
A-A127 782 COMPUATONAL IMPLEMENAON OF THE MULTVARAEHAEY /
METHOD FOR SOLVIN..U) WISCONSIN UNIV MAO SON
MATHEMATICS RESEARCH CENTER A A CUY ET AL FEB 83

r UNC :ASS1FEO MRC-TSR-2481 OAAG2V 80 C 0041 / 21 N

EhhimhEmhhhEohI

11113 I

mliii . IA .20
I'll,111111.6

1111.25 1. 1 1.6

MICROCOPY RESOLUTION TEST CHART

NA1iONAL BLIRJAL)O ITANDARD[lqt A

ADA 127782

MRC Technical Summary Report #2481

COMPUTATIONAL IMPLEMENTATION OF THE

MULTIVARIATE HALLEY METHOD FOR SOLVING

NONLINEAR SYSTEMS OF EQUATIONS

Annie A. M. Cuyt and L. B. Rall

Mathematics Research Center
University of Wisconsin-Madison

610 Walnut Street
Madison. Wisconsin 53706

February 1983

(Received February 11, 1983) O T ICfELECTE n
tM o 3 19839

E
S Lt- C, U Approved for public release

' % Distribution unlimited

Sponsored by

U. S. Army Research Oiffice and National Fund for Scientific
P. 0. Box 12211 Research (NWFO) of Belgium

Research Triangle Park
North Carolina 27709

83 05 06-1i6
I.

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

COMPUTATIONAL IMPLEMENTATION OF THE MULTIVARIATE HALLEY METHOD

FOR SOLVING NONLINEAR SYSTEMS OF EQUATIONS

Annie A. M. Cuyt and L. B. Rallt

Technical Summary Report #2481

February 1983

ABSTRACT

Halley's method for the solution of systems of equations is an iterative pro-

cedure which converges cubically under favorable conditions. The multivariate ver-

sion requires the solution of two linear systems of equations with the same coeffi-

cient matrix, following which the correction vector is computed using componentwise

multiplication and division of vectors. This report describes a general-purpose

computer program which implements this method. The necessary first and second de-

rivatives are obtained by automatic differentiation, so the user need only supply

code defining the functions appearing in the system of equations. The program is

written in Pascal-SC, using the new data type HESSIAN to represent dependent and in-

dependent variables. Numerical examples are given for two simple systems of equa-

tions to illustrate the use of the program and ti-. effectiveness of the method.

AMS (MOS) Subject Classifications: 65-04, 65H10, 65V05

Key Words: Nonlinear systems of equations, Halley's method, automatic differentiation,
type HESSIAN, Pascal-SC

Work Unit Number 3 - Numerical Analysis

*Department of Mathematics, University of Antwerp UIA. Research sponsored by
the Belgian National Fund for Scientific Research (NFWO).

tMathematics Research Center, University of Wisconsin-Madison. Research spon-
sored in part by the United States Army under Contract No. DAAG29-80-C-0041.

..-.. ~ A

SIGNIFICANCE AND EXPLANATION

One of the fundamental problems of scientific computation is the efficient

numerical solution of systems of nonlinear equations in several variables. Methods

are known which converge rapidly in theory, but require first and second partial

derivatives of the functions appearing in the system with respect to the variables

involved. The necessary derivatives can be evaluated automatically, without re-

sort to numerical approximations, in programs produced by modern compilers which

permit user-defined data types and operators. Examples of such compilers are

Pascal-SC, Algol 68, and ADA (a trademark of the U. S. Department of Defense). In

this study, Pascal-SC (Pascal for Scientific Computation) is used, since it supports

accurate floating-point arithmetic for vectors and matrices, as well as scalars. The

method taken to illustrate these capabilities is Halley's method, which requires
second partial derivatives. By use of type HESSIAN, which consists of the value of

a function of n variables, its gradient vector of first derivatives, and its Hessian

matrix of second derivatives considered as a triple of basic real, vector, and ma-

trix types, the user need only provide expressions or subroutines for the functions

involved, and the compiler then produces code for the derivatives needed, without re-

sort to inaccurate numerical or expensive symbolic differentiation. Since Halley's

method converges cubically, its speed can offsbt the overhead of calculation of the

necessary derivatives. A general purpose programming system is provided which con-

sists of two parts: A program which is used to verify that the coding of the func-

tions is correct, and another program which solves the actual system. The first pro-

gram requires as input the number of equations, the necessary operators, and expres-

sions or subroutines for the functions involved. The second program needs only the

number of equations in the system and the already translated and verified code from

the first program. A numerical example is given to show that this division of labor

leads to efficient and effective numerical solution of a system of nonlinear equa-

tions by the method considered.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authors of this report.

Accession For
NTIS GTRA& I

DTIC TAB

Dis : ton-_

GOMPUTATIONAL IMPLEMENTATION OF THE MULTIVARIATE HALLEY METHOD-A':c L- v c,-; -

FOR SOLVING NONLINEAR SYSTEMS OF EQUATIONS D C.t I
List

Annie A. M. Cuyt and L. B. Rall

1. Nonlinear systems of equations. One of the central problems of scien-

tific computation is the efficient numerical solution of systems of n equations

(1.) i (x , x2 ,...,X) = 0, i = 1,2,...,n,

in n unknowns x1l, x 2 ... , x n . This is a special case of the opeto equation

(1.2) f(x) - 0,

in which f:D C R
n - Rn , 0 E R

n denotes the zero vector 0 = (0,0,...,0), and X E R
n

is sought. If f is an a ine operator,

(1.3) f(x) - Ax + b,

with the matrix A - (a ij) and the vector b - (bl,b2 , ...,bn) given, then the system

(1.1) is said to be tineaA. This important special case is now fairly well under-

stood from a computational as well as a theoretical standpoint. Otherwise, (1.1)

is a nonlinear system, and the situation is quite different with respect to theoret-

ical and practical methods for solution than in the linear case. Most of the methods

investigated to date [9 1, (101 involve some form of iteration, and many also in-

volve approximation of the nonlinear system by a linear system during the various

steps of the solution process. It has been observed that some solution procedures

work better than others on a given problem, so that in the absence of a clear-cut

*Department of Mathematics, University of Antwerp UIA. Research sponsored by
the Belgian National Fund for Scientific Research (NFWO).

tMathematics Research Center, University of Wisconsin-Madison. Research spon-
sored in part by the United States Army under Contract No. DAAG29-80-C-0041.

a -

criterion for choosing the optimal method, it is advisable to have several choices

available in the form of computer programs which are easy to use.

It will be assumed that the operator f corresponding to the system (1.1) has

first and second Frdchet derivatives ' f,' on its domain D C Rn [10]. In this case,

the first Frdchet derivative of f at x is represented by the Jacobian mntix

(1.4) f'(x) - Of i x/axj),

and the second by the Hziazn op a O

(1.5) f"(x) - (2 fi (x)/ax jaxk)

[101. Necessary values of the derivatives appearing in (1.4) and (1.5) will be ob-

tained by automatic differentiation [12] so that the user need only supply expressions

and subroutines for the n functions fi (xl1,x2,.... xn) appearing in (1.1). This avoids

both the labor of providing code for derivatives and the inaccuracy of numerical dif-

ferentiation, as will be explained briefly in §3.

