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CALCULATION OF MINIMUM ENTRY HEAT TRANSFER SHAPE

OF A SPACE VEHICLE

Zhou Qi cheng

ABSTRACT

This paper dealt with the study of the minimum total

heat transfer aerodynamic shape problem for a re-entry

spacecraft. In this paper, the well known boundary layer

heat transfer relation was used first to derive the

expressions of the total heat flow rate on the surface of

the spacecraft and the total heat added during the entire

re-entry process. Then, with the aid of some numerical

results, the flow field and the Prandtl-Meyer expansion

theory, the minimum re-entry heat transfer shape under

specified fineness ratio and total vehicle weight conditions

could be obtained using a variational method. Finally,

the effect of the drag coefficient on the minimum re-entry

heat transfer shape was analyzed. The calculated results

indicated that: For a given total vehicle weight and spe-

cified fineness ratio, the total heat transfer decreased

with increasing drag coefficient. The minimum re-entry heat

transfer shape is a cylinder with a flat nose.

I. INTRODUCTION

The rational section of the aerodynamic shape of the re-entry

vehicle to reduce the heating due to surface convection to the maximum

extent possible is very meaningful to the design of either retrievable

satellites or missile warheads. It not only can effectively reduce

the weight of the re-entry heat protection layer to improve the

effective payload of the vehicle, but also is helpful in improving

the accuracy of the calculation of the aerodynamic coefficients to

improve the target bitting rate. Therefore, in recent years, many

This paper was received Sept. 24, 1981
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researchers and engineering technical personnel are concerned about

this problem. This paper involved the study of the minimum beat

transfer aerodynamic shape problem of a re-entry vehicle on the basis

of the design of a retrievable satellite. In order to simplify the

problem, we assumed that during the re-entry flight process the

geometrical shape of the vehicle remained unchanged. The geometrical

slope of the surface of the object is greater or equal to zero.

References [1,2] studied the minimum beat flow rate shape with

a specified fineness ratio when the flight Mach number remained un-

changed under the assumption of Newtonian pressure. Reference [31

extended the problem to the entire re-entry flight and discovered

that for a given trajectory coefficient( M )and a specified fineness

ratio, the minimum heat transfer shape is the minimum heat flow

rate shape. Reference [4] applied the numerical values of inviscid

flow to the problem discussed in [3]. The accuracy of the calculation

of the minimum heat transfer shape was greatly improved. The minimum

beat transfer shape (which is also the minimum heat flow rate shape)

under laminar and turbulent flow conditions for a given trajectory

coefficient obtained in that paper was a rotating body with a flat

nose. The angles of inclination at the tip and the surface were

about 200 and 170, respectively. In [5], the actual requirement of

an effective volume in the vehicle was taken into account during the

engineering design. Therefore, the work carried out in [3,4] was fur-

[. ther extended. The minimum heat transfer shape of a re-entry flight

vehicle in laminar and turbulent flow condition with a given trajec-

tory coefficient, a specified fineness ratio and a specified effective

ol volume was calculated. Furthermore, the analytical expression of the

*. minimum heat transfer shape under laminar flow condition with a speci-

fied trajectory coefficient and a specified effective volume (no

requirement was needed for the fineness ratio) was obtained. The

above references did not involve the effect of the variation of drag

* coefficient on the minimum heat transfer shape.

In the actual engineering design, people frequently wanted to

know the shape of the minimum re-entry beat transfer under a given

total weight and a specified fineness ratio. Because the re-entry

2



trajectory coefficient is an important parameter influencing the

re-entry flight, the variation of drag coefficient will directly

vary the trajectory coefficient. Consequently, the total added heat

to re-entry will be affected. Therefore, in the optimization of the

aerodynamic shape, it is necessary to analyze the effect of the drag

coefficient of the re-entry body on the re-entry heat. The study of

whether the minimum beat flow rate shape is still the minimum re-entry

heat transfer shape is very important. The purpose of this paper is

to find the minimum re-entry beat transfer shape with specified fine-

ness ratio and total vehicle weight.

II. PRESENTATION OF THE PROBLEM

The commonly adopted LEES laminar flow heat transfer theory [6]

and VAGLIO-LAURIN turbulent flow beat transfer theory [7] are used

to calculate the surface heat flow rate of the re-entry vehicle

CNp.V..H. xvx

;:" whe rewhr 0. 0332P,-'1g(I -H/H,) laminar flow

.0. 0296P,-218g( -H/H,) turbulent flow

p, u, vi and H represent the density, tangential velocity, viscosity

coefficient and enthalpy of the flow, respectively
(Pn,/p.,I-m,// 9 -- 77, ,", y and s represent the dimensionless

abscissa of the vehicle shape and the arc length along the surface,

respectively (y-y/R&,s-$J Rs) , where RB is the radius of the base.

P is the Prandtl number and g is the gravitational acceleration.r
The subscripts e, o and w represent the values at the outer fringe,

stationary point, and the wall of the boundary layer, respectively.

n = 2 represents laminar flow and n - 5 represents turbulent flow.

By introducing the following symbol

and integrating the heat flow rate along the surface of the flight

vehicle, we can obtain the total heat flow rate on the surface of the

flight vehicle as

4 .°



..-- i

DO VPO I.H

It is commonly known that the stationary point beat flow

rate is related to the radius of curvature of the object at the

stationary point. The magnitude of the beat flow rate increases or

decreases with increasing or decreasing radius of curvature. There-

fore, it is reasonable to believe that the minimum beat transfer

shape is composed of a flat nose and a rear body part [1,4]. Hence,

by using the isoenthalpy relation and the viscosity exponent law,

we can express the integral in the above equation as

where

,..- F(P,ft,y)-P4(I-Pb)s-& (I *at)%* *-Iz

0,- z)M.

a- 1+(V-1)C5
V

V

y is the specific heat of air, w is the viscosity exponent, yl is

the height of the flat nose, M OD is the flight Mach number and P is

the pressure coefficient which is defined as PdX is the

dimensionless ordinate of the flight vehicle shape x'- -, and I

is the integral on the flat nose.

,- dy

If we assume that the sonic point is located at the intersection of

the flat nose and the rear body, then it is possible to complete this

integration by using the simplified integral relation [8] or an inviscid

flow numerical value. Therefore, it is a known constant. We can

rewrite it as

7,

where $4 is a known constant and its value differs for laminar flow

and turbulent flow.



