AD-A127 793 THEQORETICAL FOUNDATIONS OF SOF TWARE TECHNOLOGY(U) COHIO
STATE UNIV COLUMBUS DEPT OF COMPUTER AND INFORMATION
SCIENCE B CHANDRASEKARAN ET AL. 14 FEB 83

UNCLASSIFIED AFOSR-TR-83-0333 F49620-79-C-0152 F/G 9/2

28 25

N
N

W
o~

s
L
Hi2s s e

2.0
=

f,""”'l‘rrr
EEEE

{=]
==

18
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS-1963-A

| g

i

p SN
o

RF Project 761640/711991
Final Report

the
ohio
state
university
research foundation

1314 kimmear road
columbus, ohio
43212

DA127793

THEORETICAL FOUNDATIONS OF SOFTWARE TECHNOLOGY

B. Chandrasekaran, Lee J. White, and H. W. Buttelmann
Department of Computer and Information Science

For the Perijod
July 1, 1979 - September 30, 1982

CTiC
. ‘ig
% MAY 9 1983 ;A

U.S. AIR FORCE
Office of Scientific Research
Bolling Air Force Base, D.C. 203

Contract No. F49620-79-C-0152 Conge” A

AP.»'-‘?‘O':od for

distribution

Publie rel

eas
unlimited o:

February 14, 1983

DTIC FILE COPY

83 05 06 -202

-y - A“, ‘Ar—w:ﬂ.’w,, v - ‘,_‘-,.._'7_, WT.

S s sees
i . ¢~4“

—— M s - -
" UNCLASSIFIED

. SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

- / READIROM 5 CTIONS
. REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
[T, REPORT NUMBER 0 3 2. GOVY ACCESSION NO.] 3. RECIPIENT'S CATALOG NUMBER
AFOSR-TR- 83-033 5. A1 7713
4. TITLE (and Subtitie) $. TYPE OF REPORT & PERIOD COVERED
THEORETICAL FOUNDATIONS OF SOFTWARE TECHNOLOGY FINAL, 1 JUL 79-30 SEP 82
» 6. PERFORMING ORG. REPORT NUMBER
761640/711991
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
B. Chandrasekaran, Lee J. White, and F49620~79-C=0152
H.W. Buttelmann
| 9. PERFORMING ORGANIZATION NAME AND ADORESS 10. ::ggﬂ‘AxOERLKEMENTT.PROJECT, TASK
& Department of Computer & Information Science UNIT NUMBERS
Ohio State University PE61102F; 2304/A2
Columbus OH 43212
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Mathematical & Information Sciences Directorate 14 FEB 83
Air Force Office of Scientific Research 13 NUMBER OF PAGES
Bolling AFB DC 20332 132
14, MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Office) 18. SECURITY CL ASS. (of this report)
UNCLASSIFIED
15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION ST. AENT (of 1+ ¢ abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY ._TES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Program testing; domain testing; module testing; integration testing; domain

strategy; knowledge-based systems; program synthesis; natural language under-
standing; problem solving; translator generation; expert systems; diagnostic
reasoning.

\ 20. ABSTRACT (Continue on reverse side if necesaary and identify by block number)
s This is the final scientific report of research performed under the contract

- in various aspects of software technology. The research efforts can be cate-
gorized under three topics: —41)Y%computer, program testing, ie%jﬁnowledge-based
systems for program construction, and theory of translator generation. In
the first category researchers describe a number of research results relating
to various aspects of domain testing strategy and integration testing of
modules. In the second category, researchers describe a program called LLULL,
which understands programming problems stated in natural language\(CONTINUED)

DD ,%an's 1473 v

83 05 06 =02 ot i ST TR W B Eeres

- T T P~

SECURITY ZLASSIFICATION OR THIS PAGE(When Dare Entered)

uugLA;EXFIED

ITEM s C TINUED:ffin the domain of checking accounts, and produces PASCAL
programs for them. In addition, researchers describe several projects in
knowledge organization and problem solving. In the last category, researchers
describe a research effort that focussed on obtaining threoretical results on the
complexity of translator generation from one language to another,

ﬂ;

\

\
¥

2 3 L

1

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

AFOSR CONTRACT F49620-79-C-01 .

THEORETICAL FOUNDATIONS OF SOFTWARE TECHNOLOGY

FINAL SCIENTIFIC REPORT
FOR RESEARCH PERIOD
1 JULY 1979 - 30 SEPTEMBER 1982

1. INTRODUCTION

This Contract was a continuation of earlier gramnts AFOSR 77-3416 to
Professors B. Chandrasekaran and Lee J., White, and AFOSR 75-2811 to Prof.
H. W. Buttelmann. In view of the many common interests of the two grants,
they were merged into this new award. Over the three years, the research
activities supported by this Contract can be classified into three broad
categories: :

1. Computer Program Testing, directed by Professor B. Chandrasekaran
and Professor Lee J. White, with the assistance of Faculty
Asgsociate, Professor Stuart H. Zweben, This category of research
dealt with : the theory of Domain Testing Strategy; a theory of
sufficient testing; investigation of how modules ought to be tested
and integrated so that the final testing effort does not suffer a
combinatorial increase in test effort.

2. Knowledge-Based Systems for Automatic Program Synthegis, directed by
Professor B. Chandrasekaran. In this research, Research Associate
Fernando Gomez investigated the design of a system to understand
programming problems stated in natural language and to produce
PASCAL language code for the problems, Because of its relatiomship
to many issues in Artificial Intelligence, we also investigated
problems of knowledge-based problem solving in general, and issues
in natural language understanding,

3. Automated Tramslation of Computer Programs, directed by Professor
H. William Buttelmann. The major thrust of this work was on getting
some theoretical results concerning the computability and complexity
of translator generation. '

Our approach in this Final Scientific Report will be as follows., We will
present the main technical results in each area as a sequence of technical
articles or reports., These reports by no means exhaust all the publications

1 that have resulted from the grant, but will be chosen to cover all the results
in a concise manner. In a final gection we list other publications and
T describe professional activity by researchers supported by this grant,

including Ph. D dissertations.

AIR FORCRE opp: oy

NOTIZE e = e, - AFS
. . nNTr

This t D277

apoure oo ‘ R IR T

Dicer o : [N BRI EIVE) &

MATT w1, . T

Chiees, - -

~rw Dt {on Mvision

TABLE OF CONTENTS

1. INTRODUCTION
2, TECHNICAL SUMMARY

2,1. Computer Program Testing
2.1.1. Domain Testing Strategy
2.1.2, Sufficient Testing
2.,1.3. Module Integration Testing
2.1.4, Other Issues in Testing

2.2. Rnowledge~Based Program Synthesis and Problem Solving
2.2.1. Understanding Programming Problems Stated in Natural

Language

2.2.,2, Natural and Social System Metaphors

Problem Solving: Introduction to the Issue
2.3. Automated Translation of Computer Programs

3. PUBLICATIONS AND OTHER ACTIVITY

3.1. List of Publications
3.2. Dissertations supported by the Graut

\\‘ 2

in Distributed

121

127

127
128

R,
N¥TYS

L acaoumesd

Accession For

GRART
L11n TAB

f

Tostlfienticn o

t

R

S U |
iietribution/ I
Aveilekllite indes

Vvall e er

|

i

!

|

faoe &a

7

i

]

RS S |

Jg——

@ e |
. .

2. TECHNICAL SUMMARY

2.1. Computer Program Testing

2,1,1, Domain Testing Strategy

Introduction

Several years ago a research group at Ohio State University developed an
automated testing approach called the Domain Testing Strategy. The original
research in this area was supported by AFOSR Gramt 75-2811, and we have
reported in a series of papers the main ideas behind the approach. Several
new testing approaches have been motivated by this initial work. Much of this
new vork was done here with support from the AFOSR Comtract.

In this section, we present two papers that summarize our research relating
to the Domain Testing Strategy. The first one, by Lee White, Edward Cohen and
Steve Zeil, appeared in Computer Programe Testing, edited by Chandrasekaran
and Radicchi (North Holland), and gives a presentation of the approach. The
second one is by Lee White, and it appears in Workshop Digest, Workshop on
Effectiveness of Testing and Proving Methods, Avalon, Calif., May 11-13, 1982,
This paper discusses the impact of the domsin testing approach om further
research activities in the field.

e

COMPUTER PROGRAM TESTING

B. Chandrasskarsn, S. Radicchi (eds.)
North-Holland Publishing Company

© SOGESTA, 1981

A DOMAIN STRATEGY FOR COMPUTER PROGRAM TESTINGl

Lee J. White, Edward I. Cohen, and Steven J, Zeil

Department of Computer and Information Science
The Ohio State University
Columbus, Ohio
U.5.A.

This paper presents a testing strategy designed to detect errors
in che control flow of a computer program, and the conditions
under which this strategy is reliable are given and characterized.
The testing strategy generates test poincs to examine the bound~
aries of a path domain to detect whether a domain errvor has
occurred; the anumber of test points required co test each domain
grows ounly linearly with both the dimensiomality of the inpuc
space and che number of predicates along the path being tesced.

A new method is described to decide whecher an additional pach
should be tested when a number of paths have already been tested,
or whether no additional informacion can be gained by tescing this
path, 1.,e., that the program has been "sufficiencly tested”.

1. INTRODUCTION

Computer programs contain two types of errors which have been identified as com=~
putation errors and domain errors by Howden [4]. A domain error occurs when a
specific input follows the wrong path dus to an error in che control flow of the
program. A path contains a computation errot when a specific input follows the
correct path, but an error in some assignment statement causes che wrong function
to be computed for one or more of the output variables. A testing strategy has
been designed to detect domain errors, and the conditions under which this strac-
egy is reliable are given and characterized. A byproduct of this domain strategy
is a partial ability to detect compucation errers. This study and proposed meth-
odology are described in greater detail in Cohan [3] and in White and Cohen ([5,6].

There are limitations inherent to any testing strategy, and these alsc constrain
the proposed domain stracegy. One such limitarion might be termed coincidental
correctness, which can occur when a specific test point follows an incorrect path,
and yet the output variables coincidentally are the same as if that test point
were to follow the correct path. This test point would then be of no assistance
in the detection of the domain error which caused the control fiow change. No
path-oriented test generation strategy can circumvent this problem.

Another {nherent testing limication has been previously identified by Howden [4]
as a missing pach error, in which a required predicate does not appear in the
given program to be tested. Especially if this predicate were an equalicy,
Howden has indicated that no path-oriented testing strategy could systematically
determine that such a predicate should be present.

An {mportant assumption in our work is that the user or an "oracle" is available
who can decids unequivocally if the output is correct for the specific input pro-
cessed. The oracle decides only if the output values are correct, and not
whether they are cowputed correctly. If chey are incorrect, the oracle does not
provide any information about the error and does not give the correct output
values.

a " V—\. .. Y};’-—“ \m

L.J. White et al.

2. PREDICATE INTERPRETATIONS

Every branch point of a computer program is assoclated with a predicate which
evaluates to true or false, and its value determines which outcome of the branch
will be followed. The path condition is the compound condition which must be
satisfied by che inpuc data point in order chac the control path be executed. It
is che conjunction of the individual predicate conditions which are generaced at
each branch point along the control path. Not all the control paths that exist
syntactically within the program are executable. If input data exist which satis-
fy the path condition, the control path is also an execution path and can be used
in testing the program. If the pach condition is not satisfled by aay inpuc
value, the path is said to be infeasible, and 1s of no interest in testing the

program.
A simple predicate 1is said cto be linear in variables vl' Vo venes . Vn if it is of
the form -
Alvl + A2V2 + ...+ Anvn ROP K,
where K and the A, are constants, and ROP represents one of the relational opera-

i
tors (<,>,=,%,2,3). A compound predicate is linear when each of its component
simple predicates is linear.

In general, predicates can be expressed in terms of both program variables and
input variables. However, in generating input data to satisfy the path coundition
we must work with constraints in terms of only input variables., If we replace
each program variable appearing in the predicate by its svmbolic value in terms
of input variables, we get an equivalent constraint which we call the predicate
interpretation. A particular interpretation is equivalent to the orfginal predi-
cate in that input variable values satisfying the interpretation will lead to the
computation of program variazbles which also satisfy the original predicste. A
single predicate can appear on many different execution paths. Since each of
these paths will in general consist of a different sequence of assignment state-
ments, a single predicate can have many different interpretations. The following
program segment provides example preadicates and interpretations.

READ A,B;
IFA>B

THEN C=» B + 1;
ELSE C = B - 1;

D =« 2%4 + B;
IFC=0
THEN E = 03
ELSE
DO 1= 1,B;
E s E + 2*1;
END;
IFD=2
THEN F = E + A; .

ELSE F = E - A3

WRITE F;

In the first predicate, A > B, both A and B are input variables, so there is only
one interprecation. The second predicate, C = 0, will have two interpretations
depending on which branch was taken in the first IF construct. For pacths on
which the THEN C # B + ! clause {s executed, the interpretacion is B8 + 1 = 0 or

. . EE R
i pee ‘ . e

L ARG T v o g

s -y

A Domain Strategy

equivalently B = ~1. When the ELSE C = B - 1 branch is taken, the interpretation
is B - 1 = 0, or aquivalently B = 1. Within the second IF-THEN-ELSE clause, a
nested DO-loop appears. The DO~loop 1s execured:

no times 1f B < 1
once {f 1 =B <2
twice {f 2 = b < 3
etc,

Thus the selection of a path will require a specification of the number of times
that the DO-loop is executed, and a corresponding predicate is applied which
selects those ioput points which will follow that particular path. Even though
the third predicate, D » 2, appears on four different paths, it only has one
interprecacion, 2%A + B = 2, since D is assigned the value 2*A + B in the same
statement in each of the four paths.,

3. INPUT SPACE STRUCTURE

An input space domain 4is defined as a set of input data points satisfying a path
condition, consisting of a conjunction of predicates along the psth. For sim-
olicity in this discusaion, each of these predicates is assumed to be simple.

The input space is partitioned into a ser of domains. Each domajin corresponds to
a particular executable path in che program and consists of the input data points
which cause the path to be executed.

The boundary of esch domain is derermined by the predicates in the
and consiscs of border segments, where each segment is the section
ary determined by a single simple predicate in the path condition.
segment can be open or closed depending on the relational aperacor

path condition
of the bound~
Each border
in the predi-

cate. A closed border segmeat 1s actuslly part of the domain and is formed by
predicates with =, >, or » operators. An open border sexment forms part of the
domain boundary buc does aot conscituce part of the domain, and is formed by <,
>, and ¥ predicatas.

The general form of a simple linear predicate interpretation {s
A X, +AX +

1% 2%y cees + ANXN ROP k

where ROP i{s the relational operator, xi are input variables, and Ai’ K are con-

stagnts. However, the border segment which any of thease predicates defines is a
section of the surface defined by the equality

Alx1 + A2x2 L ANXN - K,

since this is the limiring condition for the points satisfying the predicate. 1In
an N-dimensional gpace this linear equality defines a hyperplane which is the
N-dimensional generalization of a plane.

Consider a path condition composed of a conjunction of simple predicates. These
predicates can be of three basic types: equalities (=), inequalities (<, >, %,
2), snd nonequalities (¥). The use of each of the three types results in a
markedly different effect on the domain boundary. Each equality constrains the
domain to lie in a particular hyperplane, thus reducing the dimensionality of the
domain by one. The set of inequality constraints then defines a region within
the lowar dimensional space defined by the equality predicates.

The nonequality linear conscraints define hyperplanes which are not part of the
domain, giving rise to open border segments as mentioned earlier. Observe that
the constraint A 4 B s equivalent to the compound predicate (A < 8) OR (A > B),
In this form it {s clear that the addition of a nonequality predicate to s set of

Sy -~ e

T T AR Posgren g
i 3

,«»’.u‘ [—— Snund

1

L.J. White et af.

inequalities can split the domsin defined by those inequalities Iinto two regions.

The foregoing definitions and che example allow us to characterize more precisely
domains which correspond to simple linear predicate incerpretacions.

For an exscution path with a set of simple linear equality or inequality
predicate incerprecacions, the (aput space domain is a single convex
polyhedron. If one ormore simple linear non-equality predicate inter-
pretations are added to this set, then the {nput space domain consiscs
of the union of a set of disjoint convex polyhedra,

4. THE DOMAIN TESTING STRATEGY

The domsin cesting stratagy is designed to detect domain errors and will be
effective in detecting errors in any type of domain border under certain condi-
tions. Test points are generated for each border segment which, if processed
correctly, determine that both the relational operacor and the position of the
border are correct. An error in the border operacor occurs when an incorrect
relational operator is used in the corresponding predicate, and an error in the
position of the border occurs when one or more incorract coefficients are comput-
ed for the particular predicate interpretation. The strategy is based on a geo-
metrical analysis of the domain boundary and takes advantage of the fact that
points on or near the border are most sensitive to domain errors. A number of
authors have made this obsarvation, e.g., Boyer et al (1] and Clarke (2].

It should be emphasized thac che domain scrategy does not require that the

correct program be given for the selection of test points, since only information
obtained from the given program is needed, However, it will be couvenient to be
able to refer to a "correct border", although it will not be necessary to have any
knowledge about this border. Define the given border as that corresponding to the
predicate interpretation for the given program being tested, and the correct
border as that border which would be calculated in some correct program,

The domain testing strategy vill be developed and validated under a set of simpli-
fying assumptions:

(1) Coincidental correctness does not occur for any test case.

(2) A missing path error is not associated with the path being tested.

(3) Each border {s produced by a simple predicate,

(4) The path corresponding to each adjacent domain computes a different
function than the path being tested.

(5) The giveu border is linear, and 1if it is incorrect, the correct
border is also linear.

(6) The input space is continuous rather than discrete,

Assumptions (1) and (2) have been shown to be inherent to the testing process, and
cannot be entirely eliminaced, Howevar, recognition of these potential problems
can lead to improved testing rechniques. Assumpcions (3) and (4) considerably
simplify the testing atrategy, for with them no more than one domain need be
examined at one time in ovder to select test points, and as will be indicated
shortly, a reduced muber of test points will be required. As for the linearity
sssumption (5), the domain testing method has been shown to be applicable for non-
linesr boundaries, but the number of required test points may become inordinste
and there are complex problems associated with processing nonlinear boundaries in
higher dimensions. The continucus input space assumption (6) {s not really a lim-
itacion of the proposed testing method, but allows points to be chosen arbitrarily
close to the border to be tested. An error analysis has shown that pathological
cases do exist in discrete spaces for which the testing strategy cannot be used,
but these occur only when domgin size is on the order of the resolution of the
discrete space itself.

A Domain Strategy

5. TWO-DIMENSIONAL LINEAR INEQUALITIES

Test-Point Selection

The test points selected will be of two types, defined by their position with re-

spect to the given border. An ON test point lies on the given border, while an

OFF test point is a small distance ¢ from, and lies on che open side of, the

given border. Therefore, we observe that vwhen testing a closed border, the ON

test poincs are in the domain being tested, and each OFF test point is in some

adjacent domain. Conversely, when testing an open border, each ON test point is

in some adjacent domsin, while the OFF test points are in the domain being tested. i

Figure 1 shows the selection of three test points A, B, and C for a closed in-
equality border segment. The three points must be selected in an ON-OFF-ON i
sequence. Specifically, if teat point C is projected down on line AB, then the .
projected point must lie strictly between A and B on this line segment. Also
point C {s selected a distance ¢ from the given border segment, and will be chosen
so cthat {t satisfies all cthe inequaliries defining domain D except for the in-
equality being tested.

Domain D

Given Border — —————
' Correct Border ==~—-

Fig. 1. Test Points for a Iwo~Dimensional Linear Border

L.J. White et al.

Proof of Reliable Test Selection

Iz must be shown that test points selected in this way will reliably detect domain
errors due to boundary shifts. If any of the test points lead to an incorrect
output, then clearly there is an error. On the ocher haad, if the outputs of all
these points are correct, then either the given border is correct, or if it is
incorrect, Figure 1 shows that the correct border must lie on or above points A
and B, and must lie below point C, for by assumpcions (1) and (&), each of these
test points must lie in icts assumed domain. Sc¢ i{f che given border is incorrect,
then the correct border can onlv belong to a class of line segments which incer-
sect both closed line segments AC and BC.

Figure 1 {ndicates a specific correct border from this class which intersects line
segments AC and BC at P and Q respectively. Define the domain error magnitude fo-
this correct border to be the maximum of the distances from P and from Q zo the
given border, Then it is clear that the chosen test points have detected domain
errors due to border shifts except for a class of domain errors of magnitude less
than €. In a continuous space € can be chosen arbitrarily small, and as ¢ ap~
proaches zero, the line segments AC and BC become arbitrarily close to the given
border, and in the limit, we can conclude that the given border is identical to
the correct border.

Figure 2 shows the three general types of border shifts, and will allow us to see
how the ON-OFF-ON sequence of test points works in each case. In Figure 2(a), the
border shift has effectively reduced domain le Test points A and B vield correct

outputs, for they remain in the correct domain D, despite the shifted border.

1
However, the border has shifted past test point C, causing it to be in domain D,

inscead of domain Dl' Since the program will now follow the wrong path when exe-

cuting f{nput C, incorrect resulta will be produced. In Figure 2(b), the domain

D1 has been enlarged due to the border shift. Here test roint C will be processed

correctly since it is still in domain Dz. but both A and B will detect the shift
since they should also be in domain DZ‘ Finally in Figure 2(c), only test point B
will be incorrect since the border shift causes it to be In D1 instead of Dz.
Therefore, the ON-OFF-ON sequence i3 effective since at least one of the three
points must be in the wrong domain as long as the border shift is of a magnitude
greater than €.

We must also demonstrate the reliability of the method for domain errors in which
the predicate operator is incorrect. If the direction of the inequality is wrong,
e.g., £ 13 used instead of >, the domains on either side of the border are inter-
changed, and any poilnt {n either domain will detect the error. A more subtle
error occurs when just the border itself is in che wrong domain, e.g., < is used
instead of <. 1In this case the only points affected lie on the border, and since
we alwavs test ON points, this tvpe of error will always be detected, If the
correct predicate {s an equality, the OFF point will detect the error.

Complexity of the Test Strategy

The domain testing strategy requires at most J*P test points for a domain, where
P, che number of border segments on this boundary, is bounded by the number of
predicates encountered on the path. However, we can reduce this cost by sharing
test points between adjacent Lorders of the domain. The requirement for sharing
an ON point i{s that ic is an extreme point for two adjacent borders which are both
closed or both open. The number of ON points needed to test the entire domain
boundary can be reduced by as much as one half, i.e., the number of test points,
TP, required to test the complete domain boundarv lies in the following range:

!
4

Yo tas

A Domain Strategy

2%p = TP = 3*P.

Even more significant savings are possible bv sharing the test points for a common
border between two adjacent domains. If both domains are tested independentlv,
the common border becween “hem 18 tested twice, using a Zortal of six test points.

. 1§ this border has shifted, both domains must be affected, and the error will de
Jerected bv testing eicher domaia.

D, 0,

D;

- —

(@) 0, (b)

Given Border —=———
) Correct Border ——=-==

Fig., 2. The Three Tvpes of Border Shifts

L.J. White et al.

6. N-DIMENSIONAL LINEAR INEQUALITIES

The domain testing strategy developed for che two-dimensional case can be extended
to the general N-dimensional case in a straighcforward manner. The central prop-
ertv used i{n the previous analysis was the fact that a line is uniquely determined
bv two points. We can easily generalize this propertv since an N-dimensional
hvperplane is determined bv N linearlv independent points. So, whereas in the
two~dimensional case we had to identify only two points on the correct dorder. in
general we have to identifv N poincts on the correct border, and in addition, these
points must be guaranteed to be linearlv independent.

The validation of domain zesting for the general linear case is based on the same
geometric arguments used in che two-dimensional case. The key to the methodology
is that the correct border must intersect every OFF-ON line segment, assuming that
the test points are all correct. Since we must identify & total of N points on
the correct border, N OFF~ON line segments are needed, and we can achieve this by
ctesting N linearly independent ON test points on the given border and a single OFF
test point whose projection on the given border i{s a convex combination of these N
points. In addition, as in the two-dimensional case, the OFF point must also
satisfy the inequality constraints corresponding to all adjacent borders.

Even though we do not know these specific points at which the correct border
intersects che ON-OFF segments, we do know that these points must be linearly
independent since the ON points are linearly independent. The OFF point is a
distance € from the given border, and in the limit as € approaches zero, each
OFF-ON line segment becomes arbitrarily close to the given border. However, as in
the two-dimensional case, the t-limitation means that only border shifts of magni-
tude greater than ¢ will be detected.

The domain testing strategy requires at most (N+1)*P rest points per domain, where
N is the dimensionality of the input space in which the domain is defined and P {s
the number of border segments {n the boundary of che specific domaian. However, we
again can reduce this testing cost by using extreme points as ON test points, and

by sharing test points between adjacent domains.

7. EQUALITY AND NONEQUALITY PREDICATES

Equality predicates constrain the domain to lie in a lower dimensional space. If
we have an N-dimensional input space and the domain is constrained by L indepen~-
dent equalities, the remaining inequality and nonequality predicates then define
the domain within the (N-L)-dimensional subspace defined by the set of equality
predicates.

