row

and column spaces Kn and Kn, respectively.

First, though, let us consider the general case. Let

Fk span~fl,...,fk}, Ga -span{gl,...,g k} with Fn -Rn and

G- R. Define the matrices
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Fk 1fl,...fk) G Lk 1
where the columns of Fk form the primary vectors of Fk and the rows

of G*  form the primary vectors of Gk. Note that rank(Fk) -

rank(G*) = k.

Applying the two-sided Gram-Schmidt process to Fkl and G ,

we get

Fk- = span{fl... ,.k} = Fk-

-k-l _- p _

* ~pan g1... ~ Gk

A"* A*
where E Fi' g1 e r,, If I = = 1, and gif = 6 i i with

'1'1 = cos L(^ ,fi). Next we apply TSGS to Fi  and Gi  by forming

k-ili ?k- (fk i 91 'k/ i
• 1 (.I)(2.1)

k-i.* =k-(9 *- I (9*?/, )a

and then normalize to obtain

i~il.  k k f k/Ik

=gf~
:"" £ k = gk k "

Note that neither fk nor 9k is zero since the f's and g's form

bases for Rn and R* (this point will be elaborated below).

Let us assume that § = 0 and t 0. We cannot

. continue the Gram-Schmidt process since that would involve division by

zero in (2.1). A different pair of sets may be selected to replace

if "
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{f " f and {g1""g} since the latter pair proved unsatis-

factory. Unfortunately, we have no more guarantee of success with a

new pair of sets than we did with the original pair.

EXAMPLE 2.1: n3

1 0 01 G .1 0 1]
.il.F 3  0 1 0 0 0 1

V.

f 0 g, [.5,0,.5]
0

0 rl 1 F01
f2 -[ o.*o J 1

.'.i 0 0 0

- [0,0,1) - O*E.5,0,.5] - [0,0,1]

and g2 2 0

2.3 Look-ahead in Two-Sided Gram-Schmidt

The defect with the standard TSGS does not lie with the primary

vectors.and. since these form bases for 1 dn

and R n. Rather, one (or both) sequences of vectors was used in an

unfortunate order. For each f. there must be some m > j such that" ._

0gmf . We formalize this concept in the following lemma.

LEMMA 2.1. Let Fk = span{fl,...,fk} and = span{g*, ...,g*1 with

Fn . and Gn f. Let f be defined by If 1  1, C- F

"and et be defined by 1^* = I g C G;, * F' 1 .

- Further, for i < gk, let i $ 0. Then there i an m >k

such that



,. .o o . . . . .. . .- -

24

where I " * F 1
m m

PROOF. First, since Fk -Efl,...,fk] has rank k and fk has a

non-zero component in the direction fk (from (2.1)), fk = Fkv ) 0.

Now, Gn = has full rank, so G f 0 0. Thus there is some mn n~ nkLgnJ

such that 0 ) 0. By construction, g*f = 0 for < k, so

ki
m > k. Let gm= gm- (gmf i/i By noting that " f 0,

Jul

the result follows.

Thus, on breakdown, we can switch gm and g* and continue

the process.

2.4 The look-ahead scheme and subspaces

What effect does the switching of primary vectors have on the

subspaces? The exchange of g with gk can be considered a

reselection of subspaces of GP. Thus, for i =k,...,m-1

r'; G;.bcme span{g,. g- ** "gT

becomes .. gmgk+l

For all other i, G remains unchanged.

This dynamic interpretation may not preserve all properties of the

original subspaces (such as BKi C KJ+l  in the case of Krylov sub-

spaces). We, therefore, present the following interpretation.
When g fk O.0we find the first gm s f k 0O

.6 1, *- l
generate k  gm m- 1 (9f /*i)gi, and normalize fk and to

form ?k and gk" Now, in place of k  G*,, we have *.
k ,kk ,
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Further, for i - k+l,...,m (from 2.1),

i-I ^ ^
"* - (gf./p.)~G] .

since is included in the sum. In other words, instead of

generating one row basis vector from each Gk,...,, we are

generating (m-k+l) row basis vectors from G*.

. The set of vectors we finally generate is, in fact, a basis for

the subspace Ge\G k'l C d (i.e., d-\G k l  is the subspace of G*

orthogonal to Fkl). Thus, a solution to serious breakdown in TSGS

consists of selecting a basis from a larger subspace.

2.5 The look-ahead scheme and matrices

We do not need to restrict ourselves to only changing the row

subspaces. We can, in fact, "look-ahead" in both row and column sub-

- spaces and select bases from \ -1 and Fm \Fk.

If we let H* = and C = Ccl ,...,c], u t m-k+l, with

k-l

~k-i~ - g -ilf/1• k -1

jk- l (fk-i+l/jj

then any bases we choose have the matrix representation

V*H* for row vectors

CU for column vectors
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for some invertible, 9. x9. matrices U and V*.

Further, if we let N = H*C, the "connection" matrix of inner

products, and h = v H and Ei = CUe i, then

N = V *U

where - diag{h l  ,hi (assuming biorthogonality of the h*'s

and E.'s). Thus, to each selection of bases vectors corresponds a

particular factorization of the inner product matrix N.

2.6 Two-Sided Gram-Schmidt and LDU factorization

We have related the "look-ahead" scheme to some factorizatlon for

a matrix. We wish now to weld this concept onto our LDU factorization

of the moment matrix. Again, we will discuss general spaces and will

return to our actual objective, Krylov subspaces, in the next section.

Consider the modified two-sided Gram-Schmidt process, i.e. at

step k,

k-i
f2 4-- f f= = k> k

k-i
. - - * ^(g~f 9. > k

- k -k-k *1gI4-- fgk 9k-

I ".. So, by construction g~fj = sf2 -0 for j < k, 2.> k (here g;

and ft denote vectors updated at each step).

• . •-
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In matrix notation this becomes

u 1! "*

I k j
k kkifGk"- 
k  'In-k  l

LJ

and

U- Zk 1

n= fl"'"'k'fk+l"'"fn] = Fk
,n-k.

where rk = diag{lg 1,... ,mg9l , ... ,1}

and 0k = diag{If '...' ' fk 9l' '..''l} .

Then

k "k ,-l) ]k]
Gk -r r, c " l

Sc(k)E I I k
0 CI k k"--nk

where

* f 1*f f *.. . * fCO)j +l fJ+1 gJ+l fn

L gn*f+ .. gfn

is the matrix of inner products at step k.

Here we have just reiterated the correspondence between TSGS and

the LDU factorizatlon of C(I). Now, to what does the look-ahead scheme

correspond?
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As shown in the previous section, the extraction of biorthogonal

basis vectors from G,, \Gk and F2+k\Fk corresponds to the factori-

zation of an ZxZ inner product matrix. This Z x Z matrix is the Zth

principle submatrix of C(k)

The matrix interpretation of the look-ahead scheme is as follows:

We perform Gaussian elimination for k-i steps and then

encounter a zero pivot. We do not wish to use either partial

or complete pivoting for various reasons (e.g. not all ele-

ments are readily available). Following Kahan (Parlett and

Bunch [1971]) we prefer to generalize the notion of a pivot,

from a scalar quantity to a matrix. We then search for a

*" suitably well-conditioned principle submatrix, and using an
appropriate factorization, use that as our pivot.

Pictorially, the final factorization is then

2.7 Lanczos and look-ahead

* .We now have a method to remedy the breakdown of the two-sided

Gram-Schmidt process. To interpret this for Lanczos we replace Fk

with Kk and Gk with k.

