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Concluding "Problem Representation and Formal Proper-

ties of Heuristic Search," in which he describes the state-

space approach to problem solving, Gordon Vanderbrug states:

"Efforts are directed towards including semantic information

by concentrating on the meaning of the symbols being

manipulated"[Vander76].

In this paper I describe a way to enrich the well known

graph formalism with more information from the problem

domain, and an admissible search algorithm based on the new

representation. The core of the paper is the analysis of the

complexity of this new algorithm; specifically, I compare it

to the classic Dijkstra [Dijk59] algorithm.

Kowalaki [Kowa79] notes that every computable problem

(in this paper, problem always means computable problem) can

be formulated as the problem of findkng a path through a

graph. This approach, often refered to as the "state-space

approach" is described in numerous books and articles on au-

tomated problem solving [Soma73, Nils7l, Vander76, Nils80];

moreover, there are well-studied connections between this

approach and dynamic systems theory, in particular automata

theory (see (NVSoma76]).

In 1968. Bart. Nilsson, and Raphael published a paper

[DNRaph68] in which they described an algorithm for finding

the shortest path in a graph from an initial node to a final



node, using heuristic information to direct the search. This

algorithm, called A*, is admissible , in the sense that it

always finds a solution of minimal cost if such a solution

exists. The heuristic information (a function of the nodes

in the graph having certain properties) is provided by an

expert and is dependent on the problem domain. A* has been

used for "practical" purposes [Mont70]. and its complexity

has been investigated [Pohl70, Poh177. Mart77, Gelper77,

HDPearSO, PearSO, Valt8O].

A* requires less time than the Dijkstra algorithm

(Dijk591 in solving a shortest-path problem, but it requires

an expert to provide information not contained in the prob-

lem representation formalism. To avoid this, Marco Somalvi-

co and other researchers at the Politecnico di Milano [MVSo-

ma76, GSValtSO, ValtSO] have proposed a representation (the

"semantic representation") which contains the information

necessary to compute the heuristics used by As [GSoma79]. I

direct the reader to the just-mentioned paper, which logi-

cally precedes this one, for a description of the semantic

representation. In the following section, I shall give some

definitions and results in a slightly informal and sketchy

way. The facts given are discussed in more detail in the

referenced literature and in my thesis in particular

[Valt8O.
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Basic Results

I start by giving two definitions of (formalized) problem:

A IZjl£!i¢ ploblem is a 5-tuple

P = (N, E, W, i, k),

where:

N is a set of states, called the state-space;

E is a set of directed edges;

V is a set of nonnegative costs, greater than an arbitrary

small constant, 6, associated to each edge;

i is a distinguished member of N, the initial state;

k is a distinguished member of N, the final state.

Given a syntactic problem P - (N, E, W, i, k), M = (N,

E, W) is called the prlem schema of P. Note that K is a

directed graph. A sjjojnut of a problem P is a path in the

graph G N, E, W) from i to k. Because of the restriction

on the costs associated to the edges of M, M is sometimes

called a 6-graph.

The flgJimal .ai1 ii!n of a problem P is a path in the

graph G - (N,E,W) from i to k of minimal cost, where the

cost of a path is the sum of the costs of its edges.

The notion of state in the (classic) syntactic formal-

ism will now be enriched to define the "semantic" formalism.

Given a set of attributes-- A. and a set of values for

each attribute in A-- Y, I define a iLMUJitg (or structured)

I
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lit e

A £.iA u. 21gia is a 6-tuple

- CA - Y * F. A. I ,

where:

A is a set of attributes;

is a set of values;

is a set of predicates (called 2Ler ies! each indicated

by n whose domain is the set of all possible states;

A is a set of predicates of two arguments (called 1eL con-

dJi ij each indicated by X ). each one being one of all

possible states;

is a distinguished sequence of attribute-value pairs;

I is a distinguished sequence of attribute-value pairs.

