
ADO-Ai27 95 SRTE OF-THE-ART ASSESSMENT OF TESTING AND TESTABILITY /
OF CUSTOM LSI/VLSI..(U) AEROSPACE CORP EL SEGUNDO CA
ENGINEERING GROUP M A BREUER ET AL. OCT 82

UNCLASSIFIED TR 6683(3932-64)-i-VOL-4 SD-TR-83-28-VOL-4 F/G 9/5 N

EhmhohhohhoiE
EhhhhhhhhhhhhE
smhhhhhhhhhhh
smhhhhhhhhhhh

.j ,

2 1111.0 ti 1Q5

&6 L3.2

1u1111.25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

p.

1*

....
.

t'o

Go~

L E. T
-A 1 I

c.J1

APRVD O UBI ELAE

LA~
'83 05 09m 13

This final report was submitted by the Aerospace Corporation, El Segundo,

CA 90245 under Contract No. F04701-82C-0083 with the Space Division, Deputy

for Logistics and Acquisitions, P.O. Box 92960, Worldway Postal Center, Los

Angeles, CA 90009. It was reviewed and approved for The Aerospace Corporation

by J. R. Coge, Electronics and Optics Division, Engineering Group. Al Carlan

was the project engineer.

This report has been reviewed by the Office of Information and is releas-

able to the National Technical Information Service (NTIS). At NTIS, it will

be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

Publication of this report does not constitute Air Force approval of the

report's findings or conclusions. It is published only for the exchange and

stimulation of ideas.

FOR THE COMMANDER

APPROVED

STEPHEN A. HUNTER, LT COL, USAF
Director, Speciality Engineering

;4 and Test

6-A

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Mahn. Date Entered)

REPORT DOCUMAENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
• , SD-TR-83-20 ,,/)

4. TITLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED

State-of-the-Art Assessment of Testing and
Testability of Custom LSI/VLSI Circuits

- Vol IV: Test Generation S. PERFORMING ORG. REPORT NUMBER

TR-0083(3902-04)- -

7. AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(a)

M.A. Breuer & Associates F04701-80-C-0081
and F04701-81-C-0082

A J. Carlan Aerospace Technical Director F04701-82-C-0083
9. PERFORMING ORGANIZATION NAME AND ADDRESS W0, PR GRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS
M.A. Breuer & Associates
16857 Bosque Dr.
Encino, CA 91436
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Space Division October 1982
Air Force Systems Command 1s. NUMBER OF PAGES

Los Angeles, Calif. 90245 64
14. MONITORING AGENCY NAME A ADDRESS(I differ t from Controlllng Office) IS. SECURITY CLASS. (of this report)

The Aerospace Corporation Unclassified
El Segundo, Calif. 90245

IS. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

1. DISTRIBUTION STATEMENT (of this Reprt)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abect entered In Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continua on reverse aide if necesary, and Identify by block nhmber)

Stuck-at-Fault High Level Circuit Models ARRAYS
D-Algorithm TEST/80 Delay Testing
D-Algorithm Variants Bit-Sliced Microprocessors
SCIRTSS Heuristic Testing
PODEM Signature Analysis
20. ABSTRACT (Continue on revere side it necessary aMd Identify by block number)

V- major approaches are considered for generating tests for digital systems:
%methods based on detailed circuit models of the unit under test (UUT) and methods

based primarily on a functional description of the UUT. In addition to test gen-
eration of general digital systems, the testing requirements of microprocessors,
semiconductor memories and PLA are examined. The D-algorithm and several vari-
ants are discussed as a basis for practical test generation procedures.

oo FORN 1473 Unclassified

-FACSIMILE) Uca

SECURITY CLASSIFICATION Of THIS PAGE (When Date Rntered)