The test points for both equality and nonequality predicates can be chosen much

as for the inequality case, but there is a technical problem which requires (N+3)
test points for the dimensional case. This technical problem and its resolution
is described in detail in references [3], (5], and [6]. The following proposition
summarizes the results of our investigation:

Given assumpcions (1) chrough (6), with each OFF point chosen a
distance € from the corresponding border, the domain testing
strategy is guaranteed to detect all domain errors of magnitude
greater than € using no more than P*(N+3) test points per domain,
where N indicates the dimensionality of the input space and P is
the number of predicates along the path to be tested.

Notice that the number of required points grows only linearly with both para-
mecers N and P, which is about the best one could hope for.

© e e e ———

10

A Domain Strategy

3. SUFFICIENT TEST SETS FOR PATH-ORIENTED TESTING

Stopping Criteria for Testing

Although the number of required tesc points for each path in the Domain Scracegy
grows only linearly with the number of input variables and predicates along the
path, the problem with this approach is that the number of paths grows inm a high-
1y combinatorial fashion and is potentially infinite. Moreover, aay path-oriented
stracegy suffers from this basic problem.

In the definition of any automated path selection strategy, the questions which
naturally arise are, "When does testing stop? At what point is it possible to
point to a particular program coanstruct and say that it has been sufficiently
tesced, i.e., no errors remain undetected?” In general, we know that this problem
can be proven undecidable, but a programmer’'s intuition suggests that such claims
should be possible after the selection of a small number of test paths, especially
if we possess a strategy in which we have specific confidence in terms of its
abiliry to detect certain types of errors in some construct along that path.

In references [7] and {8], Zeil and White have developed a vector space model for
programs which sacisfy condicions (1) through (6) of Section 6, and this model has
indicated substantive answers to these questions for this class of programs. For
convenience, let us define such programs satisfying these ccnditions as linearly
domained programs. It should be emphasized that this research and these results
are essenctially independent of the Domain Strategy, and only require a testing
strategy which will reliably detect domain errors associated with a specific pred-
icate when conditions (1) through (6) of Section 5 are satisfied. However, the
existence of cthe Domain Strategy with this degree of reliability allows us to
investigate these i{ssues.

Sufficient Testing Sets

In order to state these results more precisely, let us define these questions and
concepts carefully. A set of paths 1s a sufficient set for a program comstruct 1f
the failure to detect some error inm that construct, using a reliable method of
seleccing data points along those paths, implies that this error would go unde-~
tected for any path through the program. In this definition, and throughout this
discussion, we might be considering any program construct, but a most concreta
construct for which we have such reliable mechods is that of a predicate. We can
then restate the questions more rigorously as:

a) After a number of paths have been tested which pass through the
conscruct, what is the marginal advantage of testing another path?

b) 1s there a point (before nearly all paths have been tested) at which
we may sav that no more paths need be chosen and tested through some
program construct, i.e., that this construct has been sufficiently

e
tested?

Iypes of Testing Blindness

In order for us to characterize the minimal anumber of paths which must be tested,
we first must clearly understand why multiple paths might be needed in order to
detect an error in a comstruct (such as a predicate). The following examples
show three different reasons why a single path mav not detect an erronecus predi-
cate. These are termed assignment blindness, equalitv blindness. and self-
blindness, and represent a seemingly pathological set of values for variables
along the path so that both the correct and the incorrect predicate evaluate o
equal values.

el

>

~e b Guonmd

-

11
L.J. White et al.

Assignment Blindness

Correct Incorrect

A= A=

IF B > O THEN IF B+A > 1 THEMN
Equality Blindness

Correct Incorrect

IF D = 2 THEN IF D = 2 THEN

IF C + D > 3 THEN IF C > 1 THEN
Self-Blindness

Correct Incorrect

X=A X=a

IF X-1 >0 IF X+4-2 > O

Results from a Vector Space Model

By studying examples of this type, the vector space model examined in references
{7) and (8] has yielded an insight as to how multiple paths through a single
predicate can resolve these ambiguities due to various types of blindness. This
vector space {s composed of:

* one vector for each assigned program variable, for a total of n;
+ one vector for each equality restriction on the path domain, at
most m total, where m is the number of input variables.

The results of this research which provide answers to questions a) and b) posed
earlier in this section can be stated as follows:

For any predicate in a linearly domained program, the smallest suffi~
cient set of tesc paths will contain at most (awn+l) paths, where m

is the number of input variables and n the number of program variables.
Moreover, if a set of paths have been tested which pass through the
predicate of interest, & simple vector criterion described in refer-
ences (7] and [8] will determine whether a proposed additional path

is required to detect an error in that predicate.

This is a most satisfying result in that it is consistent with a programmer’'s
intuition that only a reasonably small number of paths should be sufficient to
reliably test any construct in a given computer program. We have assumed, how-
ever, linearly domained programs in order to obzain this result. The greatest
difficulty with this approach is that paths which constitute the smallest suffi-
clent set cannot be generated easily or efficiently. Rarher, it is only after a

T ey TSR v T e R

-

set

12

A Domain Strategy

of paths are selected that the vector criterion can be applied. Research is

conginuing on this problem in order to devise heuriscic mechods to select the set
of paths which are based upon ongoing experiments using the vector criterion.

FOOTNOTES

1. This research was supported in part by Air Force Office of Scientific Research
Grant F49620-79-0152.

REFERENCES

{1] Boyer, R. S., Elspas, B., and Levitr, K. N., SELECT--A formal system for

[2

{3

—_
&~

[5]

(6

{7

—

(8}

testing and debugging programs by symbolic execution, Proceedings - 1975
International Conference on Reliable Software, Los Angeles, CA, April 1975,
234=-245.

Clarke, L. A., A system to generate test data and symbolically execute
programs, IEEE Transactions on Software Engineering, Vol. SE-2, No. 3,
Sept. 1976, 215-222.

Cohen, E. 1., A Finite Domain - Testing Strategy for Computer Program
Testing, Ph.D. Digsertacion, Dept. of Comp. Sc., Ohio State Univ. (June 1978).

Howden, W. E., Reliabilicty of the path analvsis testing strategy, IEEE Trans-
actions on Software Engineering, Vol. SE-~2, No. 3, Sept. 1976, 208-215.

White, L. J., Cohen, E. I., and Chandrasekaran, B., A Domain Strategy for
Computer Program Testing, Technical Repore 78-4, Comp, and Infor. Sc.
Research Center, Ohio State Univ. (August 1978).

White, L. J. and Cohen, E. 1., A domain stracegy for computer program
testing, IEEE Transactions on Software Engineering, Vol. SE-6, No, 3,
May 1980, 247-257.

Zeil, S. J. and White, L. J., Sufficient Test Sets for Path Analysis Testing
Strategies, Technical Report TR~80-6, Comp. and Infor. Sc. Research Center,
Ohio State Univ. (July 1980),

2eil, S. J. and White, L. J., Sufficient test sects for path analysis tescing
strategies, Proceedings-5th International Conference on Sofcware Engineering,
San Diego, CA, March 9-12, 1981, 184-191,

‘ 8
i

*
Some Research Approaches Motivated by the Domain Testing Strategy

Lee J. White

Department of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210

Abstract

Several years ago a research group at Ohio State University developed an
automated testing approach called the Domain Testing Strategy. This paper
examines some broader implications of the results of that research, together
with several new testing research approaches which have been motivated by this i
work. For example, recently some new results which characterize a set of paths
which are sufficient for path oriented testing have been obtained, motivated to
a great extent by domain testing. This approach, in turn, has led to some
positive and exciting results in the area of reliable module integration testing.
Currently several researchers are examining the issue of specification testing,
combining information from the program specification with a structural testing
approach; they have found domain testing concepts to be helpful in this regard.

*
The research described in this paper was supported in part by the Air Force Office
for Scientific Research, Contract F49620-79-C-0152.

1. A Domain Strategv for Computer Program Testing

For the past five years, a research group at Ohio State "niversitv has been
working in the area of reliable software in general, and program testing in
rarticular. We have developed an automated testing approach called the Domain
Testing Strategv {2,13] which appears to be promising for a large class of data
processing programs. This method is a form of a path-oriented testing approach,
where the process of testing a computer program is treated as two operations

[71

1) selection of a path or set of paths along which testing is to be
conducted, and

2) selection of input data to serve as test cases which will cause the
chosen paths to be executed.

For general programs, the problem of generation of reliable test data is
known to be unsolvable, e.g., see Howden [6]. For certain classes of pro~
grams, however, the domain testing strategy research has shown that it is
possible to implement reliable methods of selecting test data for a given path
to detect certain types of errors.

Computer programs contain two types of errors which have been identified
as computation errors and domain errors by Howden [7]. A domain error occurs
when a specific input follows the wrong path due to an error in the control flow
of the program. A path contains a computation error when a specific input
follows the correct path, but an error in some assignment statement causes the
wrong function to be computed for one or more of the output variables. A testing
strategy has been designed to detect domain errors, and the conditions under which
this strategy is reliable are given and characterized. A byproduct of this
domain strategy is a partial ability to detect computation errors. This study
and proposed methodology are described in greater detail in Cohen [2] and in
White and Cohen {12-13].

There are limitations inherent to any testing strategy, and these also
consgtrain the proposed domain strategy. One such limitation might be termed
coincidental correctness, which can occur when a specific test point follows an
incorrect path, and yet the output variables coincidentally are the same as if
that test point were to follow the correct path. This test point would then be
of no assistance in the detection of the domain error which caused the control
flow change. No path-oriented test generation strategy can circumvent this
problem.

Another inherent testing limitation has been previously identified by
Howden { 7] as a missing path error, in which a required predicate does not
appear in the given program to be tested. Especially if this predicate were an
equality, no path-oriented testing strategy could systematically determine that
such a predicate should be present.

An important assumption in our work is that the user or an "oracle" is
available who can decide unequivocally if the output is correct for the specific
input processed. The oracle decides only if the output values are correct, and
not whether they are computed correctly. If they are incorrect, the oracle does
not provide anv information about the error and does not give the correct output
values.

-

- ™ _:p."i V'WW* B TS "u’._’;ﬂ,. “ -

15

The control flow statements in a computer program partition the input space
into a set of mutually exclusive domains, each of which corresponds to a partic-
ular program path and consists of input data points which cause that path to be
executed. The testing strategy generates test points to examine the boundaries
of a domain to detect whether a domain error has occurred, as either one or more
of these boundaries will have shifted or else the corresponding predicate
relational operator has changed. If test points can be chosen within € of each
boundary, the strategy is shown to be reliable in detecting domain errors of
magnitude greater than £, subject to the following assumptions:

(l)' coincidental correctness does not occur;

(2) missing path errors do not occur;

(3) predicates are linear in the input variables;
(4) the input space is continuous.

Assumptions (1) and (2) have been shown to be inherent to the testing pro-
cess, and cannot be entirely eliminated. However, recognition of these potential
problems can lead to improved testing techniques. The domain testing method has
been shown to be applicable for nonlinear boundaries, but the number of required
test points may become inordinate and there are complex problems associated with
processing nonlinear boundaries in higher dimensions. The continuous input space
assumption is not really a limitation of the proposed testing method, but allows
the parameter € to be chosen arbitrarily small. An error analysis for discrete
spaces is available [14], and the testing strategy has been proved viable as
long as the size of the domain is not comparable to the discrete resolution of
the space.

Now let us consider two further assumptions:
(5) predicates are simple; and
(6) adjacent domains compute different functioms.

If assumptions (5) and (6) are imposed, the testing strategy is considerably
simplified, as no more than one domain need be examined at one time in order to
select test points. Moreover, the number of test points required to test each
domain grows linearly with both the dimensionality of the input space and the
number of predicates along the path being tested. Any program which satisfies
these six constraints will be referred to as a linearlv domained program.

2. Some Broader Issues Derived from Domain Testing

One of the major results of domain testing is that, subject to the assumption
of a linearly domained program, reliable detection of domain errors requires a
reasonable number of test points for a single path. This number of test points
grows only linearly with the number of predicates along the path and the number
of input variables. “owever, the total cost is unacceptable for any practical
program, as it will routinely contain an excessive number of paths. Thus there
has been a significant research effort to substantially reduce the number of
paths required for domain testing; Sections 3 and 4 of this paper briefly
describe several such research efforts.

16

One way to view the results from domain testing is to observe that the
number cf test points required is a minimum for reliable detection of domain
errors, and if coincidental correctness should occur, even more test points
would be required. However, in many places in the research testing literature,
one finds reference to choosing only one test data point per path when a path-
oriented strategy is utilized. This work shows clearly that in general this
is inadequate for even a modest attempt at reliable testing.

Although we know that the problem of reliable test data generation is
unsolvable, the domain testing research has shown that if attention is focused
upon specific types of errors and a characterized subset of programs, reliable
testing conditions can be obtained. Indeed, the problem here was to find the
minimum set of conditions so that domain errors could be reliably detected.
Another related example of this approach is seen in the problem of feasible
paths. The problem of path feasibility is in general undecidable, but if the
collection of predicates along that path can be shown to be linear in the input
variables, then this problem is decidable (using linear programming).

I believe the undecidability issue for general reliable test data generation
is manifested in the coincidental correctness condition for domain testing in
linearly domained programs. There is no way to decide whether a test point is
"coincidentally correct” (in that the input point has been affected by an exist-
ing domain error) or that test point is indeed correct. Thus, all we can do
with the undecidability problem for reliable testing is to reduce it to a
simpler concept of "coincidental correctness” (which is still undecidable).

Domain testing is an example of a structural approach, which uses only
information from the program to be tested. Thus it is clear why only domain
errors can be reliably detected, since they are intimately related to the
structure of the given program. In order to detect computation errors or miss-
ing path errors, we must obtain additional information, e.g., from the program
specifications. This is precisely the approach of the researchers described in
Section 3.

We have explicitly assumed that an "oracle" exists which can always determine
whether a specific test case has been computed correctly or not. In reality,
the programmer (or user) must make this determination, and the time spent
examining and analyzing these test cases is a major factor in the high cost of
software development. Weyuker [9-11] has recently criticized this "oracle"
assumption on both theoretical and practical grounds, proposing several alterna-~
tive approaches. We believe that it was partially because of our explicit
emphasis of the oracle assumption as an essential component of the problem
paradigm that this has emerged as a research issue.

3. Sufficient Test Sets for Path Oriented Testing

Although the number of required test points for each path in the domain
strategy grows ounly linearly with the number of input variables and predicates
along the path, the problem with this approach is that the number of paths
grows in a highly combinatorial fashion and is potentially infinite. Moreover,
any path-oriented strategy suffers from this basic problem.

In the definition of any automated path selection strategy, the questions
which naturally arise are, "When does testing stop? At what point is it possible
to point to a particular program construct and say that it has been sufficiently
tested, i.e., no errors remain undetected?" 1In general, we know that this
problem can be proven undecidable, but a programmer's intuition suggests that
such claims should be possible after the selection of a small number of test
paths, especially if we possess a strategy in which we have specific confidence
in temms of its ability to detect certain types of errors in some construct
along that path.

In references [15-17], Zeil and White have developed a vector space model
for linearly domained programs, and this model has indicated substantive answers
to these questions for this class of programs. It should be emphasized that this
research and these results are essentially independent of the domain strategy,
and only require a testing strategy which will reliably detect domain errors
for linearly domained programs. However, the existence of the domain strategy
with this degree of reliability allows us to investigate these issues.

In order to state these results more precisely, let us define these questions

and concepts carefully. A set of paths is a sufficient set for a program con-
struct if the failure to detect some error in that construct, using a reliable
method of selecting data points along those paths, implies that this error would
go undetected for any path through the program. 1In this definition, and through-
out this discussion, we might be considering any program construct, but a most

concrete construct for which we have such reliable methods is that of a predicate.

We can then restate the questions more rigorously as:

a)” After a number of paths have been tested which pass through the
construct, what is the marginal advantage of testing another path?

b) Is there a point (before nearly all paths have been tested) at which
we may say that no more paths need be chosen and tested through some
program construct, i.e., that this construct has been sufficiently
tested?

In order for us to characterize the minimal number of paths which must be
tested, we first must clearly understand why multiple paths might be needed in
order to detect an error in a construct (such as a predicate). The following
examples show three different reasons why a single path may not detect an
erroneous predicate. These are termed assignment blindness, equality blindness,
and gself-blindness, and represent a seemingly pathological set of values for
variables along the path so that both the correct and the incorrect predicate
evaluate to equal values.

By studying examples of this type, the vector space model examined in
references [15-17] has yielded an insight as to how multiple paths through a
single predicate can resolve these ambiguities due to various types of blindness.
This vector space is composed of:

* one vector for each agssigned program variable, for a total of n;
* one vector for each equality restriction on the path domain, at
most m total, where m is the number of input variables.

Y

18
Assigment Blindness
Correct Incorrect
A=1 A=1
IF B > O THEX IF B+A > 1 THEN
Equality Blindness
Correct Incorrect
IF D = 2 THEN IF D = 2 THEN
IF C+ D > 3 THEN : IF C > 1 THEN
Self-Blindness
Correct Incorrect
X=A X=A
IFX-1>0 v IF X+A-2 > 0 :
The results of this research which provide answers to questions a) and b) v

posed earlier in thisg section can be stated as follows:

For any predicate in a linearly domained program, the smallest suffi-
cient set of test paths will contain at most (m+n+l) paths, where m

is the number of input variables and n the number of program variables.
Moreover, if a set of paths have been tested which pass through the
predicate of interest, a simple vector criterion described in refer-
ences [15-17] will detemmine whether a proposed additional path is
required to detect an error in that predicate.

This 1s a most satisfying result in that it is consistent with a programmer's
intuition that only a reasonably small number of paths should be sufficient to
reliably test any construct in a given computer program. We have assumed, how-
ever, linearly domained programs in order to obtain this result. The greatest

difficulty with this approach is that paths which constitute the smallest suffi- e 1
cient set cannot be generated easily or efficiently., Rather, it is only after y

a set of paths are selected that the vector criterion can be applied. Research
is continuing on this problem in order to devise heuristic methods to select
the set of paths which are based upon ongoing experiments using the vector
criterion.

A SRR > oaiet
T TS R T T
2 Wow R

b —— E—

poms

p——
.

19

4. Module Integration Testing

In references [4-5], Haley and Zweben have investigated the issues involved
when a "correct” module which has been thoroughly validated is integrated into
a larger program context. It is desired to maximally utilize the information
that this module is correct in designing the integration testing strategy.

Two approaches to this question have been examined by Haley and Zweben.
Since the goal is to detect errors in the module's input, one could simply
require that input values to the module be examined, together with the normal
output of the calling program. This technique is not new, as programmers often
point out values of intermediate or temporary variables. However, it 1is diffi-
cult to know whether an intermediate program value is correct, and the programmer
would usually be more interested in examining the final outputs of the calling
program. This is actually a more complicated version, of the "oracle assumption”
discussed in Section 2, and illustrates the problem with this approach.

The second approach involves addressing the following two problems:

1) we may have failed to retest a predicate in the module that would
have shifted for a particular error in the calling program (an
integration domain error); or

2) an error in the calling program that produces an error in the module's
input might not be passed to the module's outputs (and hence to the
program's outputs) along these paths that are executed in the module
during integration testing.

The solution proposed by Haley and Zweben is to do a limited amount of “retesting"
during integration testing using a set of paths through the module which are
sensitive to the two problems identified above. They refer to this act as the
Integration Test Set for the module. This integration test set should meet two
important criteria. First, {t should be capable of detecting all of the inte-
gration testing errors which have been identified. Second, it should contain as
few of the module's paths as possible to meet the first criterion.

For the detailed description of how these integration test sets are con-
structed by Haley and Zweben, see references [4~5]. However, they were strongly
influenced in their work by the results of Zeil [15]. The key idea used in the
investigation of these integration test gsets is that if a module has m input
variables with no inherent relationship among them, then there are only n
independent ways in which an error can occur. It can be shown that for inte-
gration domain errors there are at most (wt+l) "different" errors that can occur
(see Haley [4]). For integration computation errors there are at most ((m*n)+1)
"different errors’, where n represents the number of module output variables.

This result is explored more fully by Haley and Zweben, but it illustrates

the symbiotic effect when a research group is working on several related problenms,
and can make contributions to various research problems.

Ok v - A g o T

5. Specification Testing

One of the primary limitations of the domain testing strategy is that it
is a structural approach, using only the program itself. A number of researchers
are actively examining the possibility of generating test data from program
specifications, especially to complement structural approaches such as path
testing. Cartwright [1] has developed a very high level language with which to
express program specifications, and since it is procedural, allows him to
generate test data from the specifications. John Gourlay [3] has shown that
specifications can be written using the flexibility and power of predicate
calculus, and yet test data can be generated from specifications in this form.
Richardson and Clarke [8] have also chosen to use a very high level language
for program specification, and execute a path analysis of the specification
which is then used to refine the program path testing partition.

Each of these research efforts promised to make a contribution to specifica-
tion testing. Richardson and Clarke possess the distinct advantage of having
constructed a working system, with which they can conduct experiments to evaluate
their approach to specification testing. They have utilized several concepts
from domain testing in their research, primarily for structural test data
selection. John Gourlay is now a faculty member at Ohio State University, and
ve believe that some of the domain testing concepts will be useful to his
research.

5. Examples

Many researchers have noted that some test data should be generated near
boundaries of input domains defined by selected paths in the program. In domain
testing we had simply worked out the details as to how this could be systemat-

ically implemented. Thus, examples could be generated illustrating how effectively

domain errors can be detected by this approach.

An error analysis of domain testing was documented in reference [14]. It
is interesting to observe that one extreme situation may cause problems for
test point selection, sensitivity to potential errors in other borders, or
appliying domain testing in a discrete space rather than a continuous space. This
extreme situation is encountered when two adjacent borders of the same domain
are nearly parallel. Figure 1 shows this effect geometrically. In Figure la),
we see very "sharp corners” being formed by adjacent borders which are nearly
parallel. In Figure 1b), it will be very difficult to test border EF, since
the OFF test point should be placed inside triangle EFT in order to satisfy all
other inequalities.

Another interesting example can be seen from the various types of blindness
shown in Section 3. The example for assignment blindness:

Correct Incorrect
A=1 A=1
IF B > 0 THEN IF (B+A) > 1 THEN

. .
. .
. .

T M T v - g

21

tn
>

B
m

O

FIGURE 1 Adjacent Border Segments Which are Nearly Parallel

This shows how path testing may easily miss the detection of a predicate error
due to the assignment A=1 along this path. Of course, we would expect another
path to traverse through the predicate for which the assignment A=1 is not
encountered, and thus the predicate error can be easily detected. Note that

if all paths which contain the predicate also contain the assignment A=1, then
the error cannot be detected at all; however, in this case we must decide if
this "error" is of any consequence, since the specifications will always be met!

1
Fx
;l
p
!
¥
K
|

1]

{21

(6]

(7]

(8]

(10]

References

22

Another example of a similar tvpe is encountered when the '"correct”
predicate

A+ X>0

is replaced by the "incorrect' predicate

2%A + 2% > 0,

which is called "self-blindness” by Zeil [15]. Again, there is some question as
to whether this is an error at all. The same effect is generated along each
path containing this predicate, and thus the program specifications are met.

Cartwright, Robert, "Formal Program Testing", Eighth Annual ACM Symposium
on Principles of Programming Languages, 1981.

Cohen, E.I., A Finite Domain-Testing Strategv for Computer Program Testing,
Ph.D. Dissertation, Department of Computer and Information Science, The
Ohio State University, June, 1978.

Gourlay, John S., Theorv of Testing Computer Programs, Ph.D. Dissertation,
Department of Computer and Communication Sciences, The University of
Michigan, 1981.

Haley, A. and Zweben, S., "An Approach to Reliable Integration Testing”,
Technical Report TR-81-5, Computer and Information Science Research Center,
The Ohio State University, May 1981.

Haley, A. and Zweben, S., "Module Integration Testing", Computer Program
Testing, B. Chandrasekaran and S. Radicchi, Eds., North-Holiand Publishing
Co., Amsterdam, 1981.

Howden, William E., "Introduction to the Theory of Testing' in: Miller
and Howden (eds), Tutorial: Software & Validation Techniques (IEEE Computer
Society, Catalog No. EHO 138-8, 1978, 16-19.

Howden, W.E., "Reliability of the Path Analysis Testing Strategy’, IEEE
Transactions on Software Engineering, Vol. SE-2, No. 3, Sept. 1976,
208-215.

Richardson, Debra J. and Clarke, lLori, "A Partition Analysis Method to
Increase Program Reliability"”, Proceedings 5th International Conference
on_Software Engineering, San Diego, California, March 9-12, 1981.

Weyuker, Elaine, "The Oracle Assumption of Program Testing", Proceedings
of the Thirteenth International Conference on Svstem Sciences, Honolulu,
Hawaii, January 1980.

Weyuker, Elaine and Danis, M., "Pseudo-Oracles for Non-Testable Programs", '
Proceedings ACM National Conference, Los Angeles, November 1981.

T e T e f?ﬁrﬂﬂ?ﬂ‘tﬂ!bh’b&v v “"*ﬁfF’” .;;;.i? ' ’

L

23

[11] Weyuker, Elaine, "On Testing Nontestable Programs’’, Department of Computer
Science Technical Report 025, Courant Institute of Mathematical Sciences,
New York University, New York, New York, October 1980.