A sequence of attribute-value pairs is called a seman-

Iii (or structured) jte. A semantic state has a struc-

ture: the sequence of attribute-value pairs that constitute

its meaning. In the classic, "syntactic" framework, instead,

a state is Just an atomic concept: all the information car-

ried over from the problem domain is contained in the graph.

Two facts that support the view that the information

'contained in the "syntactic" graph does not permit an effi-

cient search are the usefulness of the heuristic evaluation

function used by A* (which cannot be computed efficiently

from the *syntactic" problem representation), and the suc-

Goss of expert systems (which rely heavily on domain-

dependent heuristics).

_ _ f



Let us now consider how the structure of every semantic

state is used to determine the state sp2ace and the lejjj.,

agI&I in a semantic problem. The candidate states are -all

possible sequences of attribute-value pairs (I indicate them

by an underlined letter. such as n ); the state space. NA

consists of all the candidate states which satisfy Al the

properties (the states in N are called I l.1 ats; the

candidate moves are all possible pairs of legal states; the

legal moves are all the moves ( u-1 A 2 ) that satisfy all

the legal conditions.

To every semantic problem one can associate a graph

called the skeltjon of the semantic problem. G (N,E.W) is

defined by:

N - I (v)m en

E - (nl,2) I V X) W C A) (

W is the set of costs associated to the edges in E. Each

edge has a non negative coat greater than a small constant.

6. associated to it. (The method of determining the cost of

each edge does not affect the results of this paper.)

The reader might find it useful to try to express the

eight-tile puzzle [Nils7l] in the semantic problem formal-

ism: define a set of attributes (the tiles), a set of values

(the positions of the tiles on the board), a set of proper-

ties (which, by using the attributes and the values compos-

in& a state, tell when a state is legal), a set of legal
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conditions (which also use the rich structure of semantic

states). A property might, for example, express that in a

legal state (i.e., a permissible board configuration) no two

attributes can have the same value (i.e., no two tiles can

occupy the same position on the board). A legal condition

might state that a move is legal only if the state after the

move has one distinguished attribute (i.e., the one

corresponding to the blank tile) whose value (i.e.. its po-

sition) is different from the value of the sane attribute in

the state before the mcve (i.e., to sum up, a move is legal

only if the space on the board is in a different position

after the move than it was before the move). The reader can

find a solution to this drill in [GSoma79]. or in [MVSoma76.

Valt8O. These two latter references also contain another

example.

One could solve a semantic problem by solving the prob-

1om corresponding to its skeleton with the Dijkstra algo-

rithm, but this method does not take any advantage from the

extra information contained in the structure of the states.

Reference [Valt80] discusses some ways to exploit this in-

formation. One of them, algorithm M, will be discussed in

the following. In order to introduce the algorithm of Sen-

oral applicability that I want to compare to the Dijkstra

algorithm. a few more definitions and facts must be given.

This is the purpose of the next section.

f4
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Auxiliary Problems

Informally speaking, a problem is auxiliary to another

one if it is less constrained. The notion of auxiliary

problem is formalized in the following definition:

A semantic problem

P' - ( A' - Y' .IIP . A' , i * )

is an Auxili ya r.obleM of

A- ( f*A ! k)

if

A'= A

' =H

-A A

(I indicate that P is auxiliary to P by P <= P.)

The following theorem provides a basis for computing an

heuristic evaluation function (h(n)), as used by A* to focus

its search [NilsaO], from the information contained in the

semantic representation of a computable problem. (In this

paper I follow the convention used in [Nils8o] in that I in-

dicate the heuristic estimate with h(n) and its exact value

with hs(n).)

Thias. If ' (= ,where the initial state for '



and P is a , then the length of the optimal solution of P'

is a possible value for an admissible heuristic estimate

h(n) for the problem P.

The reader should convince himself that the theorem is true,

or check the summary given in [GSoma79] or the proof

in[MVSoma76].

