AD-A127 782 COMPUTATIONAL IMPLEMENTATION OF THE MULTIVARIATE HALLEY i/

METHOD FOR SOLVIN..(U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER A A CUYT ET AL. FEB 83
L .

UNCLASSIFIED MRC-TSR-2481 DAAG29-80-C-0041 F/G 12/1 N

10 P
== x kK 22
——————— :: m I
L - =
F—— ml,a
=

[z

=
=
==
il

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU OF STANDARDS 1965 4

MRC Technical Summary Report #2481

COMPUTATIONAL IMPLEMENTATION OF THE
MULTIVARIATE HALLEY METHOD FOR SOLVING
NONLINEAR SYSTEMS OF EQUATIONS

Annie A. M. Cuyt and L. B. Rall

Mathematics Research Center
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

February 1983

(Received February 11, 1983)

“““ HLE COP\(Approved for public release

Distribution unlimited

Sponsored by

U. S. Army Research Oifice and National Fund for Scientific
P. 0. Box 12211 Research {(NWFO) of Belgium
Research Triangle Park

North Carolina 27709

83 05 06-1i &

o eATRRT

|
|
i
|

UNIVERSITY OF WISCONSIN~MADISON
MATHEMATICS RESEARCH CENTER

COMPUTATIONAL IMPLEMENTATION OF THE MULTIVARIATE HALLEY METHOD
FOR SOLVING NONLINEAR SYSTEMS OF EQUATIONS

*
Annie A. M. Cuyt and L. B. Rall+

Technical Summary Report #2481
February 1983

ABSTRACT

-

-
Halley's method for the solution of systems of equations is an iterative pro-

cedure which converges cubically under favorable conditions. The multivariate ver-
sion requires the solution of two linear systems of equations with the same coeffi-
cient matrix, following which the correction vector is computed using componentwise
multiplication and division of vectors. This report describes a general-purpose
computer program which implements this method. The necessary first and second de-
rivatives are obtained by automatic differentiation, so the user need only supply
code defining the functions appearing in the system of equations. The program is
written in Pascal-SC, using the new data type HESSIAN to represent dependent and in-
dependent variables. Numerical examples are given for two simple systems of equa-

tions to illustrate the use of the program and th- effectiveness of the method.
N,
AMS (MOS) Subject Classifications: 65-04, 65H10, 65V05 N

Key Words: Nonlinear systems of equations, Halley's method, automatic differentiation,
type HESSIAN, Pascal-SC

Work Unit Number 3 - Numerical Analysis

*Department of Mathematics, University of Antwerp UIA. Research sponsored by
the Belgian National Fund for Scientific Research (NFWO).

tMathematics Research Center, University of Wisconsin-Madison. Research spon-
sored in part by the United States Army under Contract No. DAAG29-80-C-0041.

T

s o g - - ..
i)
——a . -

C e WA a4 e ma am o

SIGNIFICANCE AND EXPLANATION

one of the fundamental problems of scientific computation is the efficient
numerical solution of systems of nonlinear equations in several variables. Methods
are known which converge rapidly in theory, but require first and second partial
derivatives of the functions appearing in the system with respect to the variables
involved. The necessary derivatives can be evaluated automatically, without re-
sort to numerical approximations, in programs produced by modern compilers which
permit user~defined data types and operators. Examples of such compilers are
Pascal-SC, Algol 68, and ADA {(a trademark of the U. S. Department of Defense). 1In
this study, Pascal-SC (Pascal for Scientific Computation) is used, since it supports
accurate floating-point arithmetic for vectors and matrices, as well as scalars. The
method taken to illustrate these capabilities is Halley's method, which requires
second partial derivatives. By use of type HESSIAN, which consists of the value of
a function of n variables, its gradient vector of first derivatives, and its Hessian
matrix of second derivatives considered as a triple of basic real, vector, and ma-
trix types, the user need only provide expressions or subroutines for the functions
involved, and the compiler then produces code for the derivatives needed, without re-
sort to inaccurate numerical or expensive symbolic differentiation. Since Halley's
method converges cubically, its speed can offset the overhead of calculation of the
necessary derivatives. A general purpose programming system is provided which con-
sists of two parts: A program which is used to verify that the coding of the func-
tions is correct, and another program which solves the actual system. The first pro-
gram requires as input the number of equations, the necessary operators, and expres-
sions or subroutines for the functions involved. The second program needs only the
number of equations in the system and the already translated and verified code from
the first program. A numerical example is given to show that this division of labor
leads to efficient and effective numerical solution of a system of nonlinear equa-

tions by the method considered.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authots of this report.

Accession Fop

NTIS cragr e —
DTIC 743 g
Unannounceq

Y R ”j
JubtlflcatioL_ —_
\‘-‘<\ i
T——
1S bt h

COMPUTATIONAL IMPLEMENTATION OF THE MULTIVARIATE HALLEY METHOD

FOR SOLVING NONLINEAR SYSTEMS OF EQUATIONS

* +
Annie A. M. Cuyt and L. B. Rall

1. Nonlinear systems of equations. One of the central problems of scien-

tific computation is the efficient numerical solution of systems of n equations

(1.1) fi(xl,xz,...,xn) =0, i=1,2,...,n,

in n unknowns X, X,..... X . This is a special case of the operator equation
(1.2) f(x) =0,

in which £:D C g~ Rn, 0 € Rn denotes the zero vector 0 = (0,0,...,0), and x € R

is sought. If f is an aff{ne operator,
(1.3) f(x) = Ax + b,

with the matrix A = (aij) and the vector b = (b ""’bn) given, then the system

172
(1.1) is said to be Lineatr. This important special case is now fairly well under-
stood from a computational as well as a theoretical standpoint. Otherwise, (1.1)

is a nonlinear system, and the situation is quite different with respect to theoret-
ical and practical methods for solution than in the linear case. Most of the methods
investigated to date [9], [10] involve some form of iteration, and many also in-
volve approximation of the nonlinear system by a linear system during the various

steps of the solution process. It has been observed that some solution procedures

work better than others on a given problem, so that in the absence of a clear-cut

*Department of Mathematics, University of Antwerp UIA. Research sponsored by
the Belgian National Fund for Scientific Research (NFWO).

+Mathematics Research Center, University of Wisconsin-Madison. Research spon=-
sored in part by the United States Army under Contract No. DAAG29-80-C-0041.

criterion for choosing the optimal method, it is advisable to have several choices

available in the form of computer programs which are easy to use.
It will be assumed that the operator f corresponding to the system (1.l1) has
first and second Fréchet derivatives f', f" on its domain D C Rn [10). In this case,

the first Fréchet derivative of f at x is represented by the Jacobian matrix
(1.4) f'(x) = (Bfi(x)/axj),
and the second by the Hessdan operator
2
" -
(1.5) £ (x) ¢] fi(x)/axjaxk)

[10]. Necessary values of the derivatives appearing in (1.4) and (1.5) will be ob~

tained by automatic differentiation [12] so that the user need only supply exptessioﬁs
and subroutines for the n functions fi(xl,xz,...,xn) appearing in (1.1). This avoids
both the labor of providing code for derivatives and the inaccuracy of numerical dif-

ferentiation, as will be explained briefly in §3.

