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RELAXATION COMPUTATION OF TRANSCNIC FLOWS
AROUND WINGS WITH BLUNT LEADING-EDGE AND DISCUSSION
ON ITS STABILITY AND CONVERGENCE

Northwestern Polytechnical University *
/Zheng Yuwen and Luo Shijun

ABSTRACT

In this paper, the exact veloclity potentizl equation and
the exact boundary conditions were used around the blunt
leading-edge of a wing, and the velocity potential equation with
small perturbation in the transverse direction and large
perturbation in the longitudinal direction together
with its corresponding boundary conditions were used in other
areas to obtain the solution. Numerical example 1 was for a
rectangularwing with an aspect ratlo i=12, airfoil NACAQO1l2,
free stream Mach number M«=0.63, and attack angle «=2%. The
calculated pressure distribution of the root section was close
to the exact numerical subsonic solution (Sells, 1968). Example 2
was an experimental wing NACA EM A51G31 having airfoil NACA 642010
which 1s perpendicular to the 1/4 chord line with a sweepback
angle xl/u=M5°, A=3, taper ratio n=2, Me=0.4, 0.8, 0.9, and a=2°.
The computed results were very close to the experimental ones.

In thls paper, we establish the stability conditions of
the linear relaxation with improving iteration of the transonic
velocity potentlal difference equation with small steady pertur-
bation under the assumption of local linearization, and the
conditions for the convergence of the relaxation sclution to
the original differential equation solution. These conditions
more or less agree with the numerical experiments.

¥Received December, 1981.
**Numbers in the margin indicate pagination of foreign text,
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INTRODUCTION

The blunt leading-edge 1s a singular point of the classical
small perturbation equation. There are numerous treatment
methods in the literature. In Reference [1,2], the leading-edge
was avoided, i1.e., the leading edge was not taken as a mesh
point. Thus, the arrangement of the mesh had a large effect
on the calculated results. Reference [3], in the treatment of
the leading-edge, used the following equation:

J‘!‘r iy—’dx-ys(xr, 2 )—yt(xh z)
xp, ox

where xp and Xy are the chord direction coordinates of the

leading edge and the traliling edge; y* arethe vertical coordinates
of the top and bottom surfaces of the wing; and z is the span
direction coordinate. The integral on the left is calculated

by the trapezoidal equation according to the mesh used. Using

the above equation, it is possible to solve for J%%— at the
leading edze. 1In Reference [4], based on the mesh usei,
-§§L~=to.m was obtained at the leading edge using an

extrarolaticn method. This type of treatment is egulvalent
to the sharpening of the leading edge which has some arbitrariness.

In the first part of this paper, the leading =dge of the
wing was taken as a mesh point. Using the directional derivative
equation, the exact boundary condition of the blunt leading
edge was inserted 1nto the exact veloclty potential equation.
In other areas, the small transverse perturbation velocity poten-
tial equation and the small transverse pertubation boundary
conditions were used. Thils method avoided the shortcomings
of the above described method which 1is also easy to apply. .

The results of several numerical tests showed that: :
whether the linear relaxation of transonic small perturbation .




potential flow converges or not and the convergence speed (if it
converges,are related to the relaxation factor mg3’5] /2
Here we need to use theoretical analysis guidance. 1In the

second part of this paver, under the assumption of local
linearization, the stability of linear relaxation with improving
iteration was analysed wusing the von Neumann method. Furthermore,
the convergence of linear relaxation improving iteration was
discussed using the separation of varliables method for the
corresponding differential equation.

1. RELATION COMPUTATION OF TRANSONIC POTENTIAL FLOW ARCUND
WINGS WITH BLUNT LEADING EDGE

1. Basic Equations

Let us choose a rectangular coordinate system oxyz. The
x-axis is parallel to the wing chord and the z-axis is parallel
to the wing svan. At the blunt leading edge, the exact pertur-
bation vel city potential equation was used:

(B —4)Pu+ (B —0*)P,, + (6* ~ ') Pye — 200P,, — 25w P gy — 2V Py = 0 (1)
where

a’-al-*-—y-—;—l-(q’.-—u’—u‘—w’)

8=q,c08Q +P,, U=gsina+P, w=Q,

vy 1is the adiabatic 1index; q= and a= are the velocity and
sonic speed of the free stream; and (u,v,w) and a are the local
velocity and the sonic speed.




At a non-leading edge point, assuming that veloclty
perturbation components in the y and z directions are small
and that in the x-direction may not be small, then equation (1)
can be simplified as

(1 ~M*)Pust Dy +Ppa= 0 (2)

where

1 —Micsia— Y: M2icosa®,— L4 a:; Mio} 3
1 -Mi= ;- = p 3
1- y—-1 Micosa®P,— Yaq,l Mi®:

M is the local Mach number.
2. Boundary Condltions

Let us choose the coordinate plane oxz in the wing plane,
The boundary conditlon of the wing surface with the exception
of the leading edge can be simplified, under the assumption
of small transverse perturbation, as

®(%, %0, 2)=(guema +0,(x, £ 0, 2))—L—g_sina ()

Similarly, the conditions on the free vortex behind the wing can
be simplified as

P (%,+0,2)=0(x%,~0,2) (5)
P(%,+0,2)—P(x,—0,2)=P(27,+0,2)—P(x5,— 0, 2) (6)

The exact boundary condition at the blunt leading edge is

e (7
where x ~ the sweepback angle of the leading edge of the wing.

n - the normal direction of the leading edge (Figure 1).




Inserting equation (7) into the directional derivative equaticn
of the leading edge, we get

(8)

vl-wlsi“x —q.c“am‘x }

P, = P,c08X +g.cosasinXcos X

where t 1s the direction of the leading-edge (Figure 1).

By isolating the boundary z A+1 h A-1 K

condition of the leading edge

of the root of the wing, equation i1

(8) can be transformed into o

P,= —quc08C } , s 1 Nn
(3

w" o
»
Similarily, the boundary
w
condition of the leading edge Figure 1. Wing rlane.
of the wing tip is also

equation (9).

The boundary condition of the far field of the wing can
use the small perturbation condition which is shown in §1.6 of
Reference [6].

3. The Difference Equation

Let us choose the sequential symbols for the mesh nodal
points in the x,y,z directions to be 1,J,k. At the blunt
leading-edge of the wing, the first order partial derivatives
fx and Pz are calculated from equation (8) in which Pt uses
the central difference scheme. This means that it is assumed
that at the leading <dge it 1s subsonic:

P, = Aﬂ-lw'oulgﬂ +(Aﬁ - A’,i)q’hhl- Aﬁwl-lohl-L ( 10 )
Ati AL (AL + AL) {11)
where Al = Ax;/sin X y  BXy and Ati are the step lengths.
5
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The first order partlal derivative Py s similar t0<@t, is
calculated using the central difference equation. The second
order partial derivatives can be calculated as follows:

a2 (o_ Ruya=%Piyyn )
Pee Ax"l (w. A‘l-l

-2 (q’:.mn-q’l.m _ )
P Az Az -

P, =2 wi-hl-!AXI-L_wi-hl(Ayl-l+Ay’_)+q,"’-lLA)_". )

” Ay Ay Ay +Ay:) (12)
Py A-tll.l (wl—mlllﬂlhl)
wl!’ A_];":.(‘p!l'th.—wl"-llh.)

1
Py - XZ*( q’.\mmn - ‘P,Im..)

where Py and ¢, are computed based on equation (8). Other first
order partial derivatives, similar to ¢., are calculated using
the central difference equation. A 1 and b, are the step lengths.

’

J

With the exception of the leading edge, the small transverse
perturbation velocity potential equatvrion (2) is used. The
Murman-Cole mixed difference format is used in the difference
equation. On the surface of the wing and the upper surface
J=jw+o of the free vortex:

2 @ » [} _q’iv +Q 0
wnlhl.n.h- 3y, (“'!""&};“‘ et "W,Ii.;..o.b) (13)

Simllarily, the expression for the lower surface can be
written.




4. Linear Relaxation and Iteration Computation

The set of difference equations is solved using the linear
relaxation and improved iteration method. The details of the
method will be shown in Section II. Numerical example 1 is
a rectangular wing having airfoil NACA001l2 with an aspect ratio
of A=12, Choose a mesh which 1s 31x13x33. The wing chord is
equally divided into 20 blocks and the half wing span is divided
into 29 blocks. It takes 20 seconds per iteration on the /4
655 computer. Mw=0.63, o=2°. By choosing a relaxation factor
w=1l.0, where the number of iteration reached n=1045, we obtained

maxi®{..— PR =0.15x10" , Which is noted as /49/

The pressure distribution of the wing root section obtained is
very close to the exact numerical subsonic solution[l] as shown
in Figure 2.

-1.2
t"“c" s v xxixi
Sells(6)

=0.4

0.4

] 1
0.8 %.5 W |

Figure 2. Pressure distribution of the root section -
of a rectangular wing.

Key: 1) calculation in this work.




Example 2 is the experimental wing in Reference [81.
The airfoil perpendicular to the 1/4 chord line is NACA 64A010.
Xl/u=H5°, A=2, n=2. Choose a mesh of 31x13x19. There are 15
sectlons along the half wing span. Each section has 11 points.
It takes 10 seconds for each iteration on the 655 machine.
The computational results are shown in Table 1. The
computed results agree with the experimental ones (8] as
shown in Figures 3-5. The calculated resulits are better than
those reported in Reference [4]. 1In Reference {4], the small
perturbation velocity potential equation and ix=..io,z

were used at the blunt leading-edge.

mable 1. Computed cases of NACA RM A51G31 Wing.

M. a E o (ML) o (M>1) " ‘ a®l

0.4 ! 2 1 1 ! 258 ‘ 0.7x10°3

0.3 i ‘ 2° 0.9 0.7 481 0.13x10°%

0.9 l 2 * 0.9 \ 0.7 667 [ o.1sx107
8




2=19.5%

1=8.6%

©

O]
2=55.5%

=38.2%

Figure 3. Pressure distrlbution of NACA RM A51G31 wing
o =0.U, a=2o.
Key: 1) computed; 2) experimental [T7].




G, . l — #x C,
-0.4 X av sWD

£=19.5%

C, h—“--- c:
0.4 »

0.4]

e=3g.2% 2=55.5%

Figure 4. Pressure distribution of NACA RM A51G31 wing
Mo =O.8, q=2o_

Key: 1) computed; 2) experimental [7].




-0.4 9. AY KW(T)
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®

2=8.6% g=19.5%

()

£=38.2%

\ X (o) .. §A)
£=70.7% 1=83.1%

Figure 5. Pressure Distribution of NACA RM A51G31 wing
Me=0.9, a=2". 1

Key: 1) computed; 2) experimental [7].
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2. DISCUSSION ON THE STABILITY AND CONVERGENCE OF LINEAR
RELAXATION AND IINPROVING ITERATION

1. Discussion on Stability

In order to analyze the stabllity of the difference equation
of the linear relaxation improving iteration of the small trans-
verse perturbation veloecity potential equation (2), it is
assumed that the coefficient 1=M2 of the ® xx term in equation
(2)1s a constant, i,e., local linearization. Thus, at the
local subsonic point and the local supersonic point, equation
(2) can be transformed into

Pest Pyt Puy= 0 (1)
"w::+q,’+¢n= ¢ (15)

By choosing the relaxation line which 1s parallel to the y-axis,
the difference equations of linear relaxation and iteration
of eguations (14) and (15) are

PR = 2000+ Pllr | Bl m 200 a9 n.n+‘9,.1.¢.;*2'v(" P g (16)

Ax? Ay Azt

6(7, 1 zq’::; 1)5l+ ¢::%'}-.
B 4 1 I b Y + A

1 (913
where o :)‘?m-t"’(l .---5-)%.:.: (18)

P, ik

Substituting (18) into (16) and (17), we get

}:',f’,,.—‘-—-“’fl-l“ ) ( 1 _____)0(7;}24-% 1.].0 +0 1=0 (19)
- (%)
Lomat(1 - )":‘7".*2“’5-’“»‘**"’"""‘ y=10
- Ax‘
where "y r
L =2t O ..>+(1 --L)(wmn,.-zw,‘.,.’+w}.‘,!}..)
( 1=

T S T W z(l —-———)v.‘.,'zw.....-.

. ~ - = () (8)
6:?,101’l"20!‘:)i'l+V::‘1-Lv!+ Wj,},’“;"”&:‘hl"‘wl.lmd = { (17)

(20)

(A)




Introduce a new variable t which corresponds to the separation
variable n. Then:

Pm®(x, Y, 2s 1) (B)

P

Let the step length of t beAt. -5 should choose the
leading difference form: '
= 1)
@S0y it L (21)

Al

The difference equations (19) and (20) are equivalent to
the following differential equations:

Pt Pyt Paa -Zé‘—_ﬁ"—A—:*r o 1)": AX P Az Pra= 0 (22)
/9
1 At 2 __ At A e 0 {23)
_q‘”+Q”+Q"—[<—ZD——-‘ I)Axi"’ ”(D- 1) _\Z:]w' Az P 3

The above equations are different from equations (14) and
(15). They are time dependent equations.

dow, let us analyze the stabllity of equations (19) and
(20). Let the exact solution of the difference equation be o,
and the numerical solution of the difference equation bte ®+ §
where § is the error introduced by the numerical computation.
Pand P+ & satisfy the same difference equation. Because the
difference equation is linear, therefore, § also satisfies the
same difference equation. Based on the superposition principle
of linearity, 6 can be decomposed into the basic solution
with an expression such as

B(x,¥, 2,1 )me v hmnrn® (24) -

where ;”-V:TT ’ Bl, 82, and 83 are arbitrary real numbers and
ag 1s a function of these numbers.
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Substituting equation (24) into (19) and (20), we get

(1 e B ) Lo -
» -%;sin‘ _Bgzé;_{ 1 -cosB,Az 1 —cosBiAz . (smBJ_Ax ,Az) f
= (%— 1 Xlx‘*"' A";, sin’—B-’-éél+—Al;;)+«- °Z§§T”
+A—§,—sin* B,zéy+ 1 -—Zo:’B,Az +i.( smi,xA’x + sing:;\z )
e | 4| (26)
where
A"'(-——-— 1 XZ;;+—‘—sln’ B‘sz + Azz‘>+ mAﬂz’,Az +i, si“AB;L,Az
B=(5-1 g+ gy B v o)~ phrompammt BLE 4 4 e Bidy
+—A%r—3°'-A%,A—’—+i.(E‘;;sina,Axsin' Q'ZA‘ + s“f;ﬁ’) .
Accordinz to the stability condition le*ei< 1 » from equation
(25) we obtain
I<o<?2 (27)

For equation (26), it is not possible to find an w to satisfy

the stability condition. The proof is shown in the Appendix.

2. Discussion on Convergence

Convergence means the converging of the solution of the
time dependent 4ifferential equations (23) and (24) to the
solution of the steady state differential equations (1Y) and
(15). Perform variable transformations for equations (22) and

(23),
1. A, 14
Tmtt o, ae ¥t At
and T M
T=t+— 27 *

14




We obtain

: : 2 R q
Qn""q,.vy"'-wll— A}‘_[( —ei ) +(>%:) ]q‘"_( E)— -1 _Axi + AZ’ (2v)
4 At
R /1 ,34‘ <—_2_.__ l).w 1Q‘=0 (29)
R v o I F R SR P

Equation (28) is hyperbolic and equation (29) is super hyperbolic.

By using the variable separation method, let

P=F(t)G(x,Y,2) (R)
From equation (28), we get
1 (f AL\ (A ol 2 _ Y. AL )'
(679 R ) B L & k) € ) LU S 1N (5)
- F
The solution is
(x,¥,2,1)=G(x,>,2 )+m};l(A.e""+B.e“")G.( x,¥,2) (30)
-2 _z___ 1 4k%
where = At ® KiT co _A_f_)’_*_Z_A-:_)‘
] Ax Az

ga= (- 1)+]/-A—,; 1> .3’,‘_)2‘:’7%): (31)

Gm(x,y,z) 1s the characteristic function of the tcundary
value problem of the followlng equation

Gt Gyt GuthiG=0 (c)
sz is the corresponding characteristic value. Let
B oo <R KR (D)
15




Go (x,y,2) is the solutlion of the Laplace equation

GutG,+G,= 0
From equation (30), we know that when O<w<2, hence, the convergence
condition of a local subsonic velocity point is 0<w<2., The converging
speed 1s determined by the minimum value of the real part of the
exponents 1n equation (30), i.e. Re. (pl). From equation (31)

lim ?(x,5,2,t)=G(x,¥,2)

T -»00

r=ar(-1)- 1/ Se(E-1) - (_éi.)"f(_éf_)'

Ax Az

where Ax and Az-+0 &
1

p=73 1 1

("ar‘ 1 X'&T*Kz’f a1

We can see that along with increasing w, pl increases monotonically.

Under usual conditions, it is vossible to choose w so that the
square root in the expression of p, is zero in order to raise the

1
converging speed. This optimal relaxation factor 1s
== zk
1
A (32)
Y art 5
Similarly, the solution to eguation (29) is found to obtain /11

the convergence condition of local supersonic velccity points

1
<<l + Az
1+.——-—
Ax (33)

and the cptimal relaxation factor
Az \!
2 *( Ax (34)
Az t
1+(52) +has

Furthermore, with increasing w, the converging speed increases

monotonically. When Ax = Az+0, the optimal relaxtion factor is
1.5.

16




3. Comparison With Numerlcal Tests

The analysls of the stabilization of the above 1local
linearization pointed out that: For three dimensional super-
sonic stream, linear relaxation is always unstable. However,

many numerical computations are stable. 1In addition, the results

analyzed 1ln the above two sections agree with the experience
of numerical calculation.

In Reference [3], the isolated wing of experimental
model NASA TND-830 was computed. The wing was triangular,
x=60°, the flow section is NACA 65 A 003, M= =1.05, and
@=2.2%. For various relaxation factors, the conversgence
condlitions are shown 1n Table 2.

lA®|<10"*

Table 2. Convergence cases of NASA TN D-830 wing, Me=1.05, a=2.2°.

TRRANe | te | 1] ve| o] v | 17 we
EREANe ) w1 | o1 e8| 10 1o | LS‘ 1.8
FTeT LY 3 349 [;us| 231 l 191 184 L 148 1 70
guanmens Y | ass | oase o 3ss | 830 | 3s | 2 | s

Key: 1) w subsonic velocity point; 2) wof supersonic velocity
point; 3)of n for stopping oscillation; 4) n for reaching the
convergence standard.

When w=l1.6 for a supersonic velocity point, the computation
is divergent. When it 1is 1.5, convergence 1s the fastest.
This agrees with the convergence anhalysis in Section 2.

3. CONCLUSIONS

In this paper, the exact velocity potential equation was
used at the blunt leading-edge of the wing to overcome the

17
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uncertainty at the leading edge using the small perturbation
method. The pressure distribution of the wing plane obtained

was improved. 1In thls paper, in other parts of the flow field,
the small transverse perturbation velocity potential operation was
used. It saved considerable computer time as compared to the

use of the exact potentlal flow of the entire flow field. It

is also easler to be applied to the complex wing-body structure.

In this paper, under the assumption of local linearization,
the stabllity and convergence conditions of linear relaxation
and lteration were established. 1In addition to individual
conclusions, it agreed with the numerical tests. It is
meaningful in the sense of providing some guidance.

APPENDIX The proof of the constant instability of linear relaxa-
tion iteration in the local supersonic region.

From equation (26) /12

X 4

4 g BiAx _z{__ZcosB,Az) <4 .
WL e v R N AV

: 1 1 4 ., By 2 Xﬁi .2 BAY
IBI*—=lA4l*= 2(5.- 1)( At + Ay sin s toag \y,sm 3

nB,Axsin’—B-’z\—x

sinB,Az \! 4 .3 BiAy _ 4 3 BiAX
+ B0E ) (Gt PE - Lo cobamin Sy

+-2__ cosBiAz )’ _1
Az Azt Azt
(1) When w=l, choose B,Ay=BsAz= 0 ~and Ax= Az,

Bl A= pirsint BAZ (gn BAX ~ cosB, %)

When 0<BAx<— B, |Bp-|Al<0

Hence, when w=l, it is unstable.

18




(2) When w<l, choose B,Ay=f,Az=20 and Ax=Az

1 Bi1A%
lBl'-\Al"—(—"— l)-&—- cosB, Axsin 2
+-A%:sin‘ zA" Zﬁn‘—ale——mﬁ:Ax)

when 0 <B.Ax<% , 1BiF-l4P<o

Therefore, when w<l, it 1is unstable.
(3) when w>l, let 4._:,_-1_,, eSS0

Choose BiAx=B,Ay=0 and Ax-VA—»’-
]
|BI*~1Al'=(1 -4t) 7 (1 —cosB,A2)
when e>1/4, 1B =141<0,
Choose B,Ay=B,Az=0 and AX=Az
|Bl"-|Al'=——~sm’ -—E’Eéx [ sint Bt Ax = +(3¢ — 1 )cosB, AS]
When e<1/4 and 8,AX 1s sufficiently close to zero, |BI'~|4I<0

Therefore, when >0, i.e., w>l, it is unstable.
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RELAXATION COMPUTATION OF TRANSONIC FLOWS
AROUND WINGS WITH BLUNT LEADING-EDGE AND
DISCUSSION ON ITS STABILITY AND
CONVERGENCE

Zheng Yuwen and Luo Shijun

(Northwesiers Polylechnical Universiiy)
Abstract

In this paper, the blunt leading-edge of a wing is taken as mesh points,
and there the exact velocity potential equation with central difference scheme
snd the exact boundary condition are used, while in the other places, the ap-
proximate velocity potential equation, which assumes small perturbation in
the transverse plane but allows large perturbation in the longitudinal direction,
and the corresponding boundary condition are employed.

Two numerical examples are following,

(1) A rectangular wing having airfoil NACA0012, aspect ratio A =12, an—
gle of attack @ =2°, free stream Mach number M.=0.63. The computed pre-
ssure distribution of the root section agrees with the exact numerical subsonic
solution given by Sells (1968).

(2) The sweepback wing tested by NACA RM A51G31 having sirfoil NA-
CAG4A010 which is perpendicular to 1/4 chord line with sweepback angle
X,,,=45", A =3 and taper ratio M=2, a=2", M.=0.4, 0.8 and 0.9. The
computed pressure distributions agree well with those obtained by tests.

Under the assumption of local linearization, the stability of the difference
equation in line relaxation with Seidel iteration is studied by the von Neumana
method and the convergence of the solution of the differential equation equi~

valent to the above difference equation to the solution of the original differen~
tial equation is discussed by the method of separation of variables.

The following conclusions are obtained;
(1) The stability condition for the line relaxation with Seidel iteration is

0 <w2 at locally subsonic points, where @ is the relaxation factor.

