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A Result on the Computationesl Complexity of Heuristic Estimates

for the A®* Algorithm
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Abstract

The performance of a mew heuristic search algorithm is
anslyzed in this paper. The sslgorithm wuses a formal
representation that contains enough information to <compute
the bheuristic evaluation function h(mn), without requiring a
human expert to provide it, The new algorithm is shown to
be less efficient thanm the Dijkstra algorithm, according to
the complexity measure ”"number of node expansions.” I at-
tempt an iuterpretation of this strong negative result.
Other properties of the new algorithm are discussed in
references [ Valt80, GSoma79, GSValtso]. A short discus-
sion of related research, some of which is in progress, con-
cludes the paper.

The writing of this paper was supported by the Air Force Of-
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Concluding "Problem Representation and Formal Proper-
ties of Heuristic Search,” in which he describes the state-
space approach to problem solving, Gordon Vanderbrug ststes:
"Efforts are directed towards including semantic information
by <concentrating on the meaning of the symbols being

manipulated”[Vander76].

In this paper I describe a way to enrich the well known
graph formalism with more informatiom from the problem
domain, snd an admissible search algorithm based onm the new
representation. The core of the paper is the analysis of the
complexity of this new algorithm; specifically, I compare it

to the classic Dijkstra [Dijk59] algorithm.

Kowalski [Kowa79] notes that every computable problem

(in this pesper, problem always means computable problem) can
be formulated as the problem of finding a path through a
graph. This approach, often refer.ed to as the "state-space
approaech” is described in nomerous books and articles on au-
tomated problem solving [Soma73, Nils71, Vander76, Nils80);
moreover, there are well-studied connections between this
approach and dynamic systems theory, in particular automata

theoxy (see [MVSoma76]).

In 1968, Hart, Nilsson, and Raphael published a paper
(ENRaph68] 4im which they described an algorithm for finding

the shortest path in a graph from anm initisl mode to a final




node, using heuristic information to direct the search. This
slgorithm, called A®, is admissible , in the sense that it
always finds a solution of minimal cost if such & solution
exists. The heuristic information (a function of the wnodes
in the graph having certain properties) is provided by an
expert and is dependent on the problem domain. A®* has been
used for "practicel"” purposes [Mont70]), and its complexity

has been investigated [Pohl70, Pohl77, Mart77, Gelperl7,

HDPear80, Pear80, Valt801].

A®* requires less time than the Dijkstra algorithm
(Pijk59] in solving a shortest-path problem, but it reguires
an expert to provide informationm not contsined in the prob-
lem representation formalism. To avoid this, NKarco Somalvwi-
co and other researchers at the Politecnico di Milano [MVSo-
wa76, GSValt80, Valt80) have proposed a representation (the
"semantic representation”) which <contains the informatjon
necessary to compute the heuristics used by A® [GSoma79]). I
direct the reader to the just-mentioned paper, which logi-
cally precedes this one, for a description of the semantic
representation. In the following section, I shall give some
definitions and <results in a slightly informal and sketchy
way. The facts given are discussed in more detail in the
referenced literature and in my thesis in particular

[Val1t80].




Basic Results

I start by giving two definitions of (formalized) problem:

A syntactic problem is a S5-tuple

P = (N, E, W, i, k),

where:

N is a set of states, called the state~space;

E is a set of directed edges;

W is s set of nonnegative costs, greater than an arbitrary
small constant, 8§, associsted to each edge;

1 is a distinguished member of N, the initial state;

k is a distinguished member of N, the final state.

Given a syntactic problem P = (N, E, W, i, k), M = (N,
E, W) is cslled the problew schema of P, Note that M is a
directed graph. A solution of a problem P is a path in the
graph G = (N, E, W) from i to k. Becasse of the restriction

on the costs associated to the edges of M, M is sometimes

caslled &8 S5-graph.

The optimal solution of a problem P is a path in the
graph 6 = (N,E,¥) from i to k of minimal cost, where the

cost of a path is the sum of the costs of its edges.

The notion of state in the (classic) syntactic formal-

ism will now be enriched to define the "semantic” formalism.