2. The multivariate Halley method. This method is based on the theory of

o
abstract Padé approximants [2]), [4], and conditions for its numerical stability
have been given by Cuyt [3]. The abstract setting for this method is a Banach al-
no_. L . .
gebra [10): R with multiplication of vectors defired componentwise forms such a
structure for the norm Ixl_ = max|xi|, for example. Halley's method starts from an
(i)
initial approximation x0 to a solution x = x* of (l1l.2), and then defines a sequence

{xv} of successive approximations by the following algorithm:

v, 2
vl = xv + ——12—%—— , where
a’ + =¥
2
(z.1) v v, -1 v .
a = -f'(x) "£(x') (the Mewton correction), and

b’ = £ (x”) Len(x")a%a’, v = 0,1,2,... .

In order to simplify the computation, the Jacobian matrix f'(xv) is not inverted in

-2 -

the actual computation; rather, the linear system
(2.2) £ (x")a’ = -£(x")

is solved for av, following which the linear system

{2.3) £ (x")b” = £7(x")a"a"

is then solved for b’. since the systems (2.2) and (2.3) have the same coefficient
matrices, the decomposition of the Jacobian matrix f'(xv) used to solve (2.2) can
also be used to solve (2.3), resulting in a saving of effort,
The total computation effort required for one step of Halley's method is thus:
1°. Evaluation of £(x"), £'(x"), £"(x");

2°. Solution of (2.2) for a’;

3°, Evaluation of f"(xv)avavg

4°., calculation of the Halley comrection @12/’ + %bv):

5°. Addition of the Halley correction to x".

This sequence of operations is more elaborate than required for Newton‘s method,
which requires only the evaluation of f(xv), f'(xv), the solution of (2.2) for av,
and finally the addition of a’ to x” to obtain xv+1. However, in favorable cases,
the rate of convergence of Halley's method will be cubic, while Newton's method con-
verges quadratically. Thus, the greater effort required for each step of Halley's
method could be offset if fewer steps are required to obtain the accuracy desired.

In connection with the calculation of the Halley correction, an indeterminate
form arises if (av)i = (av + -],jb\’)i = 0. In this case, the value of the Halley cor-
rection is defined by continuity, and its ith component is taken to be 0.

Other cubically convergent iteration processes which use the same information

as Halley's method are Chebyshev's method {91, [lo],

(2.4) xv+1 =x" +a¥ - %bv, v =0,1,2,...,

which is slightly less complicated, and the method of tangent hyperbolas [9),

in which the correction vector ¢ is obtained by solving the linear system

(2.5) (£ (x") + %f"(xv)av]cv = -£(x"},
from which
(2.6) xv+1 = x’ + cv, v=20,1,2,... .

This method is more complicated than Halley's method in that in (2.5), alteration of
the coefficient matrix in (2.2) is required. 1In the scalar case (n = 1), Halley's
method and the method of tangent hyperbolas coincide after division of the numera-

tor and denominator of the Halley correction by a’. The abstract version of Halley's

method is defined in a Banach algebra; the Chebyshev and tangent hyperbola method,

like Newton's method, do not require multiplication and division of elements, and
hence can be defined in the more general setting of a Banach space [2], [9], [10).

3. Use of automatic differentiation. Newton's method and the methods of §2

are sometimes shunned because it is assumed that code has to be supplied for the
derivatives, or because the functions fi are defined by subroutines, rather than
expressions. Since the rules for differentiation are well understood, however, the
computer can itself produce the required code by automatic differentiation of the
given expressions or subroutines [12). 1In the case of expressions, programs capable
of obtaining first and second derivatives have been in use for some time [5), [7],
[10]. More recently, differentiation methods for subroutines have also been de-
veloped [6], [12], (14]. Since the latter case is the most general, it will be
examined here.

In primitive computing languages such as FORTRAN, automatic differentiation re-
quires interpretation of expressions [5}, [7], or precompilation {6), [12). One
of the significant recent advances in computer science has been the development of
modern languages such as Pascal-SC, in which the performance of differentiation is
based on user-defined data types and operators [13]), {14). To illustrate the basic

idea, consider the simple scalar case of a real function f of a single real variable

- W T i—pﬁ

x. The pair of values (f(x),f'(x)) is the basic example of a datum of type GRADIENT
for a given value of x [13]. Writing F = (f(x),f'(x)) to represent an element of this
new type of data, the next step is to define the corresponding arithmetic operations
and functions in a computable form. For example, for G = (g(x),g'(x)), addition and

multiplication are defined by

F+G= (£(x)+g(x),.£'(x)+g'(x)),
(3.1)
F*G = (£(x)*g(x),f(x)*g"'(x)+g(x)*f'(x)),

respectively. Similarly, functions auch as
(3.2) SIN(F) = (sin(£(x)),£' (x)*cos(£(x}))

are readily definable in a form suitable for computational implementation. The in-
dependent variable x is represented by the GRADIENT variable X = (x,l), and an ex-

pression of the form
(3.3) F = X*SIN(X + 4.0) = X%*3;

is then used to obtain both the value of the function £(x) = xsin (x + 4.0) - x3 and
its derivative f'(x) = xcos (x + 4.0) + sin(x + 4.0) ~ 3x2 automatically. 7Thus,
the user need only supply the code (3.3) for the function to be differentiated, once
the standard set of GRADIENT operations and functions are available [13].

For the present purpose, second derivatives are needed, so the type GRADIENT is
extended to type HESSIAN, a datum of which is the triple F = (f(x),f'(x},£f"(x)).
6nce again, there is no problem in the implementation of arithmetic operations and

standard functions, for example,

F+G= (£(x)+g(x),£'(x)+g’ {x) ,£" (x)+g" (x))
(3.49)
F*G = (£(x)*g(x),£(x)*g' (xX)+g(x)*£"' (x) ,£(x)*g"(x)+2*£* (x) *g' (X)+g(x) *£" (x)),

and
(3.5) SIN(F) =(sin(£(x)),£'(x)*cos (f(x)),£" (x)*cos (£(x))~£"' (x)*£' (x) *sin(£(x))).

Thus, given the independent variable x as the HESSIAN variable X = (x,1,0), the

-5_

evaluation of the expression (3.3) yields the value of the second derivative f"(x)
= - xsin (x + 4.0) + 2cos (x + 4.0) - 6x as well as the values of the function f(x)
and its first derivative f'(x).

Although the formulations of HESSIAN operators and functions are somewhat com-
plicated, programming them is no real challenge, and this needs to be done only
once and for all. When available, these subroutines shift the burden of differen-
tiation from the user to the computing machine, which is as it should be. A com-
plete package for arithmetic operators and standard functions has been prepared in
Pascal-SC for the multivariate case in which f is a function of n variables, so

that x = (xl,xz,...,xn) € Rn, and the HESSIAN variable F is defined by
(3.6) F = (£(x),Vf(x) ,Hf(x)),

where VE(x) = £'(x) denotes the gradient vector

(3.7) VE(x) = (af(x)/axl,af(x)/axz,...,af(x)/axn),

and Hf (x) = £"(xX) is the Hesslan mafrnix

(3.8) HE(x) = (azf(x)/axjaxk)

of the real-valued function f at x. The HESSIAN variables X[j] corresponding to the
independent variables xj are X[3]) = (xj,ej,o), j=1,2,...,n, where ej is the iFh
unit vector, and O denotes the nxn zero matrix.

The case of a vector-valued operator f is handled by means of expressions or
subroutines for the n functions fi appearing in (1.1), defined to be the correspond-
ing HESSIAN variables F[i]. 1In this case, the ith row of the Jacobian matrix (1.4)
is simply the gradient vector Vfi(x), while the ith "panel" of the Hessian operator

(1.5) is given by the matrix Hfi(x).

