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THEORETICAL FOUNDATIONS OF SOFTWARE TECHNOLOGY

FINAL SCIENTIFIC REPORT
FOR RESEARCH PERIOD

I JULY 1979 - 30 SEPTEMBER 1982

1. INTRODUCTION

This Contract was a continuation of earlier grants AFOSR 77-3416 to
Professors B. Chandrasekaran and Lee J. White, and AFOSR 75-2811 to Prof.
H. W. Buttelmann. In view of the many common interests of the two grants,
they were merged into this new award. Over the three years, the research
activities supported by this Contract can be classified into three broad
categories:

1. Computer Prorram Testing, directed by Professor B. Chandrasekaran
and Professor Lee J. White, with the assistance of Faculty
Associate, Professor Stuart H. Zweben. This category of research
dealt with : the theory of Domain Testing Strategy; a theory of
sufficient testing; investigation of how modules ought to be tested
and integrated so that the final testing effort does not suffer a
combinatorial increase in test effort.

2. Knowledge-Based Svstems for Automatic Program Synthesis, directed by
Professor B. Chandrasekaran. In this research, Research Associate
Fernando Gomez investigated the design of a system to understand
programming problems stated in natural language and to produce
PASCAL language code for the problems. Because of its relationship
to many issues in Artificial Intelligence, we also investigated
problems of knowledge-based problem solving in general, and issues
in natural language understanding.

3. Automated Translation of Computer Programs, directed by Professor
H. William Buttelmann. The major thrust of this work was on getting
some theoretical results concerning the computability and complexity
of translator generation.

Our approach in this Final Scientific Report will be as follows. We will
present the main technical results in each area as a sequence of technical
articles or reports. These reports by no means exhaust all the publications

7that have resulted from the grant, but will be chosen to cover all the results
in a concise manner. In a final section we list other publications and
describe professional activity by researchers supported by this grant,
including Ph. D dissertations.
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2. TSMICAL SUIKM

2.1. Computer Program Testing

2.1.1. Domain Testing Stratexv

Introduction

Several years ago a research group at Ohio State University developed an
automated testing approach called the Domain Testing Strategy. The original
research in this area was supported by AFOSR Grant 75-2811, and we have
reported in a series of papers the main ideas behind the approach. Several
new testing approaches have been motivated by this initial work. Much of this
new work was done here with support from the AFOSR Contract.

In this section, we present two papers that sumarise our research relating
to the Domain Testing Strategy. The first one, by Lee White, Edward Cohen and
Steve Zeil, appeared in Computer Programe Testing, edited by Chandrasekaran

and Radicchi (North Holland), and gives a presentation of the approach. The
second one is by Lee White, and it appears in Workshop Digest, Workshop on
Effectiveness of Testing and Proving Methods, Avalon, Calif., Hay 11-13, 1982.

This paper discusses the impact of the domain testing approach on further
research activities in the field.
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COMPUTER PROGRAM TESTING
B. Chmadruzkm, S. Ra3sW (ed)
Nonh4ialmd Publkbbl Canimmy
0 SOGESTA. 1961

A OMAIN4 STRATEGY FOR COMPUTER PROGRAM TESTIXGl

Lee J. White, Edward 1. Cohen, and Steven J. Zeil

Department of Computer and Information Science
The Ohio State University

Columbus. Ohio

U.S.A.

This paper presents a testing strategy designed to detect errors
in the control flow of a computer program, and the conditions
under which this strategy is reliable are given and characterized.
The testing strategy generates test points to examine the bound-
aries of a path domain to detect whether a domain error has
occurred; the number of test points required co test each domain
grows only linearly with both the dimensionality of the input
space and the number of predicates along the path being tested.
A new method is described to decide whether an additional path
should be tested when a number of paths have already been tested,
or whether no additional information can be gained by testing this
path, i.e., that the program has been "sufficiently tested".

1. INTRODUCTION

Computer programs contain two types of errors which have been identified as com-
putation errors and domain errors by Iowden (41. A domain error occurs when a
specific input follows the wrong path due to an error in the control flow of the
program. A path contains a cooputation error when a specific input follows the
correct path, but an error in some assignment statement causes the wrong function
to be computed for one or more of the output variables. A testing strategy has
been designed to detect domain errors, and the conditions under which this strat-
egy is reliable are given and characterized. A byproduct of this domain strategy
is a partial ability to detect computation errors. This study and proposed meth-
odology are described in greater detail in Cohen [3] and in White and Cohen [5.6].

There are limitations inherent to any testing strategy, and these also constrain
the proposed domain strategy. One such limitation might be termed coincidental
correctness, which can occur when a specific cast point follows an incorrect path,
and yet the output variables coincidentally are the same as if that test point
were to follow the correct path. this test point would then be of no assistance
in the detection of the domain error which caused the control flow change. No
path-oriented test generation strategy can circumvent this problem.

Another inherent testing limitation has been previously identified by Iowden (41
as a missing pach error, in which a required predicate does not appear in the
given program to be tested. Especially if this predicate were an equality,
Howden has indicated that no path-oriented testing strategy could systematically
determine that such a predicate should be present.

An important assumption in our work is that the user or an "oracle" is available
who can decide unequivocally if the output is correct for the specific input pro-
cessed. The oracle decides only if the output values are correct, and not
whether they are computed correctly. If they are incorrect, the oracle does not
provide any information about the error and does not give the correct output
values.

......
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2. PREDICATE INTERPRETATIONES

Every branch point of a computer program Is associated with a predicate which
evaluates to true or false, and its value determines which outcome of the branch
will be followed. The path condition is the compound condition which must be
satisfied by the input data point in order that the control path be executed. It
is the conjunction of the individual predicate conditions which are generated at
each branch point along the control path. Not all the control paths that exist

fy the path condition, the control path is also an execution oath and can be used

in testing the program. If the path condition is not satisfied by any input
value, the path is said to be infeasible, and is of no interest in testing the
program.

A simple predicate is said to be linear in variables V1 , V .....  V if it is of
the form

A 1V 1+ A2V 2+ .... + A V ROP K,

where K and the A, are constants, and ROP represents one of the relational opera-

tors (.,,,~,i. A compound predicate is linear when each of its component
simple predicates is linear.

Io general, predicates can be expressed in terms of both program variables and
input variables. However, in generating input data to satisfy the path condition
we must work with constraints in terms of only input variables. If we replace

each program variable appearing in the predicate by its symbolic value in terms
of input variables, we get an equivalent constraint which we call the predicate
interpretation. A particular interpretation is equivalent to the original predi-
cate in that input variable values satisfying the interpretation will lead to the
computation of program variables which also satisfy the original predicate. A
single predicate can appear on many different execution paths. Since each of
these paths will in general consist of a different sequence of assignment state-
ments, a single predicate can have many different interpretations. The following

* program segment provides example predicates and interpretations.

READ A.B;

ITHEN C - B + 1;
ELSE C - B - 1;

D - 2*A + B;
IF C 5 0

THE E - ;

ELSE7 -A

ERT F; 21

In the first predicate, A > 5, both A and 3 are input variables, so there is only
one interpretation. The second predicate, C s 0, will have two interpretations
depending on which branch was taken in the first IF construct. For paths on
which the 'tHEN C - S +. clause is executed, the interpretation is 8 + I Z 0 or

1I*



A Domain Strategy

equivalently B t -1. When the ELSE C - B - 1 branch is taken, the interpretation
is B - 1 

< 
0, or equivalently B -: 1. Within the second IF-THEN-ELSE clause, a

nested DO-Loop appears. The DO-loop is executed:

no times if B < 1
once if 1 5 B < 2
twice if 2 5 b < 3

etc.

Thus the selection of a path will require a specification of the number of times
that the DO-loop is executed, and a corresponding predicate is applied which
selects those input points which will follow that particular path. Even though
the third predicate, D , 2. appears on four different paths, it only has one
interpretation, 2*A + B = 2, since D is assigned the value 2*A + B in the same
statement in each of the four paths.

3. INPUT SPACE STRUCTURE

An input space domain is defined as a set of input data points satisfying a path
condition, consisting of a conjunction of predicates along the path. For sim-
plicity in this discussion, each of these predicates is assumed to be simple.
The input space is partitioned into a set of domains. Each domain corresponds to
a particular executable path in the program and consists of the input data points
which cause the path to be executed.

The boundary of each domain is determined by the predicates in the path condition
and consists of border sesmts, where each segment is the section of the bound-
ary determined by a single simple predicate in the path condition. Each border
segment can be open or closed depending on the relational operator in the predi-
cats. A closed border eet Is actually part of the domain and is formed by
predicates with -, >_, or - operators. An open border sement form part of the
domain boundary but does not constitute part of the domain, and is formed by <,
>, and 0 predicates.

The general form of a simple linear predicate interpretation is

A1 X1 + A2 X2 + .... ANN OP k

where ROP is the relational operator. X, are input varlables, and Ai, K are con-

stants. However, the border segment which any of these predicates defines is a
section of the surface defined by the equality

AIX + AA + .... + ,'qXN - 1,

since this is the limiting condition for the points satisfying the predicate. In
an N-dimensional space this linear equality defines a hyperplane which is the
N-dimensional generalization of a plane.

Consider a path condition composed of a conjunction of simple predicates. These
predicates can be of three basic types: equalities (w), inequalities (<, >, <.,
L), and nonequalities (f). The use of each of the three types results in a
markedly different effect on the domain boundary. Each equality constrains the
domain to lie in a particular hyperplane, thus reducing the dimensionality of the
domain by one. The set of inequality constraints then defines a region within
the lover dimensional space defined by the equality predicates.

The nonequality linear constraints define hy.perplanes which are not part of the
domain, giving rise to open border segments as mentioned earlier. Observe that
the constraint A 0 B is equivalent to the compound predicate (A < 5) OR (A > 8).
In this form it is clear that the addition of a nonequality predicate to a set of

r
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inequalities can split the domain defined by those inequalities into two regiona.

The foregoing definitions and the example allow us to characterize more precisely
domains which correspond to simple linear predicate interpretations.

For an execution path with a set of simple linear equality or inequality
predicate interpretations, the input space domain Is a single convex
polyhedron. If one orkmore simple linear non-equality predicate inter-
pretations are added to this set, then the input space domain consists
of the union of a set of disjoint convex polyhedra.

4.. THE DOMAIN TESTING STRATEGY

The domain testing strategy is designed to detect domain errors and will be
effective in detecting errors in any type of domain border under certain condi-
tions. Test points are generated for each border segment which, if processed
correctly, determine that both the relational operator and the position of the
border are correct. An error in the border operator occurs when an incorrect
relational operator is used in the corresponding predicate, and an error in the
position of the border occurs when one or more incorrect coefficients are comput-
ed for the particular predicate interpretation. The strategy is based on a geo-
metrical analysis of the domain boundary end takes advantage of the fact that

7 points on or near the border are most sensitive to domain errors. A number of
authors have made this observation, e.g., Boyer et al (11 and Clarke (2).

It should be emphasized that the domain strategy does not require that the
correct program be given for the selection of test points, since only information
obtained from the given program is needed. However, it will be convenient to be
able to refer to a "correct border", although it will not be necessary to have any
knowledge about this border. Dlefine the given border as that corresponding to the
predicate interpretation for the given program being tested, and the correct
border as that border which would be calculated in some correct program.

* The domain testing strategy will be developed and validated under a set of simpli-
fying assumptions:

(1) Coincidental correctness does not occur for any test case.
(2) A missing path error is not associated with the path being tested.1(3) Each border is produced by a simple predicate,
(I.) The path corresponding to each adjacent domain computes a different

function than the path being tested.
(5) The given border is linear, and if it is incorrect, the correct

border is also linear.
(6) The input space is continuous rather than discrete.

Assumptions (1) and (2) have been shown to be inherent to the testing process, and
T, cannot be entirely eliminated. However, recognition of these potential problem

can lead to improved testing techniques. Assumptions (3) and (4) considerably
simplify the testing strategy, for with them no =o than one domain need be
examined at one time in order to select test points, and as will be indicated
shortly, a reduced number of test points will be required. As for the linearity
assumption (5), the domain testing method has been shown to be applicable for non-
linear boundaries. but the number of required test points may become inordinateL and there are complex problem associated with processing nonlinear boundaries in
higher dimensions. The continuous input space assumption (6) is not really a lim-
itation of the proposed testing method, but allows points to be chosen arbitrarily
close to the border to be tested. An error analysis has shown that pathological
cases do exist in discrete spaces for which the tasting strategy cannot be used,
but these occur only when domain size is on the order of the resolution of the
discrete space itself.
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5. TWO-1O-ENSIONAL LINEAR INEQUALITIES

Test-Point Selection

The test points selected will be of two types, defined by their position with re-
spect to the given border. An ON test point lies on the given border, while an
OFF test point is a small distance E from, and lies on the open side of, the
given border. Therefore, we observe that when testing a closed border, the ON
test points are In the domain being tested, and each OFF test point is in some
adjacent domain. Conversely, when testing an open border, each ON test point is
in some adjacent domain, while the OFF test points are in the domain being tested.

Figure 1 shows the selection of three test points A, B, and C for a closed in-
equality border segment. The three points must be selected in an ON-OFF-ON
sequence. Specifically, if test point C is projected down on line AS, then the
projected point must lie strictly between A and B on this line segment. Also
point C is selected a distance e from the given border segmt, and will be chosen
so that it satisfies all the inequalities defining domain D except for thte in-
equality being tested.

A B,

ON OFF ON

Domain D

Given Border
Correct Border

Fig. I. Test Points for a i'o-Dimensional Linear Border
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Proof of Reliable Test Selection

It must be shown that test points selected in this way will reliably detect domain
errors due to boundary shifts. If any of the test points lead to an incorrect
output, then clearly there is an error. On the ocher hand, if the outputs of all
these points are correct, then either the given border is correct, or if it is
incorrect, Figure I shows that the correct border must lie on or above points A
and B. and must lie below point C, for by assumptions (1) and (4), each of these
test points must lie in its assumed domain. So if the given border is incorrect,
then the correct border can only belong to a class of line segments which inter-
sect both closed line segments AC and BC.

Figure 1 indicates a specific correct border from this class which intersects line
segments AC and BC at P and Q respectively. Define the domain error magnitude fc-
this correct border to be the maximum of the distances from P and from Q to the
given border. Then it is clear that the chosen test points have detected domain
errors due to border shifts except for a class of domain errors of magnitude less
than 6. In a continuous space e can be chosen arbitrarily small, and as e ap-
proaches aero, the line segments AC and BC become arbitrarily close to the given
border, and in the limit, we can conclude that the given border is identical to
the correct border.

Figure 2 shows the three general types of border shifts, and will allow us to see
how the ON-OFF-ON sequence of test points works in each case. In Figure 2(a). the
border shift has effectively reduced domain D1 Test points A and B yield correct

outputs, for they remain in the correct domain Dl despite the shifted border.

However, the border has shifted past test point C, causing it to be in domain D,

instead of domain Dl. Since the program will now follow the wrong path when exe-

cuting input C, incorrect results will be produced. In Figure 2(b), the domain
D has been enlarged due to the border shift. Here test Point C will be processed

correctly since it is still in domain 02' but both A and B will detect the shift

since they should also be in domain D2 ' Finally in Figure 2(c), only test poinc B

will be incorrect since the border shift causes it to be in D1 instead of D2.

Therefore, the ON-OFF-ON sequence is effective since at least one of the three
points muse be in the wrong domain as long as the border shift is of a magnitude
greater than E.

We must also demonstrate the reliability of the method for domain errors in which

the predicate operator is incorrect. If the direction of the inequality is wrong.
e.g., 1 is used instead of , the domains on either side of the border are inter-
changed, and any point in either domain will detect the error. A more subtle

error occurs when just the border itself is in the wrong domain, e.g.. * is used
instead of <. In this case the only points affected lie on the border, and since
we always test ON points, chis type of error will always be detected. If the
correct predicate is an equality, the OFF point will detect the error.

Complexity of the Test Strateay

The domain testing strategy requires at most 3*P test points for a domain, where
P, the number of border segments on this boundary, Is bounded by the number of
predicates encountered on the path. However, we can reduce this cost by sharing
test points between adjacent borders of the domain. The requirement for sharing
an ON point is that ic is an extreme point for two adjacent borders which are both
closed or both open. The number of ON points needed to test the entire domain
boundary can be reduced by as much as one half, i.e.. the number of test points,
TP, required to test the complete domain boundary lies in :he following range:

t.
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Z*P !: P! 3*P.

Even more significant savings are possible by sharing the :est poincs for a common
border between two adjacent domains. If both domins are tested independentlv.
the comon border between them is tested twice, using a total of six test points.
tf this border has shifted, both domains must be affected, and the error will be
detected by testing either dosia.

ID, D

(a) 02(b)

A

DI

(C)

Given Border
Correct Border

Fig. 2. The Three types of Border Shifts
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6. N-DDLENSIONAL LINEAR INEQUALITIES

The domain testing strategy developed for the two-dimensional case can be extended
to the general N-dimensional case in a straightforward manner. The central prop-
erry used in the previous analysis was the fact that a line is uniquely determined
by two points. We can easily generalize this property since an N-dimensional
hvperplane is determined by N linearly independent points. So. whereas in the
two-dimensional case we had to identify only two points on the correct border, in
general we have to identify I points on the correct border, and in addition, these
points must be guaranteed to be linearly independent.

The validation of domain testing for the general linear case is based on the same
geometric arguments used in the two-dimensional case. The key to the methodology
is that the correct border must intersect every OFF-ON line segment, assuming that
the test points are all correct. Since we must identify a total of N points on
the correct border, N OFF-ON line segments are needed, and we can achieve this by
testing N linearly independent ON test points on the given border and a single OFF
test point whose projection on the given border is a convex combination of these N
points. In addition, as in the two-dimensional case, the OFF point must also
satisfy the inequality constraints corresponding to all adjacent borders.

Even though we do not know these specific points at which the correct border
intersects the ON-OFF segments, we do know that these points must be linearly
independent since the ON points are linearly independent. The OFF point is a
distance C from the given border, and in the limit as e approaches zero, each
OFF-ON line segment becomes arbitrarily close to the given border. However, as in
the two-dimensional case, the C-limitation means that only border shifts of magni-
tude greater than e will be detected.

The domain testing strategy requires at most (N+I)*P test points per domain, where
M is the dimensionality of the input space in which the domain is defined and P is

the number of border segments in the boundary of the specific domain. However, we
again can reduce this testing cost by using extreme points as ON test points, and
by sharing test points between adjacent domains.

7. EQUALITY AND NONEQUALITY PREDICATES

Equality predicates constrain the domain to lie in a lower dimensional space. If
we have an N-dimensional input space and the domain is constrained by L indepen-
dent equalities, the remaining inequality and nonequality predicates then define
the domain within the (N-L)-dimensional subspace defined by the set of equality
predicates.

The test points for both equality and nonequality predicates can be chosen much
as for the inequality case, but there is a technical problem which requires (N+3)
test points for the dimensional case. This technical problem and its resolution
is described in detail in references (31. (31, and (61. The following proposition
summarizes the results of our investigation:

Given assumptions (1) through (6), with each OFF point chosen a
distance e from the corresponding border, the domain testing
strategy is guaranteed to detect all domain errors of magnitude

greater than C using no more than P*(N+3) test points per domain.
where N indicates the dimensionality of the input space and P is
the number of predicates along the path to be tested.

Notice that the number of required points grows only linearly with both para-
meters N and P, which is about the best one could hope for.
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8. SUFFICIENT TEST SETS FOR PATH-ORIENTED TESTING

Stopping Criteria for Testing

Although the number of required test points for each path in the Domain Strategy
grows only linearly with the number of input variables and predicates along :he
path, the problem with this approach is that the number of paths grows in a high-
lv combinatorial fashion and is potentially infinite. Moreover, any path-oriented
strategy suffers from this basic problem.

In the definition of any automated path selection strategy, the questions which
naturally arise are. 'When does testing stop? At what point is it possible to
point to a particular program construct and say that it has been sufficiently
tested, i.e., no errors remain undetected?" In general, we know that this problem
can be proven undecidable, but a programer's intuition suggests that such claims
should be possible after the selection of a small number of test paths, especially
if we possess a strategy in which we have specific confidence in terms of its
ability to detect certain types of errors in some construct along that path.

In references 171 and (81, Zeil and White have developed a vector space model for
programs which satisfy conditions (1) through (6) of Section 6, and this model has
indicated substantive answers to these questions for this class of programs. For
convenience, let us define such programs satisfying these conditions as linearly
domained programs. It should be emphasized that this research and these results
are essentially independent of the Domain Strategy, and only require a testing
strategy which will reliably detect domain errors associated with a specific pred-
icate when conditions (1) through (6) of Section 6 are satisfied. However, the
existence of the Domain Strategy with this degree of reliability allows us to
investigate these issues.

Sufficient Testina Sets

In order to state these results more precisely, let us define these questions and
concepts caref.lly. A set of paths is a sufficient set for a program construct if
the failure to detect some error in that construct, using a reliable method of
selecting data points along those paths, implies that this error would go unde-
tected for anv Path through the program. In this definition, and throughout this
discussion, we might be considering any program construct, but a most concrete
construct for which we have such reliable methods is that of a predicate. We can I
then restate the questions more rigorously as:

a) After a number of paths have been tested which pass through the
construct, what is the marginal advantage of testing another path?

b) Is there a point (before nearly all paths have been tested) at which
we may say that no more paths need be chosen and tested through some
program construct, i.e., that this construct has been sufficiently
tested?