Given a set of attributes~-~- A, and a set of values for

each attriduote in A-- ¥V, I define a gepentic (or structured)




state.

P=(A,Y¥Y,ILA i, k).

where:

A is a set of attributes;

Y is a set of values;

Il is a set of predicates (called properties, each indicated
by n ) whose domain is the set of all possible states;

A is a set of predicates of two arguments (called legal con-
ditions, each indicated by A ), each one being ome of all
possible states;

1 is a distingunished sequence of attribute-value pairs;

Xk is a distinguished sequence of attribute-valune pairs.

A sequence of attribute-value pairs is called s seman-
$ic (or structured) state. A semantic state has & struc-
ture: the sequence of attribute-value pairs that constitute
its measning. In the classic, "syntactic” framework, instead,
a8 state is just an atomic conmcept: all the information car-

ried over from the problem domain is contained in the graph.

Two facts that sapport the view that the information
‘'contained in the "syntactic” graph does not permit anm effi-
cient search are the usefulness of the heuristic evaluation
function vused by A® (which cannot be computed efficiently
from the "syantactic” problem representation), and the suc-
cess of expert systems (wbich =rely heavily on domain-

dependent heuristics).
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Let us now consider hovw the structure of every semantic

state is wused to determine the state space and the legal
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moves in a semantic problem. The candidate states sre -all

possible sequences of attribute-value pairs (I indicate them

by an underlined letter, such as n ); the state space. N

consists of all the candidate states which satisfy all the

properties {(the states in N are called legal states); the

candidate moves are all possible pairs of legal states; the
legal moves are all the moves ( ml , n2 ) that satisfy all

the legal conditions.

To every semantic problem one <can associate & graph
called the skeleton of the sémnntic problem. G = (N,E,¥) is

defined by:
N={( €N | (Wr) ((x €ID O (a(g)) }
E={ (r1,22) | (V A) ((A € A)D a(al.n2)) )

W is the set of costs aisocilted to the edges in E. Each
edge hsas s non negative cost greater than a small constant,
5, associated to it. (The method of determining the cost of

each edge does not affect the results of this paper.)

The reader might find it useful to try to express the
oight-tile puzzle [Nils71]) in the semantic problem formal-
ism: define s set of attributes (the tiles), a set of values
(the positions of the tiles on the board), s set of proper-
ties (which, by using the attributes and the values compos-

ing a state, tell when a state is legal), a set of legal




conditions (which also use the rich structure of semantic
states). A property might, for example, express that in a
legal state (i.e., a permissible board configuration) no ‘two
sattributes can have the same value (i.e., no two tiles can
occupy the same positionm om the board). A legal <condition
might state that a move is legsl only if the state after the
move has one distinguished attribute (i.e., the one
corresponding to the blank tile) whose value (i.e., its po-
sition) is different from the value of the same attribute in
the state before the mcve (i.e., to sum up, a move is legal
only if the space on the board is in a different oposition
sfter the move than it was before the move). The reader can
find & solution to this drill in [GSoma79], or in [MVSoma76.
Valt80]. These two latter references also contain amother

example.

One could solve a semantic problem by solving the prodb-~-
lem corresponding to its skeletom with the Dijkstra algo-
rithm, but this method does not take any advantage from the
extra information contained in the structure of the states.
Reference [Valt80) discusses some ways to exploit this in-
formation. One of them, aslgorithm M, will be discussed in
the following. Ia order to iantroduce the algorithm of Ggen-
ersl applicadbility that I want to compare to the Dijkstra
slgorithm, & few more definitions and facts must be given.

This is the purpose of the mext section.

. b e e -
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Auxiliary Problems

Informally speaking, & problem is auxiliary to another
one if it is less <constrained. The notion of auxiliary

problem is formalized in the following definition:

A semantic prodblenm
Z"(A'.X'.H'./\'.i'.s')
is an suxiliary problem of

Z'(A.!.n./\:ia!)

(2]
fl
=<

E' = k.

(I indicate that P’ is auxiliary to P by P’ <= P.)