TABLE OF CONTENTS

Page

SUMMOARY OF FINDINGS..... **..................... .ooooooooo ****..*****.oo v

1.* INTRODUCTION o_ .o ... Ioeeooooosoooooosoo

2. CIRCUIT-BASED TEST GENERATION. .. oo. 3

Sequential Circuits ... 000....0................................. 6

2.2 Variants of the D-algorithm.o. 9

Critical Path Methodo.0.0........0.0....0..................... 9

PODEMo.ooo..o..eso.....o.....oo.........o.....o....oes..o........ 14

2.3 High-level Circuit Models...........5...... 16

2.4 Random Test Generation.....o. oo .oooo.... e,~ 20

3.* FUNCTION-BASED TEST GENERATION. . .. o. o.* 23

3.1 Functional Faults...... 000000000000.0 00. .0 0.0. 23

* ~~~~Bit-sliced Microprocessors. 24

Binary Decision Diagrams..............see...... .. **. 26

3.2 Heuristic Test Generation.s.. oo.oos e 28

Microprocessor-based Systems......* oo * o *. 29

* S-graph Model.o.o.. . 29

* . ~~Transition and Ones o... 35

Signature Analysis........................... 38

4. SPECIAL CIRCUITS AND FAULTS...... 5555. *5o. 5555.5555w ** .* 44

6 - 4.1 Semiconductor Memories.oo.. *sssss.ossoo . . *5. .* 43

4.2 Programmable Logic Aras.. s 45

Page

4.3 Pattern-sensitive Faults....... **. ... 47

5. BIBLIOGRAPHY .. 55

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By
Distril'-t '-'I

Avnii ' - i.y Codes

- - nd/or

Dist Sicial

liv

.. .. .,. .-. , -.-...- - ,- - - --._- . -. - .; -: .. - - . "- - - .1" '

SUMMARY OF FINDINGS

Test generation methods for digital systems may be divided into two

major categories: those based on detailed logic-circuit models of the

unit under test (UUT), and those based on high-level functional descrip-

tions of the UUT. Most general-purpose test generation programs in cur-

rent use implement some version of Roth's D-algorithm. These programs typ-

ically require a gate-level circuit description of the UUT and only yield

tests for faults of the single line stuck-at-O/l type. Many modifications

to the D-algorithm have been developed to reduce its computation time. While

the need for basing test generation methods on higher-level circuit models

has been recognized, only a few limited attempts to implement such systems

have been reported. A variety of different schemes have been developed for

deriving tests from functional models of the UUT, particularly where the UUT

is microprocessor-controlled. Heuristic methods employing self-test pro-

grams are widely used in such cases. Recently some promising work has been
described that uses exact functional fault models for test generation in

microprocessor-controlled systems. Considerable interest has also been

shown in compact testing methods that involve pseudorandom test pattern gen-

eration and fault signature analysis. Finally, various testing procedures

have been developed for specialized fault types found in LSI/VLSI designs,

for example, high-density RAM faults and delay faults.

The problem of generating tests for single stuck-at-O/l faults in com-

- . binational circuits is considered to be solved. Essentially complete test

sets can be obtained for most combinational circuits, even those containing

thousands of gates, using current implementations of the D-algorithm. Com-

putational problems have been encountered with some kinds of code-checking

circuits, but special methods to handle these circuits have been devised.

Little attention has been given to test generation for other fault types,

such as multiple stuck-line faults or short circuits. However, there is

N, evidence that tests generated for the standard single stuck-line model pro-

vide good coverage for these other fault types. The D-algorithm has been

successfully extended to deal with small and medium-sized synchronous se-

quential circuits containing up to about a hundred flip-flops. Poor results

are obtained for unstructured sequential circuits, such as those containing

deeply buried flip-flops, due to the exponential growth of test computation

time with the number of memory elements present. Asynchronous circuits pose

even greater difficulties.

The D-algorithm has been successfully applied to sequential circuits in

the LSI/VLSI range only when a highly-structured circuit design methodology

like IBM's level-sensitive scan design (LSSD) has been followed. Besides

being easily testable for the standard stuck-at faults, LSSD designs have

proven particularly amenable to delay fault testing. The main drawback of

LSSD is the slow rate at which test patterns must be applied; thus LSSD is

not suitable for all applications. To handle large non-LSSD circuits, it

appears necessary to develop computationally efficient test generation tech-
niques that treat higher-level circuit components such as registers, multi-

plexers, ALUs, etc. as primitive. Although some research is being conducted
into this problem, useful test generation programs are not yet generally
available.

Very complex systems, such as those containing microprocessors, are

usually tested in a heuristic fashion. Heuristic test generation methods
attempt to test a device by systematically exercising all its major func-

tions. While computationally efficient, the fault coverage of such approaches
is uncertain, a consequence of the lack of an explicit fault model. Some

work has been reported on fault models that are suitable for microprocessor-

based systems. However, not all types of microprocessors or faults are in-

cluded in this work. Considerable effort has been devoted to test genera-

tion for random-access memories, and a library of standard test algorithms

has been compiled. Again fault coverage is unclear, particularly in the

case of pattern-sensitive faults. While the use of compact testing methods

such as Hewlett-Packard's signature analysis approach has been increasing,
serious doubts have been raised about its fault coverage also.

Several aspects of test generation technology are likely to be pursued

vigorously in the next five years. Methods of the D-algorithm type will

probably be extended to accommnodate more complex primitive elements. Easily

testable design methodologies such as LSSD and built-in compact testing will

see increased use, since they allow known test generation methods to be used
for VLSI systems. However, it also is expected that emphasis will be placed

Vi

h,. . ' I - - : , . - i - . - ..--. . 'W-I -.. .- • - -

on the development of new design methods that lead to systems with better

testdbility characteristics such as short testing time and 100% fault cov-

erage. It is probable that there will be increased interest in test gen-

eration methods that can be incorporated into VLSI chips to make them self-

testing, both to overcome IC pin limitations and to simplify field mainten-

ance procedures. Finally it is expected that attention will be devoted to

developing more complete detection methods for the newer fault types that

are found in VLSI systems. Many of these faults, like stuck-at-open and

parasitic flip-flop faults in CMOS circuits,are not covered at all by tra-

ditional fault models.

0.

vii

........

*." - 4

1. INTRODUCTION

This report surveys and assesses the methods currently used or proposed

for generating tests for digital systems. Two major approaches are consid-

ered: methods based on detailed circuit models of the unit under test (UUT),

and methods based primarily on a functional description of the UUT. The lat-

ter appear to be increasing in importance due to the proliferation of micro-

processor-based systems where a complete circuit description is often unavail-

able to the test designer. In addition to test generation of general digital

systems, the testing requirements of some important specific devices such as
microprocessors, semiconductor memories and PLAs are examined. The influence

of the fault models used on test generation is discussed, both for the stan-
dard stuck-at fault model and for such non-standard failure modes as pattern

sensitivity and delay faults.
The test generation methods examined here are primarily intended for ex-

ternal testing. The use of built-in test equipment, information coding tech-

niques or other design methods to enhance testability is not considered ex-

plicitly. However, the influence of such general design structures as level-

sensitive scan design (LSSD) and bit-slicing on the test generation process

is discussed where appropriate. The scope of the report is limited to the

determination of the logical or functional correctness of the UUT. The gen-

*: eration of parametric tests is not considered.

Chapter 2 deals with test generation methods that require a detailed cir-

cuit description of the UUT. This description is usually a gate-level logic

diagram. Test generation is typically directed at a set of faults defined on

the logic circuit; the line stuck-at-O/l model is the most common fault model
used in this context. Section 2.1 reviews the D-algorithm which is the basis

of many practical test generation procedures. Its use for testing both com-

binational and sequential circutis is discussed. Several variants of the D-

algorithm are considered in Sec. 2.2 including the critical path method found
in LASAR, a widely-used commercial test generation program. Also examined are

SCIRTSS, a program written at the University of Arizona,anda recently-developed

-.•

2

program called PODEM which attempts to overcome the shortcomings of the D-

algorithm when applied to error-correcting and -detecting circuitry. In

Sec. 2.3 two test generation approaches that use register-level circuit

descriptions are discussed: the LAMP system developed at Bell Laboratories,

and a proposed system called TEST/80. Finally, in Sec. 2.4 the use of ran-

dom test pattern generation is considered.

Chapter 3 is concerned with test generation that is based primarily on

a functional description of the UUT or its major components, Sec. 3.1 con-

siders methods that employ a very general functional fault model, including

a testing scheme for bit-sliced systems, and a method of Akers based on bi-

nary decision diagrams. Heuristic test generation methods are the subject

of Sec. 3.2. A typical ad hoc procedure for a microprocessor-based system

is described, as well as a more formal approach due to Thatte and Abraham

which employs a functional description called an S-graph. Section 3.3 sur-

veys testing procedures that are grouped under the heading compact testing,

and are characterized by the use of test response compression methods. Sev-

eral representative compact testing methods are investigated, including tran-

sition counting, ones counting and Hewlett-Packard's signature analysis tech-

nique.

Chapter 4 is devoted to some special classes of circuits and their test

generation problems. The failure modes and test methods employed for semi-

- . conductor memories and programmable logic arrays are reviewed. Some recent

studies of pattern sensitive faults are discussed, as well as test generation

. methods for delay faults.

The report concludes with an extensive bibliography of recent literature

on test generation.

3

2, CIRCUIT-BASED TEST GENERATION

In this chapter we examine and evaluate the available methods for test

vector generation that employ an explicit circuit model which reflects both

the structure and behavior of the digital system to be tested. Usually this

model is designed at the logic gate level, with elements such as NAND, NOR,

AND, OR, NOT, EXCLUSIVE-OR and flip-flops as the primitive building blocks

from which the model is constructed. The LASAR test generation system, for

example, requires a model that is composed entirely of NAND gates [Thomas

1971]. For LSI/VLSI circuits it is desirable to be able to use higher-level

components such as registers, multiplexers, ALUs and the like as primitives

during test generation. Recent work, for example, TEST/80 [Breuer & Friedman

1980], has been concerned with this problem. Also of recent concern is model-

ing those aspects of MOS ICs such as transmission gates, which do not corres-

pond to standard logic gates [Wadsack 1978, El-Ziq 1979].

Circuit-based test generation methodsmayalso be regarded as fault-based,
since they generally employ specific fault models related to the circuit com-

ponents that are recognized. The most common fault model is the stuck-at

model in which any single logical connection in the circuit under considera-

tion is allowed to be stuck-at-one (s-a-l) or stuck-at-zero (s-a-O). Other

fault types such as multiple stuck-at faults, delay faults and short-circuit

faults have received much less attention.

2.1 THE D-ALGORITHM

The D-algorithm developed by Roth at IBM is probably the most widely

used test generation procedure [Roth 1966]; for a detailed description see

[Breuer & Friedman 1976, Roth 1980]. The D-algorithm is a method for generat-

ing a test vector for a given fault. It is typically used with gate-level

circuit models and stuck faults. The D-algorithm attempts to construct a

sensitized path over which an error signal can propagate from the fault site

to an observable primary output line. It systematically assigns values to

lines associated with each potential sensitized path until a valid assignment

* is found, if one exists. Using a backtracking approach based on the circuit

structure, the D-algorithm searches the space of possible test patterns for

'.TI the given fault. The method in its most general form can always find a test

°°

4

or, in the case of an inherently undetectable fault, prove that no test pat-

tern for it exists.

* COMBINATIONAL CIRCUITS

* To illustrate the D-algorithm, consider the derivation of a test for

the fault F= "output line of gate G1 s-a-O" in the logic circuit of Fig. 2.1.

The D-algorithm proceeds as follows.

(1) Assign values to the inputs of Gthat produce a signal 1 at the