Based on the differential correlation between the total heat

flow rate Q and the total re-entry heat Q
dt

and the CHAPMAN [91 trajectory approximation which is applicable to

K trajectories with larger variation of the angle of inclination 6

dt

we can express the total re-entry flight heat as

:.'" ~~Q0 - 2xR; (p.. sip ds - - dh
X ~ ~ ~ 6 1 in0L

where V, is the flight speed, h is the flight altitude, t is the

flight time and hE isthe upper fringe height of the dense atmosphere.

For an Earth orbit re-entry flight vehicle, aerodynamic heating

primarily occurs durihg the hypersonic flight stage (M311) In an

approximation analysis, it can be considered that the pressure coeffi-

cient of the rear body is not related to the Mach number of the

incoming flow (such as the Newtonian theory or the P-M expansion

theory). It is only a function of the geometric position. Therefore,

the integration with respect to 0 in the above formula can be ex-

tracted from the integration with respect to h. Hence, it is possible

to use the relationship before and after the normal shock wave, the

isoenthalpic correlation and the CHAPMAN approximation trajectory to

finally simplify the total re-entry heat formula under the condition

that M.)>1 as

where

is U = - .-- .. dU

Z n (cotG)

' ,-L'in--

'" ~(Y +ls ** v-i

! IDCM .=I,(M )" V 2+T --.)

Y--I ~ M. V, 2., -I \ -.

+. 2.. -, V_ ._____._.._...._.____-.__
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Figure 1. The variation of B with the re-entry angle
and the trajectory coefficient
1--laminar flow; 2--turbulent flow

8 is the reciprocal of the density of the atmosphere, and R is the

average radius of the Earth. From [9], we know that the dimension-

less CHAPMAN variables Z and dZ/dU are known functions of the dimen-

sionless velocity U which is only related to the re-entry angle eE.

The functional relationship between M. and U is only related to

M/CDA. Actual computation showed that B is a function of the re-entry

angle. The effect of the trajectory coefficient can be completely

neglected. The details are shown in Figure 1. A is the reference

area of the drag coefficient CD, M is the mass of the flight vehicle

and A is a constant. Its expression is
m 1 £

2 -L - 1 . -L
.A.-_ -2 - C,=R& , (OR) a -

,,* +1 1' U I_ _____

where VE and VE are the re-entry velocity and the air viscosity

coefficient at the initial re-entry altitude.

T's so-ca' ed minimum heat transfer shape is the geometric shape

with wbk!r t:. total re-entry heat Q of the flight vehicle surface is
• the minimum.. If x = x(y) is used to represent the equation of the
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parent line of the minimum heat transfer shape, it can be substituted

into the computational expression of Q derived above as equation (1)

and Q will have the minimum value. Therefore, solving for the min-

imum heat transfer shape under specified fineness ratio and total

K vehicle weight can be mathematically reduced to the solving of the

- minimum curve of the generalized function I/CD inside the bracket in

(1). That is to find the minimum curve of the following mixed type

generalized function with moving boundary points.

'Y 1) + + (.,F(P, y)dy (2) 6l*[~Px(y)]JfiC

where

Y° I,
C- =:4 Pydy+ 4fPydy

The first term of the formula represents the contribution of the

flat nose to the drag. It is possible to use the simplified integral

relation [8] to complete this integration. Or, it is also possible

to compute it based on the results of the numerical values of an

inviscid flow. The second term represents the contribution of the

rear body to the drag. In order to facilitate the use in the future,

we art; rewriting the above formula as

C.-.41Y +4., Pydy(3)
" where J is a known constant.

If T is used to represent the fineness ratio(rl*Rm/L), of the

flight vehicle, then the boundary condition can be expressed as

a ( 1)- 2 (41

Because we did not specify the height of the flat nose y, it

is a quantity to be determined. In order to have a solution to the

variational problem, we must supplement the so-called crossing condi-

tion to be satisfied by the minimum curve at x = 0. Its actual form

is related to the treatment method of the problem.a

Equations (2), (4) and the crossing condition at x = 0 are the

original equations to solve for the minimum re-entry heat transfer

,



shape for a specified total vehicle weight and fineness ratio.

III. SOLUTION OF THE VARIATIONAL EQUATION

The minimum beat transfer shape for a given total vehicle weight

M and specified fineness ratio T can be found by solving the varia-

tional problem in equations (2) and (4) directly. However, in order

to facilitate the analysis of the effect of the variation of drag

coefficient CD on the minimum heat transfer shape, we chose to use

the following method. It involved the use of a series of properly

chosen specified values of drag coefficients CD,(i-1,2,.-) . Then, the

minimum beat transfer shapes and the total re-entry heats correspond

to these specified values of drag coefficients. Therefore, we

can understand the effect of drag coefficient on the minimum beat

transfer shape and the total heat from this series of calculations.

In the meantime, it is not difficult to find the eventually needed

minimum beat transfer shape for a given total weight and a specified

fineness ratio.

According to our knowledge in the variational method [10], the

minimum re-entry heat transfer shape for a specified drag coefficient

is reduced to the solution of the minimum curve for the following

generalized function

) J y -AC+4AJDy2 + ,F**dy

where X is the Lagrange coefficient yet to be determined

F*-F +4APy

The boundary condition is the same as before as shown in equation (4).

The corssing condition is

- u-t ,. (6)

In order to determine the Lagrange coefficient Xl, it is necessary

to simultaneously solve for the constraint equation (3) in which the

drag coefficient is equal to a specified value.

Up until the present moment, we only assumed that the junction
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Figure 2. The minimum beat transfer shape for a given
trajectory coefficient (T = 1.0)

2--laminar flow; 3--turbulent flow; 4--i±aminar flow; 5--turbulent
flow; 6--this paper; 7--reference [4]; 8--reference [3]

between the flat nose and the rear body is a sonic point and its

pressure coefficient is not related to the Mach number of the incoming

flow. References [1-3] used the Newtonian theory to calculate the

pressure distribution on the rear body. However, the minimum heat

transfer shape they obtained is quite different from the one obtained

in [4] using the inviscid flow numerical solution as a basis. By

taking into account that fact that the variational method requires

that the rear body pressure distribution starting from the sonic

point must be continuous and differentiable, we used the P-M expansion

theory to calculate the rear body pressure distribution in this paper.

