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3. Abstract

N r + 'w) xV-I Wlxg-Let kv,w be any beta variate with p.d.f, _,)r Vw-)

CNM PF 01 PF
and let U = -log vw Then U = U U, where U and U are:,V 'w P- W V, w

independent with completely monotone and PF. densities, respectively.

It is shown that U ,w is infinitely divisible and 'vw correspondingly

infinitely factorable. The asymptotoc behavior of Uv'w and J4,w for

large v, w is described. For different modes of increase of v and w,

U is asymptotically normal, gamma or extreme value distributed. The

decomposition is employed to provide an algorithm for generating random

-". wdistributed numbers. Many of the results are based on insights

provided by the classical theory of the Gamma function in the complex

plane.

KEY WORDS: Beta variates, infinite divisibility, asymptotic convergence,

limit theorems, random number generation
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10. Introduction and summary

The Beta distribution plays a key role in multivariate analysis [2],

j -i-and in order statistics [14]. A useful tool for the asymptotic study

of the beta variate 8 v'w is its logarithm U = -log Av w which, as we

will see, has simple structural properties. The beta variate P~v'w has

p.d.f.

x) = 1 v-1 w-1
(0.1) fBv w xl(l-x) , 0 x < I 0 < v'w

where B(v,w) is the beta function B(v,w) = r(v)r(w)/r(v+w). Correspondingly,

the density for Uv is

(02 •- e_ v (I - W1

(0.2) fU;v,wX) =eXfw x) .wB(v,w)

"" 0 < x < s 0 < V'W

-su
The variate U has the simple generating function U;v,w (s) = E[e ] =I "v,w

E[ s]  f f x)xsdx, i.e.,
0

(0.3) * (S) =r9- r(v+s)
- r(vT r(v+w+s) Re(s) > -v

The transform (0.3)'is the basis for the asymptotic and structural study

which follows. We will see that M and hence A have a simple decomposition.

One finds that

(0.4) j CM ,jPF

* CM PF INwhere C and P are independent. When 0 , O, it has a completely
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monotone p.d.f. When uPF g 0, it has a p.d.f. which is PF in the nota-

tion of total positivity [4]. On the basis of this decomposition, one

sees that U is infinitely divisible, and infinitely factorable in the

corresponding sense.

The powerful apparatus of the Gamma function in the complex plane

permits one to find the asymptotic behavior of U and as v and

w go to infinity. The behavior is simple and interesting. It will

be shown that

d(a) U - log w - G as w *for v0 > 0,

(b) vU w0  was v- + for w0 > 0,00U Ui

(c) Z = a ;v,w N(0,1) as v,w +c for a broad simple

family of paths given in Section 2.

In (a), k is a conjugate transform of an extreme value variate, w

is the gamma variate of parameter w, and N(0,1) is the standard normal

variate.

The explicit numerical evaluation of the distribution of a product

of independent betas arising in multivariate analysis under the normality

assumption [2], [12] can be expedited with the help of the corresponding

variate U. = -log Aj, whose sums map into the desired product. The inde-
-J .

pendent sum needed is a multifold convolution which can be performed with

speed and accuracy by the Laguerre transform method [7], [8].
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1. A basic decomposition of beta variates and associated infinite

factorabi ity

The principal objective of this section is the following theorem.

Theorem 1.1

U = -log Q is infinitely divisible for any Q variate. Equivalently,

any is infinitely factorable, i.e., = 6 6 where t5 areM ,n2...nn w n-n)

i.i.d.

We will prove this theorem through a lemma which provides insight into

the structure of beta variates and is of some interest in its own

right.

Lemma 1.2

Let w = [w] + e, where [a) is the largest integer less than or equal

to a and 0 <- 8 s 1. Then one has the decomposition

(1.1) U =UCM +U PF
vw -'v,e -V+e,[w]

where (a) UCM and UP F  are independent; (b) UCNI has a completelywv,8 -v+e,[wa -v,O

monotone p.d.f. when 0 < 0 < 1 and = . Furthermore, - E
. , UP F

as 1, where E is an exponential variate with mean one; (c) Q1,O,[w'
has a F UPF  0 .
has a PF, p.d.f. when [w] 1,2,3... and U v+OO

Proof

From (0.3), one has

(1.2) Jrr(v+o) r(v+s) 1 r{v 9+[w]) r(v+o+s)

. r(v) r(v+e+s) r(v+e) r(v+e+[wl+s)

S-u;v, e(s)'*;v+e, [w] (s)
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i.e.,U = U U ,[ and Pv,= kve'6v+e,[w] where U and

-2.Ue,[w] are independent and kv,e and 4v+e,[w] are independent. The

density of U -log Pv,e is, from (0.2), f U;v,e(y) =e-VY(l e-Y -

Consequently,

() -(k~v)y

(1.3) f U;v, - B(v,6) Psk e

K
where peo = land =n [1 - (0/j)], 0 : e < 1, k > 1, so thatwherePOO andPok -=U !

j=1 C
f (y) is completely monotone. We write U U We note from
M;v,0 -Ve -f'ro
(1.2) that, for Re s > -v, (s) - 1 as 0 - 0 and therefore U = 0.