4. Computation with bilinear operators. In the multivariate Halley method

(2.1), the right-hand side of the linear system of equations (2.3) for b’ is ob-
tained by operating twice on the vector a’ with the bilinear operator f“(xv), where

the result of the first operation is a matrix, and the second yields a vector [10].

The way in which HESSIAN variables are defined makes it easy to implement these

operations. In general, the bilinear operator

: (4.1) B = (bijk)

will be considered to be composed of n matrices

(4.2) Bl - (bljk)' B,

(ijk)""' B = (bnjk)’

which will be called {-panels, or simply panels of B. For a vector x € K', the

matrix

n
(4.3 A= (a,) =Bx= (kzlbijkﬁ‘)
will have rows AT given by the matrix-vector product

i

{(4.4) Ai = Bix, i=1,2,...,n

Once the matrix A is formed by computing the vectors (4.4), then the vector

n n
(4.5) y = Ax = Bxx = (321 k§1 bijkxkxj]

(4.6) A = Hfi(xv)av, i=1,2,....n, »
and thus
(4.7) f"(xv)avuv = Aav,

required when forming the matrix A from the vectors A, given by (4.6) [15].

i

-7 -

is obtained by a single additional matrix-vector multiplication. Here, Bi = Hf 5 (xv) ’

SO the required vector is obtained by a total of n + 1 matrix-vector multiplications.

In Pascal-SC, vectors and matrices are stored row-wise, so no transposition is

5. Programming Halley's method in Pascal-SC. Central to Pascal-SC, as well as
to Pascal [1], is the concept of a data {ype. 1In Pascal-SC, vectors and matrices
over type REAL (the set of floating-point numbers) are considered to be the standard

types RVECTOR and RMATRIX, respectively [15]. Following the conventions of Pascal-SC,

n-dimensional vectors and matrices are declared in the program heading by:

CONST DIM = n;

TYPE DIMTYPE = 1..DIM;
5.1 RVECTOR = ARRAY[DIMTYPEJOF REAL;
RMATRIX = ARRAY[DIMTYPEJOF RVECTOR;

and a number of ordinary operations of matrix and vector algebra are implemented

[8]). Following (5.1), type HESSIAN is declared by:
(5.2) TYPE HESSIAN = RECORD F: REAL ;DF: RYECTOR;HF: RMATRIX END;

so that if an expression or the result of a subroutine for computing f(x) is as-

signed to the HESSIAN variable F, one has
(5.3) F.F=£f(x), F.DF = VE(x), F.HF = Hf(x).

Step 1° of Halley's method as outlined in §2 is thus taken care of simply by
expressing the independent variables Xpe Xgreeny X and the values of‘the functions
fl' f2,..., fn in the system (1.1) as HESSIAN variables. For example, consider the
simple system of equations

-X+
exY-0.1=0.
(5.4)
e XY _g.1 =0,
investigated by Cuyt and van der Cruyssen [2], [4]. The variables involved would

be declared to be HESSIAN in the heading of the program (see Appendix A) by
{5.5) VAR X,Y,F,G: HESSIAN;
and the functions corresponding to the left-hand sides of (5.4) by

Fo:= HEXP(-X+Y) - 0.1;
(5.6)
G := HEXP(-X-Y} - 0.1;

‘in the body of the program. (The user is free to name and order both the independent

and dependent variables in any convenient manner. A more systematic approach will be

discussed in the next section.) 1In (5.6), the convention that the names of standard
functions for type HESSIAN begin with "H" has been followed. Evaluations of the

expressions in (5.6) requires the following HESSIAN operators and functions:

OPERATOR - (H: HESSIAN) RES: HESSIAN;
OPERATOR - (HA,HB: HESSIAN) RES: HESSIAN;

(5.7 OPERATOR - (H: HESSIAN;R: REAL) RES: HESSIAN;
OPERATOR + (HA,HB: HESSIAN) RES: HESSIAN;
FUNCTION HEXP(H: HESSIAN): HESSIAN;

source code for these is given in the heading of the program listed in Appendix A.
The first operator calculates -H, the second HA-HB, and so on.

The independent variables X,Y are initialized as follows: Their junction value
(or simply vafue) parts X.F and Y.F are given initially by input from the user, and
are subsequently calculated by the Halley iteration. Their gradient parts X.DF and

Y.DF are assigned the constant values

(5.8) X.DF[1]:=1; X.DF[2]:=0; Y.DF[1]:=0; Y.DF[2):=1;
as are their Hessdan parts

(5.9) X.HF:=MRNULL; Y.HF:=MRNULL;

where MRNULL is a standard Pascal-SC function which returns the zero matrix.
Execution of the statements (5.6) thus completes step 1° of Halley's method.
For step 2°, the Jacobian matrix of the system (5.4) is needed. It is assumed that

the declaration

(5.10) VAR JAC,L,M: RMATRIX; A,B,V: RVECTOR; NRS: BOOLEAN;

is in the heading of the program, where JAC denotes the desired Jacobian. It is

obtained by the assignments
(5.11) JAC[1]:=F.DF; JAC[2]):=G.DF;

since its rows are the gradient vectors Vf(x) and Vg(x), respectively.

-

Similarly, letting V denote the right-hand side of the linear system (2.2), one

has
(5.12) v[1):= -F.F; v[2]:= -G.F;

and all that remains is to sclve (2.2) for A = av by means of a standard procedure

for solving linear systems of equations, such as
(5.13) SOLVLN(DIM,JAC,M,V,A,NRS);

in which the decomposition of JAC is stored as the matrix M, and additional right-
hand sides will be expected.as long as NRS = FALSE. This completes step 2°.
. v,V : L
In step 3°, the matrix f"(x)Ja is computed as the matrix L. This is accom-

plished by means of the assignments
(5.14) L[1]1:= F.HF*A; L{2]:= G.HF*A;

using the standard Pascal-SC operator * for matrix by vector multiplication [15].

. . V., V.V, ,
With this result, the vector V = f"(x a a 1is obtained from
{5.15) V:= L*A;

thus completing step 3°.
The calculation of the Halley correction (step 4°) requires first the compu-

tation of the vector B = bv by
(5.16) SOLVLN(DIM,JAC,M,V,B.NRS);

where V is now obtained from (5.15), and NRS = TRUE. Addition of vectors and
multiplication of vectors by real numbers are standard in Pascal-SC; however,
componentwisc multiplication and divison of vectors are not. Thus, the corres-
ponding operators *,/ must be defined in the heading of the program by
OPERATOR * (VA,VB: RVECTOR) RES: RVECTOR;
VAR U: RVECTOR;I: DIMTYPE;
(.17 BEGIN FOR 1:=1 TO OIM DO U[I]:=vA[i1]*VB[I];

RES:= U
END;

- 10 -

and

OPERATGR 7 (VA,VB: RVECTOR) RES: RVECTOR;
VAR U: RVECTOR; I: DIMTYPE;
BEGIN FOR 1:=1 TO DIM DO
(5.18) IF (VA[I] = @) AND (VB[1] = @) THEN U[I]:=¢
ELSE U[1]):= va[1]/ve(1];
RES:= U

END;

respectively. The division operator is tailored to yield O as the limit of the
Halley correction as (a\’)i + 0, which is valid as long as there is a neighborhood
of a’ which does not contain points for which the denominator of the Halley correc~
tion is zero while the numerator is nonzero. By the use of the operators (5.17)

and (5.18), the Halley correction is the vector V given by
(5.19) Vi= (A*A)/(A + 8.5%B);

which completes step 4°.