{12] White, L.J., Cohen, E.I., and Chandrasekaran, B., "A Domain Testing Strategy
for Computer Program Testing"”, Technical Report TR-78-4, Computer and
Information Science Research Center, The Ohio State University, August 1978.

{13] White, L.J. and Cohen, E.I., "A Domain Strategy for Computer Program Testing",
IEEE Transactions on Software Engineering, Vol. SE-6, No. 3, May 1980,
247-257.

[14] wWh#te, L.J., Teng, F.C., Kuo, H.C., and Coleman, D.W., "An Error Analysis
of the Domain Testing Strategy', Technical Report 78-2, Computer and
Information Science Research Center, The Ohio State University, August 1978.

[15] Zzeil, S.J., Selecting Sufficient Sets of Test Paths for Program Testing,
Ph.D. Dissertation, Department of Computer and Information Science, The
Ohio State University, September 1981; Technical Report TR-81-10, Computer
and Information Science Research Center, October 1981.

{161 Zeil, S.J. and White, L.J., "Sufficient Test Sets for Path Analysis Testing
Strategies', Technical Report TR-80-6, Computer and Information Science
Research Center, The Ohio State University, July 1980.

{17} Zeil, S.J. and White, L.J., "Sufficient Test Sets for Path Analysis
Testing Strategies', Proceedings 5th International Conference on Software
Engineering, San Diego, California, March 9-12, 1981, 184-191.

e —

T .“‘m’“'""‘[i mm;w e v = g e W - T :I

24

2.1.2, Sufficient Testing

As we mentioned earlier in this report, the issue here is one of deciding
when a program or a construct has been tested sufficiently in order to erable
a conclusion that no errors remain. The paper that follows is a technical
report that presents work by Zeil and White relating to this question. A
condensed version of this appeared in Proc., 5th Intern., Conf. on Software
Engineering.

————a
. '

bmn o
» .

(0SU~CISRC~TR-80-6)

SUFFICIENT TEST SETS FOR PATH ANALYSIS

TESTING STRATEGIES

By

Steven J. Zeil and Lee J. White

Work performed under

Contract F49620~79~-0152, Air Force Office of Scientific Research

The Computer and Information Science Research Center

The Ohio State University
Columbus, Ohio 43210

July 1980

’ e

[

ABSTRACT

This report presents a new method for selecting paths to test when path
analysis testing strategies are employed. This method carefully analyzes the
types of errors which can be detected by testing along a single path, and
what tvpe of errors might escape detection. This research provides an
approach to decide whether an additional path should be tested when a
number of paths have already been tested, or whether no additional information
can be gained by testing this path. Another result is to characterize the
situation when no more paths need be chosen through some program construct,

i.e., that it has been "sufficiently tested".

VoS

27

TABLE OF CONTENTS
PAGE
' Y T 3 o T T & |
Preface . . ¢ ¢ ¢ o ¢ 0 0t et it s e e e s e s e e e e e e . J1dd
I. Introduction . . . « . ¢ . L L L v e o e e e e e e s e e . 1
II. The Domain Testing Strategy ¢« ¢ ¢« + ¢« ¢ ¢ ¢ ¢« v s o« o . &
III. A Model of Linearly Domained Programs « v « « & « « « o 1

IV. Sufficient Testing for Predicate Errors 13

V. Comclusions . .« « v v t ¢ ¢ s 4 4 e e s e e s e e e e e e e . 204

References . . . ¢ . v v ¢ v ¢ o o o s o o o o s o o s e o v e s e« s« 26

patnd oeed eumy e

b ———

§ . -~ - Sy - 3
" i e o -
e e R P avy ‘) p [T "
] - il'iii” 4 - TN T g T T
i._‘ ‘PAA. B o 8

Sufficient Test Sets for Path Analysis Testing Strategies

Steven J. Zeil and Lee J. White

I. Introduction

Recent years have witnessed the proposal of a number of methods for
automating portions of the software testing effort. Many of these methods
are forms of path analysis strategies, where the process of testing is treated

as two operations [1,4,6,7]:

1. selection of a path or set of paths along which testing is to be
conducted;
2. selection of input data to serve as test cases which will cause the

chosen paths to be executed.

Work has proceeded on such methods despite the lack of a theoretical
basis for the justification or evaluation of such methods. Little is known
regarding the proper methods of selecting of test paths and data. Indeed,
for general programs these problems are known to be unsolvable. For selected
classes of programs, however, it is possible to implement reliable strategies
of selecting test data for a given path to detect certain types of errors.
Section II of this paper summarizes one such method, the domain testing
strategy, which detects errors in program predicates for a large class of

programs, referred to as "linearly domained programs" [7].

Even with a reliable method of selecting test data for a given path,
the fact remains that certain errors may escape detection no matter what data
is used along that path. A good testing strategy must therefore select a set

of paths which collectively account for all possible errors.

29

Frequently an attempt is made to achieve one of the following measures

of coverage [1,3,4]):

1. each statement is executed at least once;
2. each branch is executed at least once;

3. each path is executed at least once.

Examples can be easily constructed to show that the first two measures
are insufficient to guarantee error detection, but to infer that a good
testing strategy must execute all paths is hardly practical. The presence of
a simple DO-WHILE construct may introduce an infinite number of feasible paths.
Even 1f an arbitrary limit is placed on the number of loop iterations, the
number of available paths tends to grow exponentially as program complexity

increases.

All questions of practicality aside, such a claim runs counter to the
intuition of the typical programmer who is quite willing to infer the correct-
ness of his program from a small, finite number of test paths. It is the gcal
of this paper to show that, when testing for errors in program predicates,
this confidence is not misplaced. Specifically, the questions to be addressed

are:

1. "After a number of paths have been tested, what is the marginal advantage
of choosing yet another test path?"
2, "1s there a point at which we may sav that no more paths need be chosen

' through some program construct, i.e., that it has been sufficiently tested?"

A set of paths shall be considered a sufficient set for a program con-

struct 1f the failure to detect some error in that construct, using a reliable

method of selecting data points along those paths, implies that this error

would go undetected for any path through the program.

The domain strategy selects a reliable set of points at the cost of
restricting the permitted functional forms for the program predicates. In
this paper, it will be shown that under a similar restriction, direct answers
can be supplied for the above questions. In Section III of this paper, a model
of linearly domained programs is developed. This model will be employed in
Section IV to investigate the effect of predicate errors on control flow.
Expressions describing the value of a proposed test path will be developed
and it will be shown that the number of test paths required to detect errcrs
in a given predicate of a linearly domained program has a small, finite bound.
This bound is linear in the number of program variables and inputs and is

independent of the complexity of the program's control flow. +

-y

T bond SN Suna -y e

e .
——
-

F .

k)

II. The Domain Testing Strategy

Computer programs contain two types of errors which have been described
as computation errors and domain errors [5]. A domain error occurs when a
specific input follows the wrong path due to an error in the control flow of
the program. A path contains a computation error when a specific input follows
the correct path, but an error in some assignment statement causes the wrong
function to be computed for one or more output variables. The domain strategy
has been designed to detect domain errors. Under the proper conditions, this

strategy is reliable for any given path [2,7].

There are limitations inherent in any testing strategy, and these also
constrain the proposed domain strategy. One such limitation might be termed
"ecoincidental correctness”, which occurs when a specific test point follows
an incorrect path, and yet the output variables coincidentally are the same
as 1f that test point were to follow the correct path. This test point would
then be of no assistance in the detection of the domain error which caused
the control flow change. No test generation strategy can circumvent this
problem. Another inherent testing limitation has been previously identified
as a missing path error, in which a required predicate does not appear in the
given program to be tested {5]. Especially if this predicate were an equality,
no testing strategy could systematically determine that such a predicate should

be present.

The control flow statements in a computer program partition the input
space into a set of mutually exclusive domains, each of which corresponds to
a particular program path and consists of input data points which cause that

path to be executed. The testing strategy generates test points to examine

I A vt o ST T .

- e

the boundaries of a domain to detect whether a domain error has occurred, as
either one or more of these boundaries will have shifted or else the correspond-
ing predicate relational operator has changed. If test points can be chosen
within € of each boundary, the strategy has been shown to be reliable in
detecting domain errors of magnitude greater than €, subject to the follewing

assumptions:

(1) coincidental correctness does not occur;

(2) misasing path errors do not occur;

(3) predicate interpretations are linear in the input variables.

Asgunptions (1) and (2) have been shown to be inherent to the testing
process and cannot be completely eliminated. Although assumption (3) appears
to be severely limiting, some evidence exists to indicate that it may hold for
a surprisingly large class of programs. Besides indirect evidence from soft-
ware metric studies, a study by Cohen of fifty COBOL programs taken from

production data processing found only one predicate out of 1225 to be non- 4

linear [2]. The domain testing method has been shown to be applicable to non-
linear boundaries, but the number of test points may become inordinate and
there are complex problems associated with processing nonlinear boundaries

in higher dimensiomns.

Next let us consider three further assumptions:

(4) the input space is continuous;
(5) predicates are simple;

(6) adjacent domains compute different functions.

o o ;
e

The continuous input space assumption is not really a limitation of
the present testing method, but allows the parameter € to be chosen arbitrarily
small. An error analysis for discrete spaces has shown the strategy to be
viable as long as the size of the domain is not comparable to the discrete

resolution of the space.

If assumptions (5) and (6) are imposed, the testing strategy is con-
siderably simplified, as no more than one domain need be examined at ome time
in order to select test points. Moreover, the number of test points required

to test each domain grows linearly with the dimensionality of the input space.

Any program satisfying the six constraints given above will henceforth

be referred to as a linearly domained program.

The analysis of linearly domained programs which follows this section
is not dependent upon the domain testing strategy, although some form of
reliable means of gselecting test points for a given path is assumed. The
domain strategy has been discussed here as an example, demonstrating that

reliable strategies can be constructed.

III. A Model of Linearly Domained Programs

It is the goal of this paper to provide a mathematical justification for
gsome of the intuitive arguments in the preceeding sections. Towards this end
we now present a model for the behavior of linearly domained programs. In
this model the program itself is represented as a static set cf transformations
and predicates, while the execution state is represented using the dvnamic

attributes of environment, path, and constraints.

The central element in this model is the environment. Properly speaking,
the environment of a program represents the values of all variables at any
point in the program's execution. However, since the subject of this analvsis
is the detection of domain errors, we shall restrict our representation of the
environment to those variables and other factors which may affect the flow of

control. Then the environment may be represented as the following vector:

- T
ve= (1, Xps cees Xpy Yoo cevs y,)

The Yy represent those program variables which may directly or indirectly
affect the program control flow through their effects on the evaluation of
program predicate expressions. The X, represent the values of input data.

It is convenient for purposes of illustration to treat these as special
variables whose values are established prior to executica and held fixed thera-
after, although in practice no such special variables need exist. The first
element of the environment vector is held to the constant "1" as a notatiomal
convenience so that computations involving constants as well as variables
might be expressed in a uniform manner. Initiallv, only tnais constant term

and the x terms are considered to be defined. The program must initialize the

program variables as functions of these zerms.

boese omm o

bt et OEE SEE e

7
s

35

The components of the program itself can then be described in terms of
their interactions with the environment vector. A program is considered as

a set of pairs of the form (Ci, Ti) where C, is a computation or transformation

i
to be applied to the current environment to generate the new environment and
Ti is a predicate which is applied to the new environment. The next (Ci’ Ti)
pair to be used is determined by the result of the application

of Ti'

The process of executing a program consists of determining a path P =

(po. P.s soes pk) where the p, are the indices of the (Ci, Ti) pairs which are

1
to be successively applied to the enviromment. As a convention, we shall let

Py " P designate the start of the program.

The term subpath will be used to designate a path which does not begin
with P, = § or does not end at a valid HALT statement, that is, a path which
does not describe a complete execution of the program. An initial subpath
shall be defined as a subpath beginning at the start of the program, for

which Py * 9.

For linearly domained programs, after any step along such a path, the old
and new environments will be linearly related. The computations Ci nay there-
fore be treated as linear transformations. Taking C1 as a matrix, the kth

step along a path P causes the environment to undergo the transformation:

vk - cpk-lvk'l

The enviromment after k steps along path p is therefore given by:

vk =C ...C C ;;
Pk PP

36

where ;; is the initial environment. It will often be convenient to represent

this long string of matrices as a single matrix

CP = C «ea C C
Py Py P

representing the total transformation along subpath P.

Since the predicates in a linearly domained program must be linear

expressions, the T1 may be treated as vectors such that the scalar product

Py ' Vi+l

mechanism by which the next index is selected has deliberately been left

is compared with zero to determine the next index Prel” (The

unspecified as it is not of importance to this analysis.)

Figure 1 shows a short program segment and its representation under this
model. If we treat the variables A and B as restricted input variables in the
sense described earlier, then the environment vector has six components
(l,xl,xz,yl,yz,y3)T corresponding to (l,A,B,S,T.U)T. Let the values in the

input stream for A and B be designated as "a" and "b". Then the initial

environment ;; is (l,a,b,?,?,?)T where "?" indicates an undefined value.

Two initial subpaths are available up to location PRED depending on the
result of the test for A>2, PA = (@, 1, 3) and PB = (f, 2, 3). After the first

step along either path, the new environment would be

- - T
vl = CO o = (1,a,b,?,1,a)

Then applying the predicate To involves comparing the values Fo . ;1 =

(-2,1,0,0,0,9) (l.a,b,?,l,a)T = -2 + a to zero. Note that the values in 31

for S, T, and U and the expression for ?; ;i do indeed correspond to the l

results expected of the program at this point.

Program

READ A,B;

T=1;

U= A;

IF A>2 THEN
T=2%*1U;

ELSE
T = 2%A + 2*B;
U=1U+ B;

END IF

S=1;

PRED: 1F U>B THEN ...

Figure 1:

Correct Code

IF D=1 THEN

IF C+D > 1 THEN

. —
-

i Ci Ti
¢ Mooooe -2
10000 1
po1000 0
poo1p0 O
1906000 0
g10000 0
1 [Iedopd "~ o
. lg1900¢ 9
9010600 0
gop100 0
090002 9
gp00061 _0_
2 (100009 "0
10009)
'R RN, @
900100)
‘922009 8
po1001 _9_
3 [1o0000 "o
010009 9
g91p00 -1
000000)
0p0010)
909001 1_

Model Representation of Sample Program

Incorrect Code

IF D=1 THEN

IF C > @ THEN

Figure 2: Equality Blindness

e T B AN AT vy e e

N ""'.) .‘.’)
p j: Lo o b Cﬂ!‘?f”‘ s ot 4

oy

38

Completing the execution along both subpaths, define CA and CB:

100000
010000
C.=CCC ={00120¢ (A>2)
A 310% (150000
020000
010000
1000008
0100080
C,=CC.C ={0P1000 (A<2)
B 320 ti19p000
822000
3110080

- T
so that CAv° (1,a,b,1,2a,a)

- T
CBVO (lyaobp1,23+2b'a+b) .

Taking the product of the transformation matrices along some path is
equivalent to symbolically executing along that path. The total transformation
matrix represents the equivalent assignments along that path. But not all
such paths are valid. An initial subpath P = (ﬂ,pl,...,pk) shall be called

a testable subpath if there exists a subpath P'

= (pk+l""’ph) such that

1. P' ends with a HALT statement;

. Il-
2. There exists some input value causing the path P (ﬁ,pl,...,pk,pk+1,....ph)

to be executed;

3. The predicate T 1is not implied bv the conjunction of other predicates on P".

P
One final item remains to bYe modeled. Every predicate encountered along
a patﬁ places restrictions on the legal set of input values for that path.
However the constraints imposed by equality predicates are quaiitatively

different from those imposed bv inequalities, since a valid equalitv predicate

;:, for @<isk

39

reduces the dimension of the space of legal inputs x In recognition of this,

L
there is associlated with each testable subpath PA a set of restriction vectors

A? such that if ;; is an initial environment which might cause

path PA to be executed, then

- -
v, " 9, P<i<k

A

To summarize, this model represents linearly domained programs in terms
of computation-predicate pairs (Ci.?;) with execution being described in terms
of environment ;, paths P, and equality restrictions ;i. In the next section
this model will be employed to investigate the detection of errors in program

predicates.

. T v L . ‘ -

40

IV. Sufficient Testing for Predicate Errors

In the definition of any automated path selection strategy, a question
which must arise is, "When does testing stop? At what point is it possible
to point to a particular program construct and say that it has been sufficiently

tested - no errors can remain undetected?'" A programmer's intuition suggests

that such claims should be possible after the selection of a small number of
test paths. This intuitive claim may be verified for predicates in a linearly

domained program using the model presented in the previous section.

Even given a reliable method of selecting critical test data for a given
path, certain predicate errors will escape detection. This is inherent in the
nature of path analysis testing. The goal {s to choose a combination of paths

so as to collectively eliminate all such errors.

To characterize these undetected errors, consider a program where for some

pair (Ci,fi) the predicate is replaced by an erroneous predicate ?i such that

= oL "
'1‘i Ti + aé as P

€ is a unit vector giving the 'direction" of the error and a is a scalar
giving the magnitude of the error. Let PA be a testable subpath ending with

=, -
(ci'Ti)' The environment after executing along PA will be vA = CAVO where CA
is the total transformation along PA' Assuming that adjacent domains compute
different functions and coincidental correctness does not occur, a reliable

strategy for selecting test data will be able to detect the erroneous predicate

if and only 1if

—
v

41

—' a—
Expanding '1‘i and Va this becomes

Ti . vA $T, *v, +08 ° v

Tev 40

¢ Ao

Therefore if GTCA;; = @ for all ;; in the domain of the path PA’ then the
error & will go undetected. Consider the various cases which may force this

expression to zero:

1. CAv° =0
2. a’cA -0

AT =T .T. - -
3. @ CA $9, e CAVo @ for all v, in the domain of PA'

The first case {s clearly impossible since ;A = CA;; will always have a
constant "1" in its first position, as constants may not be reassigned new

values.

If ETCA = ET then transposing to get CI@ = @ indicates that this is an
eigenvalue problem C:é = A& with A=f. The solution to this problem can be

found by examining the structure of the individual Ci'

Each matrix C, may be partitioned into the form

i
Q}R
C. = --*--—
1 \sit

where Q is (m+l) by (m+1) and T is n by n.

The matrix Q maps the inputs and constants from the old environment into
the new environment, and so must be the identity matrix I. R maps the variables

of the old environment onto the inputs and constants in the new environment.

s e v e e o -

Such assignments are forbidden and so R must be entirely zero. S, mapping the
old inputs and constants into the new variables, may contain any real values.

T maps the old variables into the new variables. This mapping is unrestricted
for all C, except Co' the initial assignments where all variables are initialized

i

in terms of inputs and constants. For C° the component T must be entirely zero,

so that
110
c = -—_:.-_—
° s i @
ol
1 i)
C, = ===t=m- 149
Lts i
i ' i
and for any initial subpath PA’
s I E)
CA =C C .ee C C° il s S
Py P-1 31 s, | 9
|
0
i T |
v [T} Sa
CA 2| ae l-----
o

9 |

Now the solution to the eigenvalue equation CX; = Az is given by inspection.
1f ﬁi are the vectors forming the columns of the identity matrix of the same

dimension as CA, then

c 01 ={ 1 =1...(m+l) (1)

Al ey i o= (m2)...(mn+l) (2)

where c, is the ith row of C, But the ;; for m+2<i<mtn+l are linear combinations

i

43
of the ﬂi for 1<i<mtl. Therefore
cp, =0 1sismtl A= (3)
A1 i
cT(E -4) =9 mrl<ismin+l A=g (4)
s G § -
describes the eigenvalues and eigenvectors of C:.
Thus an error € will go undetected if
e € null-space(C:) = span(zi-ﬁi) mt+l<ismin+l (5
i

This vector space has a simple interpretation in terms of symbolic
evaluation. In Figure 1 consider the subpath leading to PRED for the case A>2.
Since T=2a along this path, one error satisfying the above criterion is
€= (0,2.0,0.-1,0)T. Adding this to the vector representation of ?3 would
give a vector equivalent to the predicate "IF U+2*A-T>B". For any data which
caugses this path to execute, this erroneous form will be indistinguishable from
"IF U>B” since the added term "2*A-T" will evaluate to zero. This behavior is

termed "assignment blindness", because it results solely from the assignment

statements encountered along the test path.

AT
e

Finally if é‘TcA 47 but CA;; = @ for all 3; in the domain of P,, then

A
the error still goes undetected but assignment blindness cannot be a factor
since €TCA # ET.

Let u = Cz €. Then u . ;; = @, but neither U nor ;; can be a zero vector.
If the set of legal ;; for the path PA forms a space of dimension m, there

will always exist some ;o in that domain such that u ° _; ¢ 0. However,

equalities restrict the ;; to a hyperplane of that space of inputs. If u is

orthogonal to that hyperplane, then u . ;; = @ for all legal ;;. This implies
that some form of "equality blindness” exists to complement assignment blindness.
Since ;? . ;; =@, i-l..kA represent these equality restrictions, it is apparent
that the necessary condition for the inability to detect an error due to

equality blindness is

- T A —A
u=C8 ¢ spin(ri). (6)

An example of equality blindness is given in Figure 2, where the two

expressions for the second predicate will be indistinguishable for any test

path where the first predicate is ctrue.

The above analysis of the conditions under which GTCA;; would go to zero
has identified a number of isolated vectors representing undetectable errors
for the path being tested. Clearly any linear combination of these errors
will also go undetected, implying that the total undetected space is described

by the span of these vectors. The toral undetected space would then be given

T

by the span of the null-space of C: and of the set {&: C,

g ¢ span(;i)}.
i

Equation (5) describes assignment blindness directly in terms of the
assignments performed along a path. In contrast, the description of equality
blindness requires the solution of (6). Such a procedure would be, at best,
awkward. This indirect method of specifying the characteristic vectors for
equality blindness can be simplified. When the spaces for assignment and
equality blindness are combined in this way, there may be some overlap.

Choose any €& which is subject to equality blindness. Decomposing & into its

components,
min+l
é= T B8 Q.. €))
el 171
R v g , B S —
M» - W’_’"‘» K P \b‘-’- . !n)

Since we have specified that this & is subject to equality blindness,

Ci& € span(;ﬂ).
i
i
So there must exist a set {Yi} such that

T ~ —A
CAe i YiTy-

Referring back to the expressions for CXQi given in (1) and (2):

mt+l mHn+1

TA - _A
c,é= I R8f,+ I 8¢ =Lrvy,r
P i SRS & S o
m+l —A m+n+l _
IB8fl,=Zyr- £ B
TSI PRI LI es S
o+l mén+l A mn+l
BB, + L BO =Zvyr, - L B(c-0)
el 1 gem2 P g L gyt b

The expression on the left is the decomposition of €@ and that on the right
i{s a linear combination of the equality restrictions and of the assignment

blindness vectors. Thus & is subject to equality blindness if and only if
A T —A
e ¢ span[null-space(CA),fri}]

Cléarly this also holds for errors subject to assignment blindness. This leads

to the following theorem:
Theorem 1. Characterization of Undetected Predicate Errors

Let ?A be a testable subpath in a linearly domained program. Then an

error € in the final predicate of PA will be undetectable if and only if

é ¢ span[null-space(cz).{;?}]-

e fn‘*’ﬂif‘wmn Rl ..l - : j
N Tl N e - I

46

Although the examples of assignment and equality blindness given above

may seem trivial or may appear to involve awkward or unlikely errors, it is

-~
important to note that any linear combination of these errors will also go
undetected. Such combinations can involve simple expressions, yet may not be
apparent from an inspection of the program.

The existence of a characterization theorem suggests a return tc the

1 question posed earlier, "After testing several paths, what is the marginal

advantage of testing still another path?" Since the undetected errors are
described by a well-defined vector space, a new proposed path will form a
useful test only if some portion of the (previously) untested space is

detectable along the new path.

Theorem 2. Path Rejection Criteria

i

If a set K = {PE} of testable subpaths ending at Tj has been previously

also ending with ?3 need not be j

tested, then a proposed testable subpath PA

tested if and only if

P —
n span[null-space(cg),(r;}]g span{null-space(cz).{ri}].
EeK

A set of previously tested paths may leave a certain error space unchecked. j
1f & is in that space, and & is detectable over subpath PA‘ then any errors in
the untested space which have & as a component will be detected. Testing aleng
such a path will reduce the dimension of the undetected error space by at least
one. This naturally suggests the following corollary:
Corollary 1. A set of testable subpaths K = {PC} all ending with T, is

3

sufficient for ?j if

span[null-space(cg). (;E}] = ¢

n
£€K

——

e et

pu———
-~

Normally certain errors will remain undetectable no matter what test paths
are used. These may occur because no options exist to certain assignments or
equalities. For example, in Figure 1 the statement "S=1;" immediately before
PRED means that no path can detect errors in PRED of the form & = (1,¢,0,-1,ﬂ,0)T
which would result in predicates like "IF #S>B+1". Alternatively, some errors
will go undetected because some functional relationship is preserved along all
paths. In Figure 1 the path for A>2 transforms the environment to C:;o =
(1,a,b,l,23,a)T. Applying the rules for assignment blindness to this environ-
ment shows that testing along this path misses errors in PRED involving the
expressions"A~-U" and "2*A-T". AThe path for A<2 with an environment Ci;o =
(1.a,b,1,23+2b,a+b)T is blind to error expressions "A+B-U" and '"2*A+2*B-T".