2. The multivariate Halley method. This method is based on the theory of

abstract Padd approximants [2], [4], and conditions for its numerical stability

have been given by Cuyt [3]. The abstract setting for this method is a Banach al-

gebra [10]: R with multiplication of vectors defined componentwise forms such a

structure for the norm Ix. = maxix , for example. Halley's method starts from an
(i)

initial approximation x0 to a solution x - x* of (1.2), and then defines a sequence

{x } of successive approximations by the following algorithm:

x = x + (a-(a) , where
a + -b

(2-1) av = -f'(x)-l f(xv) (the Newton cOnAecton), and

bV = f'(x)- lf"(xV)avav, v = 0,1,2,....

In order to simplify the computation, the Jacobian matrix f (x) is not inverted in

-2-

MOW

the actual computation; rather, the linear system

(2.2) f(xV)aV - f(xV)

is solved for a'% following which the linear system

(2.3) f' I(x)b - f"(xV)aV a
V

is then solved for bV. Since the systems (2.2) and (2.3) have the same coefficient

matrices, the decomposition of the Jacobian matrix f' (xV) used to solve (2.2) can

also be used to solve (2.3), resulting in a saving of effort.

The total computation effort required for one step of Halley's method is thus:

10. Evaluation of f(x), f(x), f"(xV),

V
20. Solution of (2.2) for a

30. Evaluation of f"(x) a a V

~~~n(2 V 1 V
calculation of the Ha C0AectiO (av) /(a + -b

50. Addition of the Halley correction to xv.

This sequence of operations is more elaborate than required for Newton's method,

which requires only the evaluation of f(xv), f'(x ), the solution of (2.2) for av ,

and finally the addition of av to x" to obtain xV+l However, in favorable cases,

the rate of convergence of Halley's method will be cubic, while Newton's method con-

verges quadratically. Thus, the greater effort required for each step of Halley's

method could be offset if fewer steps are required to obtain the accuracy desired.

In connection with the calculation of the Halley correction, an indeterminate

form arises if (a")i (aV + l V 0. In this case, the value of the Halley cor-
2

rection is defined by continuity, and its ith component is taken to be 0.

Other cubically convergent iteration processes which use the same information

as Halley's method are Cheby6heV'6 method [9], 1i01,

xV+ V a V  1 V
(2.4) l x + a v , v - 0,1,2,...,

which is slightly less complicated, and the method o6 tangent hqpe.boz [9 1,

-3-

--00-



in which the correction vector c is obtained by solving the linear system

1 v V v v(2.5) [f' (X) + 2-f"(x )a Jo - -f(xv ),

from which

(2.6) X = X + c , - 0,1,2,...

This method is more complicated than Halley's method in that in (2.5), alteration of

the coefficient matrix in (2.2) is required. In the scalar case (n - 1), Halley's

method and the method of tangent hyperbolas coincide after division of the numera-

tor and denominator of the Halley correction by av. The abstract version of Halley's

method is defined in a Banach algebra; the Chebyshev and tangent hyperbola method,

like Newton's method, do not require multiplication and division of elements, and

hence can be defined in the more general setting of a Banach space [2 1, [9 1, [10].

3. Use of automatic differentiation. Newton's method and the methods of §2

are sometimes shunned because it is assumed that code has to be supplied for the

derivatives, or because the functions f. are defined by subroutines, rather than1

expressions. Since the rules for differentiation are well understood, however, the

computer can itself produce the required code by automatic differentiation of the

given expressions or subroutines [12]. In the case of expressions, programs capable

of obtaining first and second derivatives have been in use for some time [ 5], [ 7],

[10]. More recently, differentiation methods for subroutines have also been de-

veloped [6], [12], (14]. Since the latter case is the most general, it will be

examined here.

In primitive computing languages such as FORTRAN, automatic differentiation re-

quires interpretation of expressions [ 5 ), f 7 ] , or precompilation ( 6 ], [12] . One

of the significant recent advances in computer science has been the development of

modern languages such as Pascal-SC, in which the performance of differentiation is

based on user-defined data types and operators [13], [14]. To illustrate the basic

idea, consider the simple scalar case of a real function f of a single real variable

-4

- v-1



x. The pair of values (f(x),f'(x)) is the basic exampl, of a datum of type GRADIENT

for a given value of x 113). writing F - (f(x),f'(X)) to represent an element of this

new type of data, the next step is to define the corresponding arithmetic operations

and functions in a computable form. For example, for G - (9(x) ,g Cx)), addition and

multiplication are defined by

F + G0- f~x)+qx),f(x)+g'(x)),
(3.1)

F*G - f(x)*g(x),f(x)*glx)+g(x)*fI~x)),

respectively. Similarly, functions such as

(3.2) SIN(F) - Csin~f(x)),f'(x)*cos(f(xf)

are readily definable in a form suitable for computational implementation. The in-

dependent variable x is represented by the GRADIENT variable X - (x,l), and an ex-

pression of the form

(3.3) F :- X*SIN(X + 4.0) - *3

is then used to obtain both the value of the function f(x) - x sin Cx + 4.0) - x 3and

its derivative fV Wx - x cos Cx + 4.0) + sin (x + 4.0) - 3x 2automatically. Thus,

the user need only supply the code (3.3) for the function to be differentiated, once

the standard set of GRADIENT operations and functions are available 113).

For the present purpose, second derivatives are needed, so the type GRADIENT is

extended to type HESSIAN, a datum of which is the triple F - (f(x),f'(x),f'(x)).

