
II 'D-Ai27 718 NOTES ON THE CONVERSION OF LOGLISP FROMNi
RUTGERS/UCI-LISP TO INTERLISP(U) ROME AIR DEVELOPMENT
CENTER GRIFFISS AFB NY R C SCHRAG JAN 83 RADC-TH-82-i

UNCLASSIFIED F/G 9/2 N

MENOMONEE[],flfl

1 .0 It IILN

iQ

11L25 11.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-1963-A

..-."... "-- -. i. 1 .1 i 'i.....................

* A0 . ,

RADC-TM-83- 1
In-House Report
January 1983

Go NOTES ON THE CONVERSION OF LOGLISP
FROM RUTGERS/UCILISP TO INTERLISP

co

Ott

Robert C. Schrag

.-F.

5 APPROVED FOR PUBLIC RELSE, DISTRIBUTION UNLIMITED

. tv":AYf 4 1,,3

ROME AIR DEVELOPMENT CENTER

" Air Force Systems Command
p Griffiss Air Force Base, NY 13441
CA

83 05 04m 082

b.-r C r C -..- . .- '

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TM-83-1 has been reviewed and is approved for publication.

APPROVED: t

DEAN F. BERGSTROM
Chief, Computer & S/W Engineering Branch
Command & Control Division

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command & Control Division

FOR THE COMMANDER:

JOHN P. SS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the .RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC. (COES) Griffiss AFB NY 13441. This will assist .us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

q~ " ° . " . / . ' ' , ' ' . . " ' . " -' - , .," "" " ° , " , " , " 2" ,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Nion Djl ntered)_

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
N PBEFORE COMPLETING FORM

R-1|.1ePO T HUMMI' 12. GOVT ACCESSION NO. 3. R)C I9NT'S CATALOG NUMRER

RADC-TM-83-1 / 7
4. TITL (8, Subtitle) S. TYPE Or REPORT a PERIOD COVERED

NOTES ON THE CONVERSION OF.LOGLISP In-House ReportFROM RUTGERS/UCI-LISP TO INTERLISP S. PERFORMING ONG. REPORT MUMER
~N/A

7, AUTHOR(a) 6. CONTRACT OR GRANT NUM9eRI()

Robert C. Schrag N/A

S. PERFORMING ORGANIZATION NAME AN AOORESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA 6 WORK UNIT HUNGERS
Rome Air Development Center (COES) A2UNMF

Griffiss AFB NY 13441 62702F
• .. _55811912
II. CONTROLLING OFFICE NAME AND AODRESS I2. REPORT DATE

* Rome Air Development Center (COES) January 1983
Griffiss AF NY 13441 1. 6UMGER OF PAGES

14. MONITORING AGENCY NAMI E AOORESS(It dfflerent rom Controlling Office) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED* Same
15a. OECLASSIFICATION/OOWNGRAOING

N/A
16. OISTRI@UTION STATEMENT (of uis Report)

Approved for public release; distribution unlimited.

I7. OISTRI@UTION STATEMENT (*I the abstrat entered in Stock 20. It different fro Report)

Same

I,. SUPPLEMENTARY NOTES

None

I. KEY WORDS (Conmbie an revenore aide it noseeerw and Identify by Nock mombv)
LogLisp Artificial Intelligence Programming Languages
Lisp Programming Language Translation
InterLisp User's GuideRu tgerlUC I-Lisp 3 l p, ,?r, A,/)... , ,!

20. ASSTRACT (Cntinuo an eerae side It npcee. . = and 1.enhtif? 6 block m mbet)

)K.. onversion of the LogLispXArtificial Intelligence programming
environment from its original Rutgers/UCI-Lisp (RUCI-Lisp) implementation
to an InterLisp implementation is described. This report may be useful
to researchers wishing to convert LogLisp to yet another Lisp dialect, or
to those wishing to convert other RUCI-Lisp programs into InterLisp. ItU: is also intended to help users of the InterLisp version of LogLisp to
understand the implementation. - . / .-,.

(otd)
""DO ,Oo 147317 IN"LUNCLASSIFIED

SECURITY CLASSIFICATION OFl THIS PAGe (When' Dote EnlIee

-V 'S.*. * -.. * .. V .-.. *.... .-]

S9CURITY C AMICATION4 OW. eiS PAG(Wl
e

h Oaa 9"to~

aThe conversion process is described at a level aimed toward potential
translators who might benefit from approaches taken and lessons learned.
General issues of conversion of Lisp software between dialects are
discussed, use of InterLisp's dialect translation package is described,
and specific issues of non-mechanizable conversion are addressed. The
latter include dialect differences in function definitions, arrays,
integer arithmetic, i/o, interrupts, and macros. Subsequent validation,
compilation, and efficiency enhancement of the InterLisp version are then
described. A brief user's guide to the InterLisp version and points of
contact for information on LogLisp software distribution are also
provided.

