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ABSTRACT

In recent years there has been a great increase in the

use of indentation techniques for testing and measuring

mechanical properties of materials. The method has many

practical advantages, but the interpretation of results for

hard brittle materials relies heavily on the classical Hertzian

theory of contact between elastic bodies. In particular, the

theory provides formulae for the stress fields when a rigid

spherical indenter is pressed on the flat surface of an

elastic body.

This theory is not exact, and since it is so widely used

the present study was undertaken to form an estimate of the

errors involved. The intention was to find a more accurate

solution to the problem, and to compare this with the Hertzian

approximation in various cases.

The method offered in the original proposal was a novel

* .. one, involving the use of certain elastic singularities or

nuclei of strain, which had been developed for some previous

work on defects. However, after a promising start this method

was regretfully abandoned, since the complications increased

faster than the accuracy.

A second method has been devised, which is much more

successful. Keeping the Hertz solution as the dominant one, a

second slightly different elastic solution has been added to it

as a correction. The magnitude of the correction is small for

light contact, and increases with the contact area for each

value of the sphere radius.



Some values have been calculated and there are many

more to be done before a reliable correction can be offered

*in every case.

It is expected that this will provide a simple and

useful check on the magnitude of errors introduced by the

Hertz formulae in interpreting experimental results.
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1. INTRODUCTION

The theoretical investigation of the classical Hertzian

theory, as applied to the indentation of a flat elastic

specimen by a rigid sphere, has been extremely rewarding.

A number of unexpected and significant results have been

obtained, and estimates made of the magnitude of probable

errors in various cases. A descriptive account of the work

is given in this report, with reference to more detailed

mathematical analysis which will follow later, with

further results.

i.
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2. ERRORS IN THE HERTZ SOLUTION

The Hertzian theory states that the normal stress

between sphere and specimen is distributed over the contact

area as:

. ""'" P (a 2  2  (: ! z 2 3
2ara3

where P is the applied load, p, z are cylindrical coordinates

as in fig.l, and a is the radius of the circle of contact.

There is no normal stress outside this circle, and the

entire surface is free of applied shears.

For such a pressure, elastic theory shows that the

normal displacement, w, of the plane surface is given by:

w 3 P (1 - (2 2- 2 (2)
16 Ga a

in the contact area. Here G is the shear modulus and v

Poissons ratio. An axial section of the indented surface

is therefore a parabola for the distribution of pressure

(1). The radius of the sphere, R, and the minimum radius of

- curvature of the parabola, is given by:

1 3 P (1-Y)
R 8 G a 3

But the curvature of a parabola is not constant, and this is

the main source of error involved in the use of Hertzian

theory. It leads always to a logical contradiction near the

contact edge, since pressure is assumed between sphere and

specimen there, although they are not coincident.
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The magnitude of the gap, for v = 1/4, is

6 = a4/8R3

This means that for moderate contact, a/R = 0.2 say, and a

sphere of 1mm radius, the gap is 0.2um. For smaller contact,

a/R = 0.1, the same gap appears if the sphere radius is 16mm.

A 1mm sphere under higher load, a/R = 0.5 say, gives a gap

of nearly Bum.

This gap may seem small, but it does indicate that the

true pressure distribution for spherical indentation must

differ from eqn. (1). This is unfortunate, since the

Hertzian elastic field is one of the very few for which

complete analytic solutions are known*, and has therefore

been used extensively. Attempts to correct the error lead

immediately to difficulties, because the simple form of the

solution is lost. Any slight alteration of the pressure,

as for example a reduction near p = a in an attempt to lessen

the gap, affects the displacement w at all points of the

surface, and so the complications increase. For this reason

a completely new and different approach was made, to find a

new analytic solution for spherical contact.

* Love, A.E.H., (1929) Phil. Trans. Roy. Soc. A228,377.
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3. NEW SOLUTIONS FROM NUCLEI OF STRAIN

* .. The new method used the fields of known elastic

singularities, or nuclei of strain, situated outside the

elastic specimen on the negative z axis, and therefore

causing only smooth and continuous distortions at the

surface. The singularities included the point force,

double force, centre of pressure, line integral of the

latter and derivatives of all these with respect to z.

Some months of work were spent devising solutions from these

singularities, combining them in various proportions to give

different displacements and loads.

The method seemed very good at first, and various

smoothly curving indentations were formed, with surface

distributions of pressure or shear which decreased rapidly

to zero at large distances.

-.9 But unfortunately this method failed in the end, because

the required accuracy could not be achieved without using a

large number of singularities. The initial simplicity was

lost before the hoped-for improvements were gained, and so

it was decided to return to the more orthodox Boussinesq

approach.