(2) At locally supersonic points, the reluxation is always unstable. The
convergence conditions are as follows. Let the steps Ax (chordwise) and Az
(spanwise) perpendicular to the relaxation line.

(3) 0<w< 2, at locally subsonic points.

1
(4) 0 <oKL +——ZT, at locally supersonic points,
1 +( 2L
Ax

The numerical experiences agree with the conclusions (1),(3) and (¢),

but do mot agree with the conclusion ( 2).
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DETERMINATION OF AERODYNAMIC COEFFICIENTS FOR A
RE-ENTRY BODY BY MEANS OF AN EXTENDED KALMAN FILTER
AFERODYNAMIC RESEARCH AND DEVELOPMENT CENTER OF CHINA

Jiang Quanwei, Xu Jinzhi, and Zhou Shuying ¥*

ABSTRACT

In this paper, an extended Kalman filter method was used
to determine the major aerodynamic coefficients of re-entry
bodies. The emphasis was placed on estimating states and
parameters using the measured data during the re-entry flight
under the condition that trajectory observation data was
absent.

The data included body axial angular rate and acceleration
obtained from thé rate gyros and accelerameters. A mathematical
model was established based on six-degree-of-freedom motion
equations. Both ballistic and maneuvering re-entrles were
considered. Numerical simulation and actual measurement
conversion showed that the present method provided more
satisfactory results.

SYMBOLS

Co resistance coefficient
Coes Co derivatives of normal force and lateral force
Cues Cas derivatives of pitch moment and yaw moment

Cuses Carr control moment derivatives

Curn Cor damping moment derivatives -
Cueo Coe roll and roll damping derivatives

Cws Ci» bottom diameter

d gravitational acceleration

9 flight altitude

# Received in March, 1981.
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H rotational moment of inertia

1, 1. atmospheric model parameter

A, mass of the re-entry body

m accelerations

i, #, R, angular speeds

p.q,r reference area

$ =xd'/4.0 flight time

{ velocity components

Y, v, w combined speed

V distances from the accelerometers to the center of gravity
X Y Y 212, ncse ancles

0,9, Y

/16 _4

P density of the atmosphere !
P, reference density

bq, Of inclination angles of the control plane

1., INTRODUCTION

In recent years, the determination of zerodynamic characteristics
of a space craflt from measured data obtained in flight using vario =
parametric identification methods 1is one of the important sutlect:
in the astronautical industry. This work has important signi-
ficance in the design and final planning processes for a
spacecraft. Flrst of all, it is based on the measured data
obtained in an actual flight environment. Consequently, the
shortcomings due to ground equipment such as insufficient wind
. tunnel simulation can be remedied. Secondly, it provides real
data for the design of the guidance and control systems. This
is especially true of re-entry spacecraft. There are very few -
experiments and the cost of experiment 1s high. Therefore, '
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it is extremely important to obtain the most possible h

useful information from the analysils of limited data.

[1], %

it has been widely applied in aspects such as communications

Since the emergence of the KXalman filter method

and control. Especially in astronautical engineering, its

(2]

filter methods were only used to determine the aerodynamic

arplication is even more popular However, modern Kalman
coefficlents of a flight vehicle in recent years. 1In PReference
(2], based on the re-entry vehicle point mass differential
equation of motion, several Kalman filter plans were presented.
References [4,5,86] discussed the use of extended Kalman

filter methods to determine the zerodynamic characteristics of
tactical aircraft. Reference [7] presented the feasibility

of real time estimation of aerodynamic coefficients using a
Kalman filter method. These type of efforts in foreign

countries have already obtalned some progress. However, they

all included trajectory measurement information such as altitude,
velocity, and position. Thelr work did not involve the identifi-
cation of the aerodynamic coefficient of a re-entry vehicle
under the condition that trajectory observation cdata was absent.

The purpose of this work was to attempt to use the Kalman
filter method to solve the problem of determining the aerodynamic
coefficients of an re-entry vehicle in the absence of trajectory
observation data. This problem has a background. Experience
showed that, due to various reasons, the trajectory observation
data of re-entry flight tests frequently could not be or could
only be partially obtained. If an estimation method could be ’
found to determine the important aerodynamic parameters based
on the acceleration and angular rate data measured on-board, -
it would be alot more meaningful. Thils paper 1s the theoretical
simulation and the actual measurement conversion specifically
with respect to this problem.
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The major differences between this paper and Reference 71
are as follows:

(1) In Reference [7], the flight altitude was already known.
The H in thils paper was unknown which was a state quantity.

(2) In addition to trajectory re-entry, maneuvering re-entry
was also considered.

(3) The method in this paper has already been appiied in
practice while Reference [7] was a feasibility study.

2. EXTENDED KALMAN FILTERING UNDER EXPANSION CONDITION

The Extended Kalman Filtering method, abbreviated as EKF, ex-
tends the use of linear Kalman filtering to the non-linear secondary
filter system. With regard to the study of re-entry flight, the
dynamic equation can be written as

y(t)=9(2(t), C 1) (1)

where y represents the state vector of the vehicle, C represents
the performance parameters such as the aerodynamic coefficients
of the flight vehicle, and g is the non-linear differentiable
function. During the period of consideration, let us assume
that C does not vary

10
]
10

(2)

Combine equations (1) and (2), then we get

) (RS € )
[Z(é ]-[ 0 } (3)

— -—

Define a new expansion state vector X (t)

Y
£<r>-[’(c' )] (A)
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Also assume that

g(¥(t) & 3
1(X(t), l]-[ ] (4)
°

Then, we have the usual state equation

X(t)=4(X(1), tI+G(t)¥(1) (5)
where W(t) 1is the Gaussian white noise whose average value
is 0 and spectrum density 1s Q(t). It is used to simulate
process nolse.

Let us assume that the observation vector is a set of dis-
crete values which is a non-linear differentiable function of
the state vector
Ze=he(X(1x))+ Vs K=1,2, (6)

where XK is the measurement noise, which is expressed by the

positive state random vector with an average equal to 0. Its

Jjoint square difference matrix is RK' Then, there are the

following extended Kalman filtering iteration equations:

X(t)=1(x(t) )

P(t)=F(x(#), 1IP(1)+P(tIF(x(1), 1I+G(1)Q(t)G(¢)

Kx=Px( = )YHE{HxPx(—)HE+Rg}™! (7)
Xx(+)='i_x(-)+Kx(Z‘.:".'x[_5_(x(—)])

Pe(+)={1I -KxHx(_X:x(-)])Px(-) J

where
. _OMCX(1), 13
F(x(t) 3 () xcn=xo (B)
HKE_X_K(-))" Oz(fg) !U‘)'_X:K(-) (C)

and the initial condition of state £O and PO‘

26




R e s

In the simulation computation, equations (5) and (6) are
used to produce the observation data.
III. STATE MODEL AND OBSERVATION MODEL

The mathematical model of this work nhas the following
characteristics:

(1) It 1s based on the usual body axis six-degree-of-
freedom equations of motion;

(2) The measured data only includes the acceleration and
angular rate data on-board;

(3) The re-entry body can perform maneuvering flight,
i.e.,the aerodynamic rudder can carry cut control;

(4) It has asymmetric aerodynamic characteristics;

(5) It considers the effect that the accelerometer
is not located at the center of gravity.

The mathematical model in this paper has the following
limitations:

(1) In the small attack angle flight trajectory section,

the aerodynamic coefficients can be expressed as a linear function

of the attack angle;

(2) Atmospheric density varies exponentially with altitude

and its mathematical model is already known;

(3) There is no systematic error 1in the measurement.

27
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Corresponding to equation (1), the actual form is

u=vr—wq+%s-c..— gsin d
o=wp—ur+ %“S(C,.-%;——+C,g.6r )+ gcos ¢ sinY

w=ug—up — %S—(C..—:—’- +C...6q)+ geosdcos Y

(G (o rve2)
(e 2 ) Jrarcu]o (s~ o
R e 2

4= gecosY —rsinY
v=(9sinY + rcosY )/cos d
Y= p+tgd (gsinY + rcosY)

a-Vsina—V—‘s—msomsY-vmosinv : )

The auxiliary relations are

p =P exp( —FH/k)
Vi=yt+0t+uw
Q=0.501"

The actual form corresponding to equation (6) is

R(X( 1)) = (R.A,7,pgr)*

where
Qs X
hum 2 Cum B () 1
& -%’S-(C»—L +Cudr )——%’—(r‘+9‘)+ rq I

A= B0, 4 Cuta)-T- (P I+

28
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where X15 Yo Zos y3, z3 are known constants. At this place,

an acceleratlion sensor is installed in the following manner:

the axial sensor 1s placed on the longitudinal axis and the trans-
verse sensor 1s in the cross-section passing through the center
of gravity.

IV. RESULTS OF NUMERICAL SIMULATION AND PRELIMINARY REAL DATA
EXTRACTION

The numerical simulation corresponds to the maneuvering
re-entry situation. The control plane moves regularly according
to 3g=3r=0.1sin(20t ) . The flight, aerodynamic and observation
characteristics of this computational example are shown in
Tables 1-4.

Table 1. Physical Constants

| 3

IO/ iaﬁ.(’bﬁb‘/*‘) ()
981 | 0.2 7660.0

l."l(*) s.ﬂ(*) d Y3k ;‘72;(*) '8 z3(R)

-0.2 0.01 ' 0.05 -9.2 i -0.3

Key: 1) g (m/sec); 2)po, (Kgsecz/mu); 3) ko(m); 4) Xl(m);
5) y,(m); 6) y3(m); 7) z,(m); 8) z3(m).
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Table 2. Initial Condition for Trajectory and Filtering.

2 8 " v %
1 aases  (AwsrRuness N = e @

l Xo v Py
» 4000.0 3879.568 400.0 R 3¢
v 0.0 148.08 80.0 o x/®
w 0.0 6s.8 80.0 T x/®
y 1.3 1.208 0.36 L 1/8
| 0.0 0.3007 0.38 q1/9
r 0.0 -0.3761 0.36 101/9
4 -0.6204 -0.5728 0.0625
] 0.0 0.0097 0.0825
Y 0.0 -0.0548 0.0625
H 215000 22000.0 $225.0 I =

Key: 1) dynamic state; 2) initial condition of dynamic state
functions; 3) initial value of filtering; 4) unit; 5-7) m/sec;
8-10) 1/sec; 11) m.

Table 3. Standard Deviation for Measurement and Process Nolse.
A ® % 13 = u 142w 2 2 & =

on 0.4 19 udens A

oo 1o o.0042/9 A0 aaxan }t d3

o2 1T 2.0m/m2 Al amaizs

as 18 0.5 1/03 JARNARNZE

Key: 12) symbol; 13) numerical value; 1li4) noise def‘initign;
15) remark; 16) 0.0942/sec; 17) 2.0 m/sec”; 18) 0.5 1/sec;
19) acceleration measurement; 20) angular rate measurement;
21) linear acceleration process; 22) transverse angular
acceleration process; 23) 1% of the entire processed quantity.
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Table 4,

True Values, Filtering Initial Values and Filtering
Results for Aerodynamic Coefficients.

a4y | &5 Ao 8 w w a 7 & w # &
NBHRY X =& % vF, EK., K =56 K =50 K~80
2 o(Ep Rt E (Ep E(Ep
C.e ~0.1078 |~ 0.1 0.028 - 1.0029) -0.1074 ~0.155(7.0) 0.303(8.8)
Cee ~2.18 - 2.0 0.5 - 5.3(23) -2.12 ~0.817¢7.0) ~0.52¢6.8)
Cys ~1.075 |- 2.0 0.5 88.0U47) -1.061 ~1.24(8.9) -0.24¢6.7)
Cre ~0.888 |- 0.7 0.178 -20.7020) -0.38 -0.34(1.0) =0.37(6.7)
Co 0.547 0.7 0.175 28.0(32) 0.543 - 0.7¢6.9) -0.58(8.7)
C nte 0.485 0.467 0.117 - 3,720 0.487 0.45(7.1) -0.32(8.8)
Cosr ~0.47 - 0.467 0.117 -0.84(28) ~0.472 0.43(7.2) -1.38(6.9)
Coe ~0.778 (- 1.0 0.25 28.5(32) -0.909 16.9¢31) 22.9(30)
Cor ~0.799 |- 1.0 0.25 25.0(31) -0.948 18.6021) 17.202%)
Crae ~0.0791 |- 0.1 0.025 26.4(32) ~0.0047 19.7C21) 15.0017)
Cysr ~0.07185 |- 0.1 0.02§ 27.4(32) ~ 0.0853 2.8(19.3) ~1.15(18)
Ci, ~0.024 |- 0.015 0.015 -37.5(83) ~0.0028 - 88.3(6Q) ~79.459)
Cue 1.3x10°% 0.0 1.3x10°¢ - 100¢100) 2.7x10°¢ 109.7(72) 81.7(82)

Key: 24) aerodynamic coefficient; 25) real value; 26) initial
values of filtering; 27) results of filtering; 28) optimum
estimation.

From equations (5) and (6), and the relevant data in Tables /20
1-4, we obtained the discrete values of acceleration and angular

rate ﬁk, ﬁy, fi,, P,q,r.
0.02 second as shown in Figure 1.

the machine to be used as the observation data for filtering.

The sampling interval was chosen to be
These data are stored in

Using equation set (7) and the relevant data in Tables 1-4,
the optimum estimated value ﬁK and filtering computation square
deviation PK(+) of various aerodynamic coefficients were obtained
f based on filtering iteration.
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% Figure 1. Measurement data.
Key: 1) p(l/sec); 2) q (1/sec); 3) r(l/sec); 4) t(sec).

The computed results are shown by two indicators; one
is the actual estimated error Ee of filtering and the second
1s the computed error of flltering EfO' The formulas are
as follows:

(EDx=100(cc—C)/C (10)
(Epx= %100V Pc(+)IAC\ (11)
32
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wherea X represents the optimum estimated value of an aero-
dynamic coefficient at the Kth observation point, C represents
the actual value corresponding to the aerodynamic coefficient
(see Table 4), and PK(+)represents the square deviation cor-
responding to the aerodynamic coefficient which is calculated
from the filtering equation (7). Basic filtering theory
points out that if the two indicators are in agreement statis-
tically then it indicates the filtering is normal. The (Ee)K
obtained after converging can be used as the actual estimated
error.

The last 3 columns in Table 4 give the filtering results. /21
The first column shows the optimum estimated values when K=50.
The two latter columns represent the Ee and Ef values of the
13 aerodynamic coefficients corresponding to K=50 and X=80,
respectively.

Figures 2-4 plot the filtering process of 7 major aero-
dynamic coefficients. The solid lines in the figures represent
the actual estimated error Ee. The symmetrical dotted lines
are the filtering calculated error Ef.

Figure 5 shows the preliminary extracticn results of a certain
actual measured data which corresponds to the trajectory re-en-ry
condition. In the figure, the analytical solution extraction
results of K>30 with trajectory measured data are also plotted.Ee]

The above figures reflected the following facts:

(1) For all the aerodynamic coefficients, regardless of whether
it 1s the actual estimated error Ee or the filtering calculated

error E., there 1s no divergence effect. IEJENS 2

f!
For the major aerodynamic coefficlents, such as
CrosCous Cs#r Camas Cats Cumses Coars , the values of Ee and 'Ef converge very

rapldly. This indicates that flltering 1s normal.
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(2) Through a 50 point filtering ccmputation (which is
the flight data in 1 second), the actual estimated error
of the above described 7 major aerodynamic coefficients
converges to within 1.5%. The filtering computation
error 1s approximately 7%.

— E,

Figure 2. Filtering Results for Aerodynamic Force
Coefficients. (°  Cie Cin € ),

Key: 1) t (sec).
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Flgure 3. Filltering Results for Aerodynamic Moment
Coefficlents. (Cpa, Cpg).

—— XMCs) 3
Pigure 4. Filltering Results for Control Moment
Coefficients (Cmé&q, Cnsr).

Key: 1) t(sec); 2) this work; 3) Reference [8].
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Figure 5. Real Data Extraction.

C-.' C-n Clh Cl" Cnc' C'Or
although Er varies convergently, yet they do not converge as

For coefficients such as etec.,
quickly as the 7 major aerodynamic coefficients described
above, The actual estimated error Ee does not have any sig-

This Indicates that under given conditions
these coefficlents do not significantly affect the motion

in this time period.

nificant improvement.

(3) Preliminary extraction of real data showed that
the mathematical model and filtering program in this paper




could adeguately sult real flight data. The results of this
work are very close to those of the analytical solutinn with
trajectory measured data.

In addition, several points are explained as follows:

(1) Rigorously speaking, it should provide many initial
values of §O randomly and through Monte Carlo simulaticn,the
final statistical average value 1s given. However, the above
set of classical situation computation i1s already capable of
reflecting the major characteristics of filtering.

(2) For the real flight data, to provide the initial sguare
deviation PO is undoubtedly an important problem. The P
corresponding to an aerodynamic coefficient can be given based
on wind tunnel experiment data or from approximations. The P

0
corresponding to a dynamic state variable was given by an

exlsting extraction method.[8]

(3) Although the analysis in this paper has the various
assumptions described in the previous section, this basic
method may be extended to a more generallzed situation such
as the aerodynamic non-linear effect, non-exponent type of
atmosgheric density; various types of measurement errors,
etc.

4, CONCLUSIONS

1. This paper =nalyzed the use of an extended Kalman
filtering method to determine the aerodynamic coeflliclents
of a re-entry body from angular rate and acceleration data
on-board in the absence of trajectory observation data.
Numerical simulation and preliminary real data extraction
showed that the solution of this problem 1s practical.
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2. As long as no stringent initial state estimation 1is
required, after the treatment of 1-2 second flight data, the
error of a major aerodynamic coefficient can converge to

a small range.

3. In the selection of parameters and analysis of
error, more in depth work is needed.

We wish to thank Vice Chief Zhang Hauxiu and Associlate
Professor Zhang Jinghual for their valuable opinlons.
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DETERMINATION OF AERODYNAMIC COEFFICIENTS
FOR A RE-ENTRY BODY BY MEANS OF AN
EXTENDED KALMAN FILTER

Jiang Quanwei, Xu Jinzhi, Zhou Shuying
(Aerodynaomic Research Ceuter of China)
Abctract

An extended Kalmean filter is used to determine the major aerodynamic co-
efficients of a re-entry body in this paper. The emphasis is put on estimating
the states and parameters only on the basis of the re-entry on-board measure-
ment data in the absence of trajectory observation data. The measured data
include angular rates and acceleration obtained from the rate gyros and acce~
lerometers installed in the vehicle. A mathematical mode! presented is hased u—
pon the 6-degree-of-freedom motion equations. Both ballistic and maneuvering
re-entries are considered. The numerical simulation and real data extraction
show that the presented method can provide satisfactory results,
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A PROGRAM SYSTEM FOR DYNAMIC ANALYSIS OF
AERONAUTICAL STRUCTURES - EAJIF-II
TEAM FOR DEVELOPING HAJIF-II

Institute of Aeronautical Research of China
Written by Guan De *

ABSTRACT

HAJIF-ITI 1s the dynamic analysis system for aeronautical
structures developed under the leadership of the Institute of
Aeronautic Research of China. It is capable of carrying out
the calculation of natural dynamic characteristics of structures
as well as the calculation of aircraft flutter with an active
control system and the calculation of gust response. It has
31 fixed flow routes and 2600 FORTRAN statements. It allows
the use of 99 elementary substructures and each substructure
can have 7000 degrees of freedom. In the flutter and gust

response computation, it is possible to use 50 modes. The

panel number in nonsteady aerodynamic calculation can reach

300. In the management of the stiffness matrix and mass matrix,
the hypermatrix method is used for "macroscopic treatment”

and the effective column method is used for "microscopic
treatment” to develop a new simultaneous iteration algorithm

to improve the efficiency of the calculation of real characteristic
values. A more complete state synthesis method computation
program has been designed. In addition to fixed and free
interface methods, multilevel synthesls and step-by-step com-
putation, a curve-fitting method is introduced to transform

the harmonilic oscillation aerodynamic force into the Laplace
plane technique. This system has been used to calculate

a number of typical alrcraft structures. Good results are
obtailned.

®*Received on December 15, 1981.
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1. INTRODUCTION

HAJIF-II is the aeronautical structure dynamic analysis
system developed by the Institute of Aeronautics Research of
China. 1Its function includes the calculation of the natural
dynamic characteristics of structures, the calculation of aircraft
flutter with an active control system and the calculation of
gust response,

In the development of the system, a series of measures
has been adopted to satisfy generality, flexibility, reliability,
automation, high efficiency, expandabllity, ease of correction,
and diagnostic capability requirements. Furthermore, special
attention has been paild to the guiding principle of advancing
on the basis of practicality.

2. CAPABILITIES AND SIZE

In the calculation of structural natural dynamic characteristics
of HAJIF-II, it 1s allowed to use 99 elementary substructures and
each substructure has no more than 7000 degrees-of-freedom. In
nonsteady aerodynamic calculation, the total number of panels
can reach 300. In the flutter and gust response calculations,
it is possible to use 50 modes.

HAJIP-II provides 31 fixed flow routes. That 1s, there are
7 computational flows in the calculation of the natural dyramic
characteristics of structures (whole structure, fixed interface
method single synthesis, free interface method single synthesis,
fixed interface method multi-level synthesis, free interface
method multi-level synthesis, fixed interface method step-by-
step synthesis, free interface method step-by-step synthesis),
2 flows 1in the flutter calculation flow, (v-g method, p=-k method),
1l gust response calculation flow, and 21 combination flow rates to

i > JERS

. .

calculate natural dynamlic characteristics, flutter, and gust response.
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3. STIFFNESS AND MASS MATRIX

In the natural dynamic characteristics calculation of /2€
structures of HAJIF-II, a finite element displacement method
is used. A structure can be discretized into a finlite element
model, or can be approximated by a single beam. A structure
can be analyzed as an entity, or can use the mode syvnthesis
method.

In the element warehouse of HAJIF-II, there zre 1. tures
of bar, plate, beam, and film elements to simulate tre wing,
body, external attachment, and their corrections.

In order to improve the efflciency of calculaticn, the
following measures are taken:

(1) The technique to vary the degree of freedom. Fegardless

of whether it is an elementary or higher level substructure,
the program automatically determines the real degree of freedom
of each ncdal point to eliminate ineffective degrees of
freedom.

(2) The Cuthill-Meckec method[l] is used in the re-labeling
of multi-level substructural rodal points and the optimized
utilization of band width. In addition, some special treatments
are also performed.

(3) A compact assembly method is used to only assemble
non-zero nodal point panels.