Types of Testina Blindness

In order for us to characterize the minimal number of paths which must be tested,
we first must clearly understand why multiple paths might be needed in order to
detect an error in a construct (such as a predicate). The following examples
show three different reasons why a single path may not detect an erroneous predi-
cate. These are termed assignment blindness, equality blindness, and self-
blindness, and represent a seemingly pathological set of values for variables
along the path so that both the correct and the incorrect predicate evaluate to
equal values.

' ' - ' " . -
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Assimnment Blindness

Correct Incorrect

A- Ai

rF'B> 0 MEN F*B+A > I TML

Equality Blindness

Correct Incorrect

IF D-ZTHEN IF D-2 TEN

IF C + D>3THEN IF C 1THEN

Self-Blindness

Correct Incorrect

X-A K A

rF K-1>o0 IF XA-2 > O

Results from a Vector Space Model

By studying examples of this type, the vector spae model examined in references
(7] and (8] has yielded an insight as to boy multiple paths through a single
predicate can resolve these ambiguitis due to various types of blindness. This
vector space is composed of:

*one vector for each assigned program variable, for a total of n;
*one vector for each equality restriction on the path domain, at

T most m total, where m is the number of input variables.

The results of this research which provide answers to questions a) and b) posed
earlier in this section can be stated as follows:

For any predicate in a linearly domgined program, the smallest suffi-
cient sot of test paths will contain at most (m4'n+l) paths, where m1 is the number of input variables and n the number of program variables.
moreover, if a set of paths have been tested which pass through the
predicate of interest, a simple vector criterion described in refer-

ences (7] and [8) will determine whether a proposed additional path1 is required to detect an error in that predicate.

This is a most satisfying result in that it is consistent with a programer' s
intuition that only a reasonably small number of paths should be sufficient to
reliably test any construct in a given computer program. We have assumed, how-
ever, linearly domained programs in order to obtain this result. The greatest
difficulty with this approach is that paths which constitute the smallest suffi-
cient set cannot be generated easily or efficiently. Rather, it is only after a
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set of paths are selected that the vector criterion can be applied. Research is
* continuing on this problem in order to devise heuristic methods to select the set

of paths which are based upon ongoing experiments using the vector criterion.

FOOTNOTES

1. This research was supported in pert by Air Force Office of Scientific Research
Grant F49620-79-0152.
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Some Research Approaches Motivated by the Domain Testing Strategy*

Lee J. White

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210

Abstract

Several years ago a research group at Ohio State University developed an
automated testing approach called the Domain Testing Strategy. This paper
examines some broader implications of the results of that research, together
with several new testing research approaches which have been motivated by this
work. For example, recently some new results which characterize a set of paths
which are sufficient for path oriented testing have been obtained, motivate*d to
a great extent by domain testing. This approach, in turn, has led to some
positive and exciting results in the area of reliable module integration testing.
Currently several researchers are examining the issue of specification testing,
combining information from the program specification with a structural testing
approach; they have found domain testing concepts to be helpful in this regard.

The research described in this paper was supported in part by the Air Force Office
for Scientific Research, Contract F49620-79-C-0152.
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1. A Domain Strategy for Computer ?rogram Testing

For the past five years, a research group at Ohio State University7 has been
working in the area of reliable software in general, and program testing in
particular. We have developed an automated testing approach called the Domain
Testing Strategy [2,131 which appears to be promising for a large class of data
processing programs. This method is a form of a path-oriented testing approach,
where the process of testing a computer program is treated as two operations

f 7 ]:

1) selection of a path or set of paths along which testing is to be
conducted, and

2) selection of input data to serve as test cases which will cause the
chosen paths to be executed.

For general programs, the problem of generation of reliable test data is
kniown to be unsolvable, e.g., see llowden (6 1. For certain classes of pro-
grams, however, the domain testing strategy research has shown that it is
possible to fiplement reliable methods of selecting test data for a given path
to detect certain types of errors.

Computer programs contain two types of errors which have been identified
as computation errors and domain errors by Howden [ 7 ]. A 'domain error occurs
when a specific input follows the wrong path due to an error in the control flow
of the program. A path contains a computation error when a specific input
follows the correct path, but an error in some assignment statement causes the
wrong function to be computed for one or more of the output variables. A testing
strategy has been designed to detect domain errors, and the conditions under which
this strategy is reliable are given and characterized. A byproduct of this
domain strategy is a partial ability to detect computation errors. This study
and proposed methodology are described in greater detail in Cohen [2 1 and in
White and Cohen (12-131.

There are limitations inherent to any testing strategy, and these also
constrain the proposed domain strategy. One such limitation might be termed
coincidental correctness, which can occur when a specific test point follows an

incorrect path, and yet the output variables coincidentally are the same as if
that test point were to follow the correct path. This test point would then be
of no assistance in the detection of the domain error which caused the control
flow change. No path-oriented test generation strategy can circumvent this
pro blemn.

Another inherent testing limitation has been previously identified by
Howden (7 1 as a missing path error, in which a required predicate does not
appear in the given program to be tested. Especially if this predicate were an
equality, no path-oriented testing strategy could systematically determine that
such a predicate should be present.

An important assumption in our work is that the user or an "oracle" is
available who can decide unequivocally if the output is correct for the specific
input processed. The oracle decides only if the output values are correct, and
not whether they are computed correctly. If they are incorrect, the oracle does
not provide any information about the error and does not give the correct outputI

values.
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The control flow statements in a computer program partition the input space
into a set of mutually exclusive domains, each of which corresponds to a partic-
ular program path and consists of input data points which cause that path to be
executed. The testing strategy generates test points to examine the boundaries
of a domain to detect whether a domain error has occurred, as either one or more
of these boundaries will have shifted or else the corresponding predicate
relational operator has changed. If test points can be chosen within C of each
boundary, the strategy is shown to be reliable in detecting domain errors of
magnitude greater than E, subject to the following assumptions:

(1) coincidental correctness does not occur;

(2) missing path errors do not occur;

(3) predicates are linear in the input variables;

(4) the input space is continuous.

Assumptions (1) and (2) have been shown to be inherent to the testing pro-
cess, and cannot be entirely eliminated. However, recognition of these potential
problems can lead to improved testing techniques. The domain testing method has
been shown to be applicable for nonlinear boundaries, but the number of required
test points may become inordinate and there are complex problems associated with
processing nonlinear boundaries in higher dimensions. The continuous input space
assumption is not really a limitation of the proposed testing method, but allows
the parameter C to be chosen arbitrarily small. An error analysis for discrete
spaces is available ( 14 ], and the testing strategy has been proved viable as
long as the size of the domain is not comparable to the discrete resolution of
the space.

Now let us consider two further assumptions:

(5) predicates are simple; and

(6) adjacent domains compute different functions.

if assumptions (5) and (6) are imposed, the testing strategy is considerably
simplified, as no more than one domain need be examined at one time in order to
select test points. Moreover, the number of test points required to test each
domain grows linearly with both the dimensionality of the input space and the
number of predicates along the path being tested. Any program which satisfies

these six constraints will be referred to as a linearly domained program.

2. Some Broader Issues Derived from Domain Testing

One of the major results of domain testing is that, subject to the assumption
of a linearly domained program, reliable detection of domain errors requires a
reasonable number of test points for a single path. This number of test points
grows only linearly with the number of predicates along the path and the number
of input variables. *".owever, the total cost is unacceptable for any practical
program, as it will routinely contain an excessive number of paths. Thus there
has been a significant research effort to substantially reduce the number of
paths required for domain testing; Sections 3 and 4 of this paper briefly
describe several such research efforts.
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One way to view the results from domain testing is to observe that the
number of test points required is a minimum for reliable detection of domain
errors, and if coincidental correctness should occur, even more test points
would be required. However, in many places in the research testing literature,
one finds reference to choosing only one test data point per path when a path-
oriented strategy is utilized. This work shows clearly that in general this
is inadequate for even a modest attempt at reliable testing.

Although we kniow that the problem of reliable test data generation is
unsolvable, the domain testing research has shown that if attention is focused
upon specific types of errors and a characterized subset of programs, reliable
testing conditions can be obtained. Indeed, the problem here was to find the
minimum set of conditions so that domain errors could be reliably detected.
Another related example of this approach is seen in the problem of feasible
paths. The problem of path feasibility is in general undecidable, but if the
collection of predicates along that path can be shown to be linear in the input
variables, then this problem is decidable (using linear programming).

I believe the undecidability issue for general reliable test data generation
is manifested in the coincidental correctness condition for domain testing in
linearly domained programs. There is no way to decide whether a test point is
"tcoincidental-ly correct" (in that the input point has been affected by an exist-
ing domain error) or that test point is indeed correct. Thus, all we can do
with the undecidability problem for reliable testing is to reduce it to a
simpler concept of "coincidental correctness" (which is still undecidable).

Domain testing is an example of a structural approach, which uses only
information from the program to be tested. Thus it is clear why only domain
errors can be reliably detected, since they are intimately related to the
structure of the given program. In order to detect computation errors or miss-
ing path errors, we must obtain additional information, e.g., from the program
specifications. This is precisely *the approach of the researchers described in
Section 5.

We have explicitly assumed that an "oracle" exists which can always determine
whether a specific test case has been computed correctly or not. In reality,
the programmer (or user) must make this determination, and the time spent
examining and analyzing these test cases is a major factor in the high cost of
software development. Weyuker 19-111 has recently criticized this "oracle"
assumption on both theoretical and practical grounds, proposing several alterna-
tive approaches. We believe that it was partially because of our explicit
emphaEis of the oracle assumption as an essential component of the problem
paradigm that this has emerged as a research issue.

3. Sufficient Test Sets for Path Oriented Testing

Although the number of required test points for each path in the domain
strategy grows only linearly with the number of input variables and predicates
along the path, the problem with this approach is that the number of paths
grows in a highly combinatorial fashion and is potentially infinite. Moreover,
any path-oriented strategy suffers from this basic problem.



In the definition of any automated path selection strategy, the questions
which naturally arise are, "When does testing stop? At what point is it possible
to point to a particular program construct and say that it has been sufficiently
tested, i.e., no errors remain undetected?" in general, we know that this
problem can be proven undecidable, but a programmer's intuition suggests that
such claims should be possible after the selection of a small number of test
paths, especially if we possess a strategy in which we have specific confidence
in terms of its ability to detect certain types of errors in some construct
along that path.

In references [15-171, Zeil and White have developed a vector space model
for linearly domained programs, and this model has indicated substantive answers
to these questions for this class of programs. It should be emphasized that this
research and these results are essentially independent of the domain strategy,
and only require a testing strategy which will reliably detect domain errors
for linearly domained programs. However, the existence of the domain strategy
with this degree of reliability allows us to investigate these issues.

In order to state these results more precisely, let us define these questions
and concepts carefully. A set of paths is a sufficient set for a program con-
struct if the failure to detect some error in that construct, using a reliable
method of selecting data points along those paths, implies that this error would
go undetected for an path through the program. In this definition, and through-
out this discussion, we might be considering any program construct, but a most
concrete construct for which we have such reliable methods is that of a predicate.
We can then restate the questions more rigorously as:

a)Y After a number of paths have been tested which pass through the
construct, what is the marginal advantage of testing another path?

b) Is there a point (before nearly all paths have been tested) at which
we may say that no more paths need be chosen and tested through some
program construct, i.e., that this construct has been sufficiently
tested?

In order for us to characterize the minimal number of paths which must be

tested, we first must clearly understand why multiple paths might be needed in
order to detect an error in a construct (such as a predicate). The following
examples show three different reasons why a single path may not detect an
erroneous predicate. These are termed assignment blindness, equality blindness,
and self-blindness,, and represent a seemingly pathological set of values for
variables along the path so that both the correct and the incorrect predicate11 evaluate to equal values.

By studying examples of this type, the vector space model examined in
references [15-17] has yielded an insight as to how multiple paths through a
single predicate can resolve these ambiguities due to various types of blindness.
This vector space is composed of:

*one vector for each assigned program variable, for a total of n;
one vector for each equality restriction on the path domain, at
most m total, where m is the number of input variables.
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Ass igment Blindness

Correct Incorrect

A-]1 A-I

IF B > 0 THEN IF B+A > 1 THEN

Equality Blindness

Correct Incorrect

IF D -2 THEN IF D -2 THEN

IF C +D > 3 THEN IF C >1 THEN

Self-Blindness

Correct Incorrect

X- A X- A

IF X-l > 0 IF X+A-2 > 0

The results of this research which provide answers to questions a) and b)
posed earlier in this section can be stated as follows:

For any predicate in a linearly domained program, the smallest suffi-
cient set of test paths will contain at most (m+n+l) paths, where m
is the number of input variables and n the number of program variables.
Moreover, if a set of paths have been tested which pass through the
predicate of interest, a simple vector criterion described in refer-
ences [15-17] will determine whether a proposed additional path is
required to detect an error in that predicate.

This is a most satisfying result in that it is consistent with a programmer's
intuition that only a reasonably small number of paths should be sufficient to
reliably test any construct in a given computer program. We have assumed, how-
ever, linearly domained programs in order to obtain this result. The greatest
difficulty with this approach is that paths which constitute the smallest suffi-
cient set cannot be generated easily or efficiently. Rather, it is only after
a set of paths are selected that the vector criterion can be applied. Research
is continuing on this problem in order to devise heuristic methods to select
the set of paths which are based upon ongoing experiments using the vector
criterion.

N,
7 "9 AL1'r
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4. Module Integration Testing

In references [4-5], Haley and Zweben have investigated the issues involved
when a "correct" module which has been thoroughly validated is integrated into
a larger program context. It is desired to maximally utilize the information
that this module is correct in designing the integration testing strategy.

Two approaches to this question have been examined by Haley and Zweben.
Since the goal is to detect errors in the module's input, one could simply
require that input values to the module be examined, together with the normal
output of the calling program. This technique is not new, as programmers often
point out values of intermediate or temporary variables. However, it is diffi-
cult to know whether an intermediate program value is correct, and the programmer
would usually be more interested in examining the final outputs of the calling
program. This is actually a more complicated version, of the "oracle assumption"
discussed in Section 2, and illustrates the problem with this approach.

The second approach involves addressing the following two problems:

1) we may have failed to retest a predicate in the module that would
have shifted for a particular error in the calling program (an
integration domain error); or

2) an error in the calling program that produces an error in the module's
input might not be passed to the module's outputs (and hence to the
program's outputs) along these paths that are executed in the module
during integration testing.

The solution proposed by Haley and Zweben is to do a limited amount of "retesting"
during integration testing using a set of paths through ihe module which are
sensitive to the two problems identified above. They refer to this act as the
Integration Test Set for the module. This integration test set should meet two
important criteria. First, it should be capable of detecting all of the inte-gration testing errors which have been identified. Second, it should contain asfew of the module's paths as possible to meet the first criterion.

fFor the detailed description of how these Integration test sets are con-
structed by Haley and Zweben, see references 14-5). However, they were strongly
influenced in their work by the results of Zeil 115]. The key idea used in the
investigation of these integration test sets is that if a module has m input
variables with no inherent relationship among them, then there are only m
independent ways in which an error can occur. It can be shown that for inte-
gration domain errors there are at most (m+l) "different" errors that can occur
(see Haley 141). For integration computation errors there are at most ((m*n)+l)
"different errors", where n represents the number of module output variables.

This result is explored more fully by Haley and Zweben, but it illustrates
the symbiotic effect when a research group is working on several related problems,
and can make contributions to various research problems.

v_ - W
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5. Specification Testing

One of the primary limitations of the domain testing strategy is that it
is a structural approach, using only the program itself. A number of researchers
are actively examining the possibility of generating test data from program
specifications, especially to complement structural approaches such as path
testing. Cartwright [1) has developed a very high level language with which to
express program specifications, and since it is procedural, allows him to
generate test data from the specifications. John Courlay 131 has shown that
specifications can be written using the flexibility and power of predicate
calculus, and yet test data can be generated from specifications in this form.
Richardson and Clarke [8] have also chosen to use a very high level language
for program specification, and execute a path analysis of the specification
which is then used to refine the program path testing partition.

Each of these research efforts promised to make a~ contribution to specifica-
tion testing. Richardson and Clarke possess the distinct advantage of having
constructed a working system, with which they can conduct experiments to evaluate
their approach to specification testing. They have utilized several concepts
from domain testing in their research, primarily for structural test data
selection. John Gourlay is now a faculty member at Ohio State University, and
we believe that some of the domain testing concepts will be useful to his
research.

6. Examples

Many researchers have noted that some test data should be generated near
boundaries of input domains defined by selected paths in the program. In domain
testing we had simply worked out the details as to how this could be systemat-
ically implemented. Thus, examples could be generated illustrating how effectively
domain errors can be detected by this approach.

An error analysis of domain testing was documented in reference [14). It
is interesting to observe that one extreme situation may cause problems for
test point selection, sensitivity to potential errors in other borders, or
appl.ying domain testing in a discrete space rather than a continuous space. This
extreme situation is encountered when two adjacent borders of the same domain
are nearly parallel. Figure I shows this effect geometrically. In Figure Ia),
we see very "sharp corners" being formed by adjacent borders which are nearly
parallel. In Figure lb), it will be very difficult to test border EF, since
the OFF test point should be placed inside triangle EFT in order to satisfy all
other inequalities.

Anorher interesting example can be seen from the various types of blindness
shown in Section 3. The example for assignment blindness:

Correct Incorrect

A- 1 A- 1

IFB >O0THEN IF (B+A) > 1THEN
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1
FIGURE 1 Adjacent Border Segments Which are Nearly Parallel

This shows how path testing may easily miss the detection of a predicate error
due to the assignment A-i along this path. Of course, we would expect another
path to traverse through the predicate for which the assignment A-i is not
encountered, and thus the predicate error can be easily detected. Note that
if all paths which contain the predicate also contain the assignment A-1, then
the error cannot be detected at all; however, in this case we must decide if
this "error" is of any consequence, since the specifications will always be met!

L
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Another example of a similar type is encountered when the "correct"
predicate

A+X >0

is replaced by the "incorrect" predicate

2*A + 2*X > 0,

which is called "self-blindness" by Zeil [151. Again, there is some question as
to whether this is an error at all. The same effect is generated along each
path containing this predicate, and thus the program specifications are met.

References

[1] Cartwright, Robert, "Formal Program Testing", Eighth Annual ACM Symposium
on Principles of Programming Languages, 1981.

L21 Cohen, E.I., A Finite Domain-Testing Strategy for Computer Program Testing,
Ph.D. Dissertation, Department of Computer and Information Science, The
Ohio State University, June, 1978.

[3] Gourlay, John S., Theory of Testing Computer Programs, Ph.D. Dissertation,
Department of Computer and Communication Sciences, The University of
Michigan, 1981.

[4] Haley, A. and Zweben, S., "An Approach to Reliable Integration Testing",
Technical Report TR-81-5, Computer and Information Science Research Center,
The Ohio State University, May 1981.

[5] Haley, A. and Zweben, S., 'Module Integration Testing", Computer Program
Testing, B. Chandrasekaran and S. Radicchi, Eds., North-Holland Publishing
Co., Amsterdam, 1981.

[6] Howden, William E., "Introduction to the Theory of Testing" in: Miller
and Howden (eds), Tutorial: Software & Validation Techniques (IEEE Computer
Society, Catalog No. EHO 138-8, 1978, 16-19.

[7] Howden, W.E., "Reliability of the Path Analysis Testing Strategy", IEEE
Transactions on Software Engineering, Vol. SE-2, No. 3, Sept. 1976,
208-215.

[8] Richardson, Debra J. and Clarke, Lori, "A Partition Analysis Method to
Increase Program Reliability", Proceedings 5th International Conference
on Software Engineering, San Diego, California, March 9-12, 1981.

[91 Weyuker, Elaine, "The Oracle Assumption of Program Testing", Proceedings
of the Thirteenth International Conference on System Sciences, Honolulu,
Hawaii, January 1980.

[101 Weyuker, Elaine and Danis, M., "Pseudo-Oracles for Non-Testable Programs",
Proceedings ACM National Conference, Los Angeles, November 1981.

A,.-.



23

[11] Weyuker, Elaine, "On Testing Nontestable Programs", Department of Computer
Science Technical Report 025, Courant Institute of Mathematical Sciences,
New York University, New York, New York, October 1980.

[12] White, L.J., Cohen, E.I., and Chandrasekaran, B., "A Domain Testing Strategy
for Computer Program Testing", Technical Report TR-78-4, Computer and
Information Science Research Center, The Ohio State University, August 1978.

(13] White, L.J. and Cohen, E.I., "A Domain Strategy for Computer Program Testing",
IEEE Transactions on Software Engineering, Vol. SE-6, No. 3, May 1980,
247-257.

[14] Whvite, L.J., Teng, F.C., Kuo, H.C., and Coleman, D.W., "An Error Analysis
of the Domain Testing Strategy", Technical Report 78-2, Computer and
Information Science Research Center, The Ohio State University, August 1978.

[15] Zeil, S.J., Selecting Sufficient Sets of Test Paths for Program Testing,
Ph.D. Dissertation, Department of Computer and Information Science, The
Ohio State University, September 1981; Technical Report TR-81-10, Computer
and Information Science Research Center, October 1981.