U , v,0

Similarly, U (s) -v as 0 - 1 and U CM d E as 0 - 1, proving (a)Smlry s+v v, V [w]

and (b). For (c), we see that, for [w] > 1, o (s) n (v++j)/
U;v+,[w o ha thereforj=0

(s+v+e+j). For the variate U V+e[w] = log k,+e'rW1' one has therefore

[w]-i 1
(1.4) U.

2ve[j= V*+j *-

where the E. are independent exponential variates with E[E.] 1. It

follows that U has PF density [4], when [w] > 1, and we write

UPF From (1.2) we see that U 0, proving the lemma. [-v O,[w]" Fo(12weseta v+6,0

Proof of Theorem 1.1

. It has been shown by F. Steutel [13) that any completely monotone

variate is infinitely divisible. Since E is infinitely divisible and

the sum of infinitely divisible variates is infinitely divisible, the

result is immediate. 0a,



The decomposition of Lemma 1.2 shows that fu(x) is the convolu-

tion of a strongly unimodal p.d.f. [3], the PF component, and a com-

pletely monotone component, shedding additional light on the familiar

unimodality of all beta variates.

Remark 1.3

As shown in [9], any p.d.f. f X(x) with the decomposition (1.1)

has the property that fx(x)*f- (x), where the asterisk denotes convo-

lution, is a scale mixture of symmetric normals, and that for such a

distribution, distance to normality is measured by the kurtosis of X.

The kurtosis of U, therefore, provides a consistent measure of the log-

normality of g described in the next section.

The decomposition (1.1) has also been demonstrated in [61 for any

passage time T between any two states m, n of any birth-death process.

~mn

4i' ~a

-.°
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§2. Asymptotic behavior of beta variates for large v and w

We turn next to the asymptotic behavior of the U and Qvariates.

Theorem 2.1

d
Let w= [w] +.0, 0OsO6< 1. Then for any v> 0, U - log w-G

as w -~~where the p.d.f. of Gis given by f -(v-( )

e-yee - < y< C

Proof

Let K =[w] 1 so that w =K+1+0. Let S =UP- log W.
'-v'w -'V+O,[w]

Then, from (1.4), the Laplace transform of the p.d.f. of S V is given
K

by 0 C~ s) 11I (v+6.j)(K+0) 5/(s+v+O+j). This can be rewritten
$v~w j=0

as

(2.1) ( s) v K K~+S;v,w s ~~ Til -s-----K

K 1+e s
(T VO1 K-(v+eO).(l + )

The first bracket in (2.1) converges to r(1.s~v+e) while the second

converges to 1/r(l.v.0) as K +w* Hence, for 0 5 0 < 1 fixed, one has

(2.2) (s) r(sqv.8)

S;v,w r(v.0) a ~+

From (1.2) one has of b s) =vaat r var ) Since

U - log w = U + U log w U + one has, from

(2.2) for every fixed 6 (0 5 e < 1),

""uiv-)Y/r eCs (v+s)

(2.3) (s) t, -F- r(v) as w )-
-y
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where this limit is independent of e. D

We note that the extreme value distribution, whose p.d.f. is

-'-y
f fL(y) = ey,ee -CO < < -, has the bilateral Laplace transform

(s) = r(l+s). Hence the limit of both Svw(s) in (2.2) and

(s) in (2.3) are conjugate transforms [5] of 0L(s).

Theorem 2.1 above describes the asymptotic convergence in dis-

tribution of U - log w for v fixed as w +o, to an extreme value

variate. In the next theorem, we deal with the asymptotic behavior

for w fixed as v + , and show convergence in distribution of vU

to a Gamma variate. Finally, in Theorem 2.5 we will be dealing with

sequences (vn, W n) in which.both v and w become infinite in a spe-%"n n n

cified way, and asymptotic normality will be demonstrated. The three

cases are shown graphically in Fig. 1 (a), (b), (c).

Theorem 2.2

Let w = [w] + 0 > 0 be fixed where 0 - 0 < 1. Then one has

vUV'w d Xw as v ®, where Xw is the gamma variate with p.d.f.

w (S) xWe- /r(w).

