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RELAXATION COMPUTATION OF TRANSONIC FLOWS

AROUND WINGS WITH BLUNT LEADING-EDGE AND DISCUSSION

ON ITS STABILITY AND CONVERGENCE

Northwestern Polytechnical University*

Zheng Yuwen and Luo ShiJun

ABSTRACT

In this paper, the exact velocity potential equation and

the exact boundary conditions were used around the blunt

leading-edge of a wing, and the velocity potential equation with

small perturbation in the transverse direction and large

perturbation in the longitudinal direction together

with its corresponding boundary conditions were used in other

areas to obtain the solution. Numerical example 1 was for a

rectangularwing with an aspect ratio X=12, airfoil NACA0012,

free stream Mach number M-=0.63, and attack angle a=20 . The

calculated pressure distribution of the root section was close

to the exact numerical subsonic solution (Sells, 1968). Example 2

was an experimental wing NACA R14 A51G31 having airfoil NACA 64A010

which is perpendicular to the 1/4 chord line with a sweepback

angle X1/ 4=45
° , X=3, taper ratio n=2 , M-=0.4, 0.8, 0.9, and a=2 °.

The computed results were very close to the experimental ones.

In this paper, we establish the stability conditions of

the linear relaxation with improving iteration of the transonic

velocity potential difference equation with small steady pertur-

bation under the assumption of local linearization, and the

conditions for the convergence of the relaxation solution to

the original differential equation solution. These conditions

more or less agree with the numerical experiments.
*Received December, 1981.
**4umbers in the margin indicate pagination of foreign text.
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INTRODUCTION

The blunt leading-edge is a singular point of the classical

small perturbation equation. There are numerous treatment

methods in the literature. In Reference [1,23, the leading-edge

was avoided, i.e., the leading edge was not taken as a mesh

point. Thus, the arrangement of the mesh had a large effect

on the calculated results. Reference [3], in the treatment of

the leading-edge, used the following equation:

. aX(

where x and xT are the chord direction coordinates of the
whr L L

leading edge and the trailing edge; y± are the vertical coordinates

of the top and bottom surfaces of the wing; and z is the span

direction coordinate. The integral on the left is calculated

by the trapezoidal equation according to the mesh used. Using

the above equation, it is possible to solve for "Y' at the

leading edze. In Reference [4], based on the mesh used,

---- ±0.2, was obtained at the leading edge usinF anax

extrapolaticn method. This type of treatment is equivalent

to the sharpening of the leading edge which has some arbitrariness.

In the first part of this paper, the leading edge of the

wing was taken as a mesh point. Using the directional derivative

equation, the exact boundary condition of the blunt leading

edge was inserted into the exact velocity potential equation.

In other areas, the small transverse perturbation velocity poten-

tial equation and the small transverse pertubation boundary

conditions were used. This method avoided the shortcomings

of the above described method which is also easy to apply.

The results of several numerical tests showed that:

whether the linear relaxation of transonic small perturbation

2



potential flow converges or not and the convergence speed (if it

converges)are related to the relaxation factor w 3,5] /2

Here we need to use theoretical analysis guidance. In the

second part of this paper, under the assumption of local

linearization, the stability of linear relaxation with improving

iteration was analysed using the von Neumann method. Furthermore,

the convergence of linear relaxation improving iteration was

discussed using the separation of variables method for the

corresponding differential equation.

1. RELATION COMPUTATION OF TRANSONIC POTENTIAL FLOW AROUND
WINGS WITH BLUNT LEADING EDGE

1. Basic Equations

Let us choose a rectangular coordinate system oxyz. The

x-axis is parallel to the wing chord and the z-axis is parallel

to the wing span. At the blunt leading edge, the exact pertur-

bation vel city potential equation was used:

where

a' a=-2o + 17 1 -'(q-' x - len w.

y is the adiabatic index; q- and a- are the velocity and

sonic speed of the free stream; and (u,v,w) and a are the local

velocity and the sonic speed.

...... - - .



At a non-leading edge point, assuming that velocity

perturbation components in the y and z directions are small

and that in the x-direction may not be small, then equation (1)

can be simplified as

( -M S)(P.. (* + CP..= 0 (2)

where
7~~~l + 1 M 2 cops ' 1 ,

A 2- Y+ M,.2cav.- A.

I
q-q

M is the local Mach number.

2. Boundary Conditions

Let us choose the coordinate plane oxz in the wing plane.

The boundary condition of the wing surface with the exception

of the leading edge can be simplified, under the assumption

of small transverse perturbation, as

c,(x, .o, z )-(q.cosa +.(x, t z ) OY- --. sia (4)
ax

Similarly, the conditions on the free vortex behind the wing can

be simplified as

Y,(. + o, z )-,(x,- o, z) (5)
TG , + 0. z)- .- o , fZ)- ., ( XV, + 0 , z) ( X,.' - 0. Z') (6)

The exact boundary condition at the blunt leading edge is

9.-- qW.., Qx (7)

where x - the sweepback angle of the leading edge of the wing.

n - the normal direction of the leading edge (Figure 1).

W .3- - " ' . , " ,... -- .- . .. W~e .- '° -. ._ 214



Inserting equation (7) into the directional derivative equation

of the leading edge, we get

ff q- Tsin X - q.cos a coSX )
T. - COS X +q.cosCsi X(

where t is the direction of the leading-edge (Figure 1).

By isolating the boundary + + A-1

condition of the leading edge

of the root of the wing, equation

(8) can be transformed into ______

Similarily, the boundary

condition of the leading edge Figure 1. Wing plane.

of the wing tip is also

equation (9).

The boundary condition of the far field of the wing can

use the small perturbation condition which is shown in §1.6 of

Reference [6].

3. The Difference Equation

Let us choose the sequential symbols for the mesh nodal

points in the x,y,z directions to be i,j,k. At the blunt

leading-edge of the wing, the first order partial derivatives

9x and 9z are calculated from equation (8) in which 9t uses

the central difference scheme. This means that it is assumed

that at the leading edge it is subsonic:

where Ai,-Axi/inX , Ax and At are the step lengths.

....... ... .. - , .. .. - .



The first order partial derivative py, similar to Pt' is

calculated using the central difference equation. The second

order partial derivatives can be calculated as follows:

mi.," .. ,g1 -- q .,,y., +q" X,., . p- ~~

Az. -Az -
_, - ___' ___. ___ -_-___ . ,_(__ -,_+__ __ _. +  

.l I A _
, 2 AIyIAyI(Ay +Ay) (12)

1P ,- ---X ' .T . C.I - '1..

where px and pz are computed based on equation (8). Other first

order partial derivatives, similar to pt, are calculated using

the central difference equation. Ayi and Azk are the step lengths.

With the exception of the leading edge, the small transverse

perturbation velocity potential equation (2) is used. The

Murman-Cole mixed difference format is used in the difference

equation. On the surface of the wing and the upper surface

J=jw+o of the free vortex:

2 - 1.,..( 13 )

Similarily, the expression for the lower surface can be

written.

6
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4. Linear Relaxation and Iteration Computation

The set of difference equations is solved using the linear

relaxation and improved iteration method. The details of the

method will be shown in Section II. Numerical example 1 is

a rectangular wing having airfoil NACA0012 with an aspect ratio

of A=12. Choose a mesh which is 31x13x33. The wing chord is

equally divided into 20 blocks and the half wing span is divided

into 29 blocks. It takes 20 seconds per iteration on the /4

655 computer. M0=.63, a=2° . By choosing a relaxation factor

W=1.0, where the number of iteration reached n=1045, we obtained

inax-Ij.,-P .,2--O. 5X 0" , which is noted as /.p/

The pressure distribution of the wing root section obtained is

very close to the exact numerical subsonic solution [l] as shown

in Figure 2.

C,

0.5 .0

Figure 2. Pressure distribution of the root section
of a rectangular wing.

Key: 1) calculation in this work.

7
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Example 2 is the experimental wing in Reference [8].

The airfoil perpendicular to the 1/4 chord line is NACA 64A010.

X1/4= 45 ,  =3, n=2 . Choose a mesh of 31xl3xl9. There are 15

sections along the half wing span. Each section has 11 points.

It takes 10 seconds for each iteration on the 655 machine.

The computational results are shown in Table 1. The
[8] a

computed results agree with the experimental ones as

shown in Figures 3-5. The calculated results are better than

those reported in Reference [4]. In Reference [4], the small

perturbation velocity potential equation and I--±0.2

were used at the blunt leading-edge.

Table 1. Computed cases of NACA RM A51G31 Wing.

M. a I *(M<1) W(M>1) * IA91

0.4 2
°  1 1 258 0.7 x 10-3

0.8 2" 0.9 0.7 481 O.13x 10-3

0.9 2" 0.9 0.7 667 O.15x 10"8

8

Alf4 1..



O CO
-0.4 O

0.4'-

(a) (b)

0. 
1.01.7I

(c) 0.0

(d)

Im38.2%15.5

Fgu 3 Pressure distribution of NACA RM A51G3. wing

Key: 1) computed; 2) experimental[7
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0. 4tY SC73 '--C

-0.41- -04L

Ju .%I*95

Figure 4. Pressure distribution of NACA RM A51G31 wing

Mw =0.8, az=2 0 .

Key: 1) computed; 2) experimental [7].
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CPD

C,

LAA

-C; ~ ~ ~ ~ V ~ VV--; V~

0.5 .6 0.5 1.0

0 cW0. (d)

338.2%

C.).I

970. 7 % 831

Figure 5. gressure Distribution of NACA RM A51G31 wing
Mc-..91, 2 t

Key: 1) computed; 2) experimental [73.
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2. DISCUSSION ON THE STABILITY AND CONVERGENCE OF LINEAR /8

FELAXATION AND ItPROVING ITERATION

1. Discussion on Stability

In order to analyze the stability of the difference equation

of the linear relaxation improving iteration of the small trans-

verse perturbation velocity potential equation (2), it is

assumed that the coefficient 1=M 2 of the qxx term in equation

(2)is a constant, i.e., local linearization. Thus, at the
local subsonic point and the local supersonic point, equation

(2) can be transformed into

C.+ *.+ ..- 0 (14)
- -+,+q',- o (15)

By choosing the relaxation line which is parallel to the y-axis,

the difference equations of linear relaxation and iteration

of equations (14) and (15) are

Ax* A~ty'A",

(ram2 ) L (+i .Il L (( 7

- Air, ay,

where ,, ,+( ,- -)-.. (18)

Substituting (18) into (16) and (17), we get

2I !.- ,+ ." (20)

2 q-(1 - + (19

+ - '+ +( )-0

where (V 2 ,- ).:hI +
-+ +- (_ -_ (A) (ram_

t 12



Introduce a new variable t which corresponds to the separation

variable n. Then:

Let the step length of t be At. should choose the

leading difference form:

. _ -. (21)

The difference equations (19) and (20) are equivalent to

the following differential equations:

+At* 2 At (22)

(p, , -At P- '- (23)

The above equations are different from equations (14) and

(15). They are time dependent equations.

4ow, let us analyze the stability of equations (19) and

(20). Let the exact solution of the difference equation be w,

and the numerical solution of the difference equation be e+ 6
where 6 is the error introduced by the numerical computation.

rfand cp+ 6 satisfy the same difference equation. Because the

difference equation is linear, therefore, 6 also satisfies the

same difference equation. Based on the superposition principle

of linearity, 6 can be decomposed into the basic solution

with an expression such as

b ( x Y a, z )-e'"'"'II""V"I (24)

where ,.X -T 81, 82, and 83 are arbitrary real numbers and

00 is a function of these numbers.

13
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Substituting equation (24) into (19) and (20), we get

AO X~7+ 731 2Ar (25)

2 _ ,Ay 1 -cos~sAz (silt ~x+
AY' 2 AZ' AX, z

2 sin OAY 1 -COSO,AZ +( sin O,Ax sinOAz+A?"y- 2 AZ' AX,' AzI

lestrl I - - 1(26)

where

OD XT A--isi2 .AZ 2 ~ AZ+. StAZ

22oOA 4 SnAz' z
2 i siOAs' OAx +y' I

-Az'Ax 2 AZ'

Accordincg to the stability condition ]*A,.hl< I from equation
(25) we obtain

0O< 0 <2 (27)

For equation (26), it is not possible to find an w& to satisfy
the stability condition. The proof is shown in the Appendix.

2. Discussion on Convergence

Convergence means the converging of the solution of the
time dependent differential eouations (23) and (24) to the
solution of the steady state differential equations (14) and
(15). Perform variable transformnations for equations (22) and
(23),9

+ 1 At- 1+
2 Ax 2 dz

and

1 Al
2 Az

1~4



We obtain

4x+)Y(.+),,).- 4i )Q l + *z- (28)

t , .-,), , 0 (29) /10

Equation (28) is hyperbolic and equation (29) is super hyperbolic.

By using the variable separation method, let

-F( )G( X.Y.z) (A)

From equation (28), we get

rA -)' + F- 1 + ]z) ,G (B)
. _G . +G,,+G.

G

The solution is

(x, y, z, v )-G,( x, Y, z )+ (A.e"-'+B.e"-')G.( x, Y. z) (30)

where__kg
+ -4 4q-.._.(_I_, 1, (31))

\AX/ I- -

Gm(x,y,z) is the characteristic function of the boundary

value problem of the following equation

G.+G,+G.+k'G- 0 (C)

2
Km is the corresponding characteristic value. Let

< ,< ... < ., .- (D)

15
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Go (x,y,z) is the solution of the Laplace equation

G.+G,+G.- 0

From equation (30), we know that when O<w<2. Hence, the convergence

condition of a local subsonic velocity point is 0w<<2. The converging

speed is determined by the minimum value of the real part of the

exponents in equation (30), i.e. Re. (pl). From equation (31)

lira (x,Y, z, T)*.G,(x,y, z)
~~I -06 -

2 (L_ Y 4 4k

where Ax and Az-0
P, kI2-- 1 + At

We can see that along with increasing w, p1 increases monotonically.

Under usual conditions, it is possible to choose w so that the

square root in the expression of p1 is zero in order to raise the

converging speed. This optimal relaxation factor is
2

1D I+- ' 1 1o(32)

Similarly, the solution to equation (29) is found to obtain /11

the convergence condition of local supersonic velocity points

I
AX +[(33

and the optimal relaxation factor

2+ ) (34)
* +(-A- +kAz

Furthermore, with increasing w, the converging speed increases

monotonically. When Ax AZ0, the optimal relaxtion factor is

1.5.

16
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3. Comparison With Numerical Tests

The analysis of the stabilization of the above local

linearization pointed out that: For three dimensional super-

sonic stream, linear relaxation is always unstable. However,

many numerical computations are stable. In addition, the results

analyzed in the above two sections agree with the experience

of numerical calculation.

In Reference [3], the isolated wing of experimental

model NASA TND-830 was computed. The wing was triangular,

x=60 ° , the flow section is NACA 65 A 003, M- =1.05, and

a=2.20. For various relaxation factors, the convergence

conditions are shown in Table 2.

Table 2. Convergence cases of NASA TN D-830 wing, M-=1.05, a=2.20.

EI3Am- 1.0 1.7 j 1. 1.0 1.7 ". 1,0

2 aI-0. . o .0 .o 1.0 1 .3 1.5

349~g 33 231I " I.IL 191 1 184 148 70
JqeSWjf 1 46s 459 365 339 33S 218 153

Key: 1) wsubsonic velocity point; 2) wof supersonic velocity
point;3)of n for stopping oscillation; 4) n for reaching the
convergence standard.

When w=1.6 for a supersonic velocity point, the computation

is divergent. When it is 1.5, convergence is the fastest.

This agrees with the convergence analysis in Section 2.

3. CONCLUSIONS

In this paper, the exact velocity potential equation was

used at the blunt leading-edge of the wing to overcome the

17
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uncertainty at the leading edge using the small perturbation

method. The pressure distribution of the wing plane obtained

was improved. In this paper, in other parts of the flow field,

the small transverse perturbation velocity potential operation was

used. It saved considerable computer time as compared to the

use of the exact potential flow of the entire flow field. It

is also easier to be applied to the complex wing-body structure.

In this paper, under the assumption of local linearization,

the stability and convergence conditions of linear relaxation

and iteration were established. In addition to individual

conclusions, it agreed with the numerical tests. It is

meaningful in the sense of providing some guidance.

APPENDIX The proof of the constant instability of linear relaxa-

tion iteration in the local supersonic region.

From equation (26) /12

4 .IN 2 ,
IBI'-IAI'= 2( +- i )(lz sin' + _Nz A , sin'P;

-4 em xsn 2 2costAz'+( 4,stflAAsin1
- x 8AXSI 2 + AZ'f N- Xz/AX' ~ 2i

+ _ Az_+(_ 4 sin- ____ _cosAin_ _AxAy 2 AXs  2

2 coS0,Az ' 1
+Az" A-T/ AZ'

(1) When ,=l, choose OAysAi- 0  and

IBI'-IAI - Ax 21 0 . 22i IX _Op~

When O<OAx<X -04, 1BI'-IAI'< o

Hence, when w-1, it is unstable.

18
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(2) When w-cl, choose OAy-OsAz-O and Ax-Az

lB~1~~AlAX 4)~io~xi 2

+ sinsPhilIA - sX~x

when 0<,Ax<+, IBI'-IAI'< 0

Therefore, when w-l, it is unstable.

(3) when w>l, let e - >0
(0

AZ

Choose OAx--,tAy- 0 and Ax- -Z

IBI'-IAI'-( 1 -4e ) 4 ( I -CsSsAz)

when e>i/4, IBI'-IAI'< 0.

Choose OAy-,Az- 0 and Ax Az

Ax 2 2

When E<1/4 and 01AX is sufficiently close to zero, IBI'-A12<0

Therefore, when c>O, i.e., w>l, it is unstable.
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RELAXATION COMPUTATION OF TRANSONIC FLOWS
AROUND WINGS WITH BLUNT LEADING-EDGE AND

DISCUSSION ON ITS STABILITY AND
CONVERGENCE

Zheng Yuwen and Luo Shijun

(Northweaeru Poyechnicol Uaiverasy)

Abstract

In this paper, the blunt leading-edge of a wing is taken as mesh points,

and there the exact velocity potential equation with central difference scheme

and the exact boundary condition are used, while in the other places, the ap-
proximate velocity potential equation. which assumes small perturbation in

the transverse plane but allows large perturbation in the longitudinal direction,

and the corresponding boundary condition are employed.

Two numerical examples are followings

(I) A rectangular wing having airfoil NACA0012. aspect ratio X - 12, an-

gle of attack d- 2% free stream Mach number M. 0.63. The computed pre-
ssure distribution of the root section agrees with the exact numerical subsonic

solution given by Sells (1968).
( 2 ) The sweepback wing tested by NACA RM ASIG31 having airfoil NA-

CA64AO1O which is perpendicular to 1/4 chord line with sweepback angle
Xl/,-45", ) -3 and taper ratio A1- 2, a -2', M_-0.4, 0.8 and 0.9. The

computed pressure distributions agree well with those obtained by tests.

Under the assumption of local linearization, the stability of the difference

equation in line relaxation with Seidel iteration is studied by the von Neumann

method and the convergence of the solution of the differential equation equi-
valent to the above difference equation to the solution of the original differen-

tial equation is discussed by the method of separation of variables.

The following conclusions are obtainedt

( I ) The stability condition for the line relaxation with Seidel iteration is

0 <0<2 at locally subsonic points, where (0 is the relaxation factor.

( 2 ) At locally supersonic points, the relaxation is always unstable. The

convergence conditions are as follows. Let the steps Ax (chordwise) and Az

(spanwise) perpendicular to the relaxation line.

(3 ) 0 < c < 2, at locally subsonic points.
1

(4) 0 <w< I + +( I , at locally supersonic points.

The numerical experiences agree with the conclusions (1). C 3) and (4).
but do not agree with the conclusion (2).

21
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DETERMINATION OF AERODYNAMIC COEFFICIENTS FOR A

RE-ENTRY BODY BY MEANS OF AN EXTENDED KALMAN FILTER

AERODYNAMIC RESEARCH AND DEVELOPMENT CENTER OF CHINA

Jiang Quanwei, Xu Jinzhi, and Zhou Shuying*

ABSTRACT

In this paper, an extended Kalman filter iftethod was used

to determine the major aerodynamic coefficients of re-entry

bodies. The emphasis was placed on estimating states and

parameters using the measured data during the re-entry flight

under the condition that trajectory observation data was

absent.

The data included body axial angular rate and acceleration

obtained from the rate gyros and accelerameters. A mathematical

model was established based on six-degree-of-freedom motion

equations. Both ballistic and maneuvering re-entries were

considered. Numerical simulation and actual measurement

conversion showed that the present method provided more

satisfactory results.