But neither path will detect the expression "T-2*y" if it is added to the

predicate, because for both paths that expression is a linear combination of

the undetected errors.

Such errors are undetectable for any test path and hencevfor any input
data. Consequently they have no real bearing upon the correctness of the
program, but they do complicate the problem of judging when a predicate has
been sufficiently tested. Although we may reasonably believe a set of paths
to be nearly sufficient because they reduce the dimension of the untested
space to a small number, the smallest possible dimension of that space may not

be known.

In this context, the value of a proposed test path may be measured hy

the number of dimensions it would subtract from the total untested spate.

The computations necessary to find the null space of C: and the ;? are

not as difficult as the notation might suggest. Both are directly derivable

.
= e e _ o
5

.=

from a symbolic execution without requiring an explicit construction of the

(o i matrices.

Furthermore, in most cases where a subpath is rejected under Theorem 2,
any extensions of that path may also be rejected in favor of extension cf already
tested paths. This rule applies whenever the extensions do not involve

additional equalities and the extended paths remain testable.
Theorem 3. Concatenation Rule

Given a set of subpaths K = {Pg} and a subpath P, satisfying the terms of
Theorem 2, define K' = {Pé} and PA as the initial subpaths formed by concatenating
the PE and P, with subpath P . Suppose that {Pé} and PA are testable and no
additional equalities are encountered in PB.
Then if testing is performed on {Pé}, PA' need not be tested.

Proof: Let D(£) and D(A) designate the domains of paths PS and PA. Then by

Theorem 2,

£y = 91 = [VCQen<A>,aTc§3° -0 (8)

[VEGK,V??GD(E),&TC
Assume by way of contradiction that PA must be tested, meaning that there

A
exists some error f such that

¥E €K', Vv eD(E"), ?TcE.VO =8 (9)
and
$0 (10)

— AT -—
'
BVOGD(A), f CA'VQ

W sy —— o e

B i

49

Noting that , “
D(A) = D(A") D(E) = D(§")
CA' - CBCA CE' = CBCE ,

let e = Cg E,

Substituting for f and the A' and £' terms in (9) and (10):
Ju— _‘r —
VEEK, Yv €D(E), e C,v_ =9
o] w O
and
I eD(A), e CV # 0
o * Ao 4

But this contradicts the statement of Theorem 2 in equation (8) which is given
as true. Consequently the assumption that such an f exists fails and the

theorem is proven.

At this point we have characterized those predicate errors which escape
detection for a given test path and have shown that the value of a test path
lies in its ability to reduce the space of potentially undetected errors. We
have yet to justify the claim that a small, finite set of paths will be
sufficient for detecting predicate errors. This is accomplished in the

final theorem.
Theorem 4. Minimal Set for Sufficient Testing

A minimal set of subpaths sufficient for testing a given predicate in a
linearly domained program will contain at most mtn+l subpaths, where m-is the

number of input values and n the number of program variables. 4

™ -~ s R

After a single path has been tested, the untested error space due to
assignment blindness is of dimension n, and the space due to equality blindness
is at most dimension m. In constructing a minimal sufficient set of test
paths, any subpath which fails to reduce the dimension of the total untested
space by at least one would be rejected under Theorem 2. So after testing
two paths the dimension of the total untested error space is at most mén-1.
Continuing in chis fashion it is clear that a minimal sufficient test set can

have at most mn+l paths.

The importance of this theorem is that it shows that a finite number of
test paths will suffice for a wide class of programs. This limit is linear
in the number of inputs and variables, so it should not grow inordinately
large. Furthermore in most cases this limit should prove to be unnecessarily
pessimistic, for several things may act to reduce the actual number of paths
required. If the number of equalities is small, the dimension of the initial
untested space will be reduced. If paths with widely different computations
are used, the untested space due to assignment blindness can be reduced by
far more than one dimension at a time. Even more important, however, are
the implications of the concatenation rule. The chosen test subpaths, when
extended to full paths from start to halt, should pass through a number of
predicates. The concatenation rule then suggests that a sufficient or nearly
sufficient set of paths for a predicate early in the program mav also serve
as a nearly sufficient set for later predicates, so that m+n+l separate paths

need not be formed for each individual predicate.

31

V. Conclusions

In linearly domained programs, the program predicates and the computations
affecting control flow are linear in the input variables. Although linearity
itself yields considerable simplification, another implication of this
assumption is conceptually more important. Restricting predicate interpreta-
tions to a well-behaved functional class makes possible the description of the
infinite set of possible predicate errors using a small finite set of linearly

independent errors.

In the above sections we have used this approach to characterize those
predicate errors which must escape detection for a given test path in a
linearly domained program. This characterization has led‘to criteria for
determining whether a proposed test path is capable of detecting any errors
not already revealed by previous tests. These criteria are directly derivable
from the assignments and equality predicates encountered along the test paths.
The value of a test path is defined in terms of its ability to eliminate one

or more of the characteristic errors which had escaped previous tests.

The number of test paths which may be selected under these criteria is
limited by the finite number of independent errors. For‘linearly domained
programs any predicate may be sufficiently tested using at most mtn+l paths
where m is the number of program input values and n is the number of program
variables. This limit is independent of the complexity of the program

control flow.

These results do not constitute a method for selecting paths for testing.

The question of which paths are to be examined under this criterion has not

been addressed here. However it seems unlikely that the more general question
of how to select paths for testing can be answered without some means of
judging the path's value to the testing process. Such a means is provided
here, together with the assurance that only a finite number of paths need

to be selected.

The chief assumption throughout this analysis has been that predicates
and computations affecting the control flow are restricted to a well-behaved
class of functions, in this case linear, which permits the definition of a
finite-dimensioned space of possible errors. It does not seem unreasonable
to expect that similar results might be obtained for higher order functions.
It is not clear whether the incidence of such functions is in practice
sufficiently common to necessitate such an extension or to justify the

additional number of test paths which might be required.

The model employed here does not take program structure into account.
It remains to be seen what effects, if any, the use of well-structured control

constructs might have on the selection of sufficient sets of tes: paths.

Work is continuing on this model, focusing on the extension of the
analysis for linearly domained programs to domain errors caused by incorrect
computations and on the applicability of these results to path selection

strategies.

53

REFERENCES

1. L.A. Clarke, "Automatic Test Data Selection Techniques", in Infotech
State of the Art Report on Software Testing, Vol. 2, 1979.

2. E.I. Cohen, A Finite Domain-Testing Strategy for Computer Program Testing,
Ph.D. dissertation, 1978, Ohio State University.

3. J.B. Goodenough and S.L. GCerhart, "Toward a Theory of Test Data Selection",
IEEE Transactions on Software Engineering, Vol. SE-1, No. 2, pp. 156-173,
June 1975.

4. W.E. Howden, '"Methodology for the Generation of Program Test Data', IEEE
Transactions on Computers, Vol. C-24, No. 5, pp. 554-~559, May 1975.

5. W. E. Howden, "Reliability of the Path Analysis Testing Strategy', IEEE
Transactions on Software Engineering, Vol. SE-2, No. 3, pp. 208-215,
September 1976.

6. C.V. Ramamoorthy, S.F. Ho, and W.T. Chen, '"On the Automated Generation of
Program Test Data", IEEE Transactions on Software Engineering, Vol. SE-2,
No. &4, pp. 293-300, December 1976.

7. L.J. White and E.I. Cohen, "A Domain Strategy for Computer Program Testing'",
1EEE Transactions on Software Engineering, Vol. SE-6, No. 3, pp. 247-257,
May 1980.

- - - —
. .o Vo Vs K
o ey g , .
3 o “ . u - . ~ _ .
" ve - "_av"' v .
- - >~ , —_ . R

2.1.3. Module Integration Testing

Haley and Zweben have been investigating the issues involved when a
"correct" module which has been thoroughly validated is integrated into a
larger program context. It is desired to maximally utilize the information
that this module is correct in designing the integration testing strategy.
The paper that follows presents the results that have been obtained by our
group, and has been submitted for publication to Journal of Systems and
Software.

Development and Application of a
White Box Approach to Integracioo Testing*
Allen Haley, Stuart Zweben
Dept. of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210

Abstract

Program testing techmiques can be classified in many ways.
One classification is that of "black box" vs "white box" testing.
In black box testing, test data are selected according to the
purpose of the program independent of the manner in which the
program is actually coded. White box testing, on the other hand,
makes use of the properties of the source code to guide the
testing process, A white box testing strategy, which iovolves
integrating & previously validated module into a software system
is described. It is shown that, when doing the integration
testing, it is not enough to treat the module as a "black box",
for otherwise certain integration errors may go undetected. For
example, an error in the calling program may cau.e an error in
the module’s ianput which only results in an error in the module’s
output along certain paths through the module, These errors can
be classified as Integration Domain Errors, and Integration
Computation Errors. The results indicate that such errors can be
detected by the module by retesting a set of paths whose
cardinality depends only on the dimensionality of the module’s
input for integration domain errors, and on the dimensionality of
the module’s inputs and outputs for integration computation
errors. In both cases the number of paths that need be retested
do not depend on the module’s path complexity. An example of the
strategy as applied to the path testing of a COBOL program is
presented.

*This work supported in part by the Air Force Office of
Scientific Research Grant AF F49620-79-C-0152 and by the National
Science Foundation under grant MCS-8018769.

T e e~ "

W e -~

| —,’“““f-if”‘f"'» S v TR SR R ol
. X I \ " v
R

56

Development and Application of a
White Box Approach to Integration Testing*
Allen Haley, Stuart Zweben

Dept. of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210

Introduction

Program testing techniques can be classified in many ways.
One classification is that of "black box" vs "white box" testing.
In black box testing, test data are selected according to the
purpose of the program (as expressed, say, by a specification),
independent of the manner in which the program is actually coded.
Such approaches are described in [3] and [1l]. Unfortunately, the
insights needed to develop these ideas into an easily applied
testing technique appear beyond the state of the art. White box
testing, on the other hand, makes use of the properties of the
source code to guide the testing process. Statement and decision
coverage, and Domain Testing [7] are examples of white box
strategies. While such techniques can be (and have been)
automated, they suffer from either the inability to provide
formal statements about the adequacy of testing (e.g. coverage
approaches {3, 6]) or from impracticality due to the large amount
of testing required (e.g. Domain Testing). What is needed are
strategies which have some identifiable degree of reliability and
yet do not require an inordinate amount of test data. For
example, we intuitively believe that it is not necessary to

require examination of every path in a program, But how can we

*Research supported in part by: AFSOR contract F49620-79C-0152
NSF grant MCS-8018769

-t = ..I; {_W‘ﬁ“b N~ =T Y._-—lw——-——-— _ J

determine which paths are "unnecessary"?

One possible approach to achieving this reduction is
motivated by considering the problem of program development. In
developing the solution to a large, complex problem, it is
customary to form subdivisions which abstract interesting aspects
of the total solution., These subdivisions might then be refined, J
implemented, and tested as independent units of the total system

and then integrated to form a complete working solution to the

original problem. When viewing the integrated program as the 1
object to be tested, it may well be the case that the
complexities are too great to make certain testing strategies
practical., For example, consider a program P comnsisting of
subprogram Pl containing m paths followed by subprogram P2
containing n paths, The integrated program can have a total of
m*n paths, since any of the m paths in Pl can be followed by any
of the n paths in P2. In the course of developing P however, it
may well be the case that both Pl and P2 have been tested
separately. It would be desirable if the correctness information

obtained in unit testing Pl and P2 could be used in validating P.

If the individual modules do not containa large number of paths,
it may in fact be possible to test all possible paths in each
module. If the additional testing required at integration time
was negligible compared to the unit testing overhead (for
example, we might be able to ignore the intermal control
structure of a tested module when integrating it), the result
would be a reduction of the magnitude of the testing problem from

O(m*z) to O(m+n), While this represents in some sense an ideal

58

situatiomn, it is clear that with such a potential for complexity
reduction, even a less than ideal solution might represeant a
considerable improvement and yet provide a substantial degree of

practicality.

Thus, the justification for the development of a method of
integrating independently tested modules into the testing of a
program is (1) to reduce the total testing complexity, and (2) to
make the testing procedure conform to the way progra .s are

developed.

Integration Time Errors

In the remainder of the paper, we will explore the issues
involved when a "correct" module (one which produces the
appropriate output for any valid ianput) is integrated into a
larger program context, with the goal of identifying testing

strategies which are sensitive to integration time errors.

In order to be able to characterize the effectiveness of any
testing approach, it is necessary to classify those kinds of
errors that we might hope to detect. One proposal, due to Howden
[3] distinguishes between domain errors and ¢omputation errors. A
domain error occurs when a specific input follows the wrong path
due to an error in the control flow of the program. A computation
error exists when a specific input follows the correct path, but

an error in some assignment statement causes the wrong function

u—_— S o

1

59

to be computed for one or more of the output variables.

The notion of domain and computation errors turmns out to be
quite useful in characterizing certain types of integration
problems. For example, counsider a module M which has been
thoroughly validated, say by some "Hypothetical Testing
Strategy". so that it is free of both domain and computation
errors, Module M is to be integrated into a program P. Assume
that P has some computation whose result (call it C) is used in
some predicate of M but is not used anywhere else in the program
(see Figure 1).

READ Ip

C = Ip IF C < &4

P CALL M (.., C,..0m) M THEN Om = |}
Op = Om ELSE Om = 2
PRINT Op

Figure 1.
Program Containing a Computation Used Only
in a Predicate of & Previously Tested Module.

Now suppose that the correct computation in P should have
set C to Ip+l., In validating M, we may have ensured that M
produces the correct output no matter which branch of the IF
statement is taken, but P will still produce the wrong output if
the initial value of Ip is such that 3 < Ip £ &4, However, if we
do not happen to choose a value of Ip in this range we will not
catch the error in the computation statement. Notice that, from
the point of view of the program P, there is only one path to
consider (READ Ip; C=Ip; CALL M (...); Op=0m; PRINT Op) if we

ignore the internal structure of M at integration time and deal

- e - Al ey ’
i . '5' . kA - - .
__3-'i=§;~ - e il Tl -
. oty

% s

only with P°s structure., Yet this example shows that we must do
more than just select a couple of values of Ip and examine the
resulting values of Op. In this case, if we were to analyze the
integrated program including the module”s control structure, we
would notice that the program contains a domain error, since

values of Ip in the ramge 3 < Ip < 4 follow the wrong path.

Computation errors cause another problem in ignoring the
validated module”s control structure at integration time. Assume
that the program contains an incorrect computation whose result
is passed to the validated module., Further assume that the only
use of this result is by some computation in the validated
module. As an example, suppose P is the same as in Figure 1, but

M is changed as in Figure 2.

M IF (condition)
THEN Om = C
ELSE Om = 2

Figure 2.
Module Which Transmits a Program Computatiom Error.

Assume once again that the computation in P should set C
equal to Ip+l instead of Ip. If integration test data were chosen
which never exercised the true branch of the condition in M, then
the resulting value of Om would always be 2 and the error in the

computation of P would go undetected by simply examining the

_output of the program.

e

b

61

These two examples have elements in common. In both cases
there is an error in the code preceding the call to the validated
module. The error causes one of the module”s inputs to have an
incorrect (not invalid) value; it is possible for the error in

the module”s input to not be reflected as an error inm the

module’s (and hence the program”s) output, since transmission of
the error to an output may be dependent upon the particular path
chosen through the module, It is therefore clear that, when
integrating a previously validated module, one needs to know more
than just that the module is correct. If information relevant to
the module®s internal structur? is ignored, it is possible for
both domain and computation errors in the integrated program to
go undetected. Therefore it is natural to ask at this stage
"What, in addition to knowing that the module is correct, will
allow effective integration testing to be done?"”. Furthermore, in
view of the introductory remarks concerning black box testing, we
are interested in knowing if this additional information can be
obtained "automatically"”, by examining properties of the program

structure.

Detecting Integration Errors

Two approaches to answering the question posed at the end of
the previous section are suggested by the examples presented in
that section. Since our goal is to detect errors in the module’s
input, we could simply require that all input values to the

module be output (along with the normal output of the calling

- e = g S e .
« '.I"', W o= . N - o, w) R
;m— ; . [)

62

program). This technique is not new, as programmers often print
out values of intermediate/temporary variables, However it is
often hard to know whether an intermediate program value is
correct. More likely, the programmer is only interested in

examining the final outputs of the (calling) program.

Therefore we consider a secoud approach. It would appear
that the chief problems presented in the previous section are
that 1) we may have failed to retest adequately a predicate in
the module whose interpretation is affected by a particular error
in the calling program (for integration time domain errors), or
2) an error in the calling program that produces an error in the
module”s input might not be passed to the module’s outputs (and
hence to the program”s outputs) along those paths that are
executed in the module during integration testing. The solution,
therefore, seems to be a matter of "retesting” duriang integration
testing, a set of paths through the module which are sensitive to
these problems. We will refer to this set as the Integration Test
Set for the module. The integration test set should meet two
important criteria. First, it should be capable of detecting all
of the integration testing errors identified in the previous
section. Second, it should contain as few of the module’s paths

as is necessary to meet the first criterion.

In order to find an integration cest set for a particular
module it is first necessary to be able to determine all the
possible "different” integration domain and computation errors

that can occur in the module. Once this is done, it is necessary

63

to be able to tell, given a path through the module, which of the
possible integration errors the particular path will detect. The
details of how to perform these operations can be found im [2]. A
key idea used in the derivations is that, if a module has m input
variables then there are only m independent ways in whica an
input error can occur. That is, any input error can be expressed
as a combination of the m independent error types (referred to as

"arror directions").

Example 1

Suppose m=2 so that the module has two inputs Il and I2, Now
Il can be in error om a particular call to the module, so that
the module is in fact called with Il“=Il+el. Similarly, the
module can be called with I2°=12+e2, But any incorrect inputs can
be expressed in terms of the correct input vector (Ei) and an
error vector (:5)-c1(a)+c2(3) where cj and c, are constants. In

this sense, there are 2 limearly independent error directioas.

Using the concept of error directions, and letting
m = the number of input variablies for the module,
and
n = the number of output variables for the module,

the number of potentially detectable integration domain and

integration computation errors can be determined.

For integration domain errors, we are attempting to detect
situations where an erroneous input to a previously tested module

causes

i

64

l. some predicate in the module to have an erroneous
interpretation, so that
2. an incorrect path is taken by this input, resulting in
3. a different computation to be performed from that which
takes place on the correct path, so that
4. one or more of the program”s outputs has an incorrect
value.
The notionm of anm erroneous predicate interpretation can be
illustrated as follows. Suppose the previously tested module has
inputs Il and I2 and contains a predicate of the form "IF P1>0"
whose interpretation alonmg some path in the module 1is
"IF I1+I12>0". If both Il and I2 are in error in such a way that
their errors cancel (ie Il°=Il+e and I2°=1-e for some e¥0) then
this predicate is "blind" to this error and therefore is
incapable of detecting it. However, some other predicate in the
module might have an interpretation like "IF I1>0", This second
predicate is capable of detecting the "canceling errors" (though
it, too, is blind to certain errors, such as those which only
involve I2). We must also be wary of a situation in which an
error to the module’s input causes a predicate to have an
interpretation which is a multiple of the correct interpretation,
for then both interpretations evaluate identically for any input,

and the error will go undetected.

Example 2

Consider the predicate "IF P1>0" whose interpretation, in
terms of the module inputs Il and I2, is "IF I1+I2>0", Suppose

the program which calls this module has inputs X, Y, and Z.

e 2t

65

Further assume that the correct assignments to Il and I2 by the
calling program should be {Il=X+2*Y, I2=2%2Z)} while the incorrect
assignments are (Il “=2*X+Z, 12°=3%Z+4*Y}. Then

I1+41220 = X+2%Y+2%Z>0
while

Il +12730 = 2%X+4*%Y+4%Z2>0

= 2%(X+2%Y+2%Z)>0

Both interpretations evaluate identically for any triplet

(x,v,2).

This discussionm illustrates that there are at most m+l
"different" integration domain errors that can occur, and hints
at the kind of analysis, based on algebraic properties of the
predicate interpretations, that would be needed to identify a
candidate set of paths for the iantegratioan test set. Analysis of
integration computation errors, again using algebraic properties
of the code, reveals that at most (m*n)+l "different" errors are

possible [2].

Given that there is a path through a module containing at
least one predicate interpretation that is linear in terms of the
module’s inputs, then that path will be able to detect at least
one of the m+] possible integration domain errors. If enough
paths with linear predicate interpretations exist in the module,
‘and we assume a path won“t be included in the integration test
set unless it contributes to the detection of at least one new

error, then for integration domain errors we need at most m+l

paths in the integration test set. Notice that for the above

result there is no requirement that all the predicate

interpretations in the module be linear.

A similar situation occurs for determining the maximum size
of the integration test set for integration computation errors.
In this case, if there exist enough paths through the module such
that the computations along those paths are linear in terms of
the modules inputs, then the integration test set for
integration computation errors will contain at most (m*n)+l

paths.

The determination of whether any particular path should be
included in the integration test set involves applying standard
linear algebra techniques to the results of a symbolic evaluation
of the path, The complexity of the computations involved in
applying these techniques to any one path is no worse than (m+1)3
for integration domain errors, and (m*n+1)3 for integration

computation errors.

Combined Integration Testing

If the desire is to do integration testing for both domain
and computation errors at the same time the integration test set
that is required is simply the union of the integration test sets
needed for each case. Therefore, the upper bound on the number of
paths in the combined integration test set is (m+l)+(m*n+l1). In

general the integration test set will contain far fewer members,

67

for a number of reasons.

First, a path might contribute to the detection of more than
one integration domain error because the path might contain more
than one predicate. Second, some of the paths in the two
integration test sets might be the same, resulting in the union
of the integration test set being smaller than the upper bound.
The third, and most significant reason, is related to the
existence of sufficient linear paths in the module to detect all
integration errors. Our experience has shown that for most
modules it isn”t possible to detect all the integration errors,
even when all paths in the module are examined. The cause of this
isn“t a lack of linear paths, but is instead that many different
paths have the ability to detect the same integration error. This
has two effects on the integration testing strategy. First, siance
the number of possible erto;s that can be detected is a subset of
all the possible integration errors, the maximum number of paths
in the integration test set is reduced by the number of errors
that can’t be detected. In practice, this reduction can be
substantial., Second, nomlinear paths might be capable of
detecting soﬁg of the integration errors that aren’t detected

along linear paths.

Nonlinear Paths

A possible method of handling paths that contain nonlinear

predicate interpretations and computations is to include any such

e - ———

paths in the integration test set. While this simplifies the
selection of the integration test set (only the linear paths need
be analyzed to determine if they should be included in the test
set), it is only a reasonable solution if the number of nonlinear

paths in the module is relatively small,

In modules where the number of nonlinear paths is too large
to employ the above solution it would be helpful to analyze the
nonlinear paths to determine if they can detect integration
errors not detected by the linear paths. This is possible if the
type of nonlinearity is such that the predicates and computatioans
can be represented in a canonical form as elements of a finite
dimensional vector space. The class of multinomials, for example,
satisfies the above condition, and could therefore be handled by
the integration testing strategy, albeit at the expense of

additional computational complexity.

Fundamental Limitations of White Box Integration Testing.

There are a few fuundamental problems with this testing
strategy which need to be addressed. The first problem only
occurs with the detection of integration domain errors. For
integration domain errors we have chosen paths through the module
to guarantee that, if an input error exists, then some predicate
in the integration test set will shift, A problem arises if the
predicate that is shifting is redundant. This occurs when some
other predicate along that same path through the iantegrated

program supersedes the shifting predicate so that the shifting

' ik :
-~ p—- ,
. 2 - [i ity

predicate isn’t part of the border of the path that is being
tested. In this case an integration domain error might go
undetected that would have been detected along some other path in
the module. Since there is no requirement that the superseding
predicate be in the module (it can be in the calling program
either before or after the module), there is no way to avoid this
problem by simply examining the structure of the module. In real
programs and modules that we have examined, this problem in fact
occurs. However its significance has not yet been thoroughly

analyzed.

suc second problem with the integration test set affects

both integration domain and computation errors. This problem

arises because the paths we have chosen for the integration test
set might not be feasible with respect to the calling program.
Again this problem might prevent us from detecting certain
integration errors that would have been detectable along some
other feasible path through the module., This problem, again,
can’t be solved through examination of the module because the
infeasibility could be the result of predicates in the program

outside of the module.
An Example of Module Integration Testing
The integration testing strategy has been applied to the

testing of & productiomn COBOL program for computing hourly

payroll. The program is divided into six main modules, with three

w Y

of these modules (subsystem 1, 2, and 3 respectively) containing
lower level submodules, The relevant structural properties of

these subsystems are as follows:

l. Subsystenm 1

a) 2 individual modules

b) 78,429 total paths
2. Subsystem 2

a) 6 individual modules

b) 2,904,545,988 total paths
3., Subsystem 3

a) 2 individual modules

b) 4.679*102% total paths

Clearly the amount of work required to do a complete path
test for these subsystems is unreasonably large. The hope is that
by applying the integration testing strategy, the total number of
paths that need to be examined for testing will be substantially

reduced.