The final step of one Halley iteration is then
(5.20) X.F:= X.F + V[1]; Y.Fi= Y F + V[2];
after which another iteration can be performed, if desired. A set of typical numer-
ical results for this problem, using the program in Appendix A, is 9iven in Appendix

B.

6. A more general approach: Type SYSTEM. In the simple example discussed

in the previous section, it was convenient to use the ordinary notation X,Y for
the independent variables involved, and F,G for the dependent variables corres-
ponding to the system (5.4). For larger systems, it is helpful to adopt a more
formal notational convention, in terms of which a general-purpose program can be
developed. This is done by the introduction of the data type SYSTEM, which is

declared by:

(6.1} TYPE SYSTEM = ARRAY[DIMTYPE]OF HESSIAN;

- 11 -

by the use of this data type, a declaration of the form

(6.2) VAR X,F: SYSTEM;

can be used, for example, to introduce independent variables X[l],X[2),...,X([DIM],

and dependent variables F[l],F[2],...,F[DIM]. Thus, the system of equations

4 4 4
16x1 + 16x2 + x3 - 16 o,
2 2 2
(6.3) x1 + x2 + x3 - 3 =0,
3 -
X - X, =0,

taken from (13] would be coded as

F[13:= 16%(X[1]**a) + 16%(X[2]**4) + X[3]**a - 16;
(6.4) FL2):= x[13**2 + x[2]**2 + X[3]**2 - 3;
FL30:= X[1]**3 - x[2];

(parentheses are necessary in (6.4), since ** and * have the same priority in Pascal-SC
[1]). Once the statements (6.4) are executed, the value F[i].F of each function,

the i;h row of the Jacobian matrix of the system F[i).DF, and the i;h panel F([i] .HF

of the Hessian operator are all at the disposal of the programmer.

7. The programs SYSTEST and HALSYS. A brief description of two Pascal-SC

programs waich can be used to investigate the Jpplication of Halley's method to
systems of equations will now be presented. First of all, good programming prac-
tice requires that the expressions and subroutines prov.ded by the user produce the
correct values of the functions fi(x) appearing in (l.1). The program SYSTEST is
provided for this purpose. To use this program, the file SYSTEST.S containing its
source code (see Appendix C) is created from SYSTEST.PROG and edited to include the
correct value of DIM and expressions or subroutines for the functions F(I]. Source
code for the required HESSIAN operators and functions is obtained from the file
HESS_PAKET, which contains the 22 arithmetic operators, 5 power operators, and the

functions HABS, HSQRT, HEXP, HLN, HARCTAN, HSIN, and HCOS (14). As explained in

-12 -

{14}, the user may add any other needed HESSIAN functions, procedures, or operators

to the program heading if needed to supplement the standard ones. For example, the
system (6.4) requires that source code for the following operators appears in the

program heading:

OPERATOR * (K: INTEGER;H: HESSIAN) RES: HESSIAN;
OPERATOR ** (R: REAL;K: INTEGER) RES: REAL;
OPERATOR ** (H: HESSIAN;K: INTEGER) RES: HESSIAN;
7 OPERATOR + (HA,HB: HESSIAN) RES: HESSIAN;
OPERATOR - (H: HESSIAN;K: INTEGER) RES: HESSIAN;

OPERATOR - (HA,HB: HESSIAN) RES: HESSIAN;

and one sets DIM = 3, After this program is compiled, upon execution it will re-
quest initial values for X{1].F,...,X(DIM].F, and then print out the values F[I).F
of the functions in the system, the values of the first derivatives DF[I]}/DX([J) =
F{I].DF[J], and the second derivatives D2F([I]/DX[J]IDX(K] = F{I1].HF([J ,K]. A typical
set of output for the system (6.4) is given in Appendix D.

Once the correctness of coding for the system has been verified, the cranslated
code for the procedure FCOMP(VAR X,F: SYSTEM;DIM: INTEGER) is entered in the external
library HALLEY LIB as subroutine number 777 [15) from the intermediate code (2C) for
the program SYSTEST. HALLEY LIB also contains pretranslated code for the linear
equation solver SOLVIN (subroutine number 776) and the standard functions of Pascal-SC
{15]. The source code file HALSYS.S is created from HALSYS.PROG with DIM set to its
correct value, and the program HALSYS compiled with reference to HALLEY LIB to bring
in the code for the system being solved. The text of HALSYS.PROG is given in Appen-
dix E.

The program HALSYS carries out the actual Halley iteration., First, it asks for
initial values of Xx(l}.F,...,X[DIM].F, and then prints these and the corresponding

function values F{l).F,...,F[DIM).F. The user then receives the query:

-13 -

(7.2) RESTART (R) OR ITERATE (Y/N)?

The response "R" will result in the request for another set of initial values, "Y"
will give the results of one Halley iteration, while "N" will terminate the program
and return control to the operating system. After each step of Halley's method,
the query (7.2) will be sent to the user. Of course, the user can introduce a more
automatic method for controlling the iteration by editing the file HALSYS.S before
compilation. Typical results for the system (6.3) are given in Appendix F. It

is interesting to compare these with the corresponding results obtained by Newton's
method, and given in [13). 1In the latter case, eight iterations were required to
reduce the function values to zero, as compared to 6 by Halley's method. However,
a few iterations are spent in each calculation chasing a small roundoff error in
the function values; the function values are actually negligible after § iterations
of Newton's method and 3 iterations of Halley's method.

8. Implementation details. The programs described in this report were created

and tested using the Pascal-SC compiler developed at the University of Karlsruhe for
the Zilog MCZ-1 microcomputer using the RIO 2.06 operating system of Zilog, Inc. No

other claims of correctness or usability are made.

=14 -

1.

2,

3.

4.

5.

6,

7.

9.

10.

1.

12,

References

G. Bohlender, K. Gruner, B. Kaucher, R. Klatte, W. Kramer, U. W. Kulisch,
8. M. Rump, Ch. Ullrich, J. Wolff von Gudenberg & W. L. Miranker.
PASCAL=8C: A PASCAL for Contemporary Scientific Computation
Research Report RC 9009, IBM Thomas J. Watson Research
Center, Yorktown Heights, N.Y., 1981,

Annie A. M. Cuyt. Abstract Pade Approximanta for Operators: Theory and
Applications. Ph.D. Dissertation, Department of Mathematics
University of Antwerp UIA, 1982,

Annie A. M. Cuyt. Numerical stability of the Halley—-iteration for the
solution of a system of nonlinear equations. Math. Comp. 38 (1982),
171=179,

Annie Cuyt & Paul van der Cruyssen. Abstract Pade Approximants for the
Solution of a System of Nonlinear Equations. Report 80-17, University
of Antwerp UIA, 1980.

Julia H. Gray & L. B. Rall. NEWTON: A general purpose program for
solving nonlinear systems. Proceedings of the 1967 Army Numerical
Analysis Conference, pp. 11-59. U. S. Army Research Office, Durham,
N.C., 1967,

G. Kedem, Automatic differentiation of computer programs. ACM Trans.
Math. Software 6, no. 2 (1980), 150-165.

Dennis XKuba & L. B. Rall. A UNIVAC 1108 program for obtaining rigorous
error estimates for approximate solutions of systems of equations,
Technical Summary Report No. 1168, Mathematics Research Center, Uni-
versity of Wisconsin-Madison, 1972.