once again, there is no problem in the implementation of arithmetic operations and

standard functions, for example,

F + G - Cf~x)+g~x),f'Cx)+g'Cx),f"Cx)+g"Cx))
(3.4)

F*G - (f~x)*g~x) ,f~x)*g' CX)+g~x)*f' Cx) ,f~x)5g"Cx)+2*f' Cx)g' Cx)+g~x)*f"Cx)),

and

(3.5) S!NCF) C(sin~f~x)),flCx)*cos~f~x)),f"(x)*cosf(x))-f*Cx)*f*Cx)*Sin(fx))).

Thus, given the independent variable x as the HESSIAN variable X - (x,1,0), the

-5-



evaluation of the expression (3.3) yields the value of the second derivative f"(x)

S- x sin (x + 4.0) + 2 cos (x + 4.0) - 6x as well as the values of the function f(x)

and its first derivative f' (x).

Although the formulations of HESSIAN operators and functions are somewhat com-

plicated, programming them is no real challenge, and this needs to be done only

once and for all. When available, these subroutines shift the burden of differen-

tiation from the user to the computing machine, which is as it should be. A com-

plete package for arithmetic operators and standard functions has been prepared in

Pascal-SC for the multivariate case in which f is a function of n variables, so

that x - (x ,X2,.. x n) E R0 , and the HESSIAN variable F is defined by

(3.6) F = (f(x),Vf(x),Hf(x)),

where Vf(x) = f (x) denotes the g4adient vectom

(3.7) Vf(x) = (3f(x)/3xl,af(x)/ax2,...,af(x)/ax n),

and Hf(x) - f"(x) is the Hasijxn matttx

(3.8) Hf(x) = 02 f(x)/axjaxk)

of the real-valued function f at x. The HESSIAN variables X[j] corresponding to the

independent variables x. are X[j] = (xj,ej,0), j - 1,2,...,n, where e. is the jth

unit vector, and 0 denotes the nxn zero matrix.

The case of a vector-valued operator f is handled by means of expressions or

subroutines for the n functions f. appearing in (1.1), defined to be the correspond-

ing HESSIAN variables F[i]. In this case, the ith row of the Jacobian matrix (1.4)

is simply the gradient vector Vf. (x), while the ith "panel" of the Hessian operatorI

(1.5) is given by the matrix Hf. (x).

4. Computation with bilinear operators. In the multivariate Halley method

(2.1), the right-hand side of the linear system of equations (2.3) for bV is ob-

Vtained by operating twice on the vector a with the bilinear operator f" CxV), where

the result of the first operation is a matrix, and the second yields a vector [10).

-6-



The way in which HESSIAN variables are defined makes it easy to implement these

operations. In general, the bilinear operator

(4.1) B (bijk )

will be considered to be composed of n matrices

(4.2) a - (bljk ), B2 - (b2 jk).... Bn - (bnjk

which will be called i-panet4, or simply panetz of B. For a vector x E Rn, the

matrix

n(4.3) A - A ij) B x k! ( -lbi  k xk

T
will have rows A, given by the matrix-vector product

(4.4) Ai - Bix, i - 1,2,...,n

Once the matrix A is formed by computing the vectors (4.4), then the vector

n n
(4.5) y - Ax - Bxx - ( Z I b ijkxkxj

j-1 k-1

is obtained by a single additional matrix-vector multiplication. Here, B i  Hfi (XV),

(4.6) Ai - Hf i(xV )av, i - 1,2,...,n,

and thus

(4.7) f*(xv)ava" = AaV,

so the required vector is obtained by a total of n + 1 matrix-vector multiplications.

In Pascal-SC, vectors and matrices are stored row-wise, so no transposition is

required when forming the matrix A from the vectors Ai given by (4.6) [151.

5. Programning Halley's method in Pascal-SC. Central to Pascal-SC, as well as

to Pascal [ 1], is the concept of a datA type. In Pascal-SC, vectors and matrices

over type REAL (the set of floating-point numbers) are considered to be the standard

types RVECTOR and RKATRIX, respectively [151. Following the conventions of Pascal-SC,

-7-



n-dimensional vectors and matrices are declared in the program heading by:

CONST DIM = n;

TYPE DIMTYPE = I..DIM;
(5.1) RVECTOR = ARRAY[DIMTYPE]OF REAL;

RMATRIX = ARRAY[DIMTYPE)OF RVECTOR;

and a number of ordinary operations of matrix and vector algebra are implemented

[ 8]. Following (5.1), type HESSIAN is declared by:

(5.2) TYPE HESSIAN = RECORD F: REAL;DF: RVECTOR;HF: RMATRIX END;

so that if an expression or the result of a subroutine for computing f(x) is as-

signed to the HESSIAN variable F, one has

(5.3) F.F = f(x), F.DF = Vf(x), F.HF = Hf(x).

Step 1° of Halley's method as outlined in §2 is thus taken care of simply by

expressing the independent variables xi , x2 ,..., xn and the values of the functions

fl, f2 ',' fn in the system (1.1) as HESSIAN variables. For example, consider the

simple system of equations

e- x + y - 0.1 = 0,

(5.4)
e-x -y - 0.I = O,

investigated by Cuyt and Van der Cruyssen [2 ], [4 1. The variables involved would

be declared to be HESSIAN in the heading of the program (see Appendix A) by

(5.5) VAR X,Y,F,G: HESSIAN;

and the functions corresponding to the left-hand sides of (5.4) by

F : HEXP(-X+Y) - 0.1;
(5.6)

G : HEXP(-X-Y) - 0.1;

in the body of the program. (The user is free to name and order both the independent

and dependent variables in any convenient manner. A more systematic approach will be

Sbo ti-



discussed in the next section.) In (5.6), the convention that the names of standard

functions for type HESSIAN begin with "H" has been followed. Evaluations of the

expressions in (5.6) requires the following HESSIAN operators and functions:

OPERATOR - (H: HESSIAN) RES: HESSIAN;

OPERATOR - (HA,HB: HESSIAN) RES: HESSIAN;

(5.7) OPERATOR - (H: HESSIAN;R: REAL) RES: HESSIAN;

OPERATOR + (HA,HB: HESSIAN) RES: HESSIAN;

FUNCTION HEXP(H: HESSIAN): HESSIAN;

source code for these is given in the heading of the program listed in Appendix A.

The first operator calculates -H, the second HA-HB, and so on.

The independent variables X,Y are initialized as follows: Their 6unction vatue

(or simply uvaue) parts X.F and Y.F are given initially by input from the user, and