-"V.

.

'VS

..

UNCLASSIFIED
SCUORITY CLASSIF

I
CATION OF ,,, *AG9ir"6n 0O00 ene,.e)

-w.

Acknowledgements

Nort Fowler conceived and initiated the effort under which this
work was done. Sharon Walter helped perform the conversion. Carl
Engelman helped us with problems we had in using InterLisp. Phil

) Tarbell installed RUCI-Lisp on Tops-2U to allow us to validate our
A' InterLisp implementation, and provided us with insight into

machine-level execution. Uarrel VanBuer provided the set of
RUCI-Lisp-to-InterLisp transformations we used, as well as advice on
compiler macros. Sanjai Narain utilized a preliminary, experimental
InterLisp version of LogLisp, and provided useful bug reports.
LogLisp's designers, Alan Robinson, Ernie Sibert, and Ken Bowen, have
graciously helped us to understand the system software.

Thanks to all.

IfPEC&,

-. .

1. Int roduct i on

This report documents the conversion of LogLisp (logic programming
in Lisp), an Artificial Intelligence programming environment developed
by Syracuse University under contract to Rome Air Development Center
(RAUC) LRobinson and Sibert 80, 81a, Bib4 , from its original
Rutgers/UCI-Lisp (RUCI-Lisp) LLeFaivre 78j implementation to an
InterLisp implementation. This work was performed as part of Lisp
Implementation Baseline Investigation, an RADC in-house effort to
experiment with and evaluate LogLisp. It served as an important
preliminary to the effort's main task of evaluating the effectiveness of
LoyLisp for implementing a simple knowledge-based system, using its
original InterLisp implementation as a baseline. Two versions of
LogLisp were actually converted: LogLisp VIMI delivered to RADC in
December 1980, and LogLisp V2M3 delivered in December 1981. Version
V2M3 has a more developed user interface and is more efficient than the
previous delivery. References to LogLisp without a version number in
this report pertain to the later version. The translation work was
performed on the USC Engineering Computer Laboratory's System A (ECLA),
a DEC PUP machine running Tenex and later Tops-2U.

This report, which documents RAUC in-house work, may be helpful to
researchers who wish to convert LogLisp to still another dialect of
Lisp, as many of the same problems--if not the same solutions--will be
involved. We have tried to include enough information to point such
individuals to the problem areas in the actual code. It may also be
helpful to researchers who need to convert other programs from RUCI-Lisp
to InterLisp. To this end we have tried not to be too verbose about the
LogLisp code. It is further intended to provide a user of the InterLisp
version of LogLisp with some insight into the implementation. However,
it is not intended as program documentation to allow users to do their
own bug fixes. Please report any bugs or perceived bugs to us, and we
will try to respond quickly, and to keep other users informed.

The remainder of this report consists of six sections. In section
2 general issues of inter-dialect conversion are discussed and

background on each dialect is provided. Section 3 describes our use of
InterLisp's automated translation program. Section 4 describes
non-mechanizable translation done by hand. Section 5 describes the
validation of the translation, and subsequent compilation and efficiency

S,enhancement. Section 6 provides a consolidated description of the
differences between the InterLisp version and the original RUCI-Lisp
version that could serve as a brief postscript to the LogLisp manual.
Section 7 covers distribution of the LogLisp software.

. - l -

2. Dialect Differences

The conversion of software from one dialect ot Lisp to another
involves many issues. Most Lisp's include a core of common functions
corresponding roughly to those found in Lisp 1.5 LMcCarthy et al. 62j.
The exact syntax of these functions and their behavior in boundary cases
(e.g. when one argument is NIL or zero) vary among the dialects. In
addition to these more standard functions, each Lisp has its own
peculiar functions which, though not absolutely necessary, implementors
decided to include for reasons such as programming convenience or
run-time efficiency. While there is less correspondence between
dialects among the latter type of functions, some composition of
functions In the target dialect will usually behave appropriately.
Inevitably, some utility functions may correspond to operations which
are not defined in the target dialect. In this case, it is necessary to
determine what effects of the function must be reproduced in order to
successfully convert the code.