As we have seen, the selection of bases vectors corresponds to the

factorizatlon of a particular matrix. In the Lanczos process, it is

convenient not to use the principle submatrix of the moment matrix

(matrix of inner products) but to use a scaled version. This will become

clear as we present the look-ahead..
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Let

rn*

S k+ Zk In-k+1"J Lp*Bn-l

and

= £rl""'Fk'k+l ,.rf n  [q,Bq,... Bn-lq)[k k ]
.. Ink+1

where k is such that 91 is orthogonal to Kk-1  (and, by symmetry,

rj is orthogonal to K 1  for j > k. Then

[Lk [nk -l 0 k k
nk I -k l Mn-k+lj n_ n k+l

L~ ~ )nk+1  0 n-k+l L~ )n-k+l

with k-1 diag{w l.wl 2 ".' l"'k-1}. and Lk and .[ no longer

with unit diagonals. In Lanczos, it is the principle submatrices of
M rather than those of M with which we have interest.
n-k+l n- k+l

We thus consider the 1 x 1 principle submatrix of Mn-k+l' 'k" If

k= 0, we try the 2 x2 principle submatrix of Mn-k+l and so on

until we have a suitable pivot.

TIm
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2.8 Effects of the look-ahead scheme on the J matrix

We must pay a price for stepping outside the strict sequence of

Krylov subspaces.

For this section we need to adjust our notation. Let i denote

the ith step of the "look-ahead" algorithm whether the pivot is 1 x 1,

S2 x2, or larger. Let Z denote the actual vector index and let
pp~

Pi and Q = [q." "qq

LP,+k-1

whenever a kxk pivot is used. Then

FP1
" Jm =  BEQp"'" 'Qm]

lP.B QP 1  " P B

= P * * P*B~

The P's and Q's enjoy the same orthogonality properties that the p's

and q's did in the two-sided Lanczos algorithm. That is

P*QJ = 0 , j

Thus, J reduces to block tridlagonal
m

FA r2  1

B2 A2." m "
I * n

LBn *AnJ

(Bj here denotes upper case 8); the dimensions of the blocks being

e
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determined by the dimensions of the P's and Q's.

2.9 Subspaces for look-ahead Lanczos

Recall that factorization of the pivot matrix corresponds to

selection of a pair of bases. The factorization used needs to hold some

advantage over the infinite number of other choices; an advantage that

must be reflected in the selection of the associated basis vectors.

Before continuing, it is necessary to indicate precisely what the

subspaces are and how they are produced. These spaces correspond to

G n dk-1 F\Fk of section 2.6.

Let k-i be the number of successful steps of the two-sided

Lanczos process, that is, we have successfully found bases for Kklk-
and Kk . Let us now assume that breakdown has occurred. We need to

find m such that Km\Kkl and *\ have m-k+l dimensional

biorthogonal bases. How do we find them?

First we need a set of primary vectors spanning the appropriate

subspaces. Recall from Chapter I that Bqj_, r= KJ . Similarly,

Brk G Kk+' since r, ( Kk, rk Kk l. Further, B2rk E K

B.r e Kk+3 and so on. So, with rk at hand, the representativekk
vectors for Kk-l through Km  are obtained by matrix products with

B. To obtain vectors in Km\Kkl we need only orthogonalize each

B r to K; . Such orthogonalizations require that bases vectors
k-

for (perhaps all) Kk-l and K "1 be available.

We can avoid keeping these bases around by following the two-sided

Lanczos algorithm. Let k be the current residual, and generate the
k-

rest of the primary vectors for Km\Kk '  as follows.

4- ' . . • . . . .
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' For j =k,...,m-

r = Br (p*Bi/ (2.2a)

j+l i -(k-lj ik-i 2.a
k-1 -

LEMMA 2.2. 1 K.1

PROOF. Fk I K;l by construction so BF, I Kk 2  Since qk-1 I K*

k ± 42 Now p lrk+1 Brk  (p0; thus.-. k" I = Pk-I k *k-I Pk- rk/k-I 0 ;tu

"k+l I K- 'l  The result follows by induction.

Similarly, we may generate K\Kk  by the following: Let

be the current residual.

For ,j = .,m-1

"* s (9Bqk-1 *kl k

2.10 Choosing orthogonal bases

We now have row and column vectors spanning the subspaces of

consequence. From these vectors we will generate bases to continue

our process. But how shall we decide between different bases?

Assume that Q is nxL ( =m-k+l) matrix whose column space is

V'u\Kk'l and P* is such that P*Q is diagonal and the row space of

P* is K,\K I. There is no loss in generality in forcing all bases

vectors to have Euclidean norm of unity. It follows that

i < IP*g<A", 1 < IQI < A.

A prevalent measure of the linear independence of P*'s rows is

cond(P*) = IP*IIP+I = a1(P*)/az(P*)

where P+ denotes the pseudo-inverse of ,



33

'"a, (P*) >a2(P*) I... >__(P*) > 0 are the singular values of P*. Our

normalization ensures that > aI(P*) and so our interest focuses

on a2 (P*). Note further that

:3. (P*) (a (P*) ... a,(P*))/" = det(P*P)l/ 2

There seems to be little prospect of estimating a,(P*) or a,(Q)

directly.

We try another approach. Let Z = n and suppose that P*Q =

= diag{al,...,an  with lal> 2 >..->an>0. In this case

,-°-1

cond(P*) =P*I I

= IPlIQQlI

n
I ~ < anl =nlan

This suggests that among biorthogonal bases we should prefer those

which maximize

mjn Ip'qi l . (2.3)

The assumption 2 = n was for simplicity only. In general, for

. < n, P+ =QnI and so

cond(P*) = IP*IIQQ- l < IP*IIQIl IlI < Vt.

To return to the look-ahead Lanczos, we wish to select bases which

maximize (2.3) over k < I < m. This is a non-trivial problem. We

will discuss the 2 x2 pivot in Chapter III but leave the general case

as beyond the scope of this work.

!a!
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2.11 Practical side of pivot selection

In the previous section we discussed the selection of bases for

a particular pair of subspaces KKkl and K K*"l  In particular

we must not only select bases within subspaces, but between subspaces

themselves. If say cos L(rk,sk) were very small but non-zero, exact

arithmetic would allow the Lanczos process to continue, whereas fini.te

precision would cause the Lanczos process to behave erroneously.

To employ the cosines of angles between the different possible

bases, we must first decide which angles are important and which are

not. We do not wish, for example, to only compare all possible bases

in Km\K and K**\K* - . By ignoring the bases of smaller subspaces,

we may miss a smaller subspace coupled with a subspace beyond considera-

tion at step k which would yield a superior pair of bases.

Instead we assume that to each pivot block corresponds one

"optimal" pair of bases and we then

maximize minimum Ipqij . (2.4)
j=I,...,L i=l,...,j

This criterion gives a way to determine the "best" pivot at each step.

Of practical consideration is fast memory limitations. We need

to reduce memory requirements as much as possible. Further, the block

tridiagonal form is not immediately amenable to eigenvalue analysis.

Thus some restrictions on the form of the J matrix are in order.

Recall that the blocks of the J matrix are of the form P BQ.

where ji-il 1. If P is kxn and Qj is nxm, PiBQ. is kxm.

6 Thus, with a maximum pivot size of Z, the bandwidth of J may be as

large as 3Z.
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We can reduce the maximum bandwidth to 2Z+l by preserving the

order of one Krylov sequence. For example, if qi E Ki for all i,

p Bqi = 0, li-jl < 1, and the J matrix retains the Hessenberg form.

2.12 Summary

We now have a method for stabilizing the two-sided Lanczos process.

