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Abstract

Let gv y be any beta variate with p.d.f. T%é%%%%T xv'l(l-x)w'1
_ - M, PF CM PF
and let gv,w = -log év,w' Then gv,w = U U, where U7 and U are

independent with completely monotone and PF_ densities, respectively.

It is shown that U is infinitely divisible and gv correspondingly
~v W

infinitely factorable. The asymptotoc behavior of gv’w and gv,w for
large v, w is described. For different modes of increase of v and w,
gv,w is asymptotically normal, gamma or extreme value distributed. The
decomposition is employed to provide an algorithm for generating random
gv,w distributed numbers. Many of the results are based on insights

provided by the classical theory of the Gamma function in the complex

plane.

KEY WORDS: Beta variates, infinite divisibility, asymptotic convergence,

limit theorems, random number generation
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§0. Introduction and summary

\n._Ipe Beta distribution plays a key role in multivariate analysis 2],
12T and in order statistics;[14]. A useful tool for the asymptotic study

of the beta variate gv,w is its logarithm gv,w = -log év,w which, as we

will see, has simple structural properties. The beta variate B/ w has
’

p.d.f.

(0.1) laeo¥l, 0<x<1, 0<v,w ,

_ 1
fg;v,w(x) - B(v,w
where B(v,w) is the beta function B(v,w) = T(v)T(w)/I(v+w). Correspondingly,

the density for gv’w is

-x x, e VX - etXy¥-l
(0.2) fg;v,w(x) = e fg;v,w(e ) = 5OV W) s

D<x<o®o, 0<v,w .

-sU

The variate !v,w has the simple generating function ¢g;v,w(s) = Ele ] =

E[g®] = [ £, (x)x%dx, i.e.,
o &

(0.3) NOR ﬂr%)“il%%)- , Re(s) > -v .

The transform (0.3) is the basis for the asymptotic and structural study
which follows. We will see that U and hence B have a simple decomposition.

One finds that

(0.4) U= QCM . HPF ,

where QCM and QPF are independent. When QCM # 0, it has a completely




---------

monotone p.d.f. When QPF # 0, it has a p.d.f. which is PF_ in the nota-

tion of total positivity [4]. On the basis of this decomposition, one
sees that U is infinitely divisible, and g infinitely factorable in the
corresponding sense.

The powerful apparatus of the Gamma function in the complex plane
permits one to find the asymptotic behavior of gv,w and gv,w as v and
w go to infinity. The behavior is simple and interesting. It will

be shown that

(a) Qvo,w - log w $ G as w > += for v, > 0,
L)) ng,w Q X, S V > = for wy > 0,
0 0
gv,w - ug;v,w 4
(c) gv,w = p N(0,1) as v,w » += for a broad simple

Usv,w

family of paths given in Section 2.
In (a), G is a conjugate transform of an extreme value variate, X,
is the gamma variate of parameter w, and N(0,1) is the standard normal
variate.

The explicit numerical evaluation of the distribution of a product
of independent betas arising in multivariate analysis under the normality
assumption [2], [12] can be expedited with the help of the corresponding
variate gj = -log gj, whose sums map into the desired product. The inde-
pendent sum needed is a multifold convolution which can be performed with

speed and accuracy by the Laguerre transform method [7], [8].
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§1. A basic decomposition of beta variates and associated infinite
factorability

The principal objective of this section is the following theorem.
Theorem 1.1

U = -log B is infinitely divisible for any g variate. Equivalently,
any B is infinitely factorable, i.e., § = gnl-gnz...gnn where gnj are
i.i.d.
We will prove this theorem through a lemma which provides insight into
the structure of beta variates and is of some interest in its own
right.
Lemma 1.2

Let w = [w] + 8, where'[a] is the largest integer less than or equal

toaand 0 <8 < 1. Then one has the decomposition

M PF
(1.1) Low% e * Yo,y

CM PF CcM

where (a) gv,e and gv+e,[w] are independent; (b) Qv,e has a completely
™ _ CM 1
monotone p.d.f. when 0 < 8 < 1 and gv,O = 0. Furthermore, gv’e A E

as & - 1, where E is an exponential variate with mean one; (c) QSFG [w]
PF _

has a PF_ p.d.f. when [w] = 1,2,3... and Qv+e,0 = 0.