(4) The improved hypermatrix technigue. In an usual
hypermatrix method, there are consliderable zero elements 1n
a non-zero submatrix. TFor this, HAJIF-II first conducts a
"macroscoplc treatment" to the submatrix in the hypermatrix
method, and then carries out a "microscopic treatment". For




the stiffness matrix, the effective column concept 1is used to
eliminate the useless zero elements in a non-zero submatrix.
For a mass matrix, because 1t is unchanged in the entire
iteration process, a nodal point control method is used.

The improved hypermatrix method can effectively reduce the
storage requirement as shown in Table 1.

Comparison between the internal storage used by HAJIF-II
and that by the conventional hypermatrix technigue.

Table 1.
1 o
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NEERFECR

5 REEsACR

S -suxan !
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HAIJIF-

870
210
138

107712
11820
6338

|

i

78557
559¢
1458

21312
9590
5357

1594
1930
’”7e

Key:

1) example; 2) order; 3) conventional hypermatrix;

4) storage of the stiffness matrix; 5) storage of the
mass matrix; 6) conventional hypermatrix.

In the constraint treatment area, EAJIF-1II can perform
single point or multiple ccnstraint treatment with regard
to the degree of freedom of a nodal pointtz]. The function
of the former 1s to designate the displacement values of certain
degrees of freedom to simulate the symmetric and asymmetric
conditions and boundary conditions, as well as to conduct zerc
stiffness direction treatment. The latter's function is to
express the displacements of part of the degrees of freedom as
the linear combination of the displacement of other degrees
of freedom in order to treat the coordinating and stiffness

elements between the degrees of freedom.
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IV. ANALYSIS OF REAL CHARACTERISTIC VALUES

the following equation is used
k= \mu (1)

where k and m are the stiffness matrix and mass matrix, respectively,
A and u are characteristic value (circular frequency square) and
characteristic vector (natural mode), respectively.

In order to improve the calculation efficiency, a new
algorithm 1s developed on the basls of theoretical analysis of
existing simultaneous iteration methods and large amounts of
numerical tests by combining the advantages of these methods.
Its special point is that the mass matrix i1s not decomposed.
Rather, a "dimension lowering" treatment and other improvements
are used. Therefore, compared to the existing algorithms,
this new algorithm has the same converging rate. However, the
calculation load in each iteration step is the least and the
efficiency 1s high as shown in Table 2.

When using projection matrix to solve the characteristic
value problem, the QR or Jacobl method is used. The Chebyshev
polynominal or origin displacement 1s used to perform acceleration
(3]

are

used to carryout the missing root check. This can be carried

treatment. The characteristics of the Sfurm series
out in combination with the determinaticn of the number of

trial vectors. The wave array element elimination method with a
buffer is used to solve the matrix.
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Table 2. Comparison of efficiencies of various simultaneous
;teration algorithms.

HERER S X oM omo®
BN mu eeR , ~
: tf ] Ratishaver | Reinsch | McCormick | Nicolai Bathe .i HAJIF- I
1l 500 301 13 1108 1069 992 973 $80 158
2 100 5 30 194 [ 1)
3 200 20 33 363 23
4 500 10 38 [11) §58

Key: 1) example; 2) order; 3) half band width; 4) calculation
time (second).

V. MODE SYNTHESIS

In HAJIF-II, a more complete mode synthesis program has

been designed. 1In addition to the two major methods — fixed
(4,51
d 3

a level synthesis and step-by-step synthesis method of our

interface and free interface metho » we also developed
own to form six types of synthesis methods as described in Section
2.

In the free interface method, we should consider the
residual stiffness and residual inertia effects in higher
order modes. Through trial calculaticn, it was discovered
that the residual inertia effect could be neglected. Eence,
in HAJIF-II only the algorithm considering the residual stiff-
ness effect is used.

The free interface method of HAJIF-II processes the
attached mode into a "quasli constraint mode" and the free
interface main mode into a "quasi fixed interface main mode"[6]
so that the calculation format of the free interface method

is unified with that of the fixed interface method.

4s
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In the search for the softness matrix of the free interface
main mode and free structure, the "imaginary structure'" concept
is used. The stiffness matrix of the imaginary structure is
x¥*=k+m, and the mass matrix is still m. Hence, the softness

matrix of a free structure is (k*)'l.

The differences among single synthesis, multi-level
synthesis and step-by-step synthesis are shown in Figure 1.
The multi-level synthesis 1is,in principle,an extension of the
single synthesis. However, 1in each level of synthesis in the
step-by-step synthesis method, there are two substructures
participating. Among them, one substructure participates
using the reduced generalized degree of freedom and the other
substructure directly participates with the physical degree
of freedom.

In order to sult the 1
requirements of multi-level ” r

synthesis and step-by-step

[

synthesls, some development 1s needed b

) V.rAve

with regard to frequency selec-
)% En
tion judgement in HAJIF-II.

HAJIF-II can treat rigid

101 —
substructures. Only when [ 101]
using multi-level synthesis, E&l}# $
it 1s required to process it nnn E]

PES 3 1 OHRNE o
during the first synthesis. (X~ guUn
ANNEL)

Flgure 1. Nodels for cal-
culation of various modal
synthesis techniques.

Key: 1) single synthesls;

2) multi-level synthesis;

3) step-by-step synthesis
(synthesized using the physi-
cal egquation for those with-
out the A symbol ).
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VI. NONSTEADY AERODYNAMIC FORCE CALCULATION /28

Sericus flutter of modern aircraft mostly occurs in the near
sonic speed region at low altitude. For wing surface with a
medium or small aspect ratio, the results calculated based on
the subsonic nonsteady aerodynamic theory could better reflect
the basic flutter characteristics. 1In HAJIF-II we first esta-
blished a subsonic horseshoe vortex — oscillating doublet
mesh method[7] to treat multiwings in space.

In order to calculate the non-steady aerodynamic force,
it 1s necessary to insert the vibrational mode at the structural
nodal point to the point of aerodynamic force. HAJIF-II uses
[8]

the two-way spline curves function method

In HAJIF-II, a curve fitting method used by Rogai[9] was
introduced which utllizes the resonating aerodynamic data
to find the approximate expression of non-steady aerodynamic
force on the Laplace plane,.

VII. FLUTTER CALCULATION

In HAJIF-II, v-g and p-k methods are used to carryout
flutter calculationElO]. The v-g method uses the following

flutter equation

SR B S e B @

The p-k method uses the following flutter equation to be
taken into account by the active control system

([o Ke 0]+A[ﬁ. Mee ﬁ..]+-%-pV' [x.. Aw Ad ar=0 (3)
0 0 XKm» Mo Mse Mu Ase Ase Am )
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where X, M, and & are generalized stiffness, mass, and aero-
dynamic force, respectively; q,a, B8 are the generalized coordinates
of the HAJIF-II users to add and control modes; o and V are the
atmospheric density and flight velocity; X is the complex
characteristic value; by is a reference length.

HAJIF-II uses LR, QR, and reverse root method with origin
disrlacement to solve the complex characteristic value problem.
They are avallable for the users to choose.

VIIZ. GUST RESPONSE CALCULATION

HAJIF-II uses the following equation to calculate the
aerodynamic elastic frequency response[9]

(i) + (Eu 03 +307* Gal )RuCe N ) § 1 ==} OVHELN (1)

[R(s))
(BJ-———D(:) {q}

where E/D 1s the transfer function of the active control system. -
The footnote g represents gust and s 1s the

In the calculation of gust response, 1t is possible to
use the Karman power spectrum or to provide the users with a
fixed form.

/28

IX. PROGRAM ORGANIZATION AND USER INTERFACE

HAJIF-II uses a two level management system. The first
level is the monitoring control program which is composed of
a series of dispatching languages. The second level 1s the
processing program. In fact, it is dispatched by the monitoring
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control program, which is the highest level subroutine capable

of finishing a certain mathematical or mechanical function inde-
pendently. It 1s not possible to be mutually dispatched between
two processing programs. The input and output of each processing
program are only related to data documentation.

In the monitoring control program of HAJIF-II, a common
number group with a variable length is established to
be given to various processing programs. In addition,to be able
to establish a very small amount of the number group by the
processling program, other numbers are formed completely from
the above mentioned common number group.

For a calculation requiring a larger internal storage, the
system can automatically judge whether external storage is
necessary.

The entire data of HAJIF-II is called the "dictionary".
The dictionary is formed by several volumes and the number
of volumes can be expanded. Each volume has 100 bcoks and
each book is made up of 100 chapters. The volume, in principle,
1s divided according to the processing program. The major
purpose of a book 1s to facilitate the performance of some
repeated calculation. A chapter is the entire data of a
"read" or "write" statement, which is the basis ol datas manage-

ment.

The document management system of HAJIF-II can automatically
conduct document distribution and correlated variable control.
As long as the input, output table and the chapter address are
provided, the system can 1lndependently complete reading and
writing work.
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In HAJIF-II, user-oriented broad command languages were
designed. One is used to initiate leading fixed flow route
and the other one is used to dispatch 21 processing programs
for the users to form a "user flow". 1In view of the fact that
flow organization of mode synthesis i1s more complicated, we
also designed the special composite language.

In order to facllitate the preparation of data, the
data generation system of HAJIF-II allows the use of two
input forms: one 1s numerical data input and the other is
a mixed input of numerical values, data, and topological 4
description.

¥

The function of topological description includes the
simple description of nodal point coordinates of ideal parts
and element information, data abbreviation with regularity,
data correction, addition and elimination, etc.

As for the error dilagnosis of HAJIF-II, the focus 1is
placed on the checking of the original data. It is capable

of providing over one hundred types of information according -
to the requirement of the users.

X. EXAMPLE

ﬁuring the development of HAJIF-II, over ten examples were
calculated. Now, let us introduce three types of combined
examples.

(1) Calculation « the Natural Dynamic Characteristics -
and Flutter of a Triangular Wing. The wing is simulated
by bars and shearing plates. The fuselage and flat tail are
simulated by beams, and the wing-fuselage connection 1s simulated
by transition beams. There are 315 nodal points and 1011 degrees
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of freedon.

The comparison of calculated natural dyramic charac-

teristics and the resonance test results is shown in Figure 2.

It coincldes very well.

In the meantime, v-g and p-k methods

are used to calculate flutter and the results agree with the

wind tunnrel

(2)
fuselage
entirely
freedom,

The calculatlon of modal synthesis of the flat wing —
— attachment combination.

by beams.

test results.

The structure is simulated

There are 46 nodal points, 138 degrees of
and U4 substructures as shown in Figure 1. The

calculated natural frequenclies are shown in Table 3. It is

obvious that all the synthesis methcds have excellent accuracy.

(3)

Calculation of Gust Response of B-U47 Airvlane. The

computation data in Reference {11] was used. The wingz and

fuselage are simulated by beams and the flat tailil is a rigid

body. In the aerodynamic force calculation, the interference
between the wing and the flat tall was included., In the

calculation of the response, the atmospheric turbulence power

spectrum measured in flight tests, provided in Reference [117, was
used. The results are shown in Figure 3.

aerodynamic force used in Reference (111 is different from thre

one used 1in HAJIF-II, the results of these two calculations

are not quite the same.

S e ™ g
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Figure 2. Comparison of calculated natural frequencies

and modes with resonance test results.

Key: 1) mode;

2) first level wing; 2)

second level wing;

4) third level wing; 5) nodal line; 6) exrerimental;

7) calculated;

frequency.

8) calculated frequency; 9) experimental

Table 3. Comparison of various synthesis technigues.

|  HERE | ARAN | RERN | ARAN | RESN | ARRN
IO' * : . ;Jiame lg&lﬁ lqillt g_lle - 3 1 2 l,;lﬁlt
1 2.5130 2.5130 2.5130 2.5148 2.5130 2.5130 2.5130
2 3.2683 3.2683 3.2683 s.2685 s.2684 3.2602 8.2683
3 4.0450 4.0450 4.0450 4.0605 4.0451 4.0450 4.0450
¢ 4.5017 4.5917 4.5917 4.5921 | 45017 4.5918 4.5917
s 4.9012 4.9012 4.9012 4.9018 4.9012 4.9012 4.9012
¢ 6.5063 |. B5.5088 5.5088 5.5061 5.5063 §.5088 5.5083

Key: 10) mode; 11) whole structure; 12) fixed interface single
synthesis; 13) free interface single synthesis; 14) fixed interface
15) free interface multilevel synthesis;

multilevel synthesls;

16) fixed interface, step-by-step synthesis; 17) free interface,
step-by-step synthesis.
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Figure 3. Comparison of calculated gust responses with
the results of Reference [11].

Key: 1) acceleraEion response amplitude at center-of-
gravity (foot/sec“)/(foot/sec); 2) frequency (Hertz);
3) rigid axis; 4) Reference [11].

CONCLUSION REMARKS

This paper brlefly described the method and function of

the HAJIF-II dynamic analysls system for aeronautical structures.

The system incorporated several new measures and quite good
trial calculation results were cobtained. The system willl be
further develcped. Due to the limitation in space, this paper
might appear to be too oversimplified. The authors wish to
apologizé to the readers in this regard.
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A P.ROGRAM SYSTEM FOR DYNAMIC ANALYSIS OF
AERONAUTICAL STRUCTURES
(HAJIF-1)

Team for Developing HAJIF-11

Peuned by Guan De
Abstract

HAIJIF-1] is a program system developed by Chinese Aeronautical Estab-
lishment(CAE). It is able to accomplish the calculation of the modal charac—
teristics of aircraft structures as well as the flutter and gust response analysis
with the active control system taken into account. The structural model may
be composed of 99 substructures each with 7000 degrees of freedom. 300
panels may be used in the calculation of nonsteady serodynamic forces and 50
modes in the flutter and gust response analysis. The data generation system
permits the flexible use of numerical data and topological description. 31 pre-
scribed computational flows are supplied and an user can also organize his own
computational flows as he needs. A structure can be discretized into finite
elements or simulated by single spar. ¥For the management of the stiffness and
mass matrix & modified hypermatriz method is employed to omit all of inacti-
ve z¢ro elements more effectively. A new algorithm, called a revised simulta-
neous iteration procedure, has been developed to solve the real eigenvalue pro-
blem and is more effective than the current agorithm. Modal synthesis techni-
que with both free and fixed interfaces is adopted. Besides, two new methods
of synthesis have been developed from the concept of multilevel substructures.
Nonsteady aerodynamic forces are calculated by means of subsosic doublet latti-
ce method for multiwings and aerodynamic forces in Laplace plane can be ap~
proximated ‘with a curve-fitting procedure based on sinusoidal data. Flutter
equations are solved by V~g and p~k methods and the continuous atmosphe—
re turbulance are used in the gust response analysis. The system consists of a
sequence of functional modules so it can be modified and extended easily. An
advanced file management system has also been developed. There are app-
roximately 26000 FORTRAN IV statements in the system. The HAJIF-II was
applied to analyzing a number of typical aircraft structures and gave good

results.
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SYSTEM IDENTIFICATION AND AIRCRAFT FLUTTER

Zhang Lingmi ¥
Nanjing Aeronautlical Institute

ABSTRACT

After briefly describing the application of system
identification technique to the study of aircraft flut-
ter, this paper introduced three types of system identi-
fication methods. The emphasis was placed on the essence
of the algorithm and its theoretical basis. The relevant
data processing problem was also properly explained. The
transfer function method,based on complex modal analysis
and the optimization technique,could accurately identify
all the modal parameters. It was successfully used in
the flutter model experiment of a wing with external bodies.
This method could be extended to the conditions for wind
tunnel and flight tests with response data only. The cor-
relation and least square techniques were adopted in the
impulse response and auto-regressive moving average model
method in order to obtain accurate results under strong
interference. The latter could also cobiain the mean square
deviation between the estimated value and the actual value.
Both time domain methods could directly use measured samp-
ling data to perform system ldentification without special
signal analysis equipment.

I. INTRODUCTION -

The so-called system identification 1n structural dynamics esta-
blishes a mathematical dynamic model according to the response (out-
put) of a known excitation (input) for a structural system, including
the modal parametric model in the generallized coordinate system and
the structural parameters model in the physical coordinate system.

The more practical method is to provide the input, output data of an
actual system to determine a model structure and 1ts parameters,

using a certaln optimization method based on a type of model so that
they are best matched with the system under certain guide lines. For
a discretized linear steady system, the so-called model structure con-
sists of the determination of the system (or degree of freedom). Once

*Received May 26, 1981




the order 1s determined, system ildentification is transformed into
parameter identification or parameter estimation problems. In a
complete system identification process, in addition to the structure
determination and parameter estimation parts, it 1is also necessary

to carry out model verification (for a linear system the main item

is the verification of order) and parametric mean square deviation
analysis. In order to further improve the effectiveness of identifi-
cation, experimental design must also become one aspect in the theor-
etical study on identification [1].

In the recent decade, the 1ldeas and methods of system identifi-
cation have been falrly successful 1n structural dynamics. It has
promoted the ground, wind tunnel and flight tests of aircraft signi-
ficantly. 1In the ground and wind tunnel tests of models and flight
tests of aircraft, it 1s possible to more accurately identify the rel-
evant modal parameters [2,3]. For a windfall flutter, the method rely-
ing on the extrapolation of damping to determine the critical point
has been proven ineffective. However, the adaptatlion of the system
ldentification method can determine the coefficients of the flutter
differential equation based on experlimental data. From these coeffi-
clents, 1t 1s possible to more accurately obtaln the flutter critical
velocity [4,5]. For the ground vibration tests of the entire plane, -
the determination of the proper adjustable force i1s very difficult.
Presently, the majJor solution 1s to ldentify the transfer function
matrix based on the experimental data of a single point excitation
and the shaker adjustment force of the pure mode [6,7]. In the mean-
time, the techniques which use the single point transient or random exci-
tation transfer function to ldentify the modal parameters of the whole
aircraft have been successfully developed [6,8].

System 1dentification techniques not only can be used in the
ground, wind tunnel and flight vibration tests, but also can further
serve as flutter analysis and synthesis. From the modal parameters
of the aircraft (parts or the whole plane), it is possible to further
identify the stiffness and mass matrices of structures to be used for
structure modification and model optimization [9,10]. For an aero- 34 1
dynamic elastic model, usually only numerical solutions can be gilven
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at the present time. Using the identification method, it 1s possible
to obtain the mathematical expression in a rational form [11] to
facilitate the analysis and synthesis of the flutter of the stabi-
lizer system with control and the flutter active control.

This paper mainly introduces three identification methods suit-
able for studying flutter, i.e., the transfer function method, impulse
response method and the auto-regressive moving average (ARMA) model

method. The empbhasls 1is placed on the essence of the identification
algorithm and 1ts theoretical basis. With regard to the relevant

data processing problem, 1t 1s also properly explained. These methods
are not only suitable for the sine experimental data, but also trans-~
ient and random experimental data, as well as the conditlon of using
wlde frequency band random natural excitation with response data
available alone.

II. TRANSFER FUNCTION METHOD

After the discretization of a linear steady system, 1ts dynamic
equation can be described by a matrix differential equation in the
following:

M E +(C) e + K xy={f (1 )} (1)
{f(t), {%(t)} are the N-dimensional external force and the displace-
ment response vector, respectively. (M), (KJ.(C) are the Nth order
mass, stiffness and damping matrices, respectively. [M] is orthogonal
and [K] and [C] are orthogonal or semi-orthogonal. N is the discret-
ized degree of freedom.

By conducting Laplace transformation on both sides of the equa-
tion and assuming the initlal condition 1is zero, we obtain
M)+ s (CIHIKN{X(s N={F(s)} (2)
where {F(s)), {X(s)} are the Laplace transform of {f(t) and ‘X(t) -
respectively; s 1s the Laplace multiplier (complex number). Then,
equation (2) can be expressed as

(Z(sN{X(s)={F (s 3

or CH( 8 {F (e miX( )

(4)
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where
[z(s))=9LM]+S(CJ+(K) (5)
is the generalized dynamic stiffness matrix. 1Its inverse matrix
(H($))=C(2(s)) " =adj(Z(s))/det(Z(¢)) (€)
1s the generalized dynamic softness matrix or the transfer function
matrix.

Let Sp be the characteristic root corresponding to the equation
(3) and 1let {wr} be the corresponding characteristic vector, i.e.,

(Z(8)) (%} =0 (7)

For a sub-critical damping system, s, and {wr} are complex numbers

which are complex conjugates appearing in pairs.

From equation (6), we know that the transfer function can be
expressed as a rational functlon of s. Furthermore, it can be expanded
around the characterlstic root.

(H(s))=

r

N
(4.) (A’J
3 S, L, (8)

1

where [Ar] is the residual number matrix corresponding to Sp- The
symbol ¥ represents the complex conjugate. ¢ can be proven that [Ar]
and the characteristic vector {wr} have the following analytical
relation [12,13]

(= b 18T (9)

Prm= {¥.} 7(28'(M) +(CI3{d.}

When the system damp 1s the structure damp or proporticnality
damp, the complex vibrational vector {wr} becoﬁes the real vibration-
al vector {@r}. From equation (9), we can get

P=i2Bm, (i =V =1, B=la(s)
(mr is the real mode mass of the r-th order). Ar is also a pure imag-
inary number. After substituting into equation (8), we obtain

N T

{d.) {d,}
(H(s)= Z" #m, +sC,+ (10)
r=

Kr and Cr are the r-th order real mode stiffness and damp, respectively.
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By letting $&=—a,+iB, 4,=u+iv, and substituting s =i into
the general relation of the transfer matrix of equation (8), we can
get the analytical expression between the frequency repsonse and the
modal parameters

N .
_ (4, +iv,) (4, —1v,)
(H(i®)) ,Z:l a,+i(o—B) T &+ i(o+8) (11)

A row (corresponding to a single coordinate excitation multi-coordi-
nate measurement) or a column (corresponding to the single point exci-
tation single coordinate measurement of each respective coordinate)

of (H(@i®)) can determine the whole modal parameters.

Note that {H! is the measured frequency response data correspond-
ing to various frequencies tested and {8}=(a, B,, 4, v, e ay, By, uy ox)T
is the modal parameter vector to be identified. Hence, the total square
deviation J(8)={H(8)— H)"{H(8)-#* of the frequency response data
and model value {H(9)} can be used as the 1dentification guideline
function. ©Note that H(6) is the nonlinear function of the parameters
to be determined (such as o Br). Therefore, the modal parameter
identification problem is transformed into the optimization of J(8) =
min which can be solved by iteration: to first
give the initial value of the parameter {6} to be determined and to use
the nonlinear least square multipllication method to obtain the incre-
ment {A8} as the optimizing direction and then to use an extrapolation
method to find the step length factor. The actual algorithm can be
referred to in [13].

