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ABSTRACT

Recently the authors showed the convergence of a class of vortex methods

for incompressible, inviscid flow in two or three space dimensions. These

methods are based on the fact that the velocity can be determined from the

vorticity by a singular integral. The accuracy of the method depends on

replacing the integral kernel with a smooth approximation. The purpose of

this note is to construct smooth kernels of arbitrary order of accuracy which

are given by simple, explicit formulas.
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SIGNIFZCANCE AND EIPANXTION

Vortex methods simulate incompressible, inviscid flow by a system of

ordinary differential equations for the paths of representative particles in

the fluid. They have the advantage that the computational elements are auto-

matically concentrated in the region of vorticity and errors like the

numerical diffusion of difference methods are avoided. The use of modified

velocity kernels ensures the accuracy and stability of the method. Explicit

formulas for these kernels make it possible to implement this method as

Sdirectly and efficiently as if no smoothing were used.

I

The responsibility for the wording and views expressed in this descriptive
sumary lies with KRC, and not with the authors of this report.
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EXPLICIT SMOOTH VELOCITY KERNELS FOR VORTEX METHODS

J. T. Beale and A. J. Majda

Recently the authors proved the convergence of a class of vortex methods

for the simulation of incompressible, inviscid flow in two or three space

dimensions without boundaries (see [1,2]). The principle of such methods is

to reduce the calculation of the flow to a system of ordinary differential

equations for the paths of representative particles. The velocity field is

given by the convolution of a singular kernel with the vorticity

distribution. In the class of methods treated, the stability and

discretization error are controlled by a distortion of the nearby interaction

of the particles. This is accomplished by convolving the integral kernel with

a smooth approximation to the delta function. The choice of this function

determines the order of accuracy of the method for smooth flows. The purpose

of this note is to produce a class of functions which lead to smooth kernels

given by simple, explicit formulas. With these choices, the method can be

implemented with essentially no more effort than would be necessary if the

original kernel were used. In each case treated here, kernels of high order

accuracy are obtained easily from ones of low order by scaling or other

modification.

A general description of various vortex methods in use can be found in

the survey article of Leonard (6]. A summary of theoretical results is

contained in (7], and complete proofs are given in (1,2,51. Numerical
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experiments of Hold and Del Prete [4) for two-dimensional methods as in [2]

are in general agreement with the predictions of the convergence results, and

further experiments, including tests of higher order accuracy, are currently

under way. A three-dimensional method similar to that of (1), but with

significant differences, has boon used by Chorin [3].

Vortex methods are based on the fact that, for incompressible flow, the

velocity is determined from the vorticity by a convolution,

U(Ztt) - (K*W)(ZSt) f K(z-z')(z',t)dz' . (1)

(We will use notation consistent with [1,2]. This formula is interpreted

differently in two or three dimensionsi see below.) In the methods of [1,2],

as in earlier work, the velocity kernel K is replaced by

K5 -K * 6 *6(Z) - *"4(z/S) . (2)

Here N - 2 or 3 is the space dimension and 5 is a parameter to be chosen

in conjunction with the linear spacing h of the particles introduced at time

zero. The smoothing of the kernel by the function * can be interpreted as

the approximation of the vorticity distribution by a sum of "blobs" of

prescribed shape (see (5] or [7]).

We will choose the function # subject to the conditions

(i) * is smooth and rapidly decreasing, i.e.,

ID 0z) I C cOj(I + Izl 21) j

for every multi-index B and every integer J;

(ii) f *(z)d - 1,

(iii) f zo*(s)dNz - 0, 1 4 101 4 p-1 ,

where p is an integer.

The results of [1,21 imply that vortex methods satisfying (i) - (iii)

converge provided the relation between 6 and h is properly chosen. If

- hq , q any fixed number with 0 < q < 1, the error is of the order of

-2-
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8
P - hpq, i.e. the method is essentially pth order. Our object here is to

choose # so that K has a simple expression consistent with these

requirements. As we shall see, choices of * with p - 2 easily lead to

choices with p , 4.