The following theorem provides a basis for computing an
heuristic evaluation function (h(n)), as used by A®* to focus
its search [Nils80), from the information contained in the
semantic represeontation of a computadle problem. (In this
paper I follow the convention used in [Nils80] inm that I in-~
dicate the heuristic estimate with h(n) and its exact value

with h*(n).)

Iheozen. If P’ (= P ,where the initial state for P’

-
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and P is n , then the length of the optimal solution of P'
is a possible value for an admissible heuristic estimate

h(n) for the problem P,

The reader should convince himself that the theorem is true,
or check the summary givem in [GSoma79] or the proof

in[MVSoma76]).

The following section presents an algorithm built on

the previous theorem,

Algorithm M

This algorithm is s special case of both algorithm G

given in [GSoma79] and slgorithm S im [Valt80]),

Input: a semantic problem P.

Output: an optimal solution of P,

Method: Solve the prodblem corresponding to the skeleton of P
using A®, where each necessary value of h( an ) is computed
by solving ap suxiliary problem of

Q= (A, Y. .IL A, 2.k)

using the Dijkstra algorithnm.

All the auxiliary problems have the same set of legal

conditions--A'. This onsures that the “consistency” condi-
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tion [Nils71,Nils80) is satisfied for h(n) computed by solv-
ing the auxiliary problems of Q. This result is now shown

to hold.

Theozrem. If h(m) and b(n) are computed as costs of
shortest paths from m to k and from n to k respectively on
the skeleton of the same auxiliary problem then h(m) - h(n)

(= d(m,n), where d(m,n) is the cost of the shortest path

from m to n on the skeleton of the problem.

Proof. The proof consists of a “reductio ad absurdum.”

———

Keep an eye on figure 1 while following the proof

d(m,n)

h(m

(n)

Figure 1: Two estimates computed on the same graph satisfy

the consistency assumption.

Assume that the consistency assumption is not satisfied,
i.e. that

hi(m) > h(n) + d(m,n).

C——————— e -
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Note that d(m,n) is an upper bound on the length of the

shortest path from m to n in the skeleton of the auxiliary
problem. Therefore the shortest path fromm to k in the
skeleton of the auxilisry problem would pass through n. And
if the shortest path from m to k in the skeleton of the aux-
iliary problem passes through n, it must be that:

h(m) <= h(mn) + d(m,n)

that can be rewritten as:

h(m) - h(p) <= d(m,n). [:]

I have shown in the previous section how to compute the
heuristic function h(n) from the information contaimned in
the semantic representation. I can proceed to sanslyze the
complexity of this totally automatic procedure. This is the

purpose of the next section.

Complexity of Algorithm M

In this section, I compare algorithm M to the Dijkstra
algorithm. It would be senseless to compare N to the A® a1-
gorithm, since, to focus igs search, A® relies on informa-
tion (i.e., b(n)) that is outside the problem representation

formalism used (i.e., the syntactic graph).

I compare these algorithms according to the <criterion
"number of node expansions,” which is discussed and general-

ly accepted in the published literature [Nils71, Nart?77]. A
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remarkable shortcoming of this criteriom in our case is that
it considers the cost of expanding a node in am auxiliary
problem to be the same as the cost of expanding a node in
the original problem. Still, I think that the result I ob-
tain nusing this approach is sufficiently interestimg to use

this simple criterion.

In order to prove our fundamental result, I shall make
use of some results, which can be found in [Valt80, Mart77,

Gelper77). I now recall these results in a compact form.

Let a (directed) graph G = (N,E,W¥) be given. Let g(n)
be the length of the path from node i, the initial node, to
node n, in graph G, passing through alresady expanded nodes.
(This is the "standard” definition of g(m), as given in most

of the referenced literature.)

Fact 1. The Dijkstra algorithm will find a shortest
path in G by expanding only the nodes, n, that satisfy the

following inequslity:
(1) g(n) < he*(i).

(Note that here and in Fact 2 h®(i) is the shortest path

from 1 to k becsuse of the definition of h*(mn).)

Fact 2. The A® algorithm will find a shortest patk in G
by expanding only the nodes, n, that satisfy the following

inequality:

(2) g(a) + h(n) ¢ he(i)
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and some of the nodes that satisfy:
(3) g(n) + h(m) = he(i).