'16] Zeil, S.J. and White, L.J., "Sufficient Test Sets for Path Analysis Testing
Strategies", Technical Report TR-80-6, Computer and Information Science
Research Center, The Ohio State University, July 1980.

[171 Zeil, S.J. and White, L.J., "Sufficient Test Sets for Path Analysis
Testing Strategies", Proceedings 5th International Conference on Software
Engineering, San Diego, California, March 9-12, 1981, 184-191.

L

I
I

,I.



24

2.1.2. Sufficient Testin2

As we mentioned earlier in this report, the issue here is one of deciding
when a program or a construct has been tested sufficiently in order to enable
a conclusion that no errors remain. The paper that follows is a technical
report that presents work by Zeil and White relating to this question. A
condensed version of this appeared in Proc. 5th Intern. Conf. on Software
Ena ineering.
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ABSTRACT

This report presents a new method for selecting paths to test when path

analysis testing strategies are employed. This method carefully analyzes the

types of errors which can be detected by testing along a single path, and

what type of errors might escape detection. This research provides an

approach to decide whether an additional path should be tested when a

number of paths have already been tested, or whether no additional information

can be gained by testing this path. Another result is to characterize the

situation when no more paths need be chosen through some program construct,

i.e., that it has been "sufficiently tested".
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I Sufficient Test Sets for Path Analysis Testing Strategies

Steven J. Zeil and Lee J. White

1. Introduction

Recent years have witnessed the proposal of a number of methods for

automating portions of the software testing effort. Many of these methods

are forms of path analysis strategies, where the process of testing is treated

as two operations (1,4,6,7]:

1. selection of a path or set of paths along which testing is to be

I conducted;

2. selection of input data to serve as test cases which will cause the

chosen paths to be executed.

Work has proceeded on such methods despite the lack of a theoretical

basis for the justification or evaluation of such methods. Little is known

regarding the proper methods of selecting of test paths and data. Indeed,

for general programs these problems are known to be unsolvable. For selected

classes of programs, however, it is possible to implement reliable strategies

of selecting test data for a given path to detect certain types of errors.

Section II of this paper sumarizes one such method, the domain testing

strategy, which detects errors in program predicates for a large class of

progrAms, referred to as "linearly domained programs'" (7].

Even with a reliable method of selecting test data for a given path,

the fact remains that certain errors imay escape detection no matter what data

is used along that path. A good testing strategy must therefore select a set

of paths which collectively account for all possible errors.

1PI
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Frequently an attempt is made to achieve one of the following measures

of coverage [1,3,41:

1. each statement is executed at least once;

2. each branch is executed at least once;

3. each path is executed at least once.

Examples can be easily constructed to show that the first two measures

are insufficient to guarantee error detection, but to infer that a good

testing strategy must execute all paths is hardly practical. The presence of

a simple DO-WHILE construct may introduce an infinite number of feasible paths.

Even if an arbitrary limit is placed on the number of loop iterations, the

number of available paths tends to grow exponentially as program complexity

increases.

All questions of practicality aside, such a claim runs counter to the

intuition of the typical programmer who is quite willing to infer the correct-

j ness of his program from a small, finite number of test paths. It Is the goal

of this paper to show that, when testing for errors in program predicates,

this confidence is not misplaced. Specifically, the questions to be addressed

are:

1. "After a number of paths have been tested, what is the marginal advantage

of choosing yet another test path?"

2. "Is there a point at which we may sav that no more paths need be chosen

through some program construct, i.e., that it has been sufficiently tested?"

A set of paths shall be considered a sufficient set for a program con-

struct if the failure to detect some error in that construct, using a reliable
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method of selecting data points along those paths, implies that this error

would go undetected for any path through the program.

The domain strategy selects a reliable set of points at the cost of

restricting the permitted functional forms for the program predicates. In

this paper, it will be shown that under a similar restriction, direct answers

can be supplied for the above questions. In Section III of this paper, a model

of linearly domained programs is developed. This model will be employed in

Section IV to investigate the effect of predicate errors on control flow.

Expressions describing the value of a proposed test path will be developed

and it will be shown that the number of test paths required to detect errcrs

in a given predicate of a linearly domained program has a small, finite bound.

This bound is linear in the number of program variables and inputs and is

independent of the complexity of the program's control flow.
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11. The Domain Testing Strategy

Computer program contain two types of errors which have been described

as comutation errors and domain errors (5]. A domain error occurs when a

specific input follows the wrong path due to an error in the control flow of

the program. A path contains a computation error when a specific input follows

the correct path, but an error in some assignment statement causes the wrong

function to be computed for one or more output variables. The domain strategy

has been designed to detect domain errors. Under the proper conditions, this

strategy is reliable for any given path [2,71.

There are limitations inherent in any testing strategy, and these also

constrain the proposed domain strategy. One such limitation might be termed

"ecoincidental correctness", which occurs when a specific test point follows

an incorrect path, and yet the output variables coincidentally are the same

j as if that test point were to follow the correct path. This test point would

then be of no assistance in the detection of the domain error which caused

the control flow change. No test generation strategy can circumvent this

problem. Another inherent testing limitation has been previously identified

as a missing path error, in which a required predicate does not appear in the

given program to be tested [5]. Especially if this predicate were an equality,

no testing strategy could systematically determine that such a predicate should

J be present.

The control flow statements in a computer program partition the input

space into a set of mutually exclusive domains, each of which corresponds to

a particular program path and consists of input data points which cause that

path to be executed. The testing strategy generates test points to examine

~ I7



£ 32

the boundaries of a domain to detect whether a domain error has occurred, as

either one or more of these boundaries will have shifted or else the correspond-

ing predicate relational operator has changed. If test points can be chosen

within ( of each boundary, the strategy has been shown to be reliable in

detecting domain errors of magnitude greater than E, subject to the following

assumptions:

(1) coincidental correctness does not occur;

(2) missing path errors do not occur;

(3) predicate interpretations are linear in the input variables.

Assumptions (1) and (2) have been shown to be inherent to the testing

process and cannot be completely eliminated. Although assumption (3) appears

r to be severely limiting, some evidence exists to indicate that it may hold for

a surprisingly large class of programs. Besides indirect evidence from soft-

ware metric studies, a study by Cohen of fifty COBOL programs taken from

production data processing found only one predicate out of 1225 to be non-

linear [21. The domain testing method has been shown to be applicable to non-

linear boundaries, but the number of test points may become inordinate and

there are complex problems associated with processing nonlinear boundaries

in higher dimensions.

Next let us consider three further assumptions:

(4) the input space is continuous;

(5) predicates are simple;

(6) adjacent domains compute different functions.

TS
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The continuous input space assumption is not really a limitation of

the present testing method, but allows the parameter E to be chosen arbitrarily

small. An error analysis for discrete spaces has shown the strategy to be

viable as long as the size of the domain is not comparable to the discrete

resolution of the space.

If assumptions (5) and (6) are imposed, the testing strategy is con-

siderably simplified, as no more than one domain need be examined at one time

in order to select test points. Moreover, the number of test points required

to test each domain grows linearly with the dimensionality of the input space.

Any program satisfying the six constraints given above will henceforth

be referred to as a linearly domained program.

The analysis of linearly domained programs which follows this section

is not dependent upon the domain testing strategy, although some form of

reliable means of selecting test points for a given path is assumed. The

domain strategy has been discussed here as an example, demonstrating that

g reliable strategies can be constructed.

1

1.

1.'
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II1. A Model of Linearly Domained Programs

It is the goal of this paper to provide a mathematical justification for

some of the intuitive arguments in the preceeding sections. Towards this end

we now present a model for the behavior of linearly domained programs. In

this model the program itself is represented as a static set of transformations

and predicates, while the execution state is represented using the dynamic

attributes of environment, path, and constraints.

The central element in this model is the environment. Properly speaking,
J

the environment of a program represents the values of all variables at any

point in the program's execution. However, since the subject of this analysis

is the detection of domain errors, we shall restrict our representation of the

[environment to those variables and other factors which may affect the flow of

control. Then the environment may be represented as the following vector:

!T

v - (1, xI, ... , x , Y1 -v Yn)T

The yi represent those program variables which may directly or indirectly

affect the program control flow through their effects on the evaluation of

program predicate expressions. The xi represent the values of input data.

It is convenient for purposes of illustration to treat these 3s special

variables whose values are established prior to executica and held fixed ther -

after, although in practice no such special variables need exist. The first

element of the environment vector is held to the constant '" as a notational

convenience so that computations involving constants as weil as variables

might be expressed in a uniform manner. Initially, only tais constant ter. I
and the x terms are considered to be defined. The program must initialize the

program variables as functions of these terms. I

I
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The components of the program itself can then be described in terms of

their interactions with the environment vector. A program is considered as

a set of pairs of the form (Ci, Ti) where C is a computation or transformation

to be applied to the current environment to generate the new environment and

Ti is a predicate which is applied to the new environment. The next (Ci, Ti)

pair to be used is determined by the result of the application

of Ti.

The process of executing a program consists of determining a path P -

(' P1 t"" P,,) where the pi are the indices of the (Ci, Ti) pairs which are

to be successively applied to the environment. As a convention, we shall let

Po  0 designate the start of the program.

The term subpath will be used to designate a path which does not begin

with po 0 or does not end at a valid HALT statement, that is, a path which

does not describe a complete execution of the program. An initial subpath

shall be defined as a subpath beginning at the start of the program, for

which p. 0.

For linearly domained programs, after any step along such a path, the old

J and new environments will be linearly related. The computations Ci may there-

fore be treated as linear transformations. Taking Ci as a matrix, the kth

Jstep along a path P causes the environment to undergo the transformation:
Vk Pk-1 -

The environment after k steps along path p is therefore given by:

k Pk pl pO

eAw-
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where v° is the initial environment. It will often be convenient to represent

this long string of matrices as a single matrix

=- CPk .. C °

representing the total transformation along subpath P.

Since the predicates in a linearly domained program must be linear

expressions, the Ti may be treated as vectors such that the scalar product

T pk v k+ is compared with zero to determine the next index Pk+l" (The

mechanism by which the next index is selected has deliberately been left

unspecified as it is not of importance to this analysis.)

Figure I shows a short program segment and its representation under this

model. If we treat the variables A and B as restricted input variables in the

sense described earlier, then the environment vector has six components

T T
(1,xl,x 2 ,yl,y2,y3) corresponding to (1,A,B,S,T,U) . Let the values in the

input stream for A and B be designated as "a" and "b". Then the initial
IT
environment v is (l,a,b,?,?,?) where "?" indicates an undefined value.

0

Two initial subpaths are available up to location PRED depending on the

result of the test for A>2, PA = (0, 1, 3) and PB a (0, 2, 3). After the first

step along either path, the new environment would be

vI = Cov 0 = (l,a,b,?,l,a)T

Then applying the predicate T involves comparina the values T * v, =

T o(-2,1,0,0,0,0) (l,a,b,?,l,a) . -2 + a to zero. Note that the values in v

for S, T, and U and the expression for T * v1 do indeed correspond to the 1
results expected of the program at this point. I

-. ".".-. -
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Program ± C1

RE A,B; 0 0" 0 0 0 -0,
T-1; ¢010 0 0 1
U-A; 00 1 0 00 ,0
IFA>2 THEN 0 i 0100 0

1 00 0 00, 0
LO10 000, -0

T - 2*U; 1 0 0 0 0 F -0-
0 00 00 .0
01 0 00 0
000 1 00 0
0 0 0 2 0

L11 oo0' _ 0 

ELSE 2 1100 00 0
T -2*A +2*B; 0o1 0000 0
U-U+B; 00 1000 0

END IF 0 0 0 100 0
0 22 0 00 0

S-i1; 3 1 0 00 00 0
PRED: IF U> THEN ... 0 1 0 000 0

001000 -1

L00 00 1010

Figure 1: Model Representation of Sample Program

Correct Code Incorrect Code

IF D-1 THEN IF D-1 THEN

IF C+D > 1 THEN IF C > 0 THEN

Figure 2: Equality Blindness

-er-. ~
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Completing the execution along both subpaths, define CA and CB

CA- C3CC °  00 1 0 00 (A>2)

10 0 00/
I1010 0 0 0

C = C3C 0 0 100 0 (A-2)B 0000 0

Tso that CAv° - (l,a,b,l,2a,a)

TCBvo - (l,a,b,1,2a+2b,a+b)

Taking the product of the transformation matrices along some path is

equivalent to symbolically executing along that path. The total transformation

&matrix represents the equivalent assignments along that path. But not all

such paths are valid. An initial subpath P -(Mp'.... wpk ) shall be called

a testable subpath if there exists a subpath P' - (pk+l'..... ) such that

1. P' ends with a HALT statement;

2. There exists some input value causing the path P" u ('pl ..... Pk'Pk+l' .'.h )

to be executed;

3. The predicate T is not implied by the conjunction of other predicates on P".

One final item remains to be modeled. Every predicate encountered along

a path places restrictions on the legal set of input values for that path.

However -the constraints imposed by equality predicates are qualitatively

different from those imposed by inequalities, since a valid equality predicate

-i

- _I
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reduces the dimension of the space of legal inputs x . In recognition of this,

there is associated with each testable subpath PA a set of restriction vectors
-AA

r., for 0<=kA, such that if v is an initial environment which might cause0

path PA to be executed, then

-A -,015r i • 0, o <ik A

To summarize, this model represents linearly domained programs in terms

of computation-predicate pairs (C1 ,T i) with execution being described in terms

of environment ;, paths P, and equality restrictions r i In the next section

this model will be employed to investigate the detection of errors in program

predicates.

I

Il-

~ K q* -
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IV. Sufficient Testing for Predicate Errors

In the definition of any automated path selection strategy, a question

which must arise is, "When does testing stop? At what point is it possible

to point to a particular program construct and say that it has been sufficiently

tested - no errors can remain undetected?" A programmer's intuition suggests

that such claims should be possible after the selection of a small number of

test paths. This intuitive claim may be verified for predicates in a linearly

domained program using the model presented in the previous section.

Even given a reliable method of selecting critical test data for a given

path, certain predicate errors will escape detection. This is inherent in the

nature of path analysis testing. The goal is to choose a combination of paths

so as to collectively eliminate all such errors.

To characterize these undetected errors, consider a program where for some

pair (C,T)f the predicate is replaced by an erroneous predicate T'i such that

ii i i+a

A is a unit vector giving the "direction" of the error and a is a scalar

giving the magnitude of the error. Let P Abe a testable subpath ending with

(c1ity). The environment after ecuigalong P AwilbvAaCAv0whrCA

is the total transformation along P Assuming that adjacent domains compute

different functions and coincidental correctness does not occur, a reliable

strategy for selecting test data will be able to detect th'e erroneous predicate

if and only if

Ti A i vA
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Expanding Ti and vA this becomes

Ti 0vA Ti A + g vA

8TCAo #

Therefore if e CA7 0 0 for all v in the domain of the path P., then the

error e will go undetected. Consider the various cases which may force this

expression to zero:

1. CA-v

eC --T
S2. e C A ,,0

3 iTC -T, j.3. CA #Ac °  0 for allv 0 in the domain of PA'

The first case is clearly impossible since vA a CA v will always have a

constant "1" in its first position, as constants may not be reassigned new

values.

If ATCA T then transposing to get C T-0 indicates that this is an

elgenvalue problem CAe e Ag with A-0. The solution to this problem can be

found by examining the structure of the individual Ci.

Each matrix Ci may be partitioned into the form

ITI

where Q is (m+l) by (m+l) and T is n by n.

The matrix Q maps the inputs and constants from the old environment into

the new environment, and so must be the identity matrix I. R maps the variables

of the old environment onto the inputs and constants in the new environment.

.V
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Such assignments are forbidden and so R must be entirely zero. S, mapping the

old inputs and constants into the new variables, may contain any real values.
T maps the old variables into the new variables. This mapping is unrestricted

for all Ci except C0, the initial assignments where all variables are initialized

in terms of inputs and constants. For C the component T must be entirely zero,

so that

SI T

and for any initial subpath PA'

CA C C ... C C
Pk Pk-l 1 S

/ I s" Al

I S TVI/
CA = : "- . ..

Now the solution to the eigenvalue equation CT z- is given by inspection.

if are the vectors forming the columns of the identity matrix of the same

dimension as CA, then

T

Ai - i- (m+2)...(m+n+l) (2)CA i  = .

where c is the ith row of C But the c for m+2-Lm+n+l are linear combinations

-

- ' !
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of the 0 for li!m+l. Therefore

T l iim+l -1 (3)

CA(ci-1i )  m+l<im+n+l Xi- (4)

Thus an error will go undetected if

e null-space(CT) - span(c -Oi) m+l<i-m4-n+l (5)
i

This vector space has a simple interpretation in terms of symbolic

evaluation. In Figure 1 consider the subpath leading to PRED for the case A>2.

Since T-2a along this path, one error satisfying the above criterion is

T
- (O,2,0,0,-l,0) . Adding this to the vector representation of T3 would

give a vector equivalent to the predicate "IF U+2*A-T>B". For any data which

causes this path to execute, this erroneous form will be indistinguishable from

"IF U>B" since the added term "2*A-T" will evaluate to zero. This behavior is

termed "assignment blindness", because it results solely from the assignment

statements encountered along the test path.

Finally if .Tc # 0 T but &TCo -0 for all v in the domain of PA' then

the error still goes undetected but assignment blindness cannot be a factor

since eCA # 0 .

Let u - C e. Then u • v - 0, but neither u nor v can be a zero vector.A o 0

If the set of legal v for the path PA forms a space of dimension m, thereo

will always exist some v in that domain such that u • v # 0. However,

equalities restrict the v to a hyperplane of that space of inputs. If u is

'1.
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orthogonal to that hyperplane, then u * vo W 0 for all legal vo. This implies

that some form of "equality blindness" exists to complement assignment blindness.

-A -
Since r v 0 - ,i-l..k A represent these equality restrictions, it is apparent

that the necessary condition for the inability to detect an error due to

equality blindness is

- =TA -A(6
U C Ae E span(ri).(6

An example of equality blindness is given in Figure 2, where the two

expressions for the second predicate will be indistinguishable for any test

path vhere the first predicate is true.

The above analysis of the conditions under which e CA v. woulId go to zero

has identified a number of isolated vectors representing undetectable errors

for the path being tested. Clearly any linear combination of these errors

will also go undetected, implying that the total undetected space is described

by the span of these vectors. The total undetected space would then be given

T TA -A
by the span of the null-space of CA and of the set (e: C e ( span(r).

A A i i

Equation (5) describes assignment blindness directly in terms of the

assignments performed along a path. In contrast, the description of equality

blindness requires the solution of (6). Such a procedure would be, at best,

awkward. This indirect method of specifying the characteristic vectors for

equality blindness can be simplified. When the spaces for assignment and

equality blindness are combined in this way, there may be some overlap.

Choose any i which is subject to equality blindness. Decomposing e^ into its

components,

B ~3.(7)
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Since we have specified that this - is subject to equality blindness,

C AeE span(r ).
i

So there must exist a set {Yi } such that

Ce- Yiri",
T T-

Referring back to the expressions for C T given in (1) and (2):

A ~~~ i'42
T M+l m+n+l -

c', "A - 1l 0 1 +  -,,2 i Y i i

M+l -AM+n+l
Z Si Yi r - Z a--c=B ~ yri- Sic

i-l i i-m+2

M+l m+n+l -A M+n+l
r=0 1 0 1+ r .Q =- 2 aQ)

ii-m+2 i ism+2

The expression on the left is the decomposition of and that on the right

is a linear combination of the equality restrictions and of the assignment

blindness vectors. Thus e is subject to equality blindness if and only if

T ,-Al
8 E span[null-space(CA), A r i

Clearly this also holds for errors subject to assignment blindness. This leads

to the following theorem:

Theorem 1. Characterization of Undetected Predicate Errors

Let PA be a testable subpath in a linearly domained program. Then an

error R in the final predicate of PA will be undetectable if and only if

, E span[null-space(C A),{r i].

{i
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Although the examples of assignment and equality blindness given above

may seem trivial or may appear to involve awkward or unlikely errors, it is

important to note that any linear combination of these errors will also go

undetected. Such combinations can involve simple expressions, yet may not be

apparent from an inspection of the program.

The existence of a characterization theorem suggests a return to the

question posed earlier, "After testing several paths, what is the marginal

advantage of testing still another path?" Since the undetected errors are

described by a well-defined vector space, a new proposed path will form a

useful test only if some portion of the (previously) untested space is

detectable along the new path.

Theorem 2. Path Rejection Criteria

If a set K - (P} of testable subpaths ending at T-- has been previously

tested, then a proposed testable subpath PA also ending with T. need not beA J

tested if and only if

T -~T -An span(null-space(C) -(r}] span{null-space(C),{ri

A set of previously tested paths may leave a certain error space unchecked.