Proof

From (0.3), one has

{Ely+e) T(v+s) }{r(v+e+[w]) T(v+b+s) }
I'(v) T (v+8+s) T'(v+8) T (v+6+[w]+s)

(1.2) oy(s) =

= byiv,005) by ven, (w1 ¢S)




.......
Ll

i.e., gv’w = gv’e + gv+e,[w] and ﬁv,w = 5v,6'§v+e,[W]’ where yv,e and
Hv+e’[w] are independent and gv,e and §v+e,[w] are independent. The

. - . _ VY -y, 6-1
density of Qv,e = -log ﬁv,e is, from (0.2), fg;v,e(Y) = e (1 -e ) .

Consequently,
- 1 - (k+v)y
(1.3) fyiv,e ) * 3,8 kz Pox® ’
~ =0
K
where p,. = land p,, = I [1 - (8/j)], 0 <8 <1, k 21, so that
60 6k j=1
. . _.CM :
fg;v,e(Y) is completely monotone. We write gv,e = Qv,e' We note from
CcM
{1.2) that, for Re s > -v, ¢U;v,e(s) + 1 as 6 - 0 and therefore QV,O = 0.
Similarly, ¢ (s) » Y _as ¢~ 1 and UCH Q 1 E as 6 » 1 roving (a)
' Uy, 8 S+V ~v,6 v~ : ?w]-l g
and (b). For (c), we see that, for [w] = 1, ¢g;v+0,[w](s) = jzo (v+8+j)/
(s+v+0+j). For the variate Qv+e,[w] = -log év+e,[w]’ one has therefore
[w]-1 1
4 Ao,y = 5 Weeg By

where the gj are independent exponential variates with E[Ej] = 1. It

follows that !v+e,[w] has PF density [4], when [w] 2 1, and we write

PF PF =
Yose, ] From (1.2) we see that Ev+e,0 =

Proof of Theorem 1.1

0, proving the lemma. [

It has been shown by F. Steutel [13] that any completely monotone
variate is infinitely divisible. Since E is infinitely divisible and
the sum of infinitely divisible variates is infinitely divisible, the

result is immediate. (O




-5

The decomposition of Lemma 1.2 shows that fU(x) is the convolu-
tion of a strongly unimodal p.d.f. [3], the PF é;mponeht, and a com-
pletely monotone component, shedding additional light on the familiar
unimodality of all beta variates.

Remark 1.3

As shown in [9], any p.d.f. fx(x) with the decomposition (1.1)
has the property that fx(x)*f_x(x), where the asterisk denotes convo-
lution, is a scale mixt:re of symmetric normals, and that for such a
distribution, distance to normality is measured by the kurtosis of X.
The kurtosis of U, therefore, provides a consistent measure of the log-
normality of 8 described in the next section.

The decomposition (1.1) has also been demonstrated in [6] for any

passage time Imn between any two states m, n of any birth-death process.




—— L o Ath aee sea S dben e St siviet

et 2 " WUV Ww W

_ P gy il R It A N

raNcy ety A AR NENCINE
LN S RN K (S

g

/
- 4,

» I-{-“ .’,'.."f‘l' "-"11-’1
A R g
S PRI Yata

§2. Asymptotic behavior of beta variates for large v and w

We turn next to the asymptotic behavior of the U and g variates.

Theorem 2.1

Let w= [w] + 8, 0 <6 <1. Then for any v > 0, gv w " log w d G

(e” V1Y revyy-

Ve
.t
v
[
Se
.
s

as w + +» where the p.d.f. of G is given by fG(y)
-y ’ ’ ~
[ , ~® < Yy < =,

Proof

= - - uPF .
Let K = [w] - 1 so that w = K+1+8, Let §v,w = 9v+e,[w] - log w.