Because of the limited sumber of nonlinear predicates and
computations in this program, we decided to include all nonlinear
paths in the integration test set at each level. Furthermore, it
should be noted that the above path counts for each module are

theoretical paths, and may contain paths that are infeasible.

The integration testing strategy was applied to the program
in the following manner., First, all paths in the lowest level
modules were examined, and the integration test set for those
modules was determined. Next, all paths in the next higher level
of modules were examined in combination with the integration test

set from the lower level modules. This process was continued

o b

el S [] [

—n
.

until the highest level modules were reached.

When choosing paths at each level the order in which the
paths are chosen can affect the size of the integration test set,
because each path can contribute to the detection of more than
one error direction for integration domain errors. For the
purposes of this example we always chose the paths that contained
the most predicates first. In cases where the number of
predicates along two paths were the same, the true branches were
alvays chosen first. While we don“t claim that this selection
process gives a minimum integration test set, our experience has
shown tha: it does tend to reduce the size of the integration

test set.

The following table gives the total number of paths that
were examined using the above method of applying the integration

testing strategy.

1. Subsystem 1 15,621 integration paths
2. Subsystem 2 12,057 integration paths
3. Subsystem 3 1.4%10® jntegration paths

In addition to the reduction in the total number of paths
that need be tested, the integration testing strategy offers the
added benefit of using paths which are, on the average, shorter
than those which must be tested when the program is considered as
a8 single unit, This is because in integration testing many of the

paths lie entirely within the lower level submodules, rather than

spanning the entire program (recall that im the integration

testing strategy the modules are tested independently, and this
testing is reflected in the above numbers)., This should serve to
reduce the complexity of the testing process since many testing
strategies are dependent, at least in part, on the number of
predicates and computations on a particular path (strategies

which employ symbolic analysis fall into this category).

Final Remarks

We have shown that it is possible to detect integrationmn
domain and computation errors using a set of paths whose
cardinality depends on the complexity of the module interfaces of
the subsystem under test, rather than on the path complexity of
that subsystem. Furthermore, these errors can be detected by
examining the normal outputs of the subsystem, without requiring
intermediate values or extraneous quantities to be examined. The
reduction in the number of paths that need to be examined can be
several orders of magnitude, and in certain situations might mean
the difference between a practical and impractical testing plan.
In other cases the number of paths required may still be too
large to be practical, but in such situations, the integration
testing strategy can provide information concerning the kinds of
errors that remain untested after some subset of the integration
test set has been chosen, The integration testing strategy is
based solely upon properties of the program structure, thereby
illustrating that white box testing need not be bound by the path

complexity of the system under test. However, it is faced with

boel G o

73

problems such as feasibility and redundancy which are fundamental
to a technique which uses no information about the purpose of the
code under test. We believe that a well thought out testing
strategy has got to make use of specification information to be
both practical and effective. In the abseace of the required
sophistication to employ this information, it is at least helpful
to know the extent to which the code itself can guide the testing

process.

pond emyg @GN O
)

e g
\ .

{1] Gourlay, J. S., Theory of Testing Computer Programs, PhD
Thesis, The University of Michigan, Computer and Communication

Sciences, 1981.

[2] Haley, A. and Zweben, S.,, "An Approach to Reliable
Integration Testing", Techmical Report TR-81-5, Computer and
Information Science Research Center, The Ohio State University,
May 1981.

[3] Howden, W. "Reliability of the .Path Analysis Testing
Strategy", I1EEE Trans. on Software Eng,, SE-2, 3, September,
1976, p. 208-214.

[4] Howden, W., "Effectiveness of Software Validation Methods",

Infotech State of the Art Report on Software Testing, Vol 2,
Infotech Internmational, 1979, p. 131-146.

{5] Howden, W., "Functional Program Testing", IEEE Trans. on
Software Eng,, SE~-6, 2, March 1980, p. 162-169.

(6] Westley, A., ed., Infotech State of the Art Report on
Software Testing, Vol 1, Infotech Internatiomal, 1979.

(7] White, L. and Cohen, E., "A Domain Strategy for Computer
Program Testiung", IEEE Irans, on Software Eng,, SE-6, 3, May
1980, p. 247-~257.

[8] Zeil, S. and White, L., "Sufficient Test Sets for Path

Analysis Testing Strategies", Proc, 3th Int’l, Con on Software
Engineering, San Diego, CA. March 1981, p. 184-191,

2.1.4. O her Issues in Testing
Software

Chandrasekaran edited a special issue of the IEEE Trans,
The editorial that follows is a

Prof.
Engineering on computer program testing.
technical discussion of several issues in program testing in the context of

the papers in the Special Issue.

5 AL il
w*

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 3, MAY 1980

Guest Editorial
Special Collection on Program Testing

I. INTRODUCTION

HIS special collection had its genesis at the IEEE Com-

puter Society Workshop on Software Testing and Test
Documentation, heid in Fort Lauderdale, Florida, during De-
cember 18-20, 1978. This collection is devoted to selected
papers on program testing that were presented at the Work-
shop. It contains six papers whose concems span a wide range:
theoretical issuss, practical experience with particular strate-
gies, extension of a class of techniques to new classes of lan-
guage constructs, and building integrated test tools. In the
next section, we present an overview of the papers in the
collection.

II. OVERVIEW OF THE SPECIAL COLLECTION

The paper by Weyuker and Ostrand begins by examining the
conceptual, definitional framework for test data selection pre-
sented by Goodenough and Gerhart [1]. After clarifying some
of the definitions in {1], it is pointed out that this framework
needs to be enriched in order to make the theory yield meth.
odologies for practical test data selection. In particular,
Weyuker and Ostrand attempt to Jower the goal from one
of proving program correctness by testing to designing testing
methodologies which expose the presence of certain specified
types of errors. This is a direction which, as we shall see, is
also one taken by several other papers in this collection.

Weyuker and Ostrand proceed by introducing the notion of
revealing subdomains of the input space. Intuitively, one
looks for a partition of the domain of the program into sub-
domains such that correct or incorrect performance of the
program for any element of the subdomain implies correct or
incorrect performance of the program for all elements of the
subdomain. The motivation behind seeking such subdomains
is that often the specifications lead to a partition of the input
space such that elements of each subdomain are in fact pro-
cessed rather uniformly by the program. If one could find
such a partition with a finite number of subdomains, one
would be in very good shape, since a finite number of test
dats would suffice.

However, finding such partitions which are revealing for all
errors is in general a tall order. But the framework enables
the authors to talk about subdomains which are revealing for
particular types of errors. That is, given a program and a can-
didate error, one will often be able to identify a subdomain
as one that should be surely affected by that error if it were
present. Such a subdomain is then revealing for that error.

This work was supported by the Air Force Office of Scientific Re-
search under Grant 77-3416 and under Contract F-49620-79-0-0152.

Identification of such subdomains is still a creative act, based
on studying the specifications and even the program structure.
The authors demonstrate the approach on some example pro-
grams. They acknowledge that their paper outlines an ap-
proach rather than a concrete methodology. More work
would need to be done on a wide class of problems and pro-
grams before the practical usefulness of the notion of reveal-
ing subdomains can be established. However, it is clear that
the theoretical framework for testing is enlarged by the no-
tions introduced in this paper.

White and Cohen describe a strategy which concentrates on
the detection of a particular type of errors, viz., domain errors
as defined by Howden [2]. These errors result from errors in
the control flow of a program, which cause some inputs to fol-
low an incorrect path, i.c., those inputs are in the wrong do-
main (or subdomain in the terminology of the previous paper).
They note that essentially these errors result in a shifting of
the boundaries of the domains. Thus the technical question
becomes one of how and under what conditions can such
boundary shifts be detected by test data. White and Cohen
note that domain errors can be traced to errors in predicates
in the program. Further, predicates which are linear in input
variables produce domain boundaries which are hyperplanes.
They show that in such cases, as long as both the incorrect
and the correct (but unknown) predicates are both linear,
then a finite number of test points suffice to test for such
boundary shifts. They precisely specify the conditions under
which this strategy can be guaranteed to detect all domain
errors of given magnitudes. The strategy can be extended to
the case of nonlinear predicates which are low degree poly-
nomials in input variables. In any event, the authors argue
persuasively for the practical importance of the case of linear
predicates in its own right. They also provide an analysis of
the complexity of their domain testing strategy, and give a
useful discussion of the inherent limitations of their approach.
It is worth pointing out that the testing for domain errors in
this manner is still a path testing strategy and is subject to the
difficulties caused by the rapid increase in the number of paths
as the size of the program grows. Further research on this
aspect of their strategy is needed to make this approach
practical.

An interesting relationship between the papers of Weyuker
and Ostrand on the one hand and White and Cohen on the
other can be observed. Both are, a3 noted, interested in guar-
anteeing detection of specified (types of) errors. That leads
the authors of both papers to look for subsets of the input
space which are especially sensitive to the error; revealing sub-
domains in the case of the former, the region around the do-

0098-5589/80/0500-0233300.75 © 1980 IEEE

~e

e RERER e

77

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 3, MAY 1980

main boundary in the case of the latter. It would be interest-
ing to investigate the extent of the relationship, and whether
the White-Cohen results can be cast in the framework of re-
vealing subdomains.

Foster’s paper on ervor senitive test cases is an attempt to
apply classical logic hardware testing techniques to the detec-
tion of “code errors” in software which survive compilation
and assembly: errors such as reference to wrong variables,
incorrect relational or arithmetic operators, stc. In hardware
testing a collection of test patterns were determined that to-
gether would detect fauits in any logic gate and that were
minimal in some well-defined sense. Foster, by means of a
combination of experimentation and theory, develops a set of
rules for the generation of such test patterns, i.c., a set of test
daia sengitive to a sizable class of code errors. These rules are
heuristic and, unlike in the hardware case, do not guarantee
detection of all code errors of the given class. This is not sur-
prising in view of the increased complexity of the operators in
the software case. However, the rules are clearly very useful
in that they represent a systematized way of generating test
data sensitive to a class of errors. In any case, a complete
set of rules which gusrantee the detection of all code errors
might be computationally too ;omplex to be useful.

While current data flow analysis techniques can handle most
single-process programs, there is a need for new analytic tech-
niques for dealing with concurrent-process programs because
of the complex data and control flow possibilities introduced
by their synchronization constructs. The paper by Taylor and
Osterweil is a response to this need, and the ideas contained
in it arose in the context of production and testing coacurrent-
process flight software.

Static analysis is often effective in weeding out errors that
are costlier to detect by dynamic testing techniques. Exten-
mt‘ data flow analysis to concurrent-process software re-
a more complex control flow modeis. The PAF—process
sugmented flowgraph—is a concept designed to capture the
data and control flows in concurrent-process programs with
schedule and wair statements as synchronization constructs.
The PAF and associated algorithms are capable of detecting
errors due to shared data items being referenced by one pro-
cess before any other process defines them. In addition, cer-
tain anomalies in the PAF indicate the occurrence of poorly
coordinated processes. A number of examples are given which
illustrate these notions. It would seem fruitful for further
work in this ares to extend these notions to a broader class of
constructs, such as open, close, and signal statements.

While a theoretical/conceptual infrastructure for program
testing is slowly emerging, only experience in testing real pro-
grams of nontrivial size can determine the directions in which
the theoretical framework needs to be extended for greater
practical relevance. This is because the theoretical frame-
works, with few execptions, are somewhat detached from
properties of programs (or classes of them) as they are in fact
written. For instance, Woodward, Hedley, and Hennell report
on the fact that, in the large class of numerical software that
they studied, a surprisingly large fraction of paths were infea-
sible, i.e., no input data will ever execute those paths, Whether
this is a much more general phenomenon, or whether some

special characteristics of numerical computations (at least the
way people organize them) result in this is an issue that would
be useful to study in a theoretical fashion, now that this
phenomenon has been spotlighted by the authors’ experience
in testing this class of programs.

While path testing strategies are theoretically very effective,
the number of paths is often very large, if not infinite. Ef-
fective criteria for selecting a small number of paths to test, as
well as reliable measures of the degree of testedness achieved
at any given stage in testing, are badly needed. Woodward
et al. propose a hierarchy of structural test metrics, which in-
clude and extend simpler measures such as “fraction of state-
ments executed,” and “fraction of branches executed.™ They
are hierarchical in the particular (weak) sense that a value of
unity for the metric of order n implies a value of unity for the
metric of order (m- 1), (just as “all branches executed at
least once” implies, “all statements executed at least once™).
It is not known whether these metrics are hierarchical in a
stronger sense, i.c., a high value for order n metric implies a
high value for order (n - 1). Nevertheless, the notions have
2 reasonable heuristic content, and the authors discuss their
experience in experimenting with these metrics for the class
of numerical programs. It is in this context that the problem
of infeasible paths discussed earlier becomes significant, in
that their existence prevents the metrics from reaching high
values.

The authors investigate the effectiveness of a technique
called “ailegations™ (originally due to Osterweil [3]) to pre-
vent the generation of at least some of the infeasible paths.
These allegations can be viewed as any heuristic knowledge
that the tester may have about the logical conditions that
need to be satisfied by a path for it to be feasible. The idea
is that automatic analyses—at least those currently available—
are not “intelligent™ enough to discover these by themselves,
while a human tester’s understanding of the program will be a
good source of such heuristic knowledge. Once again the ques-
tion of whether this heuristic technique is powerful enough to
be useful in practice is an empirical one, which is answered by
the authors in the affirmative for the class of numerical pro-
grams that was their concern. They wisely recommend, how-
ever, that the long-term solution lies in the design of languages
with constructs which do not permit the generation of large
numbers of infeasible paths in the first place.

Finally, we come to the paper by Voges eral. on an integrated
testing tool that they have implemented. Called SADAT
(Static and Dynamic Analysis and Testing), this tool is de-
signed for testing Fortran programs that have been compiled
error-free. The main modules of SADAT are static analyzer,
dynamic analyzer, test case generator, and path predicate cal-
culator. Static analysis is useful to detect certain forms of
dead code, undeclared or unused labels and variables, and
jumps into a loop. In addition, the output of the static
analysis phase serves as a database for later analysis.

SADAT's dynamic analysis documents the execution of
program test runs. Basically this consists of instrumentation
for the execution count of various branch points. This dy-
namic analysis is useful for identification of dead code, deter-
mining correctness of loop iterations, and optimization.

\

;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 3, MAY 1980

The test generation subsystem automatically generates a
subset of paths with almost complete C, -coverage (i.c., cach
arc and each node is represented in at least one path). In
addition to the automatically generated paths, the user can
specify a path as 2 sequence of statements. The final module
calculates path predicates by symbolic evaluation.

The authors report briefly on their experience in using this
tool. While the static and dynamic analysis components were
found to be useful and stable, the test data generation system
suffers from problems associated with symbolic execution, in
particular, in handling loops and subroutine calls.

IIl. CONCLUDING REMARKS

The papers in this special collection seem to me mainly to
consolidate, refine, extend, and experiment with many exist-
ing notions and theories of testing. The thrust is towards ap-
proaches that can support the heuristic components of test-
ing. There is increasing recognition that it is unlikely there
will be a grand theory of testing which will lead to fully auto-
mated testing systoms. Instead the tester will be called upon
to use his intuition and problem-depeadent knowledge in a
disciplined manner to test for a variety of specified error
types. But is is crucial that this less ambitious, heuristic ac-
tivity be nevertheless firmly embedded in an underlying frame-
work which is logical, rigorous, and well-understood. Supply-
ing this framework, which will necessarily include properties
of programs as they are in fact designed and written, will be
the task of researchers in program testing.

ACKNOWLED GMENT

My greatest debt of gratitude must go to the referees who
provided professional, scholarly, critical yet sensitive reviews
of the papets, sometimes through second and third revisions.
If a scientific field can be measured by the quality of its re-
views, ! think that testing research is doing very well. I would
like to acknowledge my indebtedness to F. E. Allen, L. A.
Clarke, R. E. Fairley, S. L. Gerhart, J. B. Goodenough, R.
Hamlet, R. C. Houghton, W. E. Howden, J. C. Huang, L. J.
Osterweil, C. V. Ramamoorthy, J. Reif, V. Voges, L. Yelo-
witz, and S. H. Zweben. | thank the authors of the sub-
mitted papers for their infinite patience, cooperation and
good humor, and willingness to play by the rules.of the peer
review game. E. Miller and D. Fife as the organizers of the
original Workshop also deserve appreciation from our
community.

REFERENCES

[1) J. B. Goodenough and S. L. Gethart, “*Toward a theory of testing:
Data selection criteria,” Ciovent Trends in Progremming Method-
ology, vol. 2, R. T. Yeh, Ed. Engiewood Cliffs, NJ: Prentice-Hall,
1977, pp. 4=79.

§2) W. E. Howden, “Roliability of the path analysis testing strategy,”
IEEE Tvanms. Sofrware Eng., vol. SE-2, pp. 208~215, Sept. 1976.

{3] L. J. Osterweil, “Allogations as aids to static program testing,”
Dep. Comput. Sci. Rep., Univ. Colorado, Boulder, CO.

B. CHANDRASEKARAN
Guest Editor

B. Chandrasekaran was born in Indis on June 20, 1942. He received the B.Eng. degree with
honors from Madras University, Madras, India, in 1963 on a National Merit Scholarship, and
the Ph.D. degree from the Moore School of Electrical Engineering, University of Pennsylvania,
Philadelphig, in 1967 on a Moore Fellowship.

From 1967 to 1969 he was Research Scientist with Philco-Ford Corporation, Blue Bell, PA,
working on problems of pattern recognition, and since 1969 he has been with The Ohio State
University, Columbus, where he is currently Professor of Computer and Information Science.
His current major research interests are software testing, aritificial intelligence, pattern recogni-
tion, and computer graphics.

Dr. Chandrasekaran is currently Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS, and Chairman of the IEEE Systems, Man, and Cybernetics Society’s
Technical Committee on Artificial Intelligence. He was the recipient of 2 1976 citation from
the Pattern Recognition Society for an “‘outstanding contribution.” For the last two years he

has been co-directing 2 research project at Ohio State on Software testing, and he was a member of the Program Committee of
the 1978 IEEE Computer Society Workshop on Software Testing and Test Documentation. He is a8 member of the Associstion

for Computing Machinery.

79

2.2. Knowledge—Based Program Synthesis and Problem Solving

Our research in this area is presented here in three sections. The first
report is one by Gomez on & system called LLULL, which accepts programming
problems (in the domain of checking accounts) stated in natural language and
produces Pascal programs for them. The second paper in this group is a paper
by Chandrasekaran on the general issues of distributed problem solving where
knowledge sources cooperate to perform a complex problem solving activity.
This was an editorial to a special issue of the IEEE Trans, System, Man and
Cybernetics on distributed problem solving.

2.2.1. Understanding Programming Problems Stated in Natural Language ;

The following is a technical report by Fernando Gomez, issued as technical
report OSU-CISR-TR-81-9.

|
l
!

.-

LM T ey s) e T s
R) - - .
[

(0SU-CISR-TR-81-9) B

UNDERSTANDING PROGRAMMING PROBLEMS
STATED IN NATURAL LANGUAGE

by
Fernando Gomez

Work performed under
Contract F49620-79-0152 I

Aixr Force Office
of
Scientific Research

Computer and Information Science Research Center
The Ohio State University
Columbus, OH 43210
February 1981

81

Table of Contents

’ Preface
| .
° 1-Introductlono--o-.--.oo.o-c-cc-.----oo-l
2. Backgrould . . .+ ¢ 4 e 4 s b 4 b s e e s e e e e e e s e e e .3
2.1 Concepts as SpecialisSts .+ « « ¢ ¢ o o o o ¢ ¢ o o ¢ o o« « o « 3
2.2 P3sSsSive FTramesS » ¢ « « = o o o o o & o o o s s s o s e o o ¢ . 4
2.3 Concepts as as Abstract RepresentatioD . « « « ¢« « &+ o « ¢ o » 5
3. Parser O ® 8 & * 6 e e e & ® o e & & © s B ® e 6 8 e ® e e @ o e e S
3.1 Houn GIOUP + « « o » o ¢ o o & « » o o s o s o o« o o s s o « + 5 |
3.2 Understanding the Concept Underlying the M¥oun Group 7 '
' 3.3 Clauses Completing the Descriptio . « + « o « « ¢ « o « « « . 9 *
3.4 Verbal ConcCeptS « « o o+ o o o o o o s o o o o o =« o o o o o« 12
3.5 PrepoSitionS « « ¢ « o ¢ ¢ o o o o o o s o s 4 o 0 e 0 o o . .13
4. Parsing into Knowledge Structures . . « « « « o o« o o s = s & + o 15

5. A Checking-Account Programmer « « « « « « o o « o o« s o o « o« » » <26

Sel The PLANMET « ¢ + ¢ o o o o o o o o o s o o o o s o o o o » .27

Comparison with Related Approaches and Future Research29

7. A compu:et Run ¢ o e 8 e & e 6 & & e * s 6 s ¢ e e & B & ® 8 & o .30

Ref@renCE@S8 « « « ¢ o o s o o 5 o o 5 o o ¢ o s s o o ¢« s o 2 o o s « 31

§ — Lo u—g o
o
L]

PEB 26 1981

Understanding Programming Problems Stated in Natural Language

Fernando Gomez
Department of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210

ABSTRACT: A systen to understand programming problems
stated in natural language is described. Parsing is
viewed as a process in which high level sources of
knowledge override 1low level linguistic processes.,
Thus, the need of a low level parser with the necessary
knowledge to determine the neaning of propositions, of
verbs with many senses, of the noun group, etc. is
recognized, and accordingly onme has been built. But
the function of this parser is not to produce an output
to be interpreted by an interpreter or semantic
routines, but to start the parsing and to proceed until
& concept relevant to the theme of the text is
recognized. Then the concept (in the form of a
computer program) takes control of the parsing
overriding the low level linguistic processes. The
high level sources of knowledge parse the text directly
into the relevant concepts that define a programming
problenm. The system has understood ten probleams taken
verbatim from introductory texts to programming as well
48 many variants oa those problems. We have built a
small system that takes the parser output for checking
account problems and produces a PL/1 program. A very
brief description (only two pages) of the problem
solver is given.

KEYWORDS : Natural Language Understanding, Parsing
Directly into Knowledge Structures, Descriptive Verbs,
Understanding The lloun Group, Automatic Programming.

e ™ ",“"wh‘ m’m» Rl "’.:_;” - \?‘ ‘

1. Introdyction

Racently the emphasis on automatic programming research
(AP) has shifted from the design of comprehensive systems
intended to automate the totality of the programming activity
(see [1], {2] and {3] for three excellent surveys of AP) to a
mixture of AP and programming enviromments [4), [5], or formal
specifications (6], (7], or natural language as a very high
level programming language (8]. This paper addresses the
programming activity in its totality. But it focusses ou the
communication aspect of AP. Ounly two pages are dedicated to

the problem solving aspect.

From the natural language point of view, this paper
belongs to a category that Novak [9] has called "matural
language problem solvers". The earlier efforts by Bobrow ([10]
and Charniak ([11] belong fo this category. More recently are
those by Heidorn [12], Hayes and Simon (13], Novak [9], and
Ginsparg [14]. A characteristic that distinguishes our system
from the last group is the way the understanding of the natural
language text {s done. Although there are 1important
differences between these systems, the mapping of the text into
8 wmore or less syntactic structure is common to all of them.
From there on, an interpreter or sewmantic routines transform
the syntactic structure into the final internal representation.
In our system, which we call LLULL, the text is directly parsed
iaco the internal —representation without intervening

interpreters. But in contrast to the work of Schank and his

N R

collaborator [15], we recognize the need of a parser that will
be able to produce some kind of segmentation (a case meaning
structure), the determination of the meaning of prepositiouns
and verbs, the understanding of the naoun group, the
disambiguation of "and", etc.. When a sentence 13 going to be
processed, the parser gets started and proceeds until it finds
a concept that is recognized as being relevant to the theme of
-the text that is being parsed. From there on, the coucept (in
the form of a program) takes control overriding the parser.
The concept continues supervising and guiding the parser until
the sentence has been processed. Thus the basic idea is : in
understanding natural language, the low level linguistic
knowledge shared by the speakers of a language is overriden by
high level sources of knowiedge (concepts). Our program has
understood ten programming problems on the topics of checking
accounts, payroll, and exam scores. The problems have been
taken verbatim from introductory texts to programming. A

representative example is shown in fig. 1.

The problem solver receives as input a list coantaining the
name of the concepts that the parser has built. It {s a based
knowledge system. For each conceptual step or level of
abstraction ([16] 1in which a programming problem decomposes,
éh‘re 1s a specialist [17] that knows what kind of things must
be present and what to do if they are missing. Each of these
specialist has a list of things they have to do, called the
task lisc. A planner will f1ill this 1list before the

specialists are activated. We have implemented a system to

produce checking account programs. Presently the system has
synthesized a PL/l program for the example in fig.l and other
PL/1 programs for similar checking account programs. Sectious

5-and 5.1 coantain a brief description of the system.