The principal benefits from the first approach were the

setting up of numerous valuable stress fields for future use,

and an increased understanding of the indentation fields. In

particular the relations governing shear stresses on the

surface have become much clearer, and it is hoped to write a

full account of these later.
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4. BACK TO BOUSSINESQ

*' A fresh start was then made from the theorems of

Boussinesq*. He has investigated various forms of surface

pressure with axial symmetry, and found solutions in terms

of two harmonic functions. This is in agreement with

Neuber's** Three Function Theorem, since axial symmetry

reduces the number to two.

If the shear stresses are to vanish on the surface,

the two functions reduce to one only, * say, and the stress

and displacement components can be completely expressed in

terms of * and its derivatives. This is clearly a great

advantage when * takes a reasonably simple analytic form,

as in the case of the Hertzian distribution (1). But for

most cases p is not known, and Boussinesq could discuss only

the surface displacements, not the complete field.

Another simple pressure distribution is the parabolic

one,

2 P (a2 _ 2 (3)

r a

(Boussinesq loc. cit. p.150). Like the Hertzian form (1)

this pressure vanishes at the edge of contact, and therefore,

as demonstrated by Love, the displacements and stresses are

smooth and continuous there.

* Boussinesq, M.J. 1885. Mem. Soc. Sci. Agric. Lille, 13, 99.

S* Neuber, H. 1937, Kerbspannungslehre. Berlin, Springer.
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Boussinesq did not find the stress field for this case,

but his formulae give the displacement of the surface

z = 0 as:

W 8 P (1- v) [ 2(2 - k2 ) E - (1 - k2 ) K ( (4)
9 2 B

where k = p2 /a 2 , and E and K are complete elliptic functions

of the argument k2

This displacement (4), like (2), gives a rough approx-

imation to a spherical indentation if a/R is small, but

diverges from the sphere even more rapidly. It then provides

a useful method of correction, since in linear elasticity

separate solutions may be added in any proportions to give

another solution. The faults in the parabolic case being

greater than those in the Hertz solution, the former is

subtracted from the latter to provide improvement. It is to

be expected that the modified field would be mainly Hertzian,

combined with a small negative parabolic pressure (3).

For a given total load P we therefore assume that it is

distributed in the forms (1) and (3) in proportions 1 + d: -d,

7". where d is a positive number (or zero if the system is purely

Hertzian). Then d is determined so as to give the best

possible fit of the surface to the sphere for each value of

*" a/R.

This approach has proved very successful, although it

has taken some time to find the best methods of fitting and

evaluating.
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The first attempts, trying to match the curvature of

the surface to that of the sphere, were not a success.

'.

Small variations in displacement cause too large errors in

* the second derivative or curvature, and some approximative

methods therefore diverged. Moreover the second derivative

of w is discontinuous at p =a, the surface changing there

from concave to convex.

* However, a satisfactory method has been found, based

on the displacements themselves, both w and up (the radial

displacement).I1.
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5. THE METHOD OF FITTING

From the known elastic fields of the pressure

distributions (1), (Hertz) and (3) (parabolic) the displaced

form of the surface may be calculated. A material point

initially at the point (p, 0) is displaced to the position

(p + up, w) where up and w are composed from the two solutions

in proportions 1 + d -d, as follows:

w = (1 + d) wH - dw (5)

The component wH is the Hertzian one, as in (2), and w for

the parabolic case is given by (4). The corresponding

radial displacements are:

= -P (1 - 2v) a3  (a2  2) 3/2
4i G "pa 3

(Hertz)

".'U -P (1 2v). p (2 - 2 a )

""P 4wGa2
4..,, a (parabolic)

These are the displacements inside the contact circle.

Outside it, where p > a, the radial displacement is

up = -P (1 - 2v)/4wGO

whatever the mode of pressure distribution.

The component u is usually ignored in discussions of~p

contact problems, but it is not really negligible unless

approaches 0.5. It is interesting to observe its effect in

the Hertzian case as shown in fig.,Z for P/Ga2 = 1.5,

v - 1/4. The displacement w alone would give the surface

a. '
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paraboloid form, as mentioned above, but the radial

" displacement, u , brings a surface point towards the axis,

*actually within the surface of the sphere. Therefore if

surface pressure were truly distributed as in (1), elastic

theory would require interpenetration of matter between

sphere and specimen, not a gap as previously predicted. In

either case the value of a (the contact radius) seems open

to doubt, and since this is used in many investigations of

strength and toughness the question of its true value is

important.