This stabilization preserves as much as possible of the Krylov space

structure. The cost of our remedy may seem expensive, several extra

matrix-vector products, but will be absorbed in use, as seen in

Chapter III.

Further, (2.4) gives a clear measure of the superiority of one

pair of bases over another and one pivot size over another. The

*4 differences in dimension of the competing subspaces is unimportant.

That is, if, at step i, we use a k xk pivot instead of an xt pivot,

k < 1, the problem of selecting bases vectors at step i+l is indepen-

dent of the selection at step i, in spite of the overlap of subspaces.

Finally, we can not ignore the fact that there is available only

a limited amount of storage. The vectors we can retain in memory and

the size of the J matrix are limited. The storage crunch is reduced

- by forcing one Krylov sequence to remain intact. Further, by limiting

pivot size we can limit the bandwidth of J and the number of vectors

that must be kept in fast storage.

In other words, the look-ahead mechanism allows us to balance the

competing demands for well-conditioned bases and limited fast storage.

It turns out that the simple extension to allow 2 x2 pivots eliminates

many instances of bad bases without a significant increase in storage

requirements.
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III. 2 x2 Pivot

3.1 Introduction

In this chapter we complete our discussion of the generalized

pivot. The analysis is non-trivial so we confine ourselves to the

2 x2 case and leave the general case to subsequent work.

The relationship between the pivot factorization and the bases is

exhibited for some familiar factoring schemes. Further, the angles

between the subspaces, I la Davis and Kahan, is presented. This

approach gives bases independent of the primary vectors and presents

us with a tool for finding the best bases in the sense of Chapter II

*(section 2.11).

To complete the discussion of the look-ahead algorithm, we need

a criterion for judging approximate eigenvalues. Alas, none exists.

However, Kahan, Parlett and Jiang have produced residual bounds on

approximate eigensystems and we generalize their discussion of residual

bounds for Lanczos to encompass the look-ahead Lanczos.

Much of the discussion refers to quantities defined in Chapter II.

As a brief review, recall s! and r. denote the row and columns

residual vectors at step j with s! I KJ 'l and r . A-'. Further,

the look-ahead procedure determines biorthogonal bases vectors in

.m\J'1 (all vectors in Km  orthogonal to Kb"I) and 4\4-1

- The pivot matrix will be defined explicitly for the two dimen-

sional case. The explicit relationship between the pivot factoriza-

* tion and the bases determined by that factorization (section 2.6) will

' be used without being rederived.
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3.2 Subspace considerations

As in Chapter II, assume that the two-sided Lanczos has proceeded

for j-1 steps without serious breakdown. That is the bases vectors

and {p(•...,p_} are such that qiE Ki and pe z K.

We now assume that the current residuals rj and s' are too nearly

orthogonal to proceed with the Lanczos process.

Following section 2.9, we generate the primary vectors which

determine the subspaces of interest, KJI \Kji l and KJ*I\ j l.

With r. and s! already present, the remaining primary vectors are

defined from (2.2a) and (2.2b) by

rj+ 1  Br. - qj-(w/£j-) (3.1)
9!,i s!B" (w/li-I )P!-I

where w = sjrj and -= p-q

Let R = K 1\K and S Kj+\Kj-  be the planes for which

we wish to generate biorthogonal bases. Then

R = span{rj •?jI} C ]R

S= span{s, ,1 } C n

Let R = ?J+ l  S* = then the pivot matrix W is defined

by

W aS*R ]
(See section 2.7, Chapter II.) For this chapter, W is assumed to be

non-singular.

Note that for any selection of blorthogonal bases R = IC,^+] and

* [,+] in R and S,, respectively, there exist invertible
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2 x2 matrices U and V* such that

A

R = RU
A* (3.2)S:•  = v*s•

Further, from Chapter II

A*

WW _ V'*U (3.3)

where Y = S*R = diag{Ali 2}.

Assume that 2, * is the pair of bases which is produced by the

look-ahead procedure. Recall that to compare this choice with the

biorthogonal pair of vectors produced by the two-sided Lanczos process

((2.4) with L= 2), we must calculate the cosines between the possible

bases vectors.

This appears to be extra work, since it seems to require the

generation of R and S*. However, by utilizing (3.2) and (3.3) the

cost becomes minimal (see the algorithm in the appendix for details).

The labor involves the primary vectors for the subspaces but does not

require and * explicitly. Further, if the two-sided Lanczos is

used instead of the 2 x2 pivot scheme, the matrix-vector products in

(3.1) are not wasted (again, details accompany the algorithm in the

appendix).

3.3 Pivot factorization

When discussing factorizations of matrices, some obvious candi-

dates come to mind. These factorizations are exhibited below in terms

of their correspondence to bases vectors in the underlying subspaces

R and S*, and their effect on the J-matrix. Here, we are only
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concerned with the directions of the bases vectors, and ignore the

effects of scaling.

1. LU Factorization

1 -e2/wj

Here both the row and column Krylov sequences are preserved. Thus,

locally, the J-matrix is both upper and lower Hessenberg.

This factorization corresponds to two successive steps of the

two-sided Lanczos process.

2. UL Factorization

Here both F,+l and s9+ j • are preserved but rj and s*. are modi-

fled. This is equivalent to exchanging I* and s* and Fj+I withj+l 1 ~
r. in the Krylov sequences. We can preserve a mixed symmetry in J
3

(Iik,LI l ,kl) with appropriate scaling, but the Hessenberg form is

lost.

3. QR Factorization

::- z- , T' 1 -0,,,] r '_ o , ,,.,,-j
2 a2 + 2

Here the Hessenberg form of J is again preserved. The row space

bases vectors, though, are both in 4+ so that a definite bump above

the super-diagonal is created.

",
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4. LU with Interchange

The factorization corresponds to partial pivoting in the LU factoriza-

tion of W. In terms of the residual vectors the column Krylov

sequence (q.eKJ, q.~1 EKJ+ ) is preserved (thus the Hessenberg formJJ

of J) but in the row Krylov sequence s! and 9 are exchangedj j+1

(thus a definite bump above the super-diagonal of J).

5. Spectral Decomposition

W = U*yU

UU = I , T = diag{ip1, 2}

1 =1 2~ 42)1/2)
IPl = i w+ W'+ ((ww)2 + 462)/2

(= + (( _4)2 +462)1/2)

- Here the row vectors both come from and the column vectors come

from KJ+l  Thus the J-matrix bulges on both sides of the off-diagonal

as in the UL factorization. Also, with appropriate scaling mixed

symmetry is preserved.

3.4 The angles between q and

We digress slightly to lay the foundations for a useful analytic

tool. Recall (from section 3.2) that R and S (not S,) are sub-

spaces of Jn.

In [Davis & Kahan, 1970] it is shown to be proper to speak of the

(two).angles between R and S. In addition to the well known minimum

angle between a vector in R and a vector in S, there is another
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well defined angle which has to be included in a full assessment of

the relationship between R and S. These angles depend only on R

and S but, nevertheless, there is a distinguished pair of bases

associated with them. This "angle basis" will be useful in our

analysis.

We denote this basis by columns of = ,q+] for R and the

columns of P = [p,+] for S. (For this section only we "transpose"

S, and P* in order to consider R and S subspaces of the same pn.)

The matrices & and P are distinguished by four properties:

() * = P 2

(ii) P = 12
~(iii) Q*§ = 12

(iv) L(qp) = min L(r,s) over r R and s r S

When L(%,p) < L(*+,p+) then P and Q are unique to within ±. For

reasons given below this pair of bases is not preferred in the Look-

Ahead Lanczos algorithm.