Condition (i) implies that the Fourier transform of , as well as

itself, is smooth and rapidly decreasing. We will always take # 4,(r), r -

IzI. In this case (iii) holds by symmetry for 1B odd, so that p may be

assumed even. For radial #, (iii) is always satisfied with p - 2. This

set of conditions is more stringent than those in the general theory of [1,2].

(In the earlier language we are assuming # to be in the class Fe S

The condition i) can be relaxed somewhat to allow a # which is not very

smooth at z - 0. Indeed, our simplest choice in three dimensions has this

property. With a weaker condition replacing i), a similar converqence result

holds, but q is restricted to an interval 0 < q < q0  for some q < 1.

(See [I] for precise statements.)

Two-dimensional Flows

In the 2-D case the vorticity is the scalar function w = u2  - u1 .2,x ,y

The distinguishing property of two-dimensional flows is that the vorticity is

conserved along particle paths:

wt + u VwO . (3)

Suppose an initial velocity field is prescribed with vorticity W nonzero

only within a bounded set. To simulate the flow, we cover this set with a

square grid of size h and introduce a particle at the center of each

square. We take the coordinates of a typical particle to be ih, where i

ilri 2 ) is a pair of integers; the ith particle is assigned the vorticity

w, - w0 (ih). To compute approximate paths of the particles, we discretize

(1), with K replaced by K6, remembering (3), and arrive at the system of

-3-
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ordinary differential equations

~ j K6( i i i( (4)

The area-preserving property of incompressible flow is used implicitly here.

Once the zi's have been determined, an expression for the veloc

be obtained by setting

-h 2u (z,t) -j K,(z-z )w h

To apply this method it is best to have an explicit formula for K8 .

If G is the Green's function for -V, G(z) = -(2w) "I log r, then with z

(x,y)

K(z) = (, - )G (-yx)
y 2wr2

2

A natural choice of # is the Gaussian * (2)(r) e- r /w. The necessary

conditions (i) - (iii) are satisfied with p 2. If K - K then

Ka = (yI -ax)G 8  , G G* (5)

Since * is radial, Ga is also, and

V2 G = V2 (G * *8) - - 4 or

1D (rDG -r
r r r - r82

after integration we have

22r
D G n (er -1)r8 2r

The constant of integration is determined by the fact that G 6 must be

smooth. The corresponding velocity kernel K8 may now be found from (5):

K (2) ) x (1 - e-r )

2wr 2

-4-
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The superscript (2) has been inserted to indicate the order of the kernel.

Next we will obtain a fourth order kernel by choosing ' - (4) as a

combination of two Gaussians with different scalings,

(4) r) ( (r) + c C2(2)(r/a)

where a is arbitrary except that a 10 1. To satisfy condition (ii) we must

have

c 1 +a 2c2

This leaves us with one constraint to impose moment conditions. Because of

symmetry, condition (iii) will hold with p - 4 provided

f C(4r)r2 * rdr 0

This in turn holds if

+ a4c2inO

and the two equations determine * (4) in terms of a. We can now find K(4 )

just as in the previous case:

2 (4 ( =2 2 c a 2 -r2 2
2wr2

For example, the choice a2 . 2 leads to

4)(Z) - (-,X 0 - 2e - r 2/ + e-r 2 / 2 6 2

2wr 2

( C-Y.x) 0 - -r 2/262)M + 2 - r 2 / 2 62K2

2wr
2

It should be clear that higher order kernels can be constructed by adding

further terms with Gaussians of different scalings in the expression for

D A typical sixth order kernel is

K6 () (S) -r 2/ 2 + 2 e-r2/2 2 1 -r 2/462  .

.. ( )2 2wr

-5-.
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Of course, care must be taken in evaluating any version for r small, since

the factor due to the smoothing vanishes at z - 0.

Even simpler high order kernels can be obtained by choosing *~ in the

-r2form 0(r) - P(r)-e ,where P is a polynomial in even powers of r. Then

as in the argument above

rDr G 8(r) - -8-2 f rP(r/)er /62dr

M (2w)- {Q(r/8)e r /S _ Q(0)I

where Q is another even polynomial of the same degree. For condition (ii)

to hold we must have rD rG a(r) + -1/2V as r + -, so that QCO) 1 .

