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ABSTRACT

A new non parametric method for estimating the
locations and power spectral densities of muitiple wide-
band sources from measurements provided by an array
of sensors. is described. The proposed method treats
with the same case multiple sources and multipath pro-
pagation. Direction-of-arrival estimation for wide-band
sources is obtained as & limiting case of the proposed
method.

L INTRODUCTION

In radar, sonar and seismology one is frequently
interested in determining the locations and the spectral
densities ("signatures”) of radiating sources from meas-
urements provided by an array of sensors. The signals
received by the sensors consist, in the simplest case, ot
sources to the sensors, may exist.

The conventional method for estimating the location
of the source is based on a two-step procedure. First,
the time-difference-of-arrival {TDOA) of the the propagat-
ing signal to the different sensors are eStimated using a
generalized correlator (see e.g.. Knapp and Carter
(1976)). Then, these TDOAs estimates are used to derive
the corresponding lines-of-position whose “intersection"
yields the location of the source. This method has seri-
ous shorlcomings, the major one being the inability of
the gencralized corrclator estimator to cope effectively
with multiple sources and with multipath propagation
(see e.g.. Carter (1981)).

An intercsting attempt to overcome this problem
was outlined by Mor{ et al. (1979). Their basic idea was
to use parametric models for the sources and the addi-
tive noises and then to use system identification tech-
niques to estimate thesc parameters from the received
signals. The TDOA estimates are then extracted from
these parameters. This idca was further claborated and
developed by Porat and Friedlander (1981) and Nehorai
and Morl (1992). The shortcoming of this method, as
with any paramrciric method, is its scnsitivity to the
assumcd model.

The maximum likclihood processor for estimating
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processor requires the knowledy 2 of the spectral density
matrix of the sources and hence its applicabilily is lim-
ited to the ceses in which such knowledge is available.

In the special case that the sources are narrowband
and are loceted in the far-field of Lthe array. Lhe problem
de=generetes Lo the estimation of the direction-of-arrivel
and the center-frequency of the radisting sources,
namely to the 2-D harmonic retrieval problem. This
probiem kas been addressed by Wax et al. {1332b), where
a suboptimz! m=thod, based on the cigenstruclure of Lthe

~ covarizance maeatrix of the received signals. ha: been

presented. This method is an extension of the method
presexted by Schmidt (1979) {sec also Schmict {1981))
for tke specizl case that all the sources are co-
frequency. £ similar method for Lhis special case, based
on the sigenstiructure of the spectral dens:ty metrix, has
been prescnied by Bienvenu (1973) (see also Bienvenu
and Kepp (£523). (1981)).

Ic this p2per a new approach is presented for Lhe
problem of estimsting the locations and the speclrel
density =—2irix 9f wideband sources. The »pproach is
nonperametric ana hence robust and can noge with mul-
tiple sources 2nd multipath propagation. it is a one-slep
proceZure bzsed on the estimation of the cigensiructlure
of the soectra! density matrix of the receivec signals, 1L
extens the 2pproach of Schmidt {1979) end Bienvenu
(1972} far the rzse of wilcband sources lacated in Lhe
ncar-fleid ol the erray. It is shown that tite cigenvector
subspece corresponding to the repeated smalie <t eigen-
value sf the spexiral densily matrix contzcins all the
informaticn o the locations of the impinging svurces.
Algorithms for extracting this informaticn Lha! enabic
trace-offs betwecen resolution and accuracy, are
presented. Simnuiation resulls that demonstirelc the per-
formeance of the proposed algorithrns are aisc presented.

Fodi: 2N

N. PRC3LEY FORMULATION

Assurne that we have m sensors and 4 (4 <m)
sources distriduted in the plane. Let (2.v,) denote the
coordinates of the i-th svurce. Fach source it gstumed
to emit a zer>-mean wide-sensc-stationary sigial Lhat
propagates redislly with specd c¢. Denoting the received
signal at the i-th sensor by r,{t). we can write

2
n(t) = _.X aun(t = 1) + n(t) (1)
-L r
Z <t < 2’ 1€ism
where

£,t) = hesignal radiating by the & -th source
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7e = the propagation time trom the k-th
source to the 1i-th sensor .
o = the attcnuation from the k-th seurce to
the 1{-th seasor
ny(t) = the additive noise at the i-th sensor

We assume that the noises in,(t)if2, are wide-
sense-stationary with zero-mean and identical spectral
densities, and that they are uncorrclated with each
other and with each of the signals s, (¢) . & =1, ..., d|.