Although by doing so it is possible that the numerical value of the

rear body pressure coefficient might be underestimated, yet in actual

trial computation, it was discovered that the major factors affecting

the minimum heat transfer shape are the pressure distribution on the

flat nose and the pressure variation near the junction between the

flat nose and the rear body. By using the P-M expansion theory, the

1pressure variation near the junction can be better reflected. From

Figure 2, we can see that the minimum heat transfer shape for a given

trajectory coefficient using the P-M expansion theory in this paper

agrees with that obtained based on the inviscid flow numerical solu-

tion in [4] comparatively well. As can be expected, when the calcul-

ated results converged to appronh the minimum curve (later, we will

see that the minimum beat transfer shape is a cylinder with a flat

4 9



nose), the accuracy of the rear body pressure distribution calculated

using the P-M expansion method is improved. In addition, we should

also point out that the treatment in this paper is focused on the

study of the variation trend of the target function (i.e., the total

re-entry heat) rather than the numerical value of the target function

itself. The computational error of the rear body pressure distribu-

tion will not cause the variation of the trend of the variation of the

total re-entry heat. Therefore, it is believed in this paper that It

is feasible to use the P-M expansion theory to calculate the rear body

pressure distribution as an approximate analysis.

When we use the P-M method to calculate the pressure on a conical

body, the pressure coefficient is only related to the local slope dx/dy.

According to our knowledge in the variational method, the Euler equa-

tion of this type of variational problem has a simple integral:

OF ..A-+ .YO -

wbere C is an integration constant yet to be determined by the bound-

ary condition. The above equation can be integrated once more into

the following form:

SII -

4A-4A§E7

'1 f: t, -y n f(W )

.-- c" X . S- p• . x/(.t)y -4A.' at

i_ "--'-I() - 4 A.- AT-- - c

where

ioi /M) - a--- F_"  -

A and I are the slopes of the minimum curve at x = 0 and x = 2/T

respectively. They are both unknown quantities.

*I Substituting the correlations of the P-M expansion theory

4 10



* into the above equation, it is possible to find the actual computa-
,tional expressions for!'' p  and 2P through not too complicated

derivations. Therefore, by simultaneously solving for equations (3),

(4), (6) and (7), we can obtain the minimum re-entry heat transfer
" shape for a drag coefficient equal to a specific value.

IV. COMPUTATIONAL RESULTS AND DISCUSSION

We computed the minimum re-entry beat transfer shapes for various

fineness ratios with drag coefficients as a series of specific values

under the conditons that V=1.2,w-1.o. and dy/dx;? . The numerical

values of JK and JD were obtained from the results in [4]. In the

following, we will briefly introduce the calculated results.

Figure 3 plots out the minimum re-entry heat transfer shapes

with drag coefficients equal to a series of specific values. CDO is

the drag coefficient of the minimum beat flow rate shape (i.e., the

minimum heat transfer shape studied in [4]). From this figure, we

can see that the minimum re-entry beat transfer shape is a family of

flat headed rotating bodies. With increasing drag coefficient, the

height of the flat nose is gradually higher and the half vertex angle

*. of the rear body is becoming smaller. The rear body more and more

,* approaches a cone. The laminar flow minimum re-entry beat transfer

shape and the turbulent flow minimum re-entry heat transfer shape are

very close.

Figure 4 plots the minimum re-entry beat transfer shape total beat

flow rate for various drag coefficient equal to different specific

values. is the minimum beat transfer shape total heat flow rate
under invariant trajectory coefficient conditions. From the figure,

we can see that when the drag coefficient is not equal to CDO, the

4 total heat flow rate Q is always higher than Qo It is true for both

laminar flow and turbulent flow. The reason is very simple.

11
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Figure 3. (continuation)

2--turbulent flow; 3--laminar flow; 4--turbulent flow
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Figure 4. The variation of the minimum beat transfer
shape total beat flow with drag coefficient when the drag
coefficient is a fixed value

1--turbulent flow; 2--laminar flow; 3--calculated results in the
paper; 4--flat heated cone results from [4]; 5--turbulent flow;
6--laminar flow

It has been.pointed out in [4,5] that when the trajectory coefficient

is unchanged, the minimum re-entry heat transfer shape is the minimum

beat flow rate shape. Therefore, when CD is different from CDO , the

Q is naturally higher than Qo"

Figure 5 plots the minimum re-entry beat transfer shape total

heat corresponding to various drag coefficients which are equal to

different specific values. The reference values used in the figure

are similar to those in Figure 4. From this figure, we can clearly

see that the re-entry total heat rapidly decreases with increasing

drag coefficient. When the drag coefficient CD increased to the value

equal to that of a flat nosed cylinder, the re-entry total beat

S13
- P p - p.



.: reached the minimum. This variation trend indicates thatalthough

the increase in drag coefficient would cause the surface total heat

flow rate to increase, yet, under a given total re-entry weight con-

dition, the increase in drag coefficient would simultaneously cause

the trajectory coefficient to drop rapidly. The net effect is to

gradually reduce the total heat. From Figure 5, it is not difficult

to see that when the re-entry weight is specified, the minimum re-entry

beat transfer shape is a flat headed cylinder.

Figures 4 and 5 also plotted the calculated results of the flat

headed cone part using the inviscid flow numerical solution as the

basis. The variation trend agrees with the calculated results in this

paper. When the drag coefficient is identical, the total heat flow

rate and the total heat of the flat beaded cone are higher than the cal-

culated results of the minimum re-entry heat transfer shape in this

paper.

Figure 6 plots the calculated results of a flattened cone and a

spherical cone which are very close to the minimum heat transfer shape

[4]. From the figure, we can see that the drag coefficient of a flat

headed cone is higher than that of a spherical cone with the same

half conical angle. When their half conical angles are identical,

although their total beat flow rates (i.e., I) are not too different,

yet the re-entry total beat of the flat nosed cone (i.e., I/CD) is

*much lower than that of the spherical cone. In addition, we can also

see from Figure 6 that in the half conical angle range shown, regard-

less of the spherical cone or the flat beaded cone, the surface total

heat flow rate gradually increases with increasing drag coefficient

(i.e., the re-entry body becomes dull). The re-entry total beat gra-

dually decreases.