The row data of parameter ldentification uslng the transfer func-
tion method--frequency response, can be obtalned by two ways: one is
to use steady state slnusoldal excltation, tracking filter data anal-
ysis, and the other 1s to use wide frequency band excitation (fast
sinusoldal scanning frequency, impulse, pure random, pseudo-random or
periodical random, etc.) fast Fourier transfer (FFT) data processing.

The frequency response of the former represents the complex amplitude
ratio of response and excitation force and the latter represents the
ratio of the mutual power spectrum and the individual power spectrum
of input and output.
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The main advantage of steady state sinusoidal excitation, track-
ing filter analysis 1s the high data accuracy. For wind tunnel model
flutter tests on wings with external bodies, the accuracy of the
modal frequencles identified could reach 1%. The vibrational model
orthogonality tests could reach the 10% level required by the finite
element mathematlcal model actually used in the analysis, testing
and modification of flutter (14].

The major advantages of the wide frequency bandwidth excitation,
FFT analysis technique are the fast testing speed and the adaptation
to the wind tunnel and flight test conditions. The disadvantages are
the small signal-to-noise ratio and the low frequency resolution
which affect the data accuracy. Presently, measures to improve the
accuracy of data have been developed, such as the power spectrum data
smoothing and bandwidth selectable FFT analysis (BSFA), etc.

In the subcritical wind tunnel and flutter tests, sometimes it is
possible to directly use natural bandwidth random excitation (such as
turbulence). At this time, the input is a multiple input which cannot
be directly measured. Assuming that the external force frequency spec-
trum F(w) near the modal frequency is a constant, then the response

spectrum can be expressed as,y y Cu, +i0) (o= v}
(X(w))=(H(i<D)J(F(0)>=[ P (::'—B.)*a.+'%(ileTJ‘F(“’”
r=1 4

R (12)
Y L0 S P 4
Lt i(e—p) Ta+i(a+b)

From this, it 1is not difficult to extend the above identification tech-
nique to the condition under which only output (response) data exists.

III. IMPULSE RESPONSE METHOD

The impulse response function of a discrete linear steady system
with N degree of freedem can be expressed by the inverse Laplace trans-
formation of the relation between the transfer function and the com-
plex frequency Sh and the complex number Ar equation (8): 36

N
hy(1)= ) (Afrer +.itrte’™) (13)

rs=1
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p and q are the excitation and measurement coordinates respectively.

At time t_, let fe=si, and note X,=e'*, s | The impulse res-
ponse at time tn can be expressed as (omitting the symbols p, Q)
N
h(l.)=2Re( by A,X:) ()
r=1
where n 1s the power. For each sampling time of equal difference:
tW(n=0, 1, 2, - » N , we can write (2 N + 1) eauations. Let
N L. (15)
T (X=X)(x=XD= } aX=0
n=0

where X=¢*%, and the coefficients a(n=0, 1, 2, = » 2N) | are the
autoregressive coefficients of the equation. Once these coefficients
are obtalned, it 1s possible to obtain the complex frequency

& =—a,+if, by solving tre complex root X,=e*' using equation (15).
From them, we can cbtain the modal frequency w, and damp ratio
hr(»'-l’ 2, N)

», = a} +B=! h,-a,/m,

The method to obtain the auto-regressive coefficlients 1s as

follows: multiply both sides of equation (14) by a, and let

n=0, 1, 2, s s 2N, After rearrangement, we get

N -
20.’](1_“)80 (m=0, 1, 2, -y 2N—l) <lb)
=0

There are only 2N independent amplitude values in the impulse

response data. Let us choose a2N=l to standardize it. Then, we have
2N
Y Gh(taes) = b (faewn), (17)
A=

By considering random interference and testing errors, the total
square deviation of impulse response corresponding to M sampling

times is
M 2N-1 ]
1|(¢ )" Z ( E M(‘-.o)"’ & (,-OW)) (18)
m=] LN ]
The extreme value {6)}=(ay 01y Oy " , Gna)T corresponding to Jl(a)=

min can be obtained from the followlng set of equations
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B e " U o ==
2N-1 .
S Risge==Row  (i=0, 1, 2,=2N=1) (14
A=y <
where
M
Rl’.-= Z h(’-ol)h(’-o.)
ma

is the correlation function of impulse response. The latter is an
even function which only deviates from the time difference. Equa-
tion (19) can be written in the following matrix form

R(O) R(1)ereeeen R(2N—-1):. g l R(2N)

R(1) R(0)-e-R(2N=-2) 1 e | o _ fR(zN— 1) l

| [ ‘ (20)
R(N=1) R(2N=2)R(0) deny R(1)

The least square method is as follows: Express the impulse res-
ponse in the form of sine and cosine function form (notice that

s==a,+ ig, A=u+iv,)

N
A(la)=2 Z e *"=(u,c08(B,t.) —v,8in(B,1..)) (21)

rs

The actual measured impulse response value at tire tm is denoted
as g then the total square deviation of M sampling values is

M N 1
Ji(u, v)= 2 (g-— Z (c'.u.—s,.u,)) (22)

m=] r=1
where

Crm=" 23.."-‘!’3(3111-)‘ Srm = ze..""Sin(Bri-)

The extreme value (U, V) =(u,, uy-un, v, vy vn)T of J2(u,v) = min
can be obtalned from the following set of linear functions

b HY @

where A, B, and D are Nth order matrices. The 1th row jth column

elements are

M M
AII- Z CrmCim} BU- 2 SimS)m
Mme] me ]

M
Du- Z Cimd)m
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X and Y are N dimensional vectors whose element is related to the
measured data

M M
X;= Z CimGm} Yi=-— 2 SimGm

ms=] m= 1
The original data of impulse response system identif’cation is
the impulse response tested data which can be obtained using the
following method

(1) if input and output data can be simultanecusly measured, then
the frequency response¢ can be obtained first. Then, Fourler inverse
transform can be used to obtaln the impulse response data. Both can
utilize FFT and BSFA techniques;

(2) if the input (excitation force) cannot be directly measured,

then a random decay technique can be used which triggers the record-

ing at a certain voltage with respect to the wide frequency band

random response signal of the system. Then it 1is followed by the

sampled data total average. Assuming that the forced response of

the voltage triggering sampling signal after total averaging and the
response caused by the initial triggering condition are close to zero,
the obtalned characteristic signal can be described by the impulse
response. -

IV. AUTOREGRESSIVE MOVING AVERAGE MCDEL METHOD
The usual expressions of a dynamic system in a time domain are

modal functions and output functions. For a time discretized system,
the 1input/output relaticn can be expressed by the difference egquation

v v
Yoax(t-i)= Dbyt =1i) (2k)
i=»0 i=9

Assume that y(t) is an independent random serial input with an
average zero, square deviation c2?. After taking random measurement
nolse into account without losing generality, the above equatlon can
be written as:

38
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N 2y
M oax(1—i)= 3 by(t=i) (a=5=1)
i=0 1 =0

(25)

The measured response value of a certain coordinate of the
system at time tv 1is

e(t)=—aux(t =1)—ax(t —2)=er—uax(t =2N)+ Y (1)

+b,y(t = 1)+byy(t —2)+ +eay(t —2N) (26)

The first 2N terms are the sum cf the measured values (auto-
regressing) before time t, and the last (2 N + 1) terms are the mov-
ing average of the input. Therefore, equation (25) 1s also called
the autoregressive moving (ARMA) model. The autoregressive coeffi-

clents ay and the characteristic values si=—a,+i#8 have the following !
relation
N N i
i - _Ye -
2 aX'= [T (X=X)(xX=XD (27)

1-‘0 i=1
where X, =g titeinoer
After identifying the autoregressive coefficlents, it 1s possible to
solve the attenuation coefficient a, and damping free vibrational
frequency Bi (from here we can obtain the damp ratio and modal fre-
quency). The moving average coefficlents bi’ however, are related

to the vibration model information.

The coefflclents of the ARMA model can be identified using the
maximum approximation method. The standard function can be chosen
as the total square deviation (approximation function) of the measure-
ment noise M -

I(a, b)=—}4—- M ¥ (t)=cyy(0) (28
t=1 <

where y(t) is the measurement noise, cyy(0) is the auto-correlation
function with zero time difference, and M 1s the sampling data points.

It 1s possible to use the Newton-Raphson method to solve the coeffil-
cients a;, b, (L = 1,2,~=-2N) to be identified to make J(a,b) = min. -
If the input cannot be measured, cyy(0) can be calculated from the
auto-correlation function cxx(i) of the response.

The advantages of maximum approximation parameter estimation are

6




approaching without deviation (the expected estimation value is

equal to the real value), identical intensity (when the sampling
point increases, the estimation value converges to the actual value
with probability equal to 1), and statistically effective (the least
square deviation between the estimation and real values can reach

the Cramer-Lao lower limit). The shortcoming is that the computation
is too complicated which is suitable for engineering applications.

Let us write equation (26) (corresponding to M sampling time
inocervals) in the matrix form
(x)=CP)T{O)+(E) (29)
where {x} 1s the vector formed by the sampled response values at t =

2N + 1, 2N + 2, ...., 2N + M, {e} is the corresponding measurement
error vector, {8} = (bl’ al""b2N’ a2N)T is the vectors to be iden-
tified. The coefficient matrix is

Y(@2N), Y(@N+1):- YE@N+M~-1)
- x(2N), —*@N+1)—x(@N+M-1)

Y(1)  ¥(2)ernn Y(M)
—x(1) —x(2)rerrerrnren— 2 (M)

From equation (29), the least square estimation of the parameter
to be identified can be obtained from the following eguation: -
{8 =(CPILPYTI'(PIT{x} (20)

The standard square deviation between the estimated value and the
real value can also be estimated .

Cou(d, 8)=E (8= 0)(a—8)T = =5y ((PICPINN (31)
where [P] [P]T can be calculated from the correlation function of -
the testing data.

RCO0) R )eeereenn R(AN = 1)
(PI(PY"=| R(1) R(0 )i R(2N = 2)

R(N=1) R(2N—=2)-R(0)
[ eyy(i) —cyx(i) ]
Rl-
—cxy( i) exx( i)
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Under the condition that the input signal (such as atmospheric
turbulence, gust) cannot be observed, the least square method can be
used which involves the structuring of an autoregressive (AR) model
first and then deriving the auto-correlation and mutual correlation
functions of the input based on the auto-correlation function of the

; output data. Let the AR model be

éa,x(t—i)-y(t) (a,=1) (32)

where y(x) satisfies e
E{y(t V=03 E{x(t)x(s)}=0%,

a, are the autoregressive coefficients to be identified and L 1s the

order to be determined. Because y and x are not correlated, we find

from equation (32) that

L
igla,cxx(k—|)-o (k-l’ 2, v , L) (33)

From this we can find . The order L can be identifled from the
Akaike information guideline. The square deviation estimation value
of measurement error 1is

L
§m 2 acxx( i) (34)

i=1

From the relation between input and output

L
x( )= R(idY(t=3)
P (35)
h(i) is the impulse response function. The above expression 1s also
called the moving average (MA) model. From equation (35) we can

derive the mutual correlation functilon

a*h(i) i=>0 . 1
“}'(")'{ (36) |
i<0
h{i) can be obtained from the following recurrence formula
L
BCO)=1, h(t)== D a(idh(t—i) (t=1, 2, ) (37) .

i*1

From this, the original data needed to identify the parameters
and the square devliations of the real values of the ARMA model by
equations (30) and (31) can be obtained from the sampled data.
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V. CONCLUSIONS

) 1. Based on the frequency response data obtained in ground
vibration measurements, it 1s possible to obtain sufficiently accur-
ate structural modal coefficlents using the transfer function identi-
fication method. It has been a success for the flutter model of a
wing with external bodles. This technique can be extended to the
testing of the entire aircraft or to determine the pure modal excita-
tion shaker forces of multiple points through a transfer function.

In the wind tunnel and flight flutter tests, it is possible to
obtain the original data using random or transient excitation FFT
analysis, including the situatlion with response excitation alone.

In order to verify and modify the finite element structure dyna-
mic modal mathematical model, more reliable and accurate complete
modal parameters are required. We suggest using steady state sinus-
oidal excitatlon, tracking filtering to analyze the frequency response
data for identification.

The transfer function method can also obtaln the distribution
of zero and extremum points based on the aerodynamic elasticity cal-
culation of the aircraft or the rational transfer function model
formed according to the experimental data 1in order to facllitate the
analysis and synthesls of the flutter of the stabilizer system and
the flutter active control system.

2. The impulse response method, in addition to the fact that it
1s possible to use the inverse Fourier transform of the measured
data as the original data, is especially suitable for the condition
with response data only. At this time, the random attenuation method
can be used to obtain the original data without any data analyzer.
It 1s sulted for the identification in wind tunnel and flight tests.

3. The autoregressive moving average model method 1is an effect-
lve statistic parameter estimatlon technidue. Because the random
noise effect 1is confronted face-to-face in this method, and also
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because a double smoothing correlation--least square method 1is used,
it is expected to obtaln higher identification accuracy with strong
interfererice. Thils method can also simultaneously obtaln the stand-
ard square deviation between the real and the estimated values to
further ensure the reliability of the results. Furthermore, this
method can be directly based on sampled data without the use of spe-
clal analytical instruments.
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SYSTEM IDENTIFICATION AND AIRCRAFT FLUTTER

Zhang Lingmi

(Nanjing Aeromautical Institule)
Abstract

After reviewing the application of system identification to aircraft flutter
research, three methods of system identification are presented in this paper.
Emphases are put on the main points of identification algorithm and its theo-
retical basis. The problems related to data processing are also discussed. The
Transfer Function Method based on complex modal analysis and optimization
technique can identify all of the modal parameters accurately. Furthermore,
this method has been applied to the flutter model test of a wing with external
bodies successfully, The method can be extended to the cases of wind tunnel
snd flight tests which provide response data oanly. Adopting the correlation
and least square technique, Impulse Function Method and Autoregressive Mo~
ving Average Method can gain considerable accuracy in identification of measu-
rement date conteminated with rather strong noise interference. In g0 need
for a special signal analysis instrument, it is possible to make direct use of
measurement sampled data from artificial random or transient excitation and
response dats from patural random excitation with these two time domain
methods.
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APPLICATION OF MULTIPLE DYNAMIC ABSORBERS TO REDUCE
THE VIBRATION LEVEL OF A COMPLEX CANTILEVER STRUCTURE

Tlan Qianli
Institute of Mechanlcs, Chinese Academy of Sciences

ABSTRACT

A complex cantillever structure has two closely positioned
resonance peaks near 20 Hz causing the destruction of the
root of the structure. This paper presents a method to

use multiple dynamic absorbers to reduce its vibration
level. In order to overcome the ‘drawback of the usual

tuned absorbers which are very sensitlive to the structural
frequency, six absorbers were hung in a glven section of

the structure. The absorbers can vibrate along any direct-
ion with the structure. Furthermore, the stiffness and
damping parameters of these six absorbers could be different
from one another so that the absorbing frequency range could
be widened. 1In order to find the optimum parameters and to
study the effect of parameter variatlon on the structure
response, large amounts of response curves were calculated.
Because the structural damping 1s very small and the absor-
ber damping 1s large, therefore, it 1s a non-proportional
damping dynamic analysis problem. In this paper, this prob-
lem was solved by an elgen solution method and a modal syn-
thesis method.

I. INTRODUCTION -

For a cantilever structure in resonance at the base frequency,
a large stress 1s produced at its root which easily leads to destruc-
tion. Use of dynamic absorbers can solve this problem very well.
However, for a complex cantilever structure, there are usually several
resonance peaks in the vicinity of the base frequency. 1In addition,
due to the fact that the direction of excltation vibration 1s not
specified, these resonance peaks are frequently coupled. The fre-
quency parameters 1n the long perlod of the working process of the
cantllever and absorbers may deviate from the original designed numer- -
lcal values. Hence, it 1s impossible to use classical tuned absorbers ﬂ
to treat thils problem. We adopted the method of installing multiple
absorbers with different parameters on a sectlon of the structure in

Received April 14, 1981
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order to widen 1lts absorbing frequency band and to reduce the vibra-
tion level in any direction by vibrating In any direction following
the structure.

We all know very well that the commonly used finite element
analysis programs such as SAP can only calculate the dynamic prob-
lems with proportional damping. Here, our dampling is concentrated
on the absorbers and these absorbers are hung on a section of the
structure which 1s apparently a non-proportional damping problem.
Therefore, we used a complex elgen solution method and a modal syn-
thesis method.

II. USING A MODAL SYNTHESIS METHOD TO CALCULATE THE
DYNAMIC RESPONSE

The special feature of the modal synthesis method is that the
modal solution of each substructure 1s obtained individually first.
Then the elgen vectors of the substructures are synthesized into the
Ritz vector of the structure in order to solve the eigen solution of
the system in the subspace. Here, the damping of the structure
itself is very small, while the damping of the absorbers is larger.
Therefore, we divided them into two substructures. The dampless
mode of the structure itself 1s solved by the SAPN program. A few
lower order modes after the cutoff are combined with the concentrat-
ing parameters of the absorber to carry out the synthesis. Now, the
first few terms of the natural frequencies calculated by the SAPN
program and the experimental results are listed in Table 1 for
comparison.

Tablel The few terms of natural frequencies of a cantilever structure

T
freq‘”‘@ | O ) I fe
calculated val 20.28 20.63 0.3 148.0 us.s 259.3
sinusoidal. tes 20.88 21.42 s 147 148 | 240
randam . tes 20.23 21.48 .19 150.41 158.23 : 259.87

Because fl and f2 are very closely connected, they correspond
to the bending vibrations in two main directions, respectively.
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Fig. 1 Schematic of absorber

In order to demodulate them, we used the mechanical resistance test-
ing method. In the 20-22 Hz frequency band, we used slow speed
scanning and the phase and amplitude were recorded at high speed us-
ing an X-Y recorder. Then the resistance circle was plotted manually
point-by-point. Therefore, in this frequency band, the frequency
resolution could reach 0.01 Hz. The random excitation vibration was
controlled by B:K 3380. The response was recorded on magnetic tape
and spectral analysis was carried out on C+F 700.

The actual measured base frequency vibration model basically
agrees with the calculated results. Therefore, we began the synthesls
using the calculated modal parameters and the absorbers. As shown
in Figure 1, after installing a dynamic absorber at point 2z of the
cantilever structure, it 1s equivalent to the exertion of a concen-
trated force at that point

Fl.a"hr.l(ym"-"‘i) 3 (z-2) (1)
Here A=h,(1+iB) 1s the complex stiffness of the complex spring of
the absorber, B is the damping coefficient, i=Vv -1,

In the finite element calculation, it is necessary to discretize
the structure into several nodal points and each nodal point can have
0-6 degrees of freedom. If the beam element is one which neglects
shear and rotational inertia, then each point has two degrees of
freedom. Therefore, in the following we will use the jth degree of
freedom to represent the zJ point mentioned above. By assuming the
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total degrees of freedom after structural discretization to be N,
then the displacement vector X is an N dimensional vector. In a
structure with m degrees of freedom with p absorbers (p>=m), when
the structure is under motion with a base acceleration equal to &,
the equation of motion of the system is

(2)

Mx+KX=M{I}%¥+F
where

F={Zk:..(y:..-x.)} (3)
1

The subscript j represents the jth degree of freedom, the subscript Ly
1l represents the 1lth absorber, the superscript ¥ represents the com-

plex number of the quantity, {1}"=(1,1--1) . Because we installed

six absorbers of various parameters on a section of a structure,

therefore, in equation (3) corresponding to the same xj, it is poss-

ible to have 1 number of y‘1 1 In order to unify the two in one ecoor-
3

dinate system, let us introduce a matrix B

(4)

o

]

S
e O O o O
[T B — S — ]

8 is a p X m matrix in which the number of rows corresponds to the
number of absorbers and the number of columns 1s equal to the degrees
J

of freedom of the added absorbers. 1Its element corresponding to x
in each column 1s equal to 1, and the remaining elements are zero.

Let . -
T =| &,
[ ”-.] (5)

T* is a p x p diagonal matrix and 1ts elements are the complex stiff-
ness of the absorbers. Let y be a p dimensional vector whose elements
are the displacements y'j 1 of the absorbers. The sequence corresponds
to the diagonal elements of T . Therefore, the F in equation (3)

can be written as

F=pTT*{y—BX,) (6)
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Xj is the displacement vector corresponding to the part of degrees
of freedom of the attached absorber in the total displacement vec-
tor of the structure X. It 1s related to X through the projection
matrix P:

X =px (7)
0 1 0 0 oeerevroons

P= [ 0 0 0 1 ] 8)
0 0 0 0 0 1--

P is an m x N matrix [1]. Only the,Jth element in each row which
corresponds to the degree of freedom of the attached absorber 1is equal
to 1, and other elements are zero.

From equation (6), we can see that F is an m dimensional vector.
Multiply it by PT from the front, so that it is extended into an N
dimensional vector. Hence, equation (2) can be written as

Mi+EX+P B T BPX~P T T y= —M{I}3, (9)
Simultaneously, the equation of motion p absorbers can be written as
R¥ +T'Y -T*BPX=—R{I}%, (10)

where

R=['hﬁl] is a p x p diagonal matrix (11)

R,y 1s the mass of the lth absorber attached to the jtb degree of
freedom of the structure. Combining equations (9) and (10), we get
the equation of motion of the synthesized structure:

[M .9.] {X} + [K.t!fﬁ"’f.'.ﬁk.?...:ﬂfT.'f.. ] {X } - {M.‘ ! )}g.

VIR —~T*pp i ™ )Y R{1} (12)

In equation (12), T* is a complex number diagonal matrix. Therefore,
it 1is a (N + p)th order complex number matrix equation. The order N
of a complicated structure is very high, and 1t takes a great deal of
computer time to solve the complex eigen solution. For this, let us
take the first n terms of modes of the structure as the Ritz vector
of the synthesis system. Let x = Vq and substitute 1t only into
equation (9) where V is the matrix formed by the first n terms of the
eigen vectors of the structure. Again, multiply it by VT from the
front. We notice that
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VIMV =1 (I is the unity matrix)
VIKV=A= "mg o2 1s the rtb order eigen value
.. of the structure

Then, we have

IS+ (A+VTPTRTT*BPVIq—V PR T Y =~V 'M{1}%,  (13)
Let PV=V, BTT*=T? B T =T
Then equation (12) becomes

[..!LQ ] {-} - [ AV, TV, =V T?] { 8 } -— { VM) } %,

0:iRy -ni'v, T R{T} (14)

Through the aforementioned cutoff modal transformation, the
order of the square matrix decreases from (N + p) to (n + p) and

usually n<<N. Therefore, the computational load is greatly reduced.
This point 1s especially significant in dealing with the absorber
problem. Because the base frequency component occuples an important
portion in the cantilever structure vibration response, it 1is only
necessary to keep the first few orders of modes to obtain a solution
of sufficient accuracy. Here, our structure has 54 degrees of free-
dom after discretization, i.e., N = 54, The SAP program is used to
obtain the first 10 orders of eigen values using an lteration method
in the substructure space. The sixth, third and second order eigen
vectors were selected to form the vector V to be substituted into the
left side of equation (14). Use Q. R. Yugenmoyacoby’'s complex eigen
solution program [2] to calculate the complex eigen values and complex
elgen vectors, and the results obtained indicate that they are almost
identical to those obtained when n = 6, 3, 2. The difference is
smaller than one one-thousandth.