2. Background

There are important differences between the language used
to express human actions and the language of scientific books,
text books, programming examples etc.. A striking difference
i3 the predominance of descriptive verbs over action verbs in
the latter. This is not surprising if we realize that the
latter contexts deal essentially with the description,
relations and illustrations of entities. In these contexts,
understanding rests basically on the recognition of what is

said of the nominal concepts that make up the sentences.

2.1 Concepts as Specialists.

Assume that a human programmer who s familiarized with
checking-accounts programs reads the example of fig.l. As soon

as he will begin to read the text, those concepts relevant

(input, output etc.) to the example will be recognized by him.

He will start to record knowledge around those concepts. We
may say that the relevant concepts take control of the parsing
(understanding) process overriding the low level linguistic

knowledge.

We assume that this knowledge is stored under each concept
under the form of production rules [18]. Concepts are taken as
a cluster of production rules. This notion of concept as a
system of rules governing the application of predicates to a

concept is already found in Kant’s Critique of Pure Reason .

Kant also considered concepts as a kind of representation
(vorstellung). According to this view, concepts are an
*abstract representation of the properties of an object. This
later notion is akin to the notion of concept used in such
knowledge representation languages as KLONE, KRL, FRL, and

identical to the notion of concept of section 2.3.

2.2 Passive Frames

Understanding does not only depends om the councepts of
section 2.l. The sentence, "The instructor records the grades
on cards” is a perfect sentence, yet does not make any sense in
the context of the example in fig.l. None of the concepts of
the sentence belongs to those concepts associated with
checking=-accounts problems. The only way we can have made that
decision 13 1if we have knowledge ab. - checking-accounts
prestored in memory, and when we are exposed to the right
context -chis konowledge is activated to direct our
understanding. This corresponds to Minsky’s notion of frame.
For each kind of problem, LLULL has stored in LTM a passive
frame. We have used the adjective "passive" to indicate that
the content of the frame is not altered during processing.

Each of them contains a list of the relevant concer : for that

87

problem, a list of the most usual input or output etc..

2.3 Concepts as an Abstract Representation

During parsing, the sentences are mapped into the relevant
concepts that define the problem. Each concept is represented
as a labelled structure describing its properties. The type of
labels (slots) as well as what to put in them is decided by the

speclalists of sec. 2.l.
3. Parser

Although most people will be not able to have a- deep
understanding of a text about microbiology, yet they will be
able to distinguish between the different senses of
prepositions and verbs, to wunderstand the noun group etc..
This type of linguistic knowledge is shared by all speakers of
a language and it allows us to read even the most obstruse
texts and still to get something out of them. We have built a
parser that has that linguistic knowledge to a certain extent,

of course.
3.1 Noun Group

The part of the parser that handles the noun group 1is
called DESCRIPTION. It is based on the following assumptions.
Any word that may form part of the description of an entity
(nominal concept) 1is tagged in the diczionary with the narier
DESCR (for description). Those words are articles, adjectives,

pronouns and nouns . Articles, pronouns, and demonstrative,

- - . -
S lad s
[t

1
i
i

distributive and quantitative ad jectives are also tagged with
the marker STD to indicate that they 1initiate a new
description. Personal and impersonal pronouns (You, it, they)
and are tagged with the marker ERU to indicate their

exclusively referential use [19].

DESCRIPTION is invoked by any function that finds a word
with the marker DESCR. If that word has also the marker ERU,
DESCRIPTION exits. Otherwise it will be processing words uatil
1) ooe of them does not have the marker DESCR or 2) it has the
marker STD or the marker ERU. 3) or it is a proper name-and at
least a noun has been found in that noun group. Some examples
follow:

(1) (The blue apple) the gardener picked is made of metal.
(2) (The U.S forces) Germany out of France. A

(3) (The U.S forces) Germany defeated were unprepared.

(4) (These books) belong to Peter,

We have used the btackg:s to 1indicate the segmentation
produced by DESCRIPTION. 1In 1), the word following "apple” has
the marker STD. In 2) and 3) the word following "forces" is a
proper name and a noun has been already found (notice that when
"Uy.S8" is found no noun has been processed). In 4), the word
following "books" has not the marker DESCR. DESCRIPTION groups
the maximum number of words under the noun group (see [20] for
a comparison). This is why it produces the wrong segmentation
of 2). Notice that 3) has the same surrounding words as 2).
In cases where there are not semantic clues to establish a

boundary, humans as well as machines have to back up or 1look

ahead, whatever you prefer. In our opinion, backing up is a

89

more natural phenomenon in this context, while looking ahead is
more natural in determining the meaning of prepositions or
disambiguating "and". There are cases in which semantic
reasons decide where the noun group boundary is. For example,
when a noun 1is followed by a noun that denotes citinzeanship or
a profession, it may be assumed that the ﬁreceding noun is not
a nodifying noun. For example, "The book Spaniards like is Don
“Quixote."” In other contexts, only a deep understanding of the
concept underlying the noun group will help in establishing a
boundary. Consider : "The book people love 1is The

Metamorphosis." Although one can imagine an interpretation that

takes "book" as a modifying noun, it is unusual. Our knowledge
of people does not include book as being onme of its predicates.
Thus this knowledge (in the form of a program stored in
"people) can advise the parser to establish a boundary in
"book"™. This idea 1s explained with more detail in the next

section.

3.2 Understanding the concept underlying the noun group.

The segmentation produced by DESCRIPTION tells us only
when a noun group ends. We need a functiomn that will
understand the meaniné of the noun group while 1its components
are being processed. An essential problem in uderstanding the
noun group is posed by the complex nominals. The term "complex
nominal™ has been used by Levi ([21] to refer to nominal
compounds like "the program output", to nonpredicating

adjectives like "electrical engineer" and nominalizatioans like

. -2 T N H - -
! , [o

"film producer”.

Essential to the problem of complex nominals {s that {n
many instances different combinations of words denote the same
concept. For example, '"the old balance", "the balance at the
beginning of the period”, or "the output", "the program
output”. Whether we are dealing with a complex nominal or with
a normal noun group like "the red apple", understanding depends
on our ability to recognize the property being predicated of
the noun as fitting our knowledge of the noun. A parser that
parses "the blue apple" into (PHYSOBJ TYPE (APPLE) COLOR
(BLUE)), and does not register the fact that "blue" is not a

color of apples is missing something..

Our approach to the understanding of the noun group has
been determined by the natural language context we are
studying. The natural language understander has to solve the
different ways of referring to the same concept, otherwise the
problem solver will be in trouble. Thus our main concern has
been to identify the concept underlying the noun group. We
have stored the knowledge necessary to identify the underlying
concept of the noun group in the head noun. What enables us to
find something funny about the expression "the blue apple" s
that our knowledge of apples does not include the blue color.
This knowledge 1s stored into the coucept apple. Similarly our
knowledge about checking account balances is what makes us to
produce the single concept old-balance when we read 'the

previous balance"”, "the old balance", "the past balance", or

.
~ -— - - ~ .
+ .
."'

91

"the balance at the starting of the period".

When DESCRIPTION is entered, the adjective or wmodifying
noun 1s stored in the variable MODIF, and the head noun in
H-NOUN. When both variables have a value, a function, whose
name i{s stored in the dictionary def nition of each word, is
invoked. These functions are a collection of very simple
'.production rules. A typical production rule of the function
CN-BALACE (the function for the noun "balance") 1is:

If the marker PAST (a time marker for "old" and "past") or
the marker PREVIOUS (a time marker for "previous", "beginning"
etc) belongs to the adjective modifying 'balance", return
OLD-BAL.

Not all adjectives modifying a noun will activate the
function for that noun. Only the non operational adjectives
will do it. By ‘"operational adjectives" we mean those
adjectives whose meaning can be mapped to a computer program.
For ex., "even", '"divisible", and also all ordinals from
"first" to "last". "The last account" wiil be parsed into

(ACCOUNT ORDINALl (LAST)). All non operational adjectives are

tagged in the dictionary with the marker NOPAD.

3.3 Clauses Completing the Description.

Relative clauses, -ing forms, two place ad jectives or past
participles and prepositions are used to complete the

description of objects. By two place adjectives we mean those

predicates that take two arguments, i.e, - greater than -" or
" - {nfluenced by =". All these terms are tagged in the

dictionary with the marker SPEC (for specificatioa).

10 An s P g g o Y
-

-
- . >

L i‘w‘m‘:‘w)> T ‘:;'“, .“ A-,

AD-A127 793 THEORETICAL FOUNDATIONS OF SOFTHARE TECHNULUGY(U) OHIO 2/2,
STATE UNIV COLUMBUS DEPT OF COMPUTER AND INFORMATION
SCIENCE B CHANDRASEKARAN ET AL. 14 FEB 83

UNCLASSIFIED AFOSR-TR-83-0333 F49620-79-C-0152 F/G 9/2

END

onte
UMD

ar
oTic

e
=

22

’FFFEEE

FEEE

5 = |

rrr
r
rr

=

%

Ig

==
N
()

=
"m.w
o

= ==
o B

==

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

sinsenifceesttios, a J

DESCRIPTION (before exiting) checks if the word it is examining

has the marker SPEC. 1f so, it considers the possibility that
it may be a clause completing the DESCRIPTION. There 1is oo
general mechanism to determine 1if a clause following a noun
group is modifying the noun group or not. The classic example
{8 : "The man with the broken leg killed Peter". Our parser
uses semantic clues to make that decision. If the coacept
expressed by the noun group is an individual concept [22], the
clause following the noun group can not be completing the
description. By "individual concept" Carnap means those
concepts that denote a single entity. For example, "John's
wife with the broken leg killed Peter". Howerver funny the
sentence may be, the "broken leg"” {s the instrumental case. In
the case of -ing forms, if the object denoted by the noun group
{s inanimate, it can be safely assumed that the -ing clause 1is

a part of the description. .

Phrases completing descriptions (PCD) present a similar
problem to that of compound nouns, namely to identify the
concept denoted by the description. The problem is more
complex, because in the case of complex nominals we know we are
dealing with a single concept. However when we deal with a
descrip:ion completed by a phrase, we do not know if the PCD
forms part of the definition of the concept or i{s e pressing an

accidental property like time, location etc.. For instance

(1) The man on the street does not give a damm for politics
(2) The man on the street is from Ohio

In 1) "on the street" is obviously a location, but in (2)
it 1s a predicate of the concept man. "The man on the street"
in (2) refers to the concept ordinary man. A similar case we
have in "the balance at the beginning of the period"”. It does
not refer to a balance that is temporarily situated at the
beginning of a period of time, but to the abstract notion of a
previous—-balance. In fact, many complex nominals have been
formed by deletion of prepositions [21]. Our solution to this
preblem has been to agsk the coucept denoted by the noun group
about the meaning of the clause completing the description.
OQur implementation applies only to descriptions completed by
prepositional phrases. Thus, the routine associated with a
preposition (see below) may decide to ask the concept denoted
by the noun group about the meaning of the prepositional phrase
as applied to that concept. Let us consider: '"the balance at
the beginning of the period”. The routine for "at" asks

DESCRIPTION to obtain the concept denoted by "“the beginning of

the period", DESCRIPTION returns with "ST-PERIOD" that means

the beginning of a period of time. Then the routine "at
invokes CN-BALANCE with the argument "ST-PERIOD", and this one
returns with "OLD-BAL". The conditions under which a
prepositional routine invokes the preceding concept need futher
study. We have come up with the following criterion: if the
concept preceding the prepositional phrase is an abstract
concept, and the the concept underlying the prepositional

phrase has the semantic features of TIME or LOCATION, the

prepositional routine will invoke the preceding concept. By

“abstract <concept” we mean a concept that is not a

picture-producer [23].

3.4 Verbal Concepts

We have used different levels of abstraction in tagging

the verbs in the dictiomary. We have marked the verbal surface
forms much as a dictionary does it. Thus, we have used the
*marker SUPL to tag in the dictionary "supply"”, "provide",
"furnish”, but not "offer”. From the highest level of
abstraction, all of them, "offer" included, are tagged with the
marker ATRANS [23]. All action verbs that may have an
operational meaning are tagged with the marker OPER. The most

obvious operational verbs are: add, substract etc.. Ochnré

are delete, store, move.

What level of abstraction a system must have present in

"understand”" a sentence in a given context, is a hard

order to
question. The highest level of abstraction wiil facilitate the
matching, paraphrase and the understanding of verbs used in
contexts somewhat inappropiate. On the other hand, a system
that only "knows” about "walk” that is an instance of PTRANS

{23], will not understand the second sentence in : "Peter

walked 20 miles home. His feet were swollen".

Descriptive verbs (D-VERBS) are those used to describe.
In the programming examples we have studied, we have found four
semantic classes of D-VERBS. There are those that describe the

constituents of an object. Among them are : consist of, show,

95

include, be given by, contain etc.. We refer to them as
CONSIST-OF D~VERBS. A second class are those used to indicate

cthat something is representing something. Represent, indicate,

mesn, describe etc. belong to this class. We refer to them as

REPRESENT D-VERBS. A third class are those that fall under the

notion of appear. To this class belong appear, belong, be

given on etc. We refer to them as APPEAR D-VERBS. The fourth
class A are formed by those that express a spatial relation.

Some of these are : follow, precede, be + any spatial verb.

We refer to them as SPATIAL D-VERBS.

A routine called ACTION-VERB .parses the action verbs.
There are markers {n the dictiomary for the cases they take and
the prepositions used for the cases other than the transitive
case. For instance, in the dictionary definition of "move” is
indicated that it is a transitive verb and that it also takes a
destination case, and that the - prepositions with the
destination case may be "to" or "into". Similarly, the

function DESCRIPTIVE-VERB parses the descriptive verbs.

3.5 Prepositions

For each preposition (also for each conjuction) in che
lexicon there is a function. The name of the function is
stored in the dictionary definition of each preposition. When
the parser finds a preposition its function i{s activated. The
function of these prepositional experts 1is ¢to determine the

meaning of the preposition.

96

V4

The first thing they do is to test if the preposition
introduces a case for the preceding word. For example, the
expert for "of" will check if the preceding word has the
feature CASE-OF, a feature assoclated with words such as :
"aumber of", "abuse of", '"collection of", "result of",
"destruction of™ etc.. The same check will be done by the
function for “for". It will look for : "lust for"”, '"pressure

efor" etc.. In the most interesting cases, the meaning of a

preposition can not be determined by looking at adjacent words.

Thus the prepostional experts suspend themselves and ask
DESCRIPTION to parse for them the coacept denoted by the
prepositional phrase. DESCRIPTION returns to them the concept
with all its semantic features. Two group of production rules
follow. The first group 1is activated if the verb of the
sentence has not been parsed, the secoad one otherwige.
Obviously it is simpler to determine the meaning of a
preposition in the first case. The decision 1is primarialy
based on the semantic features of the coacept denoted by the
prepositional phrase. 1f the verdb has been processed, the
whole conceptualization underlying the sentence must be used by
the expert in order to decide what 1s the meaning of the
preposition. For example, "John takes wine for his
depression". There is a rule in FOR~SP (the prepositional
expert for "for") that says that Lf the feature ANIMATE beloangs
to the subject of the sentence and the verbd is an instance of
INGEST (23], , and cthe concept denoted by the prepositional

phrase has the feature PHYPSY (a physical or mental state) then

"for" express the i{dea of doing something with the
PURPOSE=-OF-ALLEVIATING a physical or mental state. The meaning
of the verdb is taken in its highest level of abstraction. In
most cases, the meaning of the preposition depends oa the
concept denoted by the prepositional phrase. Compare the above
sentence with "John takes wine for lunch". When a context has
been established, thigh 1level sources of knowledge can
canticipate the meaning of prepositions. We will see sonme

examples in the next section.

4. Parsing into Knowledge Structures

As we said in the introduction, the coacepts relevant to a
programming topic are grouped in a passive frame. We
distinguish between those coancepts which are relevant to a
specific programming task, like balance to checking—-account
programs, and those relevant to any kind of program, 1like
output, iIinput end-of-data etc.. The former can be only
recognized when the programming topic has been identified. A
concept like output will not only be activated by the word
"output" or by a noun group containing that word. The verb
"print" will obviously activate that concept. Any verd that
has the feature REQUEST, a semantic feature associated with
such verbs as "like", "want", "need", etc., will activate also
the concept output. Similarly nominal concepts like card and
verbal .concepts like record, a semantic feature for verbs like
"record", "punch" etc., are just two examples of concepts that

will activate the input specialist.

The recognition of concepts is as follows: Each time that

a new sentence is going to be read, a global variable RECOG is
initialized to NIL. Once a nominal or verbal coacept 1in the
. sentence has been parsed, the function RECOGNIZE-CONCEPT is
invoked (if the value of RECOG is NIL). This function checks
1if the concept that has been parsed 1is relevant to the
programing task in general or (if the ctopic has been
videntified) is relevant to the topic of the programming
example. If so, RECOGNIZE-CONCEPT sets RECOG to T and pasges
control to the councept that takes control overriding the
parser. Ouce a cooncept has been recognized, the specialist for
that concept continues in coantrol until the entire sentence has
been processed. The position that a relevant concept occupies
in the sentence {s not an impediment for that concept to take
control, except if the concept is in a prepositional phrase

that starts a sentence.

The following data structures are used during parsing. A
global variable, STRUCT, holds the result of the parsing.
STRUCT can be considered as a STM for the low level linguistic
processing. A BLACKBOARD (24] holds the high level
recomendations, messages etc that the high level conceptnal
specialists pass to the low level linguistic experts and among
éhen. Because the information in the blackboard does not go
beyond the sentential level, it may be considered as STM for
the high level sources of knowledge. A 3global variable WORD

holds the word being examined, and WORDSENSE holds the semantic

features of that word.

— —

. wnd
v 1

99

Example 1
An instructor records the name and five test scores on a data
card for each student. The registrar also supplies data cards
containing a student name, identification number and number of
courses passed.

The parser is invoked by activating SENTENCE. Because
"an" has the marker DESCR, SENTENCE passes control ¢to
DECLARATIVE which handles sentences starting with a nominal
phrase. (There are other functions that respectively handle
sentences starting with a prepositional phrase, an adverbial
clause, a command, an ~ing form, and sentences introduced by
"to be" (there be, will be etc.) with the meaning of
existence.) DECLARATIVE invokes DESCRIPTION. This parses "an
instructor” obtaining the concept instructor. Before returning
control, DESCRIPTION activates the functions RECOGNIZE-TOPIC
and RECOGNIZE-CONCEPT. The former function checks in the
dictionary if there 1is a frame associated with the concept
parsed by DESCRIPTION. The frame EXAM-SCORES 1is associated
with {instructor, then the variable TOPIC is instantiated to
that frame. The recognition of the frame that may bg a very
hard problem [25] is very simple in the programing problems we
have studied and normally the first guess happens ¢co be
correct. Next, RECOGNIZE~CONCEPT is invoked. Because
instructor does anot belong to the relevant concepts of the
EXAM=-SCORES frame, 1t returns coatrol. Finally DESCRIPTION
returns control to DECLARATIVE, along with a 1list containing
the semaﬁtic features of instructor. DECLARATIVE, after

checking that the feature TIME does not belong to those

features, inserts SUBJECT before "instructor" in STRUCT.

Before storing the content of WORD, '"records", ianto STRUCT,
DECLARATIVE invokes RECOGNIZE-CONCEPT to recognize the verbal
concept. All verbs with the feature record, as we said above,

activate the input specialist.

When INPUT-SP 1s activated, STRUCT looks 1like (SUBJ
(INSTRUCTOR)). As we said in the 1introduction, the INPUT
specialist is a collection of production rules. One of those
rules says :

IF the marker RECORD belaongs to WORDSENSE then Activate
the function ACTION-VERB and pass the following recommendations
to it : 1l)activate the INPUT-SUPERVISOR each time you find an
object 2) 4if a RECIPIENT case 1is found then if it has the
feature HUMAN, parse and ignore 1it. Otherwise awaken the
INPUT-SUPERVISOR 3) if a WHERE case (the object where something
is recorded) is found, awaken the INPUT-SUPERVISOR.

The INPUT-SUPERVISOR is a function that is controlling the
input for each particular problem. ACTION-VERB parses the
first object and passes it to the INPUT-SUPERVISOR. This
ckecks 1if the semantic feature IGENERIC (this is a semantic
feature associated with words that refer to generic information
like "data", "information" etc) does not belong to the object
that has been parsed by ACTION-VERB. If that is not the case,
the INPUT-SUPERVISOR, after checking that name is normally
associated with the input for EXAM-SCORES, inserts it into the
CONSIST-OF slot of input. The INPUT-SUPERVISOR returns coatrol

to ACTION-VERB that parses the next object and the process

explained above is repeated.

101

When ACTION-VERB finds the preposition "on", the routine
ON~-SP is activated. This, after checking that the main verdb of
the sentence has been parsed and that it takes a WHERE case, - i

checks the BLACKBOARD to find out if there is a recommendation

for it. Because that is the case, ON~SP tells DESCRIPTION to
parse the nominal phrase "on data cards™. This returns with

the concept card. ON-SP activates the INPUT-SUPERVISOR with

card. This routine, after checking that cards is a type of
{aput that the solver handles, inserts "card" in the INPUT-TYPE
slot of input and returns control. What if the sentence had
said "... on a notebook" ? Because notebook is not a form of
input, the INPUT-SUPERVISOR would have not inserted "book" into
the INPUT-TYPE slot. Another alternative 1s to 1let the
INPUT-SUPERVISOR insert it in the INPUT-TYPE slot and let the
problem solver make sense out of it. There is an interesting
tradeoff between understanding and problem solving in these
contexts. The robuster the understander is, the weaker the
sc'ver may be, and vice versa. The prepositional phrase "for
each student” is parsed similarly. ACTION-VERB returns control
to INPUT-SP that inserts "instructor” in the SOURCE slot of
input. Finally, it sets the variable QUIT to T to indicate ¢to
DECLARATIVE that the sentence has been parsed and returns
control to it. DECLARATIVE after checking that the variable
QUIT has the value T, returns control to SENTENCE. This resets

the variables RECOG, QUIT and STRUCT to NIL and begins to

examine the next sentence.

Sh-tel A

The calling sequence for the second sentence is identical

to that for the first sentence except that the recognition of
concepts is different. The passive frame for EXAM~SCORES does
oot coatain anything about "registrar" nor about SUPL (see sec.
3.4). DECLARATIVE has called ACTION-VERB to parse the verbal

phrase. This has invoked DESCRIPTION to parse the object "data

cards”. STRUCT looks like : (SUBJ (REGISTRAR) ADV (ALSO) AV
(SUPPLIES) OBJ). ACTION-VERB is waiting for DESCRIPTION to
parse "data cards" to f£1ll the slot of OBJ. DESCRIPTION comes
with card from "data cards”, and invokes RECOGNIZE-CONCEPT. {
The specialist INPUT-SP is connected with card and it i{s again
activated. This time the production rule that fires says :

If what follows in the sentence is <{universal quatifier> +
<D-VERB> or simply D-VERB then activate the function
DESCRIPTIVE~VERB and pass it the recommendation of activating
the INPUT~-SUPERVISOR each time a complement is found.

The pattern <universal quantifier> + <D-VERB> appears in
the antecedent of the production rule because we want the
syst;m also to understand : '"data carde each containing...". l
The rest of the sentence 1s parsed in a similar way to the |
first sentence. The INPUT-SUPERVISOR returns coantrol to
INPUT-SP that stacks "registrar" in the source slot of input.
Finally the concept input for this problem looks :
INPUT CONSIST-OF (NAME (SCORES CARDI (5))) SOURCE
(INSTRUCTOR)

(NAME P-COURSES) SOURCE (REGISTRAR)
INPUT-TYPE (CARDS)
If none of the concepts of a sentence are recognized -

that 1s the sentence has been parsed and the variable RECOG is

NIL - the system prints the sentence followed by a question

vy ¥ un
: i
e et - - -
s N
[X
I

mark to indicate that it could not make sense of it. That will

happen 1f we take a sentence from a problem about
checking—=accounts and insert it 1in the middle of a problem
about exam scores. The INPUT-SP and the INPUT-SUPERVISOR are
the same specialists. The former overrides and guides the
parser whean a concept is initially recognized, the latter plays
the same role after the concept has been recognized. The
following example illustrates how the INPUT-SUPERViSOR may
futhermore override and guide the parser.

The registrar also provides cards. Each card contains
data including an identification number ...

When processing the subject of the second sentence,
INPUT-SP is activated. This tells che function
DESCRIPTIVE-VERB to parse starting at "contains ...” and ¢to
awaken the INPUT-SUPERVISOR when a object is parsed. The first
object is "data" that has the marker IGENERIC that tells the
INPUT-SUPERVISOR that "data" can not be the value for the
input. The INPUT-SUPERVISOR will examine the next concept
looking for a D-VERB. Because that is the case, it will asks
the routine DESCRIPTIVE-VERB to parse starting at "including an

identificacion number..."

Example 2

We wili comment briefly on the first six sentences of the
example {n fig. 1. There 1is a specialist that has grouped the
knowledge about checking-accounts. This specialist, whose name

is ACCOUNT-SP, will be invoked when the parser finds a concept

Noataw

s

———————————————— 2

104

that belongs to the slot of relevant coancepts in the passive
frame. The ‘first sentence 1is: "A bank would like to
produce... checking accounts”. The OUTPUT-SP is activated by
© "1like". When OUTPUT-SP is activated by a verdb with the feature

of REQUEST, there are only two production rules that follow.