2.1. InterLisp and RUCI-Lisp

InterLisp LTeitelman 78J is an extensive Lisp programming
environment. It includes a sophisticated structure-oriented list
editor, trace and break facilities for debugging, a comprehensive file
package, a DWIM (Do What I Mean) facility for correcting certain kinds
of errors in user input, a CLISP (Conversational Lisp) facility that
allows some syntax similar to that of conventional programming languages
such as Fortran or Algol, a facility for modifying functions by advising
them of tests or actions to be performed before or after execution, and
many other advanced facilities for Lisp programming. It represents one
of the most sophisticated program development environments in existence.

RUCI-Llsp Is an extended version of UCI-Lisp that runs under the
Tops-lO operating system on the DEC-10 computer. UCI-Lisp (University
of California, Irvine) [Bobrow et al. 76" Is itself an extension of
Lisp 1.6 LQuam and Diffie 76]. It Includes the edit and break packages
of 1972 InterLisp. (See ITeitelman 78J for background on the evolution
of InterLisp.) To be fully informed, a user of the original
implementation of LogLisp must have manuals for these three Lisp's
besides the LogLisp manual.

-2-

." . - .

W , - . ,- - J: L .- ,.. -. . , -.- . .- - - - •. - .. -w--r. . - - .- .--. - -.-

3. Mechanical Conversion

While some of the problems that arise due to different techniques
employed in the dialects' implementations can be interesting, the
repetitive manual conversion between corresponding syntactic forms is a
tiresome task. Fortunately, this process can be automated.

3.1. TRANSOR

One of the advanced programming facilities of InterLisp, called
TRANSUR, is designed to assist in converting Lisp software from one
dialect to another. It reads Lisp function detinitions from a source
file and, for each function for which they are provided, replaces its
calls with translations resulting from the execution of transformations
expressed as Lisp editor commands, writing the "transored" results onto
a separate file.

The transformations can include "notes"--descriptions of the
differences between the behaviors of the source function and the
transored code and warnings of possible consequences. Or the
"transformation" for a source function whose operation is undefined in
the target dialect may simply be a note to that effect. Translation

S. note output goes to another separate file on which the individual notes
and the code portions to which they apply are cross-referenced.

We found a fairly complete set of RUCI-Lisp-to-InterLisp

transformations at ECLA. Some trial and error was necessary to get the
TRANSOR package to work properly. It failed unless the file of
transformations was loaded betore the TRANSUR package itself. We
transored a file containing the source code for all of LogLisp. (The
files containing the LogLisp system code are described in LRobinson and
Sibert 80, 81b].)

3.2. Building an InterLisp File
.5

The resulting transored code, like the RUCI-Lisp code, included the
l"" read macro character, rather than QUOTE as a function call. While

InterLisp allows the a"-read macro in terminal input, it expands it
immediately, and expects loaded files to contain the expanded form.
Loading the transored code into InterLisp would not cause the macro to
be expanded, or the forms in which it occurred to be correctly
evaluated. To fix this problem, we made a temporary change to the
read-table for files, setting the syntax of "'" to the same syntax it
has In the read-table for terminals. Making the file (see below) made
the code change permanent. (Alternatively, we could have set the syntax
before transoring.)

Another problem appeared when we loaded the transored code into
InterLisp. Two LogLisp functions had to be renamed because of clashes
with InterLisp system functions. RESTORE is called RESTORR in our
implementation, and FIND is called FYND.

V
-3-

.5-

".

Mechanical Conversion
Building an InterLisp File

We created an InterLisp file containing the transored tunctions,
variables and properties, by constructing appropriate InterLisp file
package commands. The most worrisome part of this task was to construct
a list of names of the some 300 functions included in the LogLisp system
code without having to type them all in by hand. The InterLisp function
MAPATUMS, which umaps" over all known atoms, was useful for this
purpose. We identified the function types in the transored file, and
mapped over an empty InterLisp to isolate the InterLisp system functions
of the same type. Then we loaded the transored file, mapped again over
all known atoms for these function types, and took the difference of the
two lists as our result. This resulting list also worked for saving the
documentation (DUC) properties of functions that the designers provided.
Uther file package commands were small enough to be written by hand. We
saved the file using MAKEFILE. Subsequent conversion was performed
using this file and its future generations.

44

a_.

L--4-

- . % -

*o

.