SYMBOLS

C. resistance coefficient

C., C derivatives of normal force and lateral force

C.., C. derivatives of pitch moment and yaw moment

C.6" C.., control moment derivatives

C., C., damping moment derivatives

C., C0, roll and roll damping derivatives

C,,, C,, bottom diameter

d gravitational acceleration

o flight altitude

* Received in March, 1981.
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H rotational moment of inertia
1, 1. atmospheric model parameter

ho mass of the re-entry body
m accelerations

i., RO R. angular speeds

p. qr reference area
s -xt/4.0 flight time

£ velocity components

U,.vw combined speed

V distances from the accelerometers to the center of gravity
x,, Y1, 3. Z,, cse anles

/16

density of the atmosphere

Pe reference density

bq, br inclination angles of the control plane

1. INTRODUCTION

In recent years, the determination of aerodynamic characteristics

of a space craft from measured data obtained in flight using var-o

parametric identification methods is one of the important sub*ec.

in the astronautical industry. This work has important signi-

ficance in the design and final planning processes for a

spacecraft. First of all, it is based on the measured data

obtained in an actual flight environment. Consequently the

shortcomings due to ground equipment such as insufficient wind

tunnel simulation can be remedied. Secondly, it provides real

data for the design of the guidance and control systems. This

is especially true of re-entry spacecraft. There are very few

experiments and the cost of experiment is high. Therefore,
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it is extremely important to obtain the most possible

useful information from the analysis of limited data.

Since the emergence of the Kalman filter method[],

it has been widely applied in aspects such as communications

and control. Especially in astronautical engineering, its
[2]application is even more popular . However, modern Kalman

filter methods were only used to determine the aerodynamic

coefficients of a flight vehicle in recent years. In Reference

[3], based on the re-entry vehicle point mass differential

equation of motion, several Kalman filter plans were presented.

References [4,5,6] discussed the use of extended Kaiman

filter methods to determine the aerodynamic characteristics of

tactical aircraft. Reference [7] presented the feasibility

of real time estimation of aerodynamic coefficients using a

Kalman filter method. These type of efforts in foreign

countries have already obtained some progress. However, they

all included trajectory measurement information such as altitude,

velocity, and position. Their work did not involve the identifi-

cation of the aerodynamic coefficient of a re-entry vehicle

under the condition that trajectory observation data was absent.

The purpose of this work was to attempt to use the Kalman

filter method to solve the problem of determining the aerodynamic

coefficients of an re-entry vehicle in the absence of trajectory

observation data. This problem has a background. Experience

showed that, due to various reasons, the trajectory observation

data of re-entry flight tests frequently could not be or could

only be partially obtained. If an estimation method could be

found to determine the important aerodynamic parameters based

on the acceleration and angular rate data measured on-board,

it would be alot more meaningful. This paper is the theoretical

simulation and the actual measurement conversion specifically

with respect to this problem.
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The major differences between this paper and Reference [7]

are as follows:

(1) In Reference [7], the flight altitude was already known.

The H in this paper was unknown which was a state quantity.

(2) In addition to trajectory re-entry, maneuvering re-entry

was also considered.

(3) The method in this paper has already been applied in

practice while Reference [7] was a feasibility study.

2. EXTENDED KALMAN FILTERING UNDER EXPANSION CONDITION

The Extended Kalman Filtering method, abbreviated as EKF, ex-

tends the use of linear Kalman filtering to the non-linear secondary

filter system. With regard to the study of re-entry flight, the

dynamic equation can be written as

where Z represents the state vector of the vehicle, C represents

the performance parameters such as the aerodynamic coefficients

of the flight vehicle, and _E is the non-linear differentiable

function. During the period of consideration, let us assume

that C does not vary

Cmo (2)

Combine equations (1) and (2), then we get

" o (3)

Define a new expansion state vector X (t) /17

X( 0 )(A)
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Also assume that

0[-  -  ( 4 )

Then, we have the usual state equation

_( t )-!(A( I ), I )+G( i )_v( t )(5)

where W(t) is the Gaussian white noise whose average value

is 0 and spectrum density is Q(t). It is used to simulate

process noise.

Let us assume that the observation vector is a set of dis-

crete values which is a non-linear differentiable function of

the state vector

z,=- hx(f,0)+_Vx K- 1, 2,.. 6

where VK is the measurement noise, which is expressed by the

positive state random vector with an average equal to 0. Its

joint square difference matrix is RK. Then, there are the

following extended Kalman filtering iteration equations:

i( i )-!Ci( t ), 1)
i( )-F(( ), 1)P()+P(i)Ft(i((), 1)+G()Q(t)GC()

Kx - )H (H,P( -)H +R,)-' (7)

,( + ) - ( - -M.- +
pig(+). (I -K1 .Hj(fk(-))1Pr.(-)

where

_ x t ) x_()- (,)(B)

Hx ffx (-))m K-("] ]
_ ,a ( f i ) _ , - - ( C )

and the initial condition of state x0 and
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In the simulation computation, equations (5) and (6) are

used to produce the observation data.

III. STATE MODEL AND OBSERVATION MODEL

The mathematical model of this work has the following

characteristics:

(1) It is based on the usual body axis six-degree-of-

freedom equations of motion;

(2) The measured data only includes the acceleration and

angular rate data on-board;

(3) The re-entry body can perform maneuvering flight,

i.e., the aerodynamic rudder can carry out control;

(4) It has asymmetric aerodynamic characteristics;

(5) It considers the effect that the accelerometer

is not located at the center of gravity.

The mathematical model in this paper has the following

limitations:

(1) In the small attack angle flight trajectory section,

the aerodynamic coefficients can be expressed as a linear function

of the attack angle;

(2) Atmospheric density varies exponentially with altitude

and its mathematical model is already known;

(3) There is no systematic error in the measurement.
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Corresponding to equation (1), the actual form is /18

U =Ur-wq+ -C. .9 Qsin a

6-wp-ur+ SC. Cb)+9o siY

wU - up - 2-(. "6)+g Cos 0COSY

T.qcs- 2Vll

*'-( qsin Y+ r Cos Y)/Cos6

y- p +tg a( qsin Y+ r msy)

if- sn - V aas COSY VC06s*l Y

The auxiliary relations are

Q =O.5PV'

The actual form corresponding to equation (6) is

where

me

Rsm~C vA +C 3 M,'--(rP' q)+4z" rr
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where x1 , Y2 . z2 , Y3, z3 are known constants. At this place,

an acceleration sensor is installed in the following manner:

the axial sensor is placed on the longitudinal axis and the trans-

verse sensor is in the cross-section passing through the center

of gravity.

lV. RESULTS OF NUMERICAL SIMULATION AND PRELIMINARY REAL DATA
EXTRACTION

The numerical simulation corresponds to the maneuvering

re-entry situation. The control plane moves regularly according

to bq=brO0.1in(20 9 The flight, aerodynamic and observation

characteristics of this computational example are shown in

Tables 1-4.

Table 1. Physical Constants

9 (*/1*) aP.(0rfl/*') 3he(*) 4 (*) Sy4W~ y'a(* Z1(M ZVM
9.61 0.123 7660.0 -0.2 0.01 0.05 -0.2 -0.3

Key: 1) g (m/sec); 2)p0 (Kgsec2 /m4); 3) k(m); 4) X(m);
5) y2 (m); 6) y3 (m); 7) 2 (m); 8) z 3 (m).
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Table 2. Initial Condition for Trajectory and Filtering.

U 4000.0 3879.56 400.0

0 .0 148.06 80.0 */Y

w 0.0 68.8 80.0 "7 AcIP
P 1.3 1.203 0.36 2 1/FP

9 0.0 0.3007 0.36 9 1/P
r 0.0 -0.3761 0.36 101/P

0 -06284 -0.5728 0.0625

0.0 0.0001 0.0625
Y 0.0 -0.0546 0.0625

H 21500.6 22000.0 1s3225.0 |

Key: 1) dynamic state; 2) initial condition of dynamic state
functions; 3) initial value of filtering; 4) unit; 5-7) m/sec;
8-10) 1/sec; 11) m.

Table 3. Standard Deviation for Measurement and Process Noise.

a. 1_ LJ aA *x 1A a
an 6.4 ISI mm1 3
as I 0.0042/P aO tam.,
02 172.0*/P2 at Ronan
as 6. 1, / , ____ ___ ___

Key: 12) symbol; 13) numerical value; 14 noise definiti~n;
15) remark; 16) 0.0942/sec; 17) 2.0 m/sec ; 18) 0.5 1/sec ;
19) acceleration measurement; 20) angular rate measurement;
21) linear acceleration process; 22) transverse angular
acceleration process; 23) 1% of the entire processed quantity.
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Table 4. True Values, Filtering Initial Values and Filtering
Results for Aerodynamic Coefficients.

2 .27 a_ it_ _ _ _ _ _

"tsI ~ K-1 K-56 K-OK6-E, (E) at * E,(Ef) E(E)

C,* -0.1076 - 0.1 0.025 - 1.0(23) -0.1074 -0.155(7.0) 0.303(0.8)

CM -2.13 - 2.0 0.5 - 5.3(23) -2.12 -0.617(7.0) -0.52(6.8)

C,g -1.075 - 2.0 0.5 86.0(47) -1.061 -1.24(6.0) -0.24(6.7)

C.. -0.983 - 0.7 0.17S -20.7(20) -0.88 -0.34(7.0) -0.37(6.7)

C.P 0.547 0.7 0.175 28.o(32) 0.543 - 0.7(6.9) -0.58(0.7)
C,, 0.485 0.467 0.117 - 3.7(24) 0.487 0.45(7.1) -0.32(6.6)

Cow, -0.47 - 0.467 0.117 -0.64(26) -0.472 0.43(7.2) -1.38(6.9)

C.W -0.778 - 1.0 0.25 28.5(32) -0.909 16.9(31) 22.90(30)

CW -0.799 - 1.0 0.25 25.0(31) -0.948 18.6(27) 17.2(25)

Ce,& -0.0791 - 0.1 0.025 26.4(32) -0.0047 19.7(21) 15.0(17)

C,,, -0.0185 - 0.1 0.026 2.4(32) -0.08S3 8.6(109.3) -1.15(16)

CIO -0.024 - 0.015 0.015 -37.5(63) -0.0028 -88.3(60) -79.4(50)

Cis 1.3 x 10
-  

0.0 1.3 x 10 1 -10000) 2.7 x 10-0 109.7(72) I1.7(82)

Key: 24) aerodynamic coefficient; 25) real value; 26) initial
values of filtering; 27) results of filtering; 28) optimufn
estimation.

From equations (5) and (6), and the relevant data in Tables /20

1-4, we obtained the discrete values of acceleration and angular

rate 'x" Fy" Fz, p,q,r. The sampling interval was chosen to be

0.02 second as shown in Figure 1. These data are stored in

the machine to be used as the observation data for filtering.

Using equation set (7) and the relevant data in Tables 1-4,
the optimum estimated value CK and filtering computation square

deviation PK(+) of various aerodynamic coefficients were obtained

based on filtering iteration.
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00

Figure 1. Measurement data.

Key: 1) p(l/sec); 2) q (1/sec); 3) r(l/sec); 4) t(sec).

The computed results are shown by two indicators; one

is the actual estimated error E e of filtering and the second

is the computed error of filtering Efo. The formulas are

as follows:

(E,)x- 1o0(&- C)/C (10)

(E,) - i 1OOv/P-- /l-+ (11)C
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whereC K represents the optimum estimated value of an aero-

dynamic coefficient at the Kth observation point, C represents

the actual value corresponding to the aerodynamic coefficient

(see Table 4), and PK(+) represents the square deviation cor-

responding to the aerodynamic coefficient which is calculated

from the filtering equation (7). Basic filtering theory

points out that if the two indicators are in agreement statis-

tically then it indicates the filtering is normal. The (Ee)K

obtained after converging can be used as the actual estimated

error.

The last 3 columns in Table 4 give the filtering results. /21

The first column shows the optimum estimated values when K=50.

The two latter columns represent the Ee and Ef values of the

13 aerodynamic coefficients corresponding to K=50 and K=80,

respectively.

Figures 2-4 plot the filtering process of 7 major aero-

dynamic coefficients. The solid lines in the figures represent

the actual estimated error E . The symmetrical dotted lines

are the filtering calculated error Ef.

Figure 5 shows the preiiilnary extraction results of a certain

actual measured data which corresponds to the trajectory re-en-ry

condition. In the figure, the analytical solution extraction

results of K>30 with trajectory measured data are also plotted.

The above figures reflected the following facts:

(1) For all the aerodynamic coefficients, regardless of whether

it is the actual estimated error E e or the filtering calculated

error Ef, there is no divergence effect. IE./E,j 2

For the major aerodynamic coefficients, such as

c.,C.C, C., C., C"., C., , the values of Ee and Ef converge very

rapidly. This indicates that filtering is normal.
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(2) Through a 50 point filtering computation (which is

the flight data in 1 second), the actual estimated error

of the above described 7 major aerodynamic coefficients

converges to within 1.5%. The filtering computation

error is approximately 7%.

210 ----7 ---- - --- -- --- -

020 - 0- 2 - .-. .- - o~~

M I )

-20

Figure 2. Filtering Results for Aerodynamic Force
Coefficients. ( c. C... CO )

Key: 1) t (sec).
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10

" 10 ------ ------ -- -
(C.0) 0r - ~ ~ 0. . ~to. -2 o- - -- -- - -. . .e - - .: t

-t / .. . .. . .

-21.
-3o /

Figure 3. Filtering Results for Aerodynamic Moment
Coefficients. (Cma, Cn6).

2
.(CI, . - I

10

-303
4 O. 0 k •1. --2 -4 -- I - O ---

F-igur,.e 4. Filtering CResults for Control Moment
Coefficients (Cm6q, Cn~r).

Key: 1) t(sec); 2) this work; 3) Reference []
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C.O.

I0000 0 0000 0000.

0 0 0000 0 0 o

Figure 5. Real Data Extraction.

/22

For coefficients such as CM"g car$, C149 C1,, cow CAP, etc.,

although E f varies convergently, yet they do not converge as
quickly as the 7 major aerodynamic coefficients described
above. The actual estimated error E e does not have any sig-
nificant improvement. This indicates that under given conditions
these coefficients do not significantly affect the motion

in this time period.

(3) Preliminary extraction of real data showed that
the mathematical model and filtering program in this paper
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could adequately suit real flight data. The results of this

work are very close to those of the analytical solution with

trajectory measured data.

In addition, several points are explained as follows:

(1) Rigorously speaking, it should provide many initial

values of X 0 randomly and through Monte Carlo simulationthe

final statistical average value is given. However, the above

set of classical situation computation is already capable of

reflecting the major characteristics of filtering.

(2) For the real flight data, to provide the initial square

deviation P0 is undoubtedly an important problem. The P0

corresponding to an aerodynamic coefficient can be given based

on wind tunnel experiment data or from approximations. The P 0

corresponding to a dynamic state variable was given by an

existing extraction method.
[ 8 ]

(3) Although the analysis in this paper has the various

assumptions described in the previous section, this basic

method may be extended to a more generalized situation such

as the aerodynamic non-linear effect, non-exponent type of

atmospheric density; various types of measurement errors,

etc.

4. CONCLUSIONS

1. This paper analyzed the use of an extended Kalman

filtering method to determine the aerodynamic coefficients

of a re-entry body from angular rate and acceleration data

on-board in the absence of trajectory observation data.

Numerical simulation and preliminary real data extraction

showed that the solution of this problem is practical.
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2. As long as no stringent initial state estimation is

required, after the treatment of 1-2 second flight data, the

error of a major aerodynamic coefficient can converge to

a small range.

3. In the selection of parameters and analysis of

error, more in depth work is needed.

We wish to thank Vice Chief Zhang Hauxiu and Associate

Professor Zhang Jinghuai for their valuable opinions.
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DETERMINATION OF AERODYNAMIC COEFFICIENTS
FOR A RE-ENTRY BODY BY MEANS OF AN

EXTENDED KALMAN FILTER

Jiang Quanwei, Xu Jinshi, Zhou Shuying

(Acrodywxoc Rerch Center of Chin.)

Abetract

An extended Kalman filter is used to determine the major aerodynamic co-

efficients of a re-entry body in this paper. The emphasis is put vn estimating

the states and parameters only on the basis of the re-entry on-board measure-

ment data in the absence of trajectory observation data. The measured data

include angular rates and acceleration obtained from the rate gyros and acce-

lerometers installed in the vehicle. A mathematical model presented is based u-

pon the 6-degree-of-freedom motion equations. Both ballistic and maneuvering

re-entries are considered. The numerical simulation snd real data extraction

sho* that the presented method can provide satisfactory results.
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A PROGRAM SYSTEM FOR DYNAMIC ANALYSIS OF

AERONAUTICAL STRUCTURES - HAJIF-II

TEAM FOR DEVELOPING HAJIF-II

Institute of Aeronautical Research of China

Written by Guan De *

ABSTRACT

HAJIF-II is the dynamic analysis system for aeronautical

structures developed under the leadership of the Institute of

Aeronautic Research of China. It is capable of carrying out

the calculation of natural dynamic characteristics of structures

as well as the calculation of aircraft flutter with an active

control system and the calculation of gust response. It has

31 fixed flow routes and 2600 FORTRAN statements. It allows

the use of 99 elementary substructures and each substructure

can have 7000 degrees of freedom. In the flutter and gust

response computation, it is possible to use 50 modes. The

panel number in nonsteady aerodynamic calculation can reach

300. In the management of the stiffness matrix and mass matrix,

the hypermatrix method is used for "macroscopic treatment"

and the effective column method is used for "microscopic

treatment" to develop a new simultaneous iteration algorithm

to improve the efficiency of the calculation of real characteristic

values. A more complete state synthesis method computation

program has been designed. In addition to fixed and free

interface methods, multilevel synthesis and step-by-step com-

putation, a curve-fitting method is introduced to transform

the harmonic oscillation aerodynamic force into the Laplace

plane technique. This system has been used to calculate

a number of typical aircraft structures. Good results are

obtained.

*Received on December 15, 1981.
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1. INTRODUCTION

HAJIF-II is the aeronautical structure dynamic analysis

system developed by the Institute of Aeronautics Research of

China. Its function includes the calculation of the natural

dynamic characteristics of structures, the calculation of aircraft

flutter with an active control system and the calculation of

gust response.

In the development of the system, a series of measures

has been adopted to satisfy generality, flexibility, reliability,

automation, high efficiency, expandability, ease of correction,

and diagnostic capability requirements. Furthermore, special

attention has been paid to the guiding principle of advancing

on the basis of practicality.

2. CAPABILITIES AND SIZE

In the calculation of structural natural dynamic characteristics

of HAJIF-II, it is allowed to use 99 elementary substructures and

each substructure has no more than 7000 degrees-of-freedom. In

nonsteady aerodynamic calculation, the total number of panels

can reach 300. In the flutter and gust response calculations,

it is possible to use 50 modes.

HAJIF-II provides 31 fixed flow routes. That is, there are

7 computational flows in the calculation of the natural dynamic

characteristics of structures (whole structure, fixed interface

method single synthesis, free interface method single synthesis,

fixed interface method multi-level synthesis, free interface

method multi-level synthesis, fixed interface method step-by-

step synthesis, free interface method step-by-step synthesis),

2 flows in the flutter calculation flow, (v-g method, p-k method),

1 gust response calculation flow, and 21 combination flow rates to

calculate natural dynamic characteristics, flutter, and gust response.

41



3. STIFFNESS AND MASS MATRIX

In the natural dynamic characteristics calculation of 126

structures of HAJIF-II, a finite element displacement method

is used. A structure can be discretized into a finite element

model, or can be approximated by a single beam. A structu.re

can be analyzed as an entity, or can use the mode syn-hesis

method.

In the element warehouse of HAJIF-M1, there are I es

of bar, plate, beam, and film elements to si".uate ' ,

body, external attachment, and their corrections.

In order to improve the efficiency of calculaticn, t.e

following measures are taken:

(1) The technique to vary the degree of freedom. Revardless

of whether it is an elementary or higher level substructure,

the pr6gram automatically determines the real degree of freedom

of each nodal point to eliminate ineffective degrees of

freedom.

(2) The Cuthill-Meckec method [ ! ] is used in the re-labeling

of multi-level substructural nodal points and the optimized

utilization of band width. In addition, some special treatments

are also performed.

(3) A compact assembly method is used to only assemble

non-zero nodal point panels.

(4) The improved hypermatrix technique. In an usual

hypermatrix method, there are considerable zero elements in

a non-zero submatrix. For this, HAJIF-II first conducts a

"macroscopic treatment" to the submatrix in the hypermatrix

method, and then carries out a "microscopic treatment". For
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the stiffness matrix, the effective column concept is used to

eliminate the useless zero elements in a non-zero submatrix.

For a mass matrix, because it is unchanged in the entire

iteration process, a nodal point control method is used.

The improved hypermatrix method can effectively reduce the

storage requirement as shown in Table 1.

Table 1. Comparison between the internal storage used by HAJIF-II
and that by the conventional hypermatrix technique.

T*4AJ P HAJIF. I jj* HAJIF I
l97 207712 7S 2112 1594

2 210 11520 516 3500 1950

S 138 3M 1458 567 SS

Key: 1) example; 2) order; 3) conventional hypermatrix;
4) storage of the stiffness matrix; 5) storage of the
mass matrix; 6) conventional hypermatrix.

In the constraint treatment area, HAJIF-II can perform

single point or multiple constraint treatment with regard

to the degree of freedom of a nodal point [2] The function

of the former is to designate the displacement values of certain

degrees of freedom to simulate the symmetric and asymmetric

conditions and boundary conditions, as well as to conduct zero

stiffness direction treatment. The latter's function is to

express the displacements of part of the degrees of freedom as

the linear combination of the displacement of other degrees

of freedom in order to treat the coordinating and stiffness

elements between the degrees of freedom.
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IV. ANALYSIS OF REAL CHARACTERISTIC ','PLU

In the natural dynamic characteristics calcuilation of structures,

the following equation is used

i=u (1)

where k and m are the stiffness matrix and mass matrix, respectively,

A and u are characteristic value (circular frequency square) and

characteristic vector (natural mode), respectively.