III. COMPLEX RESPONSE FUNCTION

q .
Equation (14) 1s a complex number matrix equation; let ‘9'{”5”}

From the complex eigen solutlion program, we can obtain the eigen

solution of the homogeneous equations on the left end of equation (14).

Q=02 (15) 1
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®* is the complex elgen vector matrix.

Substituting equation (15) into equation (14) and multiplying
it by o°'" from the front, we can obtain the following using ortho-
gonality and normalization characteristics:

o . ViM{1 "
2+l +imyz(O=—o{ VMO s
Pl 2 e n
th o
o7 1is the r row in o
Let
VIM{1} V. _ = D*%
Conducting Fourier transform on equation (16), we get
(18)
Here Z(o)=H(0)P(®)
z(@)= 7 20 (19)
F0)=D2 [7_5,(1)e dt=Di(w) (20)
) 1
HCO) =G Fmy—a"
(21)
The denominator of H.(®)has two roots, o, =te,+(1 +in,)"

where -o,(1+in)¥* 1s located below the real number axis of the com-
plex plane. Therefore, g.(w) i1s unstable in the frequency region.
For this purpose, we adopted the suggestion of [3] to use the sum of
a pair of complex conjugate values to represent the real solution,

i.e., to let
Z(0)=H ()P ®)ese+ A (D)P(©)loes (22)

Here H,(@), B (o) were taken from equations (21) and (22), respectively.

(@), P®) are their complex conjugates.

*
Let us divide the ¢ matrix in equation (15) into two parts which
correspond to {1} , respectively, i.e.,
y
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then {q} =01 (23)
Hence, the displacement vector of the structure is
X(0)=V(BIZ(@) Lo+ O1Z(©) locs) (24)

IV. RANDOM VIBRATION RESPONSE

The Fourler transform of the bending moment of the root of a
cantilever structure during random vibration is

M(0)= (h}TMAVX(®)

= Dot ™MV, (3 itm2 (2%
r m

+S$Lm2.l )
[ 24

>

Here (h}T 1is the transport of the vector formed by the root
heights of all the nodal points after the discretization of the struc-

ture. V_ 1s the rth

r column vector in the V matrix, and 4¢3 is the

rtb row mtb column element in the matrix @f
(I): (h) TMV'=CV
Let (26)
then 2cvé:ryn=8:o Zcﬁl'p-L—B- ( 27 )
— —.— o 28
W(0)= 3 (BEZa(®)lore+ B2Za(@lecs) (28)
m
Its complex conjugate is
(29)

M(0)=S(BZu(© )zt BEZu(@)lece)

The spectral density of the bending moment at the root of the

— A e A - A

structure 1s S.-(0)=1!..im (_;7 iﬁ) = 2 Z(B:B:D:D:H-Ha‘.>.
e s m

+ BABADID S HeH alecs) Sk gia( @) (30)
Let BeBADIDL = AmetiBae (31)
then BIBADLDS = Ame—iBa.e (32)

Substituting it into equation (30) and integrating with respect
to w from -x to +», the mean square value of the root bending moment
can be obtalned as
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+ o0 Anint il
-——_f 2 2[[0)’/] —in) o (wi( 1 i) - w!)

‘>0

*¢ 0i(1 +in,) - 5:‘1'(6"'('1 —iN.) — @)

;
[Sremat@dde (33

<D

If Syw(@) varies slowly in the frequency band of interest, it may

be aprrroximated by the white noise spectrum S. Tbi?)
(BuseOn= Amiaba) (02 = 03) = (02N + O1M) ( 4msGet Baiabn) 1 ¢
(=23 o TS ai(T T T oH( 1 S ) — 2050l T — "on)) )

(38)

where

= +n’+1
a- ‘/“"/l

e

b=},'V1+ﬂ—1

vy
When ®e, ®. are separated relatively far apart, and "=~"<0.1
the coupled term of m and n can be neglected. This caused the approx-
imate expression in equation (2.130) of [47].

0‘(') 22—1:5: (35)

V. APPLICATIONS

From equations (21) and (35), we can see that the response func-
tion and the mean square value of response are inversely proportional
to the modal damping regardless, whether it 1s simple harmonic vibra-
tion or random vibration. Of course, it 1s also related to the vibra-
tional model parameters. Baslcally, the stress is proportional to
the square of vibration model. By adjusting the weight, positlion and
parameters of the absorbers, it 1s possible to change the elgen solu-
tion of the system; 1.e., 1t might change the response value. Here,
due to the limitation in structure, the weights and positions of ab-
sorbers are defined. We are only able to change their stiffness and
damping parameters. Because the base frequency of a cantilever struc-
ture has two majJor directions of bending vibration, therefore, the
absorbers are divided into two groups. Each group has three absorbers
corresponding to one majJor bending direction. Thelr stiffness and

damping may be different. The stiffness coefficlent k ranges from

1,1
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0.8-3.0 kg/cm and the damping coefficient B varies in the range of
0.05-1.0. Wlth regard to various complex stiffness combinations, a
large amount of numerical calculations has been carried out. We dis-~
covered that when the stiffness coefficlents of the three absorbers
are 1.5, 2.0 and 2.5 kg/cm, respectively, and when the damping coeffi-
clents are 0.2, the vibratlon absorbing effectiveness is optimal.

Now, a comparison of these optimal response curves and another series
of response curves obtained with ldentical stiffness coefficients

and B equal to 1.0 1s shown in Figure 2.

It 1s worthwhile mentioning that when thls structure was calcul-
ated based on an equivalent single degree of freedom body system, the
optimal stiffness coefficient is 1.64-1.66 kg/cm and the optimal
damping coefficient is 0.19. However, due to the addition of six
absorbers to reduce the vibration along the two major bending direct-
ions, the calculation formulas single degree of freedom system are
no longer applicable. However, calculated results showed that a damp-
ing value of about 0.2 is still proper. Figure 2 explains that the
effectiveness 1s reduced when the damping value is too large. When

the frequency of the absorber is lower than the base frequency of

the structure, the absorber consumes energy during resonance of the
structure. [5] bad used this property to solve the vibration problem
of the SMS aircraft. 1In that case, the damping of the absorbers

must be large. However, the effect was not as good as the multi-
dimensional absorbers because there is always one absorber rescnating
when the structural frequency changes. Both calculated and experi-
mental results showed that when the structural frequency and absorber
frequency vary by 30%, the shock absorbing effect can still reach 50%.

The random tests and slnusoldal frequency scanningtest in this
paper were completed by comrades Li Yen plng and Wang Danfung. The
decomposition of the base frequency was performed ty the author
bimself. The calculations were carried out by comrades Li Shen zhang
and Liu Dekong.
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without absorber

10k 15K, T 20k oa (21))

Fig. 2 The frequeacy respouse curves of s structure with absorbers baving
diffrent parameters
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APPLICATION OF MULTIPLE DYNAMIC ABSORBERS TO
REDUCING THE VIBRATION LEVEL OF A COMPLEX
CANTILEVER STRUCTURE

Tian Qianli

(Institute of Mechanics, Chinese Academy of Sciences)

Abstract

In a complex cantilever structure there are some closed resonance peaksin
the vicinity of 20Hz, causing a serious bending moment at its root. The appli-
cation of multiple dynamic absorbers to reducing its vibration level is propos-
ed in this paper. Six absorbers are hung on a given section of the structure
to overcome the drawback of the usual tuned absorbers, i.e. excessive sensi-~
tivity to the tuning parameters. They can vibrate in all directions following
the structure, but their stiffness and damping parameters of these absorbers
are different from each other, so that their {requency range is mede wide enou~
gh to cover the resonance frequencies.

In search of the conditions for minimizing the bending stress of the struc~
ture and for the sake of studying the effects of the parameters on the dynamic
response, a great number of response curves at the top of the structure, bearing
the harmonic excitation from the base movement, are calculated as the pa-
rameters of these absorbers vary in a considerable range. Since the damping
of the structure is very small and that of absorbers are large enough, so it is
s dynamic analysis problem with non-proportional damping. This problem bas
been solved by a complex eigen-solution method and a modal syathesis method

in the present paper.
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A SPECTRAL APPROACH FOR ANALYZING THE VIBRATION OF A
PERIODIC STRUCTURE WITH RANDOM PARAMETERS

Huang Wen hu ¥
(Harbin Institute of Technology)

ABSTRACT

In order to explore the effect of fabrication
deviation of the blades in a circumferentially closed
turbine blade assembly on the vibration of the turbine
blades, thls paper used a structure model with periodic
random parameters as an approximation of the blade struc-
ture. In addition, a spectral method was presented to anal-
yze the vibration of this structure. Assuming the stand-
ard deviations of the structural parameters are small,
therefore, it 1s possible to use a perturbation method.
The periodic random structural parameters are expanded
into Fourier seriles, so that the free vibration and
forced vibration of the structure can be solved. Then,
the frequency, vibration mode, resonance amplitude and
square deviation estimate can be obtalned. The orthogon-
ality of the main vibration modes were proven. The spec-
ial conditions for resonance of this structure were anal-
yzed. The examples showed that the analyzed results and
experimental results bhave the same order of magnitude.

MAJCR SYMBOLS

A, B, 6, b, ¢, d—amplitude coefficients
f (8, t )—excited vibration force

F(9)— spatial function of the exciting vibration force
k—rnurber of harmmonics of exciting force

| —prder of the Fourier series
m, n, r —order of vibrational mode (nodal diameter no. of vibration mode)

ma( 08, he( 8 ), cs( 8),da( 8 )— distributed mass, stiffness, stiffness of connect-

2(0), 2(8)—local frequencies of hlade and connecting pa.xtmg damping
P, d,—average values of aforementioned local frequencies .
P(0), Q(8), M( 8 )—randam functions of distribution stiffness, connecting

tatdi stiffness, mass varameters
o,,0,, 0.—Standard deviations of above ., paflx.ztnctions '

f, 9, h—Fourier coefficierts of above random functions
x(9, t ) —displacement

£, 1, { — small parameters
X(8)=y(0)+Eu(08)+mw(0)+{w(0)—vyibration mode function
@tm)i4Eui+vi4tpt— natural frequency

hQ—exciting force frequency
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a,B.Y, 8 — phase angles 51
t — daping coefficient
8, * —gpatial coordinates

*received October 1981
I. INTRODUCTION

The blades of a turbine are usually connected into a group.
Sometimes through the use of varilous types of connecting parts, such
as black crows, belts, shoulders, elastics, it is possible to circum-
ferentially close the blades of the turbine disk to form a group.
This type of circumferentially closely connected blade group has cer-
tain advantages in avolding resonance. With regard to the vibration
of such a structure, references [1-3] presented a method to calculate
its vibrational characteristics under the assumption that zall the
blades had the same vibrational characteristics. In addition, a
"triple point" condition for creating resonance on the rotating disk
turbine blade group was also proposed. Thls means that resonance
only occurs when (1) the exciting force frequency kQ is equal to the
natural frequency Wy of the group of blades (i.e., kR = wm) and (2)
the excitating force harmonic number k 1s equal to the nodal diameter
number m of the natural vibration mode of the blade group (i.e., k =
m). Thils conclusion could only be obtained under the assumption that
the mechanical properties of all the blades and connectors were identi-
cal. However, 1in reality, it 1s unavoidable to have fabrication devia-
tions between blades and their mechanical properties cannot be com-
pletely identical. Therefore, the above conclusion needs some correct-
ion. The purpose of this paper 1s to explore the effect of fabrica-
tion deviations of the blades on the vibration of the blade group.

In order to simplify the analysis, we chose the condition under
which the blade distribution on the turbine was very dense as the
limiting case. The closed loop with lateral spring support was select-
ed as an approximate mechanical model to obtaln a differential equa-
tion with random parameters.
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In the random vibration problem, when the parameters on the
left side of the differentlal equatlon are defined quantities and
only the right side is a random functlon of time, this type of prob-
lem has been studied extensively in the literature with matured
results. However, with regard to a dynamic structure system with
random parameters, there is not toc much avallable in the litera-
ture. PFurthermore, there is a lack of a general treatment method.
References [U4] and [5] used a perturbation method to study the free
vibration of a column beam with random structural parameters. The
self-correlation and mutual correlation functions of random structur-
al parameters in this paper were given manually in an exponentilal
function form.

This paper discusses the free and forced vibrations of the afore-
mentioned closed loop. First, by assuming that the standard devia-
tions of the random structural parameters are infinitesimal quanti-
ties, a perturbation method 1s appllied to obtain the solutions. By
considering that the closed structure treated is a periodie structure,
this paper proposes to use a spectral method to find the solutions.
The random structural parameters are expanded into Fourier series to
enable the solution of the differential equation to be expressed in
terms of the Fourier coefficients of the structural parameters in -
order to obtain the natural frequencles, natural vibration modes,
resonance amplitude and its square devliation estimation of the struc-
ture. The results of examples showed that the analyzed results were

in the same order of magnitude as the experimental results obtained
in [6,7].

II. BASIC EQUATIONS

The mechanical nodel discussed in this paper is a closed loop
with lateral spring support (see Figure 1). The differential equa- -

tion of motion 1is
atx _9. a9x o _ 0, 52

the boundary condition is
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- (2)
x(—n,t)-x(“,‘)lj%'L_,’,) 9 1(x, 1)

the initlial condition is

x(e,o)-xxe),-%}l”'°)=gJ9) (21)

Let us assume that the system undergoes a bharmonic oscillation
under a harmonic exciting force. Let m be the average value of

X0
the mass function; and the exclting force be

. (3)
FQ8, t)=m F(8)e”
The solution to the differential equation (1) is
x(0, t)=X(0)e (3")
By introducing the symbols:
l(e) c'(e) -d._'_.
P(8)= ¢ 0)= o= it (4)

then we can obtailn the differential equation of the vibration mode
from the partial differential equation (1) as

.. WS ]
de #2X A )+(, M ot) X +icoX =F(0) (5)
The boundary condltion 1s

X(=n)=X(n)y X' (~=n)=X"(x)

III. THE RANDOM STRUCTURAL PARAMETERS

Due to the fabrication deviation which exists in reality, the
structural parameters mx(e), kx(e) and cx(e) are generally not con-
stants. Instead, they are random functions osclllating around some
constant values. Alsc because what 1s discussed here 1s a closed

structure, these functions are also periodic functlons. Parameters

p?(8) and q%(8) are also periodic random functions oscillating around
83
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their average values pg and g2 . For simplicity in this paper we a
assumed that the damping 1s a constant.

Let us assume that the scatter of a structural parameter 1s an
infinitesimal quantity. Then these parameters can be expressed
through the use of small parameters £, n, ; as follows:

P(0)=piC1 +EP(0))

¢(0)=qi(1 +7Q(8)} (6)
m( 0 )=m,(1 +LM(0))

where P(8), Q(8) and M(6)--are periodically stable random processes
with zero average values. We defined their square deviations to be
1. They satisfy the following perlodic conditions:

P(—a)=pP(x)y Q(—=)=Q(x) (61)
Q(—n)=0Q(x)y M(—n)=M(x)

In the following, we used the periodicities of these functions
to expand these functions into Fourler series using the spectral

method: .
P(8)= 3 fie"

| =-o00
o (7)
Qo)=Y gem

| = -00 "

oo 53

M(8)= ) he™
| =-o00
where fu=f% gu=gh h,=h" are the random Fourier coefficlents.

* pepresents the complex conjugate.

Let us assume that the random processes P(8), Q(8) and M(9) are
ergodic processes and thelr self-correlation furctions can be obtalned

o0
as follows: R’(‘)-EEP(G)P(Q"")]-'_Z!?J‘:. 2 fre™ Z frre gy
' {=-00 I

/! & -o00

= 3 ffistem =z Y Ifiltonte (8) :

] = =00 =1

When 1 = 0, the self-correlation function 1s equal to the square dev-
iation. Furthermore, we have already defined the square deviation of
P(e) to be 1, therefore,
[_J
R,(0)=2 ) Ifilt=1 (8")

=1

84




s g it 11y

o A .

= s J-n-----!--u-l-l-ml-!ll!ll-u!ll!lllllll!lllllll!l---n-u-g;"

Similarly, we could obtain Rq(r) and Rm(r).

Let us assume that the standard deviations of the random pro-
cesses P(8), Q(8) and M(9) are ops ogq and 5, respectively. Then,
from the above analysis, we know that the small parameters £, n and

¢ are equal to these standard deviations, respectively, 1l.e.,
(9)
&-0'| n-qt’ C-on
From equations (8) and (8'), we can see that the Fouriler coeffi-
cients such as Ifll of a stable ergodic random function such as P(8)
can be determined. In fact, from equation (8", we can see that:
1fi<0.707 (1 =1 , 2 ,.) . Furthermore, with regard to a defined
structure, the self-correlation function Rp(T) can be experimentally
obtained. As long as Rp(T) is known, then the numerical value of
Ifll can be obtained from equation (8).

In [4], the self-correlation function was artificlally assumed

to have the following form:
Ry(v)y=me (10)

when the parameters a could be determined in combination with the
experimental results. From the known equation (10), it is also poss-
ible to determine the actual numerical value of lfl[. -

IV. FREE VIBRATION

In the differential equation (5), when the exciting force 1is
zero and dampling 1s neglected, we get

- (@X"Y +(p‘—~,~',’,’,’° “”)X"' 0 (11)

The boundary conditlons are

X(—x)=X(x) X' (=n)=X(x) (11')

By conslderling the randomness of the structural parameters, g, p
and m,, and by substituting equation (6) into (11), we get

(12)

~q(1 +7Q)X’Y +(p(1 +EP) - (1 +IMP X =0




The obtained equation (12) is the free vibration differential equa-
tion of a periodic random parametric system. Because the variations
of the random parameters are infinitesimal quantities and the differ-
ential equation contains small parameters £, n, ¢, it 1s possible to
find its solution using a perturbation method. For this purpose, the
frequencies and vibratlion modes are expressed as power seriles of the
small parameters £, n, and . As a first order approximation, let

us keep the first order terms of these small parameters:

@A+ EUEHAVEHLPE e
X(9)=y(e)+'é,u(9)+‘10(9)+Cw(,9)+ """ (13)
By substituting them into equation (12), neglecting higher order infin-
itesimal quantities, and making the coefficients of the small para-
meters £, n, ¢ zero, we get the following equations:

—q@y"+(p—2)y =10

—q3u" +(pi—2?) u = ~(piP—1*)y

—qiv" +(pi—a) v =qi(Qy" +Q ¥y ) +Viy
—@uw' +(Pi—A\)w=(NM+pP*)y

(14)

The first equation in (14) is a well defined equation. By using

the boundary condlitions to solve this differential equation, we obtain

2
the frequency Xm as N .
where m is an integer and its physical meaning 1s the nodal diameter
number of the vibration mode. The vibration mode ym(e) is

Yu( 0) =A™ + Abe”™ (16)

where Am and A; are crnjugating coefflcients to be determined. We
can formulate the vibration modes in such a way so that these coeffi-
cients can be determined. Considering the following orthogonal con-
ditions:
lwhenm=1)

f_. y..(O)y-(9>‘/°"b"={owhenm¢n) (17)

From this we get

A A=At = 415 (18)
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The second equation (14) contains random variables. In order
to solve this differential equatlion, we expanded the functicn um(e)
to be obtained according to the vibration mode yr(e) by letting

m(8)= Y bay.(0) (12)

ral

Substituting it into the original function multiplying yn(e)
on both sides of the equatlon, and integrating, we obtain the follow-
ing by using the orthogonality condition:

q%('n‘—-')b..+ll.’.b..=p3ft, Pya y.db (20)
when m = n, the frequency u2 obtained from equation (20) is
wampi [, Pyrdom2npi(fimdS+f1aAD)  (21)

where the values of Am and A; can be given from equation (18) and
£z and f?m from equation (7). Let us assume

A=lAlle*=y fra=|frale®r=
then Bl = pilf smicos(Bra—222) (211)

When m # n, the coefficient bmn of the vibration mode can be
obtained from equation (20) as

2

m—n Qe
Therefore,
(0 )= b-- «( 0
ua(9) .%"1 ya(8) (23)

Following a similar method as in the previous section, we can
obtain solutions for the third and fourth equations in (14) and the
frequency obtained is:

vi= q%f ’_' . Qva'de=—gim’lg,alcos(¥a—2.)