4. Non-mechanlzable Translation and Manual Conversion

Examination of the translation notes generated by TRANSUR showed
several areas in which problems remained. In some cases, it was only
the need for knowledge of context which precluded the implementation of
a syntactic correspondence in a transform. This was true for array
references and arithmetic operations. It is conceivable that a
translation program could learn about these contexts by remembering code
it has already seen, or by being told, but TRANSOR does not have this
capability. In other cases, while direct syntactic correspondences
existed, no transformations had been written to cover them. This was
true for many input/output (i/o) functions and atom manipulating
functions. Finally there were cases where the operation of the function
was not defined in InterLisp. This was true for some interrupt and
error-handling functions and for those functions designers implemented
as macros.

Attempting to run the code revealed calls to RUCI-Lisp functions

which had slipped through TRANSOR because neither translations nor notes
for them were included in the set of transformations we used. This
happened for a variety of functions, and we usually dealt with it by
defining InterLisp functions with the same names and including them with
the code for our implementation.

Finally, there were problems resulting from assumptions in the
LogLisp code about issues which are implementation specific. This was
true for code which accesses stored function definitions.

We will examine the last problem first, as the storage issue is
relevant to other problems, including array and macro expressions.
Except when logic dictates other sequencing, we will examine problems
and describe our approaches to them in the order in which they were
encountered.

4.1. Atoms, Functions, and Property Lists

An atom is the Lisp identity with which objects such as values,
function definitions, property lists, and print names are associated,
and by which they are accessed. In InterLisp, separate memory cells are
associated with each of these objects, and, except for print names,
primitive functions are provided with which they may be accessed. In
RUCI-Lisp, only the property list is directly associated with an atom.
Values, function definitions, and print names are stored under and
accessed via appropriate properties on the atom's property list.

In some of the functions (#REDUC1, #VALRELD, and #SETUF) comprising
LogLisp's reduction mechanism, there is code which tests whether an atom
has a function definition, to determine its semantic class in a LogLisp
expression. The RUCI-Lisp code checks whether an atom has a property
among the function types defined in RUCI-Lisp. We translated this to
InterLisp code of the form (FNTYP FUO), which returns the type of the
function definition associated with the atom FUO, or NIL if FOU is not a
function name.

:" 7 ., e t, - , c' . - 5 -,r ' '' " ",• , '% 7'.,T.'''? ' , ." ,;.- ,oi'

Non-mechanizable Translation and Manual Conversion
Atoms, Functions, and Property Lists

We are glossing over a subtlety which the direction of the
translation allowed us to ignore. In RUCI-Lisp, the result of predicate
evaluation is usually T or NIL, while in InterLisp, most (non-,iumeric)
predicates either return NIL or one of their arguments. Consistent with
these interpretations, the InterLisp COND form accepts test arguments
with non-logical values, while RUCI-Lisp requires that the test argument

. evaluate to T or NIL. We can therefore ignore that our InterLisp
,, translation branches on non-logical values, as returned by FNTYP.

An unusual sort of bug was born when we neglected to include the
compiled function type CFEXPR* among those checked for. While the code
still seemed to work in interpreted form (since we weren't using any
CFEXPR*'s in the place of LogLisp procedure calls), as soon as we
compiled it, the LogLisp forms ANY and LISP ceased to work. Tracing
execution in such situations gave no indication ot the offending
functions. Because broken functions become embedded in interpreted code
and CFEXPR*'s become FEXPR*'s, traced code worked properly. In
retrospect this was a fairly glaring error of omission.

A related problem is that InterLisp expects any atom appearing at

the head ot an unquoted list to have a function definition, while

RUCI-Lisp will allow an atom that is merely bound to a value that is a
function definition. In InterLisp, this sort of construct requires the
use of APPLY. Calls to APPLY were inserted in #VALRED, #REDUC1, and
PRINTFACTS.

4.2. Arrays

InterLisp treats arrays as data, while RUCI-Lisp treats them like
functions, placing an array referencing function on the atom's property
list. In InterLisp an array FO0 is created by binding FUO0 to an array
pointer as in (SETQ FOO (ARRAY N P V)), where N is used to indicate
size, P to determine integer versus s-expression entries, and V to
initialize entries. Array bounds always run from 1 to N. Array
elements of index I are referenced by (ELT FOO I), and set to a value V
by (SETA FOO I V). In RUCI-Lisp such an array is created by (ARRAY FOU
P (1 . N)), where P determines entry type and initialization, and the
dotted pair indicates the subscript range. Array elements of index I
are referenced by (FUO I), and set to a value V by (STORE (FOO I) V).