One that considers that the next concept is an action verb, and
another that looks for the pattern <REPORT + CONSIST D-VERB>
(where "REPORT" 1is a semantic feature for "report', "lisc"
etc.). In chis case, the first rule 1is fired. Then L
ACTION-VERB is activated with the recommendation of invoking
the OUTPUT-SUPERVISOR each time that an object 1s parsed.
ACTION-VERB awakens the OUTPUT-SUPERVISOR with (RECORDS ABOUT
(TRANSACTION)). Because "record" has the feature IGENERIC the ?
OUTPUT-SUPERVISOR tries to redirect the parser by looking for a |
CONSIST D-VERB. Because the next concept 1is not a D-VERB,
OUTPUT-SUPERVISOR sets RECOG to NIL and returns coatrol to
ACTION-VERB. This parses the adverbial phrase introduced by
"during” and the prepositional phrase introduced by "with".
ACTION-VERB parses the entire sentence without recognizing any
relevant concept, except the identification of the frame that

was done while processing "a bank".

The second sentence "For each account the bank wants ...
balance.” 1is parsed in the following way. Although "account”
belongs to slot of relevant concepts for this problem, {t 1{is
skipped because it is in a prepositional phrase that starts a
sentence. The OUTPUT-SP is activated by a REQUEST type verb,

"want". STRUCT 1looks 1like : (RECIPIENT (ACCOUNT UQ (EACH))

§ — L aammnd nmm—

105

SUBJECT (BANK)). The production rule whose antecedent (s
<RECORD + CONSIST D-VERB> is fired. The DESCRIPTIVE-VERB

function is asked to parse starting in " showing", and activate
tha OUTPUT-SUPERVISOR each time an object 1is parsed. The
QUTPUT-SUPERVISOR inserts all objects in the CONSIST-OF slot of
output, and returns coatrol to the OUTPUT~SP that inserts the
RECIPIENT, "account”, in the CONSIST~OF slot of output and

returns control.

The next sentence s "The accounts and transactions ...
as follows:" DECLARATIVE asks DESCRIPTION to parse the subject.
Because account belougs to the relevant coancepts of the passive
frame, the ACCOUNT-SP specilalist is invoked. There is nothing
in STRUCT. When a topic speclalist is {nvoked and the next
word 1is a boolean coanjunction, the specialist asks DESCRIPTION
to get the next concept for it. If the concept does not belong
to the list of relevant concepts, the specialist sets RECOG to
NIL and returans control. Otherwise it continues examining the
sentence. Because transaction belongs to the slot of relevant
concepts of the passive frame, ACCOUNT-SP continues in control.
ACCOUNT-SP finds "for" and asks DESCRIPTION to parse the
nominal phrase. ACCOUNT-SP ignores anything that has the
marker HUMAN or TIME. Finally ACCOUNT-SP finds the verb, a
APPEAR D-VERB, and invokes the DESCRIPTIVE-VERB routine with
the recommendation of invoking the ACCOUNT-SUPERVISOR each time

a complement is found. The ACCOUNT-SUPERVISOR is awakened with

card. This 1inserts '"card" in the INPUT-TYPE slot of account

and transaction and returns control to the DESCRIPTIVE-VERB

oy v

106

routine. AS-SP (the routine for "as") is invoked next. This,
after finding "follows" followed by ":", indicate to
DESCRIPTIVE-VERB that the sentence has been parsed. ACCOUNT-SP
returns control to DECLARATIVE and this, after checking that

QUIT has the value T, returns coatrol to SENTENCE.

The next sentence is: "First will be a sequence of cards
ees accounts." The INPUT-SP specialist is invoked. STRUCT
looks like : (ADV (FIRST) EXIST). "Sequence of cards" gives
the councept card activating the INPUT-SP specialist. The next
concept 1s a REPRESENT D-VERSB. INPUT-SP activates the
DESCRIPTIVE-VERB routine and asks it to activate the
INPUT-SUPERVISOR each time an object s found. The
INPUT-SUPERVISOR checks 1f the object belongs to the relevant
concepts for checking accounts. If not, the ACCOUNT-SUPERVISOR
will complain. That will be the case if the sentence is :
"Pirs. will be a sequence of cards 'describing the students".
Asgume that the above sentence says “First will be a
sequence of cards consisting of an account number and the old
balance."” In that Icase, the INPUT-SP will activate also the
INPUT-SUPERVISOR but because the verbal concept is a CONSIST
D-VERB, the INPUT-SUPERVISOR will stack the complements in the
slot for INPUT. Thus, what the supervisor specialists do

depend on the verbal concept and what is coming after.

The next sentence is: "Each account is described by ...,
in dollars and cents." Again, the ACCOUNT~SP is activated. The

next concept 1s a CONSIST D-VERB. ACCOUNT-SP assumes that it

107

is the 1input for accounts and activates.che DESCRIPTIVE~VERB
function, and passes to it the recommendation of activating the
INPUT-SUPERVISOR each time an object 1s parsed. The
INPUT-SUPERVISOR is awakened with (NUMBERS CARDINAL (2)).
Because number is not an individual concept (like;say, 0 is)
the INPUT-SUPERVISOR reexamines the sentence and finds ":", it
then again asks to DESCRIPTIVE~VERB to parse starting at "the
.account number...". The INPUT-SUPERVISOR stacks the
complements in the ianput slot of the concept that is being

described : account.

The next sentence is: "The last account is followed by
eese to indicate the end of the 1list." The ACCOUNT-SP is
invoked again. The following production rule is fifed: If the
ordinal "last" is modifying "account" and the next coucept is a
SPATIAL D-VERB then activate the END-OF-DATA specialist. This
assumes control and asks DESCRIPTIVE-VERB to parse starting at
"followed by" with the usual recommedation of awakening the
END-OF-DATA supervisor when a complement is found, and the
recommendation of ignoring a PURPOSE clause if the concept 1is

end-of-list or end-of-account. The END-OF-DATA is awakened

with "dummy-account". Because "“dummmy—-accouat"” is not an
individual concept, the END-OF-DATA supervisor reexamines the
Qen:ence expecting that the next concept is a CONSIST D-VERS.
It finds {t, and redirects the parser by asking the
DESCRIPTIVE-VERB to parse starting in "consisting of two zero
values". The END-OF-DATA is awakened with "(ZERO CARD (2))".

Because this time the object 1is an individual coucept, the

END-OP-DATA supervisor inserts it into the END—OF-DATA slot of

the concept being described: account.

S5« A Checking-Account Programmer

The solver receives as input a list coantaining the name of
the concepts that the parser has built. In orinciple, any
account problem is decomposed in the following steps: 1) Read
the accounts 2) Read and process transactions 3) Print reults .
For each of these conceptual steps, there is a problem solving
specialist that "knows"‘vha: to do. There are routine actions,
the same for a large class of problems, that these specialists
must perform. For instance, the READ-ACCOUNTS specialist get
the value of the slot for the input of the accounts. Then 1t
checks the consistency of the input. For example, it checks 1f
there is at least some kind of identification (account
number ,name etc). Next 1t examines each of the arguments of
the input to find out what type of variable (real, character,
etc.) must be declared. Finally it gets the value of the
end-of-data slot of account to check consistency or to do
something about 1it, if the user forgot to indicate the end of

data.

Obviously our purpose has been to build a problem solver
that will have the capability of solving a large class of
checking~account programs, not just the one in fig.l. In
particular, the problem solver we have implemented can produce
a program for any combination of the following outputs : 9]

All accounts whose final balance 13 greater than the old

Pl ee—ms eememy

- e

109

balance, 2) All accounts whose old balance is less than $24.00
3) All overdrawn accounts, &) All accounts whose number of

deposits is greater than the aumber of wihtdrawals etc..
6.1 The Planner

Consider the problem of fig.l and assume that the output
i{s statement 1) above. In that statement, it is not said that
the f£final balance must be computed and that the old balance,
when reading the accounts, must be saved. The function of the
PLANNER consists of examining each oue of the output statements
and telling each problem solving specialist what to do. Each
specialist has a list, called the task list. When the PLANNER
examines the output statements, it fills these lists with the
computations each specialist must perform. For example, 1f
PLANNER examines statement 1) it will insert "final-bal” in the
task list of the specialist for processing transactions, and
"old~bal" in the list for the specialist for reading the
accounts. The insertion will take place {f "final-bal" or

"old~bal" are not already there.

Beside assigning individual concepts to each problem
solving specialist, the PLANNER must determine how the output
statements as a whole must be computed. The problem solver
assumes that the output statements must be printed in the order
the user has formulated them. Thus, statement 1) of above has
to be printed after the transactions have been computed, and

is, therefore, assizned to the PRINT-RESULTS specialist. But,

the statement 2) of above, if it is the first output statement,

110

can be printed while reading the accounts {tself.
Nevertheless, 1if other output statements are preceding it, the
most appropriate thing to do is (while reading the accounts) to
save in one array those accounts whose old balance are less
than $24.00 and in another array the old balance, then print
the content of these arrays at the approppiate time. Thus the
PLANNER creates two array names,say A and B, and inserts the
statement (PRINT (A B)) in the task list of PRINT-RESULTS and
the following statement in the task list of the READ-ACCOUNTS
specialist: [((ACCOUNTS UQ (ALL)) WHOSE (SUBJ (OLD-BAL) LESS
(24)) STORE (ACCOUNT OLD-BAL) INTO (A B)] The 1list preceding
"STORE" 1is the parser output for statement 2). The remainder
in the 1list has been introduced by the PLANNER. When
READ=-ACCOUNTS gets to this statement, it checks that ACCOUNT
belongs to the input for the problem and asks WHOSE-TR to
translate the whose c%ause into a programming language
statement. We have implemented a WHOSE-TR function that
handles clauses with several subjects or predicates, not just
the simple example of above., Then READ-ACCOUNTS asks STORE-SP,
a low laevel function, that "knows" Low to store the coantent of
arrays into other arrays, to translate the remaining of the

1l1ist.

We hope that we have conveyed an 1idea of how our
checking—accounts programmer works. We are writing the code
necessary for the program to handle checking=-accounts programs
with essentially different input conditions. For instance, all

the transactions for an account are grouped following the

account number.

6. Comparison with Related Approaches and Future Reseach

The work by Rieger and Small [26] has influenced our
research. Our prepositional experts are modelled after their
word experts. Rieger's idea that individual words have
contextual knowledge about its various uses can hardly be

scontested. But we do not go along with the idea of building an
expert for each word. Words are surface manifestations of
something deeper. 1In our parser, concepts and not words are

the guiding principles.

Ian our approach to natural language, we have had present
the view expressed in [23], {27], {28], and {15] that natural
language comprehesion is an integrated process in which high
level sources of knowledge guide low level processes. We have
already indicated the main difference between [15] and the
present work. In our opinion, one of the most sticky problems
with Schank’s and his collaborators systems has beeﬁ its
difficulty in dealing with new texts. We think that our
concept of high level sources of knowledge overriding low level
linguistic knowledge allows our system to handle new problem
areas with not too much difficulty. Assume that we want LLULL
éo understand programming problems about roman numerals, say.
We are going to find uses of verbs, prepositions etc. that our
low 1level parser will not handle. We integrate those uses in

our parser (irs modular nature makes that integration

relatively simple). On top of that, we will build several high

N |

level specialists that will have knowledge about roman numerals. Io our future
research, we are going to extend the breadth of the system by augumenting both
its lowv level linguistic knowledge and the themes it is able to understand. At
the same time, we are going to increase its depth on checking account programs,
in such a way that it will be able to understand and solve any "programming

story" about checking accounts.

7. A somputer fua

(A BANK WOULD LIKE TO PRODUCE RECORDS OF THE TRANSACTION DURING AN ACCOUNTIN
PERIOD IN CONNECTION WITH THEIR CHECXING ACCOUNTS. FOR EACH ACCOUNT THE BAIK
WANTS A LIST SHOWING THE BALAICE AT THE BEGILIRING OF THE PERIOD, THE IWUIBGEZR OF
DEPOSITS AND WITHDRAWALS, AND THE FINAL 3ALANCE. THE ACCOUNTS AND TRAISACTIONS
FOR AN ACCOULTING PERIOD VILL 3E GIVEN Ol PUNCHED CARDS AS FOLLOVS: FI3ST UILL
BE A SEQUEINCE OF CARDS DESCRIBING THE ACCOULTS., ZACH ACCCGUUT IS DESCRIBED 3Y
IWO NUMBERS: THE ACCOUUT UMBIR (GREATER THAN 0), AND THE ACCOULT BALAICT AT
THE BEGINNING OF THE PERIOD, IN DOLLARS AliD CELNTS. THE LAST ACCQULT IS FOLLOUZD
BY A DWILIY ACCOUNT COUSISTING OF TWO ZERO VALUES TO IIDICATE THE END OF THE
LIST. THERE WILL BE AT MOST 200 ACCOUKTS. FOLLOWING THE ACCOUNTS ARE THE
TRANSACTIONS. EACH TRANSACTION 1S GIVEN BY TWHREE UIBERS: THE ACCOUNT NUMBER,
A 1 OR -1 (INDICATING A DEPOSIT OR WITHDRAWAL, RESPECTIVELY), AlD THE
TRANSACTION ALOUNT, Il DOLLARS AND CENTS. THE LaST REAL TRANSACTION IS FOLLCWED
BY A DUIL{Y TRANSACTION COLSISTING OF THREE ZERO VALUES.)

fig.l
(From An Ingroduction to Programming (Conway and Gries, 1975)

OUTPUT CONSIST-OF (ACCOUNT OLD-BAL DEPOSITS WITHDRAWALS FINAL-BAL)
ACCOUNT IMNPUT (ACCOUNT-NUUEER SPEC GREATER (0) OLD-BAL SPEC (DOLLAR-CENT))
INPUT-TYPE (CARDS)
END-OF~DATA ((ZERO CARD (2)))
NUMBER-OF-ACCOUNTS (200)
TRANSACTION INPUT (ACCOUNT-UNIBER (1 OR -1) REPRESENT (DEPOSIT OR WITHDRAWAL)
TRAUS-ANOUNT)
INPUT-TYPE (CARDS)
END~OF-DATA ((ZERO CARD (3)))

fig. 2 Parser Output for problem of fig. 1

REFERENCES

(1) Biermann, A., "Approaches to Automatic Programming”, in

Advances 1in Computers, M. Rubinoff and M. C. Yovits, (eds)
Academic Press, 1976

(2) Elschlager, R. and Phillips, J. Automatic Programming, Memo
BPP=79-24,Report STAN-CS=79-758, Computer Science Department,
Stanford, November 1979

(3) Hammer, M. and Ruth, G.,"Automating the Software Development

Process.", in Research Directions in Software Technology Wegner
(ed.), MIT Press, 1979

(4) Phillips, J., and Green, C., "Towards Self-Described
Programming environments", Computer Science Dep.,Systems
Control Inc., Palo Alto,CA.,1980

(5) Rich, C., and Shrobe, H., "Design of a Programmer’s

Apprentice”, in Artitificial Iatelligence: An MIT Perspective,
MIT press, 1979 -

(6) Balzer, R. and Goldman, N., "Principles of Good Software
Specification and Their TImplications for Specification
Languages,” IEEE Proceedings Specifications of Reliable
Software,Boston, 1979

(7) Balzer, R., "Transformational Implementation: An Example", USC
Information Sciences Institute,Marina del Rey, Ca. 90291, 1979

(8) Biermann, A. W. and Ballard, B., "Toward Natural Language
Computation”, AJCL, Vol. 6, Number 2, 1980

(9) Novak, G. S., "Computer Understanding of Physics Problems
Stated in Natural Language', AJCL Microfiche 53,1976

(10) Bobrow, D. G. '"Natural Language Input for a Computer
Problem~Solving System", 4in Semantic Informatiom Processing,
Minsky (ed.), MIT, 1968

(11) Charniak, E. "CARPS, A Program which Solves Calculus Word
Problems", Report MAC-TRS5, MIT, 68 ‘

(12) Heidorn, G. E. "Natural Language Inputs to a Simulation
Programming System', NPS-55HD72101A, Naval Postgraduate School,
Monterry, Ca., 1972

(13) Hayes, J. R., Simon, H. A., "Understanding Writen Problem

" -

_d

114

Instructions™, in Knowledge and Cognition, L. W. Greemo
(ed.), Lawrence Erlbaum Associates, 1974

(14) Ginsparg, J., "Natural Language Processing in An Automatic
Programming domain", Stanford, Computer Science Dept., AIM-316,
1978 ‘

(13) Schank, R., Lebowitz, M., and Birnbaum, L. "Parsing Directly
Inco Knowledge Structures", in LJCAI-79

(16) Wirth, N. "Program development by stepwise refinement.™, CACM
14, 1971

{17) Gomez F., and Chandrasekaran B. "Knowledge Organization and
Distribution for Medical Diagnosis.”, IEEE Trans. Syst., Man,
Cybern., vol. SMC~ll, no. 1

(18) Newell A., and Simon. H. A., Human Problem Solving,
Englewood Cliffs, N.J., Prentice~Hall, 1972

(19) Strawson P, F. ﬁOn Referring", MIND, 1950

(20) Gershman A. V. T"Conceptual Analysis of Noun Group in
Eaglish", IJCAI-77

(21) Levi J. N. The Syntax and Semantics of Complex Nominals,
Academnic Press, 1978

(22) Carnap, R. Meaning and Necessity, Univérsi:y of Chicago
Press, 1950

(23) Schank R. C. (ed.) Conceptual Informatiom processing, North
Holland, 1975

(264) Erman L. D. and Lesser V. R. "A Mult-Level Organization
for Problem~Solving Using Many Diverse Cooperating Sources of
Knowledge", 1JCAI-75

(25) Charniak E. "With a spoon in hand this must be the eating
frame"”, ian Proc. Counf. Theoretical Issues in Natural
Language, 1978

(26) Rieger, C. and Small S., "Towards a theory of distributed
word expert natural language parsing", in IEEE Trans. Syst.,
Man, Cybern., vol.SMC~11, no. 1

(27) wilks, Y. "An Artificial Intelligence Approach to Machine
Translation”, in Computer Models of Thought and Language, R.
C. Schank and K. Colby (eds), W. H. Freeman and Co., San
Francisco

(28) Risbeck, C. and Schank, R. "Comprehesion by Computer:
Expectation-based Analysis of 3Sentences in Context", Res.
Rept. 78, Yale University, 1976

115
2.2.2. Nagursl gud Socisl System Metaphors in Distributed Problem

: Int ion to the lasue

r}

| ane B e B

a—r N T

e ——

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, YOL. SMC-11, NQ. 1, JANUARY 198

Natural and Social System Metaphors for
Distributed Problem Solving:
Introduction to the Issue

B. CHANDRASEKARAN, SENIOR MEMBER, 1EEE

Abstract— Naturslly occusring informstion systems provide s number of
useful metaphors for distributed problem solving. An introduction to some
aspects o these metaphors is given which simuitaneously serves as a guest
editorisl for a special issue devoted to the topic. The : ubiquity of a
distributed mode of computation in informstion processing in natural
phenomena in general and in human societies in particular is observed and
relsted to the evolutionary and complexity-reducing advantages of this
mode. The forms of communication media availahle to coordinste the
problem solving activities of the individual processors are examined. Some
general remarks are msde on how problem solving is distributed and
coovdinated in some human organizations, and the potential usefulness of
the “society of specialists™ notion in explicating cognitive activity is
pointed out. Along the way, the contents of the papers in the special issue
are considered in relation to various points raised in the discussion.

1. UBIQUITY OF DISTRIBUTED INFORMATION
PROCESSING

SSUES about distributed computing, as about any other
aspect of computing, can be formulated at various levels
of abstraction. Each level has a different conceptual con-
tent, and raises a correspondingly different set of issues. In
distributed computing most of the recent emphasis has
been at a level that is closely related to physical connection

- of different processors, secure transmission of data among

them, and the corresponding operating system problems of
scheduling different processors. These issues have
dominated discussion so much that the term distributed
processing has come to mean almost exclusively that set of
issues, The papers in this speciai issue deal with distributed
processing at a different, “higher.” level of abstraction. The
questions of interest at this level concern the strategies by
which the decomposition and coordination of computation
in a distributed system are matched to the structural de-
mands of the task domain. Distributed problem solving

(DPS) is an appropriate term for the phenomena at this

level of abstraction.

As the theme of the issue implies, a motivating belief is
that information processing phenomena that occur in the
natural world are a source of a number of useful
metaphors for distributed processing in general and dis-
tributed problem solving in particular. It is clear that

Manuscript received September 20, 1980. This work was supported in
part by the Air Force Office of Scientific Research under Contract F
49620-79¢-0152.

The author is with the Artificial Intelligence Group. Department of
Computer and [nformation Science, The Ohio State University, Col-
umbus, OH 43210.

distribution of processing or computation is an intrinsic
characteristic of most natural phenomena which can be
captured within a computational or symbol processing
framework. Social organizations from honeybee colonies to
a modern corporation, from bureaucracies to medical com-
munities, from committees 1o representative democracies
are living examples of distributed information processing
embodying a variety of strategies of decomposition and
coordination. Computation in biological brains, especially
in their sensory processors such as vision systems, displays
a high degree of distribution. There is substantial evidence
that higher cortical functions are also computed (and con-
trolled) in the brain in an essentially distributed mode:
regions have been identified in the cortex whose activities
are highly correlated with specific higher cortical functions
such as language processing. Geschwind [1] indicates that
some regions in the brain are extremely specialized: there is
an identifiable processor which specializes in human face
recognition!

Control of movements in biological systems is also
accomplished by distributed computation [2]. Evidence is
available that control of normal walking movements re-
sides in the spinal cord (3). Volitional movement can be
viewed as being gencrated by low-level programs coordi-
nated and regulated by higher level controllers. The task of
generating all the impulses for all muscle fibers for each
movement is surely beyond the resources of any centralized
biological movement processor.

In all these examples—from social organizations to
brains and motor systems— the overall computational task
is distributed among a collection of separate processors.
These separate processors coordinate their computations
by means of exchanging appropriate symbolic information.

. Way (AND WHY NOT) DISTRIBUTION

A. Advantages of Distribution

Why should distributed computation be such a ubiqui-
tious mode in naturally evolved information processing
systems? The following advantages of distribution may be
relevant here.

1)} Decomposition of processing is an absolutely basic
strategy for controlling the complexity of computation.
Central computation is just too costly in both memory and
time. Distributing the computation among different

0018-9472 /81 /0100-0001$00.75 ©1981 IEEE

- ™ ";-- ﬂ'- wm“\. S P) W },m: g . -

117

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 1, JANUARY (981

processors generates possibilities for parallel activities by
different processors which may be able 10 work on essen-
tially nonoverlapping segments of the data most of the
time. Also the scope of each processor is limited, i.e.. the
size of the input domain is much smaller. Complexity of
computation is often an exponential function of input
space size.

2) Appropriately distributed computing increases the
prospects for graceful degradation of response when there
is degradation of input data or failure of portions of the
system.

3) Distribution is a natural attribute of evolutionary
systems. As the system grows and increases in complexity,
a distributed mode provides for replacing a processor with
several processors and making mosiy local changes in
linkage among processors. or, as the external environment
changes, distributed information processing makes adapra-
tion 1o change casier, since again, as long as the rate of
external change is not large, changes to the system can be
mostly local, if the original decomposition reflected the
structure of the task environment correctly. As pro-
grammers well know, these are reaily advantages of modu-
larity, but a distributed architecture provides a natural
means of implementing this modularity.

4) In complex information processing systems involving
very large numbers of sensors and effectors, a central
processor will require very large bandwidths for responding
to sensors or activating effectors. Imagine an army whose
commanding general alone is authorized to make a/f the
field decisions!

5) Often a task decomposition will lead to the generation
of a large number of identical subtasks, each. however,
operating over different subsets of input data or regions of
the enviromment. In this case, once a particular processor is
optimized to be effective for such a subtask, in a distrib-
uted approach this processor can be replicated as often as
needed. This provides for considerably increased efficiency
due to parallelism, and is especially useful in systems that
deal with large volumes of sensory information. However,
it is useful in a variety of other situations also. An example
is the optimization of the training of salespersons in a
commercial organization and consequent production of
large numbers of them.

B. Possible Cosis of Distribution

Of course there could sometimes be a cost associated
with distribution as opposed to a central computation. The
computation of each processor is often a filtering opera-
tion, in that it communicates only the resuit of its computa-
tion. (Thus in a vision system a higher level processor may
~ not have direct access to the image intensity data, but only
to the outputs of edge detectors operating on these data.)
Another processor may arrive at a different resuit with the
same data if it did not depend on the computation by the
other processor. Several strategies are used in naturally
occurring distributed systems to deal with this problem.