U. Kulisch & W. L. Miranker. Computer Arithemetic in Theory and
Practice. Academic Press, New York, 1981,

J. M, Ortega & W. C. Rheinboldt. Iterative Solution of Nonlinear Equa-
tions in Several Variables. Academic Press, New York, 1970.

L. B. Rall. Computational Solution of Nonlinear Operator Equations. Re-
printed by Krieger, Huntington, N.Y., 1979,

L. B. Rall. Applications of software for automatic differentiation in
numerical computation. Computing, Suppl. 2 (1980), 141-156,

L. B. Rall. Automatic Differentiation: Techniques and Applications.

Lecture Notes in Computer Science No. 120, Springer-Verlag, Berlin-
Heidelberg, New York, 1981,

- 15 ~

13.

14.

15.

L.

L.

J.

B. Rall. Differentiation in PASCAL~SC: Type GRADIENT. Technical
Summary Report No. 2400, Mathematics Research Center, University of
Wisconsin-Madison, 1982,

B. Rall. Differentiation and Generation of Taylor Coefficients in
PASCAL-SC. Technical Summary Report No. 2452, Mathematics Research
Center, University of Wisconsin-Madison, 1982,

Wolff von Gudenberg. Gesamte Arithwetik des PASCAL~SC Rechners:
Benutzerhandbuch. Institute for Applied Mathematics, University of

Karlsruhe, 1981.

- 16 -

o ——p,
Mn :

TYPE DIMTYPE
RVECTOR
RMATRIX
HESSIAN

BEGIN

MRNULL := C
END;

RES := A
END)

RES := B
END;

BVAR 3= B;

CONST DIM = 2;

FUNCTION MRNULL:
VAR I,J: DIMTYPE;
Ct: RMATRIX;

APPENDIX A

A Pascal-S8C program for the solution of system (5.4) by Halley's method.

PROGRAM HALLEY (INPUT,OUTPUT);

1..DIM;

ARRAY [DIMTYPE]OF REAL;

ARRAY [DIMTYPR]OF RVECTOR;

RECORD F:REAL;DF: RVECTORJHF: RMATRIX END;

VAR X,Y,F,G: HESSIAN;C: CHAR;V,A,B: RVECTOR;JAC,L,M: RMATRIX;
NRS: BOOLEAN;

(* The following are standard Pascal~SC matrix and vector functions and
operators from MR_PAKET. *)

RMATRIX; (* This returns the zero matrix. *)

FOR I:=1 TO DIM DO
POR J:=1 TO DIM DO
c(1,J) = 0;

OPERATOR + (A,B: RVECTOR) RES: RVECTOR;
VAR I: DIMTYPE;
BEGIN FOR I:=1 TO DIM DO A[I] := A[I]+B(I];

OPERATOR * (A: REAL; B: RVECTOR) RES: RVECTOR;
VAR I: DIMTYPE;
BEGIN FOR I:=1 TO DIM DO B(I) := A*B(I];

OPERATOR * (A: RMATRIX; B: RVRCTOR) RES: RVECTOR;
VAR I: DIMTYPR;
BVAR: RVECTOR;

FOR 1:=1 TO DIM DO
B[I) 1= SCALP (A[I),BVAR,0);

-17 -

(* Special operators for componentwise multiplication and division of vectors,
see (5.17) and (5.18). *)

OPERATOR * (VA,VB: RVECTOR) RES: RVECTOR;
VAR U: RVECTOR;I: DIMTYPE;
BEGIN FOR I:=1 TO DIM DO U[I):=VA([1]*VB(I];
RES:=U
END;

OPERATOR / (VA,VB: RVECTOR) RES: RVECTOR;
VAR U: RVECTOR;I: DIMTYPE;
BEGIN FOR I:=1 TO DIM DO
IP (VA[I]=0) AND (VB(I])=0) THEN U(I]:=0
ELSE U[1):=VA[I] /VBII];
RES:=0
END;

(* The required HESSIAN operators and function (5.7) for the evaluation of
the system (5.6) follow. *)

OPERATOR + (HA,HB: HESSIAN) RES: HESSIAN;
VAR I,J: DIM.:PE;U: HESSIAN;
BEGIN U.P:=HA.F+HB.FJFOR I:=1 TO DIM DO
BEGIN U.DF[I]):=HA.DF(I]+HB.DF{1];
FOR J:=t TO DIM DO
U.HF(I] [J):=HA.HF (1] (J)+HB.HP([I] [J]

RES : =U
END;

OPERATOR - (H: HESSIAN) RES: HESSIAN;
VAR 1,J: DIMTYPE;U: HESSIAN;
BEGIN U.F:=-H.F3FOR I:=1 TO DIM DO

BEGIN U.DF(I]:=~H.DF({I);
FOR J:=1 TO DIM DO
U.HF (1) (J) :==H.HF(I] [J]
END;
RES:=U
END;

OPERATOR -~ (H: HESSIAN;R: REAL) RES: HESSIAN;
VAR U: HESSIAN;
BEGIN U.PF:*H.F-R;U.DP:=H.DF;U.HF:=H.HF;
RES:=U
END;

- 18 -

OPERATOR - (HA,HB: HESSIAN) RES: HESSIAN;
VAR I,J: DIMTIYPE;U: HESSIAN);
BEGIN U.F:=HA.F-HB.F;FOR I:=1 TO DIM DO
BEGIN U.DF({I):~HA.DP(I)-HB.DF[I);
FOR Ji=1 TO DIM DO
U.HF(I) [J):=HA.HP(I) [J)-HB.HF[I) (J]
END;
RES:=U
END;

FUNCTION HEXP(H: HESSIAN): HESSIAN:
VAR I,J: DIMTYPE;U: HESSIAN;
BEGIN U.Fi=EXP(H.F);

FOR 1I3=1 TO DIM DO
BEGIN U.DP[I]:=U.F*H.DPF[I);
FOR J:=1 70 1 DO

BEGIN U.HF(I)[3]):=U.P*H.HP(X) (J)+U.DF(I])*H.DF(J]);
IF I<>J THEN U.HPF[J] [X):=U."P (2] [J]

END;
END;
HEXP:=U
END;

{(* The next procedure solves a linear system of eguations with coefficient
matrix JAC and right-hand side V for the solution vector 8.
tion of JAC is stored as the matrix M. If NRS = FALSE, then additional
right-hand sides are expected. Pre-translated code for this procedure is
stored in the library HALLEY LIB as subroutine number 776. *)

PROCEDURE SOLVLN (DIM: INTEGER;VAR JAC,M:RMATRIX;VAR V,S: RVECTOR;NRS:BOOLEAN);

EXTERNAL 776;

BEGIN (* Initialization of gradients and Hessians of independent variables. *)

X.DP(1]:=1;X.DP[2):=0;Y.DF[1):=0;Y.DF[2]:=1;
X.HF : *"MRNULL; Y. HF : "MRNULL;
C:='R';WHILE C = 'R' DO

BEGIN (* VALUE INITIALIZATION *)

WRITELN('ENTER X,Y');READ(X.F,Y.F);
Ct='Q'; WHILE C = 'Q' DO

BEGIN (¥ MAIN PROGRAM *)

(* Calculate function values and derivatives.

independent and dependent variables. *)

Fi=HEXP(-X+Y)-0.1;
G:*HEXP(~X-Y)-0.1;