The LogLisp system uses four arrays: #HPWT and #HPCLS used in heap
management, and #ENVS and #ENVX used in environment management. We made
the appropriate changes in array-creating code for entry type and
initialization, and converted the subscript range information to size

*information. RUCI-Lisp STORE expressions were easily converted to
InterLisp SETA expressions, but TRANSOR ignored RUCI-Lisp array
reference expressions as unidentified function calls. We changed these

* to ELT expressions.

This was all that was necessary for #HPWT and #HPCLS, because they
are subscripted from 1 upwards. However, #ENVX is subscripted from 0

-6-

A,

! . . '.'., .,,..... ,.. .. ,.... . " ' . .. , "-

r ".

Non-mechanizable Translation and Manual Conversion
Arrays

and #ENVS is subscripted from -1. We needed to preserve these subscript
ranges in order to preserve the interface with other environment
management code, so our translation adds 1 to the subscript for #ENVX
whenever it is referenced or set, and adds 2 to #ENVS's subscripts.

4.3. Integer Arithmetic

The only arithmetic in LogLisp operates on integer expressions.
Because RUCI-Lisp has only general arithmetic operators, TRANSUR was
forced to make the conservative translation to general arithmetic

r operators in InterLisp. We used a text editor to replace the general
arithmetic functions with more efficient integer arithmetic functions.
The differences in function name length caused InterLisp to rewrite the
file map when the file was loaded, but that is of no major consequence.

A related problem is that the RUCI-Lisp code showed all integer
constants with decimal points to distinguish them from octal (the
default). At first we just left the decimal points in, but that didn't
work, because a decimal point signifies the floating point data type in
InterLisp, and some parts of the code test these constants against valid
integers which will never be EQ. We used a text editor to remove the
decimal points.

4.4. I/U and Atom Manipulation

I/o is always implementation and usually operating system
dependent, and it is tedious to translate (which is probably why no
transformations were written for the functions in this section). The
only code we actually changed was that used to access files in the
functions that save and restore logic programming knowledge bases (SAVE
and LOADLUGIC). For the terminal i/o we defined InterLisp functions
(PRINA, PRINAC, PRINL, and MSG) that seem to behave properly and
included them with the code for our implementation. We used the same
approach for the atom manipulating functions AEXPLUDE, AEXPLUDEC,
ANTHCHAR, and MAKNAM. The interested reader can consult the code for
the details of the translations.

There is one terminal I/o function whose operation is worthy of
note. The RUCI-Llsp function LINEREAD was converted by TRANSOR to the
InterLisp function READLINE. The functions indeed have compatible input
and output specifications, reading in an arbitrary line of text and
returning it as a list, but READLINE is very impatient, returning NIL if
the input buffer is empty when it is called. This is suitable in
LOADLUGIC, which reads from a file, but not in FACTS, MONITOR, or #ASK,
where terminal input is required. We took advantage of InterLisp's
advice facility to advise the latter functions to call the function
WAITFURINPUT before executing. WAITFURINPUT simply does nothing until
the input buffer is ready. We included file package commands for this
advice among those for our InterLisp file, so that it is saved from
generation to generation.

-7-

%.A L ~. -l,.~ 7 -

Non-mechanizable Translation and Manual Conversion
Error/Interrupt Handling Functions

4.5. Error/Interrupt Handling Functions

RUCI-Lisp includes the function INITFN which establishes its
argument as the function to be evaluated whenever an interrupt to return
to top level is encountered. This serves two purposes in LogLisp.
During search the function #INITSEARCH resets two global variables to
their proper pre-search values. During editing, the function #EDITTRAP
prevents abnormal exit from the editing routine, since assertions are
erased before editing and reasserted afterwards.

Unfortunately, INITFN is one of those functions whose operation is
not detined in InterLisp. We were able to simulate its behavior in
LogLisp by defining our own INITFN. It uses the function INTERRUPTCHAR
to cause control-D and control-E, which normally call the function
RESET, to call INITFN's functional argument instead. We then modified
#INITSEARCH, but not #EDITTRAP, to call RESET.

4.6. Macros

In Lisp, in general, macros are like function definitions and have
the same status, except that instead of consisting of code which is
simply evaluated, the macro code manipulates the calling s-expression,
perhaps recursively, with the resulting "macro-expansion" being
evaluated in place of the original s-expression. Macros are thus doubly
evaluated, first for expansion, then for effect.