According to the calculated results shown in Figures 4, 5 and 6

we seem to be able to draw the following conclusions: for a speci-

fied total re-entry weight, during the selection of the shape of the

re-entry vehicle, we should choose a flat headed rotating body on the

basis of satisfying other objectives of the whole body in order to

14
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Figure 6 (continued)
1--turbulent flow; 2--laminar flow; 3--degree; 4--laminar flow;
5--turbulent flow; 6--degree

greatly reduce the re-entry heat to the maximum extent possible and

to reduce the weight of the re-entry heat proof layer. Furthermore,

we should attempt to use a larger drag coefficient to the extent

possible. The flat beaded cone is an aerodynamic shape with some

future.

V. BRIEF CONCLUSIONS

1. The minimum re-entry beat transfer shape when the drag coeff-

icient is equal to some specific number is a family of flat headed

rotating bodies.

2. Along with increasing drag coefficient, the total beat flow

rate of the flat headed rotating body is reduced monotonically. After

reaching the minimum, it monotonically increases. The re-entry total

beat monotonically decreases with increasing drag coefficient.

3. The minimum re-entry heat transfer shape for a given re-entry

total weight is different from the minimum beat transfer shape for a

given trajectory coefficient. It is a flat headed cylinder.

4. In order to reduce the re-entry beat to the maximum extent

possible, while satisfying other functional objectives, we should

16
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choose a flat bead rotating body. Furthermore, a larger drag coeff-

icient shape should be used to the extent possible. The flat headed

cone is a promising aerodynamic shape.
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LIMIT ANALYSIS OF THE STRUCTURAL STRENGTH FOR THE COMBUSTION

CHAMBER OF A LIQUID ROCKET ENGINE

ABSTRACT

This paper is an actual example of the limit anal-

ysis method in mechanics. It provided computational for-

mulas for the limiting load of the major parts in the com-

bustion chamber of a liquid rocket engine. These calculated

results have good engineering accuracy in approximation

through experimental verification.

I. INTRODUCTION

Due to the "short time" and "single use" characteristics of the

liquid rocket engine, it is believed to be reasonable for part of its

components to work in a plastic state or for the entire unit to

approach the plastic state. Ti design a liquid rocket engine accord-

ing to this viewpoint will enable us to fix the load resistance poten-

tial of the structure to the maximum degree possible. Consequently,

the weight strength ratio of the engine can be rationally designed.

In the 60's, the workers in mechanics in our country con-

ducted a lot of work in the areas of limit analysis and limit design

to solve the common engineering shell limit analysis method. Further-

more, this method was developed to establish its theoretical basis to

promote the flourishing development of this technology. This situation

makes it not only necessary, but also possible to use the limit anal-

ysis method in a liquid rocket engine.

The limit analysis method is an important branch in plastic

mechanics. Rigorously speaking, it is an engineering approximation

method. Actual practice proved that the conclusions obtained by using

this method had the sufficient engineering approximation. Because of

the ease of use and the clear physical concept of this method, we

This paper was received on July 31, 1981.
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believe that the application of limit analysis to the design of

liquid rocket engine strength should have some constructive effect

for a long time to come.

Finally, it should be pointed out that all the components of the

liquid rocket engine are located in a strong vibration environment.

Dynamic characteristic design and calibration are sometimes necessary

for some components. This paper did not involve any discussion in

this aspect.

II. THE LIMIT ANALYSIS OF THE LOADED TOP COVER OF THE
COMBUSTION CHAMBER

The form of the loaded top cover is dependent on the supporting

condition of the combustion chamber. It is also related to the re-

quired dimension of the entire unit. The usual forms are the spberi-

cal top cover, which is a part of the sphere. It is a more advantag-

eous structural form to sustain a uniformly distributed pressure.

The triple centered top cover. By using such a structural form,

it is not only possible to take care of the favorable form in main-

taining the structure under high working pressure, but also able to

take the requirement of reducing the total length dimension of the

!. entire unit into account.

The conical top cover. When the thrust of the engine is trans-

ferred from the head of the combustion chamber, the conical cover top

is the most favorable force exerting component.

1. Spherical top cover with an opening in the center to sustain

uniform pressure. The simplified mechanical model of the structure

- is shown in Figure 2-1. The internal boundary is connected to the

.. rigid flange. The extcrnal boundary is considered as the solid sup-

port. When the limiting condition is reached, let us assume that the

4| distortion velocity is

(2-1)

W*-- A(cosp.- cog,,)
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As for the direction of W, the outer normal direction is~positive.

.,4

Figure 2-1

Using the mobile method and the jacketed shell yield condition,
we can get, when O>p,.

ain '*(I-K)(inIOqi-cn 9 +2K in V+2(coq,*- COSO)COS To
3K (coes-cosi.)(cosq, - cos .+sin'2 ) (2-2)

when '<, 2 sin'
3(cot, -coaq'.)(cog9, - cosV.+ sin 'I) (2-3)

where\-K (2-4)

K. h
4R (2-5)

"2 PR'sin 'IV
(2-6)

The numerical results obtained from equations (2-2) and (2-3)

are tabulated in Table 2-1.

The limiting loading capability curves are plotted as shown in

Figure 2-2.,
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TABLE 2-1. The limiting loading capability of an opened spherical
shell with external boundary solid support.

'. - K-o.oi 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05

100 2.961
g 20' 5.171 8.389 2.540 4.150 3.112 2.0_9

300 9.0 6.429 3.007 8.008 4.768 2.837 6.388 8.818 3.040

400 14.780 7.976 3.873 13.210 7.238 3.622 9.843 6.288 2.170

60 20.420 10.700 4.951 19.310 10.220 4.702 16.180 1.149 3.1T

800 25.760 .0.250 1. M 24.S40 a. 6.60605 0.U 10.160 4.841

Onat and Prager [1] gave the computation formula for the limit-

ing loading capability of a spherical shell without opening in the

presence of external boundary solid support, which corresponds to the

47-0 situation in this paper:
a-2+ ( 2 K[K(.O-2K)'sin 'v.+KI(-2K-4cosi,) cos, 2

(1- -2(j (2-7)

+($K-1)---.(1- 2K )'In (I- 2K)]

where

" _ PR KM

Li Kangxing,et al.gave an even more convenient formula [2]

*-2(1+K 1+0V.) (2-8)

In order to compare the reliability of the results in this paper,

a special case ,t-O within the range of applicable conditions is

compared to (2-7) and (2-8). The numerical results are shown in Table

2-2 (equation (2-2) is written in a dimensionless form as (2-7)).