output of G, when no fault is present; the values cd= 00 satisfy this require-
* ment. The signal produced by G1 is therefore 1 in the good circuit, but 0

when the fault F is present. (The special logic value D may be used to de-
*note error-sensitive signals of this kind.)

(2) Select a path from G1to the primary output z, and attempt to assign
input values to gates along this path so that an error signal can propagate
from Gto z. In Fig. 2.1 the path shown by the heavy line is selected.

(3) Assign input values to all gates whose outputs are specified in

Step (2) and check for logical consistency so that no line is assigned two

conflicting values. Thus in Fig. 2.1, the value 1 must be assigned to all
inputs of the NAND gates G2 and Gthat do not lie on the sensitized path.

If the input combination cd= 00 is assigned to Gito produce the desired

output value 1, then an inconsistency is encountered at G3. which requires
d=l1 to set its output signal to 1. The assignment cd= 01 satisfies all con-

sistency requirements. The assignment of gate inputs continues until all pri-

mary input variables have been assigned values; these values constitute the
desired test vector for F.

At all stages of the D-algorithm, including error propagation and con-
sistency checking, line values are selected from many different possibilities.

If a decision concerning some line leads to an inconsistency, it is necessary

to backtrack to a previous decision point and select alternative values. In

certain cases it may be necessary to sensitize several reconvergent paths

for a particular fault. Such multiple-path sensitization cases are rare,

however, and practical implementations of the D-algorithm are often restricted

to single path sensitization in order to reduce computation time. In the

-cL

EE

00

6

worst case the computation time of the D-algorithm grows exponentially with

circuit size; however worst-case behavior has only been observed for redun-

dant circuits containing undetectable faults [Cha et al. 1978].

The D-algorithm is usually implemented in conjunction with a fault sim-

ulator program that can rapidly determine the faults detected by a given test

vector. This simulatoris used to computeall the hitherto undetected faults de-

tected by each test vector produced by the D-algorithm. The basic D-algorithm

incorporates five logic values, namely 0, 1, x (don't care) and the error-

indicating values D and D. The accuracy and flexibility of the D-algorithm,

particularly when dealing with sequential circuits can be improved by using

additional logic values. Several V-valued implementations of the D-algorithm

have been reported [Muth 1976, Cha et al. 1978]; a 16-valued version has also

been investigated [Akers 1976, Breuer & Friedman 1976].

In conclusion, test generation for single stuck-at faults in combinational

logic circuits containing several thousand gates can be effectively carried out

using path sensitization type algorithms. Most large companies have success-

fully implemented this technique and use it for production test generation.

This technique cannot efficiently handle multiple faults, but can process
single faults other than stuck-at failures. The faults, however, must be

representable within the given circuit model being employed.

SEQUENTIAL CIRCUITS

. The basic D-algorithm discussed above applies to combinational logic cir-

cuits. It can be extended to synchronous sequential circuits by modeling them

as iterative combinational arrays in the manner depicted in Fig. 2.2. The oris-

inal sequential circuit S is partitioned into an acyclic combinational part C

7,-7. and a memory part M, the latter typically being a set of clocked flip-flops.

The feedback from M to C is conceptually broken, and M is replaced by a

(pseudo-) combinational version M*. The resulting pseudo-combinational cir-

cuit S* forms an accurate logical model of S during one time frame i. The

combinational D-algorithm can be applied to S* to find a (partial) test vector

T(i) for a given fault. By iterating S* k times as shown in Fig. 2.2b, a se-

quence of k input vectors T(O)T(l)...T(k-l), i.e., a sequential test, can be

constructed via k applications of the D-algorithm.

..

6 - 7

I S_
I-cm

LL ~.-

c-c

N 44

C IL

.flt, - -

8

There are several major problems associated with the use of the D-

algorithm for sequential circuits. The length of a sequential test is not

known a priori, and can grow exponentially with n, the number of flip-flops

present. To keep computation time within reasonable limits, the searching

processes associated with error propagation and consistency checking are

often constrained by user-imposed limits. These limits can result in the

failure to find tests for certain faults. Another difficulty arises from

the fact that the initial state of the circuit under test is usually not

known prior to testing. This situation can be handled by assigning the

value U (for unknown) to uninitialized lines. The D-algorithm is therefore

required to process up to 16 values for each line, representing all possible

combinations a/b of signals in the good/faulty circuits, where a,bE [0,l,x,U].

Even using 16 values, situations may exist where a test that is known to ex-

ist cannot be determined by the D-algorithm [Breuer & Friedman 1976]. For

an example of a typical industrial automatic test generation program based

on the D-algorithm, see [Yamada et al. 1977]. This program, developed at

Nippon Electric, handles circuits with 1200 gates and 80 flip-flops, achiev-

ing an average fault coverage of about 95%. It employs a 10-value version of

the D-algorithm and works in conjunction with a fault simulator and a random

test pattern generator.

Asynchronous sequential circuits are especially difficult to process using

the D-algorithm [Putzolu & Roth 1971]. Because of the possibility of unstable

intermediate states in transitions between stable states, each time frame (see

Fig. 2.2) may have to be expanded into several time frames to account for the

unstable states. Furthermore, a test generated by the D-algorithm for an asyn-

chronous circuit may be invalidated by the presence of a race or a hazard con-

dition. The D-algorithm has been modified to allow the generation of hazard-

free tests [Breuer & Harrison 1974, Vaughn 1976].

It is worth noting that the D-algorithm is particularly well-suited to

test generation for circuits designed using LSSD (level sensitive scan design)

- and similar techniques [Williams & Angell 1973, Yamada et al. 1977, Eichelberger

. & Williams 1978]. In this design methodology, the flip-flops are linked to

.* form a directly accessible shift register during testing. The circuit can be

immediately initialized to any desired state, and the next state at the end

9

of any time frame can be immediately observed. Thus the testing problem

reduces to one of finding test vectors for the combinational portion of

the circuit; this is readily solved by the D-algorithm, even in the case of
.. : LSI circuits containing thousands of gates.

"..'.2.2 VARIANTS OF THE D-ALGORITHM

The D-algorithm is the basis of a large number of practical test gen-

eration programs which contain significant deviations from Roth's original

version. Three representative examples are examined in this section: the

critical path method which attempts to construct sensitive paths and only

implicitly deals with faults, a program called SCIRTSS which uses high-

level circuit models to speed up test generation for sequential circuits,

and PODEM which employs branch-and-bound techniques and is aimed at the

special test generation problems of circuits that process error-correcting

and -detecting codes. Other interesting variants of the D-algorithm also

exist, for example SOFTG (Simulator Oriented Fault Test Generator) [Snethen

1977].

CRITICAL PATH METHOD

The widely-used commercial test generation systems LASAR and D-LASAR
employ a modified version of the D-algorithm called the critical path method

[Thomas 1971, Breuer & Friedman 1976]. It is based on the fact that when a
path P in a circuit is sensitized, easily identified faults associated with
every line of P are detected. For example, in addition to the target fault

F= line p s-a-O, the test shown in Fig. 2.1 detects the faults q s-a-O,

r s-a-l and s s-a-O, all of which lie on the indicated sensitized path. In-

tuitively speaking, many faults of this type can be detected simultaneously

by maximizing the number and length of the sensitized paths produced by a

given input pattern.

The critical path algorithm attempts to construct many long sensitized

paths simultaneously. Path sensitization begins at a primary output, to which

the value 0,1 is assigned. Proceeding backwards towards the primary inputs,

* .values are assigned to gate inputs to produce a previously assigned output in

such a way that one or more sensitized paths from the primary output are ex-

tended through the gate. For example, let 1 be assigned to the output of

gate G4 in Fig. 2.3. If pq--lO is assigned to inputs of G4 as shown, then a4

10

N N

4p 1
CD CL

41

LL.

CL-

a. o~ a

.. sensitized or "critical" path is extended from zI to line q; the value 0

assigned to q is termed a critical value. Continuing backwards, we can

assign the critical values 11 to the inputs of G3, and so on. In general,

if a line on a critical path has the value 0 (1) and is s-a-l (s-a-0), then

an error will propagate to a primary output. Hence this procedure implicitly

deals with stuck-at faults. As in the D-algorithm, backtracking is used to

ensure that all lines affected by the construction of the critical paths are

assigned consistent values. The algorithm is applied repeatedly using all

primary outputs of the circuit in turn, until critical O's and l's have

been assigned to as many lines as possible. Clearly if a critical dE[0,11

is assigned to some line L by a test T, then T detects the fault L s-a-d.

Since the critical path algorithm often generates only single sensitized

paths from any given fault site, it may fail to find tests for certain faults,

where the D-algorithm will succeed. It should be noted too, that the D-

algorithm can be implemented in a way that also tends to produce long sensi-

tized paths. This can be done, for example, by selecting the initial fault

sites close to the primary inputs, or by assigning values during the consis-

tency check phase to extend sensitized path length wherever possible.

Like the D-algorithm the critical path sensitization algorithm can be
extended to sequential circuits by using an iterative array model. It too

encounters the same problems at the D-algorithm in terms of circuit complexity,

races and hazards. Though the D-LASAR program uses a NAND gate model of a

circuit, the basic concepts behind the critical path sensitization approach

are applicable to more general circuit models.

SCIRTSS

Hill and his colleagues have developed a test program called SCIRTSS

(Sequential Circuit Test Search System) designed for moderately large (up to
60 flip-flops and several hundred gates) and unstructured sequential circuits

[Hill & Huey 1977, Huey 1979). The main contributions of SCIRTSS are the use

of a register transfer language (AHPL) for input circuit description, and a

fast heuristic search procedure to determine the state transition sequences

*! required for fault propagation. A low-level (gate and flip-flop) model is

also used, as well as the corresponding stuck-fault model. SCIRTSS has been

implemented on a CDC 6400 at the University of Arizona.

'" ""d-•: ' ''"'""" ' ' "" " m - 'm Im m md ,, m m --, ,,,, -, ,,. & ,,,,b. ,'

12

Figure 2.4 outlines the organization of SCIRTSS. It is composed of

four main sections.

(1) A version of the D-algorithm is applied to a pseudo-combinational

gate-level version of the circuit under test with some selected fault F pres-

ent. This identifies the primary input line valuesand input (control regis-

ter) state S required to propagate an error signal from F to the primary out-

put lines or the next state S1.

(2) Using a high-level circuit model, SCIRTSS executes a "sensitization

*search" program that attempts to find a state transition sequence leading

from a previously determined state S to the state S computed by the D-algo-

rithm. S0 is assumed to be unknown the first time this procedure is executed.

(3) A "propagation search" program is then executed to find an input

sequence that eventually drives a fault signal from S' to a primary output

line. This completes the test generation process for F.

* (4) A conventional parallel simulator is invoked to identify the pre-

viously undetected faults that are detected by the test generated for F. The

list of undetected faults is updated, and a new undetected fault is selected

for test generation.

The two search routines of SCIRTSS are similar, and are implemented using

standard AI techniques. The space being searched is a tree-like representation

of the state behavior of the circuit under test. The tree description is in

high-level form based on AHPL, and is relatively compact. Weights are assigned

to nodes of the tree according to the heuristic formula

Hn = Gn + njjF

where G is the distance from the starting node to the current node n, and Fnnn
is a user-defined value of weight w. Typically large values of Fn are assigned

to flip-flops near observable primary output lines, so that SCIRTSS favors

error propagation towards the observable outputs.

SCIRTSS appears to have successfully achieved its goal of efficient test

*vector generation for sequential circuits containing several hundred gates.

For example, SCIRTSS was able to find 99.4% of the faults in a 4-bit micro-