We note in passing that properties (i) and (iv) together deter-

mine P+ and q+ (provided that % and q are unique).

PROOF. The vector 4+ is in the one dimensional subspace of R

orthogonal to P. Similarly p+ is in the one dimensional subspace
A

of S orthogonal to q

3.5 The angle basis and the SVD of P*Q

Kahan and Davis show how to find Q and P from any pair of

orthogonal bases of R and S. Let P* and Q be orthonormal bases

for S* and R. Then
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P* = V*S*

(3.4)
Q = RU

where V* and U are invertible 2 x2 matrices.

The bases P* and Q are then found as follows:
b=

= QO (3.5)

where P*Q = VZO* is the singular value decomposition (SVD) of P*Q

and E = diag{aa 21 is the matrix of the cosines of the angles between

R and S*.

Of practical interest is the fact that a1 and 02 can be

obtained from R and S* without forming any intermediate vectors.

This follows from rearranging (3.4) and substituting in (3.5) to get

VEU = WU .

So the angle basis comes from an unobvious factorization of W.

3.6 Maximizing bases

We now wish to find a pair of bases which is the best in the sense

of (2.11), that is, the bases {p*,p*} and {q,q+} such that

maximum minimum {lp*qi,lP+q+l}
*p,q

is attained. The maximum can be determined as the following theorem

shows.

0o
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THEOREM 3.1. Let (P*,Q) -minimum {lp*ql,lpq+l} where P*- {p*p+}

and Q = {q,q+} are any pair of biorthogonal bases for S* and R,

respectively, with Ip*I = lp*1 = 1 and iqI = 1q. = I1. Then

maximum *(P,Q) = 2---2 (= harmonic mean of a, and 02)P, 0l+02

where 01 > 02 > 0 are the cosines of the angles between S* and R.

Further,

a2 < maximum i(P,Q) < 01
PQ; p*p+=O-

PROOF. Let P* and Q denote the angle bases of section 3.4. Let

...L = and Q ,

be any other biorthogonal bases with I0*1 = I1* = 1 and I1 = I +1

= . Thus, if we let V be such that

then~ = cos e sin &1 foLnthen V* for some pair of angles e and p.

Further, to preserve biorthogonality, if

U

then U has the form

T- a -T2 02 sin e

-T [;la, sin T2 la ICos e]

2  2 n2  2 2 2 2 2 21where T a sin +a Cos and T= OaCos e+oa sin e. Then

"'",," ':..-' 2 "1 2"" " " i' _ " .
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= diag{l "a2} with

S - l 1acOS(O+IP) ' 2 212cos(e+
1 1 2 ' 2 2a a 2o

Define l(e,o) and C2 (e,) by

lip) = a1 a2cos(e+)/T1 (1)

2(e,*) = a1a.2cos( +2)/T2 (e)

where

(T1ip))2 - o 2si + a2 cos2o

2T a aCos 6 + a sin e2(T(e)) 1 2

Then

':..:: p(P,.QJ = minimum{ l (e,W), 2 (e,O,)}

for appropriate e, p. Our problem thus becomes finding

maximum minimum{ 1(B,,), 2 (e,)). We do this with the help of two
lemmas. The first isolates stationary points on level curves.

LEMMA 3.1. For fixed p, r1(e,p) has a relative maxw at 8 =

and (,*) has a relative naximwn at e a arctan(-2 -tan p).

Further V*P* is orthonora. at 6 and Q is orthonoraZ at
2

e - arctan(--tan*).
02

__._.a a102 sin(+0i)
PROOF. (e'i)= T( ,) =0 when 0 = -0

2
6e 0 1' - "ala2/T1 (1p) < 0

,: 2 0 . 1 •  aC 2~ sin e cos*0 + c 2 cos e sin 4))/ (T ()3

2 2 2 . 3

-0 when tan e - / 22-a1 /0 ta°i
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2
.--o 2[(a2cos 1 cos,-osinesin p)/(t2 (e))

+ (a sinecos,+a cosesinW)-- (T-()) 3)

-a la2(01 a2cOse/T2 (e) +a a1 02sin e/r 2 (e))/( 2 (6)) 3

when tan 6 a (-a /a2)tanp

= -(aIa 2 )2/(t2(6))4 < 0

When e6--

S*o= s -sin;Lsin q cosos

-72 01
Now let tan e =--tan* = tan a for some a. Then

01 02

sin a = o2(sin B)/T 2(O) = 1
0
1(sin ip)/4 l(')

cos a = aI (cos e) 2(e) = a2 (cos ')/TI(W)

so that

u r cos a sin al
U s= a cos aj

The second lemma establishes the point where p changes from

r.,0',0) to €2(e,*1.

LEMMA 3.2. el(e, ,) -alo)sln(21)// sinz +0cosy (3.6)

when e

PROOF. l(e,W) 42(") when Tl(*) T 2(6), i.e.

.- sin2 +a cos2 ,= a cos 2e+osin 2e

or 1 o(a2+C2 -(a 2a2)cos 2) 1 (a2+a2) + 22 20)

which reduces to
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cos 2P = -cos 2e

- -. which occurs when

2tp = 2 + r

or = (3.7)

Substituting (3.7) into :l(e,ip) and 2(e,lp) gives the result. *

We now have two lemmas which seem unrelated to the problem.

However, for a fixed ,, max() must occur either at a relative

maxima or when = 2" That is, for fixed £p, either

for all e

J = 2 when TOP) < T2 (6)or = 2
when T1 (V) > .2(e)

The symmetry of the properties of the two planes R and S,

means that for orthogonal bases, only 2(8,i) with e - -p need be

maximized along with maximizing (3.6).

When e

ala z +cYTs~in_"_i< a, 38

a2 < - ala 2/,ra coszip+ osinZ* < (3.8)

However, when {2 (-,) > (-£j,), T = {i(-i,,), so that the

cross-over point from 2 to l is of interest. Thus, we are again

K concerned with maximizing (3.6). (Note that (3.8) constitutes the

second part of the theorem.)

From (3.6) we have

T(j,) - - = 2( _ ,I *) -ala 2sin 2i/,/afsinzp+a~cosz*

= la2sin */.(of/az)tanzip+l
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( 2a cos //((alla2 )tan p)2 +1

S22,) a' t )2 )3/2
- 2alsin ( tan sec ((2tan +1

022

2a, 0'1ii~ l)32cos*((- )2tan2,+l)
ta~n q +1a3/21n2 2+1

01. 2o
2

2 1. 2

ii~~~ ~ ~ i ((tata £b2+)32eos

- (-~sn%+- cs%

02

,-. 2 +1 / a 1S

,(acaa ta 2-¢

02

2 2 .2 2 4 2 2(a TCOs ip s 1n w+a2cos asin im ,

1 . 2 4

TL.I basis vectors c(maximi ng T w1 a ve no-er opoet) h

-0 when tanes of the i.e. when arctan ,,
2

S2(arcta ) 2a +

2a- a2/" Iu+2

3.7 Practical 2 x2 pivot

The column basis vectors for which T attains its maximum, in

general, will have non-zero components of B~q. Similarly, the row

basis vectors maximizing 'V will have non-zero components in the

direction p*Bi. Therefore, the J-matrlx is not Hessenberg, and to

preserve Hessenberg form the optimum basis must be sacrificed.

This is not a great sacrifice. Recall that the max min cosine is

the harmonic mean of the cosines of the angles between R and *

01+02 But

02 < 2ala21(al+ 2) < 2a2
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with the upper bound achieved only when cJ-+. Further, from

Theorem 3.1, for P* orthonormal

02< p*ql,lp*q. Icy,.