In order to improve the calculation efficiency, a new

algorithm is developed on the basis of theoretical analysis of

existing simultaneous iteration methods and large amounts of

numerical tests by combining the advantages of these methods.

Its special point is that the mass matrix is not decomposed.

Rather, a "dimension lowering" treatment and other improvements /27

are used. Therefore, compared to the existing algorithms,

this new algorithm has the same converging rate. However, the

calculation load in each iteration step is the least and the

efficiency is high as shown in Table 2.

When using projection matrix to solve the characteristic

value problem, the QR or Jacobi method is used. The Chebyshev

polynominal or origin displacement is used to perform acceleration

treatment. The characteristics of the Sfurm series [31 are

used to carryout the missing root check. This can be carried

out in combination with the determination of the number of

trial vectors. The wave array element elimination method with a

buffer is used to solve the matrix.
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Table 2. Comparison of efficiencies of various simultaneous
iteration algorithms.

It' ait X I n (o)
+3 a I Rutishauer Reinsch McCormick Nicoli Bathe HAJIF- 1

1 500 301 13 1106 1069 992 973 980 758

2 100I 5 30 194 93

3 200 20 33 363 234

4 15 10 38 -96 $58

Key: 1) example; 2) order; 3) half band width; 4) calculation
time (second).

V. MODE SYNTHESIS

In HAJIF-II, a more complete mode synthesis program has

been designed. In addition to tht two major methods - fixed

interface and free interface method 4 , we also developed

a level synthesis and step-by-step synthesis method of our

own to form six types of synthesis methods as described in Section

2.

In the free interface method, we should consider the

residual stiffness and residual inertia effects in higher

order modes. Through trial calculation, it was discovered

that the residual inertia effect could be neglected. Hence,

in HAJIF-II only the algorithm considering the residual stiff-

ness effect is used.

The free interface method of HAJIF-II processes the

attached mode into a "quasi constraint mode" and the free

interface main mode into a "quasi fixed interface main mode"
[ 6 ]

so that the calculation format of the free interface method

is unified with that of the fixed interface method.
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In the search for the softness matrix of the free interface

main mode and free structure, the "imaginary structure" concept

is used. The stiffness matrix of the imaginary structure is

k*=k+m, and the mass matrix is still m. Hence, the softness

matrix of a free structure is (k*) - 1

The differences among single synthesis, multi-level

synthesis and step-by-step synthesis are shown in Figure 1.

The multi-level synthesis is,in principle, an extension of the

single synthesis. However, in each level of synthesis in the

step-by-step synthesis method, tnere are two substructures

participating. Among them, one substructure participates

using the reduced generalized degree of freedom and the other

substructure directly participates with the physical degree

of freedom.

In order to suit the

requirements of multi-level

synthesis and step-by-step

synthesis, some development is needed S

with regard to frequency selec-

tion judgement in HAJIF-II.

HAJIF-II can treat rigid

substructures. Only when

using multi-level synthesis, Etl34I 4h

it is required to process it

during the first synthesis. (3)qt*E~US*)

Figure 1. Models for cal-
culation of various modal
synthesis techniques.

Key: 1) single synthesis;
2) multi-level synthesis;
3) step-by-step synthesis
(synthesized using the physi-
cal equation for those with-
out the A symbol ).
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VI. NONSTEADY AERODYNAMIC FORCE CALCULATION /28

Serious flutter of modern aircraft mostly occurs in the near

sonic speed region at low altitude. For wing surface with a

medium or small aspect ratio, the results calculated based on

the subsonic nonsteady aerodynamic theory could better reflect

the basic flutter characteristics. In HAJIF-II we first esta-

blished a subsonic horseshoe vortex - oscillating doublet

mesh method [ Y ] to treat multiwings in space.

In order to calculate the non-steady aerodynamic force,

it is necessary to insert the vibrational mode at the structural

nodal point to the point of aerodynamic force. HAJIF-II uses

the two-way spline curves function method[8]

In HAJIF-II, a curve fitting method used by Rogai [ 9 ] was

introduced which utilizes the resonating aerodynamic data

to find the approximate expression of non-steady aerodynamic

force on the Laplace plane.

1I. FLUTTER CALCULATION

In HAJIF-II, v-g and p-k methods are used to carryout

flutter calculation[l 0 1. The v-g method uses the following

flutter equation

The p-k method uses the following flutter equation to be

taken into account by the active control system

'i" 0 0 Moefi F40X.

o 'R. 0 + X . M.. M-0 +- Lpv . A. Ao
Moe M. M. oo] 2s
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where , , and 7 are generalized stiffness, mass, and aero-

dynamic force, respectively; q,a, 8 are the generalized coordinates

of the HAJIF-II users to add and control modes; p and V are the

atmospheric density and flight velocity; X is the complex

characteristic value; b 0 is a reference length.

HAJIF-II uses LR, QR, and reverse root method with origin

displacement to solve the complex characteristic value problem.

They are available for the users to choose.

VIIl. GUST RESPONSE CALCULATION

HAJIF-II uses the following equation to calculate the

aerodynamic elastic frequency responseE 9]

( + 1. 0 +- l Cv a( $ );io( q j=} - PV'(V) (4)

(0-(R(s) jq
D(s)

where R/D is the transfer function of the active control system.

The footnote g represents gust and s is the

In the calculation of gust response, it is possible to

use the Karman power spectrum or to provide the users with a

fixed form.

/29

LX. PROGRAM ORGANIZATION AND USER INTERFACE

HAJIF-II uses a two level management system. The first

level is the monitoring control program which is composed of

a series of dispatching languages. The second level is the

processing program. In fact, it is dispatched by the monitoring



control program, which is the highest level subroutine capable

of finishing a certain mathematical or mechanical function inde-

pendently. It is not possible to be mutually dispatched between

two processing programs. The input and output of each processing

program are only related to data documentation.

In the monitoring control program of HAJIF-II, a common

number group with a variable length is established to

be given to various processing programs. In addition,to be able

to establish a very small amount of the number group by the

processing program, other numbers are formed completely from

the above mentioned common number group.

For a calculation requiring a larger internal storage, the

system can automatically judge whether external storage is

necessary.

The entire data of HAJIF-II is called the "dictionary".

The dictionary is formed by several volumes and the number

of volumes car, be expanded. Each volume has 100 books and

each book is made up of 100 chapters. The volume, in principle,

is divided according to the processing program. The major

purpose of a book is to facilitate the performance of some

repeated calculation. A chapter is the entire data of a
"read" or "write" statement, which is the basis of data manage-

ment.

The document management system of HAJIF-II can automatically

conduct document distribution and correlated variable control.

As long as the input, output table and the chapter address are

provided, the system can independently complete reading and

writing work.
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In HAJIF-II, user-oriented broad command languages were

designed. One is used to initiate leading fixed flow route

and the other one is used to dispatch 21 processing programs

for the users to form a "user flow". In view of the fact that

flow organization of mode synthesis is more complicated, we

also designed the special composite language.

In order to facilitate the preparation of data, the

data generation system of HAJIF-II allows the use of two

input forms: one is numerical data input and the other is

a mixed input of numerical values, data, and topological

description.

The function of topological description includes the

simple description of nodal point coordinates of ideal parts

and element information, data abbreviation with regularity,

data correction, addition and elimination, etc.

As for the error diagnosis of HAJIF-II, the focus is

placed on the checking of the original data. It is capable

of providing over one hundred types of information according

to the requirement of the users.

X. EXAMPLE

furing the development of HAJIF-II, over ten examples were

calculated. Now, let us introduce three types of combined

examples.

(1) Calculation the Natural Dynamic Characteristics

and Flutter of a Triangular Wing. The wing is simulated

by bars and shearing plates. The fuselage and flat tail are

simulated by beams, and the wing-fuselage connection is simulated

by transition beams. There are 315 nodal points and 1011 degrees

50



of freedom. The comparison of calculated natural dynamic charac-

teristics and the resonance test results is shown in Figure 2.

It coincides very well. In the meantime, v-g and p-k methods

are used to calculate flutter and the results agree with the

wind tunnel test results.

4(2) The calculation of modal synthesis of the flat wing -

fuselage - attachment combination. The structure is simulated

entirely by beams. There are 46 nodal points, 138 degrees of

freedom, and 4 substructures as shown in Figure 1. The

calculated natural frequencies are shown in Table 3. It is

obvious that all the synthesis methcds have excellent accuracy.

(3) Calculation of Gust Response of B-47 Airplane. The

computation data in Reference l11] was used. The wing and

fuselage are simulated by beams and the flat tail is a rigid

body. In the aerodynamic force calculation, the interference

between the wing and the flat tail was included. in the

calculation of the response, the atmospheric turbulence cower

spectrum measured in flight tests, provided in Reference Ell!,was

used. The results are shown in Figure 3. Because the nonsteady

aerodynamic force used in Reference [11] is different from the

one used in HAJIF-II, the results of these two calculations

are not quite the same. /30
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'L ;fda . _ ,.
a=-

1.07

Figure 2. Comparison of calculated natural frequencies
and modes with resonance test results.

Key: 1) mode; 2) first level wing; 3) second level wing;
4) third level wing; 5) nodal line; 6) experimental;
7) calculated; 8) calculated frequency; 9) experimental
frequency.

Table 3. Comparison of various synthesis techniques.

M*AN M*1 R ElI W moon IIS 11 11111#111

to I-as* -as* *SS 0 now now*

1 2.5130 2.5130 2.5130 2.5146 2.5130 2.5130 2.5130

2 3.26U3 2".263 3.2683 3.2685 3.2604 3.26U2 8.2683

3 4.0450 4.0450 4.0450 4.0605 4.0451 4.0450 4.0450

4 4.5917 4.5017 4.5917 4.5931 4.5917 4.5916 4.5917

6 4.9012 4.0012 4.9012 4.9013 4.0012 4.9012 4.0012

5 8.S04 5.5064 5.5063 5.5041 5.6063 5.1.04 .50t1063

Key: 10) mode; 11) whole structure; 12) fixed interface single
synthesis; 13) free interface single synthesis; 14) fixed interface
multilevel synthesis; 15) free interface multilevel synthesis;
16) fixed interface, step-by-step synthesis; 17) free interface,
step-by-step synthesis.
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Figure 3. Comparison of calculated gust responses with
the results of Reference [Il].

Key: 1) acceleration response amplitude at center-of- /31
gravity (foot/sec )/(foot/sec); 2) frequency (Hertz);
3) rigid axis; 4) Reference [12].

CONCLUSION REMARKS

This paper briefly described the method and function of

the HAJIF-II dynamic analysis system for aeronautical structures.

The system incorporated several new measures and quite good

trial calculation results were obtained. The system will be

further develcped. Due to the limitation in space, this paper

might appear to be too oversimplified. The authors wish to

apologize to the readers in this regard.
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A PROGRAM SYSTEM FOR DYNAMIC ANALYSIS OF

AERONAUTICAL STRUCTURES
(HAJIF-II)

Team for Developing HAJIF-ZI

Pesaed by Guo De

Abstract

HAJIF-I is a program system developed by Chinese Aeronautical Estab-

lishment(CAE). It is able to accomplish the calculation of the modal charac-

teristics of aircraft structures as well as the flutter and gust response analysis

with the active control system taken into account. Toe structural model may

be composed of 99 substructures each with 70QQ degrees of freedom. 300

panels may be used in the calculation of nonsteady aerodynamic forces and 50

modes in the flutter and gust response analysis. The data generation system

permits the flexible use of numerical data and topological description. 31 pre-

scribed computational flows are supplied and an user can also organize his own

computational flows as he needs. A structure can be discretized into finite

elements or simulated by single spar. Por the management of the stiffness and

mass matrix a modified hypermatri; metbod is employed to omit all of inacti-

ve zfro elements more effectively. A new algorithm, called a revised simulta-

neous iteration procedure, has been developed to solve the real eigenvalue pro--

blem and is more effective than the current agorithm. Modal synthesis techni-

que with both free and fixed interfaces is adopted. Besides, two new methods

of synthesis have been developed from the concept of multilevel substructures.

Nonsteady aerodynamic forces are calculated by means of subsonic doublet latti-

ce method for multiwings and aerodynamic forces in Laplace plane can be ap-

proximated 'witb a curve-fitting procedure based on sinusoidal data. Flutter
equations are solved by V'-g and p-k methods and the continuous atmosphe-

re turbulance are used in the gust response analysis. The system consists of a

sequence of functional modules so it can be modified and extended easily. An
advanced file management system has also been developed. There are app-

roximately 26000 FORTRAN IV statements in the system. The HAJIF-l was
applied to analyzing a number of typical aircraft structures and gave good

results.
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SYSTEM IDENTIFICATION AND AIRCRAFT FLUTTER

Zhang Lingmi *
Nanjing Aeronautical Institute

ABSTRACT

After briefly describing the application of system
identification technique to the study of aircraft flut-
ter, this paper introduced three types of system identi-
fication methods. The emphasis was placed on the essence
of the algorithm and its theoretical basis. The relevant
data processing problem was also properly explained. The
transfer function method, based on complex modal analysis
and the optimization technique, could accurately identify
all the modal parameters. It was successfully used in
the flutter model experiment of a wing with external bodies.
This method could be extended to the conditions for wind
tunnel and flight tests with response data only. The cor-
relation and least square techniques were adopted in the
impulse response and auto-regressive moving average model
method in order to obtain accurate resulfs under strong
interference. The latter could also obtain the mean square
deviation between the estimated value and the actual value.
Both time domain methods could directly use measured samp-
ling data to perform system identification without special
signal analysis equipment.

I. INTRODUCTION

The so-called system identification in structural dynamics esta-

blishes a mathematical dynamic model according to the response (out-

put) of a known excitation (input) for a structural system, including

the modal parametric model in the generalized coordinate system and

the structural parameters model in the physical coordinate system.

The more practical method is to provide the input, output data of an

actual system to determine a model structure and its parameters,

using a certain optimization method based on a type of model so that

they are best matched with the system under certain guide lines. For

a discretized linear steady system, the so-called model structure con-

sists of the determination of the system (or degree of freedom). Once

*Received May 26, 1981
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the order is determined, system identification is transformed into

parameter identification or parameter estimation problems. In a

complete system identification process, in addition to the structure

determination and parameter estimation parts, it is also necessary

to carry out model verification (for a linear system the main item

is the verification of order) and parametric mean square deviation

analysis. In order to further improve the effectiveness of identifi-

cation, experimental design must also become one aspect in the theor-

etical study on identification [1].

In the recent decade, the ideas and methods of system identifi-

cation have been fairly successful in structural dynamics. It has

promoted the ground, wind tunnel and flight tests of aircraft signi-

ficantly. In the ground and wind tunnel tests of models and flight

tests of aircraft, it is possible to more accurately identify the rel-

evant modal parameters [2,3]. For a windfall flutter, the method rely-

ing on the extrapolation of damping to determine the critical point

has been proven ineffective. However, the adaptation of the system

identification method can determine the coefficients of the flutter

differential equation based on experimental data. From these coeffi-

cients, it is possible to more accurately obtain the flutter critical

velocity [4,5]. For the ground vibration tests of the entire plane,

the determination of the proper adjustable force is very difficult.

Presently, the major solution is to identify the transfer function

matrix based on the experimental data of a single point excitation

and the shaker adjustment force of the pure mode [6,7]. In the mean-

time, the techniques which use the single point transient or random exci-

tation transfer function to identify the modal parameters of the whole

aircraft have been successfully developed [6,8].

System identification techniques not only can be used in the

ground, wind tunnel and flight vibration tests, but also can further

serve as flutter analysis and synthesis. From the modal parameters

of the aircraft (parts or the whole plane), it is possible to further

identify the stiffness and mass matrices of structures to be used for

structure modification and model optimization [9,10]. For an aero- 34

dynamic elastic model, usually only numerical solutions can be given
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at the present time. Using the identification method, it is possible

to obtain the mathematical expression in a rational form Ell] to

facilitate the analysis and synthesis of the flutter of the stabi-

lizer system with control and the flutter active control.

This paper mainly introduces three identification methods suit-

able for studying flutter, i.e., the transfer function method, impulse

response method and the auto-regressive moving average (ARMA) model

method. The emphasis is placed on the essence of the identification

algorithm and its theoretical basis. With regard to the relevant

data processing problem, it is also properly explained. These methods

are not only suitable for the sine experimental data, but also trans-

ient and random experimental data, as well as the condition of using

wide frequency band random natural excitation with response data

available alone.

II. TRANSFER FUNCTION METHOD

After the discretization of a linear steady system, its dynamic

equation can be described by a matrix differential equation in the

following:
(1)-

{f(t)}, {x(t)) are the N-dimensional external force and the displace-

ment response vector, respectively. (M), CKXCC) are the Nth order

mass, stiffness and damping matrices, respectively. [M] is orthogonal

and [K] and [C] are orthogonal or semi-orthogonal. N is the discret-

ized degree of freedom.

By conducting Laplace transformation on both sides of the equa-

tion and assuming the initial condition is zero, we obtain

COW)B+ sCC) +CK)(X ))}-(F(')} (2)

where (F(s)}. (X(s)} are the Laplace transform of {f(t)} and tX(t)}

respectively; s is the Laplace multiplier (complex number). Then,

equation (2) can be expressed as

(ZCa)){IXC))-{F(I))
or

CH( s){F( s)(X() (4)
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where
CZ (s )'eM+ s CC) + M

is the generalized dynamic stiffness matrix. Its inverse matrix

CH(s)) -CZ(s)Y'-adjCZ()/det(Z(8)) (6)

is the generalized dynamic softness matrix or the transfer function

matrix.

Let sr be the characteristic root corresponding to the equation
(3) and let { r be the corresponding characteristic vector, i.e.,

(Z (80)3 *) - 0 (7)

For a sub-critical damping system, sr and f-r) are complex numbers

which are complex conjugates appearing in pairs.

From equation (6), we know that the transfer function can be

expressed as a rational function of s. Furthermore, it can be expanded

around the characteristic root.
___A, + C ,__

(A(8)CH (* 8 )) - -f-, +_ (8)

r.1

where [Ar I is the residual number matrix corresponding to sr . The

symbol * represents the complex conjugate. It can be proven that [A r ]

and the characteristic vector {r I have the following analytical

relation [12,13]

P,

P,- {(4} T (2a,(M) + ( C)) {4,1

When the system damp is the structure damp or proportionality

damp, the complex vibrational vector {qr } becomes the real vibration-

al vector {¢ }. From equation (9), we can get
P, - l 2,0^ ( i I v-ri, , - 1.(.,,)

(in, is the real mode mass of the r-th order). Ar is also a pure imag-

inary number. After substituting into equation (8), we obtain

(,)i IT (10) 35(H(S))-= fn,+ C+K,
ra1

Kr and Cr are the r-th order real mode stiffness and damp, respectively.
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By letting L-.h,+s~, A,-u,+iw,, and substituting s =ico into

the general relation of the transfer matrix of equation (8), we can

get the analytical expression between the frequency repsonse and the

modal parameters N (u,+iv) Cu,-iv,)

CH({ca)),i a,+j(C- a,,) + , CO + 00 (11)

A row (corresponding to a single coordinate excitation multi-coordi-

nate measurement) or a column (corresponding to the single point exci-

tation single coordinate measurement of each respective coordinate)

of CH()) can determine the whole modal parameters.

Note that ('9) is the measured frequency response data correspond-

ing to various frequencies tested and Ol(a,,, v*,,,1, O. N, UN, V,)T

is the modal parameter vector to be identified. Hence, the total square

deviation J(O)-(H(8)- ) T{H(9)-W} of the frequency response data

and model value {H(O)} can be used as the identification guideline

function. Note that H(6) is the nonlinear function of the parameters

to be determined (such as ar, 8r). Therefore, the modal parameter

identification problem is transformed into the optimization of J(e) =

min which can be solved by iteration: to first

give the initial value of the parameter {e to be determined and to use

the nonlinear least square multiplication method to obtain the incre-

ment {Ae} as the optimizing direction and then to use an extrapolation

method to find the step length factor. The actual algorithm can be

referred to in [13].

The row data of parameter identification using the transfer func-

tion method--frequency responsey can be obtained by two ways: one is

to use steady state sinusoidal excitation, tracking filter data anal-

ysis, and the other is to use wide frequency band excitation (fast

sinusoidal scanning frequency, impulse, pure random, pseudo-random or

periodical random, etc.) fast Fourier transfer (FFT) data processing.

The frequency response of the former represents the complex amplitude

ratio of response and excitation force and the latter represents the

ratio of the mutual power spectrum and the individual power spectrum

of input and output.
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The main advantage of steady state sinusoidal excitation, track-

ing filter analysis is the high data accuracy. For wind tunnel model

flutter tests on wings with external bodies, the accuracy of the

modal frequencies identified could reach 1%. The vibrational model

orthogonality tests cou.d reach the 10% level required by the finite

element mathematical model actually used in the analysis, testing

and modification of flutter [14].

The major advantages of the wide frequency bandwidth excitation,

FFT analysis technique are the fast testing speed and the adaptation

to the wind tunnel and flight test conditions. The disadvantages are

the small signal-to-noise ratio and the low frequency resolution

which affect the data accuracy. Presently, measures to improve the

accuracy of data have been developed, such as the power spectrum data

smoothing and bandwidth selectable FFT analysis (BSFA), etc.