. (24)
prm—A2 [T Myido= —Allhloos(den —20.)
Where A--lA.IG”-) gl--lgl-lelv‘-’ hl--lhl-Je"'-o
The expressions of the vibration modes are:
o T

e mn alidn




U-( 8 )= 2 C--y-( 0 ) -

n=1
ndxm

oo (25)
Wn( ) )= 2 d--.vl( 6 )
" )
Furthermore
Cos™ —Cmet dea™ —duns (26)

V. THE NATURAL FREQUENCY, ITS AVERAGE AND SQUARE DEVIATION

The natural frequencilies of various orders of the system can be
obtained by combining equations (13), (15), (21) and (24). The
natural frequency of mth order of the system is:

ol=Al+ENS+nvi+CP
=(+mad) +tot [T Pondosng [T Quirde-tarfT My (27)

- (P: + ""qz) + gP:’fx-k!OS(Bg- - 20-) - """qzlngCOS(Y;-- 28-)
- C (p=+m’q=)|hl-lm(6:-- 20-)
In searching for the average value of the natural frequency, we

have to consider that the average values of the functions P, Q and M

are zero:
ECP(8)I=0,; E(Q(0))=103 EM(8))=0

Hence, the average value of the natural frequency m; is: -

Etod)=E OD+Ep | T ECP(0)) vido+nad | ECQ(0)Iy2idd
(28)

o[t EoMce)) yade =i

The average square value of the natural frequency w; can be estimated
in the following:

E Wonn=EOD+80 [T [T ECP(0,)P0))152(0,)52(0.)d8,d0,
+ma [T 7 ECQ8)Q(0)3 120,288 0,
seas [T [T E0)M0)2520,) y2(8.)d0 db,
ranga |t [ ECP(0)Q 015200, 52(0,)d0.d0,

ratpnaf " [T ECP0IM(0.0)32(0) 1200 )d0 do,
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vomeada [T [ ECQIM0150)520)d0do;

so2{ et ECPCoyaC)do+nalf T ECQC0)15L(0)de

. (29)
~oif 7, EMC0)Iyi8)d8 |
The square deviation of the natural freguency Iis:
ob=FE((0l)')—Aa= -:1_,- {E2 D3l frml? + M Gl gral® + L A1 Ayl
= 2N pigim?| f sl grmlco8( Bim— Vi) (30)

—~ 288 paAELf 1l 1BymlcOB( Byw — dge)
+ ZﬂCm'qzlzlgg-“hmlm(Yg-— 62-)}

The above equation indicates that th: standard deviation of the
natural frequency i1s the vector sum of the three following vectors
(Figure 2):

Epifrmt —MGiGims —CASHia (31)

The standard deviation of the natural frequency can te estimated
by the following approximation:

03 E p3lf 1l + 2L Gaml + EA2 Bpar) (32)

We can see that the standard deviation cwz of the natural fre-
quency 1s on the same order of magnitude as the small infinitesimal
quantities &, n, ¢, which is an infinitesimal quantity on the same
order of magnitude as the standard deviations op, 0
frequency scatter.

q° O of local

Fig. 2 Standard deviations of patural frequencies
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VI. NATURAL VIBRATION MODE AND ITS PHASE ANGLE

The vibration modes of various orders of the system can be
obtained by combining equations (13), (16), (23) and (25). The m
order natural vibration mode is

th

Xa(0)=y(0)+Eun( 0)+M02(0)+Lwa(0) (33)

=9a(8)+ D) (EbmetNCma+Ldua) 7a( 9)
S
Due to the complexity of the vibration mode expression (33),
we can see that the nodal diameter of the vibration mode is changing
from a symmetric distrlbutlon to an asymmetric distribution (Figure
3).
57
It can be proven that the vibration mode (33) satisfies the

orthogonallty condition:
iwhen m=m’)

.f g KaXor d9=6--'={0m m#m’) (34)

As for the phase angleam of the natural vibration mode, when the
structural parameters are constant, the phase angle o is a value to -
be determined by the initial condition. When the structural para-
meters are not constants but random gquantities, the natural vibration
mode phase angle an is determined by the variations of the structural
parameters P(9), Q(6) and M(8) and is not related to cthe initial con-
ditioen.

In fact, in solving for the latter three equations in (14), the
right hand side of the equation should not contain a "long term"
term wlth spatial frequency m. Otherwise, a solution which increases
with time will be found which is not rational.

In order to make sure that the solution Xa(0)=y.+ite+MWat+lwa
does not contain any term which increases with time, we must let the
coefficlents of the following equation be zero:
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After expanslon, we can obtaln the formula to calculate the
phase angle of the vibration mode:

- EE.\;;.Isinﬂ,.+ Nm g3l grelSinYsm +CA2; BymlSiNS e (35)
tg2%a=—C E palf 20C08B 0 + M2 G3[ GemlCO8Y 2 + EALI 2w ©038:m

VII. TFORCED VIBRATION

In equation (1), let us assume that .he exciting force f(8,%t)
contains many barmonics:

a0

f(o,t)= i fr (O, )= 2 M,.F.(B)g'""' (36)

h=1 k=1

h

Now, let us only consider the kt barmonic of the exciting force,

i.e., on the right hand side of equation (1) we only take
108, ) =m (88 (37)

For the convenience of writing without losing the generality,
let us assume that the spatlial distribution of the excliting force
and the kth harmonic of the vibration mode have the same phase angle,
which 1s to assume that

Fa(0)=Fay(8) (38)
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Let us assume the speclal solution to the differential equation
(1), 1.e., the forced vibration is

x(@, t)=X(0)" (39)

Substituting it into equation (1), we obtain the differential
equatlon of forced vibration as

—@Xy +[p = ™ Q) X +ik0X=Fun(8)  (40)

In the following, in order to simplify the derivation, let us
assume m,(8) = My
mass distribution by assuming EM(8) = 0.

= const which 1s to neglect the nonuniformity of

Let us assume that the solution to the differential equation
(40) can be expressed as the sum of the various orders of natural
vibration modes:

X(8)= a.X.(9)
2 (11)

where the natural mode xm(e) can be found in equation (33). Substi-
tute equation (41) into the differential equation (40). Multiply
both sldes by Xm(e) and then integrate. By using the orthogonality
condition (17) and neglecting higher orders of the infinitesimal
amounts, we get
(mi—(kQ)8+iekQ)a.={ h when m= &)
) Fa(&bas + Ncme) (Whenm s ) (42)

VIII. RESONANCE AMPLITUDE AND ITS AVERAGE AND SQUARE DEVIATION

The following 1s a conslderation of the resonance amplitude.
Please refer to the Campbell diagram in Figure 4.

(1) when the "triple point" condition is satisfied, i.e., when
| D= kQ and m = k, from equation (42):

byt (43)
This 1s the quantity of a defined mode. Under small damping condi-

tlons, the amplitude 1is very large and a very intense resonance 1is
obtained.
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(2) when the "triple point" condition is not satisfied, i.e., -
when  @,=kQ , but m # k. From equation (42):

Joul= gty (Ebat Tico) (44)
At this time, the average of the vibration amplitude 1s zero:

Ele=gts =2 (" {¢ {?—Eu»(e)ny.y.+n5(o(o))y'..\-:}do=o (15)

2xekQ m*— k) -«

The square devlation of the resonance amplitude is

oi= ECau) = groey ey

{2 (7 (7 ECP)Q00)ya(0)70(8) 5200 54(8,)d0,d0, 59

+ f " f ECQ(8,)Q(8:))y4(8,)¥4(8,).va(8:) y2(8,)d8, d6,

szn-B (7 [T ECPB)Q80Iya(0) (8328 i(8:) do.de,}  (H6)

The calculated results are:
4
%= *ﬂ,—n'l:-gr(,k-g')a {E’ -gz—lf...l‘-#- 'm |ga.l’

=2t B/ lganlcon(Bans~ Vo) +8 L7 (1)

+mlge s+ 280 L 17 g con(Bas—Ye) |

From the above complicated expression, we can see that the -
ratio of the standard deviatilon Oy of the resonance amplitude and the '
resonance amplitude |app; under the triple point condition can be
considered as the vector sum of the following vectors (Figure 5):

E "gg 'fQ‘” "M”-ol’ E "g;::‘f-‘” ‘lm'g.... ( u 8 )
This can be estimated approximately using the following equation:
g, $ $y1/8
i < {( ¢ -f.f—lf...l«v-ﬂm‘lg...l) +(a -§§—| f__.|+n,,,n|g__,|) } | (L9)

From thils we can see that this ratio 1s on the same order of
magnitude as the small parameters £, n and the standard deviation Op >

o, of the scatter of the local frequencles.
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Fig. 5 Square deviations of resonance amplitude

IX. EXAMPLE

With respect to the mechanical model shown in Figure 1, let us
choose the local frequency as:
Dy=110X2n, @=22x2=n

Usually, a turbine machinery factory establishes that the fre-
quency scatter of the blades on a turbine cannot exceed *4%. Now,
let us take 1/3 of thls value as the standard deviation of the fre-
quency scatter, i.e.,

t=1=0,=0,= °'3°‘ =0.01333
Assuming that the self-correlation function of the random struc-

tural parameters has the form of that of equation (10), let us also

choose a = 1. Using equation (49), let us calculate the extremes of

the ratio of the standard deviation Sn of resonance amplitude and

the resonance amplitude lamol under the triple point conditions at

various orders of harmonics k of the exciting force, and different

main vibration mode nodal diameter numbers m are shown in Table 1.

From Table 1, we can see that, under the condition of the main
mode with no nodal diameter (m = 0) and the first order harmonic
exciting force (k = 1), o/ [0a,/<13.58% Under other conditions,
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Table 1 Limit values of ratio 0./laa,l

harmonic nodal dia- o - ma2 e mey
_nuuker __meter no. 1 o
k=0 ! 1 0.1413 0.0238 0.0092 0.0046
k=1 0.1358 1 0.0467 0.0112 0.0055
k=2 0.0208 0.0365 1 0.0271 0.0085
k=3 0.0087 0.0086 0.0231 1 0.0228
et 0.0028 0.0035 0.0060 0.0190 1
h=s 0.0015 0.0018 0.0028 0.0051 0.0177
‘ hes 0.0008 0.0010 0.0013 0.0023 0.0048

this ratio 1is extremely small which can be neglected. References
[(6-7] bave reported the experimental results on the machine. They
believed that the resonance amplitude of a circumferentially con-
nected blade group was approximately %3 -% of the resonance ampli-
tude of free blade. This result is on the same order of magnitude

as the calculated result based on the above model.

X. CONCLUSIONS

1. For a periodic dynamic system witbh random structural para-
meters, to use a spectral method to find the solution is a feasible
and convenient method. The random functions of the structural para-
meters are expanded Into Fourler serles to facilitate the calculation
of the natural frequency, natural mode and resonance amplitude of the
system, and to estimate their average values and the square deviations.

2. The analytical calculation with regard to a periodic dynamic
system with random structural parameters indicated that its vibration
characteristics have some speclal features different from those of a
uniform periodic structure.

(1) the natural frequencles of various orders of a uniform struc-
ture are fixed quantities, while those of a random structure are ran-
dom quantities. The standard deviation of the mth order natural fre-
quency is only related to the 2mth order Fourler coefficlient of the
random parameter. Furthermore, 1t 1is the vector sum of the standard

deviations of several deviations.
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(2) the natural vibration modes of a uniform structure are of
harmonic waveforms and all the nodal diameters are uniformly distri-

buted. For a random structure, 1in addition to the harmonic wave-
forms of the natural frequencies of the various orders, there are
various orders of harmonic waves with complicated shapes and uneven
nodal diameter distribution. However, all the natural vibration modes
satisfy the orthogonality condition.

(3) the phase angles of the natural modes of a uniform structure
are parameters to be determlined by the initlial condition. However,
the phase angles of the vibration modes of a random structure are
related to the respective structural parameters which are not related
to the initial condition.

(4) for a uniform structure, the "triple point" condition must
be satisfied to create resonance. Under the condition that the
"triple point" condition 1s not satisfied, it is impossible to create
resonance. For a random structure, when the "triple point" condition
is satisfied, very strong resonance will be created. However, even
when the "triple point" condition 1s not satisfied, as long as ®.=kQ,
even though k # m, it will create a weak resonance. In this paper we
estimated the square deviation of the weak resonance amplitude. This - -
square deviation 1s related to certaln orders of the Fourler coeffi-
cients of the structural parameters.
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A SPECTRAL APPROACH FOR ANALYZING THE
VIBRATION OF A PERIODIC STRUCTURE WITH
RANDOM PARAMETERS

Huang Wenhu

(Horbin Insiiinie of Technology)

Abstract

In & periodic structural system such as blades in a circumferentially clo-
sed packet on a disk of turbo—machinery, the natural frequencies of individu~
al blades can be randomly different from one another. From this arises the pro-
blem of vibration analysis of a periodic structure with random parameters.
There is lack of general method for solving the differential equations with ran-
dom parameters. This paper describes .. .pectral approach for analyzing the vi-
bration of a periodic structure with random paramcters. Suppose the standard
deviations of random structural parameiers are small so that a perturbation me-~
thod can be used to reduce the differential equation with several random pa-
rameters to several differential equations with one parameter, and then these
differential equations may be soived one by one. Suppose the spatial distrihu-
tions of the random structural parameters are ergodic, and for concrcte stru-
cture these distribution functions and their correlation functions can be deter-
mined by experiments. It is suggested in this paper to expand these spatial dis~
tribution functions of random parameters into Fourier Scries. And then the re-

lation between these Jourier coefficients and the correlation functions is estu—
blished so that these Fourier coefficients can he determined by several ways.

In this situation, these differential equations with random parameters can be
solved. Thus natural frequencies of the structure sre then obtained, and their
standard deviations are estimated. Also, the expressions of natural modes are
given, the orthogonality of natural modes is proved, and it is shown that the
phase angles of natural modes are not arbitrary. Finally the special conditions
of resonance of periodic structure with random parameters are discussed. It is
shown that a violent resonance occurs when the number of harmonic of excit-
ing force is equal to the number of nodal diameters of natural modes, and only
a8 weak resonance appears when these two numbers are not equal. This pheno-
menon does not exist in the case of structures with homogeneous parameters.
The standard deviations of amplitudes of weak resonance are estimated, Nu-
merical examples show that the calculated results have the same order as the
experimental results in literature.
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A NEW METHOD OF FINITE ELEMENT STRUCTURE DISCRETIZATION

Liang Guoweli®
Northwescern Polytechnical University

ABSTRACT

In this paper, the lso-parametric element geometric
interpolation method was used to automatically generate
the nodal coordinates of all the elements based on a small
amount of 1lnput data. A "chessboard"” mesh was used to
facilitate the numbering of elements and nodal points.
Simultaneocusly, a "front solver" method was used to solve
the equations to simplify the numbering program.

This method has the advantages of little input data,
ease of changing the mesh and the sufficient accuracy of
the boundary nodal coordinates. It has been used for the
two dimensional mesh of an axlal symmetric body and the
three dimensional mesh of a turbine blade. The results
were satisfactory.

I. INTRODUCTION

In the finite element calculation work, the work load for the
preparation of input data is wvery large. It mainly involves the deter-
minatlion of nodal point coordinates and number. If these data are
obtained manually, it 1s very easy to make mistakes. Therefore, this
willl cause difficulties in testing the program and wasting computer
time. Hence, automatic discretization becomes an actual problem to
be resolved in the finite element computation work.

In the references [1-U4] both here and abroad in the 70's, various
methods to automatically form meshes were discussed; which were
limited to planar triangular elements.

As we all know, under the same nodal point number the accuracy
of a rectangular element (or hexagonal element) is higher than that
of a triangular or (tetrahedral) element. Therefore, it is very
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imperative to develop a rectangular iso-parametric element which

is applicable to the automatic generation of two-dimensional and
three dimensional meshes. Furthermore, in the aforementioned litera-
ture, the emphasis was focused on the automation of the division

of the element and the formatlon of the nodal point coordinates. As
for the automatic numbering of the nodal points and elements, it was
seldom consldered in connection with the storage problem. In some
references [5-6], although some methods for renumbering the nodal
points and reducing the bandwidth were proposed, yet such methods
would complicate the program.

In 1978, the author proposed a method to automaticaily form the
nodal point coordinate using an interpolation function [7] together
with a "front solver" method to solve the linear equations by consi-
dering the convenience of automatic numbering of the nodal points.

The numbers of the nodal points were allowed to be discontinuous

to simplify the program as well as to save the internal storage.

During the numbering of the elements, some programming techniques were
used to minimize the "wave front". After the discretization of the

mesh, a huge amount of data was required to be checked. Undoubtedly,

it 1s very time consuming. This method displays these data using the
method most convenient for checklng which consequently saves a lot e
of time.

II. MAIN POINTS OF THIS METHOD.

1. Automatic formation of nodal point coordinates
using the interpolation function

Usually, geometric Interpolation is used in an iso-parametric
element to transform a rectangular (or hexagonal) element into a curve
(curved surface) element. The coordinates of an arbitrary polnt P

of the curve (or curved surface) element can be obtained by the nodal
coordinate interpolations of the elements:
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x=2~\vl(ao n, C) T Xy
)

(A)
y=ZMHNhU-w

2= NVi(k, M, L) -z

where (xi, Yys zi) is the coordinate of nodal point i, (&£,n,z) 1is
the local coordinate of the point P, and N«(%t,",%) is the shape
function corresponding to the nodal point 1 as shown in Figure 1.

Through the transformation, the original linear mesh (the iso £,
1so n lines on the left of Figure 1) is transformed into the curve
mesh (the 1so £ and iso n lines in the x-y ccordinate system on the
right of Figure 1). If this iso-parametric element is the component
we want to analyze (or part of a component), then the large amount
of nodal point coordinates in the mesh can be obtalned by interpolat-
ing the small amount of original nodal coordinates (Xi’ Yis zi) using
equation (A).

P(x,5)

E g
T
~
[l
-

3
~

¢

4 £ (%050

Fig. 1 2-and 3~dimensional iso~parsmetric elements
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2. Actual procedures of nodal polnt coordinate interpolation

(1) Based on the boundary shape of the component, it is divided
iInto several zones. For each zone, a proper parent element for each
zone was chosen;

(2) in the body coordinate system, based on the boundary shape

of the component, the nodal polnt coordinates (x zi) of the

i’ Yi’
parent element was chosen;

(3) based on the degree of closeness of the discretized mesh, the
local coordinates(&,n,) of any nodal point on the parent element in
the mesh in that zone are determined;

(4) from equation A), the coordinates (x,y,z) of all the nodal
points of the mesh 1n that zone can be interpolated.

Now, let us use the disk in Flgure 2 as an example to explain
the above procedures.

First, based on the shape of the disk, let us divide it into 18
zones. The principle of zoning is that: a different boundary curve -
should be divided Into two zones. For example, the a-b-c boundary
in the flgure, a-b is a line, b-¢ 1s a circular arc, then a-b-c 65

should be divided at point b, and a-b is in zone 7 and b-c is 1n zone
8.

For each zone, a parent element 1s selected and its nodal points
are determined by the boundary shape. For zone 7, the boundarles are
straight lines and a four nodal point parent element is chosen (no. 1
in the figure) 1n order to ensure the accuracy of boundary interpola-~
tion. For zone 8, it is necessary to choose the no. 2 parent element
to ensure the sufficient accuracy of the interpolated b-c boundary.
The principle of selecting the parent element 1s that: under the
premise of assurance of sufficient accuracy of boundary interpolation,
the nodal points should be as few as possible in order to reduce the
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input coordinate data. In the mean-
time, it should be ensured that the 1
mesh 1n the nelighboring zones 1is conti-

nuous. p M

Next, on the cross-section of the 7
disk, the nodal point coordinates (Ri’

zi) in this zone are determined based
on the nodal point distribution of the
selecced parent elements in each zone. R c

N

For corner nodal points, their coordi- < 113 ’
l 4

nates are fixed. As for nodal points 1
located on the side, there 1s room for 135 e
selection. The numbers and positions
of the middle line nodal points would " n

affect the error of the interpolated 1 2 2

boundary curve greatly. Based on the t— ° t ° s

experience of the author, for a second ot Noz
order curve, the use of 1-2 middle

nodal points 1is sufficient. Further-

more, a uniform location distribution Fig 2 Divison of a disk into several

might be optimal. For a complicated rones and theit pareat clements -7
shape such as the turblne blade, two
middle nodal points are used. The maximum error of the Ilnterpolated
boundary nodal point coordinates is within #0.15 mm. With regard to
stress analysls, it can be considered satisfactory. In this case, the
middle nodal point positions may not be uniformly distributed. Inci-
dentally, by changing the position of the middle nodal point, it 1is
possible to change the density distribution of the mesh which 1is one
of the advantages of the method. However, it should be noted that,

if the distance between the middle nodal point and the corner nodal
point is less than 1/4 (1 is the length of the side), then the mesh

is "wrinkled" [8-9].

The local coordinates (£,n,Z) of any nodal point in the mesh are
easily obtalned in the parent element because the mesh is uniform in
the parent element. As long as the longltudinal and transverse lines
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Fig. 3 Real mesh of a disk and its “Chessboard” mesh

of the mesh are chosen, 1t is not difficult to determine the partial

coordinates of any nodal point.

Due to the fact that the distribution of the nodal points of
the parent elements 1in each zone 1s irregular, the shape function
Ni(E,n,c) cav be directly derived using the method in [10].

3. The numbering of elements and nodal points

In designing the program, it 1s more complicated to number the
nodal points. If optimized numbering 1s used to reduce the band-
width, 1t would complicate the program further. The author adopted
the "front solver" method to solve the set of linear operations. It
has two advantages: "front solver" method itself can save the inter-
nal storage, besides, "front solver" method does not have a bandwidth
requlirement for the numbering of the nodal points. Even when the
nodal point sequence is not continuous, it does not matter at all (11].
This makes it diffilcult to complle the program.

The procedures to number the nodal points are as follows:
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COMPUTER RESEARCH ON DYNAMIC
CHARACTERISTICS OF
A SYNCHRO GENERATOR

Qian Zhenxiong and Xu Qiaohao

(Beijing Institule of Aeromaulics and Asiromouiics)
Abstract

A P-transform matrix is applied to transforming the time-varying dyna-
mic equations of a synchro generator into so-called P Park’s equetions,in re-
salt the state equations of one unit generator system are established. Owing to
the nonlinear effect of the voltage regulator and the legging of the a.c.exciter
in an aircraft brushless a. c. generator, the forcing function of the main synchro
generator Us( f ) can be reduced to an exponential curve with a lagging te and
an equivalent time constant Ty,

On the basis of the state equations above mentioned eight dynzmic chara-
cteristics of the synchro generetor are printed out separately on an electronic
digital computer by four different methods; analysisy fourth-order Rungo- Ku-
tta algorithms exponentisl matrix (€47)y and network topology. The computa-

tion accuracy and the stability region of thes« four methods are analyzed and

their applicahle range is established in conformity with their advantages. Then -

the following conclusions are drawmn

1. The characteristic roots of the coefficient matrix at no-loard sudden short

circuit are the dynamic parameters of the synchro generator, i.e. T, Ta. ‘15 To

2. In symmetrical operation the synchro generator can be simplified as an one
-order inertial link._

3. The dynamic characteristics of the a.c. exciter (tx, Ti) have rather little
effect on the maximum surge current of the synchro generator at sudden short
cireuit,

4. In consideration of the non-linearity of the magnetic circuit in the synchro
generator, it is verified that the inductor flux ¥. and the capacitor charges gqc
are more suitable than iy and uc to be taken as the state variables.
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TECHNICAL EXCHANGE MEETING ON RELAYS AND CONTACTORS OF THE
AERONAUTICAL SOCIETY OF CHINA

The China Society of Aeronautics and Astronautics held a meeting
entitled "Technical Exchange Meeting on Relays and Contactors" in
Zunyl between March 12-17, 1982. The meeting was organized by the
315th Factory of the Third Machinery Department. The delegates attend-
ing the meeting included 73 people from 35 organizations from the Third
Machinery Department, the Fourth Machlinery Department, the Seventh
Machinery Department, the First Machlnery Department, the Alr Force
and the Navy.

The conference received over 30 papers and technical reports.
17 were presented 1n the conference and over 10 were read in group
meetings. The papers and reports covered a wide range cof areas.
Primarily, they are the results in theoretical design, new product
development and exploratory directions in the relay field, such as the
development of the computer assisted design and verification of the
dynamic parameters of a magnetic relay system, the complete verifica-
tion of the JKM sealed relay series, the 10 A U circuit magnetic main-
tenance relay, the 0.5 A 2 circuit minlature magnetically maintained
relay, the square TO-5 translstor tube case sealed relay, and the
spherical TO-5 relay as well as the development of new silver oxide
contact materials.