Finally

D G (z) - Iw (Q(r/6)e -r 2 1)6

and according to (5),

K a(z) -K(z)(1 - Q(r/6)e-r2/6

To satisfy the moment conditions (iii) we need to have

1o r jPr~- r dr -0, 1 4j 4(p-2)/2

or after integrating by parts,

r~ r2j lQ(r ),edr =- 0

The moment conditions are thus reduced to linear equations for the

coefficients of Q. With p - 4 we find Q(r) 1-r 2 0 corresponding to

the fourth order kernel

K (4 (Z) 2 (1.) I+ (-1 + r /o)el6
a ~ 2wr2

For order p a polynomial of degree p -2 is sufficient. For example,

with p - 6 we have

K ()(z) -K(z){1 Q(r/8)er 2 )6
a

with .Q(r) -1 +2r r/2.
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Three-dimensional flows

In the three-dimensional case the vorticity w - VM is a vector

quantity, and the velocity is expressed in the form (1) by the Diot-Savart

Law. We will approximate the particle paths by an analogue of (4), but now

the vorticity must be updated as well as the position, A natural way to do

this is to use the direct generalization of (3)

Wt + U 0 VN - W V ;

this is essentially the method used by Chorin [3). However, the derivative on

the right must be computed by differences based on the current particle

locations, which already contain errors. To avoid this difficulty, we use

instead a Lagrangian expression for the vorticity evolution due to Cauchy.

Let a be the Lagrangian position and t : a z the coordinate mapping

induced by the flow. Then

(z,t) - vt(a) W.(a)

where w0  is the initial vorticity and z - *t(a). Thus the vorticity is

carried along particle paths but distorted by the Jacobian matrix of the

flow. Differentiating in t, with a fixed, we have

(zt) - Vau(z,t) • w0(a)

with a Lagrangian, rather than Zulerian, gradient of the velocity. This

derivative can easily be implemented by a difference operator on the initial

grid. We are thus led to the following method: given current values of

(zj), G j , we can compute

-h 3u (Z.t) ( - a (t))w (.h

The updates are then defined by the system of ordinary differential equations

, -h -
;i u (i a (0) - ih

4t_,oh * w (ih), wi(O) -h)' ,j.... . " m- "?"ih

"" -7
5. ----------



where Vh is an anti-syometric difference operator whose order is at least

the intended order of accuracy. (See [1 for more details.)

The three-dimensional realization of (1) is

u - K * w - Vx(G * W) ,

where G is the Green's function for -2, G - 1/4r, and the convolution is

componentwise. As before we set G - G and K K It is easy

to see that

(K * w)(z) f- (Ior -z Zz' x W(z')dz

or more briefly

K (z) M-G ol zXaTz)"--F (II) -

Thus K8  will have a simple expression provided aG6 /r does so.

In this case it is less clear how to choose * than in the two-

dimensional case, and it is best to proceed in the opposite direction from

before. For simplicity we assume at first that 8 - 1. We suppose that

Or 24 WY

with f to be determinedi this form is convenient since we expect

G1/ar 3G/3r - -1/4wr as r + 0. Then

- G r VG1 r D{r2DrG I

so that

*(r) - r (6)

We can now list the conditions which must be satisfied by f so that

conditions (i) - (iii) hold for #. Since * should be smooth we require

(CI) f'(r) is a smooth function of r2

(C2) f(r) - 0(r3) as r + 0.

It is easily seen that the total weight of I is f(-), and our last

condition is therefore

"t.p-



(C3) f(r) + 1 as r + m, and f is rapidly decreasing.

If (c) - (c3) hold, then *, defined by (6), satisfies (i) - (iii) with

p = 2. Two choices of f meeting our requirements are

f(r) _ 1 - e-r 3 , f(r) - tanh r3

-r2

corresponding to *(r) - (3/4w)e- r  and *Cr) - (3/4w)sech2 r 3 , respectively.