If the external boundary is considered as the simple support and

the internal boundary is free, then by using an identical method, we

can find that when
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.O3 (cos q,- coSq.)(COi-C¢osq.+ sinlP'9,) (2-9)

'-. when 9(< ,
.- OSn- '." sin o-sifl q,
" ~3 (cs -cs o cs ,- o P i , (2-10)

~where 9 ,K and n are the same as in (2-4), (2-5) and (2-6).

['i Reference [3] studied the opened spherical top cover under the

• same boundary condition by using the "dual moment weak interaction"

I yield condition. However, its expression and applicable region a re

~very complicated. A comparison of' the results of this paper to those

,'°" in [3] is shown in Figure 2-3.
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TABLE 2-2

(S4)(-,) (3--4) i(3-7) (3c-8) (S-7)
0. 8.580 6.290 5.265 4.3M 3.6$5

200 8.944 3.609 2.781 2.604 '2.400 2.402

86o ,.739 2.,,7 2.,66 2.348 2.186 2.17

40°  2.894 S.8T 2.961 2.102 2.189 2.119 2.034 2.094 2.096

W- 2.25 2.216 2.231 2.119 2.108 2.110 2.058 2.054 2.058

o*60 2.198 2.150 2.153 2.076 2.075 2.080 2.0$7 2.038 2.039

70 2.115 2.102 2.108 2.051 2.051 2.059 2.025 2.026 2.030

80 2.071 2.071 2.074 2.035 2.035 2.036 2.019 2.013 2.020

i-' 2.050 2.051 2.060 2.025 2.025 2.028 2.012 2.012 2.016

1--formula; 2--this paper; 3--this paper; 4--this paper

12 .0

aA

S1* K-0. O1

"" 13 .. ] M

-1 
0

16 0,

15 /
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14 ///
;I-s~ I I ,/'"

12 / / /

/ / / ./ i K-.o2
1-1 /. / /1 /

too Soo W 'o

Figure 2-3
2--result of this paper; 3--result of [3]
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2. Spherical cover top with a center opening to sustain axially

concentrated load. The mechanical model of the structure is shown

U in Figure 2-4. When reading the limiting state, let us assume that

the distortion speed is

.W-A(COSV- O) (2-11)

where 02 is the position of the plastic region which is to be deter-

mined.

Using the mobile method and the packed shell yield condition,

we can get

=2 2K+(1-K)cm, -2cscs+ cos (2-12)

where (os -
1--2K)OVA (2-13)

a--h (2-14)

K_ (2-15)"' 4R

If we assume that the structure is primarily designed to sustain

axially concentrated load and simultaneously to stand the uniformly

*- distributed internal pressure q, the mechanical model of the structure

is simplified as shown in Figure 2-5.

If we assume that the internal pressure does not change the dis- 7

tortion speed (2-11) under the limiting condition, we can obtain the

following using the similar method:
,"-' - 1-2K"

2 2K+(1-K)cos'V,-2cosV,cos,+ " Cos', VI
i-

Cos V - Cs VI(2-16)

where + XQ (cosV, -co o )'+(sV.)-I+_CosV, cos q )sin 'q,

cos V, - Co V,- (CosIV, +,1) (2-17)

QqR (2-18)

P -(2-19);! a,Rh

4K_(2-2K+Q)cs V,'-2Qsin cosV,
2"M(1-2K) (2-20)
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TABLE 2-3

Fe A;2V R

1 TMOIC 478 6 76 15 15.4 1.6

2 478 6 76 0.6 32.5 333 2.1

,78 4 - 76 0.6 32.0 "38 4.6

1--specimen no.; 2--yield stress of the material a =28 kg/mm 2 ;
3,4,5--mm; 6--kg/mm 2 ; 7--limiting axial pressure (fon); 8--
experimental; 9--calculated; 10--error; 11--stainless steel;
12--stainless steel; 13--stainless steel;

Equations (2-12) and (2-16) agree better with the simulated

tests. The comparison of the experimental results to the theoretical

computation is shown in Table 2-3.

3. The triple centered top cover with an opening in the center

to sustain the uniformly distributed internal pressure. The triple

centered top cover is made of part of a spherical shell and a ring

shell which are smoothly connected together. The simplified mechan-

ical model is shown in Figure 2-6.

Let us assume that the distortion velocity is:

for the ring shell part
W: V-A(1 - sin V0) (2-21)

6' for the spherical shell part (2-22

+B(sinO (2-22

n- Pi,)

= the first order derivative at B.

From continuity, we get
- B. R_

(2-23)

The results obtained finally are tabulated in Table 2-4.

where
* a, "arcsin---r '7
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TABLE 2-4 The computation formula of limiting load capability of a
triple centered top cover with a large opening under uniform pressure

AN* ON"~

__1 -.ohA (t~v-w

r- aPAj-2 a-m)D.-)4aa2-aa+riI*)]F[( )

2--item; 3--formula; 4--boundary condition; 5--the internal strain Is constrained, the
external is fixed or hinged; 6--internally hinged and externally fixed or hinged;
7--plastic hinge distortion power; 8--distortion power of the ring shell part;
9--distortion power of the spherical shell part; 10--external force work; 11--final
expression; 12--ring; 13--upper sphere; 14--lower sphere
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TABLE 2-5. Table of' numerical value of the load capability
of a triple centered top cover with rID-O

Pla. ~ ~ 0.28 0 .009 006002 .2

1 .60.0350 0.0350 0.0561 0.056 0.0701 0.0601 0.6961 .*.wi

1 .00.0369 0.036, 59 1 0.0590 0.0740 0.0738 0.01903 0.0381

0. .20 0.0307 0.6493 0.0680 0.0617 0.0804

1/O 4V 0. 3 0. 313.500. 4 0. 36 2

RID rI ~

_______0.1_ 0.0____0__0.0__ It . 0015 0.1810.124 0.12490.1i759 0.162

1 0.350.0.1768 0..77

1 0.40 0 1112O.11100.1.1610.12600 14960.14140.17120.17100.163 0.1661

6.8 0.20 . 0.0130 jo.10560.12460.12451 10.14360.1565 0.1565

2--author; 3--reference [41; 4--this paper; 5--reference [4U;
6--this paper; 7--reference [14]; 8--this paper; 9--reference [41];
10--this paper; 11--author; 12--reference [41]; 13--this paper;
14--reference [41]; 15--this paper; 16--reference [41]; 17--this paper;
18--reference [41]; 19--this paper; 20--reference [14]; 21--this paper

-(R.+ tL-2r,)+V( R.+-~L-2r. )1 +$(H+r.)(R.+H)
as-arcsin -

-a+,,/a'+4H(H-R) _____________'--R

VIM .rss 2(H-R) I vt a1n2 H(H-R)

2' 4
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Reference [4] completed the load capability computation of a

triple centered top cover without opening. The zero center opening

angle is a special case in tb-i? Rppicable range of this paper. The

comparison of this work and reference [4] is shown in Table 2-5.