-19 -

The decomposi-

Print values of

WRITELN('(X,Y) = (', X.F,' , ', Y.F,")');
WRITELN('(F,G) = (',F.P,' , ',G.F,")')y

WRITELN(‘RESTART (R) OR ITERATE (Y/N)?');READ(C,C);
(* In response to "R", the program will ask for new initial values of
the independent variables; an input of "Y" will result in one Halley
iteration being performed, while "N" will terminate the program and
return control to the operating system. Two characters are read,
since the first read from the console will always be a blank, the
second being the character entered by the user in response to the
prompt “*%, *)
WHILE C = 'Y' DO
BEGIN (* HALLEY ITERATION *)
(* Construct Jacobian matrix JAC and right~hand side V of (2.2). *)
JAC[1):=P.DF;JAC[2) :=G.DP;V (1) :==F.F;V (2] :=~G.F;
(* Solve (2.2) for A. %)
NRS:=FALSE ; SOLVLN(DIM,JAC,M,V,A,NRS),
(* Construct the right-hand side V of (2.3). *)
L{1):=F.HF*A;L[2] :=G.HF*A;V:=L*A;
(* Solve (2.3) for B. %)
NRS: =TRUE; SOLVLN (DIM,JAC,M,V,B,NRS);
{* Compute the Halley correction V and update independent variables. *)
Vi=A*A/(A+0.5%B);
X.P:=X.F+V (1] Y. P:=Y F+V (2],
C:='Q*
END; (* HALLEY ITERATION *)
ENDs (* MAIN PROGRAM *)
END (* VALUE INITIALIZATIOR *)

- 20 -

|

INITIAL

(x,Y) =
(F,G) =

RESULTS

(X,Y) =
(r,G) =

RESULTS

(X,¥) =
("G) d

RESULTS

(x,¥) =
(P,G) =

RESULTS

(X,¥) =
(r,G) =

(x,¥) =
(r,G) =

APPENDIX B

Output of the program in Appendix A for the initial

values X.F = 4.3, Y.F = 2.0,

VALUES

{ 4,30000000000E+00
{ 2.58843723000E-04

OF ITERATION NUMBER

{ 3.33615528246E+00
(2,40511813000E-04

OF ITERATION NUMBER

{ 2.560818009378+00
(1.44792583000E-04

OF ITERATION NUMBER

’

(2.308175634695+00 ,

(9.324796000008~06

OF ITERATION NUMBER

-~ -

2.30258515119E+00
3,00000000000E~10

OF ITERATION NUMBER

(2.302585092998+00
(0.00000000000E+00

’
’

2.00000000000R+00)
=~9.81636952230E-02)

1.03597241993x+00)
~8.73756488903R-02)

2.59679794972r-01)
~4.042372200382-02)

5.68378530700E-03)
=1.121100995702-03)

6.12025800000E-08)
~1.193960000008-08)

4.57643840C00R-12)
0.00000000000£+00)

APPENDIX C

The program SYSTEST for testing correctness of
HESSIAN systems of equations.

The source code for this program is in the file SYSTEST.PROG.

PROGRAM SYSTEST(INPUT,OUTPUT);
CONST DIM = #; (* Replace "#" by the dimension of the system tested. *)

TYPE DIMTYPE = 1..DIM;
RVECTOR = ARRAY [DIMTYPE;OF REALj

RMATRIX = ARRAY (DIMTYPE}OF RVECTOR;
HESSIAN = RECORD F:REAL;DF: RVECTOR:;HF: RMATRIX END;
SYSTEM = ARRAY [DIMTYPE]OF HESSIAN;

VAR X,F: SYSTEM;JAC: RMATRIX;I,J,K: DIMTYPE;C: CHAR;
PROCEDURE FCOMP (VAR X,F: SYSTEM;DIM: DIMTYPE);

(* Insert source code for the operators, functions, and procedures required
for computation of the system being tested here, for example, the source code
for the operators (7.1) in the case of the system (6.4). Source code for
HESSIAN operators and functions is in the file HESS_PAKET. *)

BEGIN (* SYSTEM DEFINITION *)

(* Insert code defining the system to be tested here, for example, the system
(6.4):

Fl1):=16*(X[1]**4)+16*(X[2]**4)+X (3] **4-16y
P2):=X[1] **24X (2] **24X (3] **2-3;
F{3]:=X[1]**3-X[2]; *)

END; (* SYSTEM DEFINITION *)

(* The following are standard Pascal-SC functions from MR_PAKET: MRNULL
returns the zero matrix, and MRID returns the identity matrix. These are
used for initialization of the Hessian and gradient parts of the
independent variables, respectively. *)

-22 -

-

FUNCTION MRNULL: RMATRIX;
VAR X,J: DIMTYPE;
C: RMATRIX;
BEGIN
FOR I:=1 TO DIM DO
FOR J:=1 TO DIM DO
cl(1,J]) = 0;
MRNULL := C
END,

FUNCTION MRID: RMATRIX)
VAR I,J: DIMTYPE;
C: RMATRIX;
BEGIN
FOR I:=1 TO DIM DO
FOR J:=1 TO DIM DO
IF I=J THEN C(I,J] :=
ELSE C{I,J] := 0;
MRID := C
END;

1

BEGIN (* Initialization of gradients and Hessians of independent variables. *)

JAC:MRID}FOR I:=1 TO DIM DO

BEGIN X[I].DF:=JAC(I]sX(I]).HF:=MRNULL

END;

C:='Y'JWHILE C = 'Y' DO

BEGIN (* MAIN PROGRAM *)

(* Input Portion *)

WRITELN("ENTER INDEPENDENT VARIABLES');
FOR I:=1 TO DIM DO READ(XI[I).P);

(* Calculation of function values and derivatives. *)

FCOMP (X, F,DIM) sWRITELN('

(* Ooutput Portion *)

FOR I:=1 TO DIM DO

BEGIN WRITELN('FUNCTION VALUE:')}; WRITELN({‘P[',1:2,°') = ',F(L].F);
WRITELN ('PIRST DERIVATIVES:');FOR J:= 1 TO DIM DO
WRITEIN('DF(*,I:2,')/DX(*,J:2,'] = ', FII].DF{I1)y
WRITELN (‘SECOND DERIVATIVES:')sFOR J:=1 TO DIM DO

FOR K:=1 T0 J DO

WRITBIN('D2F(',X:2,']}/DX([",J:2,')1DX(",K:2,') = ', F[I).HF(J,K])

END; (* OQutput Portion *)

- 23 -

W T g
L

il ot _~ S
> . -

WRITELN('DO YOU WANT TO ENTER MORE VALUES (Y/N)?');READ(C,C)
END; (* MAIN PROGRAM *)

END.

EXAMPLE : Source code for the HESSIAN operators (7.1) for the system (6.4).