Since the “observation” interval 7, = [—.2!-, .z.;_] is

finite, we can represent the received signals (1) by either
a Fourier series

() = 30— £ Rone @

{which implies the periodicity of r(-) outside the inter-
val T,) or by the inverse Fourier-transform of a Whit-
taker (sampling) series: -
- sin(o,, —;— ~-nr)
) =Pt {10 T Rlon) ——

el (e o n)

&)

{which Implies that our processes vanish almost every-
where outside the observation interval). In each case,
the Fourier coeflicients {R(2,) . 2. €B. where B is
the bandwidth of the processes {. are given by

Riwa) = ;,%r- ff 7i(t) e 7" at (42)
. -‘ .

where
Uy = -g-'-'.’:"'—. n=012 --- (4v)
Note that since 7(( - ) is real.
Ri(o.p) = Rlw,) forall n (4<)

where ® denotes the complex conjugate. Thus we need
only to consider positive “frequencies”, i.e.. @, with
n>0.

Taking the Fourier coeflicients of both sides of (1),
assuming 7, KT, we obtain ‘

Rifwa) = ."':. 0w Sa(a)e 7" + N(o,) t=l.m  (5)

or rewritten in matrix notation

R(wa) = Al2)S(w,) + N(v,) (6a)
where R(»,) . S(w,) snd N(z,) are the mx1 vec-
tors

Ry(ow) ] Si(on)
R(w,) = S(ws) =
n("u) V n("’n)
Ny(w,)
O Nee| | (6v)
at"n)

fond Al(we) isthe mxd matrix

. - | B
oy, oty . B 19a"1e
Moy) = : . . {(8e)
ot ‘.‘:l“u'nl .-‘.:“‘A'u‘

Note that the i-th column of A{w,) corresponds to the
attenuations and delays of the i-th source to the
different sensors. Motivated by this we define the “loca-
tion vector” of the i-th source as,

¢u'-“""

Al‘.‘y.(un ) = . . (ed)

¢ SR

Observe that since S(w,) and N(»,) arc zero-
mean, so is R(w,). Thus it follows from (8) that the
covariance matrix of R(v,) is given by

ER(wn)R*(wp) = A{zn )ES(29)8 (0 )A*(2a)
+ EN(on)N *(p) (n

where + denotes the complex-conjugate transpose.
Now, it is well known (see, e.g.. Whalen (1971). p. 81) that
if the observation interval is large compared to the
correlation time of the processes [ro(¢)|=;. §5:(¢)fx1
and fn(t){2,. then

ER(zn)R*(za) = K(on) {8.2)
58(9,)3’(’.!“) = P(”n) (a-b)
EN(2n)N*(20) = Q(on) (8.c)

where K(va) P(a) 224 Q(2n) are the power spectra!
density matrices of the processes {r,(- ). ts.(- ) and
(- )}, respectively, at the {requency z,. Now, since
we have assumed thzt the noises fn((- )} are uncorre-
lated processes with th= =ame spectral densities it fol-
lows that the noise power spectral matrix is given by

Q(»a) = 0¥ ol (9)

where 0%(2,) is the (scalar) power spectral censity of
each of the noises in,/t)] at the frequency 2, and 1
is the identity matrix.

Equation (7) can then be rewritten as
K(2,) = A(za)P(=)AY0)) + o¥u )1 . (10)
which is the basic reletion in the forthcoming analysis.

M. EIGENDECOMPOSITION OF THE SPECTRAL
DENSITY MATRIX

Observing the struclure of the spectre! deonsity
matrix, as given by (10), assuming that the rank of
A{g) is d (ie.. that the "location veclors” of the o
sources are linearly indcpendent ) and that P{w,) is
positive deflnite. it can essily be shown (sec eg..
Schmidt (1979) or Rienvenu (1978)) that the minimal
eigenvalue of K(=,) is equal to o%(w,) with multiplicity
m~d, snd that the corrasponding cigenvector subspace

. is orthogonal to the coiumns of the matrix A{wa).

namely, to the “lacatian veztars™ of Lhe sources.

Thus, denoting by §2,(=4)! and §V(24)] the cigen-
values and cigenvectors, respectively, of K{z, ). where

Awa) = Agl,) 5 € Aa(2y)

it follows that




Alop) = oo = Apoglwn) = 0%(0,) {11.0)
snd :
tVe(wa) € = Loom—d{ L {A, , (2,) ¢ = 1...d]) . (11.D)

where 1 denotes orthogonality.