While this is essentially the way macros are implemented in
* .; RUCI-Lisp, InterLisp deviates from the Lisp norm in this regard. In

InterLisp, macros do not have function status and are only legitimately
-: available for use by the compiler. The RUCI-Lisp-to-InterLisp

transformations we used with the TRANSOR package translated macros into
texprs that were rather ugly. We found that once we understood the
macros' intents we were able to write relatively straightforward fexprs

• .to do the same jobs.

InterLisp compiler macros reside on an atom's property list under
"" the property MACRO. While the normal function access mechanism will not

find them there, InterLlsp's designers have provided a package called
MACROTRAN which interfaces with the DWIM facility. Whenever an
undefined function Is encountered, MACRUTRAN is used to look up the
atom's MACRO property and perform the expansion, with the expanded code
then being evaluated. If no MACRO property exists, an error results.
The MACRUTRAN facility means that macros don't have to be converted to
fexprs, but we did convert them for use with the version of our
InterLisp translation of LogLlsp that we run interpreted, in the belief
that this would be more efficient.

When Lisp programs are compiled, the inclusion of macros rather
than fexprs generally leads to greater run-time efficiency, because

*expansion eliminates the need for a function call. We translated the
RUCI-Lisp macros to InterLisp compiler macros for the compiled version

-8-

Non-mechanizable Translation and Manual Conversion
Macros

of our InterLisp translation of LogLisp. lnterLisp- includes three kinds
of macros, one of which (the "computed" macro) is similar to
RUCI-Lisp's. Rather than overwork this correspondence, though, we took
advantage of the fact that some constructs (the PMACRO and SUBST
constructs) used in macros by LogLisp's designers produce the same
effects as produced by InterLisp's "substitution" macro. Although the
code generated is the same, the expansion is more efficient than if we
had used computed macros in these cases.

4.7. Miscellaneous Transformless Functions

The RUCI-Lisp tunctions INCR and DECR, which increment and
decrement integer arguments, respectively, were implemented as n.acros,
as they are in RUCI-Lisp.

The RUCI-Lisp functions INITSYM and NEWSYM, which are used to
generate subscripted atoms, were implemented as fexprs, with an atom's
subscript counter being stored under the SCNTR property on its property
list, as in RUCI-Lisp.

RUCI-Lisp includes a macro called DU, which provides a variety of
iterative forms. Types of calls to DO in LogLisp include DO WHILE, DO
UNTIL, DO FUR ... IN, and DO FOR ... ON. For each of these calls to
DO (though not for all DO forms), there is an equivalent lnterLisp CLISP
form that behaves identically and is identically constructed except for
the omission of the atom DO.

-9-

b4

r - ".

V- . -------.---

5. Testing and Tuning the InterLisp Implementation

During the process of solving the problems outlined in the previous
section, we were continually referring to manuals, and listings of the
original and partially converted code. Functions in InterLisp files are
always listed alphabetically, but the RUCI-Lisp file we transored from
was not. We numbered functions on the RUCI-Lisp file and
cross-referenced this with the InterLisp file, for convenience. A

* better approach may have been to save the RUCI-Lisp function definitions
as properties, making them accessible on-line.

After the obvious errors (those causing breaks) were eliminated, we
tested and debugged our translation by comparing results obtained in it
to those obtained for the same computation in the RUCI-Lisp version.
When we were satisfied with the faithfulness of the translation, we
commenced compiling as efficient a version of it as we could.

5.1. Validation

When we needed a reference point for our VIM1 translation, we used
a version of RUCI-Lisp which runs under Tenex. Later, when we did the
V2M3 translation and ECLA had changed its operating system to Tops-ZO,
we used an implementation of LogLisp in RUCI-Lisp described in LTarbell
83,. We validated the translations and their compiled versions with an
example knowledge base called Places (an intelligent data base system
containing world geographic, economic, and political information) and an
associated variety of prepared queries trom the software delivered by
Syracuse University. Use of this knowledge base required the
translation of ancillary files containing Lisp tunctions which are
called by its procedures. When a version was capable of executing all
of the prepared queries and gave the same results as the corresponding
RUCI-Lisp version, we tentatively accepted it as valid.

* 5.2. Compilation

When we believed we had achieved a valid translation, we compiled
it using TCOMPL, the standard InterLisp function for file compilation.
At first we had no version of the translation which included compiler
macros, and the efficiency of the compiled version was limited.
LogLisp's designers have included a global variable in LogLisp V2M3 that

* serves as a counter for the number of resolvents generated. We took
advantage of this counter and used InterLlsp's TIME routine to measure
the efficiency of various versions of our InterLisp translation. We
chose a query requiring only logical inference (no Lisp reduction), used
with a relatively small LogLisp knowledge base, as our standard for
measurement. The first pass at compilation produced a version which
performed about lb resolutions per cpu second.