are subsequently calculated by the Halley iteration. Their gtadient parts X.DF and

Y.DF are assigned the constant values

(5.8) X.DF[I]:=1; X.DF[2]:=O; Y.DF[1]:=O; Y.DF[2]:=I;

as are their Hesaian parts

(5.9) X.HF:=MRNULL; Y.HF:=MRNULL;

where MRNULL is a standard Pascal-SC function which returns the zero matrix.

Execution of the statements (5.6) thus completes step 11 of Halley's method.

For step 2*, the Jacobian matrix of the system (5.4) is needed. It is assumed that

the declaration

(5.10) VAR JAC,L,M: RMATRIX; A,B,V: RVECTOR; NRS: BOOLEAN;

is in the heading of the program, where JAC denotes the desired Jacobian. It is

obtained by the assignments

(5.11) JAC[1]:=F.DF; JAC[2]:=G.DF;

since its rows are the gradient vectors Vf(x) and Vg(x), respectively.

-9-



Similarly, letting V denote the right-hand side of the linear system (2.2), one

has

(5.12) V[1]:z -F.F; V[2]:= -G.F;

and all that remains is to sclve (2.2) for A = a
V 

by means of a standard procedure

for solving linear systems of equations, such as

(5.13) SOLVLN(DIM,JAC,M,V,A,NRS);

in which the decomposition of JAC is stored as the matrix M, and additional right-

hand sides will be expected as long as NRS = FALSE. This completes step 2*.

In step 3*, the matrix f"(x )a) is computed as the matrix L. This is accom-

plished by means of the assignments

(5.14) L[1]:= F.HF*A; L[2]:= G.HF*A;

using the standard Pascal-SC operator * for matrix by vector multiplication [151.

With this result, the vector V = f"(x )a av is obtained from

(5.15) V:= L*A;

thus completing step 3*.

The calculation of the Halley correction (step 40) requires first the compu-

tation of the vector B = b by

(5.16) SOLVLN(DIM,JAC,M,V,B,NRS);

where V is now obtained from (5.15), and NRS = TRUE. Addition of vectors and

multiplication of vectors by real numbers are standard in Pascal-SC; however,

componentwise multiplication and divison of vectors are not. Thus, the corres-

ponding operators *,/ must be defined in the heading of the program by

OPERATOR * (VA,VB: RVECTOR) RES: RVECTOR;

VAR U: RVECTOR;I: DIMTYPE;
(5.17) BEGIN FOR I:=I TO DIM 00 U[I1]:=VA[I]*VB[I];

RES:= U

END;

- 10 -



and

OPERATOR / (VAVB: RVECTOR) RES: RVECTOR;

VAR U: RVECTOR; 1: DIMTYPE;

BEGIN FOR I:=1 TO DIM DO

(5.18) IF (VA[I] = 0) AND (VB[I] = 3) THEN U[I]:=0

ELSE U[I:- VA[I]/VB[I];

RES:= U

END;

respectively. The division operator is tailored to yield 0 as the limit of the

Halley correction as (aV)i - 0, which is valid as long as there is a neighborhood

V
of a which does not contain points for which the denominator of the Halley correc-

tion is zero while the numerator is nonzero. By the use of the operators (5.17)

and (5.18), the Halley correction is the vector V given by

(5.19) V:= (A*A)/(A + 0.5*8);

which completes step 4*.

The final step of one Halley iteration is then

(5.20) X.F:= X.F + V[13; Y.F= Y.F + V[2];

after which another iteration can be performed, if desired. A set of typical numer-

ical results for this problem, using the program in Appendix A, is given in Appendix

B.

6. A more general approach: Type SYSTEM. In the simple example discussed

in the previous section, it was convenient to use the ordinary notation X,Y for

the independent variables involved, and F,G for the dependent variables corres-

ponding to the system (5.4). For larger systems, it is helpful to adopt a more

formal notational convention, in terms of which a general-purpose program can be

developed. This is done by the introduction of the data type SYSTEM, which is

declared by:

(6.1) TYPE SYSTEM ARRAY[DIMTYPE]OF HESSIAN;

- 11 -



by the use of this data type, a declaration of the form

(6.2) VAR X,F: SYSTEM;

can be used, for example, to introduce independent variables X[l],X[2j,...,X[DIM],

and dependent variables F[l],F[2],...,F[DIM]. Thus, the system of equations

4 4 416x1 + 16x + x3 - 16 = 0,

2 2 2
(6.3) xl + x2 +x 3  3 = 0,

x3 - x 2  =0,

taken from [131 would be coded as

F[1]:= 16*(X[1]**4) + 16*(X[2]**4) + X[3]**4 - 16;

(6.4) F[2]:= X[1J**2 + X[2]**2 + X[3]**2 - 3;

F[3]: = X[1]**3 - X[2];

(parentheses are necessary .'n (6.4), since ** and * have the same priority in Pascal-SC

[ 1]). Once the statements (6.4) are executed, the value F[i].F of each function,

the ith row of the Jacobian matrix of the system F[i].DF, and the ith panel F(i].HF

of the Hessian operator are all at the disposal of the programmer.

7. The programs SYSTEST and HALSYS. A brief description of two Pascal-SC

programs w.,ich can be used to investigate the )pplication of Halley's method to

systems of equations will now be presented. First of all, good programming prac-

tice requires that the expressions and subroutines prov 4ed by the user produce the

correct values of the functions f. x) appearing in (1.1). The programn SYSTEST is

provided for this purpose. To use this program, the file SYSTEST.S containing its

source code (see Appendix C) is created from SYSTEST.PRDG and edited to include the

correct value of DIM and expressions or subroutines for the functions F[I]. Source

code for the required HESSIAN operators and functions is obtained from the file

HESSPAKET, which contains the 22 arithmetic operators, 5 power operators, and the

functions HABS, HSQRT, HEXP, HLN, HARCTAN, HSIN, and HCOS [141. As explained in

- 12 -



[141, the user may add any other needed HESSIAN functions, procedures, or operators

to the program heading if needed to supplement the standard ones. For example, the

system (6.4) requires that source code for the following operators appears in the

program heading:

OPERATOR * (K: INTEGER;H: HESSIAN) RES: HESSIAN;

OPERATOR ** (R: REAL;K: INTEGER) RES: REAL;

OPERATOR * (H: HESSIAN;K: INTEGER) RES: HESSIAN;
(7.1)

OPERATOR + (HA,HB: HESSIAN) RES: HESSIAN;