The following section presents an algorithm built on

the previous theorem.

Algorithm X

This algorithm is a special case of both algorithm G

given in [GSoma79] and algorithm S in [ValtSO].

Input: a semantic problem P.

Output: an optimal solution of P.

Method: Solve the problem corresponding to the skeleton of P

using A*, where each necessary value of h( g ) is computed

by solving an auxiliary problem of

Q- ( A Y . 1n. A. a , k )

using the Dijkstra algorithm.

All the auxiliary problems have the same set of legal

conditions--A'. This ensures that the "consistency" condi-
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tion [Nils7l.Nils8O is satisfied for h(n) computed by solv-

ing the auxiliary problems of -. This result is now shown

to hold.

Theorem. If h(m) and h(n) are computed as costs of

shortest paths from m to k and from n to k respectively on

the skeleton of the same auxiliary problem then h(m) - h(n)

(= d(m,n), where d(m,n) is the cost of the shortest path

from m to n on the skeleton of the problem.

Prgof. The proof consists of a "reductio ad absurdum."

Keep an eye on figure 1 while following the proof

a

d(m,n)

n

h(m

(n)

k

Figure 1: Two estimates computed on the same graph satisfy

the consistency assumption.

Assume that the consistency assumption is not satisfied,

i.e. that

h(u) h(n) + d(m,n).

.... ....
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Note that d(m,n) is an upper bound on the length of the

shortest path from m to n in the skeleton of the auxiliary

problem. Therefore the shortest path from m to k in the

skeleton of the auxiliary problem would pass through n. And

if the shortest path from a to k in the skeleton of the aux-

iliary problem passes through n, it must be that:

h(m) (= h(n) + d(m,n)

that can be rewritten as:

h(m) - h(n) = d(m,n). D
I have shown in the previous section how to compute the

heuristic function h(n) from the information contained in

the semantic representation. I can proceed to analyze the

complexity of this totally automatic procedure. This is the

purpose of the next section.

Complexity of Algorithm M

In this section, I compare algorithm X to the Dijkstra

algorithm. It would be senseless to compare X to the A* al-

gorithm, since, to focus its search, A* relies on informa-

tion (i.e.. h(n)) that is outside the problem representation

formalism used (i.e., the syntactic graph).

I compare these algorithms according to the criterion

'number of node expansions," which is discussed and general-

ly accepted in the published literature [Nils7l, Mart77]. A

. ... ....
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remarkable shortcoming of this criterion in our case is that

it considers the cost of expanding a node in an auxiliary

problem to be the same as the cost of expanding a node in

the original problem. Still, I think that the result I ob-

tain using this approach is sufficiently interesting to use

this simple criterion.

In order to prove our fundamental result, I shall make

use of some results, which can be found in [Valt8O, Mart77,

Gelper77]. I now recall these results in a compact form.

Let a (directed) graph G = (N,E,W) be given. Let g(n)

be the length of the path from node i, the initial node, to

node n, in graph G, passing through already expanded nodes.

(This is the "standard" definition of g(n), as given in most

of the referenced literature.)

Fajj 1. The Dijkstra algorithm will find a shortest

path in G by expanding only the nodes, n, that satisfy the

following inequality:

(1) g(n) < h*(i).

(Note that here and in Fact 2 h*(i) is the shortest path

from i to k because of the definition of h*(n).)

Eaf. 2. The A* algorithm will find a shortest path in 0

by expanding only the nodes, n, that satisfy the following

inequality:

(2) (n) + h(n) ( h*(i)
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and some of the nodes that satisfy:

(3) g(n) + h(n) h(i).

I define the distance from node m to node p in the

graph G = (NE,W) to be the length of the shortest path from

a to p in G. (If no path from m to p exists in GD then the

distance is conventionally assumed to be infinite.) I can

now prove the following result:

MAin Theorim. Let a semantic problem

P = (AD , ,lD AD i , k

be given. To solve problem P , algorithm X expands at least

every node expanded by the Dijkstra algorithm to solve the

syntactic problem corresponding to its skeleton.