At this point we decided to implement RUCI-Lisp macros as InterLisp
compiler macros rather than fexprs. When the resulting file was
compiled, performance improved to about 34 resolutions per cpu second,
about twice as fast as the fexpr-only version.

- L -

* * ..

Testing and Tuning the InterLisp Implementation
Compilation

In compiled Lisp functions, references to variable names do not
generally appear as they do in interpreted functions. Appearing instead
are references to fast memory locations (accumulators) containing the
values which they represent. These references are in effect local--when
when another function is called from within the defining function, the
accumulator contents are pushed onto a stack, in order that the same
registers can be used by the function being entered. This stack
implementation means that the variables of a given compiled function
will not be accessible to other functions it calls (directly or
indirectly) which reference them by name, as they would be if the
calling function were not compiled.

Most dialects of Lisp provide a mechanism to allow variables which
are bound in a compiled function to be used free in a function called by
that compiled function. When variables are used in this way, they are
called "special" variables. Variables declared special are treated by
the compiler differently than non-special or "local" variables. Their
names do appear in the compiled code, and refer to memory locations
which are not local (contents don't change when a new function call is
entered). When a variable in a compiled function is made special, it is
accessible to called functions in which it occurs free, but efficiency
of access from within the binding function is then degraded compared to
efficiency of access to local variables. For this reason variables are
usually assumed local unless otherwise declared.

Special variables in RUCI-Lisp are handled essentially as described
above. The InterLisp compiler deviates from the norm by treating all

: variables as special, to the end of allowing interpreted and compiled
functions to be freely intermixed. This is a default which can be
overridden.

Since the special variable declarations were already available to
us (in the original RUCI-Lisp code) it was a simple matter to create
file package commands that would assure only these variables be treated
special when the file was compiled. The resulting compiled version
performed 53 resolutions per cpu second when tested with our standard
query, or approximately half again as fast as without local variables.
This is the version that we currently use, since we feel that those
described here are the only efficiency enhancements we could make while
faithfully preserving the intentions of LogLisp's designers.

We performed similar efficiency analyses running the code in
interpreted form, to compare the effect on performance of having
InterLisp's error handling machinery call MACRUTRAN, as opposed to using
code which simply included fexprs. Contrary to expectations, the timing
routine indicated that the macro-containing code was about 10 per cent
faster than the fexpr-containing version. (Both performed about 4
resolutions per cpu second.) We were unable to determine the source of
this anomaly. It might be due to some overhead associated with fexprs
which macros do not incur, or to some unknown feature in InterLisp's
timing routine which subtracts out the time required for macro
expansion.

.: - I1 -

Testing and Tuning the InterLisp Implementation
Compi lation

We finally decided that maintaining fexpr-containing files
consistent with the macro-containing files was more trouble than it was
worth, and deleted them. The differences in elapsed time for query
execution between the two interpreted versions did not seem to be great,
and in practice (now that the compiled version handles CFEXPR*'s
properly) we only run LogLisp interpreted when making changes.

In comparison with our InterLisp version, Syracuse University's
LogLisp V2M3 running in the Tops-ZO RUCI-Lisp installation described in
LTarbell 83 performs about 12 resolutions per cpu second interpreted,
and about 230 resolutions per second compiled, when tested with our
standard query. The InterLisp versions of LogLisp are somewhat more
efficient than would be indicated by the folklore that RUCI-Lisp is six
times faster than InterLisp.

-12-
'p

,o.

b. Users' ()uide

This section describes the differences between the original
RUCI-Lisp version of LogLisp and our InterLisp translation. One
difference has already been mentioned. Because of clashes with
InterLisp system variables, RESTORE has been renamed RESTORR and FIND
has been renamed FYND.

The interactive documentation facility described in LRobinson and
Sibert bO, b1a, has been all but done away with because of dialect
incompatibility. We have included only the function DOC, which returns

*: the DOC property of its argument.

After we had made our translated implementation available for
initial experimentation, an incompatibility between the InterLisp and

. RUCI-Lisp versions appeared. A user trying to utilize a knowledge base
*he had developed with the RUCI-Lisp version complained that it caused an
*: error when loaded in the InterLisp version. Examination showed that the
. offending clause included an argument with the string data type.