OPERATOR - (H: HESSIAN;K: INTEGER) RES: HESSIAN;

OPERATOR - (HAHB: HESSIAN) RES: HESSIAN;

and one sets DIM - 3. After this program is compiled, upon execution it will re-

quest initial values for XlI.F,...,X[DIMI.F, and then print out the values F[I].F

of the functions in the system, the values of the first derivatives DF[I]/DX[J]

F[I].DF[J), and the second derivatives D2P[I]/DX[J]DX[K] - F[I1.HF[J,K]. A typicAl

set of output for the system (6.4) is given in Appendix D.

Once the correctness of coding for the system has been verified, the zranslated

code for the procedure FCOMP(VAR X,F: SYSTEM;DIM: INTEGER) is entered in the external

library HALLEYLIB as subroutine number 777 [15] from the intermediate code (ZC) for

the program SYSTEST. HALLEY LIB also contains pretranslated code for the linear

equation solver SOLVIW (subroutine number 776) and the standard functions of Pascal-SC

[151. The source code file HALSYS.S is created from HALSYS.PROG with DIM set to its

correct value, and the program HALSYS compiled with reference to HALLEYLIB to bring

in the code for the system being solved. The text of HALSYS.PROG is given in Appen-

dix E.

The program HALSYS carries out the actual Halley iteration. First, it asks for

initial values of X(J.F,...,X(DIM].F, and then prints these and the corresponding

function values F[lj.P,...,F[DIM].F. The user then receives the query:

- 13-



(7.2) RESTART (R) OR ITERATE (Y/N)?

The response "R" will result in the request for another set of initial values, "Y"

will give the results of one Halley iteration, while "N" will terminate the program

and return control to the operating system. After each step of Halley's method,

the query (7.2) will be sent to the user. Of course, the user can introduce a more

automatic method for controlling the iteration by editing the file HALSYS.S before

compilation. Typical results for the system (6.3) are given in Appendix F. It

is interesting to compare these with the corresponding results obtained by Newton's

method, and given in (13]. In the latter case, eight iterations were required to

reduce the function values to zero, as compared to 6 by Halley's method. However,

a few iterations are spent in each calculation chasing a small roundoff error in

the function values; the function values are actually negligible after 5 iterations

of Newton's method and 3 iterations of Halley's method.

8. Implementation details. The programs described in this report were created

and tested using the Pascal-SC compiler developed at the University of Karlsruhe for

the Zilog MCZ-l microcomputer using the RIO 2.06 operating system of Zilog, Inc. No

other claims of correctness or usability are made.

- 14 -



References

1. G. Bohlender, X. Gruner, B. Kaucher, R. Klatte, W. Kramer, U. V. Kulisch,
S. M. Rump, Ch. Ullrich, J. Wolff von Gudenberg & W. L. Miranker.
PASCAL-SCs A PASCAL for Contemporary Scientific Computation
Research Report RC 9009, IRK Thomas 3. Watson Research
Center, Yorktown Heights, N.Y., 1981.

2. Annie A. K. Cuyt. Abstract Pads Approximants for Operators, Theory and
Applications. Ph.D. Dissertation, Department of Mathematics
University of Antwerp VIA, 1982.

3. Annie A. N. Cuyt. Numerical stability of the Halley-iteration for the

solution of a system of nonlinear equations. math. Comp. 38 (1982),
171-179.

4. Annie Cuyt & Paul van der Cruyssen. Abstract Pad. Approximants for the
Solution of a System of Nonlinear Equations. Report 90-17, University

of Antwerp UXA, 1980.

5. Julia H. Gray & L. 3. Rall. NEWTON: A general purpose program for
solving nonlinear systems. Proceedings of the 1967 Army Numerical
Analysis Conference, pp. 11-59. U. S. Army Research Office, Durham,
N.C., 1967.

6. G. Kedem. Automatic differentiation of computer programs. ACM Trans.
Math. Software 6, no. 2 (1980), 150-165.

7. Dennis Kuba & L. B. Rail. A UNIVAC 1108 program for obtaining rigorous

error estimates for approximate solutions of systems of equations,
Technical Sumary Report No. 1168, Mathematics Research Center, Uni-
versity of Wisconsin-Kadison, 1972.

S. U. Kulisch & W. L. Niranker. Computer Arithemetic in Theory and
Practice. Academic Press, New York, 1981.

9. J. M. Ortega & W. C. Rheinboldt. Iterative Solution of Nonlinear Equa-
tions in Several Variables. Academic Press, New York, 1970.

10. L. B. Rall. Computational Solution of Nonlinear Operator Equations. Re-
printed by Krieger, Huntington, N.Y., 1979.

11. L. B. Rall. Applications of software for automatic differentiation in
numerical computation. Computing, Suppl. 2 (1980), 141-156.

12. L. B. Rall. Automatic Differentiation: Techniques and Applications.
Lecture Notes in Computer Science No. 120, Springer-Verlag, Berlin-
Heidelberg, New York, 1981.

15 -



13. L. B. Rail. Differentiation in PASCAL-SC: Type GRADfLNHT. Technical
Summary Report No. 2400, Mathematics Research Center, University of
Wisconaln-Madison, 1982.

14. L. B. Rail. Differentiation and Generation of Taylor Coefficients in
PASCAL-SC. Technical Sumary Report No. 2452, Mathematics Research
Center, University of Wisconsin-Madison, 1982.

15. J. Wolff von Gudenberg. Gesants Arithmstik des PASCAL-BC Rechnerse:
Benutzerhandbuch. Institute for Applied Mathematics, University of
Karlsruhe, 1981.

-16-

a NMI-~



APPENDIX A

A Pascal-SC program for the solution of system (5.4) by Ralley's method.

PROGRAM HALLEY(INPUT.OUTPUT);

COIST DIN - 21

TYPE DIMTYPE - I..DI.s
RVICTOR - ARRAY[D(INTYPE]OF RIALi
IATRIX - ARRAY (DINTYPBOF RVECTORy
HESIAN I RECORD rsREALtDF: RVECTOR;HF: NATRIX END;

VAR XY,FG: IESSIANIC: CHAR;V,AB: RVZCTORgJACLM: RMATRIX;

NRS: BOOLEAN;

(5 The following are standard Pascal-SC matrix and vector functions and
operators from KR PAhI. 5)