If 8 is in that space, and e is detectable over subpath PA then any errors in

the untested space which have e as a component will be detected. Testing along

such a path will reduce the dimension of the undetected error space by at least

one. This naturally suggests the following corollary:

Corollary 1. A set of testable subpaths K - (P all ending with _T is

sufficient for T if

n span(null-space(C ) }1] =-

~----~.-
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Normally certain errors will remain undetectable no matter what test paths

are used. These may occur because no options exist to certain assignments or

equalities. For example, in Figure 1 the statement "S=1;" immediately before

PRED means that no path can detect errors in PRED of the form 8 
T

which would result in predicates like "IF U+S>B+1". Alternatively, some errors

will go undetected because some functional relationship is preserved along all

paths. In Figure I the path for A>2 transforms the environment to CA 0 =

(l,a,bl,2a,a) T . Applying the rules for assignment blindness to this environ-

Il ment shows that testing along this path misses errors in PRED involving the

expressions"A-U" and "2*A-T". The path for A2 with an environment CAV =

T
(l,a,b,l,2a+2b,a+b) is blind to error expressions "A+B-U" and "2*A+2*B-T"I.

But neither path will detect the expression "T-2*U" if it is added to the

predicate, because for both paths that expression is a linear combination of

the undetected errors.

Such errors are undetectable for any test path and hence for any input

data. Consequently they have no real bearing upon the correctness of the

program, but they do complicate the problem of judging when a predicate has

been sufficiently tested. Although we may reasonably believe a set of paths

to be nearly sufficient because they reduce the dimension of the untested

space to a small number, the smallest possible dimension of that space may not

be known.

In this context, the value of a proposed test path may be measured by

the number of dimensions it would subtract from the total untested space.

T -A
The computations necessary to find the null space of CA and the r are

not as difficult as the notation might suggest. Both are directly derivable

[.

i*.. -~
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from a symbolic execution without requiring an explicit construction of the

C imatrices.

Furthermore, in most cases where a subpath is rejected under Theorem 2,

any extensions of that path may also be rejected in favor of extension of already

tested paths. This rule applies whenever the extensions do not involve

additional equalities and the extended paths remain testable.

Theorem 3. Concatenation Rule

Given a set of subpaths K - (P and a subpath PA satisfying the terms of

Theorem 2, define K' (P } and P as the initial subpaths formed by concatenating

the P & and P A with subpath PB. Suppose that {P} and P are testable and no

additional equalities are encountered in PB"

Then if testing is performed on {P'), PA' need not be tested.

A'AProof: Let D(Q) and D(A) designate the domains of paths P and P A* Then by

Theorem 2,

-V&(KVv oED A - - 0 A 01 (8)

Assume by way of contradiction that PA must be tested, meaning that there

exists some error f such that

'EK', Vv 0ED('), fT cv 0 (9)

and

3V (D(A'), fTC 0 0 (10)

IL

, :aof
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Noting that

D(A) - D(A') D(E) -D(E)

CA, = CsCA C, CC,

let - f.

Substituting for f and the A' and ' terms in (9) and (10):

VEEK, Yv ED(&), eTC,-v 00 0

and

-T-
3v (D(A), e C Av #0

But this contradicts the statement of Theorem 2 in equation (8) which is given

as true. Consequently the assumption that such an f exists fails and the

theorem is proven.

At this point we have characterized those predicate errors which escape

detection for a given test path and have shown that the value of a test path

lies in its ability to reduce the space of potentially undetected errors. We

have yet to justify the claim that a small, finite set of paths will be

sufficient for detecting predicate errors. This is accomplished in the

final theorem.

7
Theorem 4. Minimal Set for Sufficient Testing

A minimal set of subpaths sufficient for testing a given predicate in a

linearly domained program will contain at most m+n+l subpaths, where m is the

number of input values and n the number of program variables.

i.
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After a single path has been tested, the untested error space due to

assignment blindness is of dimension n, and the space due to equality blindness

is at most dimension m. In constructing a minimal sufficient set of test

paths, any subpath which fails to reduce the dimension of the total untested

space by at least one would be rejected under Theorem 2. So after testing

two paths the dimension of the total untested error space is at most m+n-l.

Continuing in this fashion it is clear that a minimal sufficient test set can

have at most m+n+l paths.

The importance of this theorem is that it shows that a finite number of

test paths will suffice for a wide class of programs. This limit is linear

in the number of inputs and variables, so it should not grow inordinately

large. Furthermore in most cases this limit should prove to be unnecessarily

pessimistic, for several things may act to reduce the actual number of paths

required. If the number of equalities is small, the dimension of the initial

untested space will be reduced. If paths with widely different computations

are used, the untested space due to assignment blindness can be reduced by

far more than one dimension at a time. Even more important, however, are

the implications of the concatenation rule. The chosen test subpaths, when

extended to full paths from start to halt, should pass through a number of

predicates. The concatenation rule then suggests that a sufficient or nearly

sufficient set of paths for a predicate early in the program may also serve

as a nearly sufficient set for later predicates, so that m+n+l separate paths

need not be formed for each individual predicate.

r*.
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V. Conclusions

In linearly domained programs, the program predicates and the computations

affecting control flow are linear in the input variables. Although linearity

itself yields considerable simplification, another implication of this

assumption is conceptually more important. Restricting predicate interpreta-

tions to a well-behaved functional class makes possible the description of the

infinite set of possible predicate errors using a small finite set of linearly

independent errors.

In the above sections we have used this approach to characterize those

predicate errors which must escape detection for a given test path in a

linearly domained program. This characterization has led to criteria for

determining whether a proposed test path is capable of detecting any errors

not already revealed by previous tests. These criteria are directly derivable

from the assignments and equality predicates encountered along the test paths.

The value of a test path is defined in terms of its ability to eliminate one

or more of the characteristic errors which had escaped previous tests.

The number of test paths which may be selected under these criteria is

limited by the finite number of independent errors. For linearly domained

programs any predicate may be sufficiently tested using at most m+n+l paths

where m is the number of program input values and n is the number of program

variables. Thiis limit is independent of the complexity of the program

control flow.

These results do not constitute a method for selecting paths for testing.

The question of which paths are to be examined under this criterion has not
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been addressed here. However it seems unlikely that the more general question

of how to select paths for testing can be answered without some means of

judging the path's value to the testing process. Such a means is provided

here, together with the assurance that only a finite number of paths need

to be selected.

The chief assumption throughout this analysis has been that predicates

and computations affecting the control flow are restricted to a well-behaved

class of functions, in this case linear, which permits the definition of a

finite-dimensioned space of possible errors. It does not seem unreasonable

to expect that similar results might be obtained for higher order functions.

It is not clear whether the incidence of such functions is in practice

sufficiently common to necessitate such an extension or to Justify the

additional number of test paths which might be required.

The model employed here does not take program structure into account.

It remains to be seen what effects, if any, the use of well-structured control

constructs might have on the selection of sufficient sets of tesv paths.

Work is continuing on this model, focusing on the extension of the

analysis for linearly domained programs to domain errors caused by incorrect

computations and on the applicability of these results to path selection

strategies.
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2.1.3. Module Intearation Testing

Haley and Zweben have been investigating the issues involved when a
"1correct" module which has been thoroughly validated is integrated into a
larger program context. It is desired to maximally utilize the information
that this module is correct in designing the integration testing strategy.
The paper that follows presents the results that have been obtained by our
group, and has been submitted for publication to Journal of Systems and
Software.
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Develoyment and Anolication of a
White B x Aporoach to Intezration TesCing*

Allen Haley, Stuart Zweben
Dept. of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

Abstract

Program testing techniques can be classified in many ways.
One classification is that of "black box" vs "white box" testing.
In black box testing, test data are selected according to the
purpose of the program independent of the manner in which the
program is actually coded. White box testing, on the other hand,
makes use of the properties of the source code to guide the
testing process. A white box testing strategy, which involves
integrating a previously validated module into a software system
is described. It is shown that, when doing the integration
testing, it is not enough to treat the midale as a "black box",
for otherwise certain integration errors may go undetected. For
example, an error in the calling program may cause an error in
the module's input which only results in an error in the module's
output along certain paths through the module. These errors can
be classified as Integration Domain Errors, and Integration
Computation Errors. The results indicate that such errors can be
detected by the module by retesting a set of paths whose
cardinality depends only on the dimensionality of the module's
input for integration domain errors, and on the dimensionality of
the module's inputs and outputs for integration computation
errors. In both cases the number of paths that need be retested
do not depend on the module's path complexity. An example of the
strategy as applied to the path testing of a COBOL program is
presented.

*This work supported in part by the Air Force Office of
Scientific Research Grant AF F49620-79-C-0152 and by the National
Science Foundation under grant MCS-8018769.
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Development and Application of a
White Box Approach _o Integration Testins*

Allen Haley, Stuart Zweben
Dept. of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

Introduction

Program testing techniques can be classified in many ways.

One classification is that of "black box" vs "white box" testing.

In black box testing, test data are selected according to the

purpose of the program (as expressed, say, by a specification),

independent of the manner in which the program is actually coded.

Such approaches are described in [3] and [1]. Unfortunately, the

insights needed to develop these ideas into an easily applied

testing technique appear beyond the state of the art. White box

testing, on the other hand, makes use of the properties of the

source code to guide the testing process. Statement and decision

coverage, and Domain Testing [7j are examples of white box

strategies. While such techniques can be (and have been)

automated, they suffer from either the inability to provide

formal statements about the adequacy of testing (e.g. coverage

approaches (3, 61) or from impracticality due to the large amount

of testing required (e.g. Domain Testing). What is needed are

strategies which have some identifiable degree of reliability and

yet do not require an inordinate amount of test data. For

example, we intuitively believe that it is not necessary to

require examination of every path in a program. But how can we

*lesearch supported in part by: AFSOR contract F49620-79C-0152
NSF grant MCS-8018769
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determine which paths are "unnecessary"?

One possible approach to achieving this reduction is

motivated by considering the problem of program development. In

developing the solution to a large, complex problem, it is

customary to form subdivisions which abstract interesting aspects

of the total solution. These subdivisions might then be refined,

implemented, and tested as independent units of the total system

and then integrated to form a complete working solution to the

original problem. When viewing the integrated program as the

object to be tested, it may well be the case that the

complexities are too great to make certain testing strategies

practical. For example, consider a program P consisting of

subprogram P1 containing m paths followed by subprogram P2

containing n paths. The integrated program can have a total of

m*n paths, since any of the m paths in Pl can be followed by any

of the n paths in P2. In the course of developing P however, it

may well be the case that both Pl and P2 have been tested

separately. It would be desirable if the correctness information

obtained in unit testing Pl and P2 could be used in validating P.

If the individual modules do not contain a large number of paths,

it may in fact be possible to test all possible paths in each

module. If the additional testing required at integration time

was negligible compared to the unit testing overhead (for

example, we might be able to ignore the internal control

structure of a tested module when integrating it), the result

would be a reduction of the magnitude of the testing problem from

O(m*n) to O(m+u). While this represents in some sense an ideal
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situation, it is clear that with such a potential for complexity

reduction, even a less than ideal solution might represent a

considerable improvement and yet provide a substantial degree of

practicality.

Thus, the justification for the development of a method of

integrating independently tested modules into the testing of a

program is (1) to reduce the total testing complexity, and (2) to

make the testing procedure conform to the way progra- s are

developed.

Integration Time Errors

In the remainder of the paper, we will explore the issues

involved when a "correct" module (one which produces the

appropriate output for any valid input) is integrated into a

larger program context, with the goal of identifying testing

strategies which are sensitive to integration time errors.

In order to be able to characterize the effectiveness of any

testing approach, it is necessary to classify those kinds of

errors that we might hope to detect. One proposal, due to Howden

[3] distinguishes between domain errors and computation errors. A

domain error occurs when a specific input follows the wrong path

due to an error in the control flow of the program. A computation

error exists when a specific input follows the correct path, but

an error in some assignment statement causes the wrong function

' ° - r*,- -. --
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to be computed for one or more of the output variables.

The notion of domain and computation errors turns out to be

quite useful in characterizing certain types of integration

problems. For example, consider a module M which has been

thoroughly validated, say by some "Hypothetical Testing

Strategy". so that it is free of both domain and computation

errors. Module M is to be integrated into a program P. Assume

that P has some computation whose result (call it C ) is used in

some predicate of M but is not used anywhere else in the program

(see Figure 1).

READ Ip
C - Ip IF C <4

P CALL M (.., C,..Om) M THEN Om - 1
Op = Om ELSE 0m - 2
PRINT Op

Figure 1.
Program Containing a Computation Used Only
in a Predicate of a Previously Tested Module.

Now suppose that the correct computation in P should have

set C to Ip+l. In validating M, we may have ensured that M

produces the correct output no matter which branch of the IF

statement is taken, but P will still produce the wrong output if

the initial value of Ip is such that 3 < Ip j 4. However, if we

do not happen to choose a value of Ip in this range we will not

catch the error in the computation statement. Notice that, from

the point of view of the program P, there is only one path to

consider (READ Ip; C-Ip; CALL M (...); OpmOm; PRINT Op) if we

ignore the internal structure of M at integration time and deal

1.
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only with P's structure. Yet this example shows that we must do

more than just select a couple of values of Ip and examine the

resulting values of Op. In this case, if we were to analyze the

integrated program including the module's control structure, we

would notice that the program contains a domain error, since

values of Ip in the range 3 < Ip j 4 follow the wrong path.

Computation errors cause another problem in ignoring the

validated module's control structure at integration time. Assume

that the program contains an incorrect computation whose result

is passed to the validated module. 7urther assume that the only

use of this result is by some computation in the validated

module. As an example, suppose P is the same as in Figure 1, but

M is changed as in Figure 2.

M IF (condition)
THEN Om - C
ELSE Om - 2

Figure 2.
Module Which Transmits a Program Computation Error.

Assume once again that the computation in P should set C

equal to Ip+l instead of Ip. If integration test data were chosen

which never exercised the true branch of the condition in M, then

the resulting value of Om would always be 2 and the error in the

computation of P would go undetected by simply examining the

output of the program.

.1
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These two examples have elements in common. In both cases

there is an error in the code preceding the call to the validated

module. The error causes one of the module's inputs to have an

incorrect (not invalid) value; it is possible for the error in

the module's input to not be reflected as an error in the

module's (and hence the program's) output, since transmission of

the error to an output may be dependent upon the particular path

chosen through the module. It is therefore clear that, when

integrating a previously validated module, one needs to know more

than just that the module is correct. If information relevant to

the module's internal structure is ignored, it is possible for

both domain and computation errors in the integrated program to

go undetected. Therefore it is natural to ask at this stage

"What, in addition to knowing that the module is correct, will

allow effective integration testing to be done?". Furthermore, in

view of the introductory remarks concerning black box testing, we

are interested in knowing if this additional information can be

obtained "automatically", by examining properties of the program

structure.

J Detectinz Integration Errors

Two approaches to answering the question posed at the end of

the previous section are suggested by the examples presented in

that section. Since our goal is to detect errors in the module's

input, we could simply require that all input values to the

module be output (along with the normal output of the calling

1.
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program). This technique is not new, as programmers of ten print

out values of intermediate/ temporary variables. However it is

often hard to know whether an intermediate program value is

correct. More likely, the programmer is only interested in

examining the final outputs of the (calling) program.

Therefore we consider a second approach. It would appear

that the chief problems presented in the previous section are

that 1) we may have failed to retest adequately a predicate in

the module whose interpretation is affected by a particular error

in the calling program (for integration time domain errors), or

2) an error in the calling program that produces an error in the

module's input might not be passed to the module's outputs (and

hence to the program's outputs) along those paths that are

executed in the module during integration testing. The solution,

therefore, seems to be a matter of "retesting" during integration

testing, a set of paths through the module which are sensitive to

these problems. We will refer to this set as the Inte-grationTest

Set for the module. The integration test set should meet two

important criteria. First, it should be capable of detecting all

of the integration testing errors identified in the previous

section. Second, it should contain as few of the module's paths

as is necessary to meet the first criterion.

In order to find an integration test set for a particular

module it is first necessary to be able to determine all the

possible "different" integration domain and computation errors

that can occur in the module. Once this is done, it is necessary
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to be able to tell, given a path through the module, which of the

possible integration errors the particular path will detect. The

details of how to perform these operations can be found in (2]. A

key idea used in the derivations is that, if a module has m input

variables then there are only m independent ways in whicA an

input error can occur. That is, any input error can be expressed

as a combination of the m independent error types (referred to as

"ferror directions").

Example 1

Suppose m-2 so that the module has two inputs Ii and 12. Now

II can be in error on a particular call to the module, so that

the module is in fact called with ll'-Illel. Similarly, the

module can be called with I2'-12+e2. But any incorrect inputs can

be expressed in terms of the correct input vector (jj) and an

error vector C'1)-cl().c2(*) where cl and c 2 are constants. In

this sense, there are 2 linearly independent error directions.

Using the concept of error directions, and letting

m - the number of input variablies for the module,
and

n-the number of output variables for the module,

the number of potentially detectable integration domain and

integratLon computation errors can be determined.

For integration domain errors, we are attempting to detect

situations where an erroneous input to a previously tested module

causes

____i
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1. some predicate in the module to have an erroneous

interpretation, so that

2. an incorrect path is taken by this input, resulting in

3. a different computation to be performed from that which

takes place on the correct path, so that

4. one or more of the program's outputs has an incorrect

value.

The notion of an erroneous predicate interpretation can be

illustrated as follows. Suppose the previously tested module has

inputs I1 and 12 and contains a predicate of the form "IF PI>O"

whose interpretation along some path in the module is

"IF I1+12>0". If both II and 12 are in error in such a way that

their errors cancel (ie ll'=-l+e and 12"=I-e for some e#O) then

this predicate is "blind" to this error and therefore is

incapable of detecting it. Rowever, some other predicate in the

module might have an interpretation like "IF 11>0". This second

predicate is capable of detecting the "canceling errors" (though

it, too, is blind to certain errors, such as those which only

involve 12). We must also be wary of a situation in which an

error to the moduleos input causes a predicate to have an

interpretation which is a multiple of the correct interpretation,

for then both interpretations evaluate identically for any input,

and the error will go undetected.

Example 2

Consider the predicate "IF P1>O" whose interpretation, in

terms of the module inputs II and 12, is "IF 11+12>0". Suppose

the program which calls this module has inputs X, Y, and Z.

Pi
6--
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Further assume that the correct assignments to Ii and 12 by the

calling program should be {II=X 2*Y, 12-2*Z} while the incorrect

assignments are (I1'=2*X+Z, 12"=3*Z+4*Y}. Then

II I2>O a X 2*Y 2*Z>O

while

11 12'>0 - 2*X+4*Y 4*Z>O

- 2*(X 2*Y 2*Z)ZO

Both interpretations evaluate identically for any triplet

(X,Y,z).

This discussion illustrates that there are at most m+l

"different" integration domain errors that can occur, and hints

at the kind of analysis, based on algebraic properties of the

predicate interpretations, that would be needed to identify a

candidate set of paths for the integration tesc set. Analysis of

integration computation errors, again using algebraic properties

of the code, reveals that at most (m*n)+l "different" errors are

possible (2].

Given that there is a path through a module containing at

least one predicate interpretation that is linear in terms of the

module's inputs, then that path will be able to detect at least

one of the m+l possible integration domain errors. If enough

paths with linear predicate interpretations exist in the module,

and we assume a path won't be included in the integration test

set unless it contributes to the detection of at least one new

error, then for integration domain errors we need at most m+l

- A I,
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paths in the integration test set. Notice that for the above

result there is no requirement that a1 the predicate

interpretations in the module be linear.

A similar situation occurs for determining the maximum size

of the integration test set for integration computation errors.

In this case, if there exist enough paths through the module such

that the computations along those paths are linear in terms of

the module's inputs, then the integration test set for

integration computation errors will contain at most (m*n)+l

paths.

The determination of whether any particular path should be

included in the integration test set involves applying standard

linear algebra techniques to the results of a symbolic evaluation

of the path. The complexity of the computations involved in

applying these techniques to any one path is no worse than (ml)3

for integration domain errors, and (m*n+l) 3 for integration

computation errors.

Combined Integration Testin2

If the desire is to do integration testing for both domain

and computation errors at the same time the integration test set

that is required is simply the union of the integration test sets

needed for each case. Therefore, the upper bound on the number of

paths in the combined integration test set is (mil)+(m*n~l). In

general the integration test set will contain far fewer members,

V -~ -
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for a number of reasons.

First, a path might contribute to the detection of more than

one integration domain error because the path might contain more

than one predicate. Second, some of the paths in the two

integration test sets might be the same, resulting in the union

of the integration test set being smaller than the upper bound.

The third, and most significant reason, is related to the

existence of sufficient linear paths in the module to detect all

integration errors. Our experience has shown that for most

modules it isn't possible to detect all the integration errors,

even when all paths in the module are examined. The cause of this

isn't a lack of linear paths, but is instead that many different

paths have the ability to detect the same integration error. This

has two effects on the integration testing strategy. First, since

the number of possible errors that can be detected is a subset of

all the possible integration errors, the maximum number of paths

in the integration test set is reduced by the number of errors

J that can't be detected. In practice, this reduction can be

substantial. Second, nonlinear paths might be capable of

detecting some of the integration errors that aren't detected

along linear paths.

Nonlinear Paths

A possible method of handling paths that contain nonlinear

predicate interpretations and computations is to include any such

1.



68

paths in the integration test set. While this simplifies the

selection of the integration test set (only the linear paths need

be analyzed to determine if they should be included in the test

set), it is only a reasonable solution if the number of nonlinear

paths in the module is relatively small.