In the subcritical wind tunnel and flutter tests, sometimes it is

possible to directly use natural bandwidth random excitation (such as

turbulence). At this time, the input is a multiple input which cannot

be directly measured. Assuming that the external force frequency spec-

trum F(W) near the modal frequency is a constant, then the response

spectrum can be expressed asr N u,+iv) u,v,)]

(12)- {U,+jV,} . {U-jV,}-+;' (® iI

From this, it is not difficult to extend the above identification tech-

nique to the condition under which only output (response) data exists.

III. IMPULSE RESPONSE METHOD

The impulse response function of a discrete linear steady system

with N degree of freedom can be expressed by the inverse Laplace trans-

formation of the relation between the transfer function and the com-

plex frequency sr and the complex number Ar equation (8): 36

(13)

60



p and q are the excitation and measurement coordinates respectively.

At time tn, let I.muVI, and note X,e,"o. i. The impulse res-

ponse at time tn can be expressed as (omitting the symb6ls p, q)

W ~.)-f2Re A,X*, (14)

where n is the power. For each sampling time of equal difference,

*(n=, 1, 2,. , N), , we can write (2 N + 1) eauations. Let

N 2N (15)
(X,)(XX - X,)= o.= 0

3=0

where X-e', and the coefficlents 4.(- , 1, 2, ....... , 2N) , are the

autoregressive coefficients of the equation. Once these coefficients

are obtained, it is possible to obtain the complex frequency

+ jo, by solving tl-e complex root X,.er using equation (15).

From them, we can obtain the modal frequency wr and damp ratio

h,(r.1, 2,., N)

D, - )Ta, -,- -,

The method to obtain the auto-regressive coefficients is as

follows: multiply both sides of equation (14) by an and let

no, 1, 2,., N, . After rearrangement, we get

, ah(l..)-0 (m=o, 1, 2,., 2N-)
3-0

There are only 2N independent amplitude values in the impulse

response data. Let us choose a2N'l to standardize it. Then, we have

E ahU ...) ) . 1 7 )
"=0

By considering random interference and testing errors, the total

square deviation of impulse response corresponding to M sampling

times is

J'( a - a,h ...) + A ..,,) (18)

The extreme value {a)-(a, a, t, ... a)' corresponding to J (a)=

min can be obtained from the following set of equations
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ZN/- 1

R -( 0, 1, 2 ....... 2N-1) (1

where
R,..-f h (1-.,) h 0 ... )

rn-i

is the correlation function of impulse response. The latter is an

even function which only deviates from the time difference. Equa-

tion (19) can be written in the following matrix form

R(0) R( ......... R(2N- I RN)

R 1) R(0) ......... R(2N-2) R(2N- I! ! !! !(20)

IR(2N- :) R(N-2)... R(0) R(I)

The least square method is as follows: Express the impulse res-

ponse in the form of sine and cosine function form (notice that 37
,-a, + io,, A, -u, +iu,)

N

h(.)2 e",-(u,os(0,1.)-v,sin(0,.)) (21)

The actual measured impulse response value at tire tm is denoted

as gm; then the total square deviation of M sampling values is

ll~u v~fi g.- c,.,- ,v,) (22)

where

c. 2e",'-ne(P,i.); U,. =f 2e ""-in(D4..)

The extreme value (U, V)T=(-U1, U...UN, V, Ut'V,)T  of J2(uv) = min

can be obtained from the following set of linear functions

D rJV)c (23)

where A, B, and D are Nth order matrices. The ith row Jth column

elements are M M

M

M.1
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X and Y are N dimensional vectors whose element is related to the

measured data

M M
X, Z_ c,.g., Yi - Z s,.g.

IN-I n=1

The original data of impulse response system identif'.cation is

the impulse response tested data which can be obtained using the

following method

(1) if input and output data can be simultaneously measured, then

the frequency response can be ootained first. Then, Fourier inverse

transform can be used to obtain the impulse response data. Both can

utilize FFT and BSFA techniques;

(2) if the input (excitation force) cannot be directly measured,

then a random decay technique can be used which triggers the record-

ing at a certain voltage with respect to the wide frequency band

random response signal of the system. Then it is followed by the

sampled data total average. Assuming that the forced response of

the voltage triggering sampling signal after total averaging and the

response caused by the initial triggering condition are close to zero,

the obtained characteristic signal can be described by the impulse

response.

IV. AUTOREGRESSIVE MOVING AVERAGE MODEL METHOD

The usual expressions of a dynamic system in a time domain are

modal functions and output functions. For a time discretized system,

the input/output relation can be expressed by the difference equation

2N 2N

Z aix( t Z ) 6'~Y( t 2
i-O

Assume that y(t) is an independent random serial input with an

average zero, square deviation a2  After taking random measurement

noise into account without losing generality, the above equation can

be written as:

38
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2N 2V

ax( - by( i- i) (a,=b= I) (25)

The measured response value of a certain coordinate of the

system at time r is

c( t )--x(t - I )-,.x( I - 2) ....... - t - V2N)+Y( I)

+by( * - i )+by( t - Z . ...... +b& y( t -2N) (26)

The first 2N terms are the sum of the measured values (auto-

regressing) before time t, and the last (2 N + 1) terms are the mov-

ing average of the input. Therefore, equation (25) is also called

the autoregressive moving (ARMA) model. The autoregressive coeffi-

cients ai and the characteristic valuessi=-a+i have the following

relation
2N N

N' ax= E (X-X,)(X-Xt) (27)
1-O i-l

where X, =e-.j,,*P,,

After identifying the autoregressive coefficients, it is possible to

solve the attenuation coefficient ai and damping free vibrational

frequency Si (from here we can obtain the damp ratio and modal fre-

quency). The moving average coefficients bi, however, are related

to the vibration model information.

The coefficients of the ARMA model can be identified using the

maximum approximation method. The standard function can be chosen

as the total square deviation (approximation function) of the measure-

ment noise M

J(a, b y(t)' -cyy(o) (25

where y(t) is the measurement noise, cyy(O) is the auto-correlation

function with zero time difference, and M is the sampling data points.

It is possible to use the Newton-Raphson method to solve the coeffi-

cients ai, bi (i = 1,2,--2N) to be identified to make J(a,b) = min.

If the input cannot be measured, cyy(O) can be calculated from the

auto-correlation function cxx(i) of the response.

The advantages of maximum approximation parameter estimation are
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approaching without deviation (the expected estimation value is

equal to the real value), identical intensity (when the sampling

point increases, the estimation value converges to the actual value

with probability equal to 1), and statistically effective (the least

square deviation between the estimation and real values can reach

the Cramer-Lao lower limit). The shortcoming is that the computation

is too complicated which is suitable for engineering applications.

Let us write equation (26) (corresponding to M sampling time

inoervals) in the matrix form

{x)-(p)r(@+c e )  (29)

where {x} is the vector formed by the sampled response values at t =

2N + 1, 2N + 2. ..... , 2N + M, {E} is the corresponding measurement

error vector, {e} = (bl, a1,...b 2N, a2N)
T is the vectors to be iden-

tified. The coefficient matrix is

Y (2N), Y(2N+ 1 ) ...... Y(2N+M- 1)

-x(2N), -x(2N+1) ...... -x(2N+M- 1)
Y6I) Y(2) ............... Y(Ai)

X.. . -X(2) ...............- x(M)

From equation (29), the least square estimation of the parameter

to be identified can be obtained from the following equation:

1b(( CP]P)T) "  P )T x X(30)

The standard square deviation between the estimated value and the

real value can also be estimated

Cov(O, 0)-=E(0-0)(0- )T IN P" (31)

where [P] [p] can be calculated from the correlation function of

the testing data.

39

R(o) ROi) ...... R(ZN-i)

(P)(P)T |R(1) R(O) ............ R(2N- 2)

.R(2N-1) R(ZN-2) ...... R(O)

R,- CY(I) -cyx( i)

t-cxy() cXx(i)
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Under the condition that the input signal (such as atmospheric

turbulence, gust) cannot be observed, the least square method can be

used which involves the structuring of an autoregressive (AR) model

first and then deriving the auto-correlation and mutual correlation

functions of the input based on the auto-correlation function of the

output data. Let the AR model be
L
E - )-y(t) (a,- 1) (32)

where y(x) satisfies i-O

E(Y(t))-O; E(x ( ) ))-'b,,

ai are the autoregressive coefficients to be identified and L is the

order to be determined. Because y and x are not correlated, we find

from equation (32) that

L
E aC x(k-s)0 (k-1, 2, ...... , L) (33)
i-i

From this we can find ael" The order L can be identified from the

Akaike information guideline. The square deviation estimation value

of measurement error is
La -  ,a,cx( )( 34 )

,-1

From the relation between input and output

L
x~)- ,h(i)Y(t-i) (35)

a-I

h(i) is the impulse response function. The above expression is also

called the moving average (MA) model. From equation (35) we can

derive the mutual correlation functiony( i =010h i ) i > 0 (6

CXY( i).. (36)10 i<O0

b(i) can be obtained from the following recurrence formula

L
h(O)- , h(t)-- )(i)h(I-i) (t-1, 2, ... ) (37)i-1

From this, the original data needed to identify the parameters

and the square deviations of the real values of the ARMA model by

equations (30) and (31) can be obtained from the sampled data.
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V. CONCLUSIONS

1. Based on the frequency response data obtained in ground

vibration measurements, it is possible to obtain sufficiently accur-

ate structural modal coefficients using the transfer function identi-

fication method. It has been a success for the flutter model of a

wing with external bodies. This technique can be extended to the

testing of the entire aircraft or to determine the pure modal excita-

tion shaker forces of multiple points through a transfer function. 40

In the wind tunnel and flight flutter tests, it is possible to

obtain the original data using random or transient excitation FFT

analysis, including the situation with response excitation alone.

In order to verify and modify the finite element structure dyna-

mic modal mathematical model, more reliable and accurate complete

modal parameters are required. We suggest using steady state sinus-

oidal excitation, tracking filtering to analyze the frequency response

data for identification.

The transfer function method can also obtain the distribution

of zero and extremum points based on the aerodynamic elasticity cal-

culation of the aircraft or the rational transfer function model

formed according to the experimental data in order to facilitate the

analysis and synthesis of the flutter of the stabilizer system and

the flutter active control system.

2. The impulse response method, in addition to the fact that it

is possible to use the inverse Fourier transform of the measured

data as the original data, is especially suitable for the condition

with response data only. At this time, the random attenuation method

can be used to obtain the original data without any data analyzer.

It is suited for the identification in wind tunnel and flight tests.

3. The autoregressive moving average model method is an effect-

ive statistic parameter estimation technique. Because the random

noise effect is confronted face-to-face in this method, and also
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because a double smoothing correlation--least square method is used,

it is expected to obtain higher identification accuracy with strong

interference. This method can also simultaneously obtain the stand-

ard square deviation between the real and the estimated values to

further ensure the reliability of the results. Furthermore, this

method can be directly based on sampled data without the use of spe-

cial analytical instruments.
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SYSTEM IDENTIFICATION AND AIRCRAFT FLUTTER

Zhang Lingmi

(Nanjing Aeronadicol Inmfilve)

Abstract

After reviewing the application of system identification to aircraft flutter

research, three methods of system identification are presented in this paper.

Emphases are put on the main points of identification algorithm and its theo-

retical basis. The problems related to data processing are also discussed. The

Transfer Function Method based on complex modal analysis and optimization

technique can identify all of the modal parameters accurately. Furthermore,

this method has been applied to the flutter model test of a wing with external

bodies successfully, The method can be extended to the cases of wind tunnel

and flight tests which provide response data only. Adopting the correlation

and least square technique, Impulse Function Method and Autoregressive Mo-

ving Average Method can gain considerable accuracy in identification of measu-

rement data conteminated with rather strong noise interference. In no need

for a special signal analysis instrument, it is possible to make direct use of

measurement sampled data from artificial random or transient excitation and

response data from natural random excitation with these two time domain

methods.
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APPLICATION OF MULTIPLE DYNAMIC ABSORBERS TO REDUCE
THE VIBRATION LEVEL OF A COMPLEX CANTILEVER STRUCTURE

Tian Qianli
Institute of Mechanics, Chinese Academy of Sciences

ABSTRACT

A complex cantilever structure has two closely positioned
resonance peaks near 20 Hz causing the destruction of the
root of the structure. This paper presents a method to
use multiple dynamic absorbers to reduce its vibration
level. In order to overcome the drawback of the usual
tuned absorbers which are very sensitive to the structural
frequency, six absorbers were hung in a given section of
the structure. The absorbers can vibrate along any direct-
ion with the structure. Furthermore, the stiffness and
damping parameters of these six absorbers could be different
from one another so that the absorbing frequency range could
be widened. In order to find the optimum parameters and to
study the effect of parameter variation on the structure
response, large amounts of response curves were calculated.
Because the structural damping is very small and the absor-
ber damping is large, therefore, it is a non-proportional
damping dynamic analysis problem. In this paper, this prob-
lem was solved by an eigen solution method and a modal syn-
thesis method.

I. INTRODUCTION

For a cantilever structure in resonance at the base frequency,

a large stress is produced at its root which easily leads to destruc-

tion. Use of dynamic absorbers can solve this problem very well.

However, for a complex cantilever structure, there are usually several

resonance peaks in the vicinity of the base frequency. In addition,

due to the fact that the direction of excitation vibration is not

specified, these resonance peaks are frequently coupled. The fre-

quency parameters in the long period of the working process of the

cantilever and absorbers may deviate from the original designed numer-

ical values. Hence, it is impossible to use classical tuned absorbers

to treat this problem. We adopted the method of installing multiple

absorbers with different parameters on a section of the structure in

Received April 14, 1981
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order to widen its absorbing frequency band and to reduce the vibra-

tion level in any direction by vibrating in any direction following

the structure.

We all know very well that the commonly used finite element

analysis programs such as SAP can only calculate the dynamic prob-

lems with proportional damping. Here, our damping is concentrated

on the absorbers and these absorbers are hung on a section of the

structure which is apparently a non-proportional damping problem.

Therefore, we used a complex eigen solution method and a modal syn-

thesis method.

II. USING A MODAL SYNTHESIS METHOD TO CALCULATE THE
DYNAMIC RESPONSE

The special feature of the modal synthesis method is that the

modal solution of each substructure is obtained individually first.

Then the eigen vectors of the substructures are synthesized into the

Ritz vector of the structure in order to solve the eigen solution of

the system in the subspace. Here, the damping of the structure

itself is very small, while the damping of the absorbers is larger.

Therefore, we divided them into two substructures. The dampless

mode of the structure itself is solved by the SAPN program. A few

lower order modes after the cutoff are combined with the concentrat-

ing parameters of the absorber to carry out the synthesis. Now, the

first few terms of the natural frequencies calculated by the SAPN

program and the experimental results are listed in Table 1 for

comparison.

~43
Table I The few terms of natural frequencies of a cantilever structure

calculated vl 2.5 20.63 3aa14. 148.8 250. 3
sinusoidaltest 20.8 2.42 88 147 148 240

r&,%da tet 20.23 21.48 .. 150.41 15,.23 259.87

Because f1 and f2 are very closely connected, they correspond

to the bending vibrations in two main directions, respectively.
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F -ky (yjr-xj)

Fig. 1 Schematic of absorber

In order to demodulate them, we used the mechanical resistance test-

ing method. In the 20-22 Hz frequency band, we used slow speed

scanning and the phase and amplitude were recorded at high speed us-

ing an X-Y recorder. Then the resistance circle was plotted manually

point-by-point. Therefore, in this frequency band, the frequency

resolution could reach 0.01 Hz. The random excitation vibration was

controlled by B.K 3380. The response was recorded on magnetic tape

and spectral analysis was carried out on C.F 700.

The actual measured base frequency vibration model basically

agrees with the calculated results. Therefore, we began the synthesis

using the calculated modal parameters and the absorbers. As shown

in Figure 1, after installing a dynamic absorber at point z of the

cantilever structure, it is equivalent to the exertion of a concen-

trated force at that point
F1.1 -0h~iy.1 9- XI) b Z --Z) (1)

Here k,i-k,,(i +iP) is the complex stiffness of the complex spring of

the absorber, 8 is the damping coefficient, i-V-I.

In the finite element calculation, it is necessary to discretize

the structure into several nodal points and each nodal point can have

0-6 degrees of freedom. If the beam element is one which neglects

shear and rotational inertia, then each point has two degrees of

freedom. Therefore, in the following we will use the Jth degree of

freedom to represent the z point mentioned above. By assuming the
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total degrees of freedom after structural discretization to be N,

then the displacement vector X is an N dimensional vector. In a

structure with m degrees of freedom with p absorbers (p~m), when

the structure is under motion with a base acceleration equal to k,

the equation of motion of the system is

whreMk+KX=M{I)3i,+F (2)where

F- ,,y.-x.) (3)

The subscript j represents the Jth degree of freedom, the subscript 44

1 represents the lth absorber, the superscript * represents the com-

plex number of the quantity, (I)-T(, 1 ... ) . Because we installed

six absorbers of various parameters on a section of a structure,

therefore, in equation (3) corresponding to the same xj, it is poss-

ible to have 1 number of y,,. In order to unify the two in one eoor-

dinate system, let us introduce a matrix 8

1 0 0

0 10

0 1

01

8 is a p x m matrix in which the number of rows corresponds to the

number of absorbers and the number of columns is equal to the degrees

of freedom of the added absorbers. Its element corresponding to xj

in each column is equal to 1, and the remaining elements are zero.

Let

T* (5)

T is a p x p diagonal matrix and its elements are the complex stiff-

ness of the absorbers. Let y be a p dimensional vector whose elements

are the displacements yjl of the absorbers. The sequence corresponds

to the diagonal elements of T . Therefore, the F in equation (3)

can be written as
F-p'TT.y px,) (6)
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X is the displacement vector corresponding to the part of degrees

of freedom of the attached absorber in the total displacement vec-

tor of the structure X. It is related to X through the projection

matrix P:

X,-PX (7)
0 1 0 0......

1. . (8)0 0 0 0 0 1 ...

P is an m x N matrix [1]. Only the Jth element in each row which

corresponds to the degree of freedom of the attached absorber is equal

to 1, and other elements are zero.

From equation (6), we can see that F is an m dimensional vector.

Multiply it by PT from the front, so that it is extended into an N

dimensional vector. Hence, equation (2) can be written as

Mx+KX+pTPTTP*PX-pTPTT-7 -M(ZI) (9)

Simultaneously, the equation of motion p absorbers can be written as

Rr+T*Y-T*PPX--R(i)s. (10)

where

R -"R. is a p x p diagonal matrix (11)

R.i is the mass of the 1 t absorber attached to the jth degree of

freedom of the structure. Combining equations (9) and (10), we get

the equation of motion of the synthesized structure:

M 0 [+TOT T'*P --pPTT °  M1
........ (1 2 )

In equation (12), T is a complex number diagonal matrix. Therefore,

it is a (N + p) th order complex number matrix equation. The order N

of a complicated structure is very high, and it takes a great deal of

computer time to solve the complex eigen solution. For this, let us

take the first n terms of modes of the structure as the Ritz vector

of the synthesis system. Let x = Vq and substitute it only into 45

equation (9) where V is the matrix formed by the first n terms of the

eigen vectors of the structure. Again, multiply it by VT from the

front. We notice that
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VTMV=I (I is the unity matrix)

V KV.J ofis the rth order eigen value

Then, we have

1+ (A +VTpTrT TPV)q-VTTPT Y----VTM{ 1 )x* (13)
Let PV-V. PTT 7 FTT*-7.

Then equation (12) becomes

.. ... .V!.Y..TN A 34 ( 4S - ( A....VR f ...... )

Through the aforementioned cutoff modal transformation, the

order of the square matrix decreases from (N + p) to (n + p) and

usually n<<N. Therefore, the computational load is greatly reduced.

This point is especially significant in dealing with the absorber

problem. Because the base frequency component occupies an important

portion in the cantilever structure vibration response, it is only

necessary to keep the first few orders of modes to obtain a solution

of sufficient accuracy. Here, our structure has 54 degrees of free-

dom after discretization, i.e., N = 54. The SAP program is used to

obtain the first 10 orders of eigen values using an iteration method

in the substructure space. The sixth, third and second order eigen

vectors were selected to form the vector V to be substituted into the

left side of equation (14). Use Q. R. Yugenmoyacoby's complex eigen

solution program [2] to calculate the complex eigen values and complex

eigen vectors, and the results obtained indicate that they are almost

identical to those obtained when n = 6, 3, 2. The difference is

smaller than one one-thousandth.

III. COMPLEX RESPONSE FUNCTION

Equation (14) is a complex number matrix equation; let

From the complex eigen solution program, we can obtain the eigen

solution of the homogeneous equations on the left end of equation (14).

Q-06Z (15)
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** is the complex eigen vector matrix.

Substituting equation (15) into equation (14) and multiplying

it by OT from the front, we can obtain the following using ortho-

gonality and normalization characteristics:

*T~~ VTMJI}t*

+ 0 l2 i2," .... .

*' is the rth row in *@T

Let
*.TI. VYI (17_p

Conducting Fourier transform on equation (16), we get

(18)

Here

OO- Z,(, )e-,'d1 (19)

*())e)drDS 0700 (20)

#(, =co;( 1 +1])- -

(21)

The denominator of 1,(Q)has two roots,

where -ca,( 1 +in,)"' is located below the real number axis of the com-

plex plane. Therefore, j,(w) is unstable in the frequency region.