Thus, by forcing P* to be orthonormal, 'Y will never be less than

half its maximum possible value. Further,

CLAIM. For fixed q ER, S*q 0, there are p* and P* S* and

qE R, such that

P*Q is diagonal

and * I

PROOF. Let q E R. Let span{p,'P21 S ~ wit 2pI pI=1

Pl 0. Let

=p*- (p q/p~rq)p*

Then

= - * 221/2

Let R, ~ q, then

q+ q- (p*q/p*q)q

If q is set as r /Ir I and P* is orthogonal, the J-matrix

remains Hessenberg while the cosine of the maximum angle is no worse

than half the optimum.
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3.8 Residual bounds

For symmetric matrices, the Rayleigh-Ritz procedure gives the

best approximation to eigenvalues when approximate eigenvectors are

known, and this theory has been exploited in the symmetric Lanczos pro-

cess (Parlett [1980]). Kahan, Parlett and Jiang ([1981]) approached

the non-symmetric case and produced residual bounds to measure conver-

" -gence in the sense of backwards error analysis.

We summarize the results below and extend them to handle the look-

ahead procedure. The terminology established for the symmetric case,

though not precisely correct in the non-symmetric case, is used. Thus

"Ritz value" denotes an eigenvalue of the J-matrix, and "Ritz vector"

corresponds to a particular approximation to an eigenvector of B.

It is important to note that for scalar 8 and vectors x and

y* we are not producing a bound on IX(B)-eI as can be done in the

symmetric case, but a lower bound on IB-9I where nxn B has

'o-. (e,xy*) as an eigentriple [(c,z,w*) is called an eigentriple of C

if Cz = za and w*C =w*]. Thus we assess the convergence of

(O,x,y*) to eigentriples of B in terms of the deformation needed to

.- make them exact.

The main results of the Kahan, Parlett and Jiang paper (KPJ) will

be presented without proof, beginning with the main theorem of their

work.

THEOREM 3.2 (Kahan, Parlett and Jiang). Let nxn B and nxm ortho-

normaZ P and Q be given. For any mxm D let

R= BQ - QC

S*= P*B - DP*
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C P (p*Qf D(P*Q)

and Z = P*(PQ-QC) = (P*B-DP*)Q

Then there exist solutions E of

(B-E)Q = QC and P*(B-E) = DP*

with minimal norms; some with

IEI mi REN= max{IRI,NS*l}
E

and others with

EIF FinF EIF1=F

Let (e,z,w*) be an eigentriple of J., the J-matrix from the

Sth step of the look-ahead procedure. Let Q -- [ql"..qj3 and

".- = then the "Ritz vectors" x and y* are defined by
i P ]x = Qjza

y w*P!

Assume that w*z 1 and P*Q* - I. so that y*x = 1. Then

COROLLARY 3.1 (KPJ). The closest matrix to B with (O,x,y*) as an

eigentriple, is B-E for E satisfying

" ' {~I j+l j jjlqj+ 1 '['j+jwjI! lIp;1

. EI max mm l*

where BQ -Qj = [O,...,O9qj+iOj+ I]
P*B J * =[0 1j

j iiJ
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c. is the last element of z

W. the last element of w and $=ly~ *jlr

and

COROLLARY 3.2 (KPJ). Let (e,z,w*) be an eigentriple of J with

W~z * .Then for all k > j, (e,1,0*) is an eigentriple of J -G
k k

and with e the i th column ofI

G+ j )e14+..j+ I)%e!Gk = 1 ie+iz Iw*i j+l

Moreover,

IGkI Umax~i 1 s~i

112  y+w1

and both normzs are independent of k.

The proof of the above corollary does not require strict use of

the Lanczos process, but requires that the ,jt step be done using a

* 1 x 1 pivot. Further, we can modify the proofs to handle the 2 x 2

pivot.

3.9 Residual bounds with 2 x2 pivots

The key to generalizing Corollaries 3.1 and 3.2 is to remember

the block tridiagonal structure of the J-matrix (section 2.8) so that
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AI r2
B2 A2

2.B rA

(recall that the i in A. refers to the step count and is indepen-

dent of the pivot size used). Let B.+1 =j+]

r1 = j+,j+l* be the additions to the J-matrix for a 1 xl pivot.
Then by putting B2 +1  in place of 8j+ 1  and in place of

in Corollary 3.1, we get

COROLLARY 3.3. The cloaest matrix to B with (O,x,y*) as an eigen-

triple is B-E satisfying

( j + I C +Pj+lcj- 11 I Yj+lolj+6j+iwj ii
E' maxi (j) 1l.( y*,)I I

where BQj -QjJj =qj+l(0,...,Oj+ 1 I ) (3.9a)

P - P (pj+1(O, ,j+1))* (3.9b)

x=Q~z y*c=w*P*.
adX Q z Y .*P

PROOF. The equations (3.9a) and (3.9b) drop out of the Look-Ahead

Lanczos algorithm. We may post multiply (3.9a) by any vector in RJ .

The most useful choice is the elgenvector z associated with the Ritz

value e, so that

Bx - Xe BQjz- Qjze

BQ z-Q jz =qj(0 ,o, J+ 1, )z,a• .
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Similarly

y5 yB - Oy* Z w *P* B - JwP

= W*P ~B-W*J P!~
JJ

o01
W* p'

6j+l Pj+l

By applying Theorem 3.2 with m=1, the result follows.

The trick of replacing Bj+ 1 by B+, and Yj+I by r. in the

, KPJ proof, Corollary 3.1 goes over to Corollary 3.3 in a straight-

forward way. Similarly, Corollary 3.2 generalizes to

COROLLARY 3.4. Let (e,z,w*) be an eigentripZe of J. with w*z =

Then for aZZ k >j (,!, *) is an eigentripZe of Jk-Gk a

(wi th e i the ith coZwmn of I)

" +lci=pi+l YJ+lIj+6j+IIy-I

k IzI j+l Iw*I j+1

Moreover,

.-- ,::': ,'6k, . mx{i.±+ o+ i,,, ,!2,W = 4,tl.W**, I}+0,"r"l Iyj+l! +64JWlI

2 2
2 10 +l P+4jl .jll+6j+1lIIGkl = +.-. Izl2  Iw*lz

and the norms are independent of k.

Though at present we have restricted ourselves to the 2 x 2 case,

the generalization holds for any pivot size. The replacement of $j+l

and Yj+l by Bj+I. and rj+ I, respectively, is independent of the
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length of Bj+ and rj+ I. Note that the residuals remain of rank

one.

So now we can, in principle, test all the Ritz values, Bi, at

each step and determine which are acceptable in the sense of being

eigenvalues of matrices close to B.

3.10 Summary

We now have an understanding of the effects of various factoriza-

tions of the 2 x2 pivot, just as we saw the effects of various factori-

zations of the 1 xl pivot in Chapter I. Further, we have seen that the

natural bases, the angle bases, are not the most desirable either for

keeping J sparse or to keep L(qi,p ) minimal.

Moreover, we determined just how much can be gained from any

factorization and how to weigh this against a more convenient structure

' for the J-matrix. The increase of maximum min{Ip*ql,lp q+ll by a

factor of 2 may be the difference between continuing the Look-Ahead

Lanczos process and admitting failure. However, without a convenient

method for solving the eigenvalue problem for non-Hessenberg J, what

was gained with the optimum basis is lost converting J to Hessenberg

form.