I define the distance from node m to node p in the
graph G = (N,E, W) to be the length of the shortest path from
m to p in G. (If no psth from m to p exists in G, then the
distance is conventionally assumed to be infimite.) I can

now prove the following result:

Main Theorem. Let a semantic problem

(L}
L}
—_—
- d
5]

.H-/\-L.L)

be given. To solve problem P , algorithm M expands at least
every node expanded by the Dijkstra algorithm to solve the

syntactic problem corresponding to its skeleton.

A corollary to this theorem descends from the fact that
algorithm M computes <consistent and admissible estimates:
slgorithm N uses at least the same number of node expan-
sions as the Dijkstra algorithm. I can conclude this be-
cause the number of node expansions and the number of ex-
panded nodes are the same when consistent and admissible es-

timates are used in the A® algorithm [Nils71,Nils80]).

Proof of the theorenm.

The proof is long, but straightforward.

Algorithm N expands nodes in two phases:

(a) to compute h(n);

e~ ety s % s
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(b) to solve P, with the same strategy used by Ae,

The estimates computed by M, of the form h(n), can be
divided in three classes; I shall therefore consider tﬁree
cases, and show that for each case the computation of the
estimate plus the solutiom of the problem using it is more
expensive than the solution of the problem by using the
Dijkstra algorithm, which does not require any estimate to

be computed.
The first tvo cases are very simple.
Case 1

The estimate h(n) does not disallow node n to be ex-

e ————————— e o
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panded in phase (b). An example is givenm in figure 2 below.

i d node g h f=g+h i d

i 0 0 0

s T 0 1

a b 2 0 2 s /
[ 3 0 3
d 1 1 2 !

b ) 3 4 0 4 b

< ¢

k k

The skeleton of The skeletonm of an
a8 problem sauxiliary problem

Figure 2: The estimate for 4 is not useful,

The computation of the heuristic, in this case, does
not allow to save even & single node while using it inm phase
b. 8Since to compute h(n) by solving an asuxiliary problen
one needs to expand at least a node (in the mnon trivial case
in which n is the final node, when it is obviously unusefal

to compute the heuristicl), it would have boen better not to
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compute the estimate at all im the first place.

Case 2

The estimate h(n) is such that n is not expanded be-

g(n) + h(n) >= he(i).

(Note that if the above is true with ">”, pode n will not be
expanded for sure; if it is true with "=", it might.) If the
only effect of h(mn) is that node n will not be expanded, the
cost of the estimate computation in phase (a), which neces-
sitates at least the expansion of node n itself, is not suf-
ficient to compensate the saving arising from not expanding

n in phase (b).

Case 3

There are nodes gi that are expanded by Dijkstra algo-
rithm, but are not expanded by the M algorithm in phase (b)
because, in order to be expanded, they should be —reached
through a node m whose estimate h(m) is so large that m is

not expanded in phase (b).

The following figure 3 provides an exzample of this

case: note that h(m) is so large that the gi nodes are not
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expanded in phase (b) of the M algorithm.

i node 8 h f =g + h
gl i 0 0 0
s 1 0 1
[ m g2 b 2 0 2
c 2 0 2
n 2 4 6
b g3 gl 3 (h is not computed)
82 3 (h is not computed)
g3 3 (h is not computed)
c d 4 0 4
| S 5 0 5
d
k

Figure 3: h(m) is so large that h(gl), h(g2), h(g3) are not
computed. The figure shows the skeleton of a prodlem. It
does not show the skeletos of the suxiliasry problem used to

compute h(m). (Cam you drew it?)

The nodes gi are, st most, the ones for which the fol-

lowing holds:

(3) g(m) + d(m,gi) < B®(4)

that can be rewritten at follows:




W e

(4) d(m,gi) ¢ B*(i) -~ g(m).

(4) is the property that characterizes the set of nodes
that, at most, are not expanded if h(m) is large emough to

avoid that m be expanded.

By Fact 2, m is not expanded if h(m) is at least so

large that the following holds:
(5) g(m) + h®(m) = h(i)

that can be rewritten as:
(6) h(m) = h*(i) - g(m).