During the meeting, the delegates conducted a panel discussion on
the problem of the developmental direction of the relay.. It was unan-
imously agreed upon that aeronautical relays and contactors should
develop in the following three areas: (1) the maneuverability of
attack aircraft, (2) the modernization of aircraft control system and
engine control; and (3), the development of new aircraft power sources.
In summary, efforts will be continued based on high reliability, high
sensitivity, bigh velocity, low load capabllity, low power assumption
and miniaturization.

Finally, the meeting suggested that the next technical exchange
meeting be held in 1984,
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ELECTRONIC CIRCUIT ANALYSIS LANGUAGE (ECAL) 81

Chen Chenghang ¥
Northwestern Polytechnical University

ABSTRACT

The computer ailded design technique is an important
development in computer applications and it 1s an import-
ant component of computer sclence. The special language
for electronic clrcuit analysis is the foundation of com-
puter aided design or computer alded circult analysis
(abbreviated as CACD and CACA) of simulated circuits.

Electronic circult analysis language (ECAL) is a com-
paratively simple and easy to use circult analysis speclzal
language which uses the Fortran language to carry out the
explanatory executions. It is capable of conducting dc
analysls, ac analysis, and transient analysis of a circuit.
Furthermore, the results of the dc analysis can be used
directly as the 1initial conditions for the ac and transient
analyses.

The ECAL language describes the circuit by using input
statements which are familiar to electronic circuit engin-
eers. As for the allowable elements, in addition to the
regular linear elements, such as resistors, capacitors,
inductors, current sources and voltage sources, nonlinear
elements, such as dlodes, transistor triodes and nonlinear -
reslistors, are also permitted. Hence, it is capable of cir-
cult analysis for both linear and nonlinear circuits.

The ECAL language uses very simple output statements to
control the output form of the resultant analyzed data. It
may be tables or figures, depending on the various needs.
Therefore, 1t 1s a very useful analytical tool for engineers.

INTRODUCTION

Computer alded design 1s an important aspect of computer applica-
tions which 1s also an important milestone in the development process
of computer applications from elementary to advanced stages. As a
branch of computer sclence, the computer aided design technique 1is a

¥*Received November 1981
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speclal technlque which 1s the simple applicatlion of the computer to
a process or part of the design work. Even for a product, in spite

of the fact that 1ts deslign has been completed by a computer from the
beginning to the end, if the program used was complled speclifically
for the design of thils product, it 1is still not possible to claim
that the computer-aided design technique was adopted. In other words,
computer alded-design technique has certain conditions as 1ts label.
These conditions are: 1) there 1s a suitable special language for
this type of problem; 2) there is a data bank with various computa-
tional methods and applications data; 3) there 1is a combined software-
hardware system with a certain dialog capabllity between man and
machine to allow the deslgner to interfere with the work of the com-
puter at any time. Thils allows the man and the machine to do their
best to complete this task fast and well.

The electronic circuilt analysis language ECAL was developed as an
important component of the computer-aided design technique of electron-

lc¢ circults. By taking into account the convenience of use for the
circuit designer and the feasibility of a man-machine dialog, its

input statement form is simple, which 1s consistent with the custom

of the circult analyst. Therefore, it 1is easy to learn and convenient

to use. -

The electronic circuit analysis language ECAL 1s a comparatively
simple and easy to use language for circuit analysis which uses the
Fortran language to carry out the explanatory executions. It includes
a set of statements wilth simple structures. The statements have the 82 .
capabllity to describe the circults. They also have the capabilities
to designate the analysis range and the output form. In addition,
they are also able to control whether the analysis should be repeated
or to change the element parameters. It 1s capable of carrylng out dc
analysis, ac analysls, or transilent analysis of a circuit. Furthermore,
the results of the dc analysis can be directly used as the initial
conditions of ac or transient analysis to switch into ac¢ or transient
analysis.




I. BASIC CHARACTERISTICS

Because ECAL uses the FORTRA! language to compile the explanatory
program, 1t can be operated on any computer with a Fortran compiler.
Its symbol group is a subgroup of the FORTRAN symbols. Its data for-
mat also agrees wlth that of the FORTRAN language.

The symbols are formed by the 25 capital alphabets of the English
language and the 10 Arabic numerals from O to 9 and special symbols,
such as «4" “=" sg® «.* and a blank space.

The statements of the ECAL language are also composed by using
cards just as in FORTRAN. However, each statement has only one line
which corresponds to one card. There 1s no continuation card.

The foundation of electronic circuit analysis of the ECAL language
is the nodal point umethod. Between nodal peoints, there are branches
to create the connections. Each branch 1s composed of a sourceless
element and several independent voltage sources, independent current
sources and correlated current sources. Figure 1 shows a standard
branch clrcult formed by a sourceless element, independent power
source and correlated power source.
The entire analysls 1s carried out
on the basls of the standard branch. . -

& ]
The allowable elements are resistors,
o
capacitors, inductors, independent <3[> M
voltage sources, mutual inductors, Sy #
4 f
voltage controlled current sources P o N\ 2
I T_‘z' V
(abbreviated as mutual conductance), f
current controlled current sources
m‘4:§:bfi

(or called the current amplification
coefficient), semiconductor diodes, Fig.1 Standard braach
semiconductor triodes and nonlinear

resistors.

The ECAL language uses a bending line method to describe nonlinear
elements. The nonlinear resistor N can be used to describe a non-
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linear element, such as a tunnel diode, fleld effect transistor,
voltage stabilizing transistor, operational amplifier, etc.

There are seven output formats in the ECAL language. One is the
standard format. When the format 1s not speciflied, this format is
automatically used. It tabulates voltage at each nodal point, voltage
and current in each branch, and the voltage and current of each ele-
ment in a table form. If 1t 1s an ac analysis, 1t also provides the
power of each branch and element. Obviously, thls method may involve a
huge amount of output data especially for circults with more branches
and nodal points or under the condition that the analysis frequency
or the number time interval points 1s high. For this reason, there
are three more table output formats with six nodal point voltages,
branch current, or element voltage of interest as well as three curve
output formats with three nodal point point, branch current, or ele-
ment voltage of 1interest.

II. APPLICATION RANGE

The first application of ECAL is dc analysis. It can be used to
analyze the working condition of the various serial and parallel vol-
tage regulators at the varilous stages of different dec, ac amplifiers. -
It can also be used to analyze the amplification factor of a de ampli-
fier as well as the steady state voltage, current gains of the medium
frequency equivalent circuits of ac or pulsed amplifiers.

In the dc analysis, originally it does not treat the energy stor- -
age elements--capacitors and indicators. However, in order not to
destroy the completeness of the circult, as well as to obtain the work-~ 8
ing points from dc¢ analysis before ac or transient analysils, therefore,
inductors and capacitors are allowed 1in the input. In the computation,
the inductor 1s replaced by an 0.1 @ resistor, while the capacitor is
replaced by a 10 M Q resistor lnstead. Consequently, 1t allows the
input of the dc 1nsulating capacitors, filtering capacitors or compen-
sating inductors of a multi-stage amplifier into the computer without
modification. In the computation of de¢ working points, the explanatory j
program automatically will use the aforementioned resistance values

tal)
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instead. The computation of the worklng point willl not be affected.

Another application of the ECAL language is ac analysis. It is
capable of conducting frequency characteristics analysis on various
wide band, narrow band ampliflers and fllters with and without sources.
For the AC analysis, the explanatory program carries out the analysis
based on small ac signals. It 1is usually believed that nonlinear prob-
lems do not exist for small ac signals near the working points.
Therefore, for a working point determined in the dc analysis, if the
circult 1s not redescribed after switching to ac analysis, a linear
analysis will be carriled out for the corresponding parameters of the
nonlinear elements determined by that working point.

One important statement in ac analysis 1s the frequency range
statement. It indicates the frequenciles to be analyzed. Starting
from the minimum value, it is Increased algebrically or geometrically.
After reaching or exceeding the maximum value, it 1is stopped. Usually,
for a narrower analysls range, it 1s possible to use an equal increment.
Thus, the results plotted form a linear coordinate. If a wide fre-
quency range must be analyzed, such as the frequency characteristics
of a wide band amplifier which 1s usually from several tens Hz to
several tens mega Hz, then it 1s not suitable to use a linear coordi-
nate or equal increment method. At this time, 1t is more suitable to
use the common ratio increment method. Its pattern corresponds to =2
semi-log coordinate.

The ECAL language can also be used to conduct transient analysis
on circults and systems. Usually, a transient analysis 1is always
done with respect to a specifled 1Input signal waveform. For example,
the output waveform, when the input signal is 2zn impulse, is called
the impulse response. When the input signal 1s a unit step Jump, the
output 1s called a unlt step response. These are very important output
results in transient analyses. In addition, sometimes we are interest-
ed in the response of the system or clrcult to a certain input waveform.
For example, a ramp waveform (linearly increasing waveform) ané expon-
entially increasing waveform, etc., are commonly used. The ECAL lan-
guage provides the feasibility to describe the input signal which is
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also comparatively simple. It involves the use of an input state-
ment INPT. It uses the positions of four coordinate points to provide
the variation of the input signal. Thus, 1t 1s possible to describe

a step, a ramp, a square wave, a trianguar wave, a sawtooth wave and

a trapezoidal wave. It is also possible to use three segments of
straight 1ines to replace an exponential or logarithmic curve approx-
imately.

III. PROGRAM FLOW CHART

In order to suit the batch process method [5] of the operating
system of the Felix C-256 computer presently in use, the explanatory

oprogram of the ECAL language has also adopted a bateh process form,
i.e., several circuit analysis jobs can be processed at the same time.
Each Job 1s not mutually correlated. A job not only can perform a

dc analysis, but also an ac¢ or transient analysis. It is also possible
to change the element parameters repeatedly. This format can be con-
verted into the man-machine dialog format easily with user teletype
terminals or CRT-keyboard terminals.

The explanatory program can be approximately divided into three
parts: the main program--reading in the headings and the electronic -
circuit descriptive statements, fllling out the table of elements and
controlling the process of analysis; and two subroutines--calculating
and providing output results of the dc, ac and transient analyses of
the clrcuit, respectively.

The program flow chart 1is shown in Figure 2.
IV. EXAMPLES OF THE ANALYSIS

A low frequency amplifier, as shown in Figure 3, has 22 branch
numbers and nine nodal point numbers. The nodal point number 1s circled
to distinguish from the branch number. The 18th branch resistance is a 1
negative feedback resistance. The circult analysis program is shown 1
in Table 1. The first executlon statement EXEC carries out the dec
analysis to calculate the working point. Then, the dc power supply
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KEY TO FIGURE 2 (page 133):

l--start; 2--initial job statistics; 3--read headings; U4--1is it a
blank card; 5-~yes; 6--no; 7--yes; 8~-is the first part of the special
identification code ENDJ; 9--no; 10-~PRINT NJOB and headings; 1l--
clear working area and element table; 12--read one card; 13--is 1t
ENDJ; llU--yes; 15--stop; l65--yes; 17--1is it FNSH; 18--no; 19--is it
TIME; 20--noj; 2l1--is it FREQ; 22--no; 23=--is it PRNT; 24--no; 25--

is 1t PLOT; 2f--no; 27--1s it INPT; 28--no; 29-~yes; 20--ves; 3l--yes;
32--yes; 33--yes; 3U--ncte time parameter; 35~-note frequency para-
meter; 36--note print type; 37--note plot type; 38--note input signal
varameter; 39--1s it MODF; U40--no; 4l--is it four blank spaces;
42-~no; 43--1is it EXEC; Ub--no; U45--none of the above. This card is
wrong. PRINT "THIS CARD IS WRONG"; Ub--yes; U7--yes; UB--yes;
49--note number of times of value charges; 50--enter the elements
according to the type into the element table; 5l--check for mistakes
in the input statements and the correlation matrix; 52--yes; 53--
situation when printing error occurs; 54--f111 the matrice A; 55--no;
56--yes; 57--no; 58--no; 59--yes; 60~-call subroutine DTANR; 61--

call subroutine ACANR

V17 is removed and a 5mV ac voltage signal is added. At ng = 10 MQ,

it corresponds to the sltuation that the negative feedback linkage is
broken off to obtaln the frequency characteristic curves. Then, R18 86
= 20 K 1is used to obtain the frequency characteristic curve with the
feedback. The range of analysis is from 1 Hz to 1 mega Hz.

The circuit for a single-shot trigger is shown in Figure 4. The
trigger vdulse is added to the 21th branch. Different triggering capa- =
citance has an effect on the output waveform. Here, a value change
statement 1s used to change 013. The response curves corresronding to
C13 = UOQOPF, 8000 PF and 12,000 PF were calculated. The trigger
vrulse 1s a square wave, 20 microseconds wide. The amplitude 1s four

volts. The program is listed in Table 2.
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Table 1
THE ANALYSIS OF A LOW
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Fig. 3 Circuit diagram for a low frequeacy amplifer
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ELEPTRONIC CIRCUIT ANALYSIS LANGUAGE(ECAL)
Chen Chenghang

(Northwesiers Polyiechmical University)
Abstract

The computer-aided design (CAD) technique is one of important develop-
ments in computer application. CAD technique has already become an important
branch of computer science. Special language for electronic circuit analysis is the
foundation of computer-aided circuit design (CACD) and/or computer—aided cir-
cuit analysis (CACA).

Electronic circuit analysis language (ECAL), a special language for circuvit
analysis, is comparatively simple and convenient for engineering application.v
Statements of ECAL are executed explanatorily by FORTRAN language. So far,
ECAL can be used to make DC, AC and transient analysis of a circuit, and
the results of DC analysis can be regarded directly as initial conditions for AC
and transient analysis.

Both linear and nonlinear elements can be taken into account in ECAL.
Linear elements may consist of resistors, capacitors, inductors. mutual inductors,
independent current sources, independent voltage sources and dependent current
sources under voltage control or current control. Nonlinear elements mey include
diodes, transistors and nonlinear resistors. Therefore, this language is suitalile

to the analysis of linear circuits or systems as wcll as nonlinear ones.




AN EXPERIMENTAL INTERACTIVE COMPUTER GRAPHICS SYSTEMS
FOR FREE-FORM SURFACE DESIGN

Zheng Hulling, Wang Zhisheng, Lu Hongjia and Ee Tianbao*
Shanghal Aircraft Manufacturing Factory

ABSTRACT

An interactive graphics system for free-form surface
design 1is introduced in this paper. The system was esta-
blished on the basis of the cublc uniform B-spline theory.
In order to obtain better simulated results, the basic func-
tion with a quadruple knot at both ends was chosen. Its
maJor functions are as follows:

1. It displays the three-dimensional model on a screen
or a plotter. It also allows the three-dimensional coordi-
nate system to undergo real time transformation with respect
to the meodel.

2. Through the use of a method involving the fairing
of the curvatures of discrete polnts sequentially, the exter-
nal shape of the model 1s falred.

3. It provides two 1local modification methods for the
model surface and also ensures C? continuity.

L, It permits the display of any arbitrary cross-section
of the model.

A computer alded shape design interactive system was
established using a DJS-6 computer and a model "751" optical
pen graphlcs display which was developed and constructed by |
Sian Jlaotung University. Presently, it 1s taking its shape.
However, perfection and further development are continuing.
The B-splines method was chosen to form the curve (surface)
because of considerations in geometric intuitlon, ease of com-
putation and ease of control and modification. It is graphi-
cally called the "characteristic ployhedron surface design
method". A brief introduction to the major functions, con-
clusions and application examples was presented in this paper.

*received June 1981




I. THE STRUCTURE AND DI3PLAY OF THE CURVE (SURFACE)

With regard to the design of external shape, the use of a cublic
uniform B-spllnes method 1s very suitable. In order to improve the
end point characteristics, a basic function [1] with a quadruple knot
at each end was used (Figure 1). In comparison to a usual cubic
uniform B-splinescurve, a difference only occurs in the two segment
of curves on the ends. In the middle, they coincided completely
(Figure 2). It has very good extrapolation conditions on the rront
end which satisfy

R _ 1
Pl(o)'Vu _P.;(o)=3(€;z‘i’.l) )

and . - .
@ P:(0)=3(V3—V:)+6(V.—V;)

(2)

Fig.1 B-aplines with a quadruple koot at each ead point

The rear end 1s similar to the front end. From equation (1) we can
see that the curve passes through the front end point. Furthermore,
it is tangent to the front (real) end. From equation (2) we can see
that usua11y$7(°) is not equal to zero. Therefore, the method of
using polygon equil-distance extension to ensure that the usual cublic
uniform B-spline passing through the end points 1s superior.

o mkb
———ngnraaa 3
v, Dol

¥, P> Fai®
‘ ® - ’-—l(‘) V‘

Fig. 2 The correspoading B-spline curve

Key: 1l1--vortex; 2--knot; 3--the usual uniform B-spllne
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From equation (1) we can also see that the conditions to be
satisfled at the end polnt are consistent with those of the Bezier
curve. Especlally when only one segment of curve exists (four vert-
ices), this type of curve rigorously deteriorated into the Bezier
curve., Therefore, this system permits the combined use of both struc-
turing methods.

For the convenlence in use, a matrix expression of this type of
curves under varlous condltions is derived from the deBoor-Cox intera-
tion equation. For example, when m=>8, the first two segments of
curves can be expressed as:

-1 7/4 —11/12 1/6

<
(1]

3 —-9/2 3/2 0
Pi(s)=(sss1) S
-3 3 o o } Vs
L1 o o o Jt V.f 1 (3)
-4 22 s v,
~ 3/4—5/4 1/2 0 Vs i
P.( s )=(s'ss1) ’
L =3/4 14 1/2 0o ' V.
l 1/4 7/12  1/6 0 ' Vs
The last two expressions are
(=1/6 1/2 -1/12 /4, V....‘ .
| i
bo1/2 ~1 1/2 0 Vs
Fn-q( s )= (siszsl)‘ . . R
-1/2 0 1/2 0 Voo
U e 23 16 0 Fa
R (4)
-1/6 11/12 =7/4 1 Vs

1/2 —5/4 3/4 ) V-t
Pmas( 8 ) =(ss%s1)

-1/2 —-1/4  3/4 0 Vay!

e 112 14 o . | *
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The mlddle segments are consistent with the usual cubic uniform con-
dition

[ 1/6 2 =12 1/6 v, ]
| .
N . 1‘2 - l 1/2 0 V.IQI i (5)
P.(s)=(s1) (2 i<m—y)
-1/2 0 1/2 0 Vies

4
f
\

1/6 2/3 1/6 0 Vies

Summarizing the coefficient matrices under various possible con-
ditions (not limited by m and 1), we discovered that there are only
18 different columns. In the program, these 18 columns are placed in
a Ux18 group. Each time four columns are extracted based on the
various m and 1 values to form the coefficlent matrix of the B-spline
of this segment. Thus, the number of operation 1s reduced and the
internal storage capaclty is saved. This 4x18 numeral group is

-1 7/1 -11/12 1/6 -—-1/4 T/12 —1/2 ~1/6

3 —9/2 3/2 0 3/4 —5/4 172 1/2
-3 3 0 0 -3/4 1/4 1/2 =172 (6)
1 0 0 0 /4 1/12  1/6 1/6

172 =3/12  1/4 11/12 -7/4 3 =3 -1 1 1

-1 1,2 0 —5/4 3/4 -6 3 3/2 —-3/20
0 1/2 0 ~1/4 3/4 3 0 o 0 o]
2,3 1/6 0 7/12 1/4 0 0 o0 1/2 o

As for the curved surface, the range of boundary multiple knot
effect 1s shown as the shaded area in Figure 3. So long as the curve

is treated well, the curved surface problem is also naturally resolved.

Figure U is the characteristic polyhedron of an aircraft dis-
played by using the VVDP 1ight button through the optical pe.a points.
The point curved surface display light button SUDP can display an
arbitrary projection of the curved surface.
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Fig. 3 The areas influenced by the multiple knots on a surface
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Fig. 4 The characteristic polyhedron of an aircraft Fig. 5 Display of the surface of an aircraft

II. SOLVING FOR THE VERTEX AND DISPLAYING THE
CHARACTERISTIC POLYHEDRON

In computer aided design and manufacturing, the composite prob-
lem 1s frequently encountered. It 1s necessary to start from the
known, discrete vlaue point to solve for the vertex of the character-
istlc polyhedron. Subsequently, the B-spline curve passing through
the above mentloned polnt is created.

This system considered the vertex problem in depth, including
various shape value point numbers n(the effect of end point is diff-
erent), the three end points condition--free end, the usual cubic uni-
form B-splines of the known tangential vector or equal distance exten=-
sion and various combinations of them. There are 26 situations in
total. For exmaple, when n > 5, the computation formula in solving
for the vertex under the condition that both ends are free ends is
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(7

second last row come
of the first and last
Let us take the tan-
the two rows should be

In equatlon (7), the second row and the
from the knot condition (choosing s =
At this time, m = n.
gentlal vectors 51 and 52 of both ends, then

segments.

changed to:
-3‘V‘l +3V;= Bn "'37»--; +3Vn=51

(8)

n + 2, which corresponds to the equal dis-~
tance extension condition, the first two rows should be changed to:

In addition, when m

Vg=?1y V( —Z.VJ:"'V'!: 0

The last two rows are simllar with m

(8")

The vertex of a curved surface can be obtailned through the shape

value polint after two such processes.

Thls system can also assure that the B-spline obtalined from the

vertex contains a pre-determined straight line segment, including the
continuity

For a curved surface,

pre-assigned starting and end points. Furthermore, a C2

exists there (C2 is a second order continuity).

this means that it 1s allowed to contain a pre-appointed plane.




III. PARTIAL MODIFICATION OF THE CURVE (SURFACE)
AND THE DISPLAY OF THE MODIFIED POLYHEDRON

This is a power means of a computer alded external shape design
system with man-to-machine dialog capability. It should be compara-
tively more effective 1n solving this problem by using the partial
support characterlistics of the B-splines.

Two types of partial modification capabilities were arranged in
thlis system:

1. Direct modification of the vertex of the polyhedron. Through
the optical pen and the keyboard to send in the corresponding modifi-
cation Information~-we can change the vertex number, point number and
its coordinate value until the shape is considered to be satisfactory. 93

2. Modification of the vertices of the polyhedron by using a new
curve (surface) value. It 1s required that the new curve surface
generated after the modification of the vertices must pass through the
newly appointed polnts. Furthermore, 02 continulty must still be
ensured.

Because basically cubic uniform B-splines are used, the principle
of modification 1s very simple. Using the curve modification in Figure
8 as an example, Pc’/, Pory P are the new given points. Our treatment
is to discard the shape value control at B and F (which is frequently
near a round angle transition; therefore, it is acceptable). The new
vertices Ve Vo', Vo, are solved simultaneously.

