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Our research was concentrated on the following topics: D

1. Verification of Concurrent programs: The Temporal Framework ([1J).

We first introduce temporal logic as a tool for reasoning about sequences of states. Models
of concurrent programs based both on transition graphs and on linear-text representations are
presented and the notions or concurrent and fair executions are defined.

The general temporal language is then specialized to reason about those execution sequences
that are fair computations of a concurrent program. Subsequently, the language is used to describe
properties of concurrent programs.

The set or interesting properties is classified into invariance (safety), eventuality (liveness),
and precedence (until) properties. Among the properties studied are: partial correctness, global
invariance, clean behavior, mutual exclusion, absence of deadlock, termination, total correctness,
intermittent assertions, accessibility, responsiveness, safe liveness, absence of unsolicited response,
fair responsiveness, and precedence.

2. Verification of Concurrent Programs: Temporal Proof Principles (121).

IHere, we present temporal proof methods for establishing properties of concurrent programs.
We consider three classes of properties: invariances, eventualiti' s (liveness properties) and prece-
dence (until properties).

The proof principle for establishing invariance properties is based on computational induction,
and is a generalization of the inductive assertions method. For a restricted class of programs we

>- present an algorithm for the automatic derivation of invariant assertions.

CIn order to establish eventuality properties we present several principles which translate the
structure of the program into basic temporal statements about its behavior. These principles can

LUA be viewed as providing the temporal semantics of the program. The basic statements thus derived
--.J are then combined into temporal proofs for the esthlishment of eventuality properties. This method

1=A. generalizes the method of intermittent asertions.
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An until property is shown to be essentially a combination of a conditional invariance and an
evntuality. Consequently the proof method for establishing an until property is a generalization
of he method for establishing eventualities.

3. Verification of Sequential Programs: Temporal Axiomatization ([31).

Earlier, we introduced temporal logic as a tool for reasoning about concurrent programs and
specifying their properties ([1]) and presented proof principles for establishing these properties (12]).
Ilere, we restrict ourselves to deterministic, sequential programs. We present a proof system in
which properties of such programs, expressed as temporal formulas, can be proved formally.

Our proof system consists of three parts: a general part elaborating the properties of temporal
logic, a domain part giving an axiomatic description of the data domain, and a program part giving
an axiomatic description of the program under consideration.

We illustrate the use of tile proof system by giving two alternative formal proofs of the total
correctness of a simple program.

4. Verification of Concurrent Programs: A Temporal Proof System (141).

A proof system based on temporal logic is presented for proving properties of concurrent
programs based on the shared-variables computation model. As in [3], tile system consists of three
parts: the general uninterpreted part, the domain dependent part and the program dependent part.
In the general part we give a complete system for first-order temporal logic with detailed proofs of
useful theorems. This logic enables reasoning about general time sequences. The domain dependent
part characterizes the special properties of the domain over which the program operates. The-
program dependent part introduces program axioms which restrict the time sequences considered
to be execution sequences of a given program.

The utility of the full system is demonstrated by proving invariance, liveness and precedence
properties of several concurrent programs. Derived proof principles for these classes of properties,
are obtained which lead to compact representation of proofs.

The program dependent part is proved to be relatively complete. We then show that its
dependence on the particular computation model studied is modular, by presenting a similar system
for proving properties of CSP programs.

5. How to Cook a Temporal Proof System for General Languages ((5]).

An abstract temporal proof system is presented whose program-dependent part has a high-level
interface with the programming language actually studied. Given a new language, it is sufficient
to define the interface notions of atomic transitions, justice, and fairness in order to obtain a full
temporal proof system for this language. This construction is particularly useful for the analysis of
concurrent systems. We illustrate the construction on the shared-variable model and on CSI'. The
generic proor system is shown to be relatively complete with respect to pure first-order temporal
logic.

6. Verification of Concurrent Programs: Proving Eventualities by Well-Founded
Ranking ([6]).

We present proof methods for establishing eventuality and until properties. The methods are
based on well-founded ranking and are applicable to both "just" and "fair" computations. These
methods do not assume a decrease of the rank at c omputation step. It is sufficient that
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there exists one process which decreases the rank when activated. Fairness then ensures that the
program will eventually attain its goal.

In the finite state case the proofs can be represented by diagrams. Several examples are given.

7. Synthesis of Communicating Processes from Temporal Specifications (f7J,18).

We apply Propositional Temporal Logic (PTL) to the specification and synthesis or the synchro-
nization part of communicating processes. To specify a process, we give a PTL formula that
describes its sequence of communications. The synthesis is done by constructing a model of the
given specifications using a tableau-like satisfiability algorithm ror PTL. This model can then be
interpreted as a program.

8. Deductive Synthesis of the Unification Algorithm ([91).

The deductive approach is a formal program construction method in which the derivation
of a program from a given specification is regarded as a theorem-proving task. To construct a
program whose output satisfies the conditions or the specification, we prove a theorem stating the
existence of such an output. The proof is restricted to be sufficiently constructive so that a program
computing the desired output can be extracted directly from the proof. The program we obtain
is applicative and may consist of several mutually recursive procedures. The proof constitutes a
demonstration of the correctness of this program.

To exhibit the full power of the deductive approach, we apply it to a nontrivial example -
the synthesis of a unification algorithm. Unification is the process of finding a common instance
of two expressions. Algorithms to perform unification have been central to many theorem-proving
systems and to some programming-language processors.

The task of deriving a unification algorithm automatically is beyond the power of existing
program synthesis systems. In this paper we use the deductive approach to derive an algorithmi from
a simple, high-level specification of the unification task. We will identify some of the capabilities
required or a theorem-proving system to perform this derivation automatically.

9. Special Relations in Program Synthetic Deduction ([101).

Program synthesis is the automated derivation of a computer program from a given specifi-
cation. In the deductive approach, the synthesis of a program is regarded as a theorem-proving
problem; the desired program is constructed as a by-product of the proof. This paper presents
a formal deduction 4ystem for program synthesis, with special features for handling equality, the
equivalence connective, and ordering relations.

In proving theorems involving the equivalence connective, it is awkward to remove all the
quantifiers before attempting the proof. The system therefore deals with partially skolemized
sentences, in which some of the quantifiers may be left in place. A rule is provided for removing
individual quantifiers when required after the proof is under way.

The system is also nonclausal; i.e., the theorem does not need to be put into conjunctive
normal form. The equivalence, implication, and other connectives may be left intact.
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