The first choice is simpler and is analogous to the Gaussian function in two

dimensions. Actually, in this case (Cl) does not hold in the strictest sense

at the origin because f(r) has terms r6  and higher in the Taylor

expansion. However, the general theory of [1,2] applies to this choice, and

we do not expect the difference to be significant in practice. Having

chosen f, we define from (2) and reverse our steps to find

3G6 f(r/6)
ar 4wr2

so that

K6(z) - --- f(r/6)z x
4wr 3

The kernels just constructed are second order accurate with respect to

6. If f' is arbitrarily smooth, as is true for f(r) - tanh r3 , then we

have convergence with 6 - hq , q - 1-C, and the errors are essentially second

order in h as well. For the "cubic Gaussian", the results of [1] require

q < 5/8, so that the order of convergence in h is 5/4 - e. (See Theorem I

in [1] and the remarks following Theorem 2; the number M is 6 in this

case. The predicted order of convergence is not sharp and can be improved at

least to 3/2 - e.)

To obtain kernels with p - 4 we can combine two different scalings as

before. Let (4) (r) - c1 (r) + c2 *(r/a), where * is one of the two

choices specified above. The conditions that (4) have weight one and

-9-



satisfy the second order moment conditions lead to the equations

3
c +ac 

5
c 1 +ac 2O

Again reversing the steps we have

46 Cr) - I (c f'(r/6) + c2a 2f'(r/a6))
4wr 2 6

(r) - I (c f(r/6) + c2a3 f(r/a61}
Tr 42 124wr

K6 I 13 1 (c If(r/6) + c 2 a 3 f(r/ad)}zx
4wr

For example, with f(r) 1-e - r 3  or tanh r3  it would be convenient to

choose a-3  2. In the first case this gives

K6 (z) = - 1 { - clI e - c-2r 3 / 3 z x

4wr

so that only one exponentiation is necessary.

An alternative method can be used to produce kernels of fourth order in

6 from the ones of second order already obtained. Suppose a function f(r)

has been found as above meeting conditions (C1) - (C3). We will choose

f4(r) - c1f(r) + c2rf'(r) (7)

with appropriate constants and check that the corresponding kernel

K (4 z) - - I- f (r/6)zx4 
a 4wr34

is fourth order.

If f satisfies (C1) and (C2), then f4  does also, and (C3) will hold

provided c1 - 1. We need to impose the moment condition (iii) with

101 - 2. The correspondence between f4  and *(4) is given by (6), and we

can convert the condition on (4) to a similar one for f4:

-10-
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0- 4w j0 *(r)r 2 dr " 'j f (r)r dr

fo g4(r) r dr - -2 J' g4 (r) r dr

where g4 (r) f4 (r) - 1, so that g4 (m) - 0. If we now substitute from (7)

with f - I + g and c 1 - 1, our condition becomes

0 = r0 {g(r)r + c2g'(r)r 2}dr

- I - 2c 2 )0 g(r)r d

after integrating by parts. This holds if c2  I and therefore the choice

f4 (r) - f(r) + -1 rf (r)2

satisfies all our requirements.

We can apply this result directly to the two choices of f made above.

If f(r) 1 - -r3 , then
f (r) - I+ (-I + 3 r 3 *-r 

3 .

3 -

For f(r) tanh r3 , we have
3 33 23

f (r) - tanh r
3 + I r sech2 r

4 2

or

+ 3 2)3
f4 (r) - T +2r( - T), T tanh r

Again, either of these two methods can be extended to produce higher

order kernels. Similar arguments could be used in the 2-D case and would

lead to the Gaussian kernels found before and additional ones as well.

Although convergence proofs for vortex methods have been given only in the

circumstances of [1,2,51, the smooth kernels obtained here could be applied to

other versions of these methods, for example the three-dimensional method of

(3]. It should be noted, however, that for a vorticity distribution on a set

of lower dimension, such as an interface between two potential flows, the

formulas for modified kernels are somewhat different. Of course, optimal

choices of the parameters will have to be determined through detailed

numerical experiments.
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