Since h(m) is computed, im phase (b)), by solving an
suxiliary problem of P using the Dijkstra algorithm, one
must expand, asccording to Fact 1, 2ll the nodes gt distance
less than h(m) from m on the skeleton of the auvxiliary prob-

lem.

But we know that h(m) is at least so 1large that (6)
holds. Therefore, at least the nodes at distance less than
be¢(i) - g(m) from m in the anxiliary problem must be expand-
ed. A fortiori, since the distance of i to m in the smxili-
ary problem is not grester than the distance from i to ma in
P, at 1lesst the =nodes at distence less than h*(i) - g(m)

from m in P must be expanded.

Thezefores, the nodes expanded by the N algorithm in

phase (b) satisfy the following inequality:

- —————




(7) d(m,hi) < b*(i) ~ g(m).

By comparing (7) with (4), onme concludes that, even in
the most favorable case, the set of nodes gi which nre.not
cxpanded in phase (a) because of the computation of the es-—
timate h(m) in phase (b) is a subset of the set of the nodes

(hi) expanded to compute the estimate in phase (b).

Therefore, even in this last case, it is better not to
compute the heuristic at all and solve P by using the Dijks-

tra algorithm directly.

L]

Conclusion

In this conclusion, I state two definitions and a
theorem, end I present an interpretation of the Main

Theorenm.

An algorithm to find the minisum cost path in s graph
is blind if it relies oaly on the information contained in
the symtactic graph to find the minimum <cost path (i.e.,

blind algorithms do not use heuristic information),

An slgorithm to find the minimum cost path in a graph
is upjidirectional if it expands nodes at non decreasing dis-
tasnces from the initial nods. (This definition is arbi-

trary: what should ohe call algorithms which expand modes at
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increasing distances from the final node?)
The following result can be shown to hold:

Theorem. The Dijkstra algorithm is the algorithm that
uses the least number of node expamsions smong dlind, uni-

directional, deterministic algorithms.

The proof of this result consists of an "adversary” (or
"oracle”) based argument. Assume that another algorithm--B,
can find a shortest psth from i to k withouwt expanding a

node~-n, for which the following holds:
(8) g(n) < he*(i)

Then, the adverssry can find a problem such that there
is an edge from node n to node f of such a small cost thsat

the minimum cost path from i to f passes through n.
This means that the B algorithm does not find the

[]

The above result, together with the Main Theorem, indi-

minimum cost solution.

cates that it is not efficient to compute heuristics by
solving suxiliary problems with a trial and error strategy

(i.0., & strategy imvolving backtracking).

Recognizing that an auxiliary problem can be solved by
means of & method that Jdoes mot require backtracking seems
to be an extremely difficult tssk, strictly related to the

"change of represeatation” problem [Amarel68)], which is con-
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sidered to be beyond the state of the art. (See, for example
[Lenat82, pp. 237-241]:) Even asuxiliary prodblems whose solu-
tion leads to the computation of simple heuristics do 'not
display any apparent structure (as far as their skeletonm is
concerned) which may lead to their simple solution. Amn in-
teresting example of this phenomenon is described in [MVSo-
maT76, Valt80], where the suxiliary problem whose solutions
compute the beuristic "number of misplaced tiles” for the
eight-tile puzzle is presented. This heuristic is described

in [Nilss71,Nilss80].

Related Research

Judea Pearl and the late John Gashnig have discovered,
independently from the MNilan team, that admissible heuris-
tics for A®* can be computed by solving auvziliary probleams.
Judea Pearl «calls the auxiliary problems "relaxed models.”
Jobhn Gashnig calls them "edge supergraphs” [Gashn?79]. Gash-
nig uses the syntactic formalism and he does not propose an
algorithm that finds .uxiliuty problems sutomatically, the

way algorithm N does, thanks to the “semantic” formalism.

Judes Pearl and Dennis Kibler[Kibler82] have postulated
the need for changing representation paradigm to solve auxi-
liary prodlems efficiently. Their postulation is grounded on

the negative result discussed in this paper. They quote this
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result eoxplicitly inm their reports {Pearl82, p.131;

iiblortz.p.4l.
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