The effects of various opening angles on the load capability of

the triple centered top cover are shown in Tables 2-6 and 2-7.

TABLE 2-6. The effect of various opening angle on the load 7
capability of the triple centered top cover

~-P/q. h1D
0.010 0.016 0.020 0.026 0.030 0.034 0.040 0.046 0.050

RID\rD7.JD

1 0.15 0 0.02657 0.04262 0.0338 0.0663 0.08056 0.09153 0.1061 0.1249 0.1,62

0.1S 0.10 0.02491 0.04007 0.05028 0.06576 0.07620 0.06175 0.1028 0.1190 0.1300

1 0.15 0.15 0.02226 0.05749 0.04711 0.06174 0.0716 0.08165 0.0909 0.1124 0.1230

1 6.15 0.26 0.02145 0.0467 0.04364~ 0.05733 6.066641 0.07608 0.8953 0.1083 0.1154

0.8 6.20 0.10 0.02828 0.040 0.05778 0.07547 0.08737 0.0993 0.1175 0.1359 0.1432

l 2

3

'44

1 1o.2D rn00.l1

,.02 2. R=D rpg.ID r=0

II 4. X=D t.=.16D g..D

h

O. 0.04 0.06

Figure 2-7
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TABLE 2-7. Comparison of calculated and experimental
results of load capabilities of a triple centered top cover
sustaining uniform internal pressure

I * V 0.1055 0.1600 0.0012 0.9770 0.0200 0.0M

2fM 0.1740 1 0.1600 .02 0.70 1 0.0190 j 00,

S 0., 0.9770 °00 ..--

4--specimen no.; 5--material a = 40 kg/mm 2 ; 6--load capability,
,"" experimental value; 7--load capability, calculated value; 8--stain-

less steel; 9--stainless steel

The computational formula given in this paper was proven to

satisfactorily meet the engineering approximation requirement through

experimental verification. The strain plate was used in the measure-

ment of distortion. The theoretical computation can be simply ob-

* tained using an interpolation method from Table 2-6 and Figure 2-7.

*: The experimental results are compared to the computed results and the

comparison is shown in Table 2-7. The experimental results are given

in Figures 2-8 and 2-9.

4. The limit analysis of the severed conical top cover sus-

taining concentrated load and the minimum weight design.

(1) Equal thickness severed conical shell. The simplified

mechanical model is shown in Figure 2-10.

The limiting load capability is determined by the following for-

mulas

Pmu.(sr.ox+.Iinal-5-U'X+r,;.1 x +ro(x+r.)J 2-3%-- -.. 2 (2-24)

Beas\ . ( . '.+ (h • un (2.-25)

The value of x determines the position of the plastic zone in the

limiting state. It is represented by the distance from the shell
surface to the rotational axis. From experiment and analysis, we
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Figure 2-9

2--strain; 3--negative value; 4--negative value; 5--theoretical
value; 6--specimen 2; 7--schematic diagram of the strain position;

q 9--strain; 10--specimen 1; 11--theoretical value; 12--negative value;
13--schematic diagram of the strain position
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Figure 2-10
1--equal thickness severed conical shell; 2--limiting status

.:. L 2R

" V

Figure 2-11
4--linearly thickening severed conical shell; 5--limiting state

know that the destruction of the severed cone caused by the axially

concentrated load only occurs in the local region in the small end.

d If the plastic zone can be extended toward the direction away from

the small end, the loading capability can be improved. Let us consi-

der such a conical shell thickness variation rate (or radially ribbed

structural parameters). The limiting state corresponds to the situa-

tion that the plastic zone occurs in the entire region between the

two end planes of the severed cone. The material utilization rate of

32



this structure is the highest. It is called the ideal thickening

severed conical shell.

° -(2) The minimum weight design of a severed conical shell sus-

S-taining axial load. The mechanical model of the linearly tbickening

severed conical shell is shown in Figure 2-11.

*- The ideal thickness variation rate equation is

12(R Sin a (14R'-36r.R'+30r;R-8r:)A'+ L 3(R-r.) oa

sin 'a -Irh sin 'a (-15h' I+h.cosa- +1 (22612(R-r.) +o (R-r.)' 3 a,

To satisfy equation (2-26), the load capability of the severed con-

ical shell is
!b +Rr.+r) Icosa+(h sin 'a

K-a{[a(+r') + 3 ' 12(R-r.)b (2-27

+ . sin a Rh, +,.h +-xql'+r.(R+.))"2 -' u R -r. 3

in (2-26).'." .,_ h , (2-28)

The mechanical model of a radially ribbed severed conical shell

is shown in Figure 2-12.

The ideal reinforcing rib distribution should satisfy the follow-

ing parametric equation:

2 .6H + )AL R2 - [Ah+ .H (R+Sr.o) +-r.] R'
3 rea -2R

(2-29)
+2(.h+ .6H R+r. ., .,8Hr, (3R+r.),-xh. +Exh'.+.,f

+\X 2 Rr. 6 R

x(H +h)) si+'a + 1_ r:-0

3
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TABLE 2-8

-.-

I 12 22.8 65 27 104 4 11 10.?

a 9 2 22.8 66 2? 104 4 11 10.?

22.8 65 27. 104- 8 4.- 22 28

4 T4" 23 62 62.5 140 6 4.9 67 60.6
a IE U 62 62.5 140 12 7.A 0t 00.6

1 s 6o 26 10 6 2.8 - 16 16

7 - 2 22.8 65 2? 104 4 0.4 12 12.2.