In modules where the number of nonlinear paths is too large

to employ the above solution it would be helpful to analyze the

nonlinear paths to determine if they can detect integration

errors not detected by the linear paths. This is possible if the

type of nonlinearity is such that the predicates and computations

can be represented in a canonical form as elements of a finite

dimensional vector space. The class of multinomials, for example,

satLsfies the above condition, and could therefore be handled by

the integration testing strategy, albeit at the expense of

additional computational complexity.

Fundamental Limitations of White Box Integration Testing.

There are a few fundamental problems with this testing

strategy which need to be addressed. The first problem only

occurs with the detection of integration domain errors. For

integration domain errors we have chosen paths through the module

to guarantee that, if an input error exists, then some predicate

in the integration test set will shift. A problem arises if the

predicate that is shifting is redundant. This occurs when some

other predicate along that same path through the integrated

program supersedes the shifting predicate so that the shifting

II
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predicate isn't part of the border of the path that is being

tested. In this case an integration domain error might go

undetected that would have been detected along some other path in

the module. Since there is no requirement that the superseding

predicate be in the module (it can be in the calling program

either before or after the module), there is no way to avoid this

problem by simply examining the structure of the module. In real

programs and modules that we have examined, this problem in fact

occurs. However its significance has not yet been thoroughly

analyzed.

second problem with the integration test set affects

both integration domain and computation errors. This problem

arises because the paths we have chosen for the integration test

set might not be feasible with respect to the calling program.

Again this problem might prevent us from detecting certain

integration errors that would have been detectable along some

other feasible path through the module. This problem, again,

can't be solved through examination of the module because the

infeasibility could be the result of predicates in the program

outside of the module.

Al Examnle o1 Module Integration Testing

The integration testing strategy has been applied to the

testing of a production COBOL program for computing hourly

payroll. The program is divided into six main modules, with three

i .
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of these modules (subsystem 1, 2, and 3 respectively) containing

lover level submodules. The relevant structural properties of

these subsystems are as follows:

1. Subsystem 1
a) 2 individual modules
b) 78,429 total paths

2. Subsystem 2
a) 6 individual modules

b) 2,904,545,988 total paths
3. Subsystem 3

a) 2 individual modules
b) 4.679*1024 total paths

Clearly the amount of work required to do a complete path

test for these subsystems is unreasonably large. The hope is that

by applying the integration testing strategy, the total number of

paths that need to be examined for testing will be substantially

reduced.

Because of the limited number of nonlinear predicates and

computations in this program, we decided to include all nonlinear

paths in the integration test set at each level. Furthermore, it

should be noted that the above path counts for each module are

theoretical paths, and may contain paths that are infeasible.

The integration testing strategy was applied to the program

in the following manner. First, all paths in the lowest level

modules were examined, and the integration test set for those

modules was determined. Next, all paths in the next higher level

of modules were examined in combination with the integration test

set from the lower level modules. This process was continued

T - t -- I
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until the highest level modules were reached.

When choosing paths at each level the order in which the

paths are chosen can affect the size of the integration test set,

because each path can contribute to the detection of more than

one error direction for integration domain errors. For the

purposes of this example we always chose the paths that contained

the most predicates first. In cases where the number of

predicates along two paths were the same, the true branches were

always chosen first. While we don't claim that this selection

process gives a minimum integration test set, our experience has

shown that it does tend to reduce the size of the integration

test set.

The following table gives the total number of paths that

were examined using the above method of applying the integration

testng strategy.

1. Subsystem 1 15,621 integration paths
2. Subsystem 2 12,057 integration paths
3. Subsystem 3 1.4*106 integration paths

I
In addition to the reduction in the total number of paths

jthat need be tested, the integration testing strategy offers the

added benefit of using paths which are, on the average, shorter

than those which must be tested when the program is considered as

a single unit. This is because in integration testing many of the

paths lie entirely within the lower level submodules, rather than

if
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spanning the entire program (recall that in the integration

testing strategy the modules are tested independently, and this

testing is reflected in the above numbers). This should serve to

reduce the complexity of the testing process since many testing

strategies are dependent, at least in part, on the number of

predicates and computations on a particular path (strategies

which employ symbolic analysis fall into this category).

Final Remarks

We have shown that it is possible to detect integration

domain and computation errors using a set of paths whose

cardinality depends on the complexity of the module interfaces of

the subsystem under test, rather than on the path complexity of

that subsystem. Furthermore, these errors can be detected by

examining the normal outputs of the subsystem, without requiring

intermediate values or extraneous quantities to be examined. The

reduction in the number of paths that need to be examined can be

several orders of magnitude, and in certain situations might mean

the difference between a practical and impractical testing plan.

In other cases the number of paths required may still be too

large to be practical, but in such situations, the integration

testing strategy can provide information concerning the kinds of

errors that remain untested after some subset of the inLegration

test set has been chosen. The integration testing strategy is

based solely upon properties of the program structure, thereby

illustratLng that white box testing need not be bound by the path j
complexity of the system under test. However, it is faced with 1

I
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problems such as feasibility and redundancy which are fundamental

to a technique which uses no information about the purpose of the

code under test. We believe that a well thought out testing

strategy has got to make use of specification information to be

both practical and effective. In the absence of the required

sophistication to employ this information, it is at least helpful

to know the extent to which the code itself can guide the testing

process.

"
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241.4. Odher Issues in Testint

Prof. Chandrasekaran edited a special issue of the IEEE Trans. Software
Engineering on computer program testing. The editorial that follows is a
technical discussion of several issues in program testing in the context of
the papers in the Special Issue.

1
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EE TRANSAMONS ON SOFTWARE ENGDaERNG. VOL. M6, NO. 3. MAY 196

Guest Editorial

Special Collection on Program Testing

I. INTRODUCTION Identification of such subdomaim is still a creative act, based
T HIS special collection had its genesis at the IEEE Com- on studying the specifications and even the program structure.

puter Society Workshop on Software Testing and Test The authors demonstrate the approach on some example pro-
Documentation, held in Fort Lauderdale, Florida, during De. grams. They acknowledge that their paper outlines an ap-
cember 18-20, 1978. This collection is devoted to selected proach rather than a concrete methodology. More work
papers on program testing that were presented at the Work- would need to be done on a wide clas of problems and pro-
shop. It contains six papers whose concerns span a wide range: grams before the practical usefulness of the notion of reveal-
theoretical issues, practical experience with particular strate- mg subdomams can be established. However, it is clear that
pies, extension of a clas of techniques to new classes of lan- the theoretical framework for testing is enlarged by the no-
guage constructs, and building integrated tet tools. In the bons introduced in this paper.
next section, we present an overview of the papers in the White and Cohen describe a strategy which concentrate on
collection. the detection of a particular type of errors, viz., domakh errom

as defined by Howden 121. Thes errors result from errors in
H. OVE VIEW OF TH SIcAL. COLLECON the control flow of a program, which cause some inputs to fol-

Thie paper by Weyuker and Ostrnd begins by ex the low an incorrect path, ie., those inputs ae in the wrong do-

conceptual, definitional framework for test data s main (or subdomain in the terminology of the preo paper).

sented by Goodenough and Gerhart [1]. After clarifying They note that essentially these eon result in a shifting of

of the definitions in [1], It is pointed out that this framemik the boundarie of the domains. Thus the technical question
becomes one of how and under what conditions anuc

needs to be eniched in order to make the theory yield math- bon ss e tectednbyues at Wite an ch

odologos for proctlm test data selection. In , boundary d a be detected by to data. Wte and Coh e

Weyuker and Osrand attempt to lower the goal from one note tht domn errors can be twhird to e ior in pred t

of proving program correctness by testing to designing in the program. Further, predates which are linear in input

methodologies which expose the presence of certain 4mcOW variables produce domain boundaries which are hyperplanes.
s of error. Tis is a direction which, as we shal' se, is They show that in such cases, as long as both the incorrect

also one taken by several other papers in this collection. and the correct (but unknown) predicates are both linea,
Weyuker and Ostrand proceed by introducing the notion of then a finite number of test points suffice to test for such

ivveaheg sbdamon of the input space. Intuitively, one boundary shifts. They precisely specify the conditions under
looks for a partition of the domain of the program into sub- which this strategy can be guaranteed to detect all domain
domains such that correct or incorrect performance of the errors of given magnitudes. The strategy can be extended to
program for any element of the subdomain implies correct or the cae of nonlinear predicates which are low degree poly-
incorrect performance of the program for all elements of the nomials in input variables. In any evest, the authors argue
subdomain. The motivation behind seeking such subdomains persuasively for the practical importance of the case of linear
is that often the specifications lead to a partition of the input predicates in its own right. They also provide an analysis of
space such that elements of each subdomain are in fact pro- the complexity of their domain testing strategy, and give a
cessed rather uniformly by the program. If one cou/ find useful discussion of the inherent limitations of their approach.

such a partition with a finite number of ailiomains, one It is worth pointing out that the testing for domain errors in

would be in very good shape, since a finite number of test this manner is still a path testing strategy and is subject to the

data would suffice, difficulties caused by the rapid increase in the number of paths

However, finding such partitions which are revealing for all a the sire of the program grows. Further research on this

erron is in general a tall order. But the framework enables aspet of their strategy is needed to nuke this approach

the authors to talk about subdomains which are revealing for practical.
An interesting relationship between the papers of Weyukeriatype s error s onewillofthbeatisogentify a pra m and Ostrand on the one hand and White and Cohen on the

didae eror onewil ofen e abe t rmlf' sudosain other can be observed. Both are, as noted, interested in guar-
as one that should be surely affected by that error if It were ane seei of spe (s of) erseThat pads
present. Such a subdomain is then reeln for that arror. aten eeto fseiid(ye f ro& 1 ed

the authors of both papers to look for subsets of the input

Tisl work ms sppoIt by the Air Fores Ofa of SdiMl R- spe which are especially sensitive to the error; revealing sub-
nkch under Gran 77-3416 and under Comuact F-49620-79-e0152. domains in the case of the former, the region around the do-

0098-5$89180/0500-0233500.7S 0 1980 IEEE

..... ill I,1 i . ..I.
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main boundary in the case of the latter. It would be interest- special characteristics of numerical computations (at least the
Ing to investigate the extent of the relationship, and whether way people organize them) result in this is an issue that would
the White-Cohen results can be cast in the framework of re- be useful to study in a theoretical fashion, now that this
wealing subdomains. phenomenon has been spotlighted by the author' experience

Foster's paper on error senaitive test caes is an attempt to in testing this class of pogram.
apply classical logic hardware testing techniques to the detec- While path testing strategies are theoretically very effective,
tion of "code errors" in software which survive compilation the number of paths is often ery large, if not infinite. Ef-
and assembly: errors such as reference to wrong variables, fective criteria for selecting a small number of paths to test, as
incorrect relational or arithmetic operators, etc. In hardware well as reliable measures of the degree of testednees achieved
testing a collection of test patterns were determined that to- at any given stage in testing, are badly needed. Woodward
gether would detect faults in any logic gate and that were et at. propose a hierarchy of structural test metrics, which in-
minimal in some well-defined sense. Foster, by means of a clude and extend simpler measures such as "fraction of state-
combination of experimentation and theory, develops a set of ments executed," and "fraction of branches executed." They
rules for the generation of such test patterns, i.e., a set of test are hierarchical in the particular (weak) sense that a value of
data sensitive to a sizable class of code errors. These rules aem unity for the metric of order n implies a value of unity for the
heuristic and, anlike in the hardware case, do not guarantee metric of order (n - 1), (just as "all branches executed at
detection of all code errors of the given clam. This is not sur- least once" implies, "all statements executed at least once").
prsing in view of the increased complexity of the operators in It is not known whether these metrics are hierarchical in a
the software case. However, the rules am clearly very useful stronger sense, i.e., a high value for order n metric implies a
in that they represent a systematized way of generting test high value for order (n - 1). Nevertheless, the notions have
data sensitive to a class of errors. In any case, a complete a reasonable heuristic content, and the authors discuss their
set of rules which guarantee the detection of all code errors experience in experimenting with these metrics for the class
might be computationally too 3omplex to be useful, of numerical programs. It is in this context that the problem

While current data flow analysis techniques can handle most of infeasible paths discussed earlier becomes significant, in
single-process programs, there is a need for new analytic tech- that their existence pmmts the metrics from reaching high
niques for dealing with concurrent-proces programs because values.
of the complex data and control flow possibilities introduced The authors investigate the effectiveness of a technique
by their synchronization constructs. The paper by Taylor and called "allegations" (originally due to Osterweil [31) to pre.
Osterwell is a response to this need, and the ideas contained vent the generation of at least some of the infeasible paths.
in it aroe in the context of production and teasting co curnt- These allegations can be viewed as any leuristic knowledge
process flight softwam, that the tester may have about the logical conditions that

Static analysis is often effecive in weeding out errors that need to be satiasfled by a path for it to be feasible. The idea
are costlier to detect by dynamic testing techniques. Exten- is that automatic analyses-at least those currently available-
sin of data flow analysis to concurmt-prmcess software re- are not "intelligent" enough to discover these by themselves,
ouirl more complex control flow models. The PAF-proces while a human tester's understanding of the program will be a
augmented flowgraph-is a concept designed to capture the good source of such heuristic knowledge. Once again the ques.
data and control flows in concurrent-process programs with don of whether this heuristic technique is powerful enough to
scmadWa and wat statements as synchronization construc. be useful in practice is an empirical one, which is answered by
The PAF and associated algorithms ar capable of detecting the authors in the affirmative for the class of numerical pro.
errors due to shared data items being referenced by one pro- grans that was their concern. They wisely recommend, how.
cess before any other proces defines them. In addition, cer- ever, that the long-term solution lies in the design of languages
tain anomalies in the PAP indicate the occurrence of poorly with constructs which do not permit the generation of large
coordinated processes. A number of examples aem given which numbers of infeasible paths in the first place.
illustrate these notions. It would seem fruitful for further Finally, we come to the paper by Voges etal, on an integrated
work in this arm to extend these notions to a broader class of testing tool that they have implemented. Called SADAT
constructs, such as open, close, and s pial statements. (Static and Dynamic Analysis and Testing), this tool is de-

While a theoretical/conceptual infrastructu for program signed for testing Fortran programs that have been compiled
testing is slowly emerging, only experience in testing real pro- error-free. The main modules of SADAT are static analyzer,
grams of nontrivial size can determine the directions in which dynamic analyzer, test case generator, and path predicate cal.
the theoretical framework needs to be extended for greater culator.. Static analysis is useful to detect certain forms of
practical relevance. This is because the theoretical frame- dead code, undeclared or unused labels and variables, and
works, with few execpdons, are somewhat detached from jumps into a loop. In addition, the output of the static
properties of programs (or dam of them) as they wre in fact analysis phase serves as a database for later analysis.
wrtti. For instance, Woodward, Hedley, and Hemell report SADAT's dynamic analysis documents the execution of
on the fact that, in the large class of numerical software that program test runs. Basically this consists of instrumentation
they studied, a surprisingly large fraction of paths were ifea- for the execution count of various branch points. This dy-
sibie, i.e., no input data will ever execute those paths. Whether namic analysis is useful for identification of dead code, deter-
this is a much more general phenomenon, or whether some mining correctness of loop iterations, and optimization.

#
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The test generation subsystem automatically generates a AcKNOwLzDGmENT
subset of paths with almout complete C1 -covOalP (ie., each My greatest debt of gratitude must So to the referees who
arc and each node is represented in at least one path). In provided professional, scholarly, critical yet aensitive reviews
addition to the automatically ,mnerated paths, the user can of the papers, sometimes through second and third revisions.
specify a path as a sequence of statements. The final module If a scientific field can be measured by the quality of its re-
calculates path predicates by symbolic evaluation. views, I think that testing research is doing very well. I would

The authors report briefly on their experience in using this like to acknowledge my indebtedness to F. E. Allen, L A.
tool. While the static and dynamic analysis components were Clarke, R. E. Fairley, S. L. Gerhart, J. B. Goodenough, R.
found to be useful and stable, the test data generation systemn Hamlet, R. C. Houghton, W. E. Howden, J. C. Huang, L J.
suffers from problems associated with symbolic execution, in Osterweil, C. V. Ramamoorthy, J. Reif, V. Vops, L Yelo-
particular, in handling loops and subroutine calls. witz, and S. H. Zweben. I thank the authors of the sub-

mitted papers for their infinite patience, cooperation and
good humor, and willingness to play by the rulesof the peer

The papers in this special collection seem to me mainly to review game. E. Miller and D. Fife as the organizers of the
consolidate, refine, extend, and experiment with many exist- original Workshop also deserve appreciation from our
ing notions and theories of testing. The thrust is towards ap- community.
proaches that can support the hau*&ic components of test-
ing. Ther is increasing recognition that it is unlikely there REFERENCES
will be a grand theory of testing which will lead to fully auto- (1 J. B. Goodeaouh md S. L Geat, "Tow- a tluory of ts:
mated teating systems. Instead the tester will be called upon Data ection cdtmm" wuv Dw in PPWuat M90od-
to ue his intuition and problem-dependent knowledge in a olov, voL 2, . T. Yakt Ed. Easkwood Ofts, NJ: Pmttcs-HaL

1977, pp. 44-79.
disciplined manner to test for a variety of specified error 121 W.. L Howden, "Reliablity of the path ainlak Wt 1=0 V."
types. But is is crucial that this less ambitious, heurisc ac- SEEE 7.1 Soft EPg., vol SE-2, pp. 208-215, Sept. 1976.
ivity be nevertheless firmly embedded in an underlying frame- [31 L i. OstUeW8, AP"A m a ds to stweC popi wu ,"

work which Is logical, rigrous, and well-understood. Supply- Dep. CoIpaL Sd. Rep, Usiv. Cdomao, 3 j CO.

ing this framework, which will necessarily include properties
of program as they ae in fact designed and written, will be B. Css.& AsxARAN
the task of rsarchers in program testing. Gut Edior
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2.2. Knowledge-Based Program Synthesis and Problem Solving

Our research in this area is presented here in three sections. The first
report is one by Gomez on a system called LLULL, which accepts programming
problems (in the domain of checking accounts) stated in natural language and
produces Pascal programs for them. The second paper in this group is a paper
by Chandrasekaran on the general issues of distributed Problem solving where
knowledge sources cooperate to perform a complex problem solving activity.
This was an editorial to a special issue of the ILEE Trans. System, Man and
Cybernetics on distributed problem solving.

2.2.1. Understandinx Programmina Problems Stated in Natural Language

The following is a technical report by Fernando Gomez, issued as technical
report OSU-CISR-TR-81-9.

I
I

o- .
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Understanding Programming Problems Stated in Natural Language

Fernando Gomez
Department of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

ABSTRACT: A system to understand programming problems
stated in natural language is described. Parsing is
viewed as a process in which high level sources of
knowledge override low level Tinguistic processes.
Thus, the need of a low level parser with the necessary
knowledge to determine the meaning of propositions, of
verbs with many senses, of the noun group, etc. is
recognized, and accordinGly one has been built. But
the function of this parser is not to produce an output
to be interpreted by an interpreter or semantic
routines, but to start the parsing and to proceed until
a concept relevant to the theme of the text is
recognized. Then the concept (in the form of a
computer program) takes control of the parsing
overridia& the low level linguistic processes. The
high level sources of knowledge parse the text directly
into the relevant concepts that define a programming
problem. The system has understood ten prob~lems taken
verbatim from introductory texts to programming as well
as many variants on those problems. We have built a
emall system that takes the parser output for checking
account problems and produces a PL/l program. A very
brief description (only two pages) of the problem
solver is given.

KEYORDS: Natural Language Understanding, Parsing
Directly into Knowledge Structures, Descriptive Verbs,
Understanding The Nioun Group, Automatic Programming.
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1. Inrdutio

Recently the emphasis on automatic programming research

(AP) has shifted from the design of comprehensive systema

intended to automate the totality of the programming activity

(see [11, (2] and [31 for three excellent surveys of AP) to a

mixture of AP and programming environments (4], [51, or formal

specifications (61, (7], or natural language as a very high

level programming language (81. This paper addresses the

programming activity in its totality. But it focusses on the

communication aspect of AP. Only two pages are dedicated to

the problem solving aspect.

From the natural language point of view, this paper

belongs to a category that Novak [91 has called "natural

language problem solvers". The earlier efforts by Bobrow 1101

and Charniak [11] belong to this category. More recently are

those by Heidoru [121, Hayes and Simon (13], Novak [9), and

Ginsparg (141. A characteristic that distinguishes our system

from the last group is the way the understanding of the natural

language text is done. Although there are important

differences between these systems, the mapping of the text into

a more or less syntactic structure is common to all of them.

From there on, an interpreter or semantic routines transform

the syntactic structure into the final internal representation.

In our system, which we call LLULL, the text is directly parsed

into the internal representation without intervening

interpreters. But in contrast to the work of Schank and his
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collaborator [151, we recognize the need of a parser that will

be able to produce some kind of segmentation (a case meaning

structure), the determination of the meaning of prepositions

and verbs, the understanding of the noun group, the

disambiguation of "and", etc.. When a sentence is going to be

processed, the parser gets started and proceeds until it finds

a concept that is recognized as being relevant to the theme of

.the text that is being parsed. From there on, the concept (in

the form of a program) takes control overriding the parser.