Strings are not considered atoms in InterLisp as they are in RUCI-Lisp.

We first decided to accommodate the string data type by modifying
the LogLisp code to call a predicate which accepted either an atom or a
string wherever a call to ATOM appeared in the original code. We
regarded this to be in the spirit of LRobinson and Sibert 81aj, in which
atoms are identifiers, strings, or numerals (pp 3,4). We have since
reconsidered this decision, as the phrase in the LogLisp manual was

'* meant to apply both to the LogLisp code and to RUCI-Lisp, and while we
• could make it apply to our InterLisp translation of the LogLisp code, we

could not make it apply to InterLisp. We believe that most usages of
strings in LogLisp knowledge bases can be replaced by the appropriate
usage of identifiers bound to strings. Dissatisfied users can complain,
or make the substitution of an atom-or-string predicate for the ATOM

*. predicate themselves.

13

-, * . . - - - -

N!

7. Distribution

For information on obtaining a copy of the InterLisp version of
LogLisp, or to report bugs in that version, contact:

Robert C. Schrag
Rome Air Development Center
Software Sciences Section (RADC/CUES)
Griffiss AFB, NY 13441
(315) 330-2748 LAutovon 587j.

For information on LogLisp running in RUCI-Llsp under Tops-li,
contact:

Dr. J. Alan Robinson
Logic Programming Research Group
Link Hall, Syracuse Universtly
Syracuse, NY 1321U.

Future development of LogLisp by Syracuse University will be done on
Lisp machines manufactured by Lisp Machine, Inc.

For information on LogLisp running in RUCI-Lisp under Tops-2U,
contact:

Capt. Phillip B. Tarbell
Rome Air Development Center
Software Sciences Section (RAUC/CUES)
G(riffiss AFB, NY 13441.

.114

. -14 -

L ,,.j , ,, . .% , *. -. *,-.-- .fl. *. . .-. . . -. -.. -.--. -. .

-. '7

47-

References

,'.

LBobrow et al. 76j R.J. Bobrow, R.R. Burton, J.M. Jacobs, and D. Lewis.
UCI-Lisp Manual, on-line documentation at ECLA, 1976.

LLeFaivre 78j R. LeFaivre. Rutgers/UCI-Lisp Manual, on-line documentation
at ECLA, 1978.

LMcCarthy et al. 62] J. McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart,
.0 and M.I. Levin. Lisp 1.5 Programmer's Manual, The MIT Press, 1962.

LI~uam and Diffie 76] L.J1. Quam and W. Diffie. Stanford Lisp 1.6 Manual,
on-line documentation at ECLA, 1976.

LRobinson and Sibert 80] J.A. Robinson and E.E. Sibert. Logic Programming
in Lisp, RADC Technical Report 80-379, volume 1, 1980.

LRobinson and Sibert 81a) J.A. Robinson and E.E. Sibert. The LogLis p User'
Manual, unpublished interim technical report, 1981.

LRobinson and Sibert 81aj J.A. Robinson and E.E. Sibert. LogLisp
Implementation Notes, unpublished interim technical report, 1981.

LTarbell 83j P.B. Tarbell. "Notes on the Installation of Rutgers/UCI-Lisp
on Tops-20," RADC Technical Memorandum, (in preparation).

J"

"-15"

",.-.t -. ~ A - . . - m t t . U t t C t 2 U t ta . t > . V

MISSION
* Of

Ro'm Air Development Center
RAVC ptanl6 and exec.LLteA twatWch, deveopment, -te~t and
4etected aceqwL~ition pftw9am in Auppo't 06 Command, ContLot

*Cormmncation,6 and Inte.Ugence (C31) activitie6. Technicat
and enginee'.ngaiuppoI. uwLthin a~ea,6 oj .techj'iaZ competence
i4 pk'ovided to BVf Pkog'wm O66ies (P046) and otkei ESV
etemenUt. The p~incipat techn.Zcat riAZ~on aueu au
cormnInuAon,6, etectomagnetic guiZdance and contuo, 6uA-
veZUance oj gtound and aeAo6pace objea-t6, inteltigence diata
cottection and handting, in6owicWLon 6y.6tem technotogy,
iono.6phevce potgation, .60114 atate 4ciAenea, micAoiwave
phq.6ic6 and etetonic AretiabZLLity, maZnta.nabiLity and
acompatbtiy.

'4-i

rv)"r

46CK

4w,