2 . 1 . R

3 VC’+ "‘é‘VDI= P’ — ; V.

6 Vet P+ Tu=Fy (9)
| N 2

6 Vo’ +“3—- anagpsl—_é_._“;'
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Fig. 8 Determination of the vertices by new given points

B — M EERANAN

Fig. 9 \ semisphert inserted in a wine

Because only three vertices Ve.Vo/.Ve are changed, therefore,
the new curve determined by the polyhedron - VaVaVor Vor Ve Vivige o
can satisfy c? continuity. Only in the P.Pc segment, it deviates
from the original curve. Furthermore, it rigorously passes through
P/ Po’ Pe therefore, it agrees wilth the modification requirements.
Moreover, the computational work load is very small. Similarly, it
can be used on a curved surface. The corresponding surface knots can
also be modified locally in order to save the computational time. It
sbould be pointed out that the disadvantage of this treatment 1s that
the convex boundary shape under surface modification cannct be satis-
fied (the modification zone is limited to above the rectanzular region
of the parametric plane). We computed an example which involved the
insertion of a large hemisphere on a wing. After modifying 20 points,
including the transition region between the hemisphere and the wing, {
we obtained very good results (Figure 9).
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IV. CURVE FAIRING

The fairing of the B-splines can be reduced to the fairing of
the corresponding characteristic polyhedron vertex sequence [2]. We
adopted the curvature method introduced in that book to carry out
falring with specific reference to the bad points of the vertex seq-
uence of the polyhedron. Its basic principle 1s that the ordinate of
the vertex must be modified in order to ensure the quadruple differ-
ence of the ordinate with respect to the arc length at that vertex is
zero (A'y=0),

The so-called curvature K, of point ﬁ, is the curvature of the

circle passing through the three points Pi.,. Pi. B..,
K.= 314 2sin@,
S 71 P 1

(10)

Fig. 10 The curvature of a specific circle of Pi

where Ai is the algebraic area of the triangle formed by P.P.P.,
Assuming that 51 is determined to be =2 bad roint in Figure 11, then
the modification quantity Py has the following computational formula:

L1

(sequence deviation of the
- the curvature)

p,=— ddiei p,
9i
-2[!4 - gin Py, +Sin @+ ), . sin $,. ] (11)
gi ’1,',+1,‘, L TR 1
L
=Lodl MTTLET
(Klol N _/l KI |)/li
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Equation (11) was described in [2]. 1Its detailed proof, program
flow chart and effectiveness were given in [5]). PFrom the effective-
ness, it is comparatively ideal. Furthermore, because the computation-
al process does not 1nvolve the superpositlioning of curves, the fair-
ing speed 1s fast. As for a spatial curve, 1t is converted into two
vrojection curves to be treated separately. 95

V. THE COMPUTATION AND SECTION DISPLAY OF AN ARBITRARY
CROSS-SECTION

In order to rigorously control the external shape, especially
some key positions, this function is alsc mandatory. Due to the
inclination of the sectional coordinate system with respect to the sur- 1
face coordinate system, many complicated detaills are brought into the
computation of the section. In this system, the vertices and knots
of the polybedron are transformed into the sectional coordinate system ;
based on the geometric invariance of the B-spline surface. Subse-
quently, the computation of the inclined sectional external shape 1is i
transformed into the normal section (3=0) . Therefore, i1t is much )

faster. Furthermore, it 1s more convenient for the digital con-
trolled plotting of the sectional shape, computation of the incline
angle and digitally controlled shape modifications. After the compu-
tation, the system can automatically transform the vertices and knots
back to the surface coordinate system to be used for the next sec-
tional computation. The sectlonal plane parameters are sent intc the
system by the keyboard. The step length of the extrapolation on the
section line can provide the AX of the sectional ccordinate system or
the parametric increments AU or AW. It 1is selected by the user.

Figure 12 shows the inclined section of a wing bulge (see Figure
9). The step length chosen is AW = 0.2.

VI. IDENTIFIED PROBLEMS
In additlon to the aforementioned light buttons, functional keys,
the present system also 1lncludes over 20 optical buttons and functioen

keys such as plcture change (magnification, reduction, displacement,
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rotation), automatic arrangement of the picture, graphics output and

three-dimensional coordinate system transformation and three-dimen-

sional surface symmetry, etc. The function mentioned

above cannot

meet the actual requlrements yet. There 1s a lot of work to be done.

Sor example, they lnclude the further modification of
system, the establlishment of a fast algorithm for the
(surface), the formation of a transition surface, the
lem of the curve (surface), the surface plate problem
lateral surface...and other applied programs, such as

the GSP software
display of curve
continuity prob-
of a non-quadri-
the connection

between the strength and aerodynamic computation programs.

In addition, the present hardware conditions are
those required to satisfy the requirements.
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‘AN EXPERIMENTAL INTERACTIVE COMPUTER GRAPHICS
SYSTEM FOR FREE-FORM SURFACE DESIGN

Zheng Huiling, Wang Zhisheng, Lu Hongjia, He Tianbao

(Shanghai Aircraft Manufacturing Factory)
Abstract

An interactive computer graphics system for free-form surface design is
described in this paper, and application of cubic uniform B-splines is suggested
as the fundamental method of surface modeling. In order to obtain a better appr-
oximation, the basic function with a quadruple knot at each end point is utilized.

In respect of curve construction, there are only 18 columns in each of va-
rious coefficient matrices for the different numbers of vertexes and the different
sequences of curve segments, and the matrix expressions of curves are also gi-
ven. As a result, real benefit is gained for reducing the storage capacity and
increasing the computational speed. In the inverse calculation for the vertexes
26 various composite cases are summarized, which permit to maintain the ori-
ginal straight line segments.

It is proposed to fair the given curves by fairing the curvature sequence
of the discrete vertexes, and preliminary practical experience is also given.

This paper offers a simple and fast engineering algorithm for modifying of
the surface data in a local region, while the surface still remains in second
order continuity.

In the experimental system there are 20 functional buttons (embracing the
functions of coordinate transform, 3-dimensional symmetry, construction of an
arbitrary section etc. ). A success has been made in surface modeling of aircraft,
sutomobile and ship.



BEZIER PLOTTING THEOREM AND GEOMETRIC CHARACTERISTICS
OF CUBIC BEZIER CURVES

Shi Fazhong and Wu Junheng¥*
Beljing Institute of Aeronautics and Astronautics 1

ABSTRACT

The geometric characteristics of the Bezier curve
have been studlied in depth by P. E. Bezler using the fast
end curve [1] and by Su Boging and Liu Dengyuan using
simulated projection transformation [3-5]. The method
presented in [1] by Bezier to find the points and their
tangents on the Bezler curve using geometric plotting 1is
the Bezier plotting theorem. This paper analyzed the geo-
metric characteristics of plane cublce Bezler curves based
on the plotting theorem. It pointed out that the A, u
(or X, u) shown in Figure 2 are a pair of invariant quan-
tities determining the geometric characteristics. The
complete plane diagram of A, u{or X, u) was given (see
Figure 3). Some geometric characteristics of the spatial
cubic Bezler curves were discussed.

I. THE DERIVATION OF THE BEZIER PLOTTING THEOREM

The Bernstein expression of the nth order Bezier curve 1s
- u (1a) -
P(u)= 3 g, (u) 3, ue(0, 1) ’
i=0
Goy(u)=cl'(1 = u)*’ (1b)

where §J is the cusp vector of the Bezler characteristic polygon, e.(u)

is the nth Bernstein basic function. -
The geometric plotting method presented by Beziler in [1] to find

the points and thelr tangent on the curve is shown in Figure 1. We

called it the Bezler plotting theorem. It can be expressed in terms of

the followlng set of iteration equations:

(2a)

n_-p
p(“)"‘ 2 gll-'.l(“)'gir"(“) b=0o, l,"',ﬂ
) =0

*Receilved October 1981.




§,°(u)=5,"%Cu)+ uS, @S5 (u) (2b) 98

5,/(u)=5, (2¢)
B (u)=nS,*Owys o)  (2d)

Fr(u)=n(n = DETDWST (u) —STH@S, o)) (2e)

Chang Gengzhe and Wu Junhen first provided the proof [2]. The follow-
ing can also be derived directly.

M1 AEMEMRDBezierHl £ I KRR

Fig 1 Application of the plotting theorem to determining points

and their tangents on the Bezier curve

Using ¢i=cl., +cl} and changing the index j, we can rewrite (la)
into - s-1 n -
P(u)= Z el (1 —-u)s,+ 2 cil W(1 = u)™g,
i=o i=t

n-1 " -1

- jgocz-mi( 1~u )"I-‘[( 1-u )§’+u§hl)- )20 g..“,(.u )gi“)( ) )

where $,(u)=(1 = u)5,+45,, =5+ ¥ (5,5 =F,+uS,5p, -

Repeating the above process, we know that (2a)-(2c) are valid.
Using (1b) to find its partial derivatives with respect to u, we get
ge(u)=n (Ga-sj-i (4 )= Gars(¥))
go(8)mn (8 —=1)(gagy-(¥ )= 2Ga-1,1-1( ¥ )+ Gours( ¥))
Again, finding the derivatives of (la) with respect to u, and using
the two above equations, we know (2d) and (2e) are valid. The higher
order derivative vectors can be derived by further steps.




II. GEOMETRIC CHARACTERISTICS OF PLANZR CUBIC
BEZIER CURVES

The equation of a plane cubic Bezler curve is
P(u)=(1-u)'§,+3u(1—u)'S +3u'(1~u)S,+u'S, ue(0,1] (3)
where S»i=0,1,2,3) &§=F,~F, ={x, y,0),j=1,2,3 correspond to the
four co-planar vertices and three vectors of the.characteristic tri-
angle, respectively. If the lines coincide, then the curve becomes
a straight line. No discussion willl be necessary.

The geometric characteristics of a plane cubic Bezler curve
include whether a single point (a cusp or a double point) or an in-
flexlion point (an inflexion point or two inflexion points) exists or
whether the curve 1s convex or not.

We used the two values A, L as shown in Figure 2 to express the
geometric characteristics of a plane cubic Bezier curve. Once the
observed A,p are determined, the geometric characteristics of the curve
are determined. It 1s not related to the amplitude and direction of
the vector of the sides. This indicates that A,u are a pair of invar-
iant quantities or geometric characteristic control parameters which
determine the geometric characteristics of the plane cublc Bezier

curve.
t x; x —_—
Le A, = (3, 5,)==‘ ’ d4=(IS,, &), then we get
y ¥ ’ (4)
A A A
Ap= 1 :’x' A= poo Alsa—'ﬁ-(-—--——_ )

We are designating the parameters corresponding to the appearance
of an iInflexlon point and a cusp on the plane cubic Bezler curve as ur
and Uys respectively. The two parameters corresponding to the double
point are noted as Uy and Us. Then, the equations of inflexion point,
cusp and double point of the curve and thelr corresponding equations

of the plotting theorem are the following:




M2 MEIABML, b 55, A
Fig.2 Thed, Hand A, K of s characteristic trilateral

A -‘4” +1 , M ==-<£4Ji.
s 4ss (5)

inflexion polnt equation?’ (uw)x?"(u)=3, P’ (4,)70, ue(0, 1 )==>“5'F’6357'7(u.)

x SIS, (w)=B, T PwIES P (6)

cusp equation® (u)=0, uce(0, 1)=F,"(u)=T{"(u) (7)
double point equation

Fa)=F(uy), 0<u,<u, <18 0 <#, <5, <I=DF,"(4,) =T, (u,) (8)

where the parameter region is unchanged. It 1s discussed separacely
in the following:

1. Inflexion poirf’E equation: From equation (€), we can get
(A + Ays— A )+ (A= 24D+ A= 0
Using equation (4), the above eguation can be rewritten as:
(2+r=p)ul~(1+28)u+ =0 (9)

whenA=#+2, we have grey)=g=> S,)S, " (u) = S, P(w)S, " (u;)
The curve becomes a single inflexion segment [6]. It is possible to
conduct a simulated projection to transform it 1into a usual cubic
polynominal [3]. Equation (9) has only one root:

(10)

-t
AR T
In order to let we(0,1) , it 1s necessary to haveh>0 oru<-1

The curve has a single inflexion point at (0.1) as shown in Figure

example 1.

When A% K +2 | then

LlF2r 2V =1)+1 (11)
2(2+K1=-12)




The determinant A =4u(2-1)+1 bas the following several
situations:

(1) A > 0, there are two real roots u,<u: , however, they may
not all be on (0,1).

. 1) If R>0,A>1xrH<0.A<1 , then:
S).>2+u < vy
when #>0, (1<A<2+H at w.>1,
X-l We= ]

wen H=0, A1 B, w0,
’ X(,:.2+u_ Nl;’*:O’
when u<0,; at .
2+ B<AL] we>1,

i.e., there 1s always a root outside (0,1). There is only one inflex-
ion point on (0,1) as shown 1in the diagrammatic examples 2-4. As a
speclal case, whengd,// @, A, H=oopf —oo, as shown in Example 5. Only
at this time the inflexlion point parameters cannot be expressed by

X, u. It is possible to assumeds=+%id,k>>0, then we can obtain the
following from equation (6):

-1ty k| e (12)
h= k“‘l
2,

1/ k=1

We define that after putting them in sequence, the vector of one
side has a rotatlonal angle with respect to the previous one of the
same sign and its absolute value is always less than 180°; the plane
polygon has an unchanged direction of rotation. Otherwise, its direct-
lon of rotation 1s changing. Then by summarizing the situation that
the curve bas an inflexion point on (0,1), we find the necessary
and suffilcient conditions for a plane cubic Bezler curve to have an
inflexion point on (0,1) are that:u>0,A210rue<0,A<1, 1.e,, the
corresponding characteristic trilateral changes 1ts direction of rota-
tion.

.‘ ‘. .‘.;‘:"v’-i?' T 4
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2) If wu>o, 1—7{‘_<;‘<1 , then the two real roots u,. un(0, 1),
i.e., the two inflexion points (also called the double inflexion
point) must appear on (0,1). As a special case, when §,S,//S,S.

<= )\ <1 , then uy=HKR,u,= 1/2 . When the extension of
the sides 8032 and S3Sl intersects, i.e., when 0<Hr<A<1, there must
be a double inflexion point as shown in example 6. R>0,1 —--41u~<1<1

are the necessary and sufficient conditions for the plane cubic Bezier
curve to have two inflexion points on (0,1).

(2) When A = 0, there is a double root. From the following dis-
cussion on the cusp equation, we know that this 1s the
P uc)=0=> 5o (ue) =3, ()
condition. The two inflexion points coincide with each other which means
it 1s a cusp as shown in examples 7-8. Therefore, we have
).-l—-‘—l‘r, >0

(13)

2p ,
14z *>0

U™ Uy =y, =

The necessary and sufficient conditions for the plane cubic Bezier

curve to have a cusp on (0,1) are:

1
>0, )\=1—Tu‘.

(3) A<0==>1<1-4—1“—, >0 , there 1s no real inflexlion point.
From the following discussion on the double point equation, we know

that when A 1s above a certaln lower 1imit, the curve will have a
double point on (0,1) or (0,1].

2. Cusp equation. Here we will directly find the cusp from the
cusp equation (7). From equation (7), we get:
S, () S, (we) = XL § TGS (ue)

=(8,- 28, +8, )03 + 2 (3, ~3,)u-+3, =3 (k)
We can obtaln A*l—il—‘;, ““‘w%u" u>9.Which is consistent with (13).

3. Double point equation. From equation (8), we get

(8, = 23, +8,) (4l +u,u, +13) + 3 (3, ~3,)(u, +u,) +38, =

we can obtain
g S1FZRETR2U(1T S A)2T (15)
2(2+K1—-1))
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which is the two parameters Uys U, of the double point. The deter-

minant,3=12u(1-x)—3.

If A = 0, it represents that the double point coincides itself.

1
We have M=1=73- B>0, "'='“='iigﬂ" This is consistent with
equation (13) which shows that the cusp is the extreme case of a double

point.

If A<0=)r>1- “u #>0¢ , it indicates that there is no real
double point. As shown before, there 1s a double inflexion point.

If A> 0= <1 —‘—lu-, B>0 , there are two real roots. However,

only when both roots are on (0,1] or (0,1], the curve will have a
double point on [0,1) or (0,1] as shown in examples 9-11. By letting

u; = 0 in equation (15), we get

A=m)  _2-3A—-V3IA(A=
A== e =230 3zx(u D ocney| 16
_d+2n
24
By letting u, =1 in equation (15), we get

)‘: 3A+3 3(]—".) i
p=A_-3A+3 or +v 3 (i op=s

I(1=a)° = 2( =D, s N
y——t (17)
T3 -2

In a speclal case, when S, coincides with S3, u, = 0, up=1, this
already belongs to a convex curve case. Therefore, the necessary and
sufficient conditions for a plane cubic Bezler curve to have a double
point on [0,1) and (0,1] are

(1—u) _ 1 .
-"an <1<1 4u’°\“<1
and
—1)+V3IGRI=20—1) -
_3_(_1,_)_17_( T m gy N>
respectively.

4, Convex or not convex. The Beziler characteristic polygon is 1
convex when the directional plane 1s on the same slde as the vectors

of the sides of the polygon and they do not colnclde each other. The




definition of a plane directional convex curve is shown in [6].

According to the definition, the plane cubic Bezier curve 1is a
convex curve provided that there is no cusp, inflexion point on (0,1)
and no double point on [0,1) and (0,1]. Furthermore, the tangent of
any end point does not intersect the curve itself cn (0,1). There-
fore, the characteristic trilaterals shown 1n examples 1-11 and their
corresponding curves are not convex. When

(1-u)

or o<,‘<_3\(_1,_-;,P)+t/2;§(3it*-2:t;i5' n>1
the characteristic trilateral is not convex and the corresponding
curve is a nonconvex curve segment without singular polint and inflex-
ion point as shown in example 12. When i=p 42 1<)2 , the char-
acteristic trilateral is convex; the corresponding curve is a single
inflected convex curve segment with a single Inflexion point as shown
in example 13.
102

Summarizing the above, after eliminating the non-convex conditions ﬂ
of the characteristic trllaterals and curves, the remalning conditlons
are the convex trilateral and convex curve situations as shown in
examples 1l4-15. Hence, the sufficient and necessary conditions for
the plane cubic Bezier curve to be a convex curve are: A<, H>]
or A=21, Hgo, 1.e., the corresponding characteristic trilateral 1s a
convex trilateral.

5. The geometric characteristics of the plane cubic Bezier
curve. We summarized the above results to compose a complete plane
dilagram of A, uy as shown in Figure 3. From this figure, we can
clearly see the division of various characteristic regions. It might
be possible to use the pair of geometrically invariant quantities
A=A, p= ] =4 which reflect the "symmetry" of the curve as shown in
Figure 2. PFigure 3 plots the two coordinate axes X and u, which
form the complete plane diagram of X, u. Using Figure 3, it is poss-
ible to very conveniently determine the geometric characteristics of




e s xS . .

o rp——

1/

oL
v IILL[II_ Ld Ll L L VINIIIVIIY)

NC

LT

»t
\ ‘J
&\\\\ ARALAN

]
L
A

17

s
AN

U
"
Ahoaayy

_2.; SM-

Fig. 3 U metric characteristic disgram of plane cubic Bezier curves

4
BM denotes that the boundary B is involved in region A, but not in C.
C

SM—symmetric axiss SI—'Single inflexion curve'liney; CP—Cusp line,
Uo—'Dowble point u; = 0 liney U/1—"'Double poiat gz = 1 'lines C!'—Convex curve regions
NC—Noaconvex curve region without singurity and inflexion, 1/—Single inflexionrcgion,
2 /--Deouble inflex:iun regroas DP—Double point region.
the plane cubic Bezier curve corresponding to any plane character-

istic trilateral. Furthermore, it 1s possible to design the curve

segment we wanted. ,
103 {

ITI. GEOMETRIC CHARACTERISTICS OF A SPATIAL CUBIC BEZIER
CURVE AND OTHER ASPECTS

When the four vertices of the characteristic trilateral are not
co-planar, a corresponding spatial cublc Bezier curve 1s obttained.
From the plotting theorem, we know that the three points S 7=0.1, 2

cannot be on the same line. Therefore, the curve will not show a

pause point (i.e., #’(u4)xF’(uw)=3, cusp and double point. From the

following equation, we get
(&, 8, d,) S
T(u)= (T = u)'a, xa,+ u (1 — u)a, xad,+u'a, xa,

where the numerator 1s a non-zero constant and the denominator is always

positive. Therefore, the curve will not have any point with zero
curvature. Let us introduce the direction of rotation: 1if (d,4§,3)>0
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then the characteristic trilateral is right handed; if (§,8,3,)<0,

then it 1s left handed. Therefore, we have the conclusion that the
direction of rotation of a spatial cubic Bezier curve is the same 10
as that of its characteristic trilateral.

Comparing to other forms of parametric cublc curve segments, such
as the Ferguson form, Hermlte extrapolation form, parametric cubic
spline segment and cubic B-spline segment, the Bezlier form (through
the characteristic trilateral) has the special feature of the most

intuition from the polnt of view of the geometric characteristics of
the curve. This is exactly what we hoped for in the practice of geo-
metric design. In the matrix expression, they can be mutually trans-
formed by a full order linear transformation. Hence, we can convert
other forms into the Bezier form to subsequently obtain the corresponc-
Ing Bezier characteristic triangles, to obtain the geometric charact-
eristics of the known curve segment.
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BEZIER’S PLOTTING THEOREM AND GEOMETRICAL
CHARACTERISTICS OF CUBIC BEZIER CURVES

Shi Fazhong and Wu Junheng

(Beijing Insisiuie of Aeromauiics and Asirosoutics)
Abstract

In this paper, taking the plotting theorem as the point of departure, we
analyze in detail the geometrical characteristics of plane cubic Bézier curves,
including whether a cusp ( a cusp of class one) or one inflesion point or two
inflexion points exist on the (0, 1); whether double point occurs on (0, 1)
or (0, 1) and whether the curve is.convex or not.

The geometrical characteristics of plane cubic Bézier curve can be deter-
mined uniquely by two parameters A,® or i,#(see Fig. 2)on the diagram(fig. 3).
The single infiexion curve in Fig. 3 represents the cases whea the curve can
be transformed into general cubic polynomial. The single inflexion region indi-
cates the cases when the curve has oaly one inflexion poiat on (0, 1)and
another is not on (0, 1).

We may obtain the parameter uc of cusp, 4, of inflexion point and u, u,
of double point.

By using plotting theorem we can also make the conclusion that a space
cubic Bézier curve has not cusp, double point and its spiral direction doesa’t

change.
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