Then, from (1.4), the Laplace transform of the p.d.f. of év y is given

K ’
by ¢S-v w(s) = 1 (v+9+j)(K+1+9)S/(s+v+6+j). This can be rewritten
- 22V j=0
- as
: 2 _ Vv+9 { E j l\,sw~»6} .
.1) ¢§;v,w(5) T s+v+d j=1 S+V+0+]

K .
(nm B Ky« LBYS
i=1

The first bracket in (2.1) converges to I'{l+s+v+8) while the second

converges to 1/I'(1+v+6) as K - +», Hence, for 0 < 6 < 1 fixed, one has

(2.2) ssv,w(s) — E%%izgg) as W

-~

From (1.2) one has ¢U;v,e(s) = r;z:g) . riizgfl)‘ Since

_ CM PF _ CM
gv’w - log w = gv’e + gv+9,[w] - log w = gv,e + §v,w’ one has, from

(2.2) for every fixed 8 (0 s 8 < 1),

T(ve+
2.3 by, () = by (()00s () TGRS, as v e

.
L e e e A aua PIRPRPRIINSFI S e
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where this limit is independent of 6. 0O

We note that the extreme value distribution, whose p.d.f. is

- P 4
e y,e €

fL(y)
@k(S)

» =® <y <= has the bilateral Laplace transform

F'(1+s). Hence the limit of both ¢S;v,w(s) in (2.2) and
¢U;v,w(s) in (2.3) are conjugate transforms [5] of ¢L(s).

Theorem 2.1 above describes the asymptotic convergence in dis-
tribution of gv,w - log w for v fixed as w + +», to an extreme value
variate. In the next theorem, we deal with the asymptotic behavior
for w fixed as v » +», and show convergence in distribution of ng,w
to a Gamma variate. Finally, in Theorem 2.5 we will be dealing with
sequences (vn, wn) in which both Vo and wo become infinite in a spe-
cified way, and asymptotic normality will be demonstrated. The three
cases are shown graphically in Fig. 1 (a), (b), (c).

Theorem 2.2

Let w = [w] + 8 > 0 be fixed where 0 < 8 < 1. Then one has

ng,w 9 X, 35SV 4, where X, is the gamma variate with p.d.f.
J(s) = x"TeX/r (.

CM

Let fCM 5(y) be the p.d.£. of UM . Then, from (0.2),

~

CM 1 VY1 _ oY -(1- e) ™.
fyiv, o™ =gay e T -e) . The p.d.f. of VU, is then
given by
LMy 1 T(vs) e
v U v,0'v \ (v)r(e) a - e-y/v)l-e
. 1 ye-le-y , T(v+6) | 1
ree) ver(v) 1 - e'y/V 1-6

C )

y/v
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From the Stirling formula, T(v) ~ vV2n vv_%e_v as v + +=, one has

! H‘ RGO :
L P .

o P
P LA T P

1 CM Y. 1 6-1 -y -
v £ ;v,e(v) > T{8) y € as v~ !

Bt i u )
LT
Ch eetet
(=i g

]

. CM 4 PF y .
i.e., ng,e > Xg @ vV > =. For the PF part gv+e,[w] with [w] 2 1, one

has from (1.4) that

1

101« &7 AW
v

The theorem now follows from Lemma 1.2. ([

From (0.3), one has

242) g, = EIL, D s - G lom 4y ()] (Lo = VO - B0
(2.40) o, = Varly, ) = (G Tog gy ()] o= ¥ () - v (v
where

(2.5) ¥(2) = &= log I(z) = I'(2)/T(z) , Rez>0

Let

(2.6) Z'\r,w N (gv,w B ug;v,w)/ag;v,w

We next show that ;V w? N(0,1) as v and w go to += along certain paths.

Two preliminary lemmas are needed.