For this purpose, we adopted the suggestion of [3] to use the sum of

a pair of complex conjugate values to represent the real solution,

i.e., to let
,( CO) -, + b,(0) ,(22)

Here R,(o), J,(w) were taken from equations (21) and (22), respectively.

j,(W), 0,(w) are their complex conjugates.

,
Let us divide the 4 matrix in equation (15) into two parts which

correspond to i , respectively, i.e.,
'Y7
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then {q} - *Z (23)

Hence, the displacement vector of the structure is

x(ci)=V(0tZ ) .>0 + gz(w) L.<.) (24)

IV. RANDOM VIBRATION RESPONSE

The Fourier transform of the bending moment of the root of a

cantilever structure during random vibration is

i(W)- {h TMAVX(W)

. ~4 ) {hTMV, (+ + . )
r

Here {h}T is the transport of the vector formed by the root

heights of all the nodal points after the discretization of the struc-

ture. Vr is the rth column vector in the V matrix, and 41, is the

r t  row mtb column element in the matrix 0*

C(22
Let (26)

then ~(27)
r r

()= ( I+'(28)
m

Its complex conjugate is
(29)i( c ) -X(b .( )I.>. + :s-( ) i.<.) (9

The spectral density of the bending moment at the root of the

structure is S..(w)= Lim ( 1- ( -.
r T

Let g:bT:-A +,. +iB.,. (31)
then b:B5 -A.,.-B.. (32)

Substituting it into equation (30) and integrating with respect

to w from -x to +-, the mean square value of the root bending moment

can be obtained as
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1 -- _r.. ( d

oa) )=w
47

+---1-+.)-o)- ~.( I _B _. 0 ( o)do (33)

If o varies slowly in the frequency band of interest, it may

be approximared by the white noise spectrum S. Then

(t) , 2Q.(4+bL)(0.( I++)+co( +n iL((,-nT.)) 0 (34)

where
I+

When W., Ma are separated relatively far apart, and '.--.<.1

the coupled term of m and n can be neglected. This caused the approx-

imate expression in equation (2.130) of [4].

A...S- (35)

V. APPLICATIONS

From equations (21) and (35), we can see that the response func-

tion and the mean square value of response are inversely proportional

to the modal damping regardless, whether it is simple harmonic vibra-

tion or random vibration. Of course, it is also related to the vibra-
tional model parameters. Basically, the stress is proportional to

the square of vibration model. By adjusting the weight, position and

parameters of the absorbers, it is possible to change the eigen solu-

tion of the system; i.e., it might change the response value. Here,

due to the limitation in structure, the weights and positions of ab-

sorbers are defined. We are only able to change their stiffness and

damping parameters. Because the base frequency of a cantilever struc-

ture has two major directions of bending vibration, therefore, the

absorbers are divided into two groups. Each group has three absorbers

corresponding to one major bending direction. Their stiffness and

damping may be different. The stiffness coefficient k 1 ranges from
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0.8-3.0 kg/cm and the damping coefficient varies in the range of

0.05-1.0. With regard to various complex stiffness combinations, a

large amount of numerical calculations has been carried out. We dis-

covered that when the stiffness coefficients of the three absorbers

are 1.5, 2.0 and 2.5 kg/cm, respectively, and when the damping coeffi-

cients are 0.2, the vibration absorbing effectiveness is optimal.

Now, a comparison of these optimal response curves and another series

of response curves obtained with identical stiffness coefficients

and a equal to 1.0 is shown in Figure 2.

It is worthwhile mentioning that when this structure was calcul-

ated based on an equivalent single degree of freedom body system, the

optimal stiffness coefficient is 1.64-1.66 kg/cm and the optimal

damping coefficient is 0.19. However, due to the addition of six

absorbers to reduce the vibration along the two major bending direct-

ions, the calculation formulas single degree of freedom system are

no longer applicable. However, calculated results showed that a damp-

ing value of about 0.2 is still proper. Figure 2 explains that the

effectiveness is reduced when the damping value is too large. When

the frequency of the absorber is lower than the base frequency of

the structure, the absorber consumes energy during resonance of the

structure. [5] had used this property to solve the vibration problem

of the SMS aircraft. In that case, the damping of the absorbers

must be large. However, the effect was not as good as the multi-

dimensional absorbers because there is always one absorber resonating

when the structural frequency changes. Both calculated and experi-

mental results showed that when the structural frequency and absorber

frequency vary by 30%, the shock absorbing effect can still reach 50%.

The random tests and sinusoidal frequency scanningtest in this

paper were completed by comrades Li Yen ping and Wang Danfung. The

decomposition of the base frequency was performed by the author

himself. The calculations were carried out by comrades Li Shen zhang

and Liu Dekong.
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Fig. 2 The frequency response curves of a structute with absorbers having

diffret parameter
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APPLICATION OF MULTIPLE DYNAMIC ABSORBERS TO
REDUCING THE VIBRATION LEVEL OF A COMPLEX

CANTILEVER STRUCTURE

Tian Qianli

(Indifle of Mechanics, Chimese Academy of Scieces)

Abstract

In a complex cantilever structure there are some closed resonance peaks in

the vicinity of 20Hz, causing a serious bending moment at its root. The appli-

cation of multiple dynamic absorbers to reducing its vibration level is propos-

ed in this paper. Six absorbers are hung on a given section of the structure

to overcome the drawback of the usual tuned absorbers, i. e. excessive sensi-

tivity to the tuning parameters. They can vibrate in all directions following

the structure, but their stiffness and damping parameters of these absorbers

are different from each other, so that their frequency range is made wide enou-

gh to cover the resonance frequencies.

In search of the conditions for minimizing the bending stress of the struc-

ture and for the sake of studying the effects of the parameters on the dynamic

response, a great number of response curves at the top of the structure, bearing

the harmonic excitation from the base movement, are calculated as the pa-

rameters of these absorbers vary in a considerable range. Since the damping

of the structure is very small and that of absorbers are large enough, so it is

a dynamic analysis problem with non-proportional damping. This problem has

been solved by a complex eigen-solution method and a modal synthesis method

in the present paper.
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A SPECTRAL APPROACH FOR ANALYZING THE VIBRATION OF A
PERIODIC STRUCTURE WITH RANDOM PARAMETERS

Huang Wen hu
(Harbin Institute of Technology)

ABSTRACT

In order to explore the effect of fabrication
deviation of the blades in a circumferentially closed
turbine blade assembly on the vibration of the turbine
blades, this paper used a structure model with periodic
random parameters as an approximation of the blade struc-
ture. In addition, a spectral method was presented to anal-
yze the vibration of this structure. Assuming the stand-
ard deviations of the structural parameters are small,
therefore, it is possible to use a perturbation method.
The periodic random structural parameters are expanded
into Fourier series, so that the free vibration and
forced vibration of the structure can be solved. Then,
the frequency, vibration mode, resonance amplitude and
square deviation estimate can be obtained. The orthogon-
ality of the main vibration modes were proven. The spec-
ial conditions for resonance of this structure were anal-
yzed. The examples showed that the analyzed results and
experimental results have the same order of magnitude.

MAJOR SYMBOLS

A, B, a, b, c, d-amplitude coefficients
1 ( 0, )--excited vibration force

F( 0 )- spatial function of the exciting vibration force

k --- nuber of har nics of exciting force

I -order of the Fourier series
m, n, r -- order of vibrational mode (nodal diameter no. of vibration mode)

k. ), A( 0 ), c.( 0 ), d.( e )- dstributed mass, stiffness, stiffness of connect-

P ( 0), q (e)-local frequencies of blade and connecting palt i  and
p, q.--average values of aforenentioned local frequencies

P( O ), Q(O ),M( O )- randa functions of distribution stiffness, connecting
,, ,-standard deviations of part stiffness, mass oaraxreters

randm functions

, o, h--rourier coefficierts of above randan functions

x ( 0, t )-displacmment
t, T1, t- mall parameters

X( ) ( 0 ) + W( ) +v( 0 ) +W( 0 )-vibration mode function
W'-x'+tR2+ 1v'+tp'- natural frequency

Q-exciting force frequency
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a, p. Y, b- phase angles 51
-damping coefficient

- spatial coordinates

*received October 1981

I. INTRODUCTION

The blades of a turbine are usually connected into a group.

Sometimes through the use of various types of connecting parts, such

as black crows, belts, shoulders, elastics, it is possible to circum-

ferentially close the blades of the turbine disk to form a group.

This type of circumferentially closely connected blade group has cer-

tain advantages in avoiding resonance. With regard to the vibration

of such a structure, references [1-3] presented a method to calculate

its vibrational characteristics under the assumption that all the

blades bad the same vibrational characteristics. In addition, a

"triple point" condition for creating resonance on the rotating disk

turbine blade group was also proposed. This means that resonance

only occurs when (1) the exciting force frequency kO is equal to the

natural frequency wm of the group of blades (i.e., kQ = w m) and (2)

the excitating force harmonic number k is equal to the nodal diameter

number m of the natural vibration mode of the blade group (i.e., k =

m). This conclusion could only be obtained under the assumption that

the mechanical properties of all the blades and connectors were identi-

cal. However, in reality, it is unavoidable to have fabrication devia-

tions between blades and their mechanical properties cannot be com-

pletely identical. Therefore, the above conclusion needs some correct-

ion. The purpose of this paper is to explore the effect of fabrica-

tion deviations of the blades on the vibration of the blade group.

In order to simplify the analysis, we chose the condition under

which the blade distribution on the turbine was very dense as the

limiting case. The closed loop with lateral spring support was select-

ed as an approximate mechanical model to obtain a differential equa-

tion with random parameters.
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In the random vibration problem, when the parameters on the

left side of the differential equation are defined quantities and

only the right side is a random function of time, this type of prob-

lem has been studied extensively in the literature with matured

results. However, with regard to a dynamic structure system with

random parameters, there is not toc much available in the litera-

ture. Furthermore, there is a lack of a general treatment method.

References [4] and [5] used a perturbation method to study the free

vibration of a column beam with random structural parameters. The

self-correlation and mutual correlation functions of random structur-

al parameters in this paper were given manually in an exponential

function form.

This paper discusses the free and forced vibrations of the afore-

mentioned closed loop. First, by assuming that the standard devia-

tions of the random structural parameters are infinitesimal quanti-

ties, a perturbation method is applied to obtain the solutions. By

considering that the closed structure treated is a periodic structure,

this paper proposes to use a spectral method to find the solutions.

The random structural parameters are expanded into Fourier series to

enable the solution of the differential equation to be expressed in

terms of the Fourier coefficients of the structural parameters in -2

order to obtain the natural frequencies, natural vibration modes,

resonance amplitude and its square deviation estimation of the struc-

ture. The results of examples showed that the analyzed results were

in the same order of magnitude as the experimental results obtained

in [6,7].

II. BASIC EQUATIONS

The mechanical nodel discussed in this paper is a closed loop

with lateral spring support (see Figure 1). The differential equa-

tion of motion is
O-. +k._ a x) + .x 52

C. (1)

the boundary condition is
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Fig. I Mechanical model

a I  t)I Ca
x(-ir, g)-x(x, L), -a -,, (2) ( t

the initial condition is

0, 0 )-Xe( 8 )) ' 0) (2')

Let us assume that the system undergoes a harmonic oscillation

under a harmonic exciting force. Let mxo be the average value of

the mass function; and the exciting force be

f ( 0, t )-m.,F( 0 )eo'"(3

The solution to the differential equation (1) is

X( , -- (0 " (3')
By introducing the symbols:

0)-.(-,
M( o -k(o_ ; Q,( o) - c. _!;, 4

then we can obtain the differential equation of the vibration mode

from the partial differential equation (1) as

The boundary condition is
X(- g)-X(x), X'(- g)-X'(x)

III. THE RANDOM STRUCTURAL PARAMETERS

Due to the fabrication deviation which exists in reality, the
structural parameters mx(e), kx(e) and c x(e) are generally not con-

stants. Instead, they are random functions oscillating around some

constant values. Also because what is discussed here is a closed

structure, these functions are also periodic functions. Parameters

p2 (e) and q2 (e) are also periodic random functions oscillating around
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their average values p2 and q2  For simplicity in this paper we
0 0

assumed that the damping is a constant.

Let us assume that the scatter of a structural parameter is an

infinitesimal quantity. Then these parameters can be expressed

through the use of small parameters E, n, C as follows:
PI(e0)-pe c I +&P( 0 ))

e(O)-_q(1 +JQ(9)) (6)
m.( 0 )-m,.( 1 +tM( 0 ))

where P(e), Q(e) and M(e)--are periodically stable random processes

with zero average values. We defined their square deviations to be

1. They satisfy the following periodic conditions:

p(- t)-,p(3t)l Q(- x)=Q(x ) (
Ql(-x)-Ql(x), M(-n)-M(n) ('

In the following, we used the periodicities of these functions

to expand these functions into Fourier series using the spectral

method: @0

P( = l)

Do (7)Q~) Z gleil

@

where 1.a-17, g.,-g,, h.,-h, are the random Fourier coefficients.

* represents the complex conjugate.

Let us assume that the random processes P(e), Q(e) and M(e) are

ergodic processes and their self-correlation functions can be obtained

as follows: R,()-ECP(O)P(O+C))- 'I do 0 ,
- Z I-e"I' 2,,-c

00 so- f,fe-(er"'+e') -2 If,1"=si ( 8)
Y--J Z"

).-So 1.1

When T a 0, the self-correlation function is equal to the square dev-

iation. Furthermore, we have already defined the square deviation of

P(e) to be 1, therefore,
@

R,( ) -2 Ins'- 1I8'
Ii
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Similarly, we could obtain R q(T) and R m(T).

Let us assume that the standard deviations of the random pro-

cesses P(e), Q(6) and M(e) are ap, Gq and am, respectively. Then,

from the above analysis, we know that the small parameters E, n and

are equal to these standard deviations, respectively, i.e.,
(9)

From equations (8) and (8'), we can see that the Fourier coeffi-

cients such as Ifli of a stable ergodic random function such as P(e)

can be determined. In fact, from equation (8'), we can see that:

If 1<0.707 (1-J ,2 ,.) . Furthermore, with regard to a defined

structure, the self-correlation function R (T) can be experimentallyP
obtained. As long as R (T) is known, then the numerical value ofP
Ifll can be obtained from equation (8).

In [4], the self-correlation function was artificially assumed

to have the following form:

R,( " (10)

when the parameters a could be determined in combination with the

experimental results. From the known equation (10), it is also poss-

ible to determine the actual numerical value of Ifll.

IV. FREE VIBRATION

In the differential equation (5), when the exciting force is

zero and damping is neglected, we get

(ex,'Y + f -T. (ll)-

The boundary conditions are

X(-X)-X('C)l X'( - C-X(n)(i)

By considering the randomness of the structural parameters, q, p

and mx, and by substituting equation (6) into (11), we get

-olm I +qQ)X,)Y +(pa( I +tP)-032(I +tM))X- o 12
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The obtained equation (12) is the free vibration differential equa-

tion of a periodic random parametric system. Because the variations

of the random parameters are infinitesimal quantities and the differ-

ential equation contains small parameters , n, C, it is possible to

find its solution using a perturbation method. For this purpose, the

frequencies and vibration modes are expressed as power series of the

small parameters , n, and ;. As a first order approximation, let

us keep the first order terms of these small parameters:

WS- X, + tl + IVz + 02 . ......

X(e)=Y(8)+u(B )+T(8)+w( O)+ (13)

By substituting them into equation (12), neglecting higher order infin-

itesimal quantities, and making the coefficients of the small para-

meters , n, zero, we get the following equations:

54

- y"y + (pO' -X)Y = 0
--2U, + (p*-- _),2 U -- (p2p_ pl) Y (14)

-q~v" +(ps-X2) v -=q(Qy" +Q'y')+v'y

-q.w' + (p#2- % ) w = (XM + P') Y

The first equation in (14) is a well defined equation. By using

the boundary conditions to solve this differential equation, we obtain

the frequency X2 as
m )1- p'+mlqG (15)

where m is an integer and its physical meaning is the nodal diameter

number of the vibration mode. The vibration mode y (e) is

y.( 0 )=A.el"'+ A.'e' i (16)
*

where A and Am are cnnjugating coefficients to be determined. We
M

can formulate the vibration modes in such a way so that these coeffi-

cients can be determined. Considering the following orthoonal con-

ditions:
{Iwho n m .n)

y ".(h, M96 n ) (17)

From this we get

A.A:-IA.I'- 1(18)
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The second equation (14) contains random variables. In order

to solve this differential equation, we expanded the function u (e)m
to be obtained according to the vibration mode yr (e) by letting

u. O) b.,y,(O) (19)
r- I

Substituting it into the original function multiplying y n(o)

on both sides of the equation, and integrating, we obtain the follow-

ing by using the orthogonality condition:

q'(m-1')b..+1.Lt,- f -X Py. y.dO (20)

when m = n, the frequency p2 obtained from equation (20) is

.Pyjd92TPf1 .A'+f*:A.) (21)

where the values of A and A* can be given from equation (18) andm m

f2m and f* from equation (7). Let us assume

then IL2-p=IIf.cOs(O,.-2Qa) (21')

When m # n, the coefficient b of the vibration mode can bemn
obtained from equation (20) as

b. m- Pb o Py. yde (22)-F X q4 -X

Therefore,
u.(e)- b.oyo( 0, . (23)

u-i

Following a similar method as in the previous section, we can

obtain solutions for the third and fourth equations in (14) and the

frequency obtained is:
v .2 q:, X ".,= IdO -- q'r, 1g,.jCO8(Yj. - 212-) 5

f' Q 9 
(24)

Pa.- X. f ., M y ,do - %.'jh,.jcos( 5,=- 2a.)

where A.-IA.Ie'- g,.- I,.Ie", h.-I 1j.Ie'.

The expressions of the vibration modes are:
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V.( c..y.(O)

w-.(e) d..y.(8) (25)

Furthermore

c..--c-, d-,-d" (26)

V. THE NATURAL FREQUENCY, ITS AVERAGE AND SQUARE DEVIATION

The natural frequencies of various orders of the system can be

obtained by combining equations (13), (15), (21) and (2"). The

natural frequency of m t order of the system is:

+-p,+m'q + Py.-dO+r1 f. Qy'.'de-t.f My.dO (27)

- (P + m'q) + &p~ftt2lcos(1,. - 2a.) - 1m'q9I g1 , s(Y,,.- 20,.)

- t ( +m'qe)h,..Icj (b,.-2a.)
In searching for the average value of the natural frequency, we

have to consider that the average values of the functions P, Q and M

are zero:

ECP(O))-O1 E(Q( ) o; ECM(O))-O

Hence, the average value of the natural frequency w2 is:
m

E cD2)- I.2 +tP2 - E(P( 0) yZdO+Ilq.2 w" E(Q( 0))y= d

(28)

t E(M(9))y'd9-.

The average square value of the natural frequency w2 can be estimatedm

in the following:

E C(D.2)) - E((MAY))+1f .uS x.E (,

+t1 q , E(.( )Q(O,))y(O,)y'1 (0,)dO!O,

+ p .:" _ . E (,)My(e)).(,)y'(e,)de,do,

+ 2 t tp.2EIP
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rX
+2q q , . f • E(Q( 1 )M( 1 )JYL (O)Y "(O)dO jdO1 56 -

+2).4 E*( r q' E(M( e ))ym"( 0 )dO 29

It Pe" ()X. ~O' f" ~()y'0

2 (29)

The square deviation of the natural frequency is:
o= E l:(ocL.)' - X. {= {K'p~lf,.I' + T'm'q~lg,-.I + 1 lh. 1

2 0 q'lgl~'+ tX.' h,.j"

- 2gt'pq2Xj. I,,-.Ioo( j- - b(3)

+ 2%m'qIX-.ljt.'h,_jes(-Yj.- b,.)}

The above equation indicates that th standard deviation of the

natural frequency is the vector sum of the three following vectors

(Figure 2):
Ep: .,- TM2'3qg,., - tXU h,. (31)

The standard deviation of the natural frequency can be estimated

by the following approximation:

oa.a palf,.j + Jm'q'lg.gs + t.lih,2. (32)

We can see that the standard deviation o 2 of the natural fre-

quency is on the same order of magnitude as the small infinitesimal

quantities , n, 4, which is an infinitesimal quantity on the same

order of magnitude as the standard deviations ap, 0q am of local

frequency scatter.

Fig. 2 Standard deviatious of natural frequencies
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VI. NATURAL VIBRATION MODE AND ITS PHASE ANGLE

The vibration modes of various orders of the system can be

obtained by combining equations (13), (16), (23) and (25). The mtb

order natural vibration mode is

X.( 0 )-y..( 0 )+Ex1.( 0 )+Iv.( 8 )+Lw.( 0)
00 (33)

-y.(O)+ (
3-'

Due to the complexity of the vibration mode expression (33),

we can see that the nodal diameter of the vibration mode is changing

from a symmetric distribution to an asymmetric distribution (Figure

3).

57
It can be proven that the vibration mode (33) satisfies the

orthogonality condition:

SX.X., do., w m-')f_X Owhen m 9& )  (34)

As for the phase angle m of the natural vibration mode, when the

structural parameters are constant, the phase angle a m is a value to

be determined by the initial condition. When the structural para-
meters are not constants but rando' quantities, the ntturnI vibration

mode phase angle a m is determined by the variations of the structural

parameters P(e), Q(e) and M(e) and is not related to the initial con-

dition.