- Inpractice K(,) is not known, so that an estimate

. K(w,) must be formed from the data, The eigenualues
and eigenvectors of K(v,) obey only asymptotically the
relations (11). The mulliplicity of the smallest m — o
gigenvalues of K(u,) (11a) is refiected in the estimate
X(».) as a “cluster” of the smallest m -~ d eigenvalues,
and the orthogonality condition (11.b) is reflected as

T A @n Vi (wa)!® = 0 (12)
=1

Since (12) holds for every o, € B, two reasonable
“measures” of the “closeness to orthogonality” over the
whole bandwidth B are either the sum or the product of
the individual “measures” (12) at each frequency bin, in
the sense that

> T A on¥e(o)i2 0 (13a)
Uy i=3
and also
I 'Y:‘ g (aVi(o0)i2 0 (130)
Il.‘ -

IV. DETECTION OF THE NUMBER OF SOURCES

Determining the m~—d eigenvectors that
correspond to the repeated smallest eigenvalue requires
the knowledge of the number of sources d. In practice
d is usually unknown and hence it must also be
estimated (rom the data.

The problem of estimating 2 is eguivalent to the
problem of detcrmining the multiplicity of the smallest
eigenvalue of the spectral density matrix K(w,). This
problem can be formalized as a hypothesis test

”‘("n) :A{om) = = Am-4{9n)
Az N(ey) # = A -a(2n)

It can be shown (sec e.g Priestley et al. (1973) ) that the
likelihvod-ratio statistic for this problem is given by the
ratio of the geomctric mcan and the arithmetic mean of
m —d smallest eigenvalues of K(x,).

nﬁ‘i‘(c,.)""‘"
Le(w,) = == — (14a)

1 =
m~d ‘&“ x‘("’l\)

Under the null hypothesis the statistic - 21n Ly(w,) is

ssymptotically distributed as x* with (m —d)* -1

degrecs of freedom (sce Priestiey ct al. (1973)).

To minimize the probability of error, this test
should be performed for cvery o, € 8. Now, since the
Fouricr-cocflicient corresponding to different frequen-
cies are independent it [ullows that likelihood ratio
statistic for the different frequencies are independent.
Thus, the enmposite likelihood ratio statistics for deter-
mining the number of sources is given by

te = fI Lt (14e)
ni.J is distributed as z* with M[(m -d)? - 1] dcgrees

of freedom. The way to implement this test is to spply it
sequeatizlly tod = 0,1....m ~ 1 and to choose @ as the

value of d for which -2Ilnly crosses the 2
significance level threshold.

V. SOURCE LOCATION ESTIMATION

Let A, ,(v,) denote the “location veclor”
corresponding to a source at the point (z.y) and lct
tAs.y(za ). e8 denote the collection of the “localion
vectors™ of all possible locations §(z, ¥)! in the plane.
These vectors can either be measured in the field or
computed arzlytically. using the appropriate propaga-
tion model, if measuring is not feasible. The estimate of
the sources locations is obtained by computing and plot-
ting

1

- — (154)
2 "t‘ lA:.y(”n)vl’('-’u)lz
s, €8 =t
of
— (150)
H .2 'At. '(O,.)V{(Q.)I'
.8 i=

as a 2-D function of (x.y). The 4 peaks of these 2-D
function conslitute a good estimate of the localions
§ (xc. vi) 1%;. since for this values the denominators nf
{15) should be “close” to zero according to {13%. Thas Lwo
estimators give in (15) diffsr in their resolution and sla-
bility praperties. For the first estimator (15e), it is clear
that there wili be a peak in the poinl (z,y) if znd only if
the “locztion vector™ A,.,(_o,.) corresponding (o this
point is "closeiy orthogonal” . at all frequencies =,€43 ,
to the eizenvectors {V (s, = L....m~d] . Trec second
estimatsr (155). will have a peak at a point (z.y) even

if the “l=c2tion veclor” Az y(9,) correspond.ng 1o Lhis
Point =.¥ orthogonal”, at only a subse! 2f {: fre-

quencies =,S8 . to the eigenvectors {V,(w, ).
t=1,..m-4} Thus the first estimator will show
lower resolution but higher stability then the second
estimatsr. Cther estimators that enable a more deiicale
trade-ol betwezn resolution and stability zre discussed
by Wax e 21.(12592b).