..
;‘ Lemma 2.3
A X

3 ————— < 1+4x for all x>0

1 - ¢

P PP S ey e P PP SRS




Proof

o0
It is clear that l+x < ) %T = ¢* for all x > 0. Then (1+x)e ™ <1
k=0 ™’
so that x < (1+x)(1 - e'x), and the result follows. [

Lemma 2.4

Let P be any directed path in the (v,w) plane for which either
(a) v,w + +w and v < Kwa, 0<a<l, K>0, or (b) v,w » += and
v 2 Kwa, a=21, K> 0. Then VUU;v,w + +» as y,w -+ +o along P.

We note the following identity [1]

2.7 v =]—dt, Rez>0
0

wt

2,2 = v2 f )dt. Hence,

Then, from (2.4b), v Yevow © -——E—tz-e'Vt(l - e
-t ~r T 01 -e

since l—:?éL—-< 1 for t > 0, we have

W
-X v X
e (1 -e )dx

<

ch%q
v
<

ov— 8

IfvesKe?, 0<cac<l, K> 0, one has w/v 2 wl-a/K and by the dominated
(-]

convergence theorem [ e X(1 - A
0

case (b), one sees that w/v < wl'a/K, a1, K> 0 and w/v +~ 0 along P.

)Jdx + 1 along such a path. For the

One then has
o y
:. [ - -\7 X
g Vzcz. > KW [e™ 1 - e dx
- Q:V,W 0 w/v
28 The integral in the last term converges to [ xe dx = 1 by the dominated
N 0
}f convergence theorem and the lemma follows. [0
L
—

(L]

R




We are now ready to show asymptotic normality of gv w under the condi-

2

tions of Lemma 2.4.

Theorem 2.5

gv w N(0,1) as v and w go to += along any path P as given in

Lemma 2.4.
Proof

We write u = Hyevow and 0 = © y for notational simplicity. It
b AN

U;v,
is clear from (2.6) that

- SZ‘
(2.8) ¢, () =E[e ]=e

~

ajw

s s

)

¢g;v,w o]

We note that for sufficiently small |s|, one has from (0.3) and (2.5)
V+W | VHW+sS V+s

0y.y w) = exp[ [ w(udu - [ y(udu] = exp[ [ ¥(u)du -
~r e v V+S v
V4WtS
f Y (u)du] so that
V4w
s
2.9) ¢g;v,w(s) = exp[£ {¢(v+x) - Y(v+w+x) }dx]
¢Z;v,w(s) in (2.8) can then be rewritten from (2.9) as ¢£;v,w(s) =
s/o

exp[ [ {(W(v+x) - v(¥)) - (W(v+w+x) - p(v+w))}dx] . By letting
0

y = 0x, we obtain

S
[ h(v,w,y)dy

_ 0
{2.10) w;;v,w(s) = e

where

(2.11) h(v,w,y) =

Q=

yle '
[ (v (v+u) - ¢ (vew+u)ldu
0




It will be seen that %; h(v,w,y) + 1 for all y > 0 as v,w + += along
2

! .
the path given and that one then has ¢Z'v w(s) > e?® , as needed.
&V
1 '
From (2.11), %y-h(v,w,y) = l? v (v+y/o) -y (v+w+y/o)} so
o
that (2.4b) and (2.7) lead to

[ t oV * y/o)t(1 - e ¥hyae
(2.12) j—yh(v,w,y) =0

o«
[ —E2— eVt - e"Yae
-t

0

We note that %; h(v,w,y) is monotone decreasing in y (y > 0), and
0 < %; h(v,w,y) <1 for all v,w,y > 0. Let x = vt. Then (2.12)

becomes

- -(1 + y/o)x - S x
—xv__ Vi -e Voydx
d 01 - XV
(2.13) Iy hlv,w,y) =
y w

7 /v -X v X
f X /v e (1 -e )dx
01 -e

From Lemma 2.3, X/Yx/v <1+ % for x,v > 0 and by the dominated con-

1 -e¢

vergence theorem one can pass v to the limit along the path given. It

follows from Lemma 2.4 that %; h(v,w,y) - 1 as v,w + += along the path

y
given. From (2.11), h(v,w,0) = 0 so that h(v,w,y) = f %ﬁ h(v,w,u)du.
0

Since 0 < %; h(v,w,y) < 1, one sees that h(v,w,y) - y as v,w » += along

the path, again by the denominated convergence theorem, for any y > 0.
The theorem then follows. 0
The convergence vgv W described in Theorem 2.2 has been shown by