In fact, in solving for the latter three equations in (14), the

right hand side of the equation should not contain a "long term"

term with spatial frequency m. Otherwise, a solution which increases

with time will be found which is not rational.

In order to make sure that the solution X.(0)-y.+tu.+1nv.+Cw.

does not contain any term which increases with time, we must let the

coefficients of the following equation be zero:
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Fit. 3 Nodal diamieters of natural modes
(m- S)

_- -ayumticni, - twfmiuetricai.

Fig. 4 Campbell diagram

0_ilefit reoances *-Weak '090"'c"n

~ l,.luu~b..2a.)}lnmG+Qa.)- 0

After expansion, we can obtain the formula to calculate the

phase angle of the vibration mode:

t 12G -sim - i m ql.g 1.sin Y'1. + t h.Sl l . . (3 5 )
-ga. jP1 rt'irn+1mqI 1 .CO6y ,w+tXlh .cosb,.

VII. FORCED VIBRATION

In equation (1), let us assume that ne exciting force f9t

contains many harmonics:

1(0,t)-~ f~8, - ~m.,F(0)'~' (36)
k-1 -

Now, let us only consider the k th harmonic of the exciting force,

i.e., on the right hand side of equation (1) we only take

f9 tI)m,~(g).O (37)

For the convenience of writing without losing the generality,

let us assume that the spatial distribution of the exciting force

and the k th harmonic of the vibration mode have the same phase angle,

which is to assume that

F*( 0)-Fkyk( 0 (38)
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Let us assume the special solution to the differential equation

(1), i.e., the forced vibration is
x~e )= o)e"'  (39)

Substituting it into equation (1), we obtain the differential

equation of forced vibration as

-(9x')'+[p,- (koy ) X+ ckX-..V.,,( ) (40)

In the following, in order to simplify the derivation, let us

assume mrx(e) = mxo = const which is to neglect the nonuniformity of

mass distribution by assuming M(e) = 0.

Let us assume that the solution to the differential equation

(40) can be expressed as the sum of the various orders of natural

vibration modes:

00 58x(e)= aX.(9) 5
.. , (41)

where the natural mode X m(e) can be found in equation (33). Substi-

tute equation (41) into the differential equation (40). Multiply

both sides by X m(e) and then integrate. By using the orthogonality

condition (17) and neglectinx higher orders of the infinitesimal

amounts, we get

F, (when m-k)
F,(b.., + Tic.*) (whem 9 k )(42)

VIII. RESONANCE AMPLITUDE AND ITS AVERAGE AND SQUARE DEVIATION

The following is a consideration of the resonance amplitude.

Please refer to the Campbell diagram in Figure 4.

(1) when the "triple point" condition is satisfied, i.e., when

Ia,-kQ and m a k, from equation (42):

-F,-1- (43)

This is the quantity of a defined mode. Under small damping condi-

tions, the amplitude is very large and a very intense resonance is

obtained.
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(2) when the "triple point" condition is not satisfied, i.e.,

when -kQ , but m 9 k. From equation (42):

l.- (Lb-, + n.c-) (/4/4)
.ak

At this time, the average of the vibration amplitude is zero:

E(Ia F. 2- 1 e ( ))y.y,+TiE(Q(O) 0( )2ack M f q@3(45)

The square deviation of the resonance amplitude is
o:=E [ IQ.,I -

2t (ekQ)s (m- ")'

x x f" x3 E(P s(,)Q(O,))y.(e,)y,(e,)y.(e,)y*(e,)dO,de, 59

+q E (Q(9 1) (eO)Y(,,)yl(O,)yl(0t)A(o,)dedot

+ 2 I-~ -- J E( P (,) Q())y(,)y,(e)y.(.)Y.(es) dOadO, (6

The calculated results are:

Cm' k')'Q E'{A Af..*IS + 'I'M4 Ig...I'

-2t,,' W i..allo.,Ico,( L.-v-,) + t'- , f.-,ll (47)

+ nI-41g.,12 +, 2EW A ,- l., COSM..,- Y..,)}

From the above complicated expression, we can see that the

ratio of the standard deviation a of the resonance amplitude and the

resonance amplitude Iamol under the triple point condition can be

considered as the vector sum of the following vectors (Figure 5):

9 -f, ko q I E --2, f--.,, W.'-., (48)

This can be estimated approximately using the following equation:

From this we can see that this ratio is on the same order of

magnitude as the small parameters , n and the standard deviation ap

aq of the scatter of the local frequencies.
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Fig. 5 Squre deviatioms of resonance amplitude

IX. EXAMPLE

With respect to the mechanical model shown in Figure 1, let us

choose the local frequency as:

A-lOX2l q,-22X2X

Usually, a turbine machinery factory establishes that the fre-

quency scatter of the blades on a turbine cannot exceed ±4%. Now,

let us take 1/3 of this value as the standard deviation of the fre-

quency scatter, i.e.,

-0,--0'04 -0.01333

Assuming that the self-correlation function of t1'e random struc-

tural parameters has the form of that of equation (10), let us also

choose a - 1. Using equation (49), let us calculate the extremes of

the ratio of the standard deviation c of resonance amplitude and 60n
the resonance amplitude la moI under the triple point conditions at

various orders of harmonics k of the exciting force, and different

main vibration mode nodal diameter numbers m are shown in Table 1.

From Table 1, we can see that, under the condition of the main

mode with no nodal diameter (m - 0) and the first order harmonic

exciting force (k 1 1), a, la.,, 13.58, Under other conditions,
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Table I Limit values of ratio o./la..

anic nodal dia- -2
_n--er_ -_-te- no. I I_' I- __

k - 0 1 0.1413 0.0.30 0.0002 0.0046

k - 1 0.1358 1 0.0467 0.0112 0.0055

h = 2 0.0206 0.0365 1 0.0271 0.on$

k - 3 0.0067 0.0086 0.0231 1 0.0229

k . 4 0.0026 0.0035 0.0060 0.0190 1

& 0.0015 0.0016 0.0026 0.0051 0.0177

a u 6 0.000 0.0010 0.0013 0.0023 0.0046

this ratio is extremely small which can be neglected. References

[6-7] have reported the experimental results on the machine. They

believed that the resonance amplitude of a circumferentially con-

nected blade group was approximately 1 -L of the resonance ampli-
10 7

tude of free blade. This result is on the same order of magnitude

as the calculated result based on the above model.

X. CONCLUSIONS

1. For a periodic dynamic system with random structural para-

meters, to use a spectral method to find the solution is a feasible

and convenient method. The random functions of the structural para-

meters are expanded into Fourier series to facilitate the calculation

of the natural frequency, natural mode and resonance amplitude of the

system, and to estimate their average values and the square deviations.

2. The analytical calculation with regard to a periodic dynamic

system with random structural parameters indicated that its vibration

characteristics have some special features different from those of a

uniform periodic structure.

(1) the natural frequencies of various orders of a uniform struc-

ture are fixed quantities, while those of a random structure are ran-

dom quantities. The standard deviation of the mth order natural fre-

quency is only related to the 2mth order Fourier coefficient of the

random parameter. Furthermore, it is the vector sum of the standard

deviations of several deviations.
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(2) the natural vibration modes of a uniform structure are of

harmonic waveforms and all the nodal diameters are uniformly distri-

buted. For a random structure, in addition to the harmonic wave-

forms of the natural frequencies of the various orders, there are

various orders of harmonic waves with complicated shapes and uneven

nodal diameter distribution. However, all the natural vibration modes

satisfy the orthogonality condition.

(3) the phase angles of the natural modes of a uniform structure

are parameters to be determined by the initial condition. However,

the phase angles of the vibration modes of a random structure are

related to the respective structural parameters which are not related

to the initial condition.

(4) for a uniform structure, the "triple point" condition must

be satisfied to create resonance. Under the condition that the

"triple point" condition is not satisfied, it is impossible to create

resonance. For a random structure, when the "triple point" condition

is satisfied, very strong resonance will be created. However, even

when the "triple point" condition is not satisfied, as long as ca.=kQ,

even though k 4 m, it will create a weak resonance. In this paper we

estimated the square deviation of the weak resonance amplitude. This

square deviation is related to certain orders of the Fourier coeffi-

cients of the structural parameters.
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A SPECTRAL APPROACH FOR ANALYZING THE

VIBRATION OF A PERIODIC STRUCTURE WITH

RANDOM PARAMETERS

Huag Wenu

(Harbin I.hilfte of Technology)

Abstract

In a periodic structural system such as blades in a circumferentially clo-

sed packet on a disk of turbo-machinery, the natural frequencies of individu-

al blades can be randomly different from one another. From this arises the pro-

blem of vibration analysis of a periodic structure with random parameters.

There is lack of general method for s lving the differential equations with ran-

dom parameters. This paper describcs _ pectral approach for analyzing the vi-

bration of a periodic structure with random parameters. Suppose the standard
deviations of random structural parameters are small so that a perturbation me-

thod can be used to reduce the differential equation with several random pa-

rameters to several differential equations with one parameter, and then these

differential equations may be solved one by one. Suppose the spatial di-tribu-

tions of the random structural pnrameters are ergodic, and for concrete stru-

cture these distribution functions and their correlation functions can be deter-
mined by experiments. It is suggested in this paper to expand these spatial dis-

tribution functions of random parameters into Fourier Scries. And then the re-

lation between these Fourier coefficients and the correlation functions is esta-
blished s*o that these Fourier coefficients can 1e dete, imned by several ways.

In this situation, these differential equations with random parameters can be

solved. Thus natural frequencies of the structure are then obtained, and their

standard deviations are estimated. Also, the expressions of natural modes are
given, the orthogonality of natural modes is proved, and it is shown treat the

phase angles of natural modes are not arbitrary. Finally the special conditions
of resonance of periodic structure with random parameters are discussed. It is

shown that a violent resonance occurs when the number of harmonic of excit-
ing force is equal to the number of nodal diameters of natural modes, and only

a weak resonance appears when these two numbers are not equal. This pheno-

menon does not exist in the case of structures with homogeneous parameters.
The standard deviations of amplitudes of weak resonance are estimated, Nu-

merical examples show that the calculated results have the same order as the

experimental results in literature.
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A NEW METHOD OF FINITE ELEMENT STRUCTURE DISCRETIZATION

Liang Guowei*
Northwescern Polytechnical University

ABSTRACT

In this paper, the iso-parametric element geometric
interpolation method was used to automatically generate
the nodal coordinates of all the elements based on a small
amount of input data. A "chessboard" mesh was used to
facilitate the numbering of elements and nodal points.
Simultaneously, a "front solver" method was used to solve
the equations to simplify the numbering program.

This method has the advantages of little input data,
ease of changing the mesh and the sufficient accuracy of
the boundary nodal coordinates. It has been used for the
two dimensional mesh of an axial symmetric body and the
three dimensional mesh of a turbine blade. The results
were satisfactory.

I. INTRODUCTION

In the finite element calculation work, the work load for the

preparation of input data is very large. It mainly involves the deter-

mination of nodal point coordinates and number. If these data are

obtained manually, it is very easy to make mistakes. Therefore, this

will cause difficulties in testing the program and wasting computer

time. Hence, automatic discretization becomes an actual problem to

be resolved in the finite element computation work.

In the references [1-4] both here and abroad in the 70's, various

methods to automatically form meshes were discussed; which were

limited to planar triangular elements.

As we all know, under the same nodal point number the accuracy

of a rectangular element (or hexagonal element) is higher than that

of a triangular or (tetrahedral) element. Therefore, it is very

*received October 1981
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imperative to develop a rectangular iso-parametric element which

is applicable to the automatic generation of two-dimensional and

three dimensional meshes. Furthermore, in the aforementioned litera-

ture, the emphasis was focused on the automation of the division

of the element and the formation of the nodal point coordinates. As

for the automatic numbering of the nodal points and elements, it was

seldom considered in connection with the storage problem. In some

references [5-6], although some methods for renumbering the nodal

points and reducing the bandwidth were proposed, yet such methods

would complicate the program.

In 1978, the author proposed a method to automatically form the

nodal point coordinate using an interpolation function [7] together

with a "front solver" method to solve the linear equations by consi-

dering the convenience of automatic numbering of the nodal points.

The numbers of the nodal points were allowed to be discontinuous

to simplify the program as well as to save the internal storage.

During the numbering of the elements, some programming techniques were

used to minimize the "wave front". After the discretization of the

mesh, a huge amount of data was required to be checked. Undoubtedly,

it is very time consuming. This method displays these data using the

method most convenient for checking which consequently saves a lot

of time.

II. MAIN POINTS OF THIS METHOD.

1. Automatic formation of nodal point coordinates
using the interpolation function

Usually, geometric interpolation is used in an iso-parametric

element to transform a rectangular (or hexagonal) element into a curve

(curved surface) element. The coordinates of an arbitrary point P

of the curve (or curved surface) element can be obtained by the nodal

coordinate interpolations of the elements:
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I (A)

where (xi, Y., zi) is the coordinate of nodal point i, ( is

the local coordinate of the point P, and N,(L., T, t ) is the shape

function corresponding to the nodal point i as shown in Figure 1.

Through the transformation, the original linear mesh (the iso ,

iso n lines on the left of Figure 1) is transformed into the curve

mesh (the iso E and iso n lines in the x-y coordinate system on the

right of Figure 1). If this iso-parametric element is the component

we want to analyze (or part of a component), then the large amount

of nodal point coordinates in the mesh can be obtained by interpolat-

ing the small amount of original nodal coordinates (x,, y,, z ) using
equation (A).

Y 
/'(" Y) 

-

P, (L.,q)

(-1,1) h1)

y J _ - x yi(x , aa)

Fig. I 2-and 3-dimesionaJ iso-parametric elements
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2. Actual procedures of nodal point coordinate interpolation

(1) Based on the boundary shape of the component, it is divided

into several zones. For each zone, a proper parent element for each

zone was chosen;

(2) in the body coordinate system, based on the boundary shape

of the component, the nodal point coordinates (xi, Yi' zi) of the

parent element was chosen;

(3) based on the degree of closeness of the discretized mesh, the

local coordinates( ,n, ) of any nodal point on the parent element in

the mesh in that zone are determined;

(4) from equation A), the coordinates (x,y,z) of all the nodal

points of the mesh in that zone can be interpolated.

Now, let us use the disk in Figure 2 as an example to explain

the above procedures.

First, based on the shape of the disk, let us divide it into 18

zones. The principle of zoning is that: a different boundary curve

should be divided into two zones. For example, the a-b-c boundary

in the figure, a-b is a line, b-c is a circular arc, then a-b-c 65

should be divided at point b, and a-b is in zone 7 and b-c is in zone

8.

For each zone, a parent element is selected and its nodal points

are determined by the boundary shape. For zone 7, the boundaries are

straight lines and a four nodal point parent element is chosen (no. I

in the figure) in order to ensure the accuracy of boundary interpola-

tion. For zone 8, it is necessary to choose the no. 2 parent element

to ensure the sufficient accuracy of the interpolated b-c boundary.

The principle of selecting the parent element is that: under the

premise of assurance of sufficient accuracy of boundary interpolation,

the nodal points should be as few as possible in order to reduce the
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input coordinate data. In the mean-

time, it should be ensured that the

mesh in the neighboring zones is conti-

nuous. a

Next, on the cross-section of the

disk, the nodal point coordinates (Ri,

zi) in this zone are determined based b 1

on the nodal point distribution of the

selected parent elements in each zone. C

For corner nodal points, their coordi-
is

nates are fixed. As for nodal points 14

located on the side, there is room for 12

selection. The numbers and positions

of the middle line nodal points would

affect the error of the interpolated 2 2

boundary curve greatly. Based on the 3
experience of the author, for a second NotI NaZ

order curve, the use of 1-2 middle

nodal points is sufficient. Further-

more, a uniform location distribution Fir 2 Pmr'n of a disk int., seera
zone$ snd their parent elements - -

might be optimal. For a complicated

shape such as the turbine blade, two

middle nodal points are used. The maximum error of the interpolated

boundary nodal point coordinates is within ±0.15 mm. With regard to

stress analysis, it can be considered satisfactory. In this case, the

middle nodal point positions may not be uniformly distributed. Inci-

dentally, by changing the position of the middle nodal point, it is

possible to change the density distribution of the mesh which is one

of the advantages of the method. However, it should be noted that,

if the distance between the middle nodal point and the corner nodal

point is less than 1/4 (1 is the length of the side), then the mesh

is "wrinkled" [8-9].

The local coordinates (&,n,C) of any nodal point in the mesh are

easily obtained in the parent element because the mesh is uniform in

the parent element. As long as the longitudinal and transverse lines
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Fig. 3 Real mesh of a disk and its 'Chesluuard" mesh

of the mesh are chosen, it is not difficult to determine the partial

coordinates of any nodal point.

Due to the fact that the distribution of the nodal points of

the parent elements in each zone is irregular, the shape function

Ni(&,n,) can be directly derived using the method in [10].

3. The numbering of elements and nodal points

In designing the program, it is more complicated to number the

nodal points. If optimized numbering is used to reduce the band-

width, it would complicate the program further. The author adopted

the "front solver" method to solve the set of linear operations. It

has two advantages: "front solver" method itself can save the inter-

nal storage, besides, "front solver" method does not have a bandwidth

requirement for the numbering of the nodal points. Even when the

nodal point sequence is not continuous, it does not matter at all [11].

This makes it difficult to compile the program.

The procedures to number the nodal points are as follows:
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COMPUTER RESEARCH ON DYNAMIC
CHARACTERISTICS OF

A SYNCHRO GENERATOR

Qian Zhenxiong and XM Qiaobao

(Beijing Justitade of Aerostudics oud AsIrOxai.'ics)

Abstract

A P-transform matrix is applied to transforming the time-varying dyna-

mic equations of a synehro generator into so-called P Park's equp.tions,in re-

sult the state equations of one unit generator system are established. Owing to

the nonlinear effect of the voltage regulator and the legging of the a. c. exciter

in an aircraft brushless a. c. generator, the forcing function of the main synchro

generator U( t ) can be reduced to an exponential curve m ith a lagging ta and

an equivalent time constant Ti,.

On the basis of the state equations above mentioned eight dyn:nmic chara-

cteristics of the synchro generator are printed out separhtely on an electronic

digital computer by four different methods: analysis, fourth-order Rungo-Ku-

tta algorithm; exponentifI matrix (ell), and network topology. The computa-

tion accuracy and the stal-ility region of th,'s four mrthods are anal)zed and
their applicahle range is establish-d in conformity with their advantageq. Thin

the following conclhsions are draw n,

I. The characteristic roots of the coefficient nitttrix ;t no-loa sudden short

circuit are the dynamic parameters of the synchro generator, i.e. '., T. 1, .

2. In symmetrical operation the synchro generator can be simplified as an one

-order inertial link.-

3. The dynamic characteristics of the a.c. exciter (tk, T) have rather little

effect on the maximum surge current of the synchro generator at sudden short

circuit.

4. In consideration of the non-linearity of the magnetic circuit in the synchro

generator, it is verified that the inductor flux *L and the capacitor charges qc

are more suitable than iL and uc to be taken as the state variables.
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TECHNICAL EXCHANGE MEETING ON RELAYS AND CONTACTORS OF THE
AERONAUTICAL SOCIETY OF CHINA

The China Society of Aeronautics and Astronautics held a meeting

entitled "Technical Exchange Meeting on Relays and Contactors" in

Zunyi between March 12-17, 1982. The meeting was organized by the

315th Factory of the Third Machinery Department. The delegates attend-

ing the meeting included 73 people from 35 organizations from the Third

Machinery Department, the Fourth Machinery Department, the Seventh

Machinery Department, the First Machinery Department, the Air Force

and the Navy.

The conference received over 30 papers and technical reports.

17 were presented in the conference and over 10 were read in group

meetings. The papers and reports covered a wide range of areas.

Primarily, they are the results in theoretical design, new product

development and exploratory directions in the relay field, such as the

development of the computer assisted design and verification of the

dynamic parameters of a magnetic relay system, the complete verifica-

tion of the JKM sealed relay series, the 10 A 4 circuit magnetic main-

tenance relay, the 0.5 A 2 circuit miniature magnetically maintained

relay, the square TO-5 transistor tube case sealed relay, and the

spherical TO-5 relay as well as the development of new silver oxide

contact materials.

During the meeting, the delegates conducted a panel discussion on

the problem of the developmental direction of the relay. It was unan-

imously agreed upon that aeronautical relays and contactors should

develop in the following three areas: (1) the maneuverability of

attack aircraft, (2) the modernization of aircraft control system and

engine control; and (3), the development of new aircraft power sources.

In summary, efforts will be continued based on bigb reliability, high

sensitivity, high velocity, low load capability, low power assumption

and miniaturization.

Finally, the meeting suggested that the next technical exchange

meeting be held in 1984.
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ELECTRONIC CIRCUIT ANALYSIS LANGUAGE (ECAL) 81

Chen Chenghang*
Northwestern Polytechnical University

ABSTRACT

The computer aided design technique is an important
development in computer applications and it is an import-
ant component of computer science. The special language
for electronic circuit analysis is the foundation of com-
puter aided design or computer aided circuit analysis
(abbreviated as CACD and CACA) of simulated circuits.