Proof

Let fN Iv(y) be the p.d.f. of UC1  Then, from (0.2),
v-v, 0"fCM1 1) N

.,( y ) = 1 e-vY(1 - e- y) (1-) The p.d.f. of vU , is then

v,8'V~e B(v,O) ~v

given by

1 fCM 1 r(v+e) e-Y
v 3 ;v,6 v v r(v)r(e) e-Y/v1-

(I ey

I 1 e- y r(v+e) 1
r(e) e e -/vv r(v) (1 e 1-O

y/v
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From the Stirling formula, F(v) V-27 vVe -v as v + *% one has

1 fC: C 1 0-1 -yv u;v, ( ) r) ~y  e as v +-0

i~. CM dPFve , as v ForthePFpartU with [w] > 1 one• "~v+8, [w]-'

has from (1.4) that

vuPF [w]- 1 Ed
-v+e, [w] j=l 1 '" - YX[w]

• *" V

The theorem now follows from Lemma 1.2. [1

From (0.3), one has

(2.4a) P w = E[U 3 = -d log U w(s) s (v+w) - 4(v)
Vr;vw -v,w d (a- lg 1U;v,w 0

(2.4b) a2 =Var[U = d 2 l (s- s (v+w)
U;v'w ( log(v

where

(2.5) *(z) = log r(z) = (z)/r(z) Re z > 0

Let

(2.6) Z = (U - /
v 'w 'v ,w U;v,w Q;v,w

We next show that Z - N(0,1) as v and w go to +. along certain paths.
- w

Two preliminary lemmas are needed.

di Lemma 2.3

x < l+x for all x > 0

1 - e-x
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Proof
Sk

It is clear that 1+x < = for all x > 0. Then (l+x)e -x
k=O

so that x < (l+x)(l - e-), and the result follows. Dl

Lemma 2.4

Let P be any directed path in the (v,w) plane for which either

(a) v,w * +w and v < Kwa , 0 < a < 1, K > 0, or (b) v,w - + and

v > Kwa , a > 1, K > 0. Then vOaU;vw + as v,w - +o along P.

Proof

We note the following identity [1]

• [.] -zt
Ste

(2.7) , (z) = J dt Re z > 0
,'-0 1 - e

Then, from (2.4b), v2 .  = v 2 f t e-Vt(1 -wtjdt. Hence,
since . 1 ,vw 0 1 - et

-t 0e

since t < I for t > 0, we have
w

w

v aU;v,w v e-X(l e )dx
0

a l-a
If v _ Kwa , 0 < a < 1, K > 0, one has w/v w /K and by the dominated

convergence theorem f eX( - e-WX/V)dx - I along such a path. For the
0 1-a

case (b), one sees that w/v 5 w /K, a 1, K > 0 and w/v- 0 along P.

One then has

w
-- x

v2a 2  2 K2w f e-X 1 - eu;v,w 0 dx

The integral in the last term converges to f xe-Xdx = 1 by the dominated
0

convergence theorem and the lemma follows. 0
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We are now ready to show asymptotic normality of U V under the condi-

tions of Lemma 2.4.

Theorem 2.5

z w ~N(0,1) as v and w go to +walong any path P as given in

Lemma 2.4.

Proof

We write pi and a =a for notational simplicity. It
U;v,w U; v,w

is clear from (2.6) that

(2.8) Z;Vw(S) E[e ]e' * ~(-)

SWe note that for sufficiently small IsI, one has from (0.3) and (2.5)
V~w v+w+S v+S

O*v (x) = exp[ f p(u)du - f p(u)du] =exp[ f p(u)du-

f *J(u)du] so that
V+w

(2.9) ( s) =exp[f {iP(v+x) - i(v+w~x)}dx]

CZV~ s) in (2.8) can then be rewritten from (2.9) as Zvws

s/0
exp[ f {(i*dv+x) - ip(v)) -(ip(v+w+x) - i(v+w))}dx] .By letting

0
y = ax, we obtain

r f h(v,w,y)dy
K(2.10) *~~w(S) e=

where

L(2.11) h(v,wy) = f {(v~u) -i(v~w~u))du

a0



-'.0..- -I --

dy
. It will be seen that v hiv,w,y) - 1 for all y > 0 as v,w - +w along

the path given and that one then has (s) e ,as needed.p .- °w

From (2.11), 7 h(v,w,y) = { (v + y/G) - i (v + w + y/o)} so
dy 2

that (2.4b) and (2.7) lead to

t -v + y/)t -wt
f e (1- e )dt

(2.12) h(v,w,y) = 1 e

f t e-Vt 1 - e-Wt)dt

01- e

We note that ! h(v,w,y) is monotone decreasing in y (y > 0), and
d

0 -< - h(v,w,y) 5 1 for all v,w,y > 0. Let x = vt. Then (2.12)