The concept continues supervising and guiding the parser until

the sentence has been processed. Thus the basic idea is : in

understanding natural language, the low level linguistic

knowledge shared by the speakers of a language is overriden by

high level sources of knowledge (concepts). Our program has

understood ten programming problems on the topics of checking

accounts, payroll, and exam scores. The problems have been

taken verbatim from introductory texts to programming. A

representative example is shown in fig. 1.

The problem solver receives as input a list containing the

name of the concepts that the parser has built. It is a based

knowledge system. For each conceptual step or level of

abstraction [161 in which a programming problem decomposes,

there is a specialist [17] that knows what kind of things must

be present and what to do if they are missing. Each of these

specialist has a list of things they have to do, called the

task list. A planner will fill this list before the

specialists are activated. We have implemented a system to

Ago=,l. " ' -
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produce checking account programs. Presently the system has

synthesized a PL/1 program for the example in fig.1 and other

PL/I programs for similar checking account programs. Sections

S-and 5.1 contain a brief description of the system.

2. Backaround

There are important differences between the language used

to express human actions and the language of scientific books,

text books, programming examples etc.. A striking difference

is the predominance of descriptive verbs over action verbs in

the latter. This is not surprising if we realize that the

latter contexts deal essentially with the description,

relations and illustrations of entities. In these contexts,

understanding rests basically on the recognition of what is

said of the nominal concepts that make up the sentences.

2.1 Concepts As Specia lists.

Assume that a human programmer who is familiarized with

checking-accounts programs reads the example of fig.l. As soon

as he will begin to read the text, those concepts relevant

(input, output etc.) to the example will be recognized by him.

He will start to record knowledge around those concepts. We

may say that the relevant concepts take control of the parsing

(understanding) process overriding the low level linguistic

knowledge.
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We assume that this knowledge is stored under each concept

under the form of production rules (181. Concepts are taken as

a cluster of production rules. This notion of concept as a

system of rules governing the application of predicates to a

concept is already found in Kant's Critique of Pure Reason .

Kant also considered concepts as a kind of representation

(vorstellung). According to this view, concepts are an

wabstract representation of the properties of an object. This

later notion is akin to the notion of concept used in such

knowledge representation languages as KLONE, KP.L, FRL, and

identical to the notion of concept of section 2.3.

2.2 Passive Frames

Understanding does not only depends on the concepts of

section 2.1. The sentence, "The instructor records the grades

on cards" is a perfect sentence, yet does not make any sense in

the context of the example in fig.l. None of the concepts of

the sentence belongs to those concepts associated with

checking-accounts problems. The only way we can have made that

decision is if we have knowledge ab. checking-accounts

prestored in memory, and when we are exposed to the right

context this knowledge is activated to direct our

understanding. This corresponds to Minsky's notion of frame.

For each kind of problem, LLULL has stored in LfL a passive

frame. We have used the adjective "passive" to indicate that

the content of the frame is not altered during processing.

Each of them contains a list of the relevant concec for chat

, . - . . .. .. .: . . - . . l.-- - ,
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problem, a list of the most usual input or output etc..

2.3 Cocet as an Abstract Rep resentation

During parsing, the sentences are mapped into the relevant

concepts that define the problem. Each concept is represented

as a labelled structure describing its properties. The type of

labels (slots) as well as what to put in them is decided by the

specialists of sec. 2.1.

3. Parser

Although most people will be not able to have a deep

understanding of a text about microbiology, yet they will be

able to distinguish between the different senses of

prepositions and verbs, to understand the noun group etc..

This type of linguistic knowledge is shared by all speakers of

a language and it allows us to read even the most obstruse

texts and still to get something out of them. We have built a

parser that has that linguistic knowledge to a certain extent,

of course.

3.1 Noun Group

The part of the parser that handles the noun group is

called DESCRIPTION. It is based on the following assumptions.

Any word that may form part of the description of an entity

(nominal concept) is tagged in the dic:ionary with the marker

DESCR (for description). Those words are articles, adjectives,

pronouns and nouns . Articles, pronouns, and demonstrative,
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distributive and quantitative adjectives are also tagged with

the marker STD to indicate that they initiate a new

description. Personal and impersonal pronouns (You, it, they)

and are tagged with the marker ERl] to indicate their

exclusively referential use [19].

DESCRIPTION is invoked by any function that finds a word

with the marker DESCR. If that word has also the marker ERU,

DESCRIPTION exits. Otherwise it will be processing words until

1) one of them does not have the marker DESCR or 2) it has the

marker STD or the marker ERU. 3) or it is a proper name-and at

least a noun has been found in that noun group. Some examples

follow:

(1) (The blue apple) the gardener picked is made of metal.
(2) (The U.S forces) Germany out of France.
(3) (The U.S forces) Germany defeated were unprepared.
(4) (These books) belong to Peter.

We have used the brackets to indicate the segmentation

produced by DESCRIPTION. In 1), the word following "apple" has

the marker STD. In 2) and 3) the word following "forces" is a

proper name and a noun has been already found (notice that when

"U.S" is found no noun has been processed). In 4), the word

following "books" has not the marker DESCR. DESCRIPTION groups

the maximum number of words under the noun group (see (20] for

a comparison). This is why it produces the wrong segmentation

of 2). Notice that 3) has the same surrounding words as 2).

In cases where there are not semantic clues to establish a

boundary, humans as well as machines have to back up or look

ahead, whatever you prefer. In our opinion, backing up is a
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more natural phenomenon in this context, while looking ahead is

more natural in determining the meaning of prepositions or

disambiguating "and". There are cases in which semantic

reasons decide where the noun group boundary is. For example,

when a noun is followed by a noun that denotes citinzenship or

a profession, it may be assumed that the preceding noun is not

a modifying noun. For example, "The book Spaniards like is Don

*Quixote." In other contexts, only a deep understanding of the

concept underlying the noun group will help in establishing a

boundary. Consider "The book people love is The

Metamorphosis." Although one can imagine an interpretation that

takes "book" as a modifying noun, it is unusual. Our knowledge

of people does not include book as being one of its predicates.

Thus this knowledge (in the form of a program stored in

"people) can advise the parser to establish a boundary in

"book". This idea is explained with more detail in the next

section.

3.2 Understanding the concept underlying the noun group.

The segmentation produced by DESCRIPTION tells us only

when a noun group ends. We need a function that will

understand the meaning of the noun group while its components

are being processed. An essential problem in uderstanding the

noun group is posed by the complex nominals. The term "complex

nominal" has been used by Levi [21] to refer to nominal

compounds like "the program output", to nonpredicating

adjectives like "electrical engineer" and nominalizations like
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"fils producer".

Essential to the problem of complex nominals is that in

many instances different combinations of words denote the same

concept. For example, "the old balance", "the balance at the

beginning of the period", or "the output", "the program

output". Whether we are dealing with a complex nominal or with

anormal noun group like "the red apple", understanding depends

on our ability to recognize the property being predic ated of

the noun as fitting our knowledge of the noun. A parser that

parses "the blue apple" into (PI{YSOBJ TYPE (APPLE) COLOR

(BLUE)), and does not register the fact that "blue" is not a

color of apples is missing something..

Our approach to the understanding of the noun group has

been determined by the natural language context we are

studying. The natural language understander has to solve the

different ways of referring to the same concept, otherwise the

problem solver will be in trouble. Thus our main concern has

been to identify the concept underlying the noun group. We

have stored the knowledge necessary to identify the underlying

concept of the noun group in the head noun. What enables us to

find something funny about the expression "the blue apple" is

that our knowledge of apples does not include the blue color.

This knowledge is stored into the concept apple. Similarly our

knowledge about checking account balances is what makes us to

produce the single concept old-balance when we read "the

previous balance", "the old balance", "9the past balance", or

ARM.,,.--
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"the balance at the starting of the period".

When DESCRIPTION is entered, the adjective or modifying

noun is stored in the variable XODIF, and the head noun in

H-NOUN. When both variables have a value, a function, whose

name is stored in the dictionary definition of each word, is

invoked. These functions are a collection of very simple

production rules. A typical production rule of the function

CN-BALACE (the function for the noun "balance") is:

If the marker PAST (a time marker for "old" and "past") or
the marker PREVIOUS (a time marker for "previous", "beginning"
etc) belongs to the adjective modifying "balance", return
OLD-BAL.

Not all adjectives modifying a noun will activate the

function for that noun. Only the non operational adjectives

will do it. By "operational adjectives" we mean those

adjectives whose meaning can be mapped to a computer program.

For ex., "even", "divisible", and also all ordinals from

"first" to "last". "The last account" will be parsed into

(ACCOUNT ORDINAl (LAST)). All non operational adjectives are

tagged in the dictionary with the marker NOPAD.

3.3 Clauses Completinz the Description.

Relative clauses, -ing forms, two place adjectives or past

participles and prepositions are used to complete the

description of objects. By two place adjectives we mean those

predicates that take two arguments, i.e, " - greater than -" or

" - influenced by -". All these terms are tagged in the

dictionary with the marker SPEC (for specification).
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DESCRIPTION (before exiting) checks if the word it is examining

has the marker SPEC. If so, it considers the possibility that

it may be a clause completing the DESCRIPTION. There is no

general mechanism to determine if a clause following a noun

group is modifying the noun group or not. The classic example

is : "The man with the broken leg killed Peter". Our parser

uses semantic clues to make that decision. If the concept

expressed by the noun group is an individual concept [221, the

clause following the noun group can not be completing the

description. By "individual concept" Carnap means those

concepts that denote a single entity. For example, "John's

wife with the broken leg killed Peter". Howerver funny the

sentence may be, the "broken leg" is the instrumental case. In

the case of -ing forms, if the object denoted by the noun group

is inanimate, it can be safely assumed that the -ing clause is

a part of the description.

Phrases completing descriptions (PCD) present a similar

problem to that of compound nouns, namely to identify the

concept denoted by the description. The problem is more

complex, because in the case of complex nominals we know we are

dealing with a single concept. However when we deal with a

description completed by a phrase, we do not know if the PCD

forms part of the definition of the concept or is e pressing an

accidental property like time, location etc.. For instance

(1) The man on the street does not give a damm for politics
(2) The man on the street is from Ohio

__ J ..s.
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In 1) "on the street" is obviously a location, but in (2)

it is a predicate of the concept man. "The man on the street"

in (2) refers to the concept ordinary man. A similar case we

have in "the balance at the beginning of the period". It does

not refer to a balance that is temporarily situated at the

beginning of a period of time, but to the abstract notion of a

previous-balance. In fact, many complex nominals have been

formed by deletion of prepositions [21]. Our solution to this

problem has been to ask the concept denoted by the noun group

about the meaning of the clause completing the description.

Our implementation applies only to descriptions completed by

prepositional phrases. Thus, the routine associated with a

preposition (see below) may decide to ask the concept denoted

by the noun group about the meaning of the prepositional phrase

as applied to that concept. Let us consider: "the balance at

the beginning of the period". The routine for "at" asks

DESCRIPTION to obtain the concept denoted by "the beginning of

the period". DESCRIPTION returns with "ST-PERIOD" that means

the beginning of a period of time. Then the routine "at"

invokes CN-BALANCE with the argument "ST-PERIOD", and this one

returns with "OLD-BAL". The conditions under which a

prepositional routine invokes the preceding concept need futher

study. We have come up with the following criterion: if the

concept preceding the prepositional phrase is an abstract

concept, and the the concept underlying the prepositional

phrase has the semantic features of TD(E or LOCATION, the

prepositional routine will invoke the preceding concept. By

.
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"abstract concept" we mean a concept that is not a

picture-producer [23].

3.4 Verbal Concepts

We have used different levels of abstraction in tagging

the verbs in the dictionary. We have marked the verbal surface

forms much as a dictionary does it. Thus, we have used the

-marker SUPL to tag in the dictionary "supply", "provide",

"furnish", but not "offer". From the highest level of

abstraction, all of them, "offer" included, are tagged with the

marker ATRANS [23]. All action verbs that may have an

operational meaning are tagged with the marker OPER. The most

obvious operational verbs are: add, substract etc.. Others

are delete, store, move.

What level of abstraction a system must have present in

order to "understand" a sentence in a given context, is a hard

question. The highest level of abstraction will facilitate the

matching, paraphrase and the understanding of verbs used in

contexts somewhat inappropiate. On the other hand, a system

that only "knows" about "walk" that is an instance of PTRANS

[231, will not understand the second sentence in "Peter

walked 20 miles home. His feet were swollen".

Descriptive verbs (D-VERBS) are those used to describe.

In the programming examples we have studied, we have found four

semantic classes of D-VERBS. There are those that describe the

constituents of an object. Among them are : consist of, show,

ii
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include, b given by, contain etc.. We refer to them as

CONSIST-OF D-VERBS. A second class are those used to indicate

that something is representing something. Represent, indicate,

mean, describe etc. belong to this class. We refer to them as

UZPZSENT D-VERBS. A third class are those that fall under the

notion of appear. To this class belong appear, belong, be

slven on etc. We refer to them as APPEAR D-VERBS. The fourth

c ss, are formed by those that express a spatial relation.

Some of these are : follow, precede, be + any spatial verb.

We refer to them as SPATIAL D-VERBS.

A routine called ACTION-VERB parses the action verbs.

There are markers in the dictionary for the cases they take and

the prepositions used for the cases other than the transitive

case. For instance, in the dictionary definition of "move" is

indicated that it is a transitive verb and that it also takes a

destination case, and that the prepositions with the

destination case may be "to" or "into". Similarly, the

function DESCRIPTIVE-VERB parses the descriptive verbs.

3.5 Prepositions

For each preposition (also for each coujuction) in the

lexicon there is a function. The name of the function is

stored in the dictionary definition of each preposition. When

the parser finds a preposition its function is activated. The

function of these prepositional experts is to determine the

meaning of the preposition.

'IL
I J.
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The first thing they do is to test if the preposition

introduces a case for the preceding word. For example, the

expert for "of" vill check if the preceding word has the

feature CASE-OF, a feature associated with words such as

"Inumber of", "abuse of". "collection of", "resul t of"

"destruction of" etc.. The same check will be done by the

function for "for". It will look for ; "lust for", "pressure

'for" etc.. In the most interesting cases, the meaning of a

preposition can not be determined by looking at adjacent words.

Thus the prepostional experts suspend themselves and ask

DESCRIPTION to parse for them the concept denoted by the

prepositional phrase. DESCRIPTION returns to them the concept

with all its semantic features. Two group of production rules

follow. The first group is activated if the verb of the

sentence has not been parsed, the second one otherwise.

Obviously it is simpler to determine the meaning of a

preposition in the first case. The decisioq is primarialy

based on the semantic features of the concept denoted by the

prepositional phrase. If the verb has been processed, the

whole conceptualization underlying the sentence must be used by

the expert in order to decide what is the meaning of the

preposition. For example, "John takes wine for his

depression". There is a rule in FOR-SP (the prepositional

expert for "for") chat says that if the feature ANIMATE belongs

to the subject of the sentence and the verb is an instance of

INGEST (231, , and the concept denoted by the prepositional

phrase has the feature PHYPSY (a physical or mental state) then

ii
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'ofor" express the idea of doing something with the

PURPOSE-OF-ALLEVIATING a physical or mental state. The meaning

of the verb is taken in its highest level of abstraction. In

imt cases, the meaning of the preposition depends on the

concept denoted by the prepositional phrase. Compare the above

sentence with "John takes vine for lunch". When a context has

been established, high level sources of knowledge can

-anticipate the meaning of prepositions. We will see some

examples in the next section.

4. Parsing into Knowledge Structures

A we said in the introduction, the concepts relevant to a

programing topic are grouped ina a passive frame. We

disti~nguish between those concepts which are relevant to a

specific programming task, like balance to checking-account

programs, and those relevant to any kind of program, like

output, input end-of-data etc.. The former can be only

recognized when the programming topic has been identified. A

* concept like output will not only be activated by the word

"output" or by a noun group containing that word. The verb

"print" will obviously activate that concept. Any verb that

has the feature REQUEST, a semantic feature associated with

such verbs as "like", "want", "need", etc., will activate also

K the concept output. Similarly nominal concepts like card and

verbal concepts like record, a semantic feature for verbs like

"frecord", "punch" etc., are just two examples of concepts that

will activate the input specialist.
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The recognition of concepts is as follows: Each time that

a new sentence is going to be read, a global variable RECOG is

initialized to NIL. Once a nominal or verbal concept in the

sentence has been parsed, the function RECOGNIZE-CONCEPT is

invoked (if the value of RECOG is NIL). This function checks

if the concept that has been parsed is relevant to the

programing task in general or (if the topic has been

.identified) is relevant to the topic of the programing

example. If so, RECOGNIZE-CONCEPT sets RECOG to T and passes

control to the concept that takes control overriding the

parser. Once a concept has been recognized, the specialist for

that concept continues in control until the entire sentence has

been processed. The position that a relevant concept occupies

in the sentence is not an impediment for that concept to take

control, except if the concept is in a prepositional phrase

that starts a sentence.

The following data structures are used during parsing. A

global variable, STRUCT, holds the result of the parsing.

STRUCT can be considered as a STM for the low level linguistic

processing. A BLACKBOARD (24] holds the high level

recomendations, messages etc that the high level conceptual

specialists pass to the low level linguistic experts and among

them. Because the information in the blackboard does not go

beyond the sentential level, it may be considered as STM for

the high level sources of knowledge. A global variable WORD

holds the word being examined, and WORDSENSE holds the semantic

features of that word.

-j t (.
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Example I

An instructor records the name and five test scores on a data
card for each student. The registrar also supplies data cards
containing a student name, identification number and number of
courses passed.

The parser is invoked by activating SENTENCE. Because

"an" has the marker DESCR, SENTENCE passes control to

DECLARATIVE which handles sentences starting with a nominal

phrase. (There are other functions that respectively handle

sentences starting with a prepositional phrase, an adverbial

clause, a command, an -ing form, and sentences introduced by

"to be" (there be, will be etc.) with the meaning of

existence.) DECLARATIVE invokes DESCRIPTION. This parses "an

instructor" obtaining the concept instructor. Before returning

control, DESCRIPTION activates the functions RECOGNIZE-TOPIC

and RECOGNIZE-CONCEPT. The former function checks in the

dictionary if there is a frame associated with the concept

parsed by DESCRIPTION. The frame EXAM-SCORES is associated

with instructor, then the variable TOPIC is instantiated to

that frame. The recognition of the frame that may be a very

hard problem (251 is very simple in the programing problems we

have studied and normally the first guess happens to be

correct. Next, RECOGNIZE-CONCEPT is invoked. Because

instructor does not belong to the relevant concepts of the

EXAM-SCORES frame, it returns control. Finally DESCRIPTION

returns control to DECLARATIVE, along with a list containing

the semantic features of instructor. DECLARATIVE, af ter

checking that the feature TflIE does not belong to those

features, inserts SUBJECT before "instructor" in STRUCT.
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Before storing the content of WORD, "records", into STRUCT,

DECLARATIVE invokes RECOGNIZE-CONCEPT to recognize the verbal

concept. All verbs with the feature record, as we said above,

activate the input specialist.

When INPUT-SP is activated, STRUCT looks like (SUBJ

(INSTRUCTOR)). As we said in the introduction, the INPUT

specialist is a collection of production rules. One of those

rules says

IF the marker RECORD belongs to WORDSENSE then Activate
the function ACTION-VERB and pass the following recommendations
to it : 1)activate the INPUT-SUPERVISOR each time you find an
object 2) if a RECIPIENT case is found then if it has the
feature HUMAN, parse and ignore it. Otherwise awaken the
INPUT-SUPERVISOR 3) if a WHERE case (the object where something
is recorded) is found, awaken the INPUT-SUPERVISOR.

The INPUT-SUPERVISOR is a function that is controlling the

input for each particular problem. ACTION-VERB parses the

first object and passes tt to the INPUT-SUPERVISOR. This

ckecks if the semantic feature IGENERIC (this is a semantic

feature associated with words that refer to generic information

like "data", "information" etc) does not belong to the object

that has been parsed by ACTION-VERB. If that is not the case,

the INPUT-SUPERVISOR, after checking that name is normally

associated with the input for EXAM-SCORES, inserts it into the

CONSIST-OF slot of input. The INPUT-SUPERVISOR returns control

to ACTION-VERB that parses the next object and the process

explained above is repeated.

T -
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When ACTION-VERB finds the preposition "on", the routine

ON-SP is activated. This, after checking that the main verb of

the sentence has been parsed and that it takes a WHERE case,

checks the BLACKBOARD to find out if there is a recomendation

for it. Because that is the case, ON-SP tells DESCRIPTION to

parse the nominal phrase "on data cards". This returns with

the concept card. ON-SP activates the INPUT-SUPERVISOr with

card. This routine, after checking that cards is a type of

Input that the solver handles, inserts "card" in the INPUT-TYPE

slot of input and returns control. What if the sentence had

said "... on a notebook" ? Because notebook is not a form of

input, the INPUT-SUPERVISOR would have not inserted "book" into

the INPUT-TYPE slot. Another alternative is to let the

INPUT-SUPERVISOR insert it in the INPUT-TYPE slot and let the

problem solver make sense out of it. There is an interesting

tradeoff between understanding and problem solving in these

contexts. The robuster the understander is, the weaker the

st'ver may be, and vice versa. The prepositional phrase "for

Leach student" is parsed similarly. ACTION-VERB returns control

to INPUT-SP that inserts "instructor" in the SOURCE slot of

input. Finally, it sets the variable QUIT to T to indicate to

DECLARATIVE that the sentence has been parsed and returns

control to it. DECLARATIVE after checking that the variable

QUIT has the value T, returns control to SENTENCE. This resets

the variables RECOG, QUIT and STRUCT to NIL and begins to

ezamine the next sentence.