V1. SOURCE. SPECTRAL DENSITY ESTIMATION

Eaving at hand the estimates {(z,. y M&, of the
sources’ lozation we can construcl an estimate A(x,) of
the mairix A{va) simply by stacking togelher the 4
"locetios vestors™ corresponding to the estimatec posi-
tions of the o sourves. Thus

R(:.:,. = [A;‘sl(z,‘) A5 (=) (16)

Now, since the eigenvalues and eiienveclo:-s of
A2 )Pz A% (2) are  fA (=) = 0¥(z,). V. (n,) .
t=m-2-1, ,m] then from the well known spaotral
theores of matrix theory (sce e.g., Strang (i?4i)) an

iy

etimate 3! Alun)P(94)A*(2n) can be constructice by
A(=2p))PIs A () =

LI R - 3V e o) (170)
(L]
where 7%‘:,) is the estimate of 0%(z,) . given by

~27. - . 1 LSL »

OQ(J‘) = m _“).,' \.(-,‘) (17b)

EERPC S £




Rewrltlng this in matrix notation we obtain
A(O.)l'(v.)h'(fa.) .
= V(on)A(va) = 5%ua)11V*(wn) (18s)
where
V(o) = Vecmnlon) - Va(oa)]  (180)
and

P L e = B e —— e

Ap - in(‘h) :
.Mg‘) = . (18¢c)

" Rmfn)

Thus, solving (18) for the desired spectral density matrix
P(o..) . we obtain

P("u) [A'(J.)A(”.)l“l’(d.)V(J,.)[\(n.) .'(0.)‘]
- Vo)Al )[A H{ea) Al )] (19)

Vil. DIRECTION-OF-ARRIVAL ESTIMATION OF WIDE-BAND
SOURCES

Direction-of-arrival estimation is a limiting case of
source location estimation corresponding to sources at
“infinity”. Howcver, instead of deriving the direction-of-
arrival estimation algorithm by limiting arguments let us
go back to basics and see how to madify equation (1) for
this case. Clearly {+vn{ and {o,| are meaningless for
sources at infinity. A way around this problem is to
define the reference not at sources’ locations but at
some arbitrary point in the plane, say, the origin of the
coordinate axes. Equation (1) can then be rewritten as

r(e) = ﬁ: @' (Ba)salt ~ 7 (B} + m(e)  (20)

-—-“52— 1si<sm

where

v¢(8,) = the propagating delay between the i-th sensor
and the reference point for a wavefront
impinging (rom direction 9,

a'((8,) = amplitude response of the i-th sensor to a
wavelront impinging from direction 9,

The analysis parallels that of the general case dis-
cussed in the previous sections, with the only difference
that the location vector degenerates to a direction vec-
tor given by

a'ye ~u,7y(%)
M.(”n) =
‘ ,._“.-i-.r..zm

The direction-of-arrival estimation algorithm procceds in
the same manncr as in Lhe general source location prob-
lem, except that (15) are now 1-D functions plotted over
all possible direct:ons. The 4 peaks of this 1-D tunc-
tions constitu'c a good estimate of the d unknown
directions {64

DC CONCLUDING REMARKS

Vill. SIMULATION RESULTS

Because of space limitations we will present only the
result of a single simutation. The array consisted of Chree
sensors in positions (1.0), (0,0) and (0.1) and of two
sensors in positions (—1,5) and (10,20). The signals
were independent ARMA processes with identical spectral
density centered at 0.25 and of bandwidth 0.05. The
additive noises were while processes snd the signal-to-
nolse ratio was 10 dB. The estimation of the spectral
density matrix was done by the periodogram method
using an FFT of 84 points with a total of 300xG4 samples.
The results, using the estirnator given by {15a) are shown
in Fig.1. The two peaks corresponding to the Lwo sources
are clearly seen.

A new non-parametric approach for passive localiza-
tion and identification of wideband sourccs, has been
presented. The approach is capable of handling multipie
correlated sources so that multipath prupagation is
included as a special case. Direction-of-arrival of nulti-
ple wideband sources is also included as a «pecial case.

The method presented is based onfhe cigenstruc-
ture of the spectrai d=nsity matrix of the reccived sig-
nals. It is an extension of the method of Schmidt (1979)
and Bienvenu (1979) to the case of wideband sources. !t
was shown that the eigenvector sub-space corresponding
to the rcpeated smallest eigenvalue of the speclral den-
sity matrix contains all the information on the sources
locations. Algourithms for extracting this information
Irom an estimate of the spectral density matrix of the
received sigr~ls, that enable trade-offs betwecn resolu-
tion and accuracy, have been presented.  Siimulation
results that demonstrate the performance of the pro-
posed algorithms have also been prescated.

We should note that though the proposed ncthod is
non-parametric, in the sense that it was derived for non-
parametrized signals, the estimation of the spectral den-
sity matrix of the received signals can be done by any
method, non-parametric or parametric, whichever is
believed to give a better estimate.

Computation-wise, the method is quite cxpcnsive

_ since {t involves eigenvalue-eigenvector decomporition of

the spectral density matrix at each frequsncy bin of the
rcceived signals. Eowever, since all these eigndccompo-
sitions can be carrisd out in parallel. using spccial-
purpose hardware, the computation time can be reducea
up to nearly real-time.
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