A corollary to this theorem descends from the fact that

algorithm X computes consistent and admissible estimates:

algorithm M uses at least the same number of node expan-

sions as the Dijkstra algorithm. I can conclude this be-

cause the number of node expansions and the number of ex-

panded nodes are the same when consistent and admissible es-

timates are used in the A* algorithm [NilsT7,Nils8O].

Z"21 of the theorem.

The proof is long. but straightforward.

Algorithm X expands nodes in two phases:

(a) to ,oopate h(M);
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(b) to solve P . with the same strategy used by A*.

The estimates computed by M, of the form h(n), can be

divided in three classes; I shall therefore consider three

cases, and show that for each case the computation of the

estimate plus the solution of the problem using it is more

expensive than the solution of the problem by using the

Dijkstra algorithm, which does not require any estimate to

be computed.

The first two cases are very simple.

Case 1

The estimate h(n) does not disallow node n to be ex-

.'I



- 14 -

panded in phase (b). An example is given in figure 2 below.

i d node g h f-g+h i d

t 0 0 0

a 1 0 1

a b 2 0 2 a

c 3 0 3 /
d 1 1 2

b k 4 0 4 b

C C

k k

The skeleton of The skeleton of an

a problem auxiliary problem

Figure 2: The estimate for d is not useful.

The computation of the heuristic, in this case, does

not allow to save even a single node while using it in phase

b. Since to compute h(n) by solving an auxiliary problem

one needs to expand at least a node (in the non trivial case

in which a is the final node, when it is obviously unuseful

to conpute the heuristicl), it would have been better not to

tI
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compute the estimate at all in the first place.

Case 2

The estimate h(n) is such that n is not expanded be-

cause

g(n) + h(n) )= he(i).

(Note that if the above is true with "P', node n will not be

expanded for sure; if it is true with "=", it might.) If the

only effect of h(n) is that node n will not be expanded, the

cost of the estimate computation in phase (a), which neces-

sitates at least the expansion of node n itself, is not suf-

ficient to compensate the saving arising from not expanding

A in phase (b).

Case 3

There are nodes jj that are expanded by Dijkstra algo-

rithm, but are not expanded by the X algorithm in phase (b)

because, in order to be expanded, they should be reached

through a node _ whose estimate h(m) is so large that a is

not expanded in phase (b).

The following figure 3 provides an example of this

case: note that h(m) is so large that the gi nodes are not

IiI
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expanded in phase (b) of the X algorithm.

i node 9 h f = g + h

gi i 0 0 0

a 1 0 1

a g2 b 2 0 2

c 2 0 2

m 2 4 6

b H g3 gi 3 (h is not computed)

4S2 3 (h is not computed)

S3 3 (h is not computed)

c d 4 0 4

k 5 0 5

d

kj

Figure 3: h(m) is so large that h(gl), h(g2), h(&3) are not

computed. The figure shows the skeleton of a problem. It

does not show the skeleton of the auxiliary problem used to

compute h(m). (Can you draw it?)

The nodes gi are, at most, the ones for which the fol-

lowing holds:

(3) g(m) + d(M.o) ( he(i)

that cam be rewritten as follows:

I-
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(4) d(m.gi) ( ha(i) - g(m).

(4) is the property that characterizes the set of nodes

that, at most, are not expanded if h(m) is large enough to

avoid that m be expanded.

By Fact 2, m is not expanded if h(m) is at least so

large that the following holds:

(5) 5(m) + h*(m) - h(i)

that can be rewritten as:

(6) h(m) = h0 (i) - g(m).

Since h(m) is computed, in phase (b), by solving an

auxiliary problem of P using the Dijkstra algorithm, one

must expand. according to Fact 1. all the nodes at distance

less than h(m) from m on the skeleton of the auxiliary prob-

lem.