T ,~- -.
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The calling sequence for the second sentence is identical

to that for the first sentence except that the recognition of

concepts is different. The passive frame for EXAM-SCORES does

not contain anything about "registrar" nor about SUPL (see sec.

3.4). DECLARATIVE has called ACTION-VERB to parse the verbal

phrase. This has invoked DESCRIPTION to parse the object "data

cards". STRUCT looks like : (SUBJ (REGISTRAR) ADV (ALSO) AV

(SUPPLIES) OBJ ). ACTION-VERB is waiting for DESCRIPTION to

parse "data cards" to fill the slot of OBJ. DESCRIPTION comes

with card from "data cards", and invokes RECOGNIZE-CONCEPT.

The specialist INPUT-SP is connected with card and it is again

activated. This time the production rule that fires says :

If what follows in the sentence is <universal quatifier> +
<D-VERB> or simply D-VERB then activate the function
DESCRIPTIVE-VERB and pass it the recommendation of activating
the INPUT-SUPERVISOR each time a complement is found.

The pattern <universal quantifier> + <D-VERB> appears in

the antecedent of the production rule because we want the

system also to understand : "data cards each containing...".

The rest of the sentence is parsed in a similar way to the

first sentence. The INPUT-SUPERVISOR returns control to

INPUT-SP that stacks "registrar" in the source slot of input.

Finally the concept input for this problem looks :

INPUT CONSIST-OF (NAME (SCORES CARDI (5))) SOURCE
(INSTRUCTOR)

(NAME P-COURSES) SOURCE (REGISTRAR)
INPUT-TYPE (CARDS)

If none of the concepts of a sentence are recognized -

that is the sentence has been parsed and the variable RECOG is

NIL - the system prints the sentence followed by a question

II I 1MOW
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mark to indicate that it could not make sense of it. That will

happen if we take a sentence from a proolem about

checking-accounts and insert it in the middle of a problem

about exam scores. The INPUT-SP and the INPUT-SUPERVISOR are

the same specialists. The former overrides and guides the

parser when a concept is initially recognized, the latter plays

the same role after the concept has been recognized. The

following example illustrates how the INPUT-SUPERVISOR may

futhermore override and guide the parser.

The registrar also provides cards. Each card contains

data including an identification number ...

When processing the subject of the second sentence,

INPUT-SP is activated. This tells the function

DESCRIPTIVE-VERB to parse starting at "contains ..." and to

awaken the INPUT-SUPERVISOR when a object is parsed. The first

object is "data" that has the marker IGENERIC that tells the

INPUT-SUPERVISOR that "data" can not be the value for the

input. The INPUT-SUPERVISOR will examine the next concept

looking for a D-VERB. Because that is the case, it will asks

the routine DESCRIPTIVE-VERB to parse starting at "including an

identification number.. ."

Example 2

We will comment briefly on the first six sentences of the

example in fig. 1. There is a specialist that has grouped the

knowledge about checking-accounts. This specialist, whose aame

is ACCOUNT-SP, will be invoked when the parser finds a concept

1.
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that belongs to the slot of relevant concepts in the passive

frame. The first sentence is: "A bank would like to

produce... checking accounts". The OUTPUT-SP is activated by

"like". When OUTPUT-SP is activated by a verb with the feature

of REQUEST, there are only two production rules that follow.

One that considers that the next concept is an action verb, and

another that looks for the pattern <REPORT + CONSIST D-VERB>

(where "REPORT" is a semantic feature for "report", "list"

etc.). In this case, the first rule is fired. Then

ACTION-VERB is activated with the recommendation of invoking

the OUTPUT-SUPERVISOR each time that an object is parsed.

ACTION-VERB awakens the OUTPUT-SUPERVISOR with (RECORDS ABOUT

(TRANSACTION)). Because "record" has the feature IGENERIC the

OUTPUT-SUPERVISOR tries to redirect the parser by looking for a

CONSIST D-VERB. Because the next concept is not a D-VERB,

OUTPUT-SUPERVISOR sets RECOG to NIL and returns control to

ACTION-VERB. This parses the adverbial phrase introduced by

"during" and the prepositional phrase introduced by "with".

ACTION-VERB parses the entire sentence without recognizing any

relevant concept, except the identification of the frame that

was done while processing "a bank".

The second sentence "For each account the bank wants

balance." is parsed in the following way. Although "account"

belongs to slot of relevant concepts for this problem, it is

skipped because it is in a prepositional phrase that starts a

sentence. The OUTPUT-SP is activated by a REQUEST type verb,

"want". STRUCT looks like (RECIPIENT (ACCOUNT UQ (EACH))
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SUJECT (BANK)). The production rule whose antecedent is

<RECORD + CONSIST D-VERB> is fired. The DESCRIPTIVE-VERB

function is asked to parse starting in " showing", and activate

the OUTPUT-SUPERVISOR each time an object is parsed. The

OUTPUT-SUPERVISOR inserts all objects in the CONSIST-OF slot of

output, and returns control to the OUTPUT-SP that inserts the

RECIPIENT, "account", in the CONSIST-OF slot of output and

returns control.

The next sentence is "The accounts and transactions ...

as follows:" DECLARATIVE asks DESCRIPTION to parse the subject.

Because account belongs to the relevant concepts of the passive

frame, the ACCOUNT-SP specialist is invoked. There is nothing

in STEUCT. When a topic specialist is invoked and the next

word is a boolean conjunction, the specialist asks DESCRIPTION

to get the next concept for it. If the concept does not belong

to the list of relevant concepts, the specialist sets RECOG to

NIL and returns control. Otherwise it continues examining the

J sentence. Because transaction belongs to the slot of relevant

concepts of the passive frame, ACCOUNT-SP continues in control.

ACCOUNT-SP finds "for" and asks DESCRIPTION to parse the

nominal phrase. ACCOUNT-SP ignores anything that has the!
marker HUHAN or TIME. Finally ACCOUNT-SP finds the verb, a

APPEAR D-VERB, and invokes the DESCRIPTIVE-VERB routine with

the recommendation of invoking the ACCOUNT-SUPERVISOR each time

a complement is found. The ACCOUNT-SUPERVISOR is awakened with

card. This inserts "card" in the INPUT-TYPE slot of account

and transaction and returns control to the DESCRIPTIVE-VERB

*' - A - -- .-
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routine. AS-SP (the routine for "as") is invoked next. This,

after finding "follows" followed by ":", indicate to

DESCRIPTIVE-VER that the sentence has been parsed. ACCOUNT-SP

returns control to DECLARATIVE and this, after checking that

QUIT has the value T, returns control to SENTENCE.

The next sentence is: "First will be a sequence of cards

... accounts." The INPUT-SP specialist is invoked. STRUCT

looks like : (ADV (FIRST) EXIST ). "Sequence of cards" gives

the concept card activating the INPUT-SP specialist. The next

concept is a REPRESENT D-VERB. INPUT-SP activates the

DESCRIPTIVE-VERB routine and asks it to activate the

INPUT-SUPERVISOR each time an object is found. The

INPUT-SUPERVISOR checks if the object belongs to the relevant

concepts for checking accounts. If not, the ACCOUNT-SUPERVISOR

will complain. That will be the case if the sentence is :

"Pirsi. will be a sequence of cards 'describing the students".

Assume that the above sentence says "First will be a

sequence of cards consisting of an account number and the old

balance." In that case, the INPUT-SP will activate also the

INPUT-SUPERVISOR but because the verbal concept is a CONSIST

D-VERB, the INPUT-SUPERVISOR will stack the complements in the

slot for INPUT. Thus, what the supervisor specialists do

depend on the verbal concept and what is coming after.

The next sentence is: "Each account is described by ... ,

in dollars and cents." Again, the ACCOUNT-SP is activated. The

next concept is a CONSIST D-VERB. ACCOUNT-SP assumes that it
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is the input for accounts and activates the DESCRIPTIVE-VERB

function, and passes to it the recommendation of activating the

INPUT-SUPERVISOR each time an object is parsed. The

INPUT-SUPERVISOR is awakened with (NUHBERS CARDINAL (2)).

Because number is not an individual concept (like,say, 0 is)

the INPUT-SUPERVISOR reexamines the sentence and finds ":", it

then again asks to DESCRIPTIVE-VERB to parse starting at "the

.account number..."* The INPUT-SUPERVISOR stacks the

complements in the input slot of the concept that is being

described : account.

The next sentence is: "The last account is followed by

to indicate the end of the list." The ACCOUNT-SP is

invoked again. The following production rule is fired: If the

ordinal "last" is modifying "account" and the next concept is a

SPATIAL D-VERB then activate the END-OF-DATA specialist. This

assumes control and asks DESCRIPTIVE-VERB to parse starting at

"followed by" with the usual recommedation of awakening the

END-OF-DATA supervisor when a complement is found, and the

recommendation of ignoring a PURPOSE clause if the concept is

end-of-list or end-of-account. The END-OF-DATA is awakened

with "dummy-account". Because "dummy-account" is not an

individual concept, the END-OF-DATA supervisor reexamines the

* sentence expecting that the next concept is a CONSIST D-VERB.

It finds it, and redirects the parser by asking the

DESCRIPTIVE-VERB to parse starting in "consisting of two zero

values". The END-OF-DATA is awakened with "(ZERO CARD (2))".

Because this time the object is an individual concept, the

I.
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END-OF-DATA supervisor inserts it into the END-OF-DATA slot of

the concept being described: account.

5. A Checkinz-Account Programmer

The solver receives as input a list containing the name of

the concepts that the parser has built. In principle, any

account problem is decomposed in the following steps: 1) Read

the accounts 2) Read and process transactions 3) Print reults .

For each of these conceptual steps, there is a problem solving

specialist that "knows" what to do. There are routine actions,

the same for a large class of problems, that these specialists

must perform. For instance, the READ-ACCOUNTS specialist get

the value of the slot for the input of the accounts. Then it

checks the consistency of the input. For example, it checks if

there is at least some kind of identification (account

number,name etc). Next it examines each of the arguments of

the input to find out what type of variable (real, character,

etc. ) must be declared. Finally it gets the value of the

end-of-data slot of account to check consistency or to do

something about it, if the user forgot to indicate the end of

data.

Obviously our purpose has been to build a problem solver

that will have the capability of solving a large class of

checking-account programs, not just the one in fig.l. In

particular, the problem solver we have implemented can produce

a program for any combination of the following outputs : 1)

All accounts whose final balance is greater than the old
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balance, 2) All accounts whose old balance is less than $24.00

3) All overdrawn accounts, 4) All accounts whose number of

deposits is greater than the number of wihtdrawals etc..

6.1 The Planner

Consider the problem of fig.1 and assume that the output

is statement 1) above. In that statement, it is not said that

the final balance must be computed and that the old balance,

when reading the accounts, must be saved. The function of the

PLANNER consists of examining each one of the output statements

and telling each problem solving specialist what to do. Each

specialist has a list, called the task list. When the PLANNER

examines the output statements, it fills these lists with the

computations each specialist must perform. For example, if

PLANNER examines statement 1) it will insert "final-bal" in the

task list of the specialist for processing transactions, and

"old-bal" in the list for the specialist for reading the

accounts. The insertion will take place if "final-bal" or

"old-bal" are not already there.

Beside assigning individual concepts to each problem

solving specialist, the PLANNER must determine how the output

statements as a whole must be computed. The problem solver

assumes that the output statements must be printed in the order

the user has formulated them. Thus, statement 1) of above has

to be printed after the transactions have been computed, and

is, therefore, assigned to the PRINT-RESULTS specialist. But,

the statement 2) of above, if it is the first output statement,

' -
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can be printed while reading the accounts itself.

Nevertheless, if other output statements are preceding it, the

most appropriate thing to do is (while reading the accounts) to

save in one array those accounts whose old balance are less

than $24.00 and in another array the old balance, then print

the content of these arrays at the approppiate time. Thus the

PLANNER creates two array names,say A and B, and inserts the

statement (PRINT (A B)) in the task list of PRINT-RESULTS and

the following statement in the task list of the READ-ACCOUNTS

specialist: [((ACCOUNTS UQ (ALL)) WHOSE (SUBJ (OLD-BAL) LESS

(24)) STORE (ACCOUNT OLD-BAL) INTO (A B)] The list preceding

"STORE" is the parser output for statement 2). The remainder

in the list has been introduced by the PLANNER. When

READ-ACCOUNTS gets to this statement, it checks that ACCOUNT

belongs to the input for the problem and asks WHOSE-TR to

translate the whose clause into a programming language

statement. We have implemented a WHOSE-TR function that

handles clauses with several subjects or predicates, not just

the simple example of above. Then READ-ACCOUNTS asks STORE-SP,

a low level function, that "knows" how to store the content of

arrays into other arrays, to translate the remaining of the

list.

We hope that we have conveyed an idea of how our

checking-accounts programmer works. We are writing the code

necessary for the program to handle checking-accounts programs

with essentially different input conditions. For instance, all

the transactions for an account are grouped following the

i . -~*f* -
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account number.

6. Comparison with Related Approaches and Future Reseach

The work by U.eger and Small [261 has influenced our

research. Our prepositional experts are modelled after their

word experts. Rieger's idea that individual words have

contextual knowledge about its various uses can hardly be

.contested. But we do not go along with the idea of building an

expert for each word. Words are surface manifestations of

something deeper. In our parser, concepts and not words are

the guiding principles.

In our approach to natural language, we have had present

the view expressed in [231, [27], (281, and (151 that natural

language comprehesion is an integrated process in which high

level sources of knowledge guide low level processes. We have

already indicated the main difference between [15] and the

present work. In our opinion, one of the most sticky problems

with Schank's and his collaborators systems has been its

difficulty in dealing with new texts. We think that our

concept of high level sources of knowledge overriding low level

linguistic knowledge allows our system to handle new problem

areas with not too much difficulty. Assume that we want LLULL

to understand programming problems about roman numerals, say.

We are going to find uses of verbs, prepositions etc. that our

low level parser will not handle. We integrate those uses in

our parser (its modular nature makes that integration

relatively simple). On top of chat, we will build several high

1.
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112

level specialists that will have knowledge about roman numerals. In our future

research, we are going to extend the breadth of the system by augnenting both

its low level linguistic knowledge and the themes it is able to understand. At

the sme time, we are going to increase its depth on checking account programs,

in such a way that it will be able to understand and solve any "programming

story" about checking accounts.

7. A computer run

(A BANK WOULD LIKE TO PRODUCE RECOPRDS OF THE TRANSACTION DURING AN ACCOUNTING
PERIOD IN COMI.ECTION WITH THEIR CHECING ACCOUNTS. FOR EACH ACCOUNT TUE BAZZ
WANTS A LIST SHOWING THE BALA11CE AT THE BZGI',.NI:G OF THE PERIOD, TME NU'EZ OF
DEPOSITS A1ND WITUDX"AIALS, AND THE FI:;AL BALANCE. THE ACCOUI:TS A;;D TRANISACTIO;S
FOR ANl ACCOUTING PERIOD WILL 3E GIVZN ON PUNCHED CARDS AS FOLLOWS: FIRST QJILL
BE A SEQUEN:CE OF CARDS DESC2I31ING TME ACCOUNTS. EACH1 ACCOUNT IS DESCRIBED 3Y
TWO NUMBERS: TIHE ACCOUNT IRM3 (GREATER ThAN 0), A=D THE ACCOUiNT BALAi:CZ AT
TRE BEGINHING OF THE PERIOD, IN DOLLARS AND CE;TS. THE LAST ACCOUNT IS FOLLOWED
BY A DUMI. ACCOUNT CONSISTING OF T1.1O ZERO VALUES TO INDICATE T11E END OF THE
LIST. THERE WILL BE AT MOST 200 ACCOUNTS. FOLLOWING THE ACCOUUTS ARE THE

TRANSACTIONS. EACH TRANSACTION IS GIVEN BY MLHEE I UMlERS: THE ACCOUVIT NMU ER,
A I OR -1 (INDICATING A DEPOSIT OR WITHDRAWAL, RESPECTIVELY), A;, THE
TRANSACTION M:OUN;T, IN DOLLARS MM CE:ITS* TUE LAST REAL TRANSACTION IS FOLLOWED
BY A DUIMD.Y TRA1SACTION CONSISTING OF ThREE ZERO VALUES.)

fig.1
(From An Introduccion o Prograrninz (Conway and Gries, 1975)

OUTPUT CONSIST-OF (ACCOUNT OLD-BAL DEPOSITS WITHDRAWALS FINAL-BAL)
ACCOUNT I:PUT (ACCOUN'T-N IBER SPEC GREATER (0) OLD-BAL SPEC (DOLLAR-CENIT))

INPUT-TYPE (CARDS)
END-OF-DATA (( ZERO CArD (2)))
NMER-OF-ACCOUNTS (200)

TRANSACTION INPUT (ACCOUNT-I JIER (1 OR -I) REPRESENT (DEPOSIT OR WITHDRAWAL)
TRhAS-A fOUNT)

INPUT-TYPE (CARDS)
END-OF-DATA ((ZERO CARD (3)))

fig. 2 Parser Output for problem of fig. I

• • . '- . -- , : .o. ~ ,-
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Natural and Social System Metaphors for
Distributed Problem Solving:

Introduction to the Issue
B. CHANDRASEKARAN, SENIOR MEMBER, IEEE

AheueNf-Nturay occurring information system provide a immI- of distribution of processing or computation is an intrinsic
umeul mwapors for dilstrbuted problem solving. An alion to somme characteristic of most natural phenomena which can be
aspects of dtivan etphors is given which simultaneously serves as age captured within a computational or symbol processing
editorial fora special issue dvoted to t he topic. T caudouim tiy oo s
distributed mode f compatio in infoisation lameting in natural framework. Social organizations from honeybee colonies to

phenomim. in general and in human societies in prticula is observed and a modern corporation, from bureaucracies to medical com-
related to te evolutionay and coup ity-ret-cing aanges of tims munities, from committees to representative democracies
Mode Tit form of communication media avail" to coR e nat, ile are living examples of distributed information processing
p 111 solving actties of the individual processonr exainSd. Soe embodying a variety of strategies of decomposition and
gennid reminks we made on how problem solving is distributed and
conted in some le ,.orgimaions OW theoti m of coordination. Computation in biological brains, especially
the 'soel of specis" notion in expicatln cognitive activity is in their sensory processors such as vision systems, displays
pinted ouat. Along the way. the comtens of the papers in the special issue a high degree of distribution. There is substantial evidence
wa coider in relati to vaioui poits rased in the , that higher cortical functions are also computed (and con-

trolled) in the brain in an essentially distributed mode:
I. UBIQurY OF DISTRIBUTED INFORMATION regions have been identified in the cortex whose activities

PROCESSING are highly correlated with specific higher cortical functions

SSUES about distributed computing, as about any other such as language processing. Geschwind [11 indicates that

aspect of computing, can be formulated at various levels some regions in the brain are extremely specialized: there is

of abstraction. Each level has a different conceptual con- an identifiable processor which specializes in human face

tent. and raises a correspondingly different set of issues. In recognition!

distributed computing most of the recent emphasis has Control of movements in biological systems is also

been at a level that is closely related to physical connection accomplished by distributed computation [2]. Evidence is

of different processors, secure transmission of data among available that control of normal walking movements re-

them, and the corresponding operating system problems of sides in the spinal cord (3]. Volitional movement can be

scheduling different processors. These issues have viewed as being generated by low-level programs coordi-

dominated discussion so much that the term distributed nated and regulated by higher level controllers. The task of

processing has come to mean almost exclusively that set of generating all the impulses for all muscle fibers for each

issues. The papers in this special issue deal with distributed movement is surely beyond the resources of any centralized

processing at a different. "higher." level of abstraction. The biological movement processor.

questions of interest at this level concern the strategies by In all these examples- from social organizations to

which the decomposition and coordination of computation brains and motor systems- the overall computational task

in a distributed system are matched to the structural de- is distributed among a collection of separate processors.

mands of the task domain. Distributed problem solving These separate processors coordinate their computations

(DPS) is an appropriate term for the phenomena at this by means of exchanging appropriate symbolic information.

level of abstraction.
As the theme of the issue implies, a motivating belief is II. WHY (AND WHY NOT) DiSTRISUTION

that information processing phenomena that occur in the
natural world are a source of a number of useful A. Advantages of Distribuon
metaphors for distributed processing in general and dis- Why should distributed computation be such a ubiqui-
tributed problem solving in particular. It is clear that tious mode in naturally evolved information processing

systems? The following advantages of distribution may be

Manuscript reeived September 20. 1980. This work was supported in relevant here.
pat by. the Air Force Office of Scientific Research under Contract F I) Decomposition of processing is an absolutely basic
49620-79c.0152. strategy for controlling the complexity of computation.