becomes

-(1 + y/ )x x' '[v d( e x v  eIl- e v )dx
_ _ _ 

Ve

'-' (2.13) h(vw,y) =dy -Wcc 0 - x
f e-X(1 - e V )dx

0 1 -e

" x/V

From Lemma 2.3, < 1 + --for x,v > 0 and by the dominated con-
eX/v v

vergence theorem one can pass v to the limit along the path given. It

follows from Lemma 2.4 that d- h(v,w,y) - I as v,w +® along the path

given. From (2.11), h(v,w,O) = 0 so that h(v,w,y) L f h(v,w,u)du.
A 0

Since 0 5 L h(v,w,y) < 1, one sees that h(v,w,y) y as v,w +o along

the path, again by the denominated convergence theorem, for any y > 0.

The theorem then follows. 0

The convergence vUw described in Theorem 2.2 has been shown by

9 G. S. Mudholkar and M. C. Trivedi (private communication). They also
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state that U is "asymptotically normal as v,w o" but do not

provide a proof [10].

In the original form of Theorem 2.5, only ray paths v = Kw, K > 0,

were considered. A referee suggested the more general paths of Lemma

2.4, and indicated that the result might also be obtained from Chap. 4,

Theorem 18 of V. V. Petrov [11].

F|
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w

(b) P

0 V

*(a) gu - log w Gas w +~along Pl.

(b) vgv) 4 xas v ~o along P2 '

Mv,w U;v, W d
(c) z = N~~ N(0, 1)

as vw- * along P3  where P3 is a path such that either v aK

a
0 <a <1, KC > 0 or v 2t Kw ,a 2t 1, K > 0.

Fig. 1. Asymptotic Behavior of U =, -log Av'
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§3. Generation of random numbers

CM PF
The decomposition U = U + U in Lemma 1.2 may be

-v'w -v'e 'V+e,[w]

employed to provide a simple algorithm for generating ZvPw random num-

bers. From (1.3) the Laplace transform of the p.d.f. of UCM can be

given by

(3.1) (s) v+k
U;v, k=O

where

Pok .e-1 k
(3.2) = B(v,k)(v~k) Pk= )(-l) 'k 0,1 ...

Pek
It is clear that q. > 0 for all k. One sees quickly that -

k- 1k=O
. k= O -1 v = f0 (l-u) 8-1du, i.e.,

k 0 0

(3.3) = B(v,)
k=O

and therefore (qk 0 is a probability distribution. Let E. be i.i.d.!.0- -3

with the common c.d.f. 1 - e-X, j =,1,...,= [w]. From Lemma 1.2,

(1.4) and (3.1), one then has

M- 1
(3.4) U = Y -- -E

-v,,w j=0 v +ej tj v+N '-

where N is the discrete random variable with P[N = k) = and independent

of E. Let U. be independent and identical uniform variates on (0,1). Since

U. d e and U = -log vw' Eq. (3.4) leads to
"V, AVW

"°-
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(3.S) Vw - u+eJ

= :'jO = 0~ i.

Hence one has the following algorithm for generating 4,w random numbers.

Algorithm

(a) Generate [w]+l independent and identical uniform variates U (W),

j = 0,[.. .,M = w], on (0,1).

(b) Generate the variate N(w) from the distribution (q.)0•

M-1 N(W)
(c) Vw(W)= II (W) •UM(W)

j=0

The algorithm is simple and straightforward. Advantages and disadvantages

of the algorithm with respect to existing algorithms will be described

elsewhere.

w.3
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N 4. Explicit calculation of the distribution of the product of independent
Beta variates

For certain likelihood ratio statistics arising in multivariate

analysis, one must evaluate the distribution of

(4.1) .... AV ,
' 1 PV 2 xw2  K

where the beta variates are independent. This distribution may be

obtained via the Laguerre transform procedure described in [7], [8] in the

following way. From (4.1)

K K
(4.2) -log X = (-log Qv , = [ U

-V j, W.-- j--I j' j=1

The U variates are independent and absolutely continuous with

p.d.f.'s as in (0.2). They therefore have the properties of regularity

and rapid decrease required by the Laguerre transform method for con-

volving p.d.f.'s and permit vector representations of modest length

with high accuracy. The Laguerre transform coefficients required are

easily obtained analytically and the calculation of the p.d.f. of

-log X and hence of X proceeds rapidly.
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