processor slice containing 240 gates and 36 flip-flops [Hill & Huey 1977]. It

13

S tart

aults Fault

(1)-AgorithmI

(2) Sensitization Searchj

o. ,

ye F nauls

no

-- -

Delet Detected Faults
from Fault List

Fig. 2.4. Flowchart for SCIRTSS

. .

14

has been estimated by its designers that by using a high-level circuit rep-

resentation, SCIRTSS achieved a tenfold speed improvement over conventional

gate-level test generation programs. Several limitations of the SCIRTSS

technique should be noted. The search processes based on high-level language

descriptions can be inaccurate; it may be difficult to provide good heuris-

tics to guide the search. The search routines are also able to handle only

one fault at a time. It would be desirable to process many faults simultan-

eously.

PODEM

The D-algorithm can be very inefficient when applied to circuits com-

posed mainly of XOR (exclusive-or) gates: such circuits are commonly used

* in error-correcting and -detecting logic. Figure 2.5 illustrates the prob-

lems that can arise. A test vector is to be generated for the fault F=m

s-a-O. Suppose that the D-algorithm applies 1 to m and sets k= = 1 to cre-

ate the indicated sensitized path to z. Since the functions appearing on k

and i are complementary, this assignment is inconsistent. However, the D-

algorithm will not find consistent value for k and £ until it has backtracked

to the inputs of the 4-input XOR or parity trees feeding k and A, and tried

up to half the 24 possible input combinations to these parity trees. In

general, with n-input parity trees the D-algorithm may enumerate up to 2

input signal combinations to find tests for certain faults.

To circumvent the foregoing problem, Goel of IBM has recently implemented

a test generation algorithm called PODEM (Path Oriented Decision Making) [Goel

:..- 1980]. PODEM is basically a branch-and-bound algorithm for systematically

searching the solution space of all possible input patterns for a test for

each given fault. Experimental results reported by Goel indicate that PODEM

can achieve 100% fault coverage for XOR-type combinational circuits at speeds

* substantially faster than the D-algorithm. Surprisingly, Goel claims

that PODEM's performance is also better than the D-algorithm in the case of

more general circuits; this has not been independently verified, however. It

should also be noted that XOR circuits have properties that make them amen-

able to special-purpose test generation procedures that are far simpler than

PODEM. For example, a test set of only four vectors can easily be constructed

*that detects all single faults in any simple XOR tree [Hayes 1971].

15

64a

646

4.)
W1

Le
5-;

16

2.3 HIGH-LEVEL CIRCUIT MODELS

The test generation methods discussed in the preceding sections are

primarily useful for gate-level circuits. Although complex circuit modules

can, in principle, be accommodated by the D-algorithm, the bit-level behavior

descriptions (D-cubes) required for such modules become very cumbersome. Re-P! cently increased attention has been devoted to test generation using circuit
models containing complex components such as registers, ALUs and the like as

* primitive elements. This work is motivated by the need to reduce test gen-

eration time in complex LSI/VLSI systems, and by the fact that gate-level

descriptions of the system being tested are often unavailable. Relatively

few such test generation methods have been implemented. Two approaches are

described here:. the LAMP system implemented at Bell Laboratories, and a pro-

posed method called TEST/80.

LAMP

The LAMP system developed at Bell Laboratories provides extensive facil-

ities for simulating circuits containing both gate-level and register-level

elements during test generation [Chappell et al. 1977]. Circuits are des-

cribed using two special-purpose languages: FDL for register-level circuits,
and LiL-LOCAL for gate-level circuits. Figure 2.6 shows an FDL description

of an 8-bit shift register named SREG. Faults may be inserted into FDL des-

criptions by treating the fault name f as a variable, and inserting a func

tional description of the fault within an FDL compound statement of the form

IF f THEN AT tfault actions]

ELSE AT (fault actions)

LAMP can process any fault defined in this way within a module, as well as

the standard stuck-type faults. At most one fault is allowed to be present
sat any time. However, LAMP is capable of simulating a very large number (ap-

proximately 3,0)of single faults smlaeuy.LAMP, which is available
only within Bell Laboratories, has been successfully employed for design vei-

fication and test generation in relatively large digital systems where use of

a pure gate-level model would have been prohibitively expensive. LAMP is pri-

fmarly a fault simulator rather than an automatic test generation system.

aA

17

d[O] d[1] d[7]
Parallel 91 -

Load g2 Shift Register SREG

Left Shift..s

z 0] 11] Z[1]

REG: sreg;

SIZE: 8;
PREFIX: d,z;
INPUTS: gl, g2, s, d[O-7];
OUTPUTS: z[0-71;
HISTORY: 2;
DEF:
IF gl,K THEN z[O-71 = sreg(O-7)

ELSE z[O-71= sl;
IF g2
THEN sreg(O-7) = d[O-71
ELSE

IF-is(-1) & s
THEN sreg(1-7) = sreg(O-6); sreg(O) = 0
FI

F1
F1
FED

(b)
Fig. 2.6. (a) An 8-bit shift register and (b) its description

II in FDL.

18

TEST/80

The recently proposed TEST/80 system [Breuer & Friedman 1979,1980] gen-

erates tests for circuits containing register-level components using a pro-

cedure based on the D-algorithm. Logic elements such as multiplexers, de-

coders, shift registers, counters and RAMs can be treated as primitive ele-

ments. TEST/80 is primarily concerned with reducing the computation time

required for test generation. The system, which has not yet been implemented,

uses high-level languages for both circuit and test description. Tests are

represented by symbolic expressions that resemble regular expressions. This

approach allows complex tests to be represented concisely as the solutions

to implication, line justification and similar problems arising during the

application of the D-algorithm to high-level circuit models. The main dis-

advantage of TEST/80 appears to be the large amount of effort required to

develop models for the primitive components used.

To illustrate the use of FSL (Function Solution Language), the language

used for test derivation in TEST/80, consider the left-right shift register

of Fig. 2.7, where A, Q and Z denote the input, internal state, and output

lines. The following type of line justification problem is typical of cir-

cuit-based testing methods: find an input (test) sequence that sets Z to 1.

In other words, justify Z1 = 1. A simple solution to this problem is to load

1 into the shift register via the parallel data input A1 . This requires the

parallel load control line P to be activated. This solution to the line jus-

tification problem can be expressed as follows in FSL:

(A +- l,PJ.

Figure 2.7b shows a second FSL solution. In this case, a 1 is first loaded

into the flip-flop Q of the shift register via the left-shift data input
n

A An+l; at the same time the left-shift control line L is activated. Then n-l

additional left-shift operations are carried out to move the I from Q to Ql'

thereby setting Z1 to 1 as required. Each left-shift step can be separated

- by an arbitrary number of idle or hold (H) time periods, which are denoted

* by H* in the FSL solution.

6 ° .•... .

Parallel Data In

AAn

~Ao ' " A n+ 1

Left Shift L
Right Shift R Q Q Qn

Parallel Load P

~z Z zn,
Data Out

(a)

Solution 1: {AI -1, P}

Solution 2: {An+I -I, L}(H*L)n '

* (b)

Fig. 2.7. (a) A left-right shift register (b) Two FSL solutions

to the problem: justify Z 1.

Io

20

Like the LAMP system, TEST/80 allows register-level primitives to be

described by means of algorithms. These algorithms replace the tables of

D-cubes typically used in gate-level implementations of the D-algorithm.

They are used in carrying out three major steps of the D-algorithm, namely

implication, D-drive (error signal propagation) and line justification.

TEST/80 also uses a new technique called cost analysis during circuit

preprocessing prior to test generation. Cost analysis assigns numerical

values to lines which are used to guide the various search procedures in-

cluded in the test generation algorithm. Three cost values cA, cA and dA

are associated with each line A that is an output of an element E. cA and

cA denote the cost of setting A to 1 and 0 respectively, while dA denotes

the cost of driving a D on line A to a primary output (D is Roth's error

signal which is 1 in the fault free circuit, and 0 when a fault is present).

In TEST/80, cA is defined by the equation

cA = min(cfA+ csA+ cdA,K)

where cfA and cdA depend on the logic element E, and csA represents a "side

effects" cost caused by fan-out from A. K is a large default value. cA is

defined similarly. Algorithms have been developed for computing the costs

associated with all the primitive elements of interest. Using these it is

possible to compute the costs on all the lines in a circuit. In essence,

cA, cA and dA are measures of observability and controllability associated

with line A.

2.4 RANDOM TEST GENERATION

Another approach to circuit-based test generation is the use of a ran-

dom pattern generator in conjunction with a fault simulator. A sequence of

random patterns is generated for the circuit under test, and the fault simu-

lator is used to evaluate the tests, e.g., to identify the stuck-at faults

that they detect. Unlike methods based on the D-algorithm, tests are not

generated for specific faults. The main advantage of random test generation

(RTG) of this kind is the ease with which large numbers of potentially use-

ful test patterns can be generated. Its disadvantages may be summarized as

follows:

MAN

21

(1) Many faults require very specific, i.e., non-random, test pattern

sequences to detect them, and hence may escape detection.

(2) RTG unlike test generation procedures based on the D-algorithm,

cannot recognize undetectable faults, and may waste a great deal of time

trying to generate tests for such faults.

(3) Random test sequences for a given set of faults are often much

larger (a factor of 10 or more is common) than equivalent non-random tests

for the same faults.

A general consequence of the foregoing problems is that the first test

patterns in a random sequence tend to detect many faults, but the number of

newly detected faults falls off rapidly. This is especially true for sequen-

tial circuits. This difficulty can be overcome by combining RTG with a method

such as the D-algorithm [Breuer 1971, Agrawal & Agrawal 1972]. A recent ex-

-. ample of this dual approach to test generation can be found in a program de-

veloped at Nippon Electric Company [Yamada et al. 1977]. It is claimed that

tests for up to 70% of the faults of interest are generated by the NEC pro-

gram during the RTG phase; the remainder are generated by the D-algorithm.

The efficiency of RTG can also be improved by varying the probabilities with

.--which O's and l's are applied to the input lines of the circuit [Schnurmann

et al. 1975, Parker 1976b]. It is also usually desirable to be able to apply

deterministic inputs to certain lines, e.g., the clock lines.

While RTG is useful for randomly-structured circuits such as are en-

countered in processors and control units, it is unsuitable for highly struc-

tured circuits like memories. In the case of combinational circuits, Agrawal

has derived the following heuristic measure of the effectiveness of RTG

[Agrawal 1978):

M(99%) = (0.Ol)/L[1-q (n-1L] .

Here M(99%) is the number of random test patterns required for a 99% probabil-

ity of generating a sensitized path of L levels, q is the probability of assign-

ing 1 to each input line of the circuit, and n is the average fan-in of the

circuit. M(99%) is easily computed for any combinational circuit. Agrawal

suggests that when M(99%) is substantially less than 2N, the total number of

22

possible input combinations, the circuit is a good candidate for RTG. For

example in the case of the 74153, a standard multiplexer chip, 2N = 4096 9

while M(99%)-200, indicating that this circuit is suitable for random test-

i ng.

Interest in RTG has increased recently with the advent of compact test-

ing. Compact testing methods such as transition counting and signature an-

alysis allow very long random sequences to be used without generation of un-
manageable quantities of response data, since the response data can be com-

pressed into a compact signature. Furthermore testing can be done at the

clock rate of the unit under test using very simple test equipment. Compact

testing is considered in detail in Sec. 3.3.

10

23

3, FUNCTION-BASED TEST GENERATION

Gate-level circuit models of the type discussed in the preceding chapter

are often unavailable for test generation purposes. This is particularly true

of microprocessor-based systems, where often the only system descriptions

available are a high-level block diagram and a listing of the microprocessor's

instruction set. Even in cases where a more accurate gate-level description

can be obtained, the number of gates present may be so great that too much

computation is required for test generation at the gate level. This chapter

examines the methods used for test generation based on high-level (typically

at the register-transfer level) functional descriptions of the unit under test.

While some work has been done using exact system and fault models, most test

generation methods in this class are heuristic or ad hoc.

3. 1 FUNCTIONAL FAULTS

*Concern about the inadequacy of the conventional stuck-at-O/l fault model

in the context of MOS/VLSI [Wadsack 1978, Galiay 1980] has revived interest in