OPERATOR + (HA,HB: HESSIAN) RES: HESSIAN;
VAR I,J: DIMTYPE;U: HESSIAN;
BEGIN U.F:=HA.P+HB.F;FOR I:=1 TO DIM DO
BEGIN U.DF(1]:=HA.DP(I])+HB.DF[I];
FOR J:=1 TO DIM DO
U.HF(1,J) :=HA.HF (I ,J)+HB.HF[I,J]
END)
RES:=U
END;

OPERATOR - (H: HESSIAN;K: INTEGER) RES: HESSIAN;
VAR U: HESSIAN;
BEGIN U.F:=H.F-K;U.DF:=H.DF;U.HF:=H.HF;
RES: =y
END;

OPERATOR - (HA,HB: HESSIAN) RES: HESSIAN;
VAR I,J: DIMTYPE;U: HESSIAN;
BEGIN U.F:=HA.F-HB.F;POR 1:=1 TO DIM DO
BEGIN U.DF[I):=HA.DF{I)=-HB.DF(I)];
FOR J:=! TO DIM DO
U.HF(I,J):=HA.HF[I,J)-HB.HF[X,J)
END;
RES:=U
BND;

OPERATOR * (K: INTEGER;H: HESSIAN) RES: HESSIAN;
VAR I,J: DIMTYPE;U: HESSIAN;
BEGIN U.F:=X*H.F;FOR I:=1 TO DIM DO
BEGIN U.DF[I):=»K*H.DF[1];
FOR J:=1 TO DIM DO
U.HF(I,J]):=K*H,HF[I,J]
BND;
RES:=U
ENDj

~ 24 -

OPERATOR ** (R: REAL;X: INTEGER) RES: REAL)
VAR L: INTEGER;U: REAL)
BRGIN IF K <= 0 THEN U:=1/R;
IP (K= 0) OR (R*= 1) THEN U:s1
SLSE IF K = 1 THEN U:=R
BLSE BEGIN L:=ABS(K);U:=1;REPEAT IF L MOD 2 = 1
THEN U:=R*UjLi» L DIV 2; IF L < 0
THEN R:i=R*R UNTIL L = 0;
IPF K < O THEN U:=1/U
D)y
RES: =0
END;

OPERATOR ** (H: HESSIAN;K: INTEGER) RES: HESSIAN)
VAR I,J: DIMTYPE)M,MM:REAL)U: HESSIAN;
BEGIN
IP X = 0 THEN
BEGIN IF H.F = O THEN
BEGIN WRITELN(‘EXPONENTIATION ERROR 0**0');SVR(0)
¥ND
ELSE BEGIN U.F:=1;FOR I:=1 TO DIM DO
BEGIN U.DF({I]:=0;PFOR J:=1 TO DIM DO U.HF[I,J):=0
END)
BND;
BND
ELSE IP K = 1 THEN Us=R
BLSE IF X = 2 THEN
BEGIN U.P:=H.F*H.P)M;=2*H . P;PFOR I:~»1 TO DIM DO
BEGIN U.DF(X]:=M*H.OF(X]sFOR J:»1 TO I DO
BEGIN U.HF(I,J):=M*H.HF[I,J)+2*H.DF[X)*H.DF[J),;
IF I <> J THEN U.HP(J,I):=U.HF(1,J])
BND)
END3
END
RLSE BEGIN MM:=H . F**(K-2);Mi=H,.F*MM U.P:oH.F*M;
My=K MMM =K ® (K=1) MM FOR I:%1 TO DIM DO
BEGIN U,.DF[I):=M*H,DF{I))POR Ji=1 TO I DO
BEGIN U.HF([I,J]:=M*H.HF(I,J)+*MM*H.DF (1) *H.DF(JT);
IF I <> J THEN U.HP(J,I]:»U.HF(ZI,J]}
ERD;
END)
ENDs
RRS 3=y
BNDy

- 25 ~

FUNCTION VALUE:

FIRST DERIVATIVES:

APPENDIX D

Typical output of the program SYSTEST.

Values computed for the system (6.4) with X[1] = X[2] = X[3) = 1.0.

F(¥] = 1.70000000000E+01

DF{ 1)/DX(1] = 6.40000000000E+01

DF[1]/DX[2] = 6.40000000000E+01
DF[1]/DX{ 3] = 4.00000000000E+00

SECOND DERIVATIVES:
D2F[1) /X[1)DX[1]
D2F{ 1] /DX[2]DX[1]
D2F{ 1]/DX[2]DX[2]
D2F[1] /DX[31DX[1}
D2F[1]/DX{ 3)DX[2}
D2F([1]/DX([3)DX[3)
FUNCTION VALUE:

1.92000000000E+02
0.00000000000E+00
1.92000000000E+02
0.00000000000E+00
0.00000000000E+00
1.20000000000E+01

F(2] = 0.00000000000E+00

FIRST DERIVATIVES:

DF{ 2]/DX[1] = 2.00000000000E+00
DF[2)/DX(2} = 2.00000000000E+00
DF(2] /X[3] = 2.00000000000E+00

SECOND DERIVATIVES:
D2F([2]/DX[1]DX[1)
D2F([2] /0X{ 2]JDX[1]}
D2r{ 2]/DX{ 2]DX[2]
D2F[2] /DX{ 3]DX[1]
D2F([2)/DX[3]1DX[2]
D2F[2]/DX[3)DX[3]
FUNCTION VALUE:

2,00000000000E+00
0.00000000000E+00
2.00000000000E+00
0.00000000000E+00
0.00000000000E+00
2,00000000000E+00

F(3] = 0.00000000000E+00

FIRST DERIVATIVES:

DF[3] /0X[1] = 3.00000007000E+00
DF[3]/DX(2] = -1.00000000000E+00
DFP[3]/DX(3] = 0.00000000000E+00

SECOND DERIVATIVES:
D2F(3)/Dx[1)DX[1)
D2F(3]1/DX(2)px[1)
D2F[3)/DX[2)oX[2)
Dp2F(3] /X[3]px[1)
D2F([3)/DX[3)IDX[2]
D2F{ 3] /X[3]lDX[3)

6.00000000000E+00
0.00000000000E+00
0.00000000000E+00
0.00000000000E+00
0.00000000000E+00
0.00000000000E+00

- 26 -

APPENDIX E

The Pascal-SC program HALSYS for the solution of
systems of equations by Halley's method.

Source code for this program is contained in the file HALSYS.PROG.
PROGRAM HALSYS (INPUT,OUTPUT))
CONST DIM = #; (* Replace "#" by the dimension of the system to be solved. *)

TYPE DIMTYPE = 1,.DIM;
RVECTOR = ARRAY [DIMTYPE]OF REAL;
RMATRIX = ARRAY [DIMTYPE]OF RVECTOR;
HESSIAN = RECORD F:REALj;DF: RVECTORJRF: RMATRIX END;
SYSTEM = ARRAY [DIMTYPE]OF HESSIAN;

VAR I: DIMTYPE;X,F: SYSTEM;C: CHAR, A,B,V: RVECTOR;JAC,L,M: RMATRIX;
NRS : BOOLEAN ;

OPERATOR + (A,B: RVECTOR) RES: RVECTOR;

VAR I3 DIMTYPE;

BEGIN FOR I:=1 TO DIM DO A[I] := A[X)+B([I];
RES := A

END,

OPERATOR * (A: REAL; B: RVECTOR) RES: RVECTOR;
VAR I: DIMTYPE;
BEGIN FOR I:=1 TO DIM DO B(I] :=~ a*B{I];
RES := 9
END)

OPERATOR * (A: RMATRIX; B: RVECTOR) RES: RVECTOR;
VAR I: DIMTYPE;
BVAR: RVECTOR;
BEGIN
BVAR := B;
FOR I:=1 TO DIM DO
B{I) 1= SCALP (A(I),BVAR,0);
RES := B
END;

OPERATOR * (A,B: RVECTOR) RES: RVECTOR;
VAR I: DIMTYPE;C: RVECTOR;
' BEGIN POR I:=1 TO DIM DO C[I):=A{I)*B[I);
RES:=C
END;

- 27 -

—_— - B

. . . _‘ v“'-)!‘_ " : , T) L

OPERATOR / (A,B: RVECTOR) RES: RVECTOR;
VAR I: DIMTYPE;C: RVECTOR;
BEGIN FOR I:= 1 TO DIM DO
IF (A[X]=0) AND (B[I]=0) THEN C[I]:=0
ELSE ClI):=A[YX)/B[1);
RES:=C
END;