I i 22.8 65 27 104 4 6 4 12 21 20.2

I ~I 25 22.6 65 27 104 4 10 4 12 2S524

is jo 25 22.8 65 75 278 12 3 12 30 140 150

1U I 5 '22.8 65, 27 104 4 6 4 12 0.2 19 20.3

12 IUD 25 22.6 65 27 104 4 6 4 12 0.4 22 22

18 2 22. 6 51 27 104 4 6 4 2 0.6 123 24

2--specimen no.; 3--property of the severed cone; --material; 5--as kg/mm2; 6,7,8,9,10,

11,12--mm; 13--q kg/mm'; 14--experimental value, ton; 15--theoretioal value, ton; 16--equal
thickness; 17--equal thickness; 18--variable thicknass; 19--variable thickness; 20--variable
thickness; 21--variable thickness; 22--equal thickness; 23--ribbed; 24--ribbed; 25--ribbed;
26--ribbed; 27--ribbed; 28--ribbed; 29--25# steel; 30--250 steel; 31--25# steel; 32--stain-
less steel; 33--stainless steel; 3h--stainless steel; 35--250 steel; 36--25# steel; 37--2r#
steel; 38--250 steel 39--25# steel; 40--25# steel; 41--25# steel

434
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Figure 2-12

To satisfy (2-29), the structural load capability is

". I Rar bnR r

G,. -23.

wher n. is tenmeofrbHitehegtfterb,,. is.toe

4=gur 2-12.

l2gR.

The reliability of the above analysis can be verified by simula-

tion tests. The comparison of the experiment and the theoretical

analysis is shown in Table 2-8.

III. THE LOAD CAPABILITY OF A CENTRIFUGAL TYPE INJECTOR DISK

The centrifugal injector disk is a complicated two layer circular

plate structure. Its double layered wall divides the thrust chamber

4i 35



<'° Figure 3-la
[ 2--combustion gas hot surface; 3--bottom; 4--nozzle; 5--top;
~6--combustion gas pressure difference

~into the combustion chamber (see I and II in Figure 3-1), and the

ilil i oxidant chamber (II or I) and the combustable gas chamber (III). The

two layer plate was welded together. Generally speaking, the pressures

Pand P2 excited on I and II are approximately equal to and higher

than P1 I1. Therefore, the injector disk of the entire unit only has

to sustain the pressure drop PI-PI.

The mechanical model of the injector disk is shown in Figure 4-16.

In the computation, the following basic assumptions are adopted [51:

(1) The double layer circular plates were connected rigidly by

many nozzles. There is no relative distortion. It is also considered

that the nozzles are uniformly distributed on the plate.F (2) The bottom of the injector plate is working at high temper-

* ature. The temperature varies nonlinearly along the radial flow radius

- of the circular plate. The temperature is lowest near the edge of the

-'. circular plate. The temperature is the highest at the center of the

. circular plate. Let us assume that the temperature variation is
I (,)-T.-(T.-Th)p. (3-1)

3136
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Ah ,  where T is the temperature at the cen-
0

(Ia ter of the plate and Tk is the temper-

ature at the edge of the plate. P = r'

h) n is a constant greater than 1.

---- T r is the radial flow radius.

| Figure 3-2 The limiting structural analysis

assumed that thermal stress did not

affect the limiting load capability. The temperature only affects the

yield stress value of the material.

If the temperature difference between the center and edge of the

circular plate is not too large, the difference in the value of the

material yield stress can be obtained using a linear difference method.

Therefore, we can write the following linear relation:
" " T ) - , I - K T )( 3 - 2 )

. where s--yield stress at constant temperature (T=O)

K --a constant which varies with the material.

Consequently, we can obtain
(r),(c+dp)3-3)

where
d-K(T-T), -i-KTs (3-4)

(3) The yielding bending moment of the double layer circular

plate. Under the yield condition, the stress distribution along the

height of the plate is as shown in Figure 4-2. Because

a,(T)-a.(c+dp). U, = constant.

Yielding bending moment

M.(r)mM. {1+2aO(c +dp4) [v- faO(c +dp")) (3-5)

where

mom a,hl
4

8
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(4) The effect of the nozzles. A series of densely located

nozzles would weaken the load capability of the circular plate.

Reference [5] suggested that this effect be included in the internal

power of the corresponding velocity field. This is a very complicated

method. However, [61 recommended the use of a functional coefficient

to take this effect into account:
F. (3-6)

F --the area of the opening of the nozzles to the plate.

-. " F --the total area of the plate.

The injector disk is formed by two layers of plates. On top of

*/ the double layer plate, the apertures of the nozzle are not equal.

The effect coefficient should be correspondingly noted as

F.l
(3-7)

...: C oa- F--- s,

Therefore, the opening of holes on the nozzle to the circular plate

is considered:
a.(T)- c,(c +dp0)t,

On the aforementioned basis, if the edge support of the injector

disk is considered as a simple support, the load capability sustain-

Ing uniformly distributed pressure is:
k°6M.

pM {+.aOV (c+ ) ( cd + e (3

where the symbols are the same as in (3-5), and
art. Is

If the edge support of the injector disk is considered as a

fixed support, then
PM eM dpa~~ got~ 1+ 2edp6 + t

-" °, L+ a c 3+1 2n+1 )

where Pb is determined by the following formula:

(3-10)
Ap:'"'+Bp:"+Gp:*'-Dp: +Ep'b#ep.+Kp- L-O

8.
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A- a'fi'd'(1-s)
2(Zs +l)

83~B=,-al,6d2
2(2n+l)

"" " G , a ,6 d (V , -o c )(n - 2l)

n(n + 1)

3 ad(V-ac)
u+1

E -ac(afc- 2V) - 1

Kafd. 12vdp)-} d ]+ ~+af v(5c+2d)-af (A~c* +2dc+d')]

L=-3 I +ac(2v-afc) I

IV. THE LOAD CAPABILITY OF THE COMBUSTION CHAMBER

The load capability of the combustion chamber is the load capa-

bility of the combustion chamber itself. The weak part of the cham-

ber is in the cylindrical section. It is the representative section

for checking the strength.

The cylindrical section has densely located reinforced ribs

along the circumferential direction. The inner and outer walls are

connected by wavy boards longitudinally. Obviously, this is a dual

directional Jacketed cylindrical shell with reinforced ribs. It can

sustain the combined effect of the uniform internal pressure and the

axial force. Assuming that the cylindrical shell is supported rigidly

on both sides, let us also assume that:

(1) a high pressure coolant is passed between the inner and outer

walls. It is considered not to be related to the load capability.

(2) The inner wall temperature of the combustion chamber is the

average value along the axial and wall thickness directions, i.e.,

a "39



b.