the use of more general fault models. The most general such model of prac-

tical value has been termed the functional fault model [Sridhar & Hayes 1979]

and i ay be defined as follows. Let M be a system or component module to be

tested. Let M have s internal states and implement the function z. A perma-

nent fault F is a functional fault of M if F changes M to MF, where MF real-

izes zF and contains sF _s states. The fault is said to be detectable via an

external test if zF /z. This fault model includes all classical fault types

such as stuck faults, short-circuit faults and pattern-sensitive faults, as

well as many faults that have received little attention.

If M is a combinational circuit, i.e., if s=l, then MF must also be com-

binational. M is therefore tested for all functional faults of the above type

by applying all 2n possible input combinations to M, where n is the number of

primary input lines present. This is, in effect, exhaustive testing which

verifies the truth table of the circuit under test. Its complexity is clearly

determined by the exponential growth rate of the 2n input combinations, and

appears to be limited to cases where n_ 32 or so. This testing method is used

by TRW for functional testing of its multiplier chips, which are implemented

-2.-~~ c._t

b'°--

24

as VLSI combinational arrays. The processing of the large amounts of test

response data produced by this approach can be simplified by various data

compression methods [Tsidon et al. 1978]; this is discussed later in the

context of compact testing.

To detect all possible functional faults in M when M is a sequential

circuit, i.e., s>l1, requires the use of a checking sequence [Friedman &

Menon 1971]. A checking sequence must effectively verify the state table

of M. It is only feasible to generate checking sequences of reasonable

length if s is very small, or if M has an unusually simple structure.

BIT-SLICED MICROPROCESSORS

This approach has recently been applied with success to test generation

for bit-sliced microprocessors [Sridhar & Hayes 1979, 1981]. A register-

level description of the microprocessor to be tested is required. The cir-

cuit modules, such as registers, multiplexers and ALU are assumed to be sub-

ject to the foregoing functional faults; it is also assumed that at most one

module is faulty at any time. Because of the short word size characteristic

of bit-slices, the individual modules are sufficiently simple that it is

feasible to use the checking sequence approach to derive a complete set of

tests for all functional faults.

To illustrate this testing philosophy, consider the general-purpose mi-

croprocessor slice C appearing in Fig. 3.1 [Sridhar & Hayes 1981]. This is

based on the widely-used AMD 2901 4-bit slice [Mick & Brick 1980]. C differs

from the 2901 in having a 1-bit word size. This is less restrictive than it

appears, since the tests for a 1-bit slice can readily be extended to larger

slices or arrays of slices. Like the Motorola 10800 microprocessor slice, C

has only two working registers. The ALU is a combinational module capable of

twos complement addition and subtraction, and the standard logical operations.

Circuits for carry lookahead arithmetic are not included; only ripple carry

propagation between adjacent cells is used.
* .'" Test generation for C proceeds as follows. First a functional test T.

1
is derived independently for each module M. in C. When M. is an n-input com-

binational circuit Ti is simply the set of all 2 n-bit input words. The ALU
module MF, for example, requires 2= 64 test patterns. Checking sequences of

length 16 can be derived for the two 1-bit register modules MA and MT. Each

- module test TI is then extended to a test T* which, when applied to the primary
. ".

25

Data in

Right shift in- -- Left shift in

Shif t Shifter

DestinationI 16- Register A Rgse
control l ~(A

ALU 0Q Source Suc
source 11 Multiplexer R Multiplexer S
control 112 (MRt) _______

in

f unctionj 14-.. Arithmetic- logic unit CO -Cam out

F)

Y

Data out

Fig. 3.1. A 1-bit microprocessor slice C.

26

inputs of C, causes Ti to be applied to Mi and Mi's responses to be propa-

gated to observable outputs of C. An ad hoc path sensitization procedure

is used to construct the T*'s. This is a relatively simple task since C
1

is a very simple circuit, i.e., it contains very few modules, at the com-

plexity level being used. The various T!'s can be combined to yield a test

sequence TC of length 114 which detects all single-module functional faults

in C.

C has the useful property called C-testability [Friedman 1973] which

means that an array of type-C cells of arbitrary length can be tested with

a constant number of test patterns, in fact, the same number as is required

for C itself. Sridhar and Hayes have extended C to a k-bit slice Ck'n con-

taining an nx k scratchpad RAM; Ck'n requires, 64+2 2k+4+16n2 test patterns
for complete functional fault coverage, assuming that the RAM is treated as

a set of independent 1-bit registers. Thus C4'16, which is very similar to

the 2901, requires a test of length 8,256. This compares favorably with the

12,350 test patterns used by AMD to test this device [McCaskill 1976]; the

AMD tests are completely heuristic, however, and their fault coverage is un-

clear.

While the foregoing testing philosophy is quite general, it depends on

use of relatively simple functional modules such as appear in C. The Sridhar-

Hayes approach exploits the regular interconnection structure found only in

bit-sliced designs. It should also be noted that the cell C omits carry-

lookahead, a speed-up feature of all commercial bit-sliced microprocessors.

While the inclusion of carry-lookahead would not significantly increase the

difficulty of testing C itself, the simple procedures for extending the tests
for C to arrays of cells would no longer apply. It should also be noted that

fast techniques exist for implementing ripple-carry arithmetic of the kind

used in C, which reduce the speed advantages of carry-lookahead in the con-

text of VLSI [Mead and Conway 1980].

BINARY DECISION DIAGRAMS

Another approach to test generation for functional faults has been pro-
* posed by Akers [Akers 1976, 1978] which makes use of binary decision diagrams

(BDDs) to describe the functional behavior of a device being tested. Figure

- 3.2a shows a BDD for the simple combinational function

f - a+ bc..6

27

0 0
Jb

0 1
:.+: (a)

F Cn+4
M +"G A'

13 12 3 L3 33

:2F 2

M A3

A2 2 L212 12
F

r',"

1 A2 A2
LO M

n A AO F

0 F

832 1 1 0 8
3 S2 S S3 SSOS S S

Fig. 3.2. (a) Binary design diagram (BDD) for the function
f=a+6c. (b) BDD for a 4-bit microprocessor slice.

28

The value of f for any combination of a, b, c can be found by selecting an

appropriate path from the top (root) node of the BDD to a terminal node.

Each non-terminal node represents an input variable; a branch to the left

(right) at node n, corresponds to assigning a value of 0 (1) to n. The

label on the terminal node reached is the output value of f corresponding

to the path traced through the BDD. The main advantage of BDDs are their

compactness. Figure 3.2b shows a 35-node BDD for a 4-bit microprocessor

slice based on the AMD 2901 mentioned earlier [Mick & Brick 1980]. Akers

asserts that for most devices of interest, the number of nodes in the BDD

grows linearly with the number of device inputs.

A BDD may be used for functional test generation in the following way.

All possible paths from an output fi of the BDD to terminal nodes are com-

puted. THe corresponding set of input patterns are collected to form a

(partial checking) experiment [Akers 1978]. Node variables not included

in a particular path are marked "don't care," while variables both of whose

exit branches terminate at the corresponding node are marked as "sensitive."

The experiments may be used to generate functional tests by varying their

sensitive input variables in all possible ways, which effectively creates

sensitized paths from these variables to the outputs of the circuit under

test. This allows a portion of the circuit to be exercised in a systematic

manner. Of course, a complete checking sequence must be applied if all
functional faults are to be detected. The applicability of the BDD approach
to high sequential circuits is questionable.

3. 2 HEURISTIC TEST GENERATION

The usefulness of the foregoing testing approaches diminishes as the

complexity of the unit under test increases. Systems with substantial num-

bers of LSI/VLSI components are often tested by heuristic means that merely

attempt to exercise the major subsystems. Since many current systems contain

microprocessors, there is considerable interest in testing methods that employ

the microprocessor as the primary source of test patterns. This reflects the

fact that the functions of the system are often described in terms of instruc-

tions or programs executed by the microprocessor. Thus it is possible to de-

sign a system test in the form of a suitably instrumented set of test programs

executed by its internal microprocessor [Hayes & McCluskey 1980].

29

MICROPROCESSOR-BASED SYSTEMS

Heuristic testing of a microprocessor-based system typically proceeds as fol-
lows. First the microprocessor, which is the system's CPU, is tested. A

typical CPU test [Chiang & McCaskill 1976] begins by executing instructions

that cause the program counter PC to increment through all its states, a
mode of operation called free-running. The PC state can be observed directly

on the system address bus. Other CPU registers and buses are then tested by

writing suitable test patterns into them and reading out the results via PC.
If the microprocessor word size is relatively small, e.g., eight bits or less,

then all possible data patterns can be applied to each register and bus. Note

however that it is not feasible to apply every possible sequence of these pat-
terns, since the number of possible sequences is too great. The CPU registers

can be tested in the above manner by means of a small number of data transfer

instructions. Next the ALU is tested by exercising all arithmetic, logical

and conditional branch instructions. To complete the CPU testing, any pre-

viously unused CPU instructions, circuit components and 10 lines must be ex-

ercised.

After testing the CPU, the system'as main memory can be tested. ROMs are

usually tested with V~ie PC in free-running mode. The free-running PC places

addresses on the system address bus causing the ROM contents to be placed on

the system data bus where they can be observed and checked. Signature analy-
sis is particularly useful here since a fixed set of fault signatUres can be

determined for the ROM. RAMs are usually tested by executing standard algo-

rithms such as CHECKERBOARD and GALPAT which check for various types of func-

tional failures [Breuer & Friedman 1976] (see also Sec. 4.3). Finally, the

system's 10 ports must be tested. This can be accomplished by a technique

called loopback, whereby the system's output ports are temporarily connected
to its input ports. This makes the 10 portion of the system resemble a RAM,

and RAM test patterns may be used to test it.

The main disadvantage of the foregoing testing procedure is the diffi-
culty of measuring its effectiveness. There is no explicit fault model,

hence no measure of fault coverage can be given a priori.

S-GRAPH MODEL

In an attempt to provide a more rigorous procedure for test generation

via a system's instruction set, a microprocessor model called an S-graph was

30

developed recently [Thatte 1979, Thatte & Abraham 1980]. An S-graph des-

cribes the behavior of a microprocessor using only information that is pro-

vided in a user's manual. The nodes of the S-graph correspond to the regis-

ters JRiJ of the microprocessor, including scratchpad registers, address

registers, flag registers, etc. Two special nodes called IN and OUT denote

the input and output ports connecting the microprocessor to main memory. If

an instruction I causes data to flow from R1 to R2, then a directed edge

(arrow) labeled I is drawn from Rl to R2. Since most instructions involve

a sequence of register transfers, a superscript K is added to the edge label

I. to indicate that the corresponding register transfer occurs in the Kth

step in the execution of I. Figure 3.3a shows a hypothetical microprocessor

studied by Thatte and Abraham which has 21 instructions; Fig. 3.3b shows the

corresponding S-graph.

Four general types of functional faults are defined in terms of S-graphs:

(1) Register decoding faults

(2) Instruction decoding faults

(3) Data storage faults

(4) Data transfer faults.

All these faults affect some general function associated with instruction exe-

cution, and they are largely independent of how the function is implemented.

In most cases physical fault mechanisms can readily be found that give rise

i*!* to the functional failures being modeled.

Register decoder faults occur when an operation that accesses (reads from

or writes into) a register Ri, fails to access Ri, or accesses one or more in-

correct registers R. When several registers are read simultaneously due to

a register decoding fault, the accessed data is assumed to be either the AND

or OR function of the various register contents. Register decoding faults

correspond to stuck-at faults affecting multiplexers and demultiplexers in the

data transfer paths between registers. The class of instruction decoding faults

covers malfunctions of the instruction opcode decoding mechanism. An instruc-

6 tion Ij may be incorrectly decoded in three ways as specified by the following

*.. faulty behavior:

31

'~ 00

E (A

-0 .2 -0

- -j

C4C

00

32

C4,

C4.

0

LL.

4C4