Electronic circuit analysis language (ECAL) is a com-
paratively simple and easy to use circuit analysis special
language which uses the Fortran language to carry out tne
explanatory executions. It is capable of conducting dc
analysis, ac analysis, and transient analysis of a circuit.
Furthermore, the results of the dc analysis can be used
directly as the initial conditions for the ac and transient
analyses.

The ECAL language describes the circuit by using input
statements which are familiar to electronic circuit engin-
eers. As for the allowable elements, in addition to the
regular linear elements, such as resistors, capacitors,
inductors, current sources and voltage sources, nonlinear
elements, such as diodes, transistor triodes and nonlinear
resistors, are also permitted. Hence, it is capable of cir-
cuit analysis for both linear and nonlinear circuits.

The ECAL language uses very simple output statements to
control the output form of the resultant analyzed data. It
may be tables or figures, depending on the various needs.
Therefore, it is a very useful analytical tool for engineers.

INTRODUCTION

Computer aided design is an important aspect of computer applica-

tions which is also an important milestone in the development process

of computer applications from elementary to advanced stages. As a

branch of computer science, the computer aided design technique is a

*Received November 1981
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special technique which is the simple application of the computer to

a process or part of the design work. Even for a product, in spite

of the fact that its design has been completed by a computer from the

beginning to the end, if the program used was compiled specifically

for the design of this product, it is still not possible to claim

that the computer-aided design technique was adopted. In other words,

computer aided-design technique has certain conditions as its label.

These conditions are: 1) there is a suitable special language for

this type of problem; 2) there is a data bank with various computa-

tional methods and applications data; 3) there is a combined software-

hardware system with a certain dialog capability between man and

machine to allow the designer to interfere with the work of the com-

puter at any time. This allows the man and the machine to do their

best to complete this task fast and well.

The electronic circuit analysis language ECAL was developed as an

important component of the computer-aided design technique of electron-

ic circuits. By taking into account the convenience of use for the

circuit designer and the feasibility of a man-machine dialog, its

input statement form is simple, which is consistent with the custom

of the circuit analyst. Therefore, it is easy to learn and convenient

to use.

The electronic circuit analysis language ECAL is a comparatively

simple and easy to use language for circuit analysis which uses the

Fortran language to carry out the explanatory executions. It includes

a set of statements with simple structures. The statements have the 82

capability to describe the circuits. They also have the capabilities

to designate the analysis range and the output form. In addition,

they are also able to control whether the analysis should be repeated

or to change the element parameters. It is capable of carrying out dc

analysis, ac analysis, or transient analysis of a circuit. Furthermore,

the results of the dc analysis can be directly used as the initial

conditions of ac or transient analysis to switch into ac or transient

analysis.
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I. BASIC CHARACTERISTICS

Because ECAL uses the FORTRAN language to compile the explanatory

program, it can be operated on any computer with a Fortran compiler.

Its symbol group is a subgroup of theFORTRAN symbols. Its data for-

mat also agrees with that of the FORTRAN language.

The symbols are formed by the 25 capital alphabets of the English

language and the 10 Arabic numerals from 0 to 9 and special symbols,

such as -+" -" ., and a blank space.

The statements of the ECAL language are also composed by using

cards just as in FORTRAN. However, each statement has only one line

which corresponds to one card. There is no continuation card.

The foundation of electronic circuit analysis of the ECAL language

is the nodal point Lethod. Between nodal points, there are branches

to create the connections. Each branch is composed of a sourceless

element and several independent voltage sources, independent current

sources and correlated current sources. Figure 1 shows a standard

branch circuit formed by a sourceless element, independent power

source and correlated power source.

The entire analysis is carried out

on the basis of the standard branch.

The allowable elements are resistors,

capacitors, inductors, independent

voltage sources, mutual inductors, + ,

voltage controlled current sources II
(abbreviated as mutual conductance),+

current controlled current sources

(or called the current amplification

coefficient), semiconductor diodes, F I

semiconductor triodes and nonlinear

resistors.

The ECAL language uses a bending line method to describe nonlinear

elements. The nonlinear resistor N can be used to describe a non-
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linear element, such as a tunnel diode, field effect transistor,

voltage stabilizing transistor, operational amplifier, etc.

There are seven output formats in the ECAL language. One is the

standard format. When the format is not specified, this format is

automatically used. It tabulates voltage at each nodal point, voltage

and current in each branch, and the voltage and current of each ele-

ment in a table form. If it is an ac analysis, it also provides the

power of each branch and element. Obviously, this method may involve a

huge amount of output data especially for circuits with more branches

and nodal points or under'the condition that the analysis frequency

or the number time interval points is high. For this reason, there

are three more table output formats with six nodal point voltages,

branch current, or element voltage of interest as well as three curve

output formats with three nodal point point, branch current, or ele-

ment voltage of interest.

II. APPLICATION RANGE

The first application of ECAL is dc analysis. It can be used to

analyze the working condition of the various serial and parallel vol-

tage regulators at the various stages of different dc, ac amplifiers.

It can also be used to analyze the amplification factor of a dc ampli-

fier as well as the steady state voltage, current gains of the medium

frequency equivalent circuits of ac or pulsed amplifiers.

In the dc analysis, originally it does not treat the energy stor-

age elements--capacitors and indicators. However, in order not to

destroy the completeness of the circuit, as well as to obtain the work- 83

ing points from dc analysis before ac or transient analysis, therefore,

inductors and capacitors are allowed in the input. In the computation,

the inductor is replaced by an 0.1 Q resistor, while the capacitor is

replaced by a 10 M 9 resistor instead. Consequently, it allows the

input of the dc insulating capacitors, filtering capacitors or compen-

sating inductors of a multi-stage amplifier into the computer without

modification. In the computation of dc working points, the explanatory

program automatically will use the aforementioned resistance values
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instead. The computation of the working point will not be affected.

Another application of the ECAL language is ac analysis. It is

capable of conducting frequency characteristics analysis on various

wide band, narrow band amplifiers and filters with and without sources.

For the AC analysis, the explanatory program carries out the analysis

based on small ac signals. It is usually believed that nonlinear prob-

lems do not exist for small ac signals near the working points.

Therefore, for a working point determined i. the dc analysis, if the

circuit is not redescribed after switching to ac analysis, a linear

analysis will be carried out for the corresponding parameters of the

nonlinear elements determined by that working point.

One important statement in ac analysis is the frequency range

statement. It indicates the frequencies to be analyzed. Starting

from the minimum value, it is increased algebrically or geometrically.

After reaching or exceeding the maximum value, it is stopped. Usually,

for a narrower analysis range, it is possible to use an equal increment.

Thus, the results plotted form a linear coordinate. If a wide fre-

quency range must be analyzed, such as the frequency characteristics

of a wide band amplifier which is usually from several tens Hz to

several tens mega Hz, then it is not suitable to use a linear coordi-

nate or equal increment method. At this time, it is more suitable to

use the common ratio increment method. Its pattern corresponds to a

semi-log coordinate.

The ECAL language can also be used to conduct transient analysis

on circuits and systems. Usually, a transient analysis is always

done with respect to a specified input signal waveform. For example,

the output waveform, when the input signal is an impulse, is called

the impulse response. When the input signal is a unit step jump, the

output is called a unit step response. These are very important output

results in transient analyses. In addition, sometimes we are interest-

ed in the response of the system or circuit to a certain input waveform.

For example, a ramp waveform (linearly increasing waveform) and expon-

entially increasing waveform, etc., are commonly used. The ECAL lan-

guage provides the feasibility to describe the input signal which is
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also comparatively simple. It involves the use of an input state-

ment INPT. It uses the positions of four coordinate points to provide

the variation of the input signal. Thus, it is possible to describe

a step, a ramp, a square wave, a trianguar wave, a sawtooth wave and

a trapezoidal wave. It is also possible to use three segments of

straight lines to replace an exponential or logarithmic curve approx-

imately.

III. PROGRAM FLOW CHART

In order to suit the batch process method [51 of the operating

system of the Felix C-256 computer presently in use, the explanatory

program of the ECAL language has also adopted a batch process form,

i.e., several circuit analysis jobs can be processed at the same time.

Each job is not mutually correlated. A job not only can perform a

dc analysis, but also an ac or transient analysis. It is also possible

to change the element parameters repeatedly. This format can be con-

verted into the man-machine dialog format easily with user teletype

terminals or CRT-keyboard terminals.

The explanatory program can be approximately divided into three

parts: the main program--reading in the headings and the electronic

circuit descriptive statements, filling out the table of elements and

controlling the process of analysis; and two subroutines--calculating

and providing output results of the dc, ac and transient analyses of

the circuit, respectively.

The program flow chart is shown in Figure 2.

IV. EXAMPLES OF THE ANALYSIS

A low frequency amplifier, as shown in Figure 3, has 22 branch

numbers and nine nodal point numbers. The nodal point number is circled

to distinguish from the branch number. The 18th branch resistance is a

negative feedback resistance. The circuit analysis program is shown

in Table 1. The first execution statement EXEC carries out the dc

analysis to calculate the working point. Then, the dc power supply

132

- -r-- -- -7-



w46

as elks&

44

~~pff~~dT4 aft ptt.Wa

g1~Sk~t044 apo, I~t

A-rt5 iefa

33 fA rq1330

4 -V.,



KEY TO FIGURE 2 (page 133):

1--start; 2--initial job statistics; 3--read headings; 4--is it a
blank card; 5--yes; 6--no; 7--yes; 8--is the first part of the special
identification code ENDJ; 9--no; 10--PRINT NJOB and headings; 11--
clear working area and element table; 12--read one card; 13--is it
ENDJ; 14--yes; 15--stop; 16--yes; 17--is it FNSH; 18--no; 19--is it
TIME; 20--no; 21--is it FREQ; 22--no; 23--is it PRNT; 24--no; 25--
is it PLOT; 26--no; 27--is it INPT; 28--no; 29--yes; 30--yes; 31--yes;
32--yes; 33--yes; 34--note time parameter; 35--note frequency para-
meter; 36--note print type; 37--note plot type; 38--note input signal
oarameter; 39--is it MODF; 4 0--no; 4 1--is it four blank spaces;
42--no; 43--is it EXEC; 44--no; 45--none of the above. This card is
wrong. PRINT "THIS CARD IS WRONG"; 46--yes; 4 7--yes; 48--yes;
49--note number of times of value charges; 50--enter the elements
according to the type into the element table; 51--check for mistakes
in the input statements and the correlation matrix; 52--yes; 53--
situation when printing error occurs; 54--fill the matrice A; 55--no;
56--yes; 57--no; 58--no; 59--yes; 60---call subroutine DTANR; 61--
call subroutine ACANR

V is removed and a 5mV ac voltage signal is added. At R = 10 MQ,
17 18

it corresponds to the situation that the negative feedback linkage is

broken off to obtain the frequency characteristic curves. Then, R1 8  86

= 20 KS1 is used to obtain the frequency characteristic curve with the

feedback. The range of analysis is from 1 Hz to 1 mega Hz.

The circuit for a single-shot trigger is shown in Figure 4. The

trigger pulse is added to the 21 branch. Different triggering capa-

citance has an effect on the output waveform. Here, a value change

statement is used to change C1 3 . The response curves corresponding to

C1 3 = 4000PF, 8000 PF and 12,000 PF were calculated. The trigger

pulse is a square wave, 20 microseconds wide. The amplitude is four

volts. The program is listed in Table 2.
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D 12

4 C 11, +21oo VI? ,.V
loop loop

2000 T2plo

R Cit.. D2sV1  2000 
1 47k looP~

loNI i 20k

09 3 K'MEMMI&1

Fig. 3 Circuit diagram for a low frequency amplifer

Table 1 Program of the analysis of a low frequency amplifier

THE ANALYSIS OF A LOW FREQUENCY AMPLIFIER

R 1 0 1 200

C 2 1 2 5E-6

R 3 2 9 2E5

R 6 3 0 200
R 7 9 4 100

C 8 4 S SE-6

R 9 5 0 4.7E4
R 10 5 9 IES

C 13 6 0 1E-4

R 14 6 0 1000

R 15 7 9 2000

C 16 7 a 5E-6

R 17 0 9 0.01

V 17 9

R I1 3 1 E7
C 19 2 3 1E-1O

C 20 4 0 2E-II

C 21 5 6 1E-10
C 22 7 0 IE-1O
T 4 S 2 4 3 30 o .6 s0 2T5

T 11 12 S 7 6 300 0 A n 2 ES

EXEC
V 1 SE-S

V 17
FREQ* 1 tE7 I •7s9
PLOT S s 9 -i8o is0
EXEC

R 15 8 3 2E4
PLOT I s a 9 -15 0 1 A 0

EXEC
FNSH
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C, I loop

S -- I- -- -,,
is 17

IN

Fig. 4 Circuit diagram for a Single-shot trigger

Table 2 Program of the analysis of a singleshot trigger
THE AN.LYSIS OF A SINGLE-SHOT TRIGGER

C 2 2 5 1E-1O

R 1 1 2 2E+03

R 3 2 5 1.5E+04

R 4 1 4 3E+04

R 5 1 6 2E+03
k 6 1 0 5E+0

% 6 -12E+00

D 7 7 6 IE+oi
R a 7 0 4 3E+03

C 9 4 7 IE-09
) 10 4 3 1E 0
D 1 4 A IE+ 0

R 12 a 0 2E+04
MOD FC 1 3 a 9 t 0 E - 0 9 1 2 E - 0 8 4 0 E - 0 9

T 4 1 5 3 2 0 IE+03 6. 5E-01 1.5E+02 1E+05
T i8 19 6 1 7 IE+03 6.5E-o1 1.5E+02 1E+05

R 20 5 0 3 .62E+04

V 20 6h100

R 21 0 9 5E+O0
[NPT 21 0 i 20 21 0 4E.+o 0 4E 00 a
TIPME 0 tE-o4 IE-06

PLOT 1 7 4 8 -1E+O I+ 0 2 E 0 1

F N S i
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ELECTRONIC CIRCUIT ANALYSIS LANGUAGE(ECAL)

Chen Chenghang

(Northwestern Polycchtical Uuiversily)

Abstract

The computer-aided design (CAD) technique is one of important develop-

ments in computer application. CAD technique has already become an important

branch of computer science. Special language for electronic circuit analysis is the

foundation of computer-aided circuit design (CACD) and/or computer-aided cir-

cuit analysis (CACA).

Electronic circuit analysis language (ECAL), a special language for circuit

analysis, is comparatively simple and convenient for engineering application.

Statements of ECAL are executed explanator:ly by FORTRAN language. So far,

ECAL can be used to make DC, AC and transient analysis of a circuit, and

the results of DC analysis can be regarded directly as initial conditions for AC

and transient analysis.

Both linear and nonlinear elements can be taken into account in ECAL.

Linear elements may consist of resistors, capacitors, inductors, mutual inductors,

independent current sources, independent voltage sources and dependent current

sources under voltage control or current control. Nonlinear ele'ments nivy include

diodes, transistors and nonlinear resistors. Therefore, this language is suitable

to the analysis of linear circuits or systems as %ell as nonlinear ones.
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AN EXPERIMENTAL INTERACTIVE COMPUTER GRAPHICS SYSTEMS
FOR FREE-FORM SURFACE DESIGN

Zheng Huiling, Wang Zhisheng, Lu Hongjia and He Tianbao*
Shanghai Aircraft Manufacturing Factory

ABSTRACT

An interactive graphics system for free-form surface
design is introduced in this paper. The system was esta-
blished on the basis of the cubic uniform B-spline theory.
In order to obtain better simulated results, the basic func-
tion with a quadruple knot at both ends was chosen. Its
major functions are as follows:

1. It displays the three-dimensional model on a screen
or a plotter. It also allows the three-dimensional coordi-
nate system to undergo real time transformation with respect
to the model.

2. Through the use of a method involving the fairing
of the curvatures of discrete points sequentially, the exter-
nal shape of the model is faired.

3. It provides two local modification methods for the
model surface and also ensures C2 continuity.

4. It permits the display of any arbitrary cross-section
of the model.

A computer aided shape design interactive system was
established using a DJS-6 computer and a model "751" optical
pen graphics display which was developed and constructed by
Sian Jiaotung University. Presently, it is taking its shape.
However, perfection and further development are continuing.
The B-splines method was chosen to form the curve (surface)
because of considerations in geometric intuition, ease of com-
putation and ease of control and modification. It is graphi-
cally called the "characteristic ployhedron surface design
method". A brief introduction to the major functions, con-
clusions and application examples was presented in this paper.

*received June 1981
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I. THE STRUCTURE AND DISPLAY OF THE CURVE (SURFACE)

With regard to the design of external shape, the use of a cubic

uniform B-splines method is very suitable. In order to improve the

end point characteristics, a basic function [1] with a quadruple knot

at each end was used (Figure 1). In comparison to a usual cubic

uniform B-splines curve, a difference only occurs in the two segment

of curves on the ends. In the middle, they coincided completely

(Figure 2). It has very good extrapolation conditions on the front

end which satisfy

and (O )-3( 3 -)+6(,,- ,) (2)

0.9"l .N

Fig. 1 B-4vAms vith a quadruple knot at each ead point

The rear end is similar to the front end. From equation (1) we can

see that the curve passes through the front end point. Furthermore,

it is tangent to the front (real) end. From equation (2) we can see

that usually i(O) is not equal to zero. Therefore, the method of 89

using polygon equi-distance extension to ensure that the usual cubic

uniform B-spline passing through the end points is superior.

V-W so 3

Fig. 2 The cormpo4ing B-splin curm

Key: 1--vortex; 2--knot; 3--the usual uniform B-spline
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From equation (1) we can also see that the conditions to be

satisfied at the end point are consistent with those of the Bezier

curve. Especially when only one segment of curve exists (four vert-

ices), this type of curve rigorously deteriorated into the Bezier

curve. Therefore, this system permits the combined use of both struc-

turing methods.

For the convenience in use, a matrix expression of this type of

curves under various conditions is derived from the deBoor-Cox intera-

tion equation. For example, when m>8, the first two segments of

curves can be expressed as:

- 1 7/4 -11/12 1/6 VI

3 -9/2 3/2 0
3,s fs l i  3 0 0 o V3

1 o o o (3)
-1/4 7/12 -1/2 1/6 I(

S 3/4-5/4 1/2 0

-3/4 1/4 1/2 0

1/4 7/12 1/6 0

The last two expressions are

-1/6 1/2 - 7/12 1/4 V -41

s 1/2 - 1 1/2 0 V-3!;-.4( S )=S'S'S13'
-1/2 0 1/2 0 .

, /6 2/3 1/6 0 V..,

-1/6 11/12 -7/4 1

1/2 -5/4 3/4 o 0 .

-1/2 -1/4 3/4 0 V..,

1/6 7/12 1/4 0 '

140



The middle segments are consistent with the usual cubic uniform con-

dition

1/6 1 2 - ,'2 1/6 9 1
1 ,.: -1 I/I- 0 v,,,(5

s 0 ( 2 < i <m -4)
-1/2 0 1/2 0

1/6 2/3 I/6 0 V+, J

Summarizing the coefficient matrices under various possible con-

ditions (not limited by m and i), we discovered that there are only

18 different columns. In the program, these 18 columns are placed in

a 4 x18 group. Each time four columns are extracted based on the

various m and i values to form the coefficient matrix of the B-spline

of this segment. Thus, the number of operation is reduced and the

internal storage capacity is saved. This 4x18 numeral group is

-1 7/4 -11/12 1/6 -1/4 7/12 -1/2 -1/6

3 -9/2 3/2 0 3/4 -5/4 1/2 1/2

-3 3 0 0 -3/4 1/4 1/2 -1/2 (6)

1 0 0 0 1/4 7/12 1/6 1/6

1/2 -7/12 1/4 11/12 -7/4 3 -3 -1 1 'I

-1 1/2 0 -5/4 3/4 -6 3 3/2 -3/2 0

0 1/'2 0 -1/4 3/4 3 0 0 0 0

2/3 1/6 0 7/12 1/4 0 0 0 1/2 0

As for the curved surface, the range of boundary multiple knot

effect is shown as the shaded area in Figure 3. So long as the curve

is treated well, the curved surface problem is also naturally resolved.

Figure 4 is the characteristic polyhedron of an aircraft dis-

played by using the VVDP light button through the optical pn points.

The point curved surface display light button SUDP can display an

arbitrary projection of the curved surface.
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II. SOLVING FOR THE VERTEX AND DISPLAYING THE
CHARACTERISTIC POLYHEDRON

In computer aided design and manufacturing, the composite rob-
len is frequently encountered. It is necessary to start from the

known, discrete vlaue point to solve for the vertex of the character-

istic polyhedron. Subsequently, the B-spline curve passing through

the above mentioned point is created.

This system considered the vertex problem in depth, including

various shape value point numbers n(the effect of end point is diff-

erent), the three end points condition--free end, the usual cubic uni-

form B-splines of the known tangential vector or equal distance exten-

sion and various combinations of them. There are 26 situations in

total. For exmaple, when n > 5, the computation formula in solving

for the vertex under the condition that both ends are free ends is
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1t P1

8 15 3 V~J27~~ F
1 7 1

4 12 6 V3 P.