FUNCTION MENULL: N4ATRIXi ( This returns the zero matrix. ')
VAR IJ: DINTYPE;

C: RiATRIXi
BEGIN

FOR Is-1 TO DIM DO
FOR JsI1 TO DIM DO
C[IJ1 :- 0;

NIULL :- C

ND;

OPERATOR + (AB: RVNCTOR) RIB: RVECTOR;
VAR Is DINTYPI;
BEGIN FOR I:-1 TO DIN DO ACII a- A[IJ+B[IJ1

335 : A
END;

OPERATOR * (As REAL; B: RVEC-'OR) USB: UVECTOR;
VARi Is DIZTYPK;
BEGIN FOR Is-I TO DIJN DO 3[1] :- A

5
B[(] ;

RES A

END;

OPERATOR * (As RNZATX; B: RVTOR) Rs RVECTOR;
VAR Is DIWIYPZ;

BIVAR s UVECTO R
BEGIN

BVAR s" B;

RB :- B
ZND;

- 17 -

FO -~lT DMD



(Special operators for componentwiae multiplication and division of vectors,
see (5.17) and (5.18). *)

OPERATOR * (VA ,VD: RVECTOR) RES: RVNCTOR;
VAR U; RVECTOR;I: DXJ4TYPEJ
BEGIN FOR I:-1 TO DIM4 DO U(IJ:-VA(I]VB(I]i

RRU: -
END;

OPERATOR / (VA,VB: RVE CTO R) RES: RVECTOR;
VAR U: RVE CTO R;12 DINTYPEI

BEGIN FOR 1:-1 TO DIM DO
IF (VA(I]-O) AND (VB(I]0) THEN U(IJ:-O
ELSE U(II-VAEII/VB(I)h
RES: -U

ENDY

(The required HESSIAN operators and function (5.*7) for the evaluation of
the system (5.6) follow. *)

OPERATOR + (HAHB% HESSIAN) RES: HESSIANI
VAR I,J: DIW.iPZIU: HESSIANI
BEGIN U.F:-HA.?+HB.FiFOR 1:-1 TO DIM Do

BEGIN U.DF1I]:-HA.DF[I]+HB.DF[I],
FOR J: - TO DIM DO

END;

END:

OPERATOR - (H: HESSIAN) REB: HESSIAN:

VAR 1,J: DIWTYPE:U: HESSIANi
BEGIN U.F:--H.FiFOR 1:-1 TO DIM DO

BEGIN U.DF1I]:--H.DF(I],
FOR J:-1 TO DIN DO
U.HFEI] [J]:--H.HF(I) (31

END;

END;

OPERATOR - (H: HESSIANiR: REAL) RIB: HESSIAN:
VAN U; HESSIAMI
BEGIN u.F:-m.F-RIU.DF:-H.DPU.HFs-H.HF,

END;

- 18 -



OPERATOR -(HA,NBt HESSIAN) RES% HESSIANj
VAR 1,Jt DIXTYP8YU: HESSIANi
BEGIN U.FsinHA.F-HB.FFOR 1:-1 TO DIN Do

BEGIN u.DF(i]:-HA.DF[I]-HB.DF[X],
FOR Ji-1 TO DIN DO
U.HP[I]13] aEA.HF(I] (JI-EB.BF[I1 (J]

ENDi
RES:-0

END;

FUNCTION IIZXP(Ht HESSIAN): HESSIAN;
VAR 1,3: DINTYPEsUs HESSIANi
BEGIN U.F1zEXP(M.F)1

FOR I:-1 TO DIN DO
BEGIN U.DF[I1:"U.FCH.DF1I11

FOR Jt-1 TO I DO
BEGIN U.iiF(II[(31:-U.FCH.HFEZI 3+t.DFEIII U.DFE3],

IF 1<>J THEN U.HF(J) (I]:U.XP(I1 (31
8NDI

ENDi
HEXP : U

1* The next procedure solve* a linear system of equations with coefficient
matrix JAC and right-hand side V for the solution vector S. The decomposi-
tion of JAC is stored as the matrix N. if NRS - FALSE, then additional
right-hand sides are expected. Pro-translated code for this procedure is
stored in the library HALLEY LID as subroutine number 776. *)

PROCEDURE SOLVLN (DIN:INTEGER; VAR JAC ,NS NATRIXIVAR V,5: RVBCTRNRSt DOOLEA)I
EXTERNAL 776,

BEGIN (* In' tislization of gradients and Hessians of independent variables. C

X.HF:NRNULL;Y.HF :NUERULLj
C:'R'WHILM C - 'R' DO

BEGIN (C VALUE INITIALIZATION)

WRITELN(ENNTER XY')#READCX.F.Y.F)1
Ct-'Q'i WHNILE C - 'Q' DO

BEGIN (* 1AIN PROGRAM C)

(* Calculate function values and derivatives. Print values of
independent and dependent variables. C

F:-HEXP(-X+Y)-O. tr
G:-HEXP(-X-Y)-O. 1i

-19



WRXTL('(XY) - (',X.F, ° ,
WRITEILN('(F,G) - (',F.?,', ',G.F,)')

WRITELN('RISTART (R) OR ITERATE (Y/N)?');READ(C,C);

(* In response to "R", the program will ask for new initial values of
the independent variablesi an input of "Y" will result in one Halley
iteration being performed, while "N" will terminate the program and
return control to the operating system. Two characters are read,
since the first read from the console will always be a blank, the
second being the character entered by the user in response to the
prompt C.C *)

WHILE C - 'Y' DO

BEGIN (* HALLEY ITERATION C)

(C Construct Jacobian matrix JAC and right-hand side V of (2.2). C)

JAC[II :-V.DFJAC[2] :G.DFiV [I :-F.FV[2] :-GF;

(* Solve (2.2) for A. *)

NRSt -FALSE SOLVLN (DIN, JAC, M,V,A,NRS)

(* Construct the right-hand side V of (2.3). C)

LEIt :-P.HFAL [2] :-G.Hr*ApV:-LAI

(* Solve (2.3) for B. *)

NRS:-TRU SOLVN(DIM,JAC,M,VB,NRS)I

(C Compute the Halley correction V and update independent variables. C)

Vs-A*A/(A+O.SB)i
X.F:X.F+V[I] iY.FrtY.F+V[21

3ND# (C HALLEY ITERATION C)

ENDt (C MAIN PROGRAM C)

END ( VALUE INITIALIZATION C)

END.

- 20 -



APPENDIX B

Output of the program in Appendix A for the initial
valu s X.r " 4.3, Y.F - 2.0.

INITIAL VALUES

(X,Y) - ( 4.30000000000Z+00 , 2.000000000002+00)

(FG) - ( 2.588437230003-04 , -9.816369522303-02)

RESULTS OF ITERATION "UnR I

(XY) - ( 3.3361SS282463+00 , 1.035972419933+00)

(F,G) - ( 2.405118130003-04 , -8.737564889033-02)

RESULTS O ZTERATION WNBER 2

(X,Y) - ( 2.560818009373+00 , 2.596797949722-01)

(7,G) - ( 1.447925830003-04 , -4.042372200383-02)

RESULTS Of ITERATIOt ONUMER 3

(X.Y) - ( 2.308175634691+00 , 5.683785307003-03)
(FG) - ( 9.324796000003-06 , -1.121100995702-03)

RESULTS O ITERATION NUMBER 4

(XY) * ( 2.3025851S5193+00 , 6.120258000003-08)

(rG) - ( 3.00000000000-10 * -1.193960000003-08)

RWULTS OF ITERATION NUn=SE 5

(M.Y) - ( 2.302585092993+00 , 4.57643840C003-12)

(r,G) - ( 0.000000000003+00 , 0.00000000000E+00)

- 21 -



APPENDIX C

The program SYSTEST for testing correctness of
HESSIAN systems of equations.

The source code for this program is in the file SYSTEST.PROG.

PROGRAM SYSTEST(INPUT,OUTPUT)i

CONST DIM - #; (* Replace "#" by the dimension of the system tested..)

TYPE DINTYPE - I..DIM;
RVECTOR = ARRAY[DIMTYPEJOF REALI
RMATRIX - ARRAY(DIMTYPE]OF RVECTOR;
HESSIAN - RECORD F:REAL;DF: RVECTORtHF: RMATRIX END;

SYSTEM - ARRAY[DIMTYPE)OF HESSIANi

VAR X,F: SYSTEM;JAC: RMATRIX;I,J,K: DINTYPEiC: CHARs

PROCEDURE FCOMP(VAR X,F: SYSTEMIDIM: DIMTYPE);

( Insert source code for the operators, functions, and procedures required
for computation of the system being tested here, for example, the source code
for the operators (7.1) in the case of the system (6.4). Source code for
HESSIAN operators and functions is in the file HESS PAET. )

BEGIN (* SYSTEM DEFINITION *)

(* Insert code defining the system to be tested here, for example, the system
(6.4):