00

- -4

'- i . - •n 'r r -- . • ,' ' " ' - .

33

(1) Some instruction Ik# I is executed instead of I.

(2) No instruction is executed.

(3) In addition to Ij, some other instruction Ik is executed.

Faults of this type correspond to physical failures in the circuitry that

issues the instruction activation signals. Data storage faults refer to

failures of the stuck-at-O/l type in the registers themselves. Data trans-

fer faults are associated with data transfer paths (buses). Two cases are

permitted. One or more lines in the path may be stuck at 0 or 1. Two or

more pairs of lines may be coupled so that they always carry the same logi-

cal value; this value is defined as the AND or OR function of the signals on

the two coupled lines.

No specific fault model is proposed for "data manipulation faults" affect-

ing processing circuits such as the ALU, address computation circuits, inter-

rupt control, and the like. It is assumed that adequate functional tests for

these faults are derived by other means using other fault models. These tests

are added to the tests obtained from the model proposed. Finally, it is

assumed that faults of only one of the above four types are present during

testing.

Thatte and Abraham have constructed detailed test generation procedures

for their four fault categories. In all cases the tests take the form of a

sequence of instructions, i.e., a test program, to be executed by the target

* microprocessor. The tests are derived directly from the microprocessor's

S-graph. It is assumed that testing is supervised by external test equipment

which has direct access to the system bus or, equivalently, to the IN and OUT

nodes of the S-graph. A typical test step involves selecting instructions that

cause a data test pattern to enter the IN node and pass through various regis-

ters generating response data which is transferred to the OUT node. The test

steps are ordered in such a way that the knowledge gained from the successful

*, . execution of early test steps can be used in later steps.

* Thatte and Abraham have attempted to evaluate the feasibility of their ap-

proach by using it to generate test sequences for a microprocessor from Hewlett-

Packard whose complete specifications have not been published. It contains 16

8-bit general-purpose registers and conventional special-purpose registers such

as an 8-bit accumulator, an 11-bit program counter and an 11-bit stack pointer.

34

It has approximately 190 instructions. This microprocessor was chosen be-

cause the authors were able to obtain a detailed gate-level logic simulation

model for it from Hewlett-Packard.

Applying their test generation procedures to this processor, Thatte and

Abraham obtained (by hand) test programs containing about 9K instructions.

Of these, about 8K were required to test for instruction decoding faults. The

number of stuck-at faults detected by these tests was determined by using the

TESTAID III fault simulator and the gate-level simulation model. About 2200

faults were simulated (which faults they were is not stated). It is reported

that essentially all the simulated faults were detected. The 1K instructions

constructed for faults other than instruction decoding faults detected about

90 percent of the simulated faults.

The approach presented is quite general and is applicable, in principle,

to most microprocessors. The coverage of register decoding, data storage and

data transfer faults appears to be very good. Furthermore, the necessary test

programs are relatively easy to generate, and this process can probably be

automated. The coverage of the instruction decoding fault tests is unclear.

This part of the fault model appears to be unrealistic in several respects.

It is not directly applicable to microprocessors such as the Motorola 68000

which use microprogrammable control. THe most serious apparent deficiency of
this approach is the lack of a fault model for data manipulation faults. It
is doubtful that such faults can be adequately treated using an approach based

on the S-graph system model. Thus an alternate procedure to cover these faults

must be used to augment this basic approach. In general, it is not easy to

relate faults based on S-graphs to standard stuck-at faults; some relatively
simple stuck-at faults are not covered.

3.3 COMPACT TESTING

"" The term compact testing [Parker 1976a] refers to a class of testing me-

thods in which test response data is compressed (compacted) into a relatively

short fault signature that can easily be compared to a fault-free reference

signature. The terms signature testing and syndrome testing are also used

for compact testing, but usually have narrower interpretations. A type of

compact testing found in some commercial test equipment is transition counting,

in which a signature is the total number of times a particular binary signal

-L,

changes state (from 0 to 1 or from 1 to 0) while a fixed sequence of input

patterns are being applied [Lyons 1974]. A more sophisticated approach based

on algebraic coding techniques and called signature analysis has been suc-

cessfully promoted by Hewlett-Packard [Gordon & Nadig 1977]. Compact testing

is used primarily with heuristically generated test patterns. These include

pseudo-random patterns, and exercising patterns of the sort discussed in the

preceding sections. Several analyses of compact testing have been published

and are reviewed in the sequel. An important general characteristic of com-

pact testing methods is that they require very simple test equipment. Hence

they are very well suited to field testing and incorporation into built-in

test equipment. Figure 3.4 shows the equipment typically used for compact

testing.

Suppose that T is an input test sequence that produces a response se-

quence R at some test point P1 of the unit under test. R is processed in

real time by a suitable compaction technique to yield a signature f(R). f(R)

is then compared to a precomputed signature f(Ro). If f(R)f f(Ro), then a

fault is present in the circuits feeding P1. Standard signal tracing tech-

niques may be used to isolate the fault by obtaining the signatures at a se-

quence of test points PI,P 2,... . In general it is desirable to construct

T so that f(R)ff(RO) for all faults of interest. Deterministic testing

methods aim at obtaining T with 100% fault coverage. Note that f(R) f(RO)

implies Rt RO, so a compact test T must also be a test in the conventional

sense. The problem of finding a compact test for a given set of faults can

therefore be expected to be more difficult than the corresponding problem

for non-compact testing.

TRANSITION AND ONES COUNTING

Transition count (TC) testing has been subjected to formal analysis,

mainly for combinational circuits [Hayes 1976a, 1978, Seth 1977, Fujiwara &

Kinoshita 1979]. Deterministic TC testing of sequential circuits has re-

ceived little attention [Venkatraman & Saluja 1980]. In general it is known

that for combinational circuits, TC testing can provide essentially the same

fault coverage as conventional testing with a very small increase in the num-

ber of test patterns required. The main problem is the computational effort

needed to compute the test patterns and the order in which they must be

36

CL 4.C

.2

a-e

CoL

37

applied. Note that even combinational TC tests are highly influenced by the

order of the input patterns. A related testing technique called ones count-

ing has also received some attention [Hayes 1976b, Losq 1978]. In ones

counting f(R) is the number of l's appearing in R. Hayes has analyzed ones

counting from a deterministic viewpoint and concluded that it is potentially

superior to TC testing [Hayes 1976b]. For example,-in combinational circuits
the ones count is independent of the order in which the input test patterns

are applied. An advantage of transition counts is the fact that they are in-

dependent of 0 or 1 pulse duration, making them attractive for testing asyn-

chronous circuits.
To simplify the task of computing T for compact testing, two approaches

have been investigated: exhaustive testing and (pseudo-) random testing. In

each case, the test pattern source of Fig. 3.4 need only be a simple counter.

Exhaustive testing, as discussed in Chap. 2, is feasible for combinational

* circuits with a moderate number of inputs n, say n 32. It has been observed

that for special types of unate circuits, all stuck-at faults can be detected
by applying all input patterns and observing the output ones count [Tsidon et

al. 1978]. In the case of fanout-free circuits it-suffices to perform the

counting modulo two, thus reducing the response recording circuitry to a single

flip-flop.

Savir of IBM has defined a type of ones count S= K/2n for an n-input com-

binational circuit, where K is the number of minterms in the function being
realized [Savir 1980]. S, which is called a syndrome, is thus the normalized

number of ones observed at the circuit's output when all 2n possible input com-

binations are applied. A circuit is syndrome-testable for a fault F, if F
produces a syndrome S that differs from the fault-free syndrome S 0 S has the

advantage of depending only on the function being realized and not its partic-

ular implementation. On the other hand, it is possible for faults to yield

the same fault-free syndrome S 0 as the good circuit. Savir has shown that

any combinational circuit can be made syndrome testable by the addition of a

modest amount of extra logic to the unit under test. For example, the 74181,
a standard 4-bit ALU chip, requires one extra input line and two extra gates

4 - to make it syndrome-testable with respect to stuck-at faults.

38

A comprehensive analysis of the use of random test generation with ones

counting has been made by Losq [Losq 1978]. He considers the testing of se-

quential circuits, and assumes that testing is implemented in three steps as

follows:

(1) (Initialization) A very long sequence of inputs is applied to bring

the unit under test to a well-defined initial state. (This step is omitted in

the case of combinational circuits.)

(2) (Statistics gathering) Another long sequence of inputs is applied

and the ones count of the response sequence is computed.

(3) (Comparison) The computed ones count is compared to a reference

signature to determine whether the unit under test is faulty.

Losq does not require an exact match between the observed and reference sig-

natures; they may differ by some tolerance factor e. The unit under test is

considered to be fault-free only if its ones count falls within some accept-

able range determined by e.

To analyze the efficiency of this testing procedure a fault model that

assigns occurrence probabilities to all faults under consideration is required.

Losq considers several possible models of this type. For example, in the

case of n-input combinational circuits he assumes that all possible fault func-

tions have equal probability, namely 1/(22n-l). For the more difficult task

of modeling faults in sequential circuits, Losq considers separately the out-

put circuits, the memory (flip-flop) part, and the excitation circuits. For

each case he derives expressions for the probability that a fault is not de-

tected. Figure 3.5 shows a representative result for a IK-bit ROM [Losq 1978].

This indicates that when the length of the random input sequence to the ROM

is 106, the probability of detecting all faults is 0.99999. Losq concludes

that random compact testing can provide very high fault coverage for combina-

"_ tional circuits, while in the case of sequential circuits the coverage depends

on the ease with which the unit under test can be initialized.

SIGNATURE ANALYSIS

The term signature anlysis has been appropriated by Hewlett-Packard for

the compact testing scheme depicted in Fig. 3.6 [Gordon & Nadig 1977, Hewlett-

Packard 1977]. The test response R is passed through a 16-bit feedback shift

I

-. * -~-. .-.-. -.-. .-.. F, W. - - -

39

0C

ot
CU

- S..

I-.-

L.

40
LL.

C.LM I
I -

Ijc

1 Iv

oe.I

I. S0.

41

register (FSR). The contents of the FSR after the complete test T has been
applied is the fault signature f(R), which is then displayed as a 4-digit

hexadecimal number. Signature analysis is based on algebraic coding tech-
niques, since the FSR implements a decoding scheme employing polynomial di-

* vision. The effectiveness of signature analysis can therefore be analyzed

using standard methods from algebraic coding theory.
It is readily shown that the scheme of Fig. 3.6 can detect any single-

bit error in the'response stream R. If JRJ = k, and all response streams are
equally likely, then the probability of detecting an error with an r-bit
signature is 1-2kr)(k,,which aprahs1-2- as k, the test length,

increases. Using this result, it has been argued that the HP signature an-
alysis method with r= 16 has a probability of detecting faults of 99.998%

[Gordon & Nadig 1977], and is far superior to transition counting. Several
fallacies in this argument have been pointed out recently [Smith 1980]. In
the first place, if all errors are equally likely, then signature analysis or
long test sequences are not necessary. Equally good results could be obtained

by using a test sequence of length r with no response compaction! While the
assumption of independent errors is valid for the communication channels

where algebraic coding methods are often employed, its validity is question-
able in the case of digital logic circuits. Errors in test response streams

from logic circuits often take the form of burst errors (several adjacent

bits faulty) or "repeated-.use" faults where errors occur in bit positions
that are a fixed distance apart; typically this distance is a power of two.