1 2 1

1 2 16 3 6 V4  P4

6 3 6 V S

S .". (7)

3 6 V_1

1 7 1

6 V P. 
15 8 2.,

In equation (7), the second row and the second last row come

from the knot condition (choosing s=3 , of the first and last

segments. At this time, m = n. Let us take the tan-

gential vectors 51 and 52 of both ends, then the two rows should be

changed to:
-3V,+3V3 =b,, -3V..,+3V..' 1  (8)

In addition, when m - n + 2, which corresponds to the equal dis-

tance extension condition, the first two rows should be changed to:

piP, V2V. +V,O

The last two rows are similar with m = n + 2.

The vertex of a curved surface can be obtained through the shape

value point after two such processes.

92

This system can also assure that the B-spline obtained from the

vertex contains a pre-determined straight line segment, including the

pre-assigned starting and end points. Furthermore, a C2 continuity

exists there (C2 is a second order continuity). For a curved surface,

this means that it is allowed to contain a pre-appointed plane.
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III. PARTIAL MODIFICATION OF THE CURVE (SURFACE)
AND THE DISPLAY OF THE MODIFIED POLYHEDRON

This is a power means of a computer aided external shape design

system with man-to-machine dialog capability. It should be compara-

tively more effective in solving this problem by using the partial

support characteristics of the B-splines.

Two types of partial modification capabilities were arranged in

this system:

1. Direct modification of the vertex of the polyhedron. Through

the optical pen and the keyboard to send in the corresponding modifi-

cation information--we can change the vertex number, point number and

its coordinate value until the shape is considered to be satisfactory. 93

2. Modification of the vertices of the polyhedron by using a new

curve (surface) value. It is required that the new curve surface

generated after the modification of the vertices must pass through the

newly appointed points. Furthermore, C2 continuity must still be

ensured.

Because basically cubic uniform B-splines are used, the principle

of modification is very simple. Using the curve modification in Figure

8 as an example, Pc,, A,, 1E, are the new given points. Our treatment

is to discard the shape value control at B and F (which is frequently

near a round angle transition; therefore, it is acceptable). The new

vertices VC'1 Vo', Vs'. are solved simultaneously.

1 + 1 -

1 2 -
6T VC+ -3- VI+6Vl ;D

6 V
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Fig. 8 Determination of the vertices by new given points

M~ 9 TV- f-tW ei AS
Fig 9 N %,misnhor, inserted in a winv,

Because only three vertices Vc,,o,, V' are changed, therefore,

the new curve determined by the polyhedron ...... VI", , V ......

can satisfy C2 continuity. Only in the PfPf segment, it deviates

*from the original curve. Furthermore, it rigorously passes through

Ac,!D'o,1 ; therefore, it agrees with the modification requirements.

Moreover, the computational work load is very small. Similarly, it

can be used on a curved surface. The corresponding surface knots can

also be modified locally in order to save the computational time. it

should be pointed out that the disadvantage of this treatment is that

the convex boundary shape under surface modification cannot be satis-

fied (the modification zone is limited to above the rectangular region

of the parametric plane). We computed an example which involved the

insertion of a large hemisphere on a wing. After modifying 20 points,

including the transition region between the hemisphere and the wing,

we obtained very good results (Figure 9).
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IV. CURVE FAIRING 9J4

The fairing of the B-splines can be reduced to the fairing of

the corresponding characteristic polyhedron vertex sequence [2]. We

adopted the curvature method introduced in that book to carry out

fairing with specific reference to the bad points of the vertex seq-

uence of the polyhedron. Its basic principle is that the ordinate of

the vertex must be modified in order to ensure the quadruple differ-

ence of the ordinate with respect to the arc length at that vertex is

zero (AL'2y 0.9,

The so-called curvature Ki of point P4 is the curvature of the

circle passing through the three points j;,. p,. p,.

K = 4 " 2 sillqi

t~,,7 -qp--(*

Fig. 10 The curvature of a SPecific Circle of P

where A is the algebraic area of the triangle formed by .
.4.

Assuming that Pi is determined to be a bad point in Figure 11, then

the modification quantity pi has the following computational formula:

i = LD,
9i

r1 1,,8 2 1 Asin 10,,,+sin *I +X ' + i , (11)

(Ki. -K ilS , - ,i- ,." ,
Dim - -(sequence deviation of the

L , 4+lI the curvature)
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Equation (11) was described in [2]. Its detailed proof, program

flow chart and effectiveness were given in [5]. From the effective-

ness, it is comparatively ideal. Furthermore, because the computation-

al process does not involve the superpositioning of curves, the fair-

ing speed is fast. As for a spatial curve, it is converted into two

projection curves to be treated separately. 95

V. THE COMPUTATION AND SECTION DISPLAY OF AN ARBITRARY
CROSS-SECTION

In order to rigorously control the external shape, especially

some key positions, this function is also mandatory. Due to the

inclination of the sectional coordinate system with respect to the sur-

face coordinate system, many complicated details are brought into the

computation of the section. In this system, the vertices and knots

of the polyhedron are transformed into the sectional coordinate system

based on the geometric invariance of the B-spline surface. Subse-

quently, the computation of the inclined sectional external shape is

transformed into the normal section (5-o) . Therefore, it is much

faster. Furthermore, it is more convenient for the digital con-

trolled plotting of the sectional shape, computation of the incline

angle and digitally controlled shape modifications. After the compu-

tation, the system can automatically transform the vertices and knots

back to the surface coordinate system to be used for the next sec-

tional computation. The sectional plane parameters are sent Into the

system by the keyboard. The step length of the extrapolation on the

section line can provide the LR of the sectional coordinate system or

the parametric increments AU or AW. It is selected by the user.

Figure 12 shows the inclined section of a wing bulge (see Figure

9). The step length chosen is AW = 0.2.

VI. IDENTIFIED PROBLEMS

In addition to the aforementioned light buttons, functional keys,

the present system also includes over 20 optical buttons and function

keys such as picture change (magnification, reduction, displacement,
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Fig 12 The section in a sectimnal creordinate svstem

rotation), automatic arrangement of the picture, graphics output and

three-dimensional coordinate system transformation and three-dimen-

sional surface symmetry, etc. The function mentioned above cannot
meet the actual requirements yet. There is a lot of work to be done.

For example, they include the further modification of the GSP software

system, the establishment of a fast algorithm for the display of curve

(surface), the formation of a transition surface, the continuity prob-

lem of the curve (surface), the surface plate problem of a non-quadri-

lateral surface...and other applied programs, such as the connection

between the strength and aerodynamic computation programs.

In addition, the present hardware conditions are far less than

those required to satisfy the requirements.
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.AN EXPERIMENTAL INTERACTIVE COMPUTER GRAPHICS
SYSTEM FOR FREE-FORM SURFACE DESIGN

Zheng Huiling, Wang Zhisheng, Lu Hongjia, He Tianbao

(Shanghai Aircraft Manufacturing Factory)

Abstract

An interactive computer graphics system for free-form surface design is

described in this paper, and application of cubic uniform B-splines is suggested

as the fundamental method of surface modeling. In order to obtain a better appr-

oximation, the basic function with a quadruple knot at each end point is utilized.

In respect of curve construction, there are only 18 columns in each of va-

rious coefficient matrices for the different numbers of vertexes and the different

sequences of curve segments, and the matrix expressions of curves are also gi-

ven. As a result, real benefit is gained for reducing the storage capacity and

increasing the computational speed. In the inverse calculation for the vertexes

26 various composite cases are summarized, which permit to maintain the ori-

ginal straight line segments.

It is proposed to fair the given curves by fairing the curvature sequence

of the discrete vertexes, and preliminary practical experience is also given.

This paper offers a simple and fast engineering algorithm for modifying of

the surface data in a local region, while the surface still remains in second

order continuity.

In the experimental system there are 20 functional buttons (embracing the

functions of coordinate transform, 3-dimensional symmetry, construction of an

arbitrary section etc. ). A success has been made in surface modeling of aircraft,

automobile and ship.
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BEZIER PLOTTING THEOREM AND GEOMETRIC CHARACTERISTICS
OF CUBIC BEZIER CURVES

Shi Fazbong and Wu Junbeng*
Beijing Institute of Aeronautics and Astronautics

ABSTRACT

The geometric characteristics of the Bezier curve
have been studied in depth by P. E. Bezier using the fast
end curve El] and by Su Boqing and Liu Dengyuan using
simulated projection transformation C3-5]. The method
presented in [1] by Bezier to find the points and their
tangents on the Bezier curve using geometric plotting is
the Bezier plotting theorem. This paper analyzed the geo-
metric characteristics of plane cubic Bezier curves based
on the 2lotting theorem. It pointed out that the X, 1
(or X, p) shown in Figure 2 are a pair of invariant quan-
tities determining the geometric characteristics. The
complete plane diagram of X, u(or X, 5) was given (see
Figure 3). Some geometric cbaracteristics of the spatial
cubic Bezier curves were ftiscussed.

I. THE DERIVATION OF THE BEZIER PLOTTING THEOREM

The Bernstein expression of the ntb order Bezier curve is

" (la)

j.0

u.,( U )=clul( 1 - a (lb)

where is the cusp vector of the Bezier characteristic polygon, g.,,(u)whete
is the n th Bernstein basic function.

The geometric plotting method presented by Bezier in [1] to find

the points and their tangent on the curve is shown in Figure 1. We

called it the Bezier plotting theorem. It can be expressed in terms of

the following set of iteration equations:

" " P (2a)u")- , .,(u )' ,"( u) P = o. ,....

*Received October 1981.
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u ) (2b) 98

g-* - 1 ( c,(u ) n Uo.,( ) / - . 2d )

u ) (ii - I )(SC*(u)S 2 5'( ( ) -S0c"(u)SC'1;( u )) (2e)

Chang Gengzhe and Wu Junhen first provided the proof [2]. The follow-

ing can also be derived directly.

t 13

Rq I M MM t zier 0 KI. K AM ft
Fit I Application ol the plottinq theorem to determining points

and their tangents on the Hezier curve

Using .c-....+c..:1 and changing the index J, we can rewrite (la)
into - I I

EM ) c;.1 '( 1 -U ) U' ,+ c.- u'( I - . U

il-I U-I
- . c;...( 1 - U )' -'1C( 1 - U )-+ , . = go .,( . ) / 'i( . )
i-O j-O

where U )=( 1 - U )!l+ul.'z;+ u C,..-S,) -1,+uSj .j

Repeating the above process, we know that (2a)-(2c) are valid.

Using (Ib) to find its partial derivatives with respect to u, we get

V )- a (g..l( U )--g..,,( a ))
v:,( ) - n ( X - 1 ) (g..,,,.( 9 ) - 29.-,.j,,-(" ) + 9-,,,(" )

Again, finding the derivatives of (la) with respect to u, and using

the two above equations, we know (2d) and (2e) are valid. The higher

order derivative vectors can be derived by further steps.
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II. GEOMETRIC CHARACTERISTICS OF PLANPR CUBIC

BEZIER CURVES

The eauation of a plane cubic Bezier curve is

where T,- 0, 1,2,39 ItS,31{X, -- - , 0), j 1,2,3 correspond to the

four co-planar vertices and three vectors of the characteristic tri-

angle, respectively. If the lines coincide, then the curve becomes

a straight line. No discussion will be necessary.

The geometric characteristics of a plane cubic Bezier curve

include whether a single point (a cusp or a double point) or an in-

flexion point (an inflexion point or two inflexion points) exists or

whether the curve is convex or not.

We used the two values X,.i as shown in Figure 2 to express the

geometric characteristics of a plane cubic Bezier curve. Once the

observed X,P are determined, the geometric characteristics of the curve

are determined. It is not related to the amplitude and direction of

the vector of the sides. This indicates that X, are a pair of invar-

iant quantities or geometric characteristic control parameters which

determine the geometric characteristics of the plane cubic Bezier

curve.

Let A,,-(a,, a,x=l x, -dA - T, S.), then we get

y, Y, (4)

A,u, A,,- A,,

We are designating the parameters corresponding to the appearance 9

of an inflexion point and a cusp on the plane cubic Bezier curve as uI

and uc, respectively. The two parameters corresponding to the double

point are noted as uI and u2 . Then, the equations of inflexion point,

cusp and double point of the curve and their corresponding equations

of the plotting theorem are the following:
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Fig. 2 The A and j * of a characteristic trilateral

A13 (5)

inflexion point equat ior,' (,) x p'(u,)- 5, F' (,)4u5.u,E( 0, 1 )4 S0€ai (u,)S,CL (u,)

x S1 -(u,)Sicf- ((,) -  , . (6)

cusp equationP'(uc)-i, " ( 0, I )=o,'"(Uc)" '2 (C) (7)

double point equation

F(u,)- #(u). 0<u,<1 0 <)- , (8)
where the parameter region is unchanged. It is discussed separately

in the following:

1. Inflexion point equation: From equation (6), we can get
(A,. +A, 3-A,,)u2+(,,-2A,,)u, +A,- 0

Using equation (4), the above equation can be rewritten as:
(2 +IL- X)u,--(1 +29.)u,+ - 0 (9)

whenA - 9 + 2, we have F(,)6 S 3(4,)S,", (u,) S ,,"(,)St3  (u,)

The curve becomes a single inflexion segment [6]. It is possible to

conduct a simulated projection to transform it into a usual cubic

polynominal [3]. Equation (9) has only one root:

o(10)

In order to let u(O,1) , it is necessary to haveM>0 or tt<-I.

The curve has a single inflexion point at (0.1) as shown in Figure

example 1.

When khI+2 then

* -,.---+ 2_--_--__ ( 2 + - - - +
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The determinant L2-4IP(A-1)+1 has the following several

situations:

(1) A > 0, there are two real roots u,,U,' , however, they may

not all be on (0,1).

1) If .>O.X-1,rIso.X<I , then:

X >2+A 4,,<t'

whnp>O. l'.X<2+P at ai.'>,

)." 1 u,:= ]

wVien P =0. X. '- 1 Iq,], u,,- O

+ ii , 0 lC

when 1A<0, at
2 + Pu,.> <.

i.e., there is always a root outside (0,1). There is only one inflex-

ion point on (0,1) as shown in the diagrammatic examples 2-4. As a

special case, wheni,// a, 9 as shown in Example 5. Only

at this time the inflexion point parameters cannot be expressed by

A, u. It is possible to assumei,-kB,,k>0, then we can obtain the

following from equation (6):

+ . 96 1 (12)

1/2, k=l

We define that after putting them in sequence, the vector of one

side has a rotational angle with respect to the previous one of the

same sign and its absolute value is always less than 1800; the plane

polygon has an unchanged direction of rotation. Otherwise, its direct-

±on of rotation is changing. Then by summarizing the situation that

the curve has an inflexion point on (0,1), we find the necessary

and sufficient conditions for a plane cubic Bezier curve to have an

inflexion point on (0,1) are that: 9>0, X>10rL0, X<l, i.e., the

corresponding characteristic trilateral changes its direction of rota-

tion.
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2) If > o, I--<4 <l , then the two real roots o,, u,,'(0, I),

i.e., the two inflexion points (also called the double inflexion

point) must appear on (0,1). As a special case, when SS,1 /SS..

0 <A - X <I , then uj-P,,,,- 1/2 . When the extension of

the sides S0S2 and S3S1 intersects, i.e., when 0<L<X<1, there must
be a double inflexion point as shown in example 6. > 0, 1_- -<X<1

are the necessary and sufficient conditions for the plane cubic Bezier

curve to have two inflexion points on (0,1).

(2) When A = 0, there is a double root. From the following dis-

cussion on the cusp equation, we know that this is the

condition. The two inflexion points coincide with each other which means
it is a cusp as shown in examples 7-8. Therefore, we have

I

4 A P(13)

2 A-"l~-- ) 29 1 >

The necessary and sufficient conditions for the plane cubic Bezier

curve to have a cusp on (0,1) are: k
1

(3) A<0 i<I---, P , there is no real inflexion point.

From the following discussion on the double point equation, we know

that when A is above a certain lower' limit, the curve will have a

double point on O,l) or (0,1].

2. Cusp equation. Here we will directly find the cusp from the

cusp equation (7). From equation (7), we get:

S 1 3 (*~) S' 1 (') 5- __ -" - --US11
=410 - 2a + a0U)-+ , 2C(. -a) + j, (14)

29
We can obtainX -I- - >0.which is consistent with (13).

3. Double point equation. From equation (8), we get

we can obtain lC
1 2P±11 (15)

2(2 +P- )
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which is the two parameters u1 , U2 of the double point. The deter-

minant 3

If A - 0, it represents that the double point coincides itself.

We have fi.>o, " 211 This is consistent with1 +2'
equation (13) which shows that the cusp is the extreme case of a double

point.

1

If L<0 i---, A>0 , it indicates that there is no real

double point. As shown before, there is a double inflexion point.

1- >0 , there are two real roots. However,

only when both roots are on (0,1] or (0,1], the curve will have a

double point on [0,1) or (0,1] as shown in examples 9-11. By letting

u1 = 0 in equation (15), we get

= - (I- 12 2- ) / X 3 -
P --orl 23a-n32 - ) 0<1<1 (16)

V2

By letting u2 f 1 in equation (15), we get

=2 -3X + 3 o' 3(1- _P)+ + (3P---l
(l- _X) - 2 > I

Uj= _ A (17)3, 3-2 A

In a special case, when S o coincides with S3, uI = 0, u2 = 1, this

already belongs to a convex curve case. Therefore, the necessary and

sufficient conditions for a plane cubic Bezier curve to have a double

point on [0,1) and (0,1] are
(I- )< I
- 311 4<). 11',0<<

and

respectively.

4. Convex or not convex. The Bezier characteristic polygon is

convex when the directional plane is on the same side as the vectors

of the sides of the polygon and they do not coincide each other. The
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definition of a plane directional convex curve is shown in [6].

According to the definition, the plane cubic Bezier curve is a

convex curve provided that there is no cusp, inflexion point on (0,1)

and no double point on [0,1) and (0,1]. Furthermore, the tangent of

any end point does not intersect the curve itself on (0,1). There-

fore, the characteristic trilaterals shown in examples 1-11 and their

corresponding curves are not convex. When

39 a , 0 1~

or o<<3 ( i - )+V 3 (3&a1. 2 jL 1 ±> 1
2-

the characteristic trilateral is not convex and the corresponding

curve is a nonconvex curve segment without singular point and inflex-

ion point as shown in example 12. When x =+2.1 I£A2 , the char-

acteristic trilateral is convex; the corresponding curve is a single

inflected convex curve segment with a single inflexion point as shown

in example 13.

102

Summarizing the above, after eliminating the non-convex conditions

of the characteristic trilaterals and curves, the remaining conditions

are the convex trilateral and convex curve situations as shown in

examples 14-15. Hence, the sufficient and necessary conditions for

the plane cubic Bezier curve to be a convex curve are: X<O,A>j

or X>1, A<0 , i.e., the corresponding characteristic trilateral is a

convex trilateral.

5. The geometric characteristics of the plane cubic Bezier

curve. We summarized the above results to compose a complete plane

diagram of A, p as shown in Figure 3. From this figure, we can

clearly see the division of various characteristic regions. It might

be possible to use the pair of geometrically invariant quantities

i- X, A-I-I1A which reflect the "symmetry" of the curve as shown in

Figure 2. Figure 3 plots the two coordinate axes X and , which

form the complete plane diagram of , i. Using Figure 3, it is poss-

ible to very conveniently determine the geometric characteristics of
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where tbe numerator is a non-zero constant and the denominator is always

positive. Therefore, the curve will not have any point with zero

curvature. Let us introduce the direction of rotation: if (a1 11,a3)> 0
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then the characteristic trilateral is right handed; if , 0

then it is left handed. Therefore, we have the conclusion that the

direction of rotation of a spatial cubic Bezier curve is the same 10

as that of its characteristic trilateral.

Comparing to other forms of parametric cubic curve segments, such

as the Ferguson form, Hermite extrapolation form, parametric cubic

spline segment and cubic B-spline segment, the Bezier form (through

the characteristic trilateral) has the special feature of the most

intuition from the point of view of the geometric characteristics of

the curve. This is exactly what we hoped for in the practice of geo-

metric design. In the matrix expression, they can be mutually trans-

formed by a full order linear transformation. Hence, we can convert

other forms into the Bezier form to subsequently obtain the correspond-

ing Bezier characteristic triangles, to obtain the geometric charact-

eristics of the known curve segment.
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BEZIER' S PLOTTING THEOREM AND GEOMETRICAL
CHARACTERISTICS OF CUBIC BtZIER CURVES

Shi Fazhong and Wu Junheng

(Beijsug Jslate ol Aerowaulics and Aairosaiuics)

Abstract

In this paper, taking the plotting theorem as the point of departure, we

analyze in detail the geometrical characteristics of plane cubic Bezier curves,

including whether a cusp ( a cusp of class one) or one infletion point or two

inflexion points exist on the (0. 1 ), whether double point occurs on C ), I

or ( 0, I ) and whether the curve is -convex or not.

The geometrical characteristics of plane cubic Blzier curve can be deter-

mined uniquely by two parameters . , A or 1, 4(see Fig. 2)on the diagram(fig. 3).

The single inflexion curve in Fig. 3 represents the cases when the curve can

be transformed into general cubic polynomial. The single inflexion region indi-

cates the cases when the curve has only one inflexion point on (0, 1 )and

another is not on (0, 1).

We may obtain the parameter uc of cusp, ui of inflexion point and ui, us

of double point.

By using plotting theorem we can also make the conclusion that a space

cubic B-zier curve has not cusp, double point and its spiral direction doesn't

change.
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