Finally, the assessment of convergence of eigenelements of J to

eigenelements of B has also been discussed. Though seemingly out of

,-E place in this chapter, this presentation completes the material neces-

sary for producing a working (though not necessarily efficient)

procedure. As noted, the residual bound calculations may be performed0
for every Ritz value at each step, and convergence of appropriate eigen-

elements can be determined.

0.2-
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IV. Serious Breakdown

4.1 Introduction

We have presented Lanczos without serious breakdown, and the

K:! Look-Ahead Lanczos for some cases of serious breakdown. However, there

are cases where the Look-Ahead Lanczos process cannot succeed, no matter

r how large the pivot we use. This form of breakdown we call "incurable".

Incurable breakdown at first glance seems a disaster. We are in

possession of non-zero residuals which are mutually orthogonal, for

which there is no foreward looking remedy. We will show, however,

.- that incurable breakdown is a blessing peculiarly related to the

encountering of a zero residual.

To complete the discussion of the Look-Ahead Lanczos algorithm,

we present a characterization motivated by the foregoing analysis of

breakdown for which the look-ahead algorithm is successful. This

characterization rounds out the analysis of the look-ahead.

4.2 Invariant subspaces

Suppose by some special relation of the starting vectors, that

the Krylov subspaces become invariant before the nth step. Say, let

K (q,B) and K4(p*,B) be invariant subspaces with k, Z < n. Note

that in the discussion of incurable breakdown, we may disregard the

case of k -n or of Z -n, since Chapter II shows that such break-

down is Impossible.

Define the row and column generalized eigenvectors of B, w and

zj, respectively, so that wizj - dlJ Then it follows from the

Jordan form of B that for some il,...,ik and Jl"'*.. k that
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Kk"= span{z ,...,z
11 1k

K = span{w ,...w }

We may assume that

k
q = amzi a M#0, m=l,...,k (4.1a)

m=I m
-. 2.

and p= [ b b #0, m=l,991 (4.lb)
m=I "jm m

!k
since such vectors exist in Kk and K( ), respectively, and may be

used to generate the Krylov subspaces.

Let s* and r be the row and column residual vectors,m m

respectively, at step m. Then incurable breakdown at step m is

defined by

s 0*
rm 0

and S*BJr m  0, j> 0.mm

Thus incurable breakdown occurs when s* J Kk (or equivalently

r I b~). Note that Incurable breakdown must occur at step m <

min{X,k}, since at step j = min{Z,k} one residual is zero, which is

not breakdown.

4.3 The moment matrix and incurable breakdown

Eventually we will link tncurable breakdown to the eigenexpansions

(4.la) and (4.1b). We will accomplish this in steps, the first

*W relating incurable breakdown to the rank of the moment matrix.

-..:. .__._



LEMMtA 4.1. Let Mn be the n xn moment matrix generated by p*, q

and B. Let K* be the row Krylov matrix and K the column lYrylovn n
matrix. Then incurable breakdown occurs if and only if

rank(M )< mln{rank(K ),rank(K )In n n
=min{dim( n) dim(Kn ),

PROOF. sufficiency: Assume that the Look-Ahead Lanczos algorithm

suffers incurable breakdown at step m. Since the look-ahead algorithm

is a modified two-sided Gram-Schmidt process, it is equivalent to

making elementary matrix operations on K and Kn Let U and V*n n
be the matrices which perform these operations so that

rp1jq j < m
eVn J rj-m jm' nUej = -Mr jm

m 8 m -j

where ej is the jt column ofI

Recall that incurable breakdown means smB rm *0 for I > 0.

Hence,

V*K*K U =V*MU j 0

nnL 0 :Mn..,l+(sm*rm B) J

Since U and V* are invertible

Rank(M )=rank(V*M U) m m-I
n n

To complete this part of the proof, note that
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r to implies dim(Kn ) = rank(Kn) = rank(KnU) > m

and s* O  implies dim(Kn ) = rank(K*) = rank(V*i*) > m
in nn

Necessity: Let m-1 = rank(Mn) = rank(Kn) < rank(R*) (say).

n n- n

Let U and V* be as above. We need only show rm= 0 to complete

the proof. Let Qm-i [ql" 'mI Pm-I - . There is no
r" LPm-l-

loss in generality in assuming P*IQm-I = Im-l Rank(Kn) = m-i

implies rm = Qm-ic for some vector c. Now

-0 -Pm-lrm = P*.Qmlc = c

EXAMPLE 4.1 (Incurable breakdown). Let

B 1 0 0 0 0= ll,0,0]1 l 0 j 01LO 0 1 01 0oj

Then

: :"0 1 0 1 1 0 0 1

K4 1 0 1 0 1, 0 0 1 1

S0 1 0 1 L0 1 1 0J

so that

6M
0 1 L 1 1 1

64

j
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Note that p ql z p*q = I. From (1.3)

2F -1 1..' 2 = Bq-qa = [-Ij and s~ = p*B-ap* = [0,-1,0,1]

Further, sBJr2 0, j > 0, so we have incurable breakdown. Also

note

rank(M4) - 1 , rank(K4) - 2 , rank(X*) = 3

4.4 The mismatch theorem

The previous lemma characterizes incurable breakdown in terms of

the rank of the moment matrix. Here we give a more illuminating

explanation.

THEOREM 4.1 (Mismatch Theorem). Let p, q and B be given. Let

Kk = span{q,Bq,.•.,Bk'lq) and K,' * span{p*,p*B,•.•,p*B9 I  be

invariant subspaces of dimension k and I, respectively. Then

incurable breakdown occurs at step i if and only if there are

generalized raw eigenvectorw and generalized

cooZwm eigenvectors {z I ,... z I ,1+ 1,*.Zk+I. i  with

w. = (4.2)
J1 J2 JlJ2

such that

Kk = span{z1 ,...,z i ,z + l , * . . zk+t.i}

and K; spanw,,... wi,wi+,,... W Z
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Condition (4.2) departs from the ordering which produces the Jordan

canonical form for Jordan blocks, i.e.

Bz. z zX+z.
J j j+l

w.B =Xw + w.

There is no loss in generality in assuming (4.2) and reduces the

complications in subscripts.

PROOF OF THEOREM. Sufficiency: Consider K and n Since K k
nn

is invariant

rak( )= i nK) = i(k)
n

Similarly

rank(K)= dim(K,,) =dim(K4) =n

Thus using the invariance of Kk and 4*, there are invertible X

and Y such that

and

r w
W*

w.
0 wFw

* 0*
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Thus, Y*R, KnX = w*z wvz 0
L n 2
F1  0 01

-10 0 0 by (4.2)

0o 0 0J
So, rank(M )

= K rank(Kn) rank(Y**K X) i < k,1. Thus, by Lemma

4.1, we have incurable breakdown.

Necessity: Assume that there is no mismatch, i = k = min(k,Z)

(say). Then

K span{z ,...,z i}

and rank(Kn) = dim(Kn) = dim(Ki) = i = rank(M d

Thus by Lemma 4.2, there is no incurable breakdown.

EXAMPLE 4.2. Let B, p* and q be as in Example 4.1. The matrix B
,* j

is normal so w =z with eigenvalues ij , j=l,...,4, i='-- and

etgenvectors

"" 5 -. 5 -. 5 .5Z= .51 Z2 [ 5 Z3 -.51 z4 .5

L -•:,.5 1L-.5 J.5 L.5J

In this case

= q z:I"~~ ~ p3 •Z
" 

Z
" "

4  q 2 + 4

44 =•span{z ,z,z 4 } K span{z2 ,z4 }
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4.5 Ritz values and incurable breakdown

For discussion of the Ritz values of the matrix Ji., let us

assume, temporarily, that B has simple roots, so that w'*B =X
1 i

and Bz. = z.X. for all i and j. The case of defective matrices,
,) 33

though not unlike the non-defective case, is somewhat more complicated

and its discussion is postponed until the next section.