’

G. S. Mudholkar and M. C. Trivedi (private communication). They also
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state that gv,w is "asymptotically normal as v,w =+ +='" but do not
provide a proof [10].

In the original form of Theorem 2.5, only ray paths v = Kw, K > 0,
were considered. A referee suggested the more general paths of Lemma

2.4, and indicated that the result might also be obtained from Chap. 4,

Theorem 18 of V. V. Petrov [11].
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E 3

1\ ' (c) Py

N
> (b) Py

WV

gv,w - log w g G as w > +» along Pl'

as v,w =+ +® along PS’ where P3 is a path such that either v < Kwa,

0D<ac<l1,K>0o0rvzke,az1, K>o.

Fig. 1. Asymptotic Behavior of gv w -log év,w
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§3. Generation of gv y random numbers
»

- M PF : '
The decomposition gv,w = gv’e + gv+e,[w] in Lemma 1.2 may be

employed to provide a simple algorithm for generating gv w random num-

bers. From (1.3) the Laplace transform of the p.d.f. of QSMG can be
given by
_ ° v+k
(1) ey, o) = L oa ik
~ k=0

where
5.0 q e . oo L Chend L k=02,

' k  B(v,8)(v+k) ’ 6k

o P ]
It is clear that q, > 0 for all k. One sees quickly that )) vit =

® k 1 k=0
8-1,,(-1) v-1 8-1 .
I e = [u " (1-u)°"du, i.e.,
k=0 k v+k 0
o P
ok
(3.3) ) = B(v,8)
k=0 v+l

and therefore (qk); is a probability distribution. Let gj be i.i.d.
with the common c.d.f. 1 - e_x, j=0,1,...,M = [w]. From Lemma 1.2,

(1.4) and (3.1), one then has

1 E. + 1

(3.4) 0 v+0+j ~j v+N EM

éC
‘t
]
0~

where N is the discrete random variable with P[N = k] = q, and independent
of EM' Let gj be independent and identical uniform variates on (0,1). Since
d

J -
4; e and gv’w log Ev,w’ Eq. (3.4) leads to




] —
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Hence one has the following algorithm for generating év,w random numbers.
Algorithm
(a) Generate [w]+l independent and identical uniform variates gj(w),

j =0,1,...,M = [w], on (0,1).

(b) Generate the variate N(w) from the distribution (qk)z.

1
1
M-1 —_— N(w)
= v+0+j | ~
(c) gv,w(w) = jllo gj (w) QM(m)

The algorithm is simple and straightforward. Advantages and disadvantages
of the algorithm with respect to existing algorithms will be described

elsewhere.
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§4. Explicit calculation of the distribution of the product of independent
Beta variates

For certain likelihood ratio statistics arising in multivariate
analysis, one must evaluate the distribution of

(4.1) X = . . ... ,
g"1’”1 E"2"”2 g"K"”x

where the beta variates are independent. This distribution may be
obtained via the Laguerre transform procedure described in [7], [8] in the

following way. From (4.1)

(-log 8, )= % W
1 33 =1 737

(4.2) -log X =
j

N~
I e~10%

The gv.,w. variates are independent and absolutely continuous with
p.d.f.gs ;s in (0.2). They therefore have the properties of regularity
and rapid decrease required by the Laguerre transform method for con-
volving p.d.f.'s and permit vector representations of modest length
with high accuracy. The Laguerre transform coefficients required are

easily obtained analytically and the calculation of the p.d.f. of

-log X and hence of X proceeds rapidly.
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