FUNCTION MRID: RMATRIX; (* Returns the identity matrix *)
VAR I,J: DIMTYPE;
C: RMATRIX;
BEGIN
FOR I:=1 TO DIM DO
FOR J:=1 TO DIM DO
IF I=J THEN C(I,J] := 1
ELSE C(I,J] := 0;
MRID := C
END;

FUNCTION MRNULL: RMATRIX; (* Returns the zero matrix *)
VAR I,J: DIMTYPE;
C: RMATRIX;
BEGIN
FOR I:=1 TO DIM DO
FOR J:=1 TO DIM DO
cl1,J) := 0y
MRNULL := C
END;

PROCEDURE SOLVLN (DIM:INTEGER;JAC,M:RMATRIX;V,S:RVECTOR;NRS: BOOLEAN);
EXTERNAL 776,

PROCEDURE FCOMP(VAR X,F: SYSTEM;DIM: DIMTYPE);s
BEXTERNAL 777

BEGIN (* Initialization of gradients and Hessians of independent variables. *)

L:=MRID;FOR I:=1 TO DIM DO
BEGIN X[I).DF:=L(I)sX[I).HF:=~MRNULL

END;
C:='R*;WHILE C = "R’ DO

BEGIN (* VALUE INITIALIZATION *)
WRITELN ("ENTER INDEPENDENT VARIABLES');

POR I:=1 TO DIM DO READ(X(I].F);
Ci='Q'; WHILE C = Q' DO

- 28 -

BEGIN (* MAIN PROGRAM *)

(* Compute function values and derivatives; print values of independent
and dependent variables. *)

PCOMP(X,P,DIM);

FOR I:=1 TO DIM DO

BEGIN WRITELN('X([',1:2,'] = ', X[X).F,' P[',2:2,') = ',FII).F);
END;

WRITELN("RESTART (R) OR ITERATE (YN)?’');
READ(C,C);WHILE C = 'Y' DO

BBEGIN (* HALLEY ITERATION *)
FOR I:=1 TO DIM DO
BEGIN JAC[X)s1=F(I]).DF; (* JACOBIAN MATRIX *¢)
V(I]:==F({X].F; (* RIGHT HAND SIDE *)
ENDj
(* Solve for A. *)
WR8: =FALSR; SOLVLN (DIM,JAC,M,V,A,NRS);
(* Compute B. *)

FOR I:=1 TO DIM DO L{I):=F(I).HF*A;V:=L*A;
NRS 3 *TRUE ; SOLVLN (DIM,JAC,M,V,B,NRS) s

{* Compute the Halley correction and update independent variables. *)
Vi=A*A/(A+0.5"B);POR I:=1 TO.DIM DO X{I].P:=X([I].F+V(I];
c,-lq'

END; (* HALLEY ITERATION *)

BND; (* MAIN PROGRAM *)

(* VALUE INITIALIZATION ¢)

-29 -

APPENDIX F

Results of the Solution of the System (6.3) by
the Program HALSYS.
INITIAL VALUES
X[1) = 1,00000000000E+00 F{ 1] = 1,700000000008+01
X(2] = 1.00000000000E+00 F{ 2] = 0.00000000000E+00
X[3] = 1,000000000002+00 F[3] = 0.00000000000E+00
RESULTS OF ITERATION NUMBER 1

X[1) = B.91118701964E-01 F[1) = 9.37521623100E~01

X[2] = 7.05429341548E-01 F{ 2] = =9.44922445000E-03
X[3] = 1.30339083879E+00 F{ 3] = 2.20137281800E-03
RESULTS OF ITERATION NUMBER 2

X[1) = 8.77982528233E-01 F[1] = 1.03685680000E-03
X[2] = 6.76786689302E~01 F[2] = -9.09324000000E~06
X{ 3) = 1.,33082582033E+00 F[3) = 9.05738500000E-06

RESULTS OF ITERATION NUMBER 3

X{ 1] = 8.77965760275e~01 F(1] = 1.00000000000E~10
X(2) = 6,76756970519e-01 F{ 2] 0.00000000000E+00
X{ 3] = 1.33085541162E+00 F(3] = 0.00000000000E+00

RESULTS OF ITERATION NUMBER 4

X[1] = 8.77965760274g-01 F(1] = 0.00000000000E+00
X[2) = 6.767569705162-01 F[2] 0.00000000000E+00
X{ 3] = 1.33085541162g+00 F(3) = 2.00000000000E~12

RESULTS OF ITERATION NUMBER 5

X{ 1] = 8.77965760274E-01 F{ 1) = 0.00000000000E+00
X[2] = 6.76756970517E-01 P(0.00000000000E+00
X(3) = 1.,33085541162E+00 F(3] = 1.00000000000E~12

~
—
]

RESULTS OF ITERATION NUMBER 6

X[1) = 8.77965760274g-01 F[1) = 0.00000000000E+00
X{ 2) = 6.767569705188-01 F[2) 0.000000000008+00
X{ 3] = 1.33085541162E+00 F(3] = 0.00000000000E+00

- 30 -

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPORT NUMBER
k2481 R R

A -/ 4

2. GOVT ACCESSION NOJ 3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)
COMPUTATIONAL IMPLEMENTATION OF THE MULTIVARIATE
ALLEY METHOD FOR SOLVING NONLINEAR SYSTEMS OF
EQUATIONS

8. TYPE OF REPORY & PERIOD COVERED
Summary Report - no specific
reporting period

6. PERFORMING ORG. REPORT NUMBER

17 AUTHOR(e)

Annie A. M. Cuyt and L. B, Rall

8. CONTRACT OR GRANT NUMBER(s)

DAAG29-80-C-0041

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Mathematics Research Center, University of

610 Walnut Street Wisconsin
Madison, Wisconsin 53706

10. PROGRAM ELEMENTY, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Work Unit Number 3 -
Numerical Analysis

11. CONTROLLING OFFICE NAME AND ADDRESS

U. S. Army Research Office
P.O. Box l22il

12. REPORT DATE
February 1983

13. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 30
JTE WMONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURITY CLASS. (of thie report)
UNCLASSIFIED

18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i different from Report)

t8. SUPPLEMENTARY NOTES

type HESSIAN, Pascal~SC

19. KEY WORDS (Continue on reverse side if y and identity by block number)
onlinear systems of equations, Halley's method, automatic differentiation ‘

20. ADSTRACT (Continue on reverse side i y and identify by block mumber)

version requires the solution of two linear systems

entwise multiplication and division of vectors.
eral-purpose computer program which implements this

and second derivatives are obtained by automatic differentiation, so the user
need only suppy code defining the functions appearing in the system of equations.

Halley's method for the solution of systems of equations is an iterative pro-
cedure which converges cubically under favorable conditions. The multivariate

coefficient matrix, following which the correction vector is computed using com-

of equations with the same

This report describes a gen-
method. The necessary first

w . :2:"" “7’ E0ITION OF | NOV 68 18 OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

t

[]

J
e, e e ——————

- h T W?;_,..r- "‘_f - ;‘- ’ .

ABSTRACT (continued)

The program is written in Pascal-SC, using the new data type HESSIAN to represent
dependent and independent variables. Numerical examples are given for two simple
systems of equations to illustrate the use of the program and the effectiveness of
the method.

ooy

T P g
-

s TN