What the Mismatch Theorem has given us is that in the case of

incurable breakdown

p* '* + b w

k~g,-i(4.3)
q + a.z.

j=2J+l J

where = w!

i

with aj 0 O1 j = ,.,,.lk2-; b $0, m=i m
Then any element of the moment matrix M (p~q,8) has the formn

2. k+2.-i
p*Bq =(5* + b bwI*)BM(4+ a az.

k+9.-i 2I
- *Bmq + P*( Z a.Blz.) + b bw !BM)4

i=9.+l J i jui+l i

+ ( +bwj)( +a BM zi

j=2+ X'

2.& Z+.-
PB4+ 0* 1 bXw'~( + X MbaW!)4

i j=2 +l J iJ
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Sk+,-i -9,

+ I X a. *z + .b w!4j=q'+l "  i =i+l j j Jq

Z+k-i Z
+ .bxTm a.w* Z.": ~ ~~~jl='+l j2=t+I l ajw2

= *Bfl

Thus we get the following lemma:

LEMMA 4.2. Let p*, p, q and be defined by (4.3), then

M (P*,q,B) = M (P*, ,B)n n

We can now show that incurable breakdown is not a misfortune as

the following surprising result shows.

THEOREM 4.2. Let B have distinct eigenvaZues and let Ji be the

bZock tridiaonaZ J-matrix produced by the Look-Ahead Lanczoe process

at step i, with p* and q starting vectors. If incurable breakdown

occurs at step I+1 then each Ritz value of Ji is an eigenvalue of B.

PROOF. By the Mismatch Theorem p* and q have the form (4.3).

Consider now the Look-Ahead Lanczos with the 0* and 4 defined by

(4.3). The subspaces K(p*,B) and Ki(,B) are invariant, so that

each Ritz value of the J-matrix generated using P* and 4 is an

eigenvalue of B. By using Lemma 4.2 and Lemma 1.4 (Chapter I) the

result follows.

EXAMPLE 4.4. Let p*, q and B be as in Examples 4.1 and 4.2. Then

SJl "(Jl) I = p*Bq = 1 = X4(B)

,.I
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4.6 Defective matrices

By their biorthogonality, the generalized eigenvectors of the

expansions in (4.3) influence only those components associated with

* .its Jordan block, thus, the interaction within a single Jordan block

to generalize Theorem 4.2.

Therefore, let B be a Jordan block of grade n, that is nxn B

has the form

B [ :.J

Then

k+X, n
LEMMA 4.3. L p - and q a e where e. is theI I i=k+l e e i

i coZwM of In and ai#O and bi#O. Then the J-matrix
n1

generated by p*, q and B is simiZar to a Jordan bock of degree Z.

For simplicity we make the following notational convention. Let

c- [cij] ]

Cnl C n2 Cnn J

and define

c~iC:.j,j) = [: c:~ ~

cji cji+l "" cjJ

The proof of Lemma 4.3 is simplified by the following technical lemma.
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LEMMA 4.4 (B)(i,j) =i+j+ l where N is the kxk Jordan block.(i. k

Further,

(Bm)(i,j) ( Ni +j + )m .

th m 0 k> t
PROOF. The (k,z) element of B - m m+t k

Similarly the (k')n element of Nm 1  { mni~m'^

k+X k+2,
PROOF OF LEIMA 4.3. Let = iei and = so that• ... i=i+l i=i

k nP* I e be+p *  and q = + a.e!. Consider any element of the

i=1 i=k+,+l I 1

moment matrix

p B~q = (b*++i ejg(q +-k+I+ aie,)
1=1 l=k+i+l

Using an argument similar to that of the proof of Lemma 4.2 we have

p*Bmq =*BJ4

k+2. k+X.
=( bie*)Bi( a i e

= ( ~ib 1 ~e)(BJ )( k+l,k+t)( i ai+kJe)=

where ei is the ith column of IV . Thus the moment matrix generated

by p*, q and B is the same as that generated by p, q and N,
with ( N = I and ,u

p ) *N) a R1. Thus, the J-matrix generated

by p*, q and B is the same as that generated by pq and NV,

the latter J-matrix being similar to NV.
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Thus we have the following extension of Theorem 4.2.

THEOREM 4.3. Let B be non-derogatory (i.e. each eigenvalue of B

, is associated with only one Jordan block) and let J be the J-matrix

' generated at step i of the Look-Ahead Lanczos. If incurable breakdown

occurs at step i+l, then each Ritz value of J. is an eigenvalue of B.

4.7 Curable breakdown

We now have a characterization of incurable breakdown in terms of

the row and column eigenvector expansions of the starting vectors.

Such a characterization is also possible with curable breakdown

(breakdown which the Look-Ahead algorithm with a suitable pivot

circumvent). We start by defining curable breakdown of degree Z.

* Let diagonalizable B and vectors p* and q be given. Let

Sk+ 1 and rk+1 be the residual vectors after the kth step of the

Look-Ahead Lanczos. Then we say the look-ahead process suffers

curable breakdown of degree t at step k if

k+l k+l =0 m 0 ,..,-1 (4.4a)
:. : * B2.

k+l rk+l 0 (4.4b)

* With this breakdown, the (2.xl)x (.xl) pivot matrix, X, is Hankel

matrix of the form

SFo ... o

X*

0 .* ..
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where + = lB rk+l # 0 and * denotes a possibly zero element.

The point here is that X- exists so that the look-ahead process can

continue.

Let

n n
= biw! and q = [ a zi  (4.5)

i=I i=l

where each (Xi,w 9zi) is an eigentriple of B. Then using (1.5),

(4.4a) becomes

0 s Bmrk ((k))p*X (B)Bm(B)q(. mn

W(k) I-bl" 2 az( ))-1 X biw*Bm(Xk(B))ajjl=Ilj=l i

= 2 (Xk(Xl) a )/(k)

-; ({i l(k(X))2X,1aib.)/ (k)

where k  (k) and w k) are as in Chapter I. If we let

x * x with xi = a bi  (4.6)

then

sk+lB rk = i '(Xk(i)) xi

M (?,...Xm)Akx , m- 0,...,-1 (4.7)

where Ak diag((Xk(,l)) 9...,(Xk(Xfn))2 }. So (4.4a) in matrix form

. - becomes

VtAkX 0

with V2. the I xn Vandermonde matrix

-. "4
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V 1 I " (4.8)

%,L nx2o-
-njj1.

Further (4.4b) is

s Brk+l = (X,... .X )AX 0

So

THEOREM 4.4. Let p* and q be as in (4.5) and non-defective B be

given. Then curable breakdown of degree X occurs at step k if and

only if

Akx E N(V2 ) (the nuZlspace of V2 )

but Akx * N(V2+1)

where x- (x. 9009,xn) as defined in (4.6), Ak = diag{(Xk(X,))2

(Xk(Xfn))2}, Vm  i the mxn Vandeo nde matrix for m = X, 1+1.

The above characterization is not entirely satisfying. We cannot

escape the dependence of Ak on x and Vk. But we can see that the

likelihood of selecting p and q generating such an x decreases

with the increase in the degree of curable breakdown.