Smith has analyzed the ability of signature analysis to detect such faults.

He concludes that results are highly dependent on the FSR configuration used
in the signature analyzer, and that further experimental data is needed to

identify the most efficient configurations.

Signature analysis appears to be a promising approach to the design of
* self-testing LSI/VLSI chips because of the relatively small amount of special

hardware needed, particularly if pseudo-random test pattern generation is
used. Recently some work has been reported on its application to the design
of self-testing processors [KOnemann et al. 1979]. The AMD 2901 4-bit micro-

* processor slice was redesigned to include a random pattern generator and a

signature analyzer. Both units were implemented in the form of feedback shift

registers obtained by modifying existing registers in the 2901. While encour-
aging results have been reported for this approach, its fault coverage is

Z."
42

questionable in view of the known limitations of random testing, and the lim-

itations of signature analysis pointed out by Smith.

V

.d

% . .

43

S. SPECIAL CIRCUITS AND FAULTS

The preceding chapters have dealt with test generation methods for gen-

eral types of combinational and sequential circuits. The fault models con-

sidered included the general functional fault model of Sec. 3.1, and the

stuck-at model which is the "classical" fault model of most test generation

procedures. The present chapter examines test generation for a variety of

special types of circuits including semiconductor memories and PLAs. It

also examines the test generation requirements of such non-classical faults

as delay faults and pattern sensitive faults which are of growing importance

in the context of LSI/VLSI.

4.1 SEMICONDUCTOR MEMORIES

Considerable attention has been devoted to test generation for semi-

conductor memories including RAMs, ROMs, and PROMs [Hnatek 1975, Barraclough

et al. 1976]. This reflects the enormous number of memory chips used in

modern digital systems, as well as some special testing problems that they

pose. These problems include pattern sensitivity, and soft errors due to

Lc-particle radiation from chip packaging materials. Both of these problems

are indirect consequences of the very small size of the memory cells used,

and the very high density of these cells on a typical memory chip. Figure

4.1 lists some common failure modes in semiconductor memories. Faults due

to cL-radiation generate transient errors which are usually tackled by

special packaging techniques or the inclusion of single-error correcting

logic in the RAM. The remaining faults are basically permanent, and are

detected by the application of appropriate test patterns.

Z. A variety of heuristic test procedures have been developed for semicon-

ductor memories [Hnatek 1975]. These are characterized by the use of test

pattern generation and verification algorithms that are easily programmed

on standard automatic test equipment. Testing time is typically proportional

to n or n2 , where n is the bit storage capacityofthe memory under test. A

*,, * simple RAM test called CHECKERBOARD proceeds as follows. O's and l's are

written into alternating cell locations in the memory. Then the contents

of each cell are read out and verified. The process is repeated with O's

44

*Opens and shorts

*Inaccessible cells

* Multiple cell accesses

9 Pattern sensitivity

*Slow sense amplifier response
*Loss of data due to refresh failure

*Loss of data due to a-radiation

Fig. 4.1. Some typical failure modes in semiconductor

memories.

45

and l's interchanged, thus requiring a total of 4n tests, where each test

Uinvolves one write or one read-and-verify operation. CHECKERBOARD checks

L_ the basic memory operation, as well as the refresh function of dynamic mem-
ories. Failures in the addressing mechanism are often checked by means of
a class of test algorithms called GALPAT. In a typical GALPAT test 0 (1)

is written into every cell of the memory under test. A 1 (0) is then writ-

ten into some test cell Ci. Each cell C Ci is read in turn to determine

whether its contents were disturbed by the write operation addressed to

C. After reading all the C.'s, C. is read again to ensure that it is still

correct. This process is repeated with every cell in the memory acting as
2

the test cell. The time required by this GALPAT procedure is 2n +8n.

Memory testing algorithms of the foregoing kind have two serious lim-

itations. The testing time required by the more sophisticated algorithms

like GALPAT can be excessive. For example, suppose that the foregoing

GALPAT test is applied to an n-bit RAM at the rate of one test every 100 ns.
10A 1K RAM (n= 2) can be tested in less than a second; however, a 1M RAM

(n= 220) would require over six hours at the same testing rate. A second

difficulty is the fact that the fault coverage of these methods is unclear

since there is no underlying fault model. In fact GALPAT was developed ex-

perimentally (by Macrodata, Inc.) to detect faults in a specific memory

chip from one manufacturer. Its validity as a universal test for RAMs is

therefore open to question.

4.2 PROGRAMBLE LOGIC ARRAYS

Programmable logic arrays (PLAs) form a very popular structure for im-

plementing control logic. A PLA typically takes the form of two connected

grids of conductors called the AND and OR arrays as shown in Fig. 4.2. The

PLA is programmed by means of switches (diodes, transistors, fusible links,

etc.) that connect the vertical input/output lines to the horizontal lines.

The AND-OR arrays form a 2-level logic circuit capable of realizing any com-

binational function. The addition of I/O registers as depicted in Fig. 4.2

allows any sequential logic function to be realized.

Besides faults that can bc modeled by the normal stuck-at model, PLAs

are subject to the following special failure modes: shorts between vertical

or horizontal grid lines, missing switches at crosspoints, and extra switches

at crosspoints.

. . ." •I. ., - . - "- -- , ', , , ,a, -- ,"-;,,; , ",w , -- ," W '

46

L aa- C

b.b
cl

1<m

47

Algorithms have been constructed for most PLA fault modes [Cha 1978,

Ostapko & Hong 1979, Smith 1979]. These algorithms differ from conventional

ones like the D-algorithm in that they do not employ an explicit logic cir-

cuit model of the PLA. Instead they use the knowledge of the chip layout

to produce a set of test patterns for the most probable fault mechanisms.

P At the 1980 Fault-Tolerant Computing Symposium in Kyoto, two methods were

proposed for designing PLAs to make test generation relatively trivial [Hong &
* Ostapko 1980, Fijiwara et al. 1980]. In each case a small amount of extra

Igoic is added to a standard PLA layout. The augmented array has the pro-
perty that a relatively small universal test set can be constructed for

faults in the PLA such that the tests are independent of the functions being

K realized.

4.3 PATTERN-SENSITIVE FAULTS

An important failure mode encountered in semiconductor RAMs and ICs

such as microprocessors that contain large internal RAMs, is the pattern

sensitive fault (PSF) or adjacent pattern interference fault [Hnatek 1975,

Hackmeister and Chiang 1975]. A PSF causes a memory read or write to fail

in a way that depends on the stored pattern of information in the memory.

PSFs are difficult to detect because a particular memory access operation

say, read address X, can sometimes succeed and sometimes fail in the presence

of a PSF. Thus although they are permanent faults, PSFs often have the ap-

pearance of intermittents. If the range of pattern sensitivity is broadly

defined, then most of the failure modes listed in Fig. 4.1 can be covered by

PSF tests.

A formal model and test generation procedure for PSFs was first proposed
in 1975 [Hayes 1975]. A very general fault model was assumed in which each

1-bit cell Ci is associated with a set of cells N(Ci) called the neighborhood

of C. Any read or write operation addressed to C. can alter or be altered

by the state of N(Ci) in any way. This is essentially a functional fault

model in which PSFs are detected by applying a checking sequence to each
:., neighborhood N(Ci) of the RAM. Because of the regular structure of a typical

RAM, such checking sequences are not difficult to generate; however their
W- length increases exponentially with the neighborhood size. Thus in order toK:

,, • . . .•.*., , ,. .. - . . - . .: .. - _. .. ,

48

obtain testing algorithms of practical length, constraints must be placed on

neighborhood size or the number of possible fault modes permlitted within a

neighborhood.

Several memory testing procedures based on simplified PSF models have

been studied. Nair et al. have defined PSFs based on a concept of cell

coupling [Nair et al. 1978]. A set of k cells is said to be k-coupled if
a state transition in one cell causes another cell in the set to change

* state. Test generation algorithms have been obtained to detect all 2-

coupling faults and some 3-coupling faults. Nair et a1. observe that their

model becomes very complex when k> 3. Note that k-coupled faults exclude

faults affecting read operations. A similar fault model has been investi-

gated by Suk and Reddy, who also restrict attention to the neighborhood

types appearing in Fig. 4.3 [Reddy & Suk 1979, Suk & Reddy 1980]. They pro-

vide efficient test generation algorithms for detecting and locating PSFs.

However, the value of these methods is questionable because of the underlying

assumption that reads and non-transition writes cannot change the state of

the memory.

Recently Hayes has reconsidered his PSF model under the assumption that

operations addressed to only one cell in the RAM can be faulty [Hayes 1980].

He showed that for a broad class of neighborhood shapes called tiling neigh-

borhoods, e.g., those of Fig. 4.3, relatively simple and efficient test gen-
k

eration algorithms exist. In general,test sequence length is (3k+2)2 n where
n is the RAM capacity and k is the neighborhood size. Thus for a IM RAM and

- the 5-cell Type I neighborhood of Fig. 4.3, the total testing time is about 1

min at a 10 MHz testing rate. This compares very favorably with the heuris-

* - tic RAM testing methods discussed earlier. The validity of the Hayes fault

model, as well as those of other researchers has not been verified experi-

* mentally, so the practical value of the associated test procedures has not

been determined.

4.4 DELAY FAULTS

The operating speed of a digital system is determined by the maximum

* propagation delays in the combinational parts of the system. Changes in

propagation delay due to manufacturing defects or aging, which are called

49

m 4J

U 06.

- -- -

C-L1

50

delay faults, can result in improper output signals or unstable operation.

The goal of delay testing is to determine whether the delays of a given logic

network lie within specifications. Delay testing is accomplished by measur-
* ing maximum propagation delays between the inputs and outputs of the sub-

circuits of interest. This may be difficult or impossible to do in LSI/VLSI

chips if sufficient access to input/output lines within the chip is not
available. The necessary access is provided by design disciplines such as

* LSSD, and delay fault testing for such circuits has been studied [Hsieh et

al. 1977, Lesser & Shedletsky 1980).

A basic requirement for proper operation of logic circuits in that its
maximum internal propagation delay dma should not exceed one clock period,

so that all flip-flop input signals are stable when the circuit is clocked.

To keep the computation associated with delay measurement within practical
limits, only signal delay along single (sensitized) paths is considered. The

delay of such a path P from x to y is measured as follows. Using a procedure
analogous to the D-algorithm, an input vector X required to sensitize P is
determined. A second vector X' is obtained by inverting the value of x in X.

When the sequence XX' is applied to the circuit under test, a signal transi-
* tion propagates along P. The delay d between the application of XX' and the

appearance of a signal transition at y is then computed; this is the delay of

P. If the delays of a sufficiently large and representative set of paths are
- .determined, d max can be computed. Note that it is not usually feasible to

consider all possible paths.

A basic difficulty in delay testing is choosing the set of single paths
whose delays are to be measured in the foregoing manner. Figure 4.4 illus-
trates this problem. The delays of the various gates are denoted by d and
should not exceed 5; the delay of any input/output path should not exceed 20.

There is a delay fault in Gwhere d= 6. Suppose that we attempt to delay-
test this circuit by computing the delays of the two paths GIG G G6 and
G G G G6 which include every gate at least once. An acceptable delay of 20

is obtained in each case since the delay d= 4 in G2 compensates for the delay
fault in G6 This circuit may operate improperly if the path G G G G6 with
delay 21 is sensitized during normal operation. Another problem encountered

in delay testing is that certain paths cannot be sensitized by themselves

-r - r . - n - r r • r ° r . or ° . . .

51

SC

-"qloq ,4-,

< 0

4--FA

!0
L

* S
SIEU

-o o
-

.°J

o00

h*1%

°.

%E

%' U,

| - | . .°' " - " ' " " " " ' " '" ' '- " '- ' "
' "

"
"

52

because of the multiple-path sensitization problem mentioned in Chap.2.

Hsieh et al. of IBM have devised a heuristic delay test generation

method for LSSD-based systems [Hsieh et al. 1977]. They attempt to avoid

the problem illustrated in Fig. 4.4 by including each gate G in two paths

P 1 and P2 which are as disjoint as possible. P1 and P2 are chosen to be