< — o S——————

- -

3

:-’&.Té "*""‘““M}"» e *\-;-* P - -

Marr (4] talks about the principle of least commiiment as
one way by which the processors at a lower level in a vision
system may be constrained from introducing too much of a
filtering. This principle suggests decomposing the problem
in such a manner that at any level commitments are made
in a conservative fashion, i.e., to the least abstract entity
that is necessary. If this principle is applied at each level of
abstraction carefully, the processors at the higher levels of
abstraction will have availabie to them gecnerally reliable
information from the lower level processors. The penalty
this extracts is a certain profligacy with respect to the
aumber of processors, since typically this principle wouid
lead to an increase in the number of levels of abstraction.
Even with this principle, processors at a lower level of
abstraction may still be forced 10 make some commitments
which are not quite correct in specific instances, though on
the average it may be a reasonable thing to do. This sort of
thing explains certain kinds of visual illusions and visual
effects, e.g., the “sun” effect in {4]. That is, visual illusions
show dramaticaily the commitments made by lower level
processors that happen not to be warranted for special
classes of situations.

Another strategy is a sort of local relaxation by which the
results of contiguous processors dealing with data in a
neighborhood are compared for consistency with each
other, and a processor’s result would be ignored by a
higher level processor if it is substantially deviant from
those of its neighbors. This, of course, is a double-edged
strategy. since in the occasional instances in which the
deviant processor is correct, its resuit nevertheless does not
get passed up to the higher level processors.

C. From Committees 10 Hierarchies

The fear of this filtering and consequent bias is at the
heart of full participatory democracies like the city-state
democracy of ancient Athens, where all the citizens voted
on almost all the issues. However, as the size and number
of issues grow large, this form of information processing
begins to place great burdens on the available bandwidth,
and the democratic processes become more organized, and
abstractions in the form of representation of constituencies
begin to come about. These in turn produce the probiems
of filtering mentioned above, They aiso begin to manifest
another consequence of evolutionary distributed systems: a
tendency to swamp out changes which are local in space or
time. This is the other side of the coin of robustness that
natural distributed systems often display. The changes in
the environment or input have to be sufficiently large to
overcome the filtering and the abstractions made by the
various processors at levels of abstractions close to the
sensory data.

The contribution of Wesson et al. for this special issue
considers an experimental comparison of two distributed
architectures for a message puzzie task, where a network of
human sensors, each of whom sees only a small portion of
a two-dimensional environment, attempts to interpret it.
One arrangement was an “anarchic committee” architec-

CHANDRASEKARAN: NATURAL AND SOCIAL SYSTEM METAPHORS

ture— somewhat like the city-state democracy — where ail
the nodes were free to communicate with each other. The
second arrangement was a hierarchical one. For the partic-
ular collection of experiments that were conducted, the
committee architecture worked better than the hierarchies.
Several aspects of the experiment are worth noting. The
size of the environment as well as the sensor network was
small. It would be interesting to see if the resuit would hold
for larger size environments and large networks of nodes.
If the observations in the preceding paragraph are correct,
then one would expect a gradual shift in favor of a more
hierarchical arrangement with increasing size. Secondly,
hierarchies may be appropriate only when the environment
has a sufficient amount of structure. For example. when
different regions of the environment correspond to differ-
ent identifiable configurations, groups of sensors will need
to exchange information only within each group to identify
the local configuration. The bias effect that we discussed
earlier would be most pronounced when the architecture is
not matched to the structure of the environment.

[{I. INTERPROCESSOR COMMUNICATION

It seems reasonable to suppose that different architec-
tures of distribution would emerge depending upon the
costs of communication among processors or, equivalently.
upon available bandwidth. When a multiplicity of media
with differing bandwidths and accessibilities is available,
the architecture of a naturally occurring evolutionary dis-
tributed system would be organized so as to use the availa-
ble bandwidth most effectively. A modern corporation
with telephones, radio. and other media available has a
different architecture than one in times or regions with
more primitive communication structures. Increased band-
width availability wouid seem to decrease processor auton-
omy. i.e., place greater constraints on the amount of filter-
ing allowed at the local processor level. This, however,
would typically be counteracted by the increased burdens
on the top-level processors that an overload of information
will pose. So the degree of autonomy is a balance between
these contending tendencies in distributed natural systems.

The communication media available can be categorized
into two broad classes: one which is used by senders and
receivers who know the identity of each other, and another
which has more of a broadcast character, and is more
associative in nature, i.e., the receiver uses whatever infor-
mation in the medium that it deems appropriate to its
needs. In large distributed systems, it is not practical, even
if the bandwidth were available, for the first class of
communication media to be used without constraint. For
one thing, as the size of the system grows. the directory size
for each processor would grow rapidly, burdening the
information processing capabilities of the processor. For
another, as processors are deieted or added in response to
local changes. the directories will have to be updated all
over the system. This collection of constraints typically
leads to this class of media being used within a narrow and
local scope. Most often the communication is hierarchical.

118

thus eliminating directory size and updating problems.
Information meant for or needed from other processors is
directed 1o the broadcast media, such as blackboards or
Journals. However, once again. this cannot also be done
with abandon, since these media will then be clogged with
the outputs of the large number of processors. making 1t
useless for receivers, uniess they are willing to invest a large
portion of their limited processing resources to sort out the
clutter. Extremely careful and powerful abstractions. closely
matching the structure of the class of tasks for which the
distributed system is designed, will need to be generated as
appropriate inputs to the broadcast media. Understanding
how this is done is a central theoretical enterprise. We shall
later comment upon the use of blackboards by three papers
in this issue: those by Gomez and Chandrasekaran. Rieger
and Small. and Cullingford.

IV. DPS in HuMaN COMMUNITIES

As we mentioned earlier decomposition is the basic
weapon against complexity. Thus when a socially im-
portant task is too complex for individual humans, organi-
zations with a number of humans evolve whose architec-
ture matches the structure of the task., and whose total
computational capacity is adequate for it. Task decomposi-
tion in human -organizations often provides a great deal of
paralielism, which is conceptually and operationally im-
portant for increased efficiency. Several hundred years ago,
each competent physician possessed almost all of the medi-
cal knowledge then available. Today the complexity of
medical knowledge has resulted in the creation of a com-
plex organization of specialists, where no one knows more
than a small part,. but the community overall advances
medical knowledge and provides care. The modern cor-
poration is often a large distributed system with a largs
number of specialized subdivisions which, when successful,
mesh together in a miracle of purposefulness. but when the
overall structure strays too far from the changing environ-
ment, it resembles a maladaptive dinosaur (¢:¢ comments
on adaptation and distribution in Section II). The scientific
community is another human organization whose architec-
ture has evoived in a distributed fashion. the shaping forces
in this case being the dictates of the scientific method, and
the communication requirements for the creation and veri-
fication of new scientific knowledge. There are countless
other examples of human organizations.

Gomez and Chandrasekaran’s work in this issue con-
centrates on the epistemological structure of medical diag-
nosis, which is independent of whether the task is accom-
plished by a single human. a community of specialists, or a
collection of microprocessors. They relate the identity and
structure of specialists to the conceptual comient of the
domain. The distributed problem solving that they propose
has a great deal of parallelism in it.

In their explication of the scientific community meta-
phor. Kornfeld and Hewitt emphasize its inherent paral-
lelism. They develop some concurrent language primitives
to emulate some of the problem solving behavior of scien-

D A i s e,

119

[EEE TRANSACTIQNS ON SYSTEMS, MAN, AND CYBERNFTICS, YOL. SMC-11, NO. 1. JANUARY 1981

tific communities. Fox proposes that, among the criteria
for distribution in human organizations are complexiry,
uncertainty, and resource constraints. He considers the
organizavion of a distributed system such as Hearsay-11I (5],
and studies the extent to which it already incorporates the
insights of organization theory.

Markets are an interesting kind of distributed system.
They are not primarily information processing systems, but
they use a distributed, mostly local information exchange
1o achieve a certain kind of global optimality in resource
utilization. They are the sources of the metaphors of prices
(a kind of abstraction) and contract and bids (a kind of
mechanism) that enable a global optimality to be reached
over a period of time. The paper by Smith and Davis in
this issue deals with some aspects of these metaphors and
their use in distributed systems.

V. DPS in COGNITIVE ACTIVITY

It is easy to conceive of distributed computing in the
case of what are evidently communities of individual
processors, such as ants building hills, armies, corpora-
tions, or the scientific community. What is less obvious is
the utility of this conception in understanding the informa-
tion processing of an individual human being. The meta-
phor of a society of little minds-the homunculi— has come
up repeatedly in psychology and philosophy of mind.
Dennett [6] gives a brief but useful account of the history
of this metaphor. These models have floundered on the
apparent infinite regress involved in explaining a mind by
postulating a collection of minds. [t has been only recently
that, due to work in artificial intelligence, we can begin to
see how “mind-like” is not an all-or-none affair, that more
complex mind-like behavior can be obtained by the coordi-
nation of less complex mind-like entities. The less complex
entities are specialists, i.c., they have a narrower scope.
This kind of decomposition can be applied recursively at
quite a few leveis: Minsky (7] has recently formulated a
“society of minds” model dealing with epistemological
issues all the way down at the “neurodevelopmental™ level,
and Marr’s work is very suggestive of how vision can be
conceptualized a« a society of specialists: groups of special-
ists all the way from very low-level ones (edge specialists)
through those at slowly increasing levels of abstraction to
high-level conceptual specialists.

When top-level control in a society of specialists is weak
or nonexistent, the subordinate specialists may speak up in
different, possibly conflicting, voices. *“Multiple control”
substitutes unitary control. Jaynes (8] recalls the fliad and
its heroes’ ascription of many of their actions to the
demands of gods whose voices they hear. He relates this to
the evidence that many schizophrenics— examples of non-
unitary consciousnesses—report hearing “inner voices”
during acute attacks. Hilgard (9] discusses hypnosis as a
breach of this unitary control. Freud’s theories, of course,
were based on the view of the mind as an interacting
society of many agents. In this context it is tempting to
speculate that one of the roles of consciousness is in

providing a blackboard (we earlier discussed it as one form
of communication medium), for the agents at the top levels
of cognition.

For our purposes. the foregoing speculations can be
given a concrete cast by asking: What scientific value does
the distributed processing metaphor—or the society of
minds notion—have in explicating high-level cognitive
phenomena? Gomez and Chandrasekaran in their paper in
this issue point out that there is really not much that is new
in the notion of a society of specialists as a model of
complex computations: almost all large programs are mod-
ular and the modules are specialists. Thus they suggest that
for this metaphor to be technically useful criteria are
needed for decomposing tasks into specialists. Their paper
provides such criteria for one well-defined class of cogni-
tive activity, viz., diagnosis. The specialists are conceptual
specialists who are hierarchically organized. In addition 1o
the hierarchical communication. they also use a black-
board, i.e., a broadcast form of communication. The authors
provide an explicit account of the structure of the black-
board for this particular task.

Similarly, Rieger and Small propose a particular crite-
rion to organize the specialists in parsing natural language
utterances. They propose that the specialists be *“word
experts.” and suggest how their activities should be coordi-
nated. Again it is instructive that the experts use a broad-
cast communication medium, viz. the “control workspace.”
Cullingford. in his paper in this issue. considers the prob-
lem of integrating and controlling the experts in a system
to “understand” a class of newspaper stories. Again the
blackboard notion finds expression in his work. For the
particular class of tasks considered by him. he proposes
that the blackboard data contain not only results computed
by specialists. but in addition some control information.
i.e., some indication of ow the blackboard information is
changed, e.g.. who changed an item. In addition to the
papers in this issue, | should like to draw the readers’
attention to the work of Sacerdoti [10] who has considered
how a distributed architecture might be designed for natu-
ral language understanding.

VI. CONCLUDING REMARKS

Hearsay-11I [5] was one of the first large artificial intelli-
gence (Al) systems to use an essentially distributed archi-
tecture for a complex probiem and was the first system to
use a blackboard as an interprocessor data structure. The
paper by Lesser and Corkill in this issue attempts to
concretize some of the lessons from Hearsay-11 and other
knowledge-base systems for the design of distributed
processing systems. They concentrate on how uncertainty
in input data and inaccurate processing by individual
specialists can be compensated for by the collective so that
the whole is more robust than the individual processors.
They call their approach functionally accurate (referring to
robustness of performance), cooperative (indicating some
form of relaxation procedure— see Section 11-C— by which

each contributes to the reduction of uncertainity of other
processors) distributed systems.

Distributed problem solving, or more generally distrib-
uted artificial intelligence, is important conceptually, stra-
tegically, and practically. its conceptual importance lies in
that a distributed paradigm eludicates the structure of the
processes of intelligence, such as vision, speech processing,
or language understanding. whether or not an Al system is
in fact implemented in a distributed manner. Its strategic
importance arises from the fact that it is a good research
strategy to look for decompositions of a complex problem.
Its practical significance arises both from applications that
are essentially distributed in nature. such as distributed
sensor networks {11}, as well as from the technological
breakthroughs in microprocessors that make a distributed
implementation of Al systems an elegantly practical possi-
bility. I hope that the papers in this special issue direct
attention to this important scientific and engincering enter-
prise.

ACKNOWLEDGMENT

I thank Andy Sage for a very helpful and cooperative
role in his capacity as Editor of this TRANSACTIONS, the
authors of all submitted papers for their cooperation, and
the reviewers R. Bhaskar, R. Cullingford, R. Davis, M.
Fox, P. Kugel. J. Reggia, C. Rieger, R. Smith, N. S.

120
(EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-1 1, NO. 1, JANUARY 1981

Sridharan, K. Stevens, L. Svobodova, S. Tanimoto, and
S. W. Zucker— for their invaluable help. R. Bhaskar, Bruce
Flinchbaugh, and Fernando Gomez made useful comments
on earlier drafts of this introduction. I am grateful to
David Zeluzer for information on biological movement
control.

REFERENCES

[1] N. Geschwind. “Neurological knowledge and behaviors,”
Cognitive Sci., vol. 4, no. 2, pp. 185-193, 1980.

[2] N. Bernstein, The Coordination and Regulation of Movement,
York: Pergamon, 1967.

[3] K. Pearson. “The control of walking.” Scientific American. vol. 235
(6), pp. 72-86, Dec. 1976.

[4) D. Marr, “Early processing of visual information,” Phil. Truns. Roy.
Soc., vol. 275, ser. B 942, pp. 489-519, 1976.

{51 L. D. Erman, and V. R. Lesser, “The Hearsay-Il system : A
tutorial,” in Trends in Speech Recogmtion, W. A. Lea, Ed.
Englewood Cliffs, N. J.. Prentice-Hall, 1979.

(6] D.C. Dennett, “Artificial intelligence as philosophy and as psychol-
ogy.” in Brainstorms. Bradford Books. pp. 109-126, 1978.

[l M. Minksy, “K-Lines: A theory of memory,” Cogmtioe Sci. vol. 4,
no. 2, pp. 117-133, 1980.

{8] J. Jaynes, The Origin of Conmsciousness in the Breakdown of the
Bicameral Mind. Boston: Houghton Mifflin, 1976. :

[91 E. R. Hilgard, Divided Consciousness: Multipie Controis in Human

Thought and Action. New York: Wiley, 1977.

E. Sacerdoti, “What language understanding research suggests about

distributed arificial intelligence.” in Proc. Distributed Sensor Nets

Workshop. Carnegie-Mellon University, pp. 8- 11, 1978.

Proc. Distribwsed Sensor Nets Workshop, Camegie-Mellon Univer-

sity, 1978.

New

(10]

an

121

2.3, Automated Translation of Computer Programs

As mentioned earlier, the major thrust here was on some basic theoretical
results concerning the computability and complexity of translator generationm.
The vehicle for this research was the Ph. D dissertation of Doyt Perry. In
the following section we present the summary section of this dissertatiom.

122

COMPUTABILITY AND COMPLEXITY ISSUES OF TRANSLATOR GENERATION

The Obhio State University, 1982

Doyt Lee Perry, Ph.D.

Overview of Results

In this work we have extended the theory of tramslatios by
carefully ideatifying and imvestigating the problem of antomatic
generation of translators. The immediate context for this work was
provided by Buttelmann [But74], Pyster (Pys75], and Krishnaswamy
(Kri?6], who identified formalisms for langnages, translation, and
translator gemeration. Continving in the same theoretical spirit,
we have generalized and extended several of their ideas in the
course of our work. The primary conclusion of this thesis is that
searching for general methods of automatically gesmerating
translators is likely to fail. In pursuing this result we believe
several contributions were made to translation theory.

We were sble to provide a variation of the langunage defimition
schemes of Buttelmann, Pyster, and Krishnaswamy that makes more
precise the means by which the semantics of a language defimition
are specified. We demonstrated that one type of language definition
system, namely an acceptable LDS, is represeantative of all language
definition systems in the sease that results developed for an
scceptable LDS will carry over to other language definition systems.
This permitted us to focus our computability studies on one systea
and be confident our results were generally applicable.

Ve were able to formalize translation and suggested two basic
problems for study - the translator gemeration problem and the
translator generation decision problem. VWe noted that solutioms to
these are related in that generating a translator is ome way of
confirming a translator exists., This permitted us to look primarily
at the problem of deciding the existence of translations with the
assurance our results were relevaant to generating tramslators.

In the ares of computability, we were able to establish, using
the vehicle of translator gemeration decision sets, a framework for
assembling the known results about the complexity of translator
generation, We added several results that more precisely
characterized the computability of translator generation,
Significant among these was the placing of several translator

generation problems in the arithmetic hierarchy. This permits those
problems to be compared to other known unsolvable problems.

Given the impossibility of general solutions, we examined the
effects of restricting the classes of language definitions for which
we desire to decide translation. When we found subclasses of
language definitions baving certain desirable properties, we
discovered that we were unable to decide translator generation for
these subclasses. We then looked at several specific restrictions
based on ideas from formal languages and computability theory. When
most combinations of these restrictions were enforced, they were
found to yield classes of language definitions which still had
undecidable translator gemeration problems. It was demonstrated
that noncomputable problems arose for both syntactic and semantic
reasons, However, a characterization was made of some language
definition classes for which we counld solve the translator
generation and TG decision problems. Included was ome class that
used extremely simple operations in defining the semantics of a
language.

For the classes of language definitions found to have solvable
translator generation problems, we analyzed the complexity of their
solutions, We found an inherent "hardness” about those problems
that implied that any -solution would need to use am inordinate
amount of resources (such as time) when applied to infinitely many
instances of the problems. Although we normally associate high
complexity with semantic processing, it was found that even the
language definition systems using very simple semantics were seen to
have provably iatractable solutionms. A postscript on these
complexity results noted that “bad complexity” instances may arise
from the particular choice of definitions for languages.

Finally, we gave a formal sketch of an oracle-based translation
scheme that uses an outside source of knowledge to assist in
performing translation. We focused on a translator gemeration
scheme suggested by Buttelmann [But74] that nsed a particular oracle
sad a particular method of tramslation, In that case we discovered
sn oracle—based method of “partiaslly solving” the translator
generation problem. However, we found that there is no bound on the
work done by such a procedure, nor on how many consultations it
would request of the oracle.

Assessing the Results

We believe there are two primary contributions msade by this
work, First, a body of computability and complexity results for
translator genmeration have been developed and organized. Secondly,
the work implies tbat any attempt to find formsl, procedural
solutions to automatic translator genmeration will likely rum afoul
of computability or complexity difficulties, The results preseated
here are undeniably negative. It was not the ianteat mnor the
expectation of this work to acquire suoch a collection of pessimistic
comments on translator gemeratiom, At each step we were surprised
snd fascinated by the levels of noncomputability and intractability
of the translator gemeration problems. If anything, these results
msy be theoretical evidence for what we know from experience in
prograzming and natural langoage translation - discovering and
implementing translations can be difficult.

The Future

The results in this thesis suggest a search for algorithmic
translator generation is destined to be difficult. In the face of
this, we suggest some courses for future research in translator
generation.

Heuristic Approaches

One alternative is to abandon the search for formal algorithmic
solutions that guarantee semantic-preserving traaslations or total
translations. This wmight involve the discovery of tramslation
heunristics that permit procedunres to cut through the exhaustive
searching that often leads to the high complexity of a probleam. The
price paid for using such heuristics might be that all sentences of
the source language might not have a tramslation. Perhaps not all
translations will be semantic preserving. Such approximate
translation might be acceptable in many ocases, especially if the
translator genmeration process using heuristics possessed reasomable

complexity.
Trzapnslation semantics
We bhave been faithful to an abstract view of Ilanguage

definition and asemantios (we have not looked at semantics for
programming languages or for natural languages). Perhaps one could

develop s “translation semantics” speciaslly developed with

translation in mind. If a class of languages were defined in terms

bood oum emm

125

of these semantics, perhaps the gemeration of translators for this
class ocould be dome efficiently. Such an idea is consisteat with
some vwork by Krishnsswamy [Kri76], where he used "identical
semantics” as a means of doing translator gemeratioa.

Translation between Similar Languages

Often the translation we want to do is not between radically
different languages but rather bdetween “dialects” of the same
language. This is especially true of the programming langusges
area, where we often convert programs writtem in one version of a
programming lsnguage to equivaleat programs in a differemt version
of the same language. Similarity between languages, their syntax
and semantics might reduce the work needed to perform tramslator
generation,

Choosing Appropriate Language Defianitions

As a final suggestion, some of our results suggest the
sensitivity of tramslator gemeration to the particular choice of
language definitions selected to describe source and target
languages. This raises the possibility that translstor geameration
might de possible or tractable if only we counld select the "right”
langusge definitions. One aspect of this is the balance between
syntax sad semantics in a definition., Although this thesis makes
some suggestiomns, it is importamt to study further the effeot the
selection of language definitions has om the computability and
complexity of traanslator generation,

Finally, note that this thesis has focused om formal tramslations
and on gemersl procedures for genmeration of translators, Pitched at
this sbstract level, it has no direct application to practical
problems of translation methodologies, For example, no attempt has
been made to study the particulsr trsaslator gemsration problems for
programming languages. In the spectrum that zaages from the
theoretical to the practical, our experience over many years has led
us to oconmclude that finding translators is a difficult practical
matter. Ve believe that this thesis has echoed, on the theoretical
end, that translator gemeration is difficult,

But74

Kri7é

Pys75

LIST OF REFERENCES

BUTTELMANN, H.W. Semantic-Directed Translation, American
Journal of Computational Linguistics 2, (1974), Microfiche
7.

KRISHNASWAMY, RAMACHANDRAN Methodology and Generation of
Language Translators, Ph.d Dissertation, The Ohio State
University, 1976.

PYSTER, ARTHUR Formal Translation of Phrase Structure

Languages, Ph.d. Dissertation, The Ohio State University,
1975.

3. PUBLICATIONS AND OTHER ACTIVITY

3.1. List of Publications

The following is a 1list of publications that resulted from research
supported by this grant. Asterisk (*) indicates that the paper or report in
question appears as a section in this final report.

i, Lee J. White, "Basic mathematical definitions and results in testing,” in
Computer Program Testing, B. Chandrasekaram and S. Radicchi, Ed., North
Holland, 1981, pp. 13 - 24,

ii. Lee J. White, Edward I. Cohen, and Steven J. Zeil, "A domain strategy
for computer program testing," in Computer Program Testing, B. Chandrasekaran
and S. Radicchi, Ed., North Holland, 1981, pp. 103 - 113, (¥)

iii, Steve J. Zeil and Lee J. White, "Sufficient Test Sets for Path Analysis
Testing Strategies," Proc. 5Sth Intern. Conf. Software Engineering, San Diego,
Calif., March 9 ~12, 1981, pp. 184 - 191,

iv. Lee J. White, "Some Research Approaches Motivated by the Domain Testing
Strategy,” Digest of the Workshop on Effectiveness of Testing and Proving
Techniques, Avalon, Calif., May 1982.

v. Allen Haley and Stuart Zweben, "Module Integration Testing," in _Computer
Program Testing, B. Chandrasekaran and S. Radicchi, Ed., North Holland, 1981,
pp. 289 - 299.

vi., Allen Haley and Stuart Zweben, '"Development and application of a white
box approach to integration testing," submitted to Journal of Systems and
Software. Also appeared in Digest of the Workshop on Effectiveness of Testing
and Proving Techniques, Avalon, Calif., May 1982,

vii. Fernando Gomez, "Towards a theory of comprehension of declarative
contexts," Proc. of 20th Ann. Meeting of the Association for Computational
Linguistics, 16~ 18 June, 1982, Ontario, Can., pp. 36 -43.

viii. B. Chandrasekaran, "Guest Editorial: Special Collection on Program
Testing,”™ IEEE Trans, Software Engineering, May 1980, pp. 233 - 235, (%)

ix, B. Chandrasekaran, "Natural and Social System Metaphors for Distributed
Problem Solving: Introduction to the Issue,”" IEEE Trans, System, Man §& Cyb,,
January 1981, pp. 1 - 5.

x. B. Chandrasekaran and §S. Radicchi, editors, Computer Program Testing,
North Holland Publications, 1981.

128 B

3.2. Dissertations supported by the Grant

i. Fernando Gomez, "On General and Expert Knowledge Based Methods in
Problem-Solving,"” The Ohio State University, 1981.

ii, Steven Zeil, "Selecting Sufficient Sets of Test Paths for Program
Testing," The Ohio State University, 1981.

iii, Doyt Perry, "Computability and Complexity Issues of Translator
Generation," The Ohio State University, 1981,

lv. Allen Haley, dissertation in progress on integration testing.