Th author is with the Artificial Intelligence Group. Department of
Computer ad Information Science. The Ohio State University. Col- Central computation is just too costly in both memory and
umbut. OH 43210. time. Distributing the computation among different

0018-9472/81/0100-0ISOO.75 019l IEEE
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processors generates possibilities for parallel activities by Marr [41 taks about the principle of least commitment as
different processors which may be able to work on essen- one way by which the processors at a lower level in a vision
tially nonoverlapping segments of the data most of the system may be constrained from introducing too much of a
time. Also the scope of each processor is limited, i.e.. the filtering. This principle suggests decomposing the problem
size of the input domain is much smaller. Complexity of in such a manner that at any level commitments are made
computation is often an exponential function of input in a conservative fashion, i.e., to the least abstract entity
space size. that is necessary. If this principle is applied at each level of

2) Appropriately distributed computing increases the abstraction carefully, the processors at the higher levels of
prospects for graceful degradation of response when there abstraction will have available to them generally reliable
is degradation of input data or failure of portions of the information from the lower level processors. The penalty
system. this extracts is a certain profligacy with respect to the

3) Distribution is a natural attribute of evolutionary number of processors, since typically this principle would
systems. As the system grows and increases in complexity, lead to an increase in the number of levels of abstraction.
a distributed mode provides for replacing a processor with Even with this principle, processors at a lower level of
several processors and making mostly local changes in abstraction may still be forced to make some commnitments
linkage among processors; or, as the external environment which are not quite correct in specific instances, though on
changes, distributed information processing makes adapta- the average it may be a reasonable thing to do. This sort of
tion to change easier, since again, as long as the rate of thing explains certain kinds of visual illusions and visual
external change is not large, changes to the system can be effects, e.g.. the "sun" effect in [ 4]. That is, visual illusions
mostly local. if the original decomposition reflected the show dramatically the commitments made by lower level
structure of the task environment correctly. As pro- processors that happen not to be warranted for special
grammers well know, these are really advantages of modu- classes of situations.
laity, but a distributed architecture provides a natural Another strategy is a sort of local relaxation by which the
means of implementing this modularity. results of contiguous processors dealing with data in a

4) In complex information processing systems involving neighborhood are compared for consistency with each
very large numbers of sensors and effectors. a central other, and a processor's result would be ignored by a
processor will require very large bandwidths for responding higher level processor if it is substantially deviant from
to sensors or activating effectors. Imagine an army whose those of its neighbors. This, of course, is a double-edged
commanding general alone is authorized to make all the strategy, since in the occasional instances in which the
field decisions! deviant processor is correct, its result nevertheless does not

5) Often a task decomposition will lead to the generation get passed up to the higher level processors.
of a large number of identical subtasks, each, however,
operating over different subsets of input data or regions of C. From Committees, to Hierarchies
the environment. In this case, once a particular processor is
optimized to be effective for such a subtask. in a distrib-. The fear of this filtering and consequent bias is at the
uted approach this processor can be replicated as often as heart of full participatory democracies like the city-state
needed. This provides for considerably increased efficiency democracy of ancient Athens, where all the citizens voted
due to parallelism, and is especially useful in systems that on almost all the issues. However, as the size and number
deal with large volumes of sensory information. However, of issues grow large, this form of information processing
it is useful in a variety of other situations also. An example begins to place great burdens on the available bandwidth,
is the optimization of the training of salespersons in a and the democratic processes become more organized, and
commercI organization and consequent production of abstractions in the form of representation of constituencies
large numbers of them. begin to come about. These in turn produce the problems

of filtering mentioned above. They also begin to manifest
another consequence of evolutionary distributed systems: a

B. Pssi~ Coss o Disribuiontendency to swamp out changes which are local in space or
B. Pssile ost of istibuiontime. This is the other side of the coin of robustness that

Of course there could sometimes be a cost associated natural distributed systems often display. The changes in
with distribution as opposed to a central computation. The the environment or input have to be sufficiently large to
computation of each processor is often a filtering opera- overcome the filtering and the abstractions made by the
tion, in that it communicates only the result of its computa- various processors at levels of abstractions close to the
tion. (Thus in a vision system a higher level processor may sensory data.
not have direct access to the image intensity data, but only The contribution of Wesson et al. for this special issue
to the outputs of edge detectors operating on these data.) considers an experimental comparison of two distributed
Another processo" may arrive at a different result with the architectures for a Message puzzle task, where a network of
same data if it did not depend on the computation by the human sensors, each of whom sees only a small portion of
other processor. Several strategies are used in naturally a two-dimensional environment, attempts to interpret it.
occurring distributed system to deal with this problem. One arrangement was an "anarchic committee" architec-
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ture- somewhat like the city-state democracy-where all thus eliminating directory size and updating problems.
the nodes were free to communicate with each other. The Information meant for or needed from other processors is
second arrangement was a hierarchical one. For the partic- directed to the broadcast media. such as blackboards or
ular collection of experiments that were conducted, the journals. However. once again, this cannot also be done
committee architecture worked better than the hierarchies. with abandon, since these media will then be clogged with
Several aspects of the experiment are worth noting. The the outputs of the large number of processors, making it
size of the environment as well as the sensor network was useless for receivers, unless they are willing to invest a large
small. It would be interesting to see if the result would hold portion of their limited processing resources to sort out the
for larger size environments and large networks of nodes. clutter. Extremely careful and powerful abstractions closely
If the observations in the preceding paragraph are correct. matching the structure of the class of tasks for which the
then one would expect a gradual shift in favor of a more distributed system is designed, will need to be generated as
hierarchical arrangement with increasing size. Secondly, appropriate inputs to the broadcast media. Understanding
hierarchies may be appropriate only when the environment how this is done is a central theoretical enterprise. We shall
has a sufficient amount of structure. For example. when later comment upon the use of blackboards by three papers
different regions of the environment correspond to differ- in this issue: those by Gomez and Chandrasekaran. Rieger
ent identifiable configurations, groups of sensors will need and Small, and Cullingford.
to exchange information only within each group to identify
the local configuration. The bias effect that we discussed IV. DPS IN HUMAN COMMUNITES
earlier would be most pronounced when the architecture is
not matched to the structure of the environment. As we mentioned earlier decomposition is the basic

weapon against complexity. Thus when a socially im-
Ill.INTRPRCESOR CMMUICAIONportant task is too complex for individual humans. organi-
III.INTftPRCESOR OMMUICAIONzations with a number of humans evolve whose architec-

It seems reasonable to suppose that different architec- ture matches the structure of the task. and whose total
tures of distribution would emerge depending upon the computational capacity is adequate for it. Task decomposi-
costs of communication among processors or. equivalently. tion in human -organizations often provides a great deal of
upon available bandwidth. When a multiplicity of media parallelism, which is conceptually and operationally im-
with differing bandwidths and accessibilities is available, portant for increased efficiency. Several hundred years ago,
the architecture of a naturally occurring evolutionary dis- each competent physician possessed almost all of the medi-
tributed system would be organized so as to use the availa- cal knowledge then available. Today the complexity of
ble bandwidth most effectively. A modem corporation medical knowledge has resulted in the creation of a com-
with telephones, radio, and other media available has a plex organization of specialists, where no one knows morm
different architecture than one in times or regions with than a small part, -but the community overall advances
more primitive communication structures. Increased band- medical knowledge and provides care. The modern cor-
width availability would seem to decrease processor auton- poration is often a large distributed system with a lar&%
omy. i.e.. place greater constraints on the amount of filter- number of specialized subdivisions which, when successful.
ing allowed at the local processor level. This, however, mesh together in a miracle of purposefulness, but when the
would typically be counteracted by the increased burdens overall structure strays too far from the changing environ-
on the top-level processors that an overload of information ment, it resembles a maladaptive dinosaur (.,: comments
will pose. So the degree of autonomy is a balance between on adaptation and distribution in Section II),. The scientific
these contending tendencies in distributed natural systems. community is another human organization whose architec-

The communication media available can be categorized ture has evolved in a distributed fashion, the shaping forces
into two broad classes: one which is used by senders and in this case being the dictates of the scientific method, and
receivers who know the identity of each other, and another the communication requirements for the creation and yen-
which has more of a broadcast character, and is more fication of new scientific knowledge. There are countless
associative in nature. i.e., the receiver uses whatever infor- other examples of human organizations.
mation in the medium that it deems appropriate to its Gomez and Chandrasekaran's work in this issue con-
needs. In large distributed systems, it is not practical. even centrates on the epistemological structure of medical diag-
if the bandwidth were available, for the first class of nosis, which is independent of whether the task is accom-
communication media to be used without constraint. For plished by a single human, a community of specialists, or a
one thing, as the size of the system grows. the directory size collection of microprocessors. They relate the identity and
for each processor would grow rapidly, burdening the structure of specialists to the conceptual content of the
information processing capabilities of the processor. For domain. The distributed problem solving that they propose
another, as processors are deleted or added in response to has a great deal of parallelism in it.I
local changes, the directories will have to be updated all In their explication of the scientific community meta-
over the system. This collection of constraints typically phor. Kornfeld and Hewitt emphasize its inherent paral-
leads to this class of media being used within a narrow and lelism. They develop some concurrent language primitives

local scope. Mlost often the communication is hierarchical, to emulate some of the problem solving behavior of scien-
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tific communities. Fox proposes that, among the criteria providing a blackboard (we earlier discussed it as one form
for distribution in human organizations are complexity, of communication medium), for the agents at the top levels
uncertainty, and resource constraints. He considers the of cognition.
organization of a distributed system such as Hearsay-Il [5], For our purposes. the foregoing speculations can be
and studies the extent to which it already incorporates the given a concrete cast by asking: What scientific value does
insights of organization theory. the distributed processing metaphor- or the society of

Markets are an interesting kind of distributed system. minds notion-have in explicating high-level cognitive
They are not primarily information processing systems, but phenomena? Gomez and Chandrasekaran in their paper in
they use a distributed, mostly local information exchange this issue point out that there is really not much that is new
to achieve a certain kind of global optimality in resource in the notion of a society of specialists as a model of
utilization. They are the sources of the metaphors of prices complex computations: almost all large programs are mod-
(a kind of abstraction) and contract and bids (a kind of ular and the modules are specialists. Thus they suggest that
mechanism) that enable a global optimality to be reached for this metaphor to be technically useful criteria are
over a period of time. The paper by Smith and Davis in needed for decomposing tasks into specialists. Their paper
this issue deals with some aspects of these metaphors and provides such criteria for one well-defined class of cogni-
their use in distributed systems. tive activity, viz., diagnosis. The specialists are conceptual

specialists who are hierarchically organized. In addition to
V. DPS IN COGNITvE ACTIvrry the hierarchical communication, they also use a black-

It is easy to conceive of distributed computing in the board, i.e.. a broadcast form of communication. The authors

case of what are evidently communities of individual provide an explicit account of the structure of the black-

processors, such as ants building hills, armies, corpora- board for this particular task.

tions, or the scientific community. What is less obvious is Similarly, Rieger and Small propose a particular crite-

the utility of this conception in understanding the informa- non to organize the specialists in parsing natural language

tion processing of an individual human being. The meta- utterances. They propose that the specialists be "word

phor of a society of little minds- the homnunculi- has come experts." and suggest how their activities should be coordi-

up repeatedly in psychology and philosophy of mind. iated. Again it is instructive that the experts use a broad-

Dennett [61 gives a brief but useful account of the history cast communication medium, viz. the "control workspace."

of this metaphor. These models have floundered on the Cullingford. in his paper in this issue, considers the prob-

apparent infinite regress involved in explaining a mind by lem of integrating and controlling the experts in a system
postulating a collection of minds. ft has been only rcently to -understand" a class of newspaper stories. Again the

that, due to work in artificial intelligence, we can begin to blackboard notion finds expression in his work. For the

see how "mind-like" is not an all-or-none affair, that more particular class of tasks considered by him, he proposes

complex mind-like behavior can be obtained by the coordi- that the blackboard data contain not only results computed

nation of less complex mind-like entities. The less complex by specialists, but in addition some control information.
entities are specialists. i.e., they have a narrower scope. ie, me indicang a te k adi tion is
This kind of decomposition can be applied recursively at changed, e.g., who changed an item. In addition to the

quite a few levels: Minsky [71 has recently formulated a papers in this issue. I should like to draw the readers'" society of minds" model dealing with epistemological attention to the work of Sacerdoti [10] who has considered

issues all the way down at the "neurodevelopmental" level, how a distributed architecture might be designed for natu-

and Marr's work is very suggestive of how vision can be ral language understanding.
conceptualized a- a society of specialists: groups of special-
ists all the way from very low-level ones (edge specialists) VI. CONCLUDING REMARKS
through those at slowly increasing levels of abstraction to
high-level conceptual specialists. Hearsay-lI [5) was one of the first large artificial intelli.

When top-level control in a society of specialists is weak gence (Al) systems to use an essentially distributed archi-
or nonexistent, the subordinate specialists may speak up in tecture for a complex problem and was the first system to
different, possibly conflicting, voices. "Multiple control" use a blackboard as an interprocessor data structure. The
substitutes unitary control. Jaynes (8] recalls the Iliad and paper by Lesser and Corkill in this issue attempts to
its heroes' ascription of many of their actions to the concretize some of the lessons from Hearsay-il and other
demands of gods whose voices they hear. He relates this to knowledge-base systems for the design of distributed
the evidence that many schizophrenics- examples of non- processing systems. They concentrate on how uncertainty
unitary consciousnesses- report hearing "inner voices" in input data and inaccurate processing by individual
during acute attacks. Hilgard (9] discusses hypnosis as a specialists can be compensated for by the collective so that
breach of this unitary control. Freud's theories, of course, the whole is more robust than the individual processors.
were based on the view of the mind as an interacting They call their approach functionally accurate (referrng to
society of many agents. In this context it is tempting to robustness of performance). cooperative (indicating some
speculate that one of the roles of consciousness is in form of relaxation procedure- see Section II-C- by which
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each contributes to the reduction of uncertainity of other Scidharan, K. Stevens, L. Svobodova, S. Taninoto. and
processors) distributed system. S. W. Zucker- for their invaluable help. R. Bhaskar. Bruce

Distributed problem solving. or more generally distrib- Flinchbaugh, and Fernando Gomez made useful comments
uted artificial intelligence, is important conceptually, stra- on earlier drafts of this introduction. I am grateful to
tegically. and practically. Its conceptual importance lies in David Zeltze for information on biological movement
that a distributed paradigm eludicates the structure of the control.
processes of intelligence. such as vision, speech processing.
or language understanding. whether or not an Al system is Exm sin fact implemented in a distributed manner. Its strategic
importance arise from the fact that it is a good research [I N. Gadacwiad. "Neurological knowledge and complex behaviors."
strategy to look for decompositions of a complex problem Contv ScL. vol. 4, no. 2. pp. 185-193. 1960.
Its practical significance arises both from applications that [2) N. Bernstein, The Coordnation and Repiaajon of Movemenut. New

Yr:Perganion, 1967.are essentially distributed in nature. such as distributed [31 K Pearson. "The control of walking." Scientific Anmerican, vol. 235
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2.3. Automated Translation of Computer Program

As mentioned earlier, the major thrust here was on some basic theoretical
results concerning the computability and complexity of translator generation.
The vehicle for this research was the Ph. D dissertation of Doyt Perry. In
the folloving section we present the summary section of this dissertation.

I

iII.
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COMPUTABILITY AND COMPLEXITY ISSUES OF TIMASLATOR GENERATION

The Ohio State University, 1982

Doyt Lee Perry, Ph.D.

Overview of Results

In this work we have extended the theory of translation by
carefully identifying and investigating the problem of automatic
generation of translators. The immediate context for this work was
provided by Buttelmann (But741, Pyster [Pys75], and Krishnaswamy
[Xri76], who identified formalisms for languages, translation, and
translator generation. Continuing in the same theoretical spirit,
we have generalized and extended several of their ideas in the
course of our work. The primary conclusion of this thesis is that
searching for general methods of automatically generating
translators is likely to fail. In pursuing this result we believe
several contributions were made to translation theory.

We were able to provide a variation of the language definition
schemes of Buttelmann, Pyster, and Krishnaswamy that makes more
precise the means by which the semantics of a language definition
are specified. We demonstrated that one type of language definition
system, namely an acceptable LDS. is representative of all language
definition systems in the sense that results developed for an
acceptable LDS will carry over to other language definition systems.
This permitted us to focus our computability studies on one system
and be confident our results were generally applicable.

We were able to formalize translation and suggested two basic
problems for study - the translator generation problem and the
translator generation decision problem. We noted that solutions to
these are related in that generating a translator is one way of
confirming a translator exists. This permitted us to look primarily
at the problem of deciding the existence of translations with the
assurance our results were relevant to generating translators.

In the area of computability, we were able to establish, using
the vehicle of translator generation decision sets, a framework for
assembling the known results about the complexity of translator
generation. We added several results that more precisely
characterized the computability of translator generation.
Significant among these was the placing of several translator
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generation problems in the arithmetic hierarchy. This permits those
problems to be compared to other known unsolvable problems.

Given the impossibility of general solutions, we examined the
effects of restricting the classes of language definitions for which
we desire to decide translation. When we found subclasses of
language definitions having certain desirable properties, we
discovered that we were unable to decide translator generation for
these subclasses. We then looked at several specific restrictions
based on ideas from formal languages and computability theory. When
most combinations of these restrictions were enforced, they were
found to yield classes of language definitions which still had
undecidable translator generation problems. It was demonstrated
that noncomputable problems arose for both syntactic and semantic
reasons. However, a characterization was made of some language
definition classes for which we could solve the translator
generation and TG decision problems. Included was one class that
used extremely simple operations in defining the semantics of a
language.

For the classes of language definitions found to have solvable
translator generation problems, we analyzed the complexity of their
solutions. We found an inherent "hardness" about those problems
that implied that any solution would need to use an inordinate
amount of resources (such as time) when applied to infinitely many
instances of the problems. Although we normally associate high
complexity with semantic processing, it was found that even the
language definition systems using very simple semantics were seen to
have provably intractable solutions. A postscript on these
complexity results noted that "bad complexity" instances may arise

j from the particular choice of definitions for languages.

Finally, we gave a formal sketch of an oracle-based translation
scheme that uses an outside source of knowledge to assist in
performing translation. We focused on a translator generation
scheme suggested by Buttelmann [But74] that used a particular oracle
and a particular method of translation. In that case we discovered
an oracle-based method of "partially solving" the translator
generation problem. However, we found that there is no bound on the
work done by such a procedure, nor on how many consultations it
would request of the oracle.

1.
- ~ .'. ~ . L 1
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Assessing the Results

We believe there are two primary contributions made by this
work. First, a body of computability and complexity results for
translator generation have been developed and organized. Secondly,
the work implies that any attempt to find formal, procedural
solutions to automatic translator generation will likely run afoul
of computability or complexity difficulties. The results presented
here are undeniably negative. It was not the intent nor the
expectation of this work to acquire such a collection of pessimistic
comments on translator generation. At each step we were surprised
and fascinated by the levels of nonconputability and intractability
of the translator generation problems. If anything, these results
may be theoretical evidence for what we know from experience in
programming and natural language translation - discovering and
implementing translations can be difficult.

The Future

The results in this thesis suggest a search for algorithmic
translator generation is destined to be difficult. In the face of
this, we suS~est some courses for future research in translator
generation.

Heuristic Approaches

One alternative is to abandon the search for formal algorithmic
solutions that guarantee semantic-pre serving translations or total
translations. This might involve the discovery of translation
heuristics that permit procedures to cut through the exhaustive
se&acing that often leads to the high complexity of a problem. The
price paid for using such heuristics might be that all sentences of
the source language might not have a translation. Perhaps not all
translations will be semantic preserving. Such approximate
translation might be acceptable in many oases, especially if the
translator generation process using heuristics posessed reasonable
complexity.

Translation semantics

We have been faithful to an abstract view of language
definition and semantics (we have not looked at semantics for
programming languages or for natural languages). Perhaps one could
develop a "translation semantics" specially developed with

translation in mind. If a class of languages were defined in terms

-A.
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of these semantics, perhaps the generation of translators for this
class could be done efficiently. Such aI idea is consistent with
some work by rrishsvas y an WOO, where he used widentical
semantics" as a means of doing translator generation.

Translation between Similar Languages

Often the translation we want to do is not between radically
different languages but rather between "dialects" of the same
language. This is especially true of the programsing languages
area, where we often convert programs written in one version of a
programming language to equivalent programs in a different version
of the same language. Similarity between languages, their syntax
and semantics might reduce the work needed to perform translator
generation.

Choosing Appropriate Language Definitions

As a final suggestion, some of our results suggest the
sensitivity of translator generation to the particular choice of
language definitions selected to describe source and target
languages. This raises the possibility that translator generation
might be possible or tractable if only we could select the "right"
language definitions. One aspect of this is the balance between
syntax and semantics in a definition. Although this thesis makes
some suggestions, it is important to study further the effect the
selectton of language definitions has on the computability and
complexity of translator generation.

I
Finally, note that this thesis has focused on formal translations
and on general procedures for generation of translators. Pitched at
this abstract level, it has no direct application to practicalIi
problems of translation methodologies. For example, no attempt has
been made to study the particular translator generation problems for
progrsin languages. In the spectrum that ranges from the
theoretical to the practical, our experience over many years has led
us to conclude that finding translators is a difficult practical
matter. We believe that this thesis has echoed. on the theoretical
end, that translator generation is difficult.

7
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