But we know that h(m) is at least so large that (6)

holds. Therefore, at least the nodes at distance less than

ha(i) - g(m) from a in the auxiliary problem must be expand-

ed. A fortiori, since the distance of i to m in the auxili-

ary problem is not greater than the distance from i to a in

P. at least the nodes at distance less than h*(i) - g(m)

from a in P must be expanded.

Therefore, the nodes expanded by the U algorithm in

phase (b) satisfy the following inequality:

kj

I
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(7) d(m,hi) < h*(i) - g(m).

By comparing (7) with (4), one concludes that, even in

the most favorable case, the set of nodes gi which are not

expanded in phase (a) because of the computation of the es-

timate h(m) in phase (b) is a subset of the set of the nodes

(hi) expanded to compute the estimate in phase (b).

Therefore, even in this last case. it is better not to

compute the heuristic at all and solve P by using the Dijks-

tra algorithm directly.

Conclusion

In this conclusion, I state two definitions and a

theorem, and I present an interpretation of the Main

Theorem.

An algorithm to find the minimum cost path in a graph

is kjJ~i if it relies only on the information contained in

the syntactic graph to find the minimum cost path (i.e..

blind algorithms do not use heuristic information).

An algorithm to find the minimum cost path in a graph

is iJAi4XriiJjin.nL if it expands nodes at non decreasing dis-

tances from the initial node. (This definition is arbi-

trary: what should one call algorithms which expand nodes at

. . .. .. .. .___....... ........ D
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increasing distances from the final node?)

The following result can be shown to hold:

TheoreM. The Dijkstra algorithm is the algorithm that

uses the least number of node expansions among blind, uni-

directional, deterministic algorithms.

The rLoof of this result consists of an "adversary" (or

"oracle") based argument. Assume that another algorithm--B,

can find a shortest path from i to k without expanding a

node--n, for which the following holdsz

(8) 8(n) < ha(i)

Then, the adversary can find a problem such that there

is an edge from node n to node f of such a small cost that

the minimum cost path from i to f passes through n.

This means that the B algorithm does not find the

minimum cost solution.

The above result, together with the Main Theorem, indi-

cates that it is not efficient to compute heuristics by

solving auxiliary problems with a trial and error strategy

(i.e., a strategy involving backtracking).

Recognizing that an auxiliary problem can be solved by

means of a method that does not require backtracking seems

to be am extremely difficult task, strictly related to the

"haes of representation" problem [Asarel68], which is con-
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sidered to be beyond the state of the art. (See, for example

[Lenat82, pp. 237-2411.) Even auxiliary problems whose solu-

tion leads to the computation of simple heuristics do not

display any apparent structure (as far as their skeleton is

concerned) which may lead to their simple solution. An in-

teresting example of this phenomenon is described in [MVSo-

ma76, Valt80, where the auxiliary problem whose solutions

compute the heuristic "number of misplaced tiles" for the

eight-tile puzzle is presented. This heuristic is described

in [Nilss7l.NilssSO].

Related Research

Judea Pearl and the late John Gashnig have discovered,

independently from the Milan team, that admissible heuris-

tics for A* can be computed by solving auxiliary problems.

Judea Pearl calls the auxiliary problems "relaxed models."

John Gashnig calls them "edge supergraphs" [Gashn79]. Gash-

nig uses the syntactic formalism and he does not propose an

algorithm that finds auxiliary problems automatically, the

way algorithm K does, thanks to the "semantic" formalism.

Judea Pearl and Dennis Kibler[Kiblet82] have postulated

the need for changing representation paradigm to solve auxi-

liary problems efficiently. Their postulation is grounded onj the negative result discussed in this paper. They quote this
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result explicitly in their reports [PearlS2, p.131;

KiblerS2.p.4].
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