F[] :=16*(X[1]*4)+16*(X[2]*4)+X[3]*4-16i
F[2] :=X(11 *2+X [2] **2+X (3] **2-3;
F[31:X[1]*e3-X[2]; *)

END; (* SYSTEM DEFINITION ')

(* The following are standard Pascal-SC functions from MR PAKET: MRNULL
returns the zero matrix, and MRID returns the identity matrix. These are
used for initialization of the Hessian and gradient parts of the
independent variables, respectively. C)

- 22 -

la

-v o-'-,l,,,""



FUNCTION MRNIJlL: RHATRIXi
VAR I,J% D1ITYPE;

C. MNATRIX;
BEGIN

FOR Is-i TO DIM DO
FOR J.:I TO DIM DO
C(I,J] 1-01

MIIN=L C
END;

FUNCTION MRlD: MATRIX;
VAR I,J: DIKTYPE:

C: MATRIX;
BEGIN

FOR It-1 TO D1I4 DO
FOR J:-1 TO DIM4 DO

IF 1-J THEN C(I,J] :- I
ELSE C(I,J1 - Or

MRID :C
END;

BEGIN (*Initialization of gradient. and ilessiana of independent variables. '

JAC:OKRIDFOR 1:-1 TO DIM DO

BEGIN XII.a)F:-JAC(IIIXI.F:RULL

END;

C:''YIWHILS C - 'Y' DO

BEGIN (* MAIN PROGRAM C

(Cinput Portion *)

WRITEIM ( 'NTER INDEPENDENT VARIABLES *) I
FOR 1:01 TO DIN DO IIEAD(XII3.P),

(Calculation of function values and derivative.)

FCONP(X,F,DIN);WRITELN(' )

(Output Portion *)

FOR I:-1 To DIM DO
BEGIN WRITELN(FUNCTION VALUE:')i WRITELN('Fj',I:2.'3 ',EI.)

WRITEI(FIRST DERIVATIVESO')WiOR J:- I TO DIM DO
WRITELN('lDFE',I:2.']/DX(',j,' - '.FtI1.DrtjjU,
WRITZLM ( SBCOIID DERIVATIVES ' ) iFOR J:-1 TO DIM Do
FOR Kx-1 TO J DO
WRITELN('02F(',I:2.'1/DXV*,j:2,'IDX',K,2,'J ',F[I).HF(JKJ)

END; ( Output Portion *)

-23-

Fx- -- o



WRITELN(UDO YOU WANT TO ENTER MORE VALUES (Y/N)?')iRAl(C,C)

END; (* MAIN PROGRAM )

END.

EXAMPLE: Source code for the HESSIAN operators (7.1) for the system (6.4).

OPERATOR + (HAHB: HESSIAN) RES: HESSIAN;
VAR I,J: DIMTYPEIU: HESSIAN;
BEGIN U.F:11A.F+HB.FIFOR 1:-1 TO DIM DO

BEGIN U.DF[I] :-HA.DF(I]+HB.DFEIj;
FOR J:1l TO DIM DO

U.HFEIJ] :HA.HFI,J]+HB.Hr[I,Ji
END;

RES:-U
END;

OPERATOR - (H: HESSIAN;K: INTEGER) RES: HESSIAN;
VAR U: HESSIAN;
BEGIN U.F:-H.F-K;U.DF:H.DF;U.HF:-H.HF;

RES:-U
ENDI

OPERATOR - (HA,HBt HESSIAN) RES: HESSIANI
VAR I,J: DINTYPEIU: HESSIAN;

BEGIN O.F:-RA.P-HB.F;FOR 1:-l TO DIM Do

BEGIN U.DP[I]:-HA.DF(I]-HB.DFEIli
FOR J:1l TO DIM DO

U.HF(I,J] :HA.HF[I,J-HB.[IF[I,J]
ENDi

RZS:-U
END;

OPERATOR * (K: INTEGER;H: HESSIAN) RES: HESSIAN;
VAR I,J: DIMWtPE;U: HESSIAN;

BEGIN U.F:-X*H.F;FOR li:. TO DIM DO
BEGIN U.DFIII:-KH.DFEI;

FOR J:1l TO DIM DO

U.HF(I,J :-K*H.HF[I,J]
END;

RES :-U
END;

-24-

-V 'r.--7"k



OPERATOR ** (Rs RZALgls INTEGER) RESt MEALI
VAR Ls INTEGZRU% REAL
BEGIN IF K <- 0 THEN U: I/Ri

IF (K - 0) OR (R - i) TRWd Utu1
31.33 IF K - I THEM Us-R

MAN EGIN11 Ls-A38(K)?Us,1,RZPZKT IF L MOD 2 -I
THEN Ui-*UgLt- L DIV 21 IF L <> 0
THEN Rt-R*R UNTIL L a Os

IF X < 0 THEM Ut-l/U

ZDi

OPERATOR ** (Ho RESSIM;K INrWMR) RES: RRSSIANj
VAR 1.3. DInYPU,NDsR3ALlUt HESSIAN;
BEGIN

IF K - 0 THEM
BEGIN IF R.Fr - 0 THEN

BEGIN WRITXIM( 'ZXPON3NTIATIO4 EROR 0**O' ) SVR(0)
EDD

WA83 BEGIN U.F%-lFOR Ital TO DIM Do
BEGIN U.DFtII]..0rFOR 3z-1 TO DIN DO U.EF(I,Jlt-O

EEND

ELSE IF K -I THEN Ut-H
3L83 IF K - 2 THEN

BEGIN ti.FS-H.F*U.FNsm2lt.FFOR hftl TO 0DIM DO
BEGIN U.DFC(IIU-NH.DFCjjFrOR 31-1 TO I DO

BEGIN U.NFtI.3],44H.PII,J+2*1.Dlh14i1.DPEJ1;
IF I Ol J THEN U.Hrt3,ri,wu.F(I,31

IND
31.3 BEGIN s..(2)N.FN;Fw3pg

NKK*g#Mtm*(K-l)t*i;pOR Is-I TO Din DO
BEGIN U.DFII1:E'NH.DrlxllpoR Jt-1 To I DO

BEGI u.HFEi,31:uWB.HFI,1.Itu*H.DF[ri*e1.DrFJI
IF 1 0, 3 THEM U.BF(J,IIIIS.IFcr,j1

DD

ZNND;

-25-



APPENDIX D

Typical output of the program SYSTEST.

Values computed for the system (6.4) with X111 X[2] X 13) 1. 0.

FUNCTION VALUE:
FE 1] - 1.70000000000Z+01
FIRST DERIVATIVES:
DFE 1]/DX[ 1] - 6.40000000000E+01
DFE 1j/Dx( 21 - 6.400000000003+01
DFE 1]/OxE 3] - 4.OOOOOOOOOOOE+00
SECOND DERIVATIVES:
D2F[ 11/bXE 1]DX( 1] - 1.92000000000z+02
D2F[ 1]/DX[ 2jDX[ 1] - O.OOOOOOOOOOOE+0O
D2FE 11/DIE 2]DX[ 2] - 1.92000000000E+02
D2F[ 11/DXE 31011 1] - O.00000000000E400
D2F[ 11/DIE 3]DX[ 21 - 0.00000000000z+00
D2FE 11/IDIE 3]DX[ 31 - 1.200000000004'01
FUNCTION VALUE:
FE 2] - 0.00000000000E+00
FIRST DERIVATIVES:
DF[ 21/DIE 11 - 2.OOOOOOOOOOOE+0O
DFE 21/DXE 21 - 2.OOOOOOOOOOOE+00
DFE 21/DIE 3] - 2.OOOOOOOOOOOE+O0
SECOND DERIVATIVES-
D2FE 21/DIE IIOX[ 1] - 2.00000000000E400
D2F[ 21/DIE 2]DXE 1] - 0.OOOOOOOOOOOu+0O
D2FE 21/DI 2]DXE 2] - 2.00000000000E+00
D2F[ 21/DI 31DXE 1] - 0.OOOOOOOOOOOE+OO
D2FE 21/DIE 3101! 21 - 0.00000000000E+00
D2F[ 21/DIE 3]DXE 3] - 2.00000000000c+00
FUNCTION VALUE:
FE 31 - 0.OOOOOOOOOOOE+oo

FIRST DERIVATIVES:
DFE 31/IDIE 1] - 3.O0000000)OOOE+0
DFE 31/DIE 2] - -1.00000000000E+00
DPE 31/DIE 3] - 0.00000000000Z+00
SECOND DERIVATIVES:
D2FE 31/DIE 11011 1] - 6.OOOOOOOOOOOE+00
D2FE 31/DIE 2101! 11 - 0.OOOOOOOOOOOE+00
D2FE 31/DIE 2IDXE 2] - 0.OOOOOOOOOOOE.00
D2F[ 31/IDIE 3]DX[ 1] - 0.00000000000Z+00
D2FE 31/DIE 3IDXE 21 - 0.000000000009+00
D2F[ 31/DIE 31DXE 3) - O.OOOOOOOOOOOE+00

-26-

L ' wo



APPENDIX 2

The Pascal-SC program EALSYS for the solution of
systems of equations by Halley's method.

Source code for this program is contained in the file NAI.SYS.PROG.

PROGRAM HALSYS (1INPUTf,OUTPUT)i

COt4ST DIM - #1 (* Replace 1# by the dimension of the system to be solved.)

TYPE DINTYPE - 1..DIMI
RVECTOR - ARRAY EDIWIYYPEIOV RE1ALr
RMATRIX - ARRAY (OINTYPEIOF RV8CTORj
HIESSIAN - RECORD F:REALIDF: RVZCTORgR~t M4ATRIX ZNDi
SYSTEM - ARRAY EDINTYPEIOF HEBSlANI

VAR Is DIMTYPEIX,?: SYSTEMiC: CHAR, A,B,V: RVECTORiJAC,LM: RATRIXI
NR: DOOLEAM I

OPERATOR + (A,B: RVECTOR) RES: RVECTORI
VAR Is DII4TYPE;
BEGIN FOR 1:-1 TO DIM DO All] :o AEII+B(Ili

RES s- A
END:

OPERATOR * (As REAL: B: RYNCTOR) RZS: RVECTORs
VAR 1: DIW1TYVE:
BEGIN FOR 1:-1 TO DIM4 DO DCII t- A3![II:

RES Is~
ENDI

OPERATOR *(A: RHATRIXi Bt RYNCTOR) RESS RVxCTOR:
VAR It DIWYPZ1

BVAR: RYICTORI

BEGIN

BVAR :B;
FOR 1:-1 TO DIM DO

Bill s- SCALP (A(II,BVAR,O),
RES 9
END)

OPERATOR *CADB: RYNCTOR) RU:t RYUCTOR:
VAR Is DIMTYPEiCt RVZ CTO RP

BEGIN FOR I3-t TO DIN 00 C[Il1-AtI
4
'D[Il$

-27-



OPERATOR / (AwB: RVECTOR) RES: RVECTOR;
VAR 1: DINTYPEIC: RVECTORi
BEGIN FOR I:- 1 TO DIM 0O

IF (AiI]-0) AND (BEI]=0) THEN C1I1:-0
ELSE C[I]s-zA[I]/B[I

RESt-C
END;

FUNCTION 4RID: RHATRIXI (* Returns the identity matrix C)

VAR IJ: DIMTYPEi

C: RHATRIXi
BEGIN
FOR I:-1 TO DIM DO
FOR J:-1 TO DIM DO

IF 1-J THEN Ccr,J] : 1
ELSE C!I,JJ :- 0;

MRID :- C
ENDi

FUNCTION MRNULL: RMATRIX ( Returns the zero matrix C)

VAR I,J: DIMTYPEI

C: RMATRIXi

BEGIN
FOR 1:1 TO DIM DO
FOR J:-1 TO DIM DO
C[I,J) $- 01

MHRNULL : C
ENDi

PROCEDURE SOLVLN(DIM:INTEGER;JAC,M:RNATRIX;V,StRVECTORiNRS:BOOLEAN)I
EXTERNAL 7761

PROCEDURE FCONP(VAR XF: SYSTEMIDIM: DIMTYPE)j
EXTERNAL 7771

BEGIN (* Initialization of gradients and Hessians of independent variables. )

L:91R1DiOR I:-1 TO DIM DO

BEGIN X[I.DF:-IIJ;X[I].HF:-MRNULL
END;
Cs'R';WHILZ C - 'R' DO

BEGIN (* VALUE INITIALIZATION C)

WRITEUI ( 'ENTER INDEPENDENT VARIABLES' );
FOR Is-1 TO DIM DO READ(X[I].F;

Ct-'Q'; WHILE C" 'Q' DO

- 28 -

L



33GZO ( MAIN PROGRAM

(* Compute function values and derivativem, print values of independent
and dependent variables.

PCONP(X,P,OIm)u

FOR I:-1 To DIN DO
BNGIM WRZTNLN('XC',lt2,') -',X[I).r,l F[',I:2,'] - ,FrI].F),
RHD;

WRIIELWVRESTART (R) OR ITERMT (Y/W)?')l

READ(C,C)IgNLE C - 'Y' DO

32G1W (* HALEI ITIBRATION C

FOR It-1 TO DIN DO
BIN JAC[Ih1-(I1.DP, (*C BIA MkTRIX a

v(xJt--r(xI-ri (* RIGHT HAND SIDE *
ENDI

(* Solve for A.)

NRB:-FAL3,SOLVLN(DIM,JACM.VA,NRS)i

(*C ompute B. *)

FOR 1:-i TO DIN DO LEI1:-1(I1.HFCAjV:-LCAi
URSa TRUESOLVUI(DINJAC. N, V,BNRS )

(Compute the Halley correction and update independent variables.)

Vi-A&/(AO.5*9);IFOR Ia-I TOXDIN Do XCIJ.P:-X(Z].l+V[II,

Mot; (* WALLET ITERATION *

MD; (* MIN PRGA C)

=0 (CVALE INITIALISATION

MD.

-29-

aA* I-

Aa N. "



APPENDIX F

Results of the Solution of the System (6.3) by
the Program ,ALSYS.

INITIAL VALUES

X[ 1] - 1.00000000000E+00 F( I] - 1.700000000003+01
X( 2] - 1.00000000000z+00 Ft 2] - 0.000000000003+00
X[ 3] - 1.00000000000z+00 FC 3] - 0.000000000003+00

RESULTS OF ITERATION NUMBER 1

X[ 1] - 8.91118701964Z-01 F[ 1] - 9.37521623100E-01
X[ 2] - 7.05429341548X-01 F1 2] - -9.44922445000Z-03
X[ 31 - 1.30339083879+00 F( 3) - 2.201372818009-03

RESULTS OF ITERATION NUMBER 2

X[ 1] - 8.77982528233E-01 F[ 11 - 1.036856800003-03
x[ 2] - 6.76786689302z-01 Fr 2] - -9.09324000000E-06
X( 3] - 1.33082582033E+00 Fr 3) - 9.057385000009-06

RESULTS OF ITERATION NUMBER 3

Xt 1] - 8.779657602753-01 Fr 1) - 1.00000000000E-10
X[ 2] - 6.767569705193-01 F[ 2] - 0.000000000003+00
X[ 31 - 1.33085541162Z+00 F1 3] - 0.OOOOOOOOOOOE+00

RESULTS OF ITERATION NUMBER 4

X[ 1] - 8.779657602743-01 F 1] - 0.000 00000002+00
X[ 2] - 6.767569705163-01 F1 23 - 0.000000000003+00
X1 3] - 1.330855411623+00 F( 3] - 2.000000000003-12

RESULTS OF ITERATION NUMBER 5

X1 1] - 8.779657602743-01 F[ 1] - 0.00000000000Z+00
X[ 2] - 6.76756970517E-01 FC 2] - 0.00000000000+00

xc 3] - 1.330855411622+00 Fr 3] - 1.000000000003-12

RESULTS OF ITERATION NUMBER 6

X1 1) - 8.77965760274Z-01 F[ 1] - 0.000000000003+00
X1 2] - 6.767569705183-01 F[ 2] - 0.000000000009+00
Xf 31 - 1.330855411623+00 F( 31 - 0.O0000000000O+0

- 30 -

I



SECURITY CLASSIFICATION OF THIS PACE (Who. Date Entoeed'

REPRT OCUENATIN PGEREAD DIITUCT[ONSREPOR DOCMENTTIONPAGEBEFORE COMPLE7=43 roRM
I. EPRTNU.E GOVT ACCESSION NO: .RCPET'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

OOMPUTATIONAL IMPLEMENTATION OF THE MULTIVARIATE Summary Report - no specific
HALLEY METHOD FOR SOLVING NONLINEAR SYSTEMS OF reporting period
EQUATIONS T.-PERFORMING ORG. REPORT NUMBER

7. AUTHOR(@) It. CONTRACT OR GRANT NUMUER(a)

Annie A. M. Cuyt and L. B. Rail DAAG29-80-C-0041

9. PERFORMING ORGANIZATION NAME AND ADDRESS 0.- PRO GRAM ELEMENT. PROJECT. TASK
Mathematics Research Center, University of AREA & WORK UNIT NUMBERS

610 Walnut Street Wisconsin NWrUia Nalyeris
Madison, Wisconsin 53706 Numerical____Analysis_

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office February 1983
P.O. Box 12 211 13. NUMMER OF PAGES

Research Triangle Park, North Carolina 27709 30
4.MONITORING AGENCY N4AME & AODRESS(if differet fro Controlling Office) IS. SECURITY CLASS. (of ins. report)

UNCLASSIFIED
S.. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repors)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ofthlim abstract enterd in Block 20, it diffhrent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It necessar and #done#&y by bMack number)
Nonlinear systems of equations, Halley's method, automatic differentiation,
type HESSIAN, Pascal-SC

0.ABSTRACT (Cwo n m reverse side It necesary~ mud Identify 6? bWoek mthe)

Halley's method for the solution of systems of equations is an iterative pro-
cedure which converges cubically under favorable conditions. The multivariate
version requires the solution of two linear systems of equations with the same
coefficient matrix, following which the correction vector is computed using com-
pentwise multiplication and division of vectors. This report describes a gen-
-ral-purpose computer program which implements this method. The necessary first
and second derivatives are obtained by automatic differentiation, so the user
need only suppy code defining the functions appearing in the system of equations.1

DD I JA 473 EDITION OF I NOV 65 IS OBSOLETE UCASFE
SECURITY CLASSIPICATION OFl THIS PAGE (Fl=. "D fta.

Rq -J~ low

* a ~AP



ABSTRACT (continued)

The program is written in Pascal-SC, using the new data type HESSIAN to represent
dependent and independent variables. Numerical examples are given for two simple
systems of equations to illustrate the use of the program and the effectiveness of
the method.

AwJ-



ILMEI