the longest and shortest paths containing G whose delays are measurable

. via single-path sensitization.

A more systematic approach to delay testing has been developed re-

cently by Shedletsky, also at IBM [Lesser & Shedletsky 1980]. Each path

whose delay can be measured is decomposed into segments, each of which lies

in a fanout-free subnetwork of the circuit under test. The delay of a path P

which is not explicitly computed via path sensitization can be determined

from the known delays of certain sets of paths PP2,P,...,Pk whose segments

include all the segments of P. In general, the delay of P can be expressed

as a linear combination of the delays c a suitable set of paths. To per-

form this calculation, a covering table for the measured paths and their seg-

ments is constructed; this is called a path matrix. Figure 4.5 shows a path

matrix for the circuit of Fig. 4.4 where d(Pi) denotes the delay of path Pi"

The row P4 GG 3G 4Gd which is missing from Fig. 4.5, can be expressed as a

linear combination of the rows in Fig. 4.5 thus

4= 1 +P 2 - P3 .

It is easily seen that the corresponding delays are related in the same

* 'fashion, viz.

d(P4) = d(Pl)
+ d(P2) - d(P3)

- 20+ 20 - 19

= 21

Note that d(P4) is identified as an unacceptable delay, even though P4 is not

explicitly sensitized. Furthermore, it is possible to compute the delays of

paths that cannot be sensitized directly.

A delay test set is complete if the measured paths include a basis of

the complete path matrix M for the circuit being delay tested. If R is the

, *.

53

4-1 CD C

CL C

4- C) C

5--

Lo4= C
4e;

4- C

V-4 CN tn

54

rank of M, i.e., the size of any basis, then Shedletsky has shown that

R = 2(pi +Z(fobM-l))
J J

where pi is the number of primary inputs, fob. is the fanout index of line

j, and the summation is over all lines j that fan out. In some cases the

number of single paths that can be sensitized is less than R, in which case

the circuit in question is incompletely testable. Shedletsky's method has

*been implemented in a program DTEST. An experiment with six combinational

circuits whose complexity ranged from 827 to 1248 gates showed that DTEST

achieved an average delay fault coverage of 90.5 percent [Lesser & Shedletsky

1980].

%

55

U 5' BIBLIOGRAPHY

[Abramovici &Breuer 1980] M. Abramovici & M.A. Breuer: "Fault diagnosis
based on effect-cause analysis: an introduction," Proc. 17th Design
Automation Conf., Minneapolis, pp. 69-76, June 1980.

(Agrawal 1978] V.D. Agrawal: "When to use random testing," MEEE Trans. on
Computers, vol. C-27, pp. 1054-1055, November 1978.

Fi [Agrawal & Agrawal 1972] V.D. Agrawal & P. Agrawal: "An automatic test
generation system for ILLIAC IV logic boards," IEEE Trans. on Com-
puters, vol. C-21, pp. 1015-1017, September 1972.

[Akers 1976] S.B. Akers: "A logic system for fault test generation,"
IEEE Trans. on Computers, vol. C-25, pp. 620-630, June 1976.

[Akers 1978a] S.B. Akers: "Functional testing with binary decision dia-

grams," Journal Design Autom. & Fault-Tolerant Computing, vol. 2, pp.
311-331, October 1978.

[Akers 1978b] S.B. Akers: "Binary decision diagrams," IEEE Trans. on Com-
puters, vol. C-27, pp. 509-516, June 1978.

* [Barraclough et al. 1976] W. Barraclough, A.C.L. Chiang & W. Sohl: "Tech-
niques for testing the microcomputer family," Proc. IEEE, vol. 64, pp..
943-950, June 1976.

[Breuer 1971] M.A. Breuer: "A random and an algorithmic technique for fault
detection test generation for sequential circuits," IEEE Trans. on Com-
puters, vol. C-20, pp. 1364-1370, November 1971.

[Breuer & Friedman 1976] M.A. Breuer & A.D. Friedman: Diagnosis and Reliable
Design of Digital Systems, Woodland Hills, CA, Computer Science Press,
1976.

[Breuer & Friedman 1979] M.A. Breuer & A.D. Friedman: "TEST/80 - a proposal
for an advanced automatic test generation system," Proc. I= Int'l.
Automatic Testing Conf. (AUTOTESTCON '79), Minneapolis, September 1979.

[Breuer & Friedman 1980] M.A. Breuer & A.D. Friedman: "Functional level
primitives in test generation," IEEE Trans. on Computers, vol. C-29,
pp. 223-235, March 1980.

[Breuer & Harrison 1974] M.A. Breuer & L. Harrison: "Procedures for elimin-
ating static and dynamic hazards in test generation," IEEE Trans. on
Computers, vol. C-23, pp. 1069-1078, October 1974.

[Cha 1978] C.W. Cha: "A testing strategy for PLAs," Proc. 15th Design
Automation Conf., Las Vegas, pp. 326-334, June 1978.

[Cha et al. 1978] C.W. Cha, W.E. Donath & F. OzgUner: "9-V algorithm for test
pattern generation of combinational digital circuits," IEEE Trans. on Cor-
putere, vol. C-27, pp. 193-200, March 1978.

56

[Chappell et al. 1977] S.G. Chappell et al.: "Functional simulation in the
LAMP system," Journal of Design Automation & Fault-Tolerant Computing,
vol. 1, pp. 203-215, May 1977.

[E1-Ziq 1979) Y.M. El-Ziq: "Testing of MOS combinational networks: a
procedure for efficient fault simulation and test generation," Proc.
16th Design Automation Conf., San Diego, pp. 162-170, June 1979.

[Friedman & Menon 1971] A.D. Friedman & P.R. Menon: Fault Detection in
Digital Circuits, Englewood Cliffs, NJ, Prentice-Hall, 1971.

[Fujiwara & Kinoshita 1979] H. Fujiwara & K. Kinoshita: "Testing logic
circuits with compressed data," Journal of Design Automation & Fault-
Tolerant Computing, vol. 3, pp. 211-225, Winter 1979.

[Fujiwara et al. 1980] H. Fujiwara, K. Kinoshita & H. Ozaki: "Universal
tests for programmable logic arrays," Digest loth Fault-Tolerant Com-
puting Symp.., Kyoto, pp. 137-142, October 1980.

[Galiay et al. 1980] J. Galiay, Y. Crouzet & M. Vergniault: "Physical
versus logical fault models in MOS LSI circuits: impact on their
testability," IEEE Trans. on Computers, vol. C-29, pp. 527-531, June
1980.

[Goel 1980] P. Goel: "An implicit enumeration algorithm to generate tests
for combinational logic circuits," Digest loth Fault-Tolerant Comput-
ing Symp., Kyoto, pp. 145-150, October 1980.

[Gordon & Nadig 1977] G. Gordon & H. Nadig: "Hexadecimal signatures iden-
tify troublespots in microprocessor systems," Electronics, vol.50, no.5,
pp. 89-96, March 3, 1977.

[Hackmeister & Chiang 1975] D. Hackmeister & A.C.L. Chiang: "Micropro-
cessor test technique reveals instruction pattern sensitivity," Com-
puter Design, vol. 14, no. 12, pp. 81-85, December 1975.

[Hayes 1971] J.P. Hayes: "On realizations of Boolean functions requiring
a minimal or near minimal number of tests," IEEE Trans. on Computers,
vol. C-20, pp. 1506-1513, December 1971.

[Hayes 1975) J.P. Hayes: "Detection of pattern sensitive faults in random
access memories," IEEE Trans. on Computers, vol. C-24, pp. 150-157,
February 1975.

[Hayes 1976a] J.P. Hayes: "Transition count testing of combinational logic
circuits," IEEE Trans. on Computers, vol. C-25, pp. 613-620, June 1976.

[Hayes 1976b] J.P. Hayes: "Check sum methods for test data compression,"
Journal Design Automation & Fault-Tolerant Computing, vol. 1, pp. 3-17,
October 1976.

[Hayes 1978] J.P. Hayes: "Generation of optimal transition count tests,"
IE Trans. on Computers, vol. C-27, pp. 36-41, January 1978.

o..

57

[Hayes 1980] J.P. Hayes: "Testing memories for single-cell pattern-sensitive
IIfaults," IEEE Trans. on Computers, vol. C-29, pp. 249-254, March 1980.

[Hayes & McCluskey 1980] J.P. Hayes & E.J. McCluskey: "Testability consid-
erations in microprocessor-based design," Computer, vol. 3, no. 3, pp.
17-26, March 1980.

[Hewlett-Packard Co. 1977] Hewlett-Packard Company: "A Designer's Guide
to Signature Analysis, Application Note 222, Palo Alto, CA, April 1977.

[Hill & Huey 1977] F.J. Hill & B. Huey: "SCIRTSS: a search system for se-
quential circuit test sequences," IEEE Trans. on Computers, vol. C-26,
pp. 490-502, May 1977.

[Hnatek 1975] E.R. Hnatek: "4-kilobit memories present a challenge to test-
ing," Computer Design, vol. 14, pp. 117-125, May 1975.

[Hong & Ostapko 1980] S.J. Hong & D.L. Ostapko: "FITPLA: a programmable
logic array for fur-ction independent testing," Digest 10th Fault-
Tolerant Computing Symp., Kyoto, pp. 131-136, October 1980.

[Hsieh et al. 1977] E.P. Hsieh et al.: "Delay test generation," Proc. 14 th
Design Automation Conf., New Orleans, pp. 486-491, June 1977.

[Huey 1979) B.M. Huey: "Heuristic weighting functions for guiding test
generation searches," Journal Design Automation & Fault-Tolerant Com-
puting, vol. 3, pp. 21-39, January 1979.

[K'0nemann et al. 1979] B. K'inemann, J. Mucha & G. Zweihoff: "Built-in
logic block observation techniques," Proc. 1979 Test Conf., Cherry Hill,
NJ, pp. 37-41, October 1979.

[Lesser & Shedletsky 1980] J.D. Lesser & J.J. Shedletsky: "An experimental
delay test generator for LSI logic," IEE Trans. on Computers, vol. C-29,
pp. 235-248, March 1980.

[Losq 1978] J. Losq: "Efficiency of random compact testing," IEEE Trans. on
Computers, vol. C-27, pp. 516-525, June 1978.

[Lyons 1974] N.P. Lyons: "FAULTRACK: universal fault isolation procedure
for digital logic," 1974 IEEE Intercon Tech. Program, New York, paper
no. 40/2 [9p], March 1974.

[McCaskill 1976] R. McCaskill: "Test approaches for four-bit microprocessor
slices," 1976 Semiconductor Test Symposium Digest, pp. 22-24, October
1976.

* -[Mead & Conway 1980) C. Mead & L. Conway: Introduction to VLSI Systems,
Reading, MA, Addison-Wesley, 1980.

58

[Mick & Brick 1980) J. Mick & J. Brick: Bit-Slice Microprocessor Design,
New York, McGraw-Hill, 1980.

[Muth 1976] P. Muth: "A nine-valued circuit model for test generation,"
IEEE Trans. on Computers, vol. C-25, pp. 630-636, June 1976.

[Nair et al. 1978) R. Nair, S.M. Thatte & J.A. Abraham: "Efficient algo-
rithms for testing semiconductor random-access memory," IEEE Trans.
on Computers, vol. C-27, pp. 572-576, June 1978.

[Ostapko & Hong 19793 D.L. Ostapko & S.J. Hong: "Fault analysis and test
generation for programmable logic arrays (PLA)," IEEE Trans. on Com-
puters, vol. C-28, pp. 617-627, September 1979.

[Parker 1976a] K.P. Parker: "Compact testing: testing with compressed
data," Proc. 1976 Int'l. Symp. on Fault-Tolerant Computing, Pittsburgh,
pp. 93-98, June 1976.

[Parker 1976b] K.P. Parker: "Adaptive random test generation," Journal
Design Automation & Fault-Tolerant Computing, vol. 1, pp. 62-83, October
1976.

[Putzolu & Roth 1971] G.F. Putzolu & J.P. Roth: "A heuristic algorithm
for the testing of asynchronous circuits," IEEE Trans. on Computers,
vol. C-20, pp. 639-647, June 1971.

[Reddy & Suk 1979] S.M. Reddy & D.S. Suk: "Test procedures for semicon-
ductor random access memories," Rome Air Development Center, Technical
Report RADC-TR-79-269, November 1979.

"k [Roth 1966] J.P. Roth: "Diagnosis of automata failures: a calculus and a
method," IBM Journal Res. & Dev., vol. 10, pp. 278-291, 1966.

[Roth 1980] J.P. Roth: Computer Logic, Testing and Verification, Potomac,
MD, Computer Science Press, 1980.

[Savir 1980] J. Savir: "Syndrome testable design of combinational circuits,"
IEEE Trans. on Computers, vol. C-29, pp. 442-451, June 1980.

[Schnurmann et al. 1975] H.D. Schnurmann, E. Lindbloom & G.G. Capenter:
"The weighted random test pattern generator," IEEE Trans. on Computers,
vol. C-24, pp. 695-700, July 1975.

[Seth 1977] S.C. Seth: "Data compression techniques in logic testing: an
extension of transition counts," Journal of Design Automation & Fault-
Tolerant Computing, vol. 1,pp. 99-114, February 1977.

[Smith 1979) J.E. Smith: "Detection of faults in programmable logic arrays,"
IE Trans. on Computers, vol. C-28, pp. 845-853, November 1979.

[Smith 1980) J.E. Smith: "Measures of effectiveness of fault signature
analysis," IEE Trans. on Computers, vol. C-29, pp. 510-514, June 1980.

- - 4 -•

59

[Snethen 1977) T.J. Snethen: "Simulation-oriented fault test generator,"
Proc. 14th Design Automation Conf., New Orleans, pp. 88-93, June 1977.

[Sridhar & Hayes 1979] T. Sridhar & J.P. Hayes: "Testing bit-sliced
microprocessors," Digest 9th Int'l. Symp. on Fault-Tolerant Computing,
Madison, WI, pp. 211-218, June 1979.

[Sridhar & Hayes 1981] T. Sridhar & J.P. Hayes: "A functional approach to
testing bit-sliced microprocessors," IEEE Trans. on Computers, 1981,
to appear.

[Srini 1977] V.P. Srini: "API tests for RAM chips," Computer, vol. 10,
no. 7, pp. 32-35, July 1977.

[Suk & Reddy 1980] D.S. Suk & S.M. Reddy: "Test procedures for a class of
pattern sensitive faults in semiconductor random access memories,"
IEEE Trans. on Computers, vol. C-29, pp. 419-429, June 1980.

[Thatte 1979] S.M. Thatte: "Test Generation for Microprocessors," Ph.D.
Thesis, University of Illinois, Department of Electrical Engineering,
1979; also, Coord. Science Lab. Report R-842, May 1979.

[Thatte & Abraham 1980] S.M. Thatte & J.A. Abraham: "Test generation for
microprocessors," IEEE Trans. on Computers, vol. C-29, pp. 429-441,
June 1980.

[Thomas 1971) J.J. Thomas: "Automated diagnostic test programs for digital
networks," Computer Design, pp. 63-67, August 1971.

[Tsidon et al. 1978] A. Tsidon, I. Berger & M. Yoeli: "A practical approach
to fault detection in combinational networks," IEEE Trans. on Computers,
vol. C-27, pp. 968-971, October 1978.

[Vaughn 1976) G.D. Vaughn: "CDALGO - a test pattern generation program,"
Proc. 13th Design Automation Conf., San Francisco, pp. 186-193, June
1976.

[Wadsack 1978] R.L. Wadsack: "Fault modeling and logic simulation of CMOS
and MOS integrated circuits," BSTJ, vol, 57, pp. 1449-1474, May/June
1978.

[Williams & Eichelberger 1977) T.W. Williams & E.B. Eichelberger: "Random
test patterns within a structured sequential logic network," Digest
Semiconductor Test Symp., Cherry Hill, NJ, pp. 19-27, October 1977.

[Yamada et al. 1977) A. Yamada et al.: "Automatic test generation for
large digital circuits," Proc. 14th Design Automation Conf., New
Orleans, pp. 79-83, June 1977.

4F.

.1 .k

qo

Av

14 P11

iv~j

4 11
lk~

j1.

'IF~

4 ..'44

IK V_

4 .,It