To obtain a better fit we chose as our criterion that

the displaced surface should be as close as possible to

spherical form, without specifying the radius of the sphere.

The method consisted of choosing a value of P/Ga 2 , and

using this to find the coordinates x,y of displaced surface

points. These coordinates are defined by:

x P +(6)

y w(o) - w(P)

and the u and w are composed of Hertz and parabola terms

as in (5). Now, if by adjusting the parameter d, it is

possible to make the quantity

. 2 + y2

2y

approximately constant for all p < a, then this constant is

the radius of a sphere on which the points all lie. Moreover

since the centre of the sphere must be at the point
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X p =0 y =R,

the distance between a displaced surface point (x, y) and

the boundary of the sphere is

2. 2
R- ((R- y) + x) (7)

and therefore zero if x2, = R.

So the best possible fit was found by minimising the

quantity (7), within the contact area, for each chosen value

2of P/Ga2 . In each case so far completed the gap or overlap

was greatly reduced, the deformed surface becoming

indistinguishable from the sphere on the scale of fig.2.

°°-.

.
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6. THE RESULTS

More calculations are still to be made, but the results

so far, for P/Ga2 = 0.5, 1, and 1.5, show that the surface

of the specimen can fit very closely to the sphere when the

pressure is of the composite Hertz and parabola form. For

the three cases completed, the parameter d in (5) takes values

approximately equal to 0.07, 0.14 and 0.22.respectively. The

new solution gives the extent of contact in these cases as

a/R = 0.14, 0.29 and 0.43 respectively, whereas Hertzian

theory would give 0.14, 0.28 and 0.42.

The new combined solution therefore predicts a slightly

larger contact area than that of Hertz for the same sphere

and load, the difference increasing with a/R.

The new pressure distribution differs slightly from

Hertz, again diverging more with increasing a/R. The

pressure is slightly decreased at the centre, for example

from 1.5 P/wa2 to 1.39 P/7a 2 for d = 0.22. Even for d = .07

the maximum pressure is reduced to 1.46 P/a 2. These slight

redistributions of pressure do not appear to cause significant

change in the stress trajectories, nor in the position of

maximum shear stress, but there is more work to be done on

-2 this aspect.

.2
.,

S'
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7. APPLICATIONS

It is expected that the main application of this study

will be as a check or reassurance for experimental workers.

Indentation is now widely used for measuring many different

properties of materials, and the interpretation of results

has relied heavily on Hertz' classic work. No other solution

being readily available, it has been customary to apply the

Hertzian formulae beyond the recommended range of a/R < 0.1,

and even to state that the elastic fields are all "self-

similar", to be formulated in a "non-dimensional" way.

Although a little thought must show that this cannot

be precisely so, it has not been possible to make a quick

estimate of the error.

The present theory is expected to remedy the situation,

by providing a second approximation more closely fitting the

true state. Then the accuracy of a result derived from

experimental data by Hertzian theory may be verified, and

its accuracy assessed, by adding the proportion of parabolic

solution appropriate to each load.

If the change is negligible, the work can proceed with

confidence in the Hertz solution. But as the accuracy of

'" measurement continues to improve, and the increased strength

of modern materials leads to higher a/R values, it is

expected that there will be more and more cases where this

second approximation is needed.
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8. CONCLUSIONS

The Hertz solution for the elastic stress field under

a spherical indenter has been improved by the addition of

a correction term, which increases with the magnitude of

the load for each radius of the sphere.

The correction is made by subtracting another elastic

solution, that of a parabolic pressure distribution. This

solution has not previously been discussed in detail, but

has now been developed and appears very well suited to the

,[ purpose. Preliminary results have been obtained which

indicate the probable magnitude of the correction, but the

work is not complete and will be reported more fully later.

It appears that the correction will be simple, useful,

and easy to apply.

-4

4-

4'
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9. FURTHER WORK

As stated above, there is much more to be done on this

second approximation to the indentation field. The

calculations must be repeated for other values of the load,

checked, tabulated and written up for publication.

It is intended also to make a thorough investigation of

some cases of loading by surface shears, since some new

results i this topic have emerged in the course of the work.

It is also very desirable to find some exact solutions

for the elastic deformation of the sphere, but no progress

has yet been made with this topic. The calculations so far

have all been for a rigid sphere.

B'..
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Fig. 1. Diagrami of indented surface showing axes

and extent of contact

Fig. 2. Detail near boundary of contact area, showing

gap between sphere and surface depressed by

Hertzian displacement w only "A position of

points displaced by w and up.
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*Fig. 1. Diagram of indented surface showing axes

* and extent-of contact
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