EXAMPLE 4.3. Consider

°: -.. 1 0 0 0 P*00 0 =[,0,O,0], q [ 0
L ' 0 0 1 0J 0
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Then r and s* [0,0,0,1] ,

sB2  0 [201OF0 0e0 a

:. 0

and s *Brz  OOl0l 0 1

2" 2 011 10

4 4
Here p= Iw  q = zi x = [.25,.25,.25,.25] ,

S3  I-1 1 =1 1 r 25

II-I -1 -.25

-,25 j

and V2 AIx 0, V3A 1x I

4.8 Curable breakdown and defective matrices

To handle the case of defective matrices (a matrix is defective

if it has at least one Jordan block of grade > 1), we may again

confine ourselves to a single Jordan block. So let n xn B be of the

form

B' (4.g)

,°.

-p
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Let p* and q be as in (4.5). Let sk1 b DW! and
n1=

rk+1 a iz so that

A min(k+i-1,n) dl-'

jul j dt3  k

A i i-j(4.10)
a a.( dI~ t)
i j-max(1,k-i+1) t1A~ J~~) =

Consider from (4.4a)

0 sk+1 mk+1

n n

n A n

Rearranging we get

0. m n-j

1 mnj

imO~ ~ ~ nJ 1. (1xa)~1i
where A Am1 A a

x X 06xXj I2 (4.11)

Thus (4.4a) becomes

where V2. is the generalized Vandemonde matrix

* . * . -A
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. 1 0 ..... 0v L i = :" .. .o.

1- Z-I AI)-2 ... it-l)XI-k-i ... 1 ... 0
I k)x l *. i

so that

THEOREM 4.5. Let p* and q be defined by (4.5) and B by (4.8).

Let b. and a be defined by (4.10) and x by (4.11). Then curable

breakdown of degree £ occurs at step k if and only if

J~~ r= € (V +
X V

PROOF. The proof is completed by showing 2 * N(Q,+I). From (4.4b)

0 * 81.0  ek+l Bk+l

*m

where eL+ 1 is the (1+1)st c6lumn of In.  •

4.9 Summary

We now have the characterizations for serious breakdown in terms

of the etgensystems. Further, we have that one form of serious break-

down can be remedied and that the other form is fortuitous in the

search for elgenvalues.

Though the result of Theorem 4.2 is counter-intuitive at first,

it becomes more tangible when we consider the case of only one residual

vector becoming zero. The other residual vector does not interfere
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with one important feature of the J-matrix (that is, each Ritz value

of J being an eigenvalue of B). We only lose one set of eigenvectors.

In the case of incurable breakdown we preserve the relationship

between Ritz values of J and some of the eigenvalues of B, but

cannot extract either row or column eigenvectors directly from the

subspaces generated.

Finally, we can characterize curable breakdown, from which we see

that the curable breakdown of degree k becomes less likely as k

increases. Thus the restrictions on pivot size due to practical

considerations such as storage do not unduly restrict the effectiveness

of the algorithm.

I"

. . , "o
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Appendix. Look-Ahead Lanczos Algorithm

The algorithm below leaves the 2 x2 pivot factorization (i.e. U

and V*) arbitrary. Recall (section 2.8) that the step i corresponds

to the number of pivots (l x1 or 2x2) used and 2. corresponds to the

number of bases vectors generated.

Step i:

Action 0: (Collect and evaluate data from the previous stpe, i-l)

On hand are r2 , s, Ir 1, Is~lP*- Qil' zi, !,, W

If Ir I or Is*l less than some tolerance, then exit with

invariant subspace.

Check residual bounds for converged eigentriples.

Action 1: (Perform look-ahead to determine pivot size

a: (Complete R1 = [r2,,r ,] and Si*= by generating

r and i* from r and sI (see J
*1 9.1 (see section 2.9))

Pr,+l - BrZ -QlZi

• 4-- s*B -Z'P*
-.1 9. 1 i-i

b: (Compute needed inner product matrices)

W- S*Ri

X - R*R

(Six inner products are needed since the (1,1) element

for each matrix comes from step i-1).

c: 1. (Compute cosines of important angles)

• .. (p|=PqL,) m wil/nr nns*n)

02 ( min max 0 0

(set for WI singular)

,4
Q

2 - . - - V....
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If Wi cannot be factored skip to action 2.
Factor W into V*U -I and w into B y

(This version uses p*q = 1)

2. (For norms of prospective bases vectors)

V e )l2

l (elUiXiUiel1 /

1/21P - (elViYiVie1

* * )1/2
n".! lI1 +. - (e2ViYiVie2

If any of the above norms is less than some tolerance,

then skip to action 2.

3. (Form angles between prospective bases vectors)

cos L(P,) = l/(1 1u- n )*2 z- cos -- qt~

4. (Get the minimum angle for comparison)

02 .- min{l *1 111 21}
Action 2: (Test for failure)

If loll and 02 are too small, exit with error.

(The look-ahead process with the 2 x2 pivot is not guaranteed

to work in all cases (see Chapter IV) and the only reasonable

response is to flag these cases and exit.)

Action 3: (Select bases)

If l11 > (some bias} * 02 then take a single step (1 xl

pivot), otherwise, take a double step (2x2 pivot).

Single step Double step

a. (Form Qi and Pi)

q j 4- r/ 8  Qi 4- RiUi

P 4- S*/Y, P* -'- ViS*
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Single step Double step

b. (Form Bi and ri)

• "B i - * Bi - (V!S )rk2
1 1I k

.%,. r i  - iyZ r i  k z is ( i )

(Note that both Bi and ri are rank 1 matrices)

c. (Form the new residuals)
rl B r 4-(BQi-Qi _ l r i )x

r-~ -r. 1B2  * -

s*+ -- +i+l s+2 1-- y(PB-BiPi.

(x and y* 2 element vectors)

d. (Form A.)

Z- 1 1 1__ p1BQi_
! e2 S*Brk+ 1

e. (Orthogonal ize)

r2. l1  r,+1 - q r 2 r 2  QiAix

s2,+l -s +l - p s,+2 4 S +1  y*

f. (Form inner products for next step)
i~a 1(Z)/2~ -1 1/2

Ir2 +l 4- ((1c 'l)X 1(1t) Ir2  - (r+ r

isT* "1 4)I (Q99)/2y~ 1 isI s /2
I+ (('c 1.'l)Y( 1t))Is+zl 2 - (s 2+S+2 .+)
W - det(Wl )w 2 o2 S *

Z+1t Zw 2r+

g. (Set zl+l and !*+l)

zi+1 a (1Zl = (Vie 2)/(y*Ve2 Y V 2 )

'ia (1) = (e(Ut)/(e*Utx)

end of step i

NOTES

The above algorithm assumes that p~q = 1 rather than Ip*I = 1,

Iql = 1. Further, no assumption is made about the actual factorization

,%I.
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of or W.

The vectors x and y* (action 3c) allow flexibility in specify-

ing the components of the new residuals strictly within K and
• " .Z+2

K* , respectively.

The bias factor in action 3 is a programming device which permits

the Look-Ahead Lanczos to implement standard Lanczos (bias =0) or a

sequence of double steps (2x 2 pivots, bias =c).

The look-ahead process modifies the two-sided Lanczos algorithm

to the extent that the next residuals are already being formed before

the bases vectors of the previous step are set (action la). Further,

if the 1 x l pivot is used (two-sided Lanczos) the norms of residual

vectors and the 1 x 1 pivot are calculated without more vector inner

products (action 3f).

Finally, note that the relevant cosines (see section 2.10,

Chapter II) are calculated without calculating the bases vectors

involved (actions lb and Ic).

-J

I
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