Figure 4-1
1--with reinforced ribs; 2--connected by wavy board; 3--shape of
the wavy board

the inner wall yield stress is a constant. Because the inner wall

is thinner, and the work is done at high temperatures, the material
property is low. It does not contribute greatly to the load capability.

Therefore, this type of simplification will not bring about large

effects.

The mechanical model of the simplified cylindrical section of

the combustion chamber is shown in Figure 4-1.

Based on the above assumptions, using the force method and the

simplified yield condition, we can get the load capability

M- I+a,+ 4-2V-2V#+4a. (4-1)

wbere

a,, ax are the relevant dimensionless parameters with respect to cir-

cumferential reinforced ribs and axial reinforced ribs, res-

pectively;
is the axial force coefficient, which reflects the cylindrical

shell characteristics of the half opening of the combustion

chamber

C2  is the structural parameter of the cylindrical shell

n is the limiting value of the dimensionless uniform pressure.

40
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They are equal to the following, respectively:

.. - , -Bu.(oh+Uaha)' a- o,

BO Bx(aA 1 +u~h2 )
',. R ~ 7,h, Tr,.:. ,-,1 xR'P R '

PR
• onh, +u,h 1

" l, 2 are the thickness of the inner and outer wall respectively

* R is the average radius of the cylindrical section of the

combustion chamber

R is the thrust of the engine

P is the combustible gas pressure in the cylindrical section

of the combustion chamber

alO2 are the material yield stresses corresponding to the inner

*- and outer walls at average temperature

L is half the length of the cylindrical section of the combustion

chamber

Bx  is the wave distance of the wavy board

B o  is the spacing between the reinforced ribs in the circumferen-

tial direction

a36 is the material yield stress of the reinforced rib in the cir-

cumferential direction

Fx  is the cross-sectional area of the wavy board within a wave

length

Fe  is the cross-sectional area of a reinforced rib in the circum-

ferential direction". MS
"'-" is the yielding variable moment on a unit length of the jacketed

layer formed by the inner and outer walls, including the wavy

board.
Ulm 1+2-S--1+-h' h-,+ 2H-

+2a, F. or /, F )

H is the height of the wavy board, which is also the distance between

the inner and outer walls.

~41
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Figure 4-2. The load capability of a ribless combustion
chamber

2--experimental curve; 3--calcualted value; 4--hot state experiment
and calculated curves; 5--cold state experimental and calculated
curves

a 3x is the yield stress of the wavy board material

where 6 is the thickness of the wavy board.

Equation (4-1) agrees well with the experimental results. Figure

4-2 shows the comparison of the experimental curve and the theoretical

computation of the load capability of a ribless combustion chamber.

V. THE LOAD CAPABILITYOF TUBE BUNDLE NOZZLES

The simplified mechanical model of the tube bundle nozzles is

shown in Figure 5-1. The exerted combustible gas pressure is assumed

to be

(5-1)

Solving the set of equations:

• rl,~I(qplj +I.f(..i)P. +(,)-- O
, )',( ,) +t,(q)Po +(q,)m-O

MU,(9 ,) +g.,,)P. +.,)C -o

93(9) q.g(V,)PG +( 0)O
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Figure 5-1
2--tube bundles--reinforced rib; 3--single tube

where the functions are as follows:

Rsinop-HA.(p cm vo-r RN qcos sin) +M R

j.(V)-A~cosp+RNI(q~cs'- sing)-Ms

.()-Aco+A si RH2  R'(2cosq'+:sinq7) d

R-HsiRq H (Rv R i Vco 91- Esin +eoa)

10 (1+;*)(Rsinv-H) 00+4a8

* 'c.c2svqi R-sin HWL_'~ )} _R_ -(a' -a (R sn VR9-
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-~~~~~ --... , ,- -,- - - - - - -.

where the structural parameters and material characteristics para-

meters are

A,-R 0-H- -Rcol -(,.-t v,)N#

-_( R '(a s ,2.+2cos2.)_ + RH( sin i".-acosp.) '"

[R(2+*tg,) -_a,+4a (1+a') Cos 9.

A, 1

Rcoxp.

S R'(2in2:+:2co2 c;) RH(sinq.-acosp.) ]e-O.SL 2(a- +4) + 1 -.+at I

2R.k'ITH,-+xRvHg+4R'.

VI. THE LOCAL STRENGTH OF THE COMBUSTION CHAMBER

The so-called local strength is the uniform load resistance of

the cooling conduit of the combustion chamber and the connection

strength of the wavy board. Their characteristic is that the struc-

tural dimension is so small that it is extremely difficult to reason-

* ably simplify the computational model. The computational formula

"- given here, after experimental verification, has sufficient accuracy

for the specific problem of the engine.

(1) The connection strength of the wavy board. The simplified

mechanical model is shown in Figure 6-1. Let us take an element in

the combustion chamber for analysis.

4
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Figue 6-1
2--inner wall; 3--wavy board; 4--outer wall

* Let: a is the inner wall yield stress of the combustion chamber

B  is the strength limit of the wavy board material

aBdrill represents the strength limit of the drill weld

"S represents the thickness of the wavy board

n is the thinning coefficient of the wavy board after the

impulse pressure treatment

€o is the angle between the side of the wavy board and the cir-

cum4'erential direction of the combustion chamber

x is the wave distance of the wavy board

b is the width of the drill weld

b is the inner wall thickness of the combustion chamber

' MP is the pressure distribution of the cooling conduit.

The pressure limit inside the cooling conduit can be determined

by the strength limit of the drill weld seam as:
' 

:'.i l l 1

osi (6-1)

The limiting pressure of the cooling conduit can also be deter-

*- mined by the strength limit of the wavy board itself as

.. , (6-2)
[. 

.- sin V ,

(2) The load capability of the cooling conduit

* 160.A' (6-3)P-P" B 1.
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The drill weld strength is a statically determined problem.

Equations (6-1) and (6-2) are the destructive strength, which is

used to replace the load capability.

VII. THE RING SHAPED FLUID COLLECTING RING

The schematic diagram of the structure is shown in Figure 7-1.

The uniform pressure load capability [7] is:

1 2-

the upper limit solutonPa
UPxa (7-1)

Fiur 7- d n , 1 +o
Figure 7-1 the lower limit solution dwflin- 1

(